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1

Abstract8

Visual servoing, or the control of motion on the basis of image analysis in a closed loop, is more and more recognized as9

an important tool in modern robotics. Here, we present a new model-driven approach to derive a description of the motion10

of a target object. This method can be subdivided into an illumination invariant target detection stage and a servoing process11

which uses an adaptive Kalman filter to update the model of the non-linear system. This technique can be applied to any12

pan–tilt zoom camera mounted on a mobile vehicle as well as to a static camera tracking moving environmental features.13

© 2004 Published by Elsevier B.V.14
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2

1. Introduction16

The implementation of a system capable of performing visual servoing in everyday environments requires careful17

consideration of the mechanical, control and vision issues involved in the closed-loop sensing system. The primary18

elements are the detection of objects of interest moving in the scene and their subsequent more detailed analysis19

during tracking over time. Mechanically, this requires a pan–tilt camera platform. The visual servoing approach is20

based on an information feedback loop, which determines an error vector defined in the vision space. This vector21

is updated after every image acquisition. In a target-tracking scheme, the error vector is defined as a measure, at a22

given time, of the distance in image coordinates between the target position and the image center. This error serves23

to determine the control parameters of the pan–tilt platform (camera).24

The scheme proposed here, consists of a two-phase process, where the first phase deals with target detection.25

In the proposed approach, the target is distinguished from the environment based upon its color value. One of26

the major problems arising here is the effect of an ever-changing illumination, as a change in illumination will27

also change the perceived colors—or more generally the perceived image—of the environment. To counter this,28

a color constancy approach is presented to improve the classification capabilities of the color target-tracking al-29

gorithm. Color constancy, as defined in[20], is the ability to recover a surface description of color, independent
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of the illumination. The applied approach consists of building up a reliable model to retrieve the reflection char-30

acteristics of the object to be tracked, while eliminating as much as possible interfering effects due to illumina-31

tion changes, shadows, specular reflections, etc. A Bayesian framework is used to build and update this model32

over time.33

In the second phase, the one of the visual servoing, the motion model of the target object is retrieved. This move-34

ment is not known a priori and the perspective projection relationship is a non-linear one, so the servomotor–camera–35

target system is non-linear and time-variant. This system can be approximated as a linear time-variant one, such36

that an observer-based full-state feedback control can be used to implement the tracking function. From this online37

identification process, the system-modeling problem is solved. The simplified linear model is used to approximate38

the more complicated system, while the method of the observer-based full-state feedback control guarantees the39

system stability. The parameters for the control of the camera can be estimated by considering the position of the40

detected target in the image plane and its evolution in time. To make the visual control loop compatible with the41

real-time constraint, a windowing technique is used for the image processing task, such that only a small window42

around the detected object is processed. An Extended Kalman Filter is used to predict the future size and position43

of the window in the image plane, while the target is moving in 3D space.44

1.1. Previous work45

This article focusses on two distinct research topics: color constancy and visual servoing and how they can be46

combined. Several research works have been shown in both of these areas.47

In the field of color constancy, the first computational model was proposed by Land and McCaan[18]. Their48

retinex theory assumes a Mondrian world, which consists of planar patches of differently colored paper. The49

illumination across this Mondrian world is assumed to be smoothly varying over the observed scene. In this setup,50

sharp changes in color signal intensity can be attributed to object boundaries, whereas smooth changes are due51

to illumination variation. In general, the algorithm can determine constant color descriptors despite changes in52

illumination. However, if the scene surrounding a patch is changed, different color descriptors are generated.53

By far the simplest color constancy method is the gray world algorithm. It goes out from the assumption that the54

average of all colors in an image is gray, so the red, green and blue components of the average color are equal. The55

amount the image average departs from gray determines the illuminantRGB.56

Another widespread approach is the white patch algorithm, which is at the heart of many of the various Retinex57

algorithms. It presumes that in every image there will be some surface or surfaces such that there will be a point or58

points of maximal reflectance for each of theR, G, andB bands.59

A more sophisticated solution is presented by the gamut constraint method. The fundamental observation of this60

method is that not all possibleRGBvalues will actually arise in images of real scenes. The convex hull of the set of61

RGBvalues of a certain surface obtained under the canonical illuminant is called the canonical gamut. When using62

the gamut constraint method, the color constancy problem is brought down to find the transformations mapping the63

RGBvalues under new illuminants to the canonical gamut.64

Most modern approaches to color constancy use a finite-dimensional linear model in which surface reflectance65

and illumination are both expressed as a weighted sum of fixed basis functions[2,10,16,23]. The task of color66

constancy, therefore, becomes that of estimating the reflectivity weights for the object and the illumination weights.67

Typically the scene is assumed to be Mondrian and composed of Lambertian surfaces.68

The extension of color constancy to more natural scenes, with varying scene geometry and surfaces that exhibit69

glossy reflection, has been considered by D’Zmura and Lennie[37]. They used the dichromatic reflection model to70

describe interface and body reflection processes.71

Recently good results have been achieved using a neural net to estimate the chromaticity of the illuminant[9].72

Here a neural net is trained on synthetic images randomly generated from a database of illuminants and reflectances.73

The concept of color constancy has been used before in the context of object recognition. In[24], Matas et al. model74

objects in a test database under a range of expected illuminations. Each surface on a specific object is represented by a75
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convex set of the possible chromaticities under the range of possible illuminations. The occurrence of a chromaticity76

in this range is a vote for the presence of the object. In this manner, the likelihood of the presence of each object77

can be estimated.78

In his Ph.D. work Barnard[1] studies the performance of different color constancy algorithms. He concludes79

that the errors remain considerable even for the most performing algorithms under laboratory conditions. These80

techniques also typically require hours of calculation time to process one non-synthetic image, making them totally81

unfit for real-time and real-world vision tasks.82

In the present work, a color constancy technique is proposed for real-time target identification under varying83

illumination conditions. A finite-dimensional linear model is built up using Bayesian reasoning.84

In the field of visual servoing, the research is even more extended and is becoming more and more important85

with the steady increase in computing power. In the past, the complexity of the vision algorithms needed to process86

the acquired images, restricted real-time—and therefore also real-world—applications. A comprehensive study of87

research results so far can be found in[7]. In this work, Corke shows that the concept of visual servoing has known88

a considerable evolution since it was first introduced by Hill and Park in[15]. To clearly state the position of the89

present work, it is useful here to make a classification of the existing techniques.90

From one point of view, one can consider the approaches where the camera is fixed at a certain point in the91

world coordinate system and on the other hand the eye-in-hand configuration, where the camera is fixed on the92

end effector or mounted on a mobile robot[35,36]. A classification can also be made by separating the monocular93

vision systems from the stereo vision systems. Stereo vision is better suited to retrieve the much needed 3D-data94

out of the environment, but on the other, it is more expensive and adds to the complexity of the general system,95

thereby making real-time performance more difficult. A distinction needs also to be made between model-based96

and model-free or model-independent approaches. Whereas most researchers nowadays choose to build up some97

kind of dynamic 3D model of the target[4], others[27] have shown good results with model-independent ap-98

proaches.99

Another important classification was made by Sanderson and Weiss in[29], where they marked the differ-100

ence between image-based and position-based servoing. Other authors refer to these concepts respectively as 2D101

and 3D visual servoing[8,21]. In a position-based control scheme, the control is directly based upon the er-102

ror on the position of the camera. To estimate this error, image features are extracted and then the pose of the103

target can be calculated through the knowledge of a geometric model of the target. This process involves in-104

verse kinematics which requires generally a very accurate kinematic model of the robot–camera—or more general105

target–camera—system. Small errors in the model, measurements, or camera calibration can lead to a servoing106

failure. Another disadvantage of the position-based approach is the need for a considerable amount of a priori107

knowledge. As an advantage, the position-based control scheme performs a target positioning by definition and108

can therefore directly control the camera trajectory in Cartesian space. Position-based visual servoing has been109

applied mainly to robot-arm manipulators, where the kinematic model is well known and often by using stereo110

vision systems[11,34]. When using an image-based servoing scheme, the control error function is expressed di-111

rectly in the 2D image space. This allows for faster tracking, yet it poses a difficult task to the controller since112

the process will generally be non-linear, highly coupled and time-variant. A whole variety of image-based visual113

servoing approaches have been shown[3,19,28], where the research is generally mainly focussed at the design of114

the controller. It should be noted that other options exist besides position-based and image-based visual servoing.115

A less common technique is for example the motion-based approach, which employs the optical flow for tracking116

[26].117

In the present work, a visual servoing approach is proposed which uses a monocular vision system. This work tries118

to integrate the benefits of position-based and image-based servoing by incorporating an online identification method119

to estimate the dynamic system model of the target to control the camera. This model is used in a Kalman filter for120

tracking. The algorithm is also capable of estimating the 3D-coordinates of the target object in a separate process.121

This means that the presented system is capable of delivering the same data (3D-localization) as a position-based122

approach, while avoiding the exact knowledge of the kinematic model.123
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2. Illumination invariant classification124

2.1. Modelization125

2.1.1. The color reflection model126

Our approach is directly based upon the physical characteristics of color reflection. The main problem for the127

correct interpretation of a camera image is that the measured intensities are function of a large number of parameters128

and most of them cannot be retrieved in any possible way due to their strong interconnectivity. The color of an129

object in the image must be considered as an appearance rather than as a real material property. Nevertheless, color130

can be used to identify objects as long as the parameters which influence the formation of the perceived color are131

taken into account. To do so, we make use of the dichromatic reflection model, which was first introduced by Shafer132

in [30]:133

ρc = kb

∫
λ

e(λ) · fc(λ) · rb(λ)dλ + ks ·
∫
λ

e(λ) · fc(λ) · rs(λ)dλ, (1)
134

whereρc is the measured intensity of channelc, e(λ) the normalized light spectrum,fc(λ) thecth channel sensor135

response function,rb(λ) the body reflectance function,rs(λ) the surface reflectance function,kb the attenuation136

factor for the body reflectance andks the surface reflectance attenuation factor.137

2.1.2. Color spaces138

In computer vision, a color is generally represented using a triplet of intensity values. The exact meaning of each139

of these values is determined by the choice of color space. This choice should be made taking into account the140

choice for the distance operator used to calculate the color “difference” between two pixels. Among the different141

color spaces, our choice went out to thel1l2l3-space, a color space which was originally introduced by Gevers and142

Smeulders in[12]. It poses an attractive alternative to the HSI space due to its computational simplicity. The space143

can be formulated as follows:144145

l1 = |R − G|
|R − G| + |R − B| + |G − B| , l2 = |R − B|

|R − G| + |R − B| + |G − B| ,146

l3 = |G − B|
|R − G| + |R − B| + |G − B| . (2)

147

In [13], Gevers and Stokman prove that according to the dichromatic reflection theory, this space is invariant to148

highlights, viewing direction, surface orientation and illumination direction. This means that we can work with a149

simplified form ofEq. (1):150

Hl1l2l3(x, t) =
∫
λ

e(λ, t) · fc(λ) · rb(λ, x)dλ. (3)
151

For the distance operator, two classical options dominate the field: Euclidean distance and vector angle. Wesolkowski152

concludes in[33] that the vector angle is the best overall distance operator, with the disadvantage that is ignores153

intensity. However, in the case of thel1l2l3 color space, the difference is not noteworthy, so we chose for the154

computational simplicity of the Euclidean distance approach.155

2.1.3. Discretization156

Eq. (3)can be discretized by sampling over a number of wavelength bands. We chose to use a finite-dimensional157

linear model with a limited amount of parameters:158

e(λ, t) = Be · qe, rb(λ, x) = Br · qr. (4)159
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The columns of theN×Ne matrixBe and those of theN×Nr matrixBr represent the basis functions for the light and160

the reflectance spectrum respectively. TheNe elementqe vector and theNr elementqr vector describe respectively the161

illuminant and the body reflectance spectrum. The basis functions can be obtained by applying principle component162

analysis on data from spectrometers. For real-time target tracking using only a simple camera, this is not an option,163

so this would force us to use premade sets of basis functions. Using repeated daylight measurement data, the CIE164

setup such a three-dimensional linear model[5], while others[17] used four-dimensional models. For the reflectance165

spectrum, Cohen[6] and Maloney[22] conclude that natural spectra lie within small-dimensional linear models and166

that four-dimensional models suffice to approximate most materials. However, this goes out from the assumption167

that one can retrieve high quality from the illuminant spectrum using expensive spectrometers. In general, it is wiser168

to work with a more extended set of basis functions when such high-quality data is not present. Our tests pointed169

out that three or four dimensions did not suffice (at least with the data we could retrieve) to describe the illuminant170

spectrum and as a result we chose to use 10 basis functions.171

If D(fc) is theN × N diagonal matrix withfc as diagonal elements, we get by insertingEqs. (4) and (3):172

hc = qT
e · BT

e · D(fc) · Br · qr. (5)173

The problem with this representation is that the basis and sensor sensitivity functions are not well known. To avoid174

this difficulty, we use an approach similar to the one described in[31], which introduced a lighting and reflectance175

matrix, parameterized using 4×Ne variables in a manner independent of basis functions and sensitivity functions.176

The idea is to write the vectorBT
e · D(fc) · Br · qr asσc, which is an alternative descriptive function for the body177

reflectance function and which can be used to discriminate between observed materials. This leads to a general178

equation:179

hT = qT
e · σ, (6)180

wherehT represents the color triplet in thel1l2l3 color-space andσ is anNe × 3 matrix holding all the reflection181

characteristics independently of the illumination. This matrix needs to be estimated and based upon this estimate182

the classification process can be performed.183

2.2. Bayesian color classification184

2.2.1. Learning185

In a learning phase, the algorithm learns the reflection characteristics of the object to be tracked. Small patches of186

images are accumulated over time while the material in question is subjected to a varying illumination. All intensity187

measurementsh are combined in anf × 3p color measurement matrixH, while p is the number of pixels in the188

scene patch andf the number of frames sampled. If we sample for long enough, then eventuallyf will grow larger189

thanp and the light spectrum matrixQ and the reflection characteristics matrixS can be recovered by applying190

singular value decomposition onH, whileH = Q · S:191192

H =




h(x1, t1)
T · · · h(xp, t1)

T

· · · · · · · · ·
h(x1, tf )

T · · · h(xp, tf )
T


 , Q = [

q(t1)
T · · · q(tf )

T
]T

,

193

S = [
σ(x1) · · · σ(xp)

]
, (7)194

p(qe|l) represents the light spectrum distribution if the illuminantl is known. It can be calculated at this moment,195

becauseQ is independent of the material. We use an Expectation Maximization (EM) clustering method to derive the196

reflection distributions. This algorithm applies multivariate Gaussian mixture modeling with an unknown number197

of mixture components, so the number of clusters is not fixed on beforehand, which makes the classification very198

flexible. To estimate the number of clusters or mixtures to be distinguished, the algorithm starts with a very limited199

ROBOT 1132 1–25
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Fig. 1. Evolution of the log-likelihood for a situation with 10 different illumination conditions.

amount of clusters and calculates the log-likelihood for the current distribution model. New clusters are then included200

and the model is recalculated until the added log-likelihood for increasing the number of mixtures falls below a201

certain threshold.Fig. 1 shows the evolution of the log-likelihood for a situation where the algorithm correctly202

distinguished the 10 different illumination conditions which were applied to the object to be tracked. The result of203

this EM calculation is anNLS×Ne light spectrum matrixL, with NLS the number of illuminant spectra distinguished204

by the EM algorithm:205

L = [ qT
e(1) · · · qT

e(n) · · · qT
e(NLS) ]T. (8)206

Together with the calculation ofL, the nominal color for each of the clustered lighting conditions is calculated207

and stored in anNLS × 3 color measurement matrixHN. Fig. 2 shows the different nominal colors for an object208

under different illuminants. With the knowledge ofHN andL, we can calculate the inverse of theNe× 3 reflectance209

spectrum matrixR:210

R−1 � H−1
N · L. (9)211

ThisR−1 matrix will be used to calculate the maximum a posteriori (MAP) distribution during the pixel classification212

process, as explained in the next paragraph.213

2.2.2. Pixel classification214

Now that we have estimates of the reflectance spectrum of the target object and now that we have obtained215

illuminant spectra corresponding to different lighting conditions, we want to correctly classify newly presented216

pixels as belonging to the target object or not, while keeping track of newly arising lighting conditions. The217

expectation Maximization algorithm provided us with 10 initial lighting conditions, which means that for every218

pixel, also 10 hypotheses for the lighting conditions will have to be calculated. We present a Bayesian solution219

ROBOT 1132 1–25



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

G.D. Cubber et al. / Robotics and Autonomous Systems xxx (2004) xxx–xxx 7

Fig. 2. Nominal colors for a red ball under different illumination conditions.

to solve these problems. New scene properties are brought into the model based upon the maximum a posteriori220

estimate of these parameters given the color measurements. When applying this classification, we search for the221

conditions that maximizep(o = oTarget, l, qe, σ|h) for any values of the lighting conditionl, the illuminant spectrum222

qe and the reflectance spectrum of the target objectσ, given the color measurement tripleth:223

[ô, l̂, q̂e] = argmax
[l,qe]

p(o, l, qe, σ|ĥ). (10)
224

Using Bayes’ rule, it can be shown that:225

p(o, l, qe, σ|ĥ) ∝ p(ĥ|qe, σ) · p(qe|l) · p(l) · p(o). (11)226

We will now discuss the different factors inEq. (11)and show how they can be calculated or estimated.227

• p(ĥ|qe, σ) is calculated by supposing that the measurements are corrupted by Gaussian noise:228

p(ĥ|qe, σ) =
(

2π

|Σh|
)−3/2

e−‖ĥT−qT
e ,σ‖Σh , (12)

229

whereΣh is the measurement covariance matrix,| · | denotes the determinant and‖ · ‖Σh is the Mahalanobis230

distance:‖a‖Σ = aTΣ−1a. The measurement covariance matrix is calculated together with the color measurement231

itself. To calculate the factor in the exponent, we record the nominal color valueshN of the perceived illuminants232

and these values are used to calculate the Mahalanobis distance to the current color triplet.233

• P(qe|,l) represents the prior probability density of observing a certain illuminant spectrumqe, given the lighting234

conditionl. This is calculated during the Expectation Maximization phase of the learning process.235

• p(l) describes the prior probability of observing a certain illumination condition on a given point in the scene.236

There is no a priori knowledge about this, yet over time, it is possible to build up some knowledge about237

the different lighting situations at different points in the scene and this information can be used to derive a238

probability for the occurrence of lighting conditions in novel scenes. To do this, an illumination map of the239

surroundings of the target object is recorded. The values recorded in this map represent for each of the different240

possible illumination conditions, the probability that they would occur. These probabilities are calculated during241

the classification process using a voting system: a positive classification for a pixel given a lighting condition242

increases the probability for this lighting condition at this pixel position, while decreasing all other probabilities.243
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Fig. 3. Most probable lighting condition at each pixel (every color= different lighting condition).

The result of this process is illustrated inFig. 3, which shows for each pixel which illumination condition is most244

likely to occur. As can be observed, there were two main illumination conditions present at this time instance:245

one near the central and lower right part and one near the top left part due to a shadowing effect. Near the edges,246

the influence of surface reflection causes other lighting conditions to occur.247

• p(o) represents the prior probability of observing the target object in the scene. This factor is estimated by248

dividing the number of pixels belonging to the target object, estimated at the previous time instance, by the249

total number of pixels in the image window.Fig. 4 shows howp(o) stabilizes over time once the tracking is250

started.251

Using these considerations, the pixel classification procedure calculates the probability for each pixel and labels252

the pixel as belonging to the target object or not based upon the result.Fig. 5 shows an example of a probability253

distribution for object presence calculated during the pixel classification process. The circular target object can254

clearly be identified when observing this distribution. Using this classification approach, the pixel classification is255

no longer performed directly based upon the pixels color value, as is classically done, but based upon the derived256

reflection characteristics, which makes the detection process very robust. This can also be observed by analyzing257

Fig. 6which represents the unclassified pixels in gray and the classified pixels in black, both in thel1l2l3 (left) and in258

theRGB-space (right).Fig. 6shows that the applied classification strategy allows a large flexibility in the definition259

of the target objects color domain, as the classified pixels account for a considerable volume in both of the color260

spaces, while the false detection rate is kept low.261

2.2.3. Model updating262

During the actual tracking phase, the illumination model is continuously updated using Bayesian reasoning. The263

model updating stage estimates new lighting conditions together with their corresponding illuminant spectra. It is264

this procedure that ensures the adaptive nature of the pixel classification process within the general target-tracking265

program. The philosophy of this procedure is that we take a small patch from the target object (shown inFig. 17as266

the small square), try to recover the spectrum of the illuminant shining on this part of the target object and update our267

model if necessary. So, the first step in this process is to obtain a patch from the target object. For this, we cannot rely268

on the pixel classification process to tell us where the ball is, as in this case no new information would be added to269
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Fig. 4. Evolution of the probability of observing the target object in the scene.

the existing illumination model. The strategy here is to apply a circle or ellipse fitting upon the classified pixels and270

then to randomly select a patch within this circle or ellipse. For this patch, a nominal colorhN is calculated. IfhN is271

close to any of the meanh values of the already existing lighting conditions, no model updating is made. Otherwise,272

the new illumination condition is calculated and this new illumination condition will replace the one which was273

least used in the old model. After this, the probability of the new illumination condition is set to the mean of the274

others and thehN values, covariance matrix and illumination maps are updated. This model updating algorithm does275

not need to run completely at every iteration, since there will no be no new illumination condition with every new276

Fig. 5. One image frame and the corresponding probability distribution for object presence.
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Fig. 6. Classification results of an entire image. Light gray dots represent unclassified pixels, whereas the black dots represent classified pixels
in (A) l1l2l3 and (B)RGB-space.

frame and only noteworthy changes in illumination will result in the model being updated. Therefore, the physical277

possibility of the proposed model update is tested considering the reflection characteristics of the target object, the278

change in illumination and the covariance on the measurements. The calculation of the new illumination condition279

itself can happen very rapidly, since we already know the reflectance spectrum matrix. After acquiring a nominal280

color triplet measurementhN, we can write:281

qe(Nnew) = hN · R−1, (13)282

Nnew is the index of the rarest illumination condition within theL matrix, which will thus be replaced by the283

new lighting condition.R−1 is the pseudo-inverse of the reflectance spectrum matrix acquired during the learning284

phase. The performance of this model updating process is illustrated inFig. 7. Fig. 7A shows the initial probability285

distribution for target object presence, whileFig. 7B shows the same distribution at a later time instance. This286

illustrates how the update step improves the Bayesian reflection model, such that the target object can be classified287

more clearly. To illustrate the adaptivity of the reflection model due to the updating step,Fig. 8 shows the pixel288

distributions at two different instances during a sequence, separated by a change in illumination conditions, as289

illustrated inFig. 8A and B. In Fig. 8C and E, the initially classified pixels are represented in black and the290

Fig. 7. Effects of model updating on the probability distribution for object presence.
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Fig. 8. Effects of illumination changes on the pixel distributions: (A) the original image with the target object (red ball) in front; (B) situation
when the lights are turned off; (C) distribution of classified (black) and unclassified (light gray) pixels when the lights are on inl1l2l3-space; (D)
distribution of classified (black) and unclassified (light gray) pixels when the lights are off inl1l2l3-space; (E) distribution of classified (black)
and unclassified (light gray) pixels when the lights are on inRGB-space; (F) distribution of classified (black) and unclassified (light gray) pixels
when the lights are off inRGB-space.

unclassified pixels in gray, respectively in thel1l2l3 and theRGB-space, whileFig. 8D and Fshows the same at291

a later time. As one can observe, the cluster of classified pixels has moved in the color space, together with the292

variation in illumination conditions. These figures show also very clearly the advantage of working with thel1l2l3293

color space instead of theRGB-space, while the general distribution of pixels for this first one stays more or less294

the same under illumination shifts, whereas theRGB-space suffers from dramatic changes. Another fact is that it295

is not straightforward to accord a color cluster in theRGB-space to a certain reflective surface, whereas this is far296

easier in thel1l2l3 color space.297

The preceding discussion shows how we can acquire a description for the color of an object which is quite298

independent of the illumination conditions. Now, the object can be identified reliably and tracked in a following299

stage, as we will explain in the next section.300
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Fig. 9. The pan–tilt camera system used for visual servoing.

3. Camera control for target tracking301

3.1. System overview and setup302

The application for this work concerns the use of a pan–tilt camera to track and to estimate the position of a target303

object. This problem is solved as a visual servoing problem, combining image processing, kinematics, dynamics,304

control theory and real-time computing. The camera system used for this purpose is shown inFig. 9. The camera305

platform consists of two servomotors. One is under the camera and controls the pan angle. The other one is on the306

camera side and controls the tilt angle.307

To define the different system parameters present in the visual feedback loop, the camera control parameters must308

be defined first. We use the pinhole camera model and map the 3D world coordinates onto the image plane using309

the perspective projection. Now, let us consider a pointP in the world coordinate system and its projection in the310

imagep, as shown inFig. 10. The pointp is given by(u, v) = (|ox1|, |oy1|). The reciprocal values of pixel size (dx,311

dy), the camera focal lengthf and the principal pointo(o′
u, o

′
v) are known from the camera calibration step.312

In Fig. 10we define two angles:313

α = ∠ocx1, (14)314

β = ∠ocy1. (15)315

Fig. 10. Definition of the camera control parametersα andβ.
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These two angles represent the difference in orientation between the optical axis and the linecpP. We can calculate316

α andβ by317

α = tan−1
(
u − o′

u

f · dx

)
, (16)

318

β = tan−1
(
o′
v − v

f · dy

)
. (17)

319

Our aim is to keep the target center coincident with the image center, thusα andβ will define the pan and tilt control320

parameters of the camera.321

We define the servomotor–target–camera system as our plant. The above defined angles are used for camera322

control and subsequently for target tracking. The plant is considered as a time-variant system due to the unknown323

motion of the target. The target movement is estimated in real-time and considered in our system as the plant state324

transition of free response. Note thatEqs. (14)–(17)underline the non-linear character of the proposed plant model.325

In order to meet the system dynamic characteristic requirements, a two-phase control strategy was implemented326

with a separate initialization phase and an observer-based full-state feedback control phase. During the system327

initialization phase a Proportional and Integral regulator (PI regulator) is used to track the target. At the same time,328

the plant input and output data are collected to identify the plant model and to train the state observer and all the329

adaptive filters used in the system. The plant model will be used in state observation and state feedback control.330

After a certain period of time, the system control strategy is switched from phase one into phase two: the full-state331

feedback control state.332

3.2. Target tracking during initialization333

During initialization, the system (camera) is controlled by a PI regulator designed for target tracking. The system334

is considered as a time invariant one and the target movement is considered as an environment disturbance to the335

system. The block diagram of the control system for this phase is given inFig. 11. An error signale composed by336

comparing the image centero and the camera’s outputy, i.e. the previous target image center. Based upon this error337

signal, the PI regulator calculates a new control signalu fed to the camera servo control system, which results in a338

movement of the camera optical axism. The target movementv will induce noise, which is represented inFig. 11as339

n. F(v) is the transfer function representing the relationship betweenv andn. The superposition of the noise signal340

n and the movement of the optical axis of the cameram, provides the input for the optical system of the camera,341

which will calculate a new target image centery. Because the servomotor system of the camera is a closed-loop342

control system and can roughly be considered as a second-order system, it can be controlled by a PI regulator by343

finding the system poles. Using this control method, the camera can start tracking right away, while the plant model344

is being built up from zero, as we explain in the following section.345

Fig. 11. Initialization system block diagram.
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3.3. Plant model identification346

The dynamic properties of our system can be described by the following set of non-linear differential equations347

[25]:348

ẋ(t) = f(x(t), u(t), t), (18)349

wherex(t) ∈ Rn is the state vector,u(t) ∈ Rm is the input vector andf is a mappingRn ×Rm → Rn defined as350

f(x(t), u(t), t) =




f1(x(t), u(t), t)

f2(x(t), u(t), t)

...

fn(x(t), u(t), t)


 . (19)

351

The existence and uniqueness of the solutions are assumed. This means that for a given system statex(t), there352

exists a unique inputu(t). For our system, these assumptions are only guaranteed within the operational limits of353

the pan–tilt unit and assuming that, for a short period, the plant is time invariant. This last requirement is fulfilled354

when the speed of the control system is much quicker than the speed of the plant parameter’s changing. To establish355

a practically useful plant model we must apply a linearization around the equilibrium point (x0, u0) where bothx0356

andu0 are zero. In our control strategy for target tracking, we try to keep the target center and the image center357

coincident, so we can always linearize the non-linear dynamic system around the equilibrium point. Moreover, when358

we apply the system identification, under the condition of weak perspective (small view-angle) all the requirements359

of linearization are met. Therefore, we can use a linear model to approximate our plant dynamics. For a discrete360

time system, the corresponding function can be written as361

x(k + 1) ≈ A · x(k) + B · u(k). (20)362

The matricesA andB are time-dependent, so the corresponding linear systems is a time-variant one.363

The system model represented inFig. 12is mathematically expressed as364

X(k + 1) = A(k) · X(k) + B(k) · u(k) + W(k), (21)365

y(k) = C(k) · X(k) + v(k). (22)366

In Fig. 12andEqs. (21) and (22), X(k) represents the system state vector consisting of the angular position and367

angular velocity of the target,y(k) the system output representing the difference between the camera principal point368

Fig. 12. Dynamic system model.
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and the target image position,A(k) the plant system matrix,B(k) the plant input matrix,C(k) the plant output matrix,369

W(k) the model noise vector, whereasv(k) the measurement noise variable andu(k) the system control input.370

To estimate the system model in real-time, we simplified the plant model by using a second-order difference371

model (the projection on a subspace) to approximate the real system model (a multifold space curve) at each372

sampling point. This reduces the model error significantly. Higher-order system models introduce noise into the373

control system and make it more difficult to control. For our application, we also assume that the movement of374

the target does not change abruptly (the motion acceleration is considered small). Therefore, we can just select the375

angular position and the angular speed of the target as state variables (the eigenvectors which correspond to the most376

significant eigenvalues in the discrete system state space). From the point of view of pole position in thes-plane,377

this is equivalent to keeping the plant’s main poles and omitting its other poles. The other poles are often far away378

from the imaginary axis and their influence in the output will die out very quickly. The parameters of the plant state379

space function and the plant output function can then be written as380 [
x1(k + 1)

x2(k + 1)

]
=

[
0 1

−a0 −a1

] [
x1(k)

x2(k)

]
+

[
0

1

]
u(k), (23)

381

y(k) = [
c0 c1

] [
x1(k)

x2(k)

]
, (24)

382

(x1, x2) is the state vector corresponding to one of the camera angles (pan or tilt) and the corresponding angular383

velocity. (a0, a1, c0, c1) are the system parameters to be estimated.384

We use a least-mean-square (LMS) second-order adaptive filter as plant parameter estimator[14]. The same385

structure for the LMS filter is used for both pan and tilt plant parameter estimation. The estimator works in two386

steps. First, it uses the updated input data, output data and filter’s tap weights to estimate the system current output387

value. In the second step, it uses the updated input data, output data and the error between the estimated current388

output and the real output of the system to modify the tap weightsw(k) of the filter. These updated tap weights are389

our plant parameter’s estimates. As an example, the LMS adaptive filter for the plant parameter’s estimation of the390

pan is presented here. For this, the estimation error is defined as391

e(k) = d(k) − y(k). (25)392

With d(k) the desired output at instantk, being the real target position in theX(pan)-direction at instantk. y(k) is the393

estimated output at instantk. The cost function is defined as394

J(k) = 1
2E[|e(k)|2]. (26)395

The purpose of the filter is to minimizeJ(k) → Jmin. A second-order filter is used. The tap weight vector of the396

filter is defined as397

w(k) = [−â1(k) − âo(k)ĉ1(k)ĉ0(k)]
T. (27)398

The filter’s input vector is made up of the past plant output and the past plant control command:399

u(k) = [d(k − 1)d(k − 2)u(k − 1)u(k − 2)]T, (28)400

whereu(k) is the control signal for theX direction at instantk.401

The filter can now be defined by the following set of iteration functions:402

y(k + 1) = ŵT(k) · u(k), (29)403

e(k) = d(k) − y(k), (30)404

ŵ(k + 1) = ŵ(k) + µ(k) · u(k) · e(k), (31)405
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whereµ(k) is the step-size parameter. Having estimated the plant parameters, one can estimate the matrices of the406

plant state space model from instancek to instancek + 1:407

A(k + 1, k) =
[

0 1

−ĉ0(k) −ĉ1(k)

]
, (32)

408

B(k + 1, k) =
[

0

1

]
, (33)

409

C(k + 1, k) = [
b̂0(k) b̂1(k)

]
. (34)410

It should be noted that the LMS adaptive filter can only be used for non-stationary systems. Therefore, we suppose411

that the target movement can be modeled as a non-stationary Markov process.412

3.4. Full-state feedback control413

The second phase control strategy consists of an observer-based full-state feedback control strategy. We use an414

on-line identification method to identify in real-time the plant model and apply the identified model in the Kalman415

observer to emphasize the influence of the change of plant model on the plant state estimation. At the same time, the416

estimated state models are used for the state feedback strategy calculation to emphasize the time-variant property417

of the control system. The main tasks of this phase are observing the plant states, calculating the feedback control418

value and identifying the plant model, as shown inFig. 13.419

Now that the plant model has been identified, its state vector will be estimated using Kalman filtering[14]. The420

Kalman filter works as a current observer, as shown inFig. 14. It takes into account the dynamics of the target’s421

movement by using the time-variant plant model. The reason for using a Kalman filter as an observer is mainly to422

reduce the influence of noise that comes from both the measurement inaccuracy and the model inaccuracy. From423

Fig. 14, we can see that the state observer is a dynamic system. It takes the plant input and output as its input424

and the estimated plant states as its output. InFig. 14, u represents the plant input signal (the camera pan or tilt425

control signal),y is the plant output signal (the angle estimated from the image),x̃ is the estimated plant state vector,426

A(k+ 1, k) is the plant system transition matrix from instantk to instantk+ 1,B(k+ 1, k) is the plant control input427

matrix from instantk to instantk + 1, C(k + 1, k) is the plant output matrix from instantk to instantk + 1. The428

plant model can then be written as429

x(k + 1) = A(k + 1, k) · x(k) + B(k + 1, k) · u(k) + v1(k), (35)430

y(k) = C(k + 1, k) · x(k) + v2(k). (36)431

Fig. 13. Observer-based full-state feedback control.
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Fig. 14. The observer-based full-state feedback control system.

In Eqs. (35) and (36), v1(k) andv2(k) represent respectively the system process noise and the observation noise432

added to the plant model. We chose the pole assignment method to design the state feedback controller. The pole433

assignment method is a method in which the closed-loop system poles of a time-variant system can be kept in434

the desired constant positions with system state feedback. For a control system, the knowledge of the closed-loop435

system poles’ positions induces the knowledge of the characteristics of the system.436

First, we can set the poles’ positions in the primary strip (from the sampling frequency) of thes-plane, according437

to the needed system dynamic characteristics (the response frequency and decay speed). These poles can be used438

as a design guideline. With the values of the two poles (s1, s2) and with the knowledge of the sampling periodTs,439

we can estimate the position of the poles (z1, z2) of the corresponding linear discrete time invariant system in the440

z-plane. This information will be used in the estimation of the feedback gain of the feedback controller. For this441

purpose, we go out from the equation giving the control input in a full-state feedback control scheme, given by442

u(k) = −K · x(k). (37)443

This function is integrated in the state space function of the plant, given byEq. (20), such that we get the closed-loop444

state function of the full-state feedback control system:445

ẋ(k + 1) = (A − BK) · x(k). (38)446

FromEq. (38), we can see that the closed-loop system characteristic function is447

ψsys(z) = |z · I − A + B · K| = (z − λ1) · (z − λ2) · (z − λn), (39)448

whereλi=1,... ,n are the poles of the closed-loop system.449

According to the system dynamic characteristics we need, we can specify the desired poles’ positions on the450

right-hand side ofEq. (39)and solveEq. (39)for the given control strategyK. Thus, we use the estimated control451

strategyK to perform the full-state feedback control of the system given byEq. (38). In our application this is452

realized in the following way. At each stepi we specify a feedback gain matrix for the second-order system:453

K(i) = [K1(i)K2(i)]. (40)454

This feedback gain matrix determines how to use every state of the plant in the control signal to keep the poles’455

positions of the closed-loop system time invariant:456

u(i) = − [
K1(i) K2(i)

] [
x1(i)

x2(i)

]
. (41)

457
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The second term inEq. (38)can now be written as458

B(i + 1 · i) · K(i)

[
x1(i)

x2(i)

]
=

[
0 0

K1(i) K2(i)

] [
x1(i)

x2(i)

]
. (42)

459

We now substituteEq. (42) into Eq. (38)and use the result of the system identification (Eq. (32)) to write the460

transition matrixA. The closed-loop system matrix now becomes461

A(i + 1, i) − B(i + 1, i) · K(i) =
[

0 1

−(â0(i) + K1(i)) −(â1(i) + K2(i))

]
. (43)

462

The system characteristic function of the closed-loop system is then:463

ψf (z) = |zI − A(i + 1, i) + B(i + 1, i) · K(i)| = z2 + (â1(i) + K2(i)) · z + (â0(i) + K1(i)) = 0. (44)464

By consideringψreq(z) = ψf (z), the required gain is obtained:465

Kj+1(i) = αj − âj(i), j = 0,1. (45)466

The plant characteristic function’s parameters of theith step have been estimated during the initialization step,α1467

andα0 have been estimated from the pole assignment step, thusEq. (45)can be used to solve the needed feedback468

gain.469

3.5. Windowed tracking470

In order to increase the tracking sampling rate and the signal-to-noise ratio of the camera control, a bounding471

box (search window/region of interest) around the target image is defined. An LMS filter is used to estimate and to472

predict the position (̄x, y) and size (l, h) of the defined search window, taking into account the activity of the camera.473

The window size is calculated by using the second-order moments of the detected target boundary (µ2
x, µ

2
y):474

l = C1 · µ2
x + 2 · ε, (46)475

h = C2 · µ2
y + 2 · ε, (47)476

whereC1 andC2 are scale factors andε is tolerance.477

The prediction of the search window position and size are made during the tracking process. Therefore, the478

time-variant characteristics of the system and the camera activity are taken into account. The structure of the adaptive479

LMS filter used for the purpose of predicting the search window position is identical to the one for predicting the480

search window size. The desired system outputsd(k) are defined as the real search window position (x̄, y) and size481

(l, h). The predictor works in two steps. First, it uses the old input data and the current desired output data to train482

the filter; that is, to update the filter tap weights. In the second step, it uses the updated input data and tap weights483

to estimate a prediction for the real coming output. Note that the working principle is different from the LSM filter484

used for the system identification, although the prediction error and the cost function are defined similarly according485

to Eqs. (25) and (26). Supposing that the filter is ofMth-order, we define the tap weight of the filter as486

w(k) =
[
ŵ0(k)ŵ1(k) ŵ

M−1(k)
]T

. (48)487

The input vector is488

u(k) = [
u(k)u(k − 1) u(k − M + 1)

]T
. (49)489

For the estimation of the new search window position,u(k) is the difference between̄x(k) or ȳ(k) and the control490

command:u(k) = x̄(k) − xco(k) or u(k) = ȳ(k) − yco(k), wherexco(k) andyco(k) are the camera control signals491
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Fig. 15. Search window size prediction and associated error for a horizontal pass-by test.

respectively in theX and in theY direction. For the new search window size,u(k) = µ2
x(k) or u(k) = µ2

y(k).492

Therefore, difference between the filters used for search window position and size estimation lies in the fact that the493

first one uses the window position and the camera control signal as inputs to return a new window position estimate,494

whereas the second one uses the second-order moments as inputs to calculate the window size. Experimentally, a495

second-order filter was chosen, because it proved to allow a stable and fast tracking behavior.496

The search window prediction results can be analyzed inFig. 15, which shows the prediction of the search497

window size and the associated error. During this test, the target object was mounted on a robot arm and it first498

moved towards the camera and then away from it. This horizontal movement caused especially the window size to499

change: as we can see the search window becomes larger when the target is closer to the camera and smaller when500

the target moves away. The noise pulses are caused by the background of the test scene. The prediction error is501

always small compared to the actual value of the window size.502

3.6. Target position estimation503

Target location estimation is an extremely important subject in robotic applications. The visual servoing system504

presented here involves a method for estimating the target position, i.e. the quantitative description of where the505

target is with respect to the observers view. For our application, the similarity of the target shape and its projected506

image is used to estimate the camera–target distance. The origin of world frame is set at the center of the camera.507

The camera platform is kept horizontal. Then, the position of the target can be described by three parameters: the508

horizontal angle, the vertical angle and the distance between camera and target. Angles are calculated using the509

pose of the camera and the orientation angles of the target image in the camera coordinate system. The distance510

between camera and target is estimated by comparing the size of the target shape in the image window to the known511

dimensions of the target object, taking into account the effective camera focal length. We incorporated several512

improvements for the important distance estimation step, as this is an operation which is highly sensitive to several513

kinds of noise. One improvement is to make use of a low-pass band filter. However, the largest increase in precision514

could be achieved by considering only circular objects and by introducing circle and ellipse fitting procedures to515

more accurately measure the radius of the circular target object in the image plane. For ellipse fitting, a very fast516

algorithm, described in[32], was used. The circle fitting procedure is slightly more precise, but is much slower,517

since it relies on a heuristic brute force approach to find the best fit.Fig. 16compares the capabilities of the circle518

and ellipse fitting procedures in normal and in noisy conditions. It clearly shows that the circle fitting procedure is519
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Fig. 16. Comparison between the circle and ellipse fitting procedures. Whitened pixels mark positive classifications. Ellipses are marked with a
blue line, while circles are filled in green. (Top left) ellipse fitting in normal conditions; (top right) circle fitting in normal conditions; (bottom
left) ellipse fitting in noisy conditions; (bottom right) circle fitting in noisy conditions.

capable of producing better matches for the object to be tracked, yet as this process requires also more calculation520

time, its use is limited by the available computing resources.521

4. Experimental results522

We have previously shown inFig. 5 the result of the pixel classification procedure. As can be seen, the target523

object (a ball) is very clearly visible and the falsely classified pixels can easily be filtered out by subsequent erosion524

and dilation operations on the created binary image.525

Comparing the used approach to other scientific work is difficult, because on the subject of tracking the presented526

classification algorithm does not take into account any other parameters (e.g. shape or texture) than the color527

attributes like other authors have done. On the subject of color constancy, the presented algorithm is not able to528

deliver the high-quality data about the illuminant spectrum like other, more time consuming methods, are capable529

of. Fig. 17 shows the strength of the presented color constancy algorithm by comparing it to another real-time530

color-constancy approach. The middle row shows two pictures shot during the same sequence, but with a difference531

in illumination conditions (lights turned off). On the top row, you can see the results the gray world algorithm532

returns for these images. This simple algorithm goes out from the assumption that the average of all colors in533

an image is gray, so the red, green and blue components of the average color are equal. The amount the image534

average departs from gray determines the illuminantRGB. On the bottom row, you can observe the classification535

results of the presented color constancy technique. As you can observe by noticing the whitened pixels which536
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Fig. 17. Comparison of color constancy approaches. (Middle row) two pictures shot during the same sequence (lights on/off); (top row)
classification result of the Gray world algorithm; (bottom row) classification result of the presented color constancy technique.

indicate that a target has been found here, the algorithm succeeds in recognizing and classifying the searched537

object.538

Fig. 18shows the tracking error in theX direction and demonstrates the tracking ability of this system. This data539

was recorded during the same test already explained in the section about windowed tracking (target first moving540

towards the camera, then away from it). Notice how the error increases when the target moves closer to the camera;541

it decreases when the target moves away from the camera. This behavior is caused by the inertia of the tracking542

system (the pan–tilt camera).Fig. 19gives an example of the variation of the absolute distance errors over a number543

of samples for a target located at a distance of about 7 m. Concerning the real-time capabilities, the target-tracking544

program is able to run at about 10 fps on a PC equipped with an 1.7 GHz PIV processor, which is adequate for most545

everyday target-tracking tasks.546
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Fig. 18. Tracking error in pixels during a horizontal pass-by test.

Fig. 19. Variation of absolute distance error in cm over time for a target at about 7 m.

5. Conclusions547

We have shown a powerful set of algorithms, which were combined to form a universally useable system for548

automated target detection, tracking and position estimation, using a single and fairly simple pan–tilt camera. The549

main importance of this work is that we have shown that it’s feasible to integrate the benefits of different techniques,550

while avoiding their drawbacks.551

The Bayesian-based color constancy approach which was used, ensures that this system can keep working, even in552

harsh illumination conditions. Color constancy has so far been a field mainly focussed at processing static images,553

yet also due to the increasing computing power, it now becomes an option for real-time applications too. Here,554

we have shown an algorithm which uses Bayesian reasoning to cope with changing illumination conditions. The555

presented technique is not able to produce quality data about the illuminant spectrum, it just aims to retrieve a556
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reliable description of the reflection characteristics of the object to be tracked. This compromise we made here does557

not have any negative affect for the visual servoing program as a whole, as the knowledge of the illuminant spectrum558

is not really necessary for this.559

In the field of camera control, we have tried to integrate the benefits of image-based and position-based visual560

servoing approaches. The tracking algorithm takes advantage of the speed of the image-based approach because it561

calculates the control signals based upon features in the 2D image space. On the other hand, the 3D target position is562

calculated in a separate procedure, enabling the output of high-quality 3D-positioning data, as in the position-based563

visual servoing approach. A main disadvantage of this latter technique was also the need for a precise model with a564

lot of a priori knowledge, whereas the image-based approaches could do without a model. In this work, a two-phase565

approach was chosen, where in the beginning a model-free tracking technique is used and later a model-based566

technique. This setup allows the servoing system to work under all circumstances without the need for any prior567

knowledge, as the system model can be built up during the initialization phase. The system identifier, Kalman568

filter-based system state observer and the controller itself have been explained in the article and the way they control569

the pose of the camera coordinate system to track the target. The online identification method is used to deal with570

time-variant problems. The poles’ position method is used to guarantee the system’s stability and the quality of the571

system’s response. As the target is a time-variant system, both the identifier and the observer need some time to572

follow the system changes. Therefore, the tracking results have some biases, however this bias is reduced by using573

the window tracking method.574

This research was specifically aimed at applicability in the field of robotics, yet due to its general structure it can575

be used for a wide range of applications.576
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