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Abstract

In this Thesis we present a navigation solution for a mobile robot. The proposed
system uses vision input to enable the robot to build a feature based map of
its environment, localize efficiently itself without any artificial markers or other
modification, detect and track the moving objects, and navigate without colliding
with obstacles.
The Simultaneous Localization and Mapping (SLAM) process is tackled as a
stochastic problem using Extended Kalman Filter (EKF). Our contribution con-
sists in building a global map of the environment based on several local maps.
The SIFT features are used in our implementation and their descriptors are used
as a matching constraint. The 3D initialization of the features is based on the
visual geometry theory.
To avoid using outlier features, a motion segmentation and estimation (MSE)
process is used to detect the moving part of the scene. Subsequently, during map
building, the detected features on the moving parts are excluded. The MSE pro-
cess consists in camera motion estimation and compensation, scene cut or strong
camera motion detection, background Gaussian Mixture Model (GMM) model
update, and a Maximum a Posteriori Probability Markov Random Field (MAP-
MRF) framework to detect the moving objects in the scene and estimate their
motion. Two methods for camera motion estimation and compensation are used,
one uses the 2D projection of the 3D motion estimated in the SLAM process and
the other method uses the dense motion analysis proposed by Dufaux and Kon-
rad.
We considered also the case, where the robot is equipped with other localization
sensors such as inertial navigation system (INS), wheel encoders, and a global
positioning system (GPS). Two solutions are considered. The first consists in
integrating the data from the INS and encoders data in the dynamic model of the
vehicle to estimate it’s motion in the SLAM process and using the GPS data for
geo-localizing the robot and the built map. The second solution consists in using
the data from the INS and encoders in a Kalman filter to correct the GPS data,
the estimated linear and angular velocities by this filter are used as prediction
in the SLAM filter and the output of this one are used to update the dynamics
estimation in the integration filter. This solution will increase the accuracy and
the robustness of the positioning during the outage of the GPS system and allows
a SLAM in less featured environments.

xvii



xviii Abstract

The estimated map is used in a path planning process to generate a list of way-
points allowing the robot to reach the user defined goals. The robot uses then a
navigation process to follow the planned path and avoiding the unplanned obsta-
cles or moving objects in the scene. For this procedure, added to vision, infrared
and ultrasound sensors are used for obstacles detection.
The navigation procedure is based on two fuzzy logic controllers: a goal seeking
controller and an obstacle avoidance controller. The goal seeking controller tries
to find the path to the intermediate waypoints, while the obstacle avoidance con-
troller has for mission to avoid obstacles. The 3D position of the moving obstacles
is estimated using the epipolar geometry applied to the detected features on the
moving objects. A command fusion scheme based on a conditioned activation for
each controller arbitrates between the two behaviors. The reinforcement learning
algorithm is used to adapt the obstacle avoidance fuzzy controller.



Résumé

Cette thèse introduit une approche pour la navigation de robot mobile en utilisant
la vision par mono camera pour la construction d’une carte de l’environnement, la
localisation du robot dans la carte construite, et la navigation sécurisée du robot
dans son environnement.
La localisation et la cartographie de l’environnement sont traitées simultanément
par le processus SLAM sous forme d’un problème stochastique en utilisant le fil-
tre de Kalman étendu. Notre contribution consiste dans la construction d’une
carte globale de l’environnement base sur plusieurs cartes locales pour simplifier
la complexité du problème. Les points caractéristiques utilisés pour modéliser
l’environnement sont de type SIFT et leur profondeur est estimée par la théorie
de la géométrie visuelle.
Pour éviter d’utiliser les points caractéristiques associés aux objets mobiles dans
le modèle de l’environnement nous utilisons un processus de segmentation et
d’estimation de mouvement dans les squences vidéo. Ce processus estime le mou-
vement de la camera pour l’éliminer, détecte les coupures de scène ou grand
mouvement dans la séquence vidéo, met jour le modèle GMM représentant le
fond de la scène, et détecte les objets en mouvement et estime leur mouvement
par un estimateur du maximum posteriori du Champs aléatoires de Markov.
Le mouvement de la camera est estimé par deux approches: la première par la
projection du mouvement 3D estimé par le processus du SLAM et la deuxième
par la technique de l’analyse du mouvement dans le plan de l’image proposée par
Dufaux et Konrad.
Nous avons considéré aussi le cas o le robot est équipé avec d’autres capteurs
de localisation tels que les systèmes inertiels INS, les encodeurs des roues, et
les systèmes de positionnement global GPS. Deux solutions sont proposées. La
première consiste intégrer les données de l’INS et des encodeurs dans le modèle
dynamique du véhicule pour estimer son mouvement dans le processus du SLAM
et utiliser les données du GPS pour géo-localiser le robot et la carte construite.
Tandis que dans la deuxième approche les données de l’INS et des encodeurs sont
utilisées dans un filtre de Kalman pour corriger les données du GPS et les vitesses
linéaires et angulaires estimées par le filtre sont utilisées comme prédiction au
filtre du SLAM. Cette dernière solution augmente la précision et la robustesse
du positionnement durant l’absence du signal GPS et permet un SLAM dans des
espaces moins texturés.

xix



xx Abstract

La carte construite de l’environnement est utilisée pour une planification globale
des trajectoires libre. Ces derniers sont définis sous formes d’une liste de points
but. Le robot utilise ensuite un processus de navigation pour suivre les chemins
planifiés et éviter les obstacles non représenté dans la carte et les objets en mou-
vement. Pour cette tche de navigation le robot utilise en plus de la vision par
camera, des capteurs ultrason et infrarouge. Le processus de navigation est basé
sur les contrleurs en logique floue adaptés par l’apprentissage par renforcement.



Introduction

Autonomous navigation of robots has been of research interests since the be-
ginning of robotics. Much progress has been made in the area but building a
fully functional autonomous navigation system is still facing technical as well as
computational problems. To reach a reasonable degree of autonomy, two basic
requirements are needed: sensing and reasoning. Sensing is provided by on board
sensory systems that gather information about the robot itself and the surround-
ing environment. According to the environment state, the reasoning system allows
the robot to localize itself in the environment and to seek for free paths to reach
its goal.

To accomplish these two tasks, the reasoning system requires a model or a
description of the environment, which is not always available. In this case the
robot should have the means to build such a model over time as it explores its
environments. This is known as mapping problem.

Mapping and localization are interlinked problems: without a precise map, the
robot cannot localize itself using the map. On the other hand, without precise
knowledge of its pose (spatial position and orientation), the robot cannot build
a representation of its environment. In combination, however, the problem is
much difficult. In this case, starting from an unknown location in an unknown
environment, an autonomous mobile robot should be able to incrementally build
a map of the environment using only relative observations of the environment
and then use this map to localize itself and navigate. Such is referred to as
Simultaneous Localization and Mapping (SLAM) approach [1, 2] or Concurrent
Mapping and Localization (CML) [6, 7, 8].

Knowing its position in the scene and based on the constructed map, the
robot uses a path planner to compute the more safe trajectory to reach its goal
[224, 225]. While navigation, a mobile robot should take into account the possible
existence of unmapped obstacles or moving objects in the scene [151].

Several works have been realized in this area of mobile robot navigation [151,
58, 17, 20, 71, 79, 87, 88], but in general, these works are specialized and dedicated
to solve a specified part of the problem and only few works have tried to solve
the global problem as in [89].

In this dissertation we present a navigation solution for a mobile robot in large
sized environments. It enables the robot to build a map of its environment, localize
efficiently itself without any artificial markers or other modification, detect and
track moving objects, and navigate without colliding with obstacles.

1
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The proposed system uses vision input to detect and track moving objects,
build a feature based map of the environment and localize the robot. For the
obstacle avoidance, apart from vision based moving object detection, the robot
uses ultrasound and infrared sensors. The algorithm consists in three processes
as illustrated in figure 1.

Figure 1: Navigation System for Mobile Robot
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Simultaneous Localization and Mapping (SLAM) process

Using this process the robot builds a feature-based map of the environment and
uses this map to localize itself. The SLAM problem is tackled as a stochastic prob-
lem using Extended Kalman Filter (EKF) with linear Gaussian approximations
for the map and vehicle position and uncertainties.

Our contribution consists in building a global map of the environment based
on several local maps. Each local map is a feature based 3D representation of
the environment. The grouping of the local maps is realized in two manners:
by transforming the coordinates of the local map features in a global coordinate
frame system or by saving only the robot positions where it started to build
the local maps. From the usage point view, SIFT features are used for the 3D
reconstruction and their descriptors are used as a matching constraint. For the
initialization step we propose an approach based on multiview geometry.

For a robust matching we use a product of three parameters: the Mahalanobis
distance between the measurements and their predictions, the Euclidean distance
between the descriptor vectors of the features, and the distance of the feature
to the induced epipolar line (epipolar constraint). These constraints allow com-
bining the system model, the multiview geometry and the scale-space invariance
parameters.

We considered also the case, where the robot is equipped with other local-
ization sensors such as inertial navigation system (INS), wheel encoders, and a
global positioning system (GPS). Each of these sensors can be used separately by
the robot for its localization but it’s subject to a lot of error sources affecting the
accuracy of the obtained robot location. In this work we proposed two solutions.
The first consists in integrating the data from the INS and encoders data in the
dynamic model of the vehicle to estimate it’s motion in the SLAM process and
using the GPS data for geo-localizing the robot and the built map. The second
solution consists in using the data from the INS and encoders in a Kalman filter
to correct the GPS data, the estimated linear and angular velocities by this filter
are used as prediction in the SLAM filter and the output of this one are used
to update the dynamics estimation in the integration filter. This solution will
increase the accuracy and the robustness of the positioning during the outage of
the GPS system and allows a SLAM in less featured environments.

Motion segmentation and estimation process

To avoid using outlier features in the built map, a motion segmentation and esti-
mation (MSE) process is used to detect the moving part of the scene and estimate
their motion. Subsequently, during map building, the detected features on the
moving parts are excluded. The MSE process combines a Gaussian Mixture Model
(GMM) background subtraction approach and a Maximum a Posteriori Probabil-
ity Markov Random Field (MAP-MRF) framework. This enables us to exploit the
simplicity and capability of the GMM approach to adapt to illumination changes
and small motions in the scene and the advantages of spatio-temporal dependen-
cies that moving objects impose on pixels and the interdependence of motion and
segmentation fields.
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This process compensates the camera motion based on the 3D camera motion
estimated by the SLAM process. The compensated frame is used, to update the
GMM model of the background. The means and covariances of the Gaussians are
learned from color observations in consecutive images.

The MAP-MRF framework is used to optimize the segmentation and estimate
the motion filed of the moving objects. A feedback of the MRF optimization
results to update the background model enables the acceleration of the learning
of the new stationary regions and therefore avoids the fragmentation problem in
the detected mask of moving objects.

To be used in the SLAM process, to avoid the outlier features, a tracking
function is used to predict the position of the detected moving objects based on
their motion.

Path planning and navigation

The obtained feature based map is exploited by a global path planning algorithm
to generate a list of waypoint allowing the robot to reach the user defined goals.
The robot uses a navigation process to follow the planned path and avoiding the
unplanned obstacles or moving objects in the scene. For this procedure, added to
vision, infrared and ultrasound sensors are used for obstacles detection. The nav-
igation procedure is based on two fuzzy logic controllers: a goal seeking controller
and an obstacle avoidance controller. The goal seeking controller tries to control
the robot towards the intermediate waypoints, while the obstacle avoidance con-
troller has for mission to avoid obstacles. The 3D position of the moving obstacles
is estimated using the epipolar geometry applied to the detected features on the
moving objects. A command fusion scheme based on a conditioned activation for
each controller arbitrates between the two behaviors. The reinforcement learning
algorithm is used to adapt the obstacle avoidance fuzzy controller.

The remainder of this dissertation is organized as follows. In chapter 1, a state
of the art on the SLAM problem is presented and then the proposed algorithm is
detailed. Chapter 2 discusses the motion segmentation and estimation problem
and the proposed approach. Chapter 3 describes the navigation process. The
implementations and the results of the different part of the algorithm are presented
in the corresponding chapters. We conclude with a general conclusion.



Chapter 1

Simultaneous Localization
And Mapping

1.1 Introduction

The recent research in robotics aims at developing autonomous mobile robots
which can navigate independently in often very complex real environments. These
robots are equipped with (i) a perception system to collect information about their
environments, (ii) a reasoning system to treat the collected information and to
decide based on it, and (iii) a locomotive system to reach its goal.

The reasoning system is the central unit in an autonomous robot. According to
the environment state, it must allow the robot to localize itself in the environment
and to seek for free paths. To accomplish these two tasks, it bases it reasoning
on a model or a description of the environment. The environment model is not
always available and hence the robot should have the means to build such a model
over time. This latest problem is known as mapping problem.

If the robot’s pose (spatial position and orientation) is known all along, build-
ing a map would be quite simple. In the opposite, if a map of the environment
exists already, it will be very easy to determine accurately the robot’s pose at any
time. Solving the mapping problem in conjunction with the localization problem,
however, is much harder. The literature refers to this problem as Simultane-
ous Localization and Mapping (SLAM) [1, 2, 3], Simultaneous Localization and
Map Building (SLAMB) [4, 5], or Concurrent Mapping and Localization (CML)
[6, 7, 8].

The SLAM problem is tackled as a stochastic problem and it has been ad-
dressed with approaches based on Bayesian filtering. The main problem of those
approaches is that the computational complexity growth with the size of the
mapped space, which limits their applicability in large-scale areas. In the case of
vision based SLAM approaches, other challenges have to be tackled, as the high
rate of the input data, the inherent 3D quality of visual data, the lack of direct
depth measurement and the difficulty in extracting long-term features to map.

5
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Due to those factors, there have been relatively few successful vision-only SLAM
systems which are able to construct persistent and consistent map while closing
loops to correct drift.

In this work, we focus on monocular vision-based SLAM where a single camera
is moving through a large-scale environments. This case is interesting because it
potentially offers a low-cost approach to SLAM in unknown environments. The
well known approach in this area, is the MonoSLAM algorithm of Davison et
al. [9]. This is a real-time SLAM approach for indoors in room-size domains,
which recover the 3D trajectory of a monocular camera, moving rapidly through
an unknown scene. Davison’s algorithm is not suitable in larger environments.

To be able to use SLAM algorithms in large areas, in this dissertation we
propose to build several size limited local maps and combine them into a global
map using an ’history memory’ which accumulates sensory evidence over time to
identify places with a stochastic model of the correlation between map features.
In our implementation, the dynamic model of the camera takes into account that
the camera is on the top of a mobile robot which moves on a perfect ground-plane
at all times and the SIFT feature detector is used instead of Shi and Thomasi
algorithm as in [9]. The SIFT features are proved to remain stable to affine
distortions, change of viewpoint, noise and change in illumination. Using SIFT
features allows also a more reliable feature matching by using the advantage of
the scale-space invariance parameters of the SIFT features.

An other problem for SLAM methods is change over time of the environment
[10, 11, 12]. Some changes may be relatively slow, such as the change of appear-
ance of a tree across different seasons, or the structural changes that most office
buildings are subjected to over time. Others are faster, such as the change of
door status or the location of furniture items, such as chairs. Even faster may be
the change of location of other agents in the environment, such as cars or people.
Unfortunately, there are almost no mapping algorithms that can learn meaningful
maps of dynamic environments. Our study is limited to the case of dynamic en-
vironments with moving objects. To deal with this problem, we use the proposed
algorithm for motion segmentation in chapter 2 to remove the outliers features
which are associated with moving objects.

A successful SLAM algorithm should allow a robot navigating in an environ-
ment and returning to the starting point without losing its way. This situation
becomes an even more difficult problem if the return route is different from the
departure one. This is referred to as closing the loop. Without an absolute posi-
tioning sensor, the robot cannot be certain about its location relative to the start
as it explores unknown areas. Consequently, to recognize when it has returned
to the start, the robot should identify some of the perviously seen landmarks. In
this sequel, we propose also some solutions to this problem.

The chapter is organized as follows, section 1.3 gives an overview of the lo-
calization and mapping problems for mobile robot navigation. Section 1.3.3 in-
troduces the monoSLAM approach [9] and discuss its limitations. Then, section
1.5 describes the proposed approach and section 1.6 discusses the implementation
and the experimental results.

At the end of this chapter, we consider the case of a mobile robot for outdoor
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applications equipped, added to the vision camera, with other sensors for localiza-
tion as a Global Positioning System (GPS), an Inertial Navigation System (INS),
and wheels encoders. Two solutions are proposed in this case, one using the en-
coders and the INS sensors in the system dynamic model for motion estimation
in the SLAM process and the GPS data for geo-referencing the results (the robot
position and the map). The second approach uses a separate filter to integrate
the GPS, INS, and encoders data to correct the geo-localization. The linear and
angular velocities in the dynamic model of the EKF-SLAM algorithm are given
by the GPS/INS/Encoders integration filter. In the other hand, the output of the
SLAM-EKF is used to update the dynamics estimation in the integration filter
and therefore the geo-referenced localization.

1.2 Coordinate Systems - Definition and Trans-
formation

In this section we introduce the different coordinate systems which will be used
for robot navigation, localization and mapping.

1.2.1 Earth Centred Earth Fixed (ECEF or ECF) coordi-
nates

The Earth-centered Earth-fixed (ECEF or ECF) or conventional terrestrial co-
ordinate system (XE ,Y E ,ZE) rotates with the Earth and has its origin at the
center of the Earth (figure 1.1). The XE axis is located in the equatorial plane
and points towards the mean Meridian of Greenwich. The ZE axis is parallel to
the Earths mean spin axis. The Y E axis can be determined by the right-hand
rule to be passing through the equator at 90◦ longitude.

1.2.2 Golobal coordinate system

For the navigation and the SLAMwe consider a global coordinate systemG(XG,Y G,ZG)
(figure 1.1) formed by a plane tangent to the Earth’s surface, which is fixed to
a specific location with known geodetic coordinates (it can be the initial robot
position or any other location). The XG axis points towards the east, the Y G

axis points towards the North and the ZG axis points vertically upwards.

1.2.3 Transformation from Geodetic coordinates to ECEF
coordinates

In geodetic coordinates the Earth’s surface is approximated by an ellipsoid and
locations near the surface are described in terms of latitude Φ, longitude Γ,
and altitude Ψ. Geodetic coordinates can be converted into ECEF coordinates
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Figure 1.1: The ECEF and the global coordinate systems

(xE , yE , zE) using the following formulas [13]:

xE = (χ+Ψ) cos(Φ) cos(Γ)

yE = (χ+Ψ) cos(Φ) sin(Γ) (1.1)

zE = (χ(1− e2) + Ψ) sin(Φ)

where χ = a/
√
(1−e2sin2(Φ)) is the distance from the surface to the ZE-axis

along the ellipsoid normal. a and e2 are the semi-major axis and the square of
the first numerical eccentricity of the ellipsoid respectively (a = 6356752.3142m
and e2 = 6.69437999014× 10−3).

1.2.4 Transformation from ECEF coordinates to G coordi-
nates

Let’s consider that the coordinate systemG is at a locationO with geodetic coordi-
nates (ΦO,ΓO,ΨO) and ECEF coordinates (xEO, y

E
O , z

E
O). The location (xE , yE , zE)

in the ECEF coordinate system is converted into the G coordinate (xG, yG, zG)
using the following equations [13]:xGyG

zG

 =

 − sin(ΓO) cos(ΓO) 0
− sin(ΦO) cos(ΓO) − sin(ΦO) sin(ΓO) cos(ΦO)
cos(ΦO) cos(ΓO) cos(ΦO) sin(ΓO) sin(ΦO)

xE − xEO
yE − yEO
zE − zEO

 (1.2)

1.2.5 Transformation from G coordinates to ECEF coordi-
nates

This is just the inverse of the transformation from ECEF to G systems.
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xEyE
zE

 =

− sin(ΓO) − sin(ΦO) cos(ΓO) cos(ΦO) cos(ΓO)
cos(ΓO) − sin(ΦO) sin(ΓO) cos(ΦO) sin(ΓO)

0 cos(ΦO) sin(ΦO)

xGyG
zG

+

xEOyEO
zEO


(1.3)

1.2.6 Robot, INS, Camera and Image coordinate systems

We also define (figure 1.2):

• The robot coordinate system R (XR,Y R,ZR) located at the robot center of
gravity, with XY plan parallel to the ground and the X axis points towards the
robot’s direction. The Z axis points vertically upwards.

• The INS (Inertial Navigation System) coordinate system L with its axes
parallel to the robot frame axes and it center at (xRℓ , y

R
ℓ , z

R
ℓ ) in the robot frame

R.

• The camera coordinate system C with origin at (xRc , y
R
c , z

R
c ) in the robot

frame R and axes parallel to the robot frame axes.

• The image plane coordinate system I with origin at the bottom left corner
of the image. The X and Y axes are parallel to the Y and Z axes of the camera,
respectively.

Figure 1.2: The Robot, Camera, and Inertial coordinate systems

The coordinates (xR, yR, zR) of a point int the R frame are transformed to G
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coordinates (xG, yG, zG) by:xGyG
zG

 =

cos(γr) − sin(γr) 0
sin(γr) cos(γr) 0

0 0 1

xRyR
zR

+

xGryGr
h

 (1.4)

where the (xGr , y
G
r , z

G
r ) are the robot coordinates in the G frame systems. In

our application zGr is always null. h is the hight of the robot coordinate system.
γr is the robot orientation (yaw).

The transformation from C and L to R are given by:xRyR
zR

 =

xCyC
zC

+

xRcyRc
zRc

 (1.5)

and xRyR
zR

 =

xLyL
zL

+

xRℓyRℓ
zRℓ

 (1.6)

In the following all computations will be made in the global coordinate system
G and hence we will omit the subscript G for notation clarity.

1.3 Simultaneous Localization and Mapping - An
overview

1.3.1 Localization and Mapping

Localization for a mobile robot is the problem of finding out where a robot is,
based on sensory data. This localization can be global or local. In the case of
local localization, called also pose tracking, the initial estimation of the robot
pose (position and orientation) is known. This estimate is updated based on the
sensory data during the robot navigation.

Using only sensors that measure relative movements, the error in the pose es-
timate increases over time as errors are accumulated. Therefore, external sensors
are needed to provide information about the absolute pose of the robot. This
is achieved by matching the sensors measurements with a model of the environ-
ment. If a good initial estimate is given, the correspondence or data association
problem is easier. It does not consider the entire space when looking for the cor-
respondence, but rather only a relatively small region around the estimated pose
[14].

In the other hand, for global pose estimation [15, 16], being the ability of
determining the robot’s pose in a map using its sensors, data association is more
complicate and depends on the complexity of the environment.

Moreover, if the map does not exist, the robot should have the means to build
one. Schematically, the problem of map building consists of the following steps:
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(i) Sensing the environment at time t using onboard sensors (e.g., laser scanner,
vision, or sonar); (ii) Representing of sensor data ; (iii) Integrating the recently
perceived observations at time t with the previously ’learned’ structure of the
environment estimated at time t− 1.

The environment models (maps) used for robot navigation can be grouped into
two categories: metric maps or topological map. Metric maps [17, 18, 19] are high
resolution geometric representations with an explicit Cartesian reference frame.
Building metric maps depends critically on accurate position information. On the
other hand topological maps [17, 18, 20, 21] represent the environment as a graph
of interconnected places without taking into account their absolute position with
respect to a coordinate system. In other words, topological maps can be built and
maintained without any estimates for the position of the robot. As a result, they
can be used to represent large area maps since all connections between nodes are
relative, rather than absolute. Other technics integrate topological and metric
representations [17, 18, 22, 23, 24], where the environment is represented globally
as a graph of connected regions and each region is represented by a local metric
map.

Metric maps can be: (i) feature-based [25] where the environment is repre-
sented as a set of geometric primitives such as corners or lines, or (ii) grid-based
representations [19, 26, 27, 28] where the environment is represented as a grid of
occupied and free spaces. Localization in a metric map can be seen as multiple
target tracking problem where the targets are static and the observer in motion
[17].

Metric maps can be also classified as absolute or relative. In absolute maps
(Figure 1.3(a)), landmarks are represented in a single global coordinate frame.
An absolute map Mabs with N landmarks is denoted in vector form as Mabs =
[x1,x2, ...,xN ]T . Whereas in relative maps (Figure 1.3(b)), only the relationships
between individual landmarks are described. A relative map Mrel is denoted
in vector form as Mrel = [...,xi,j , ...]

T , where xi,j is the relative state between
landmarks xi and xj . In case of point features the relative states are vectors
describing the displacement between point landmarks represented in a common
coordinate system:

xi,j = xj − xi

.
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(a) A three landmarks absolute map

(b) A three landmark relative map

Figure 1.3: Absolute and relative metric maps

1.3.2 Simultaneous Localization And Mapping

In case of navigation in an unknown environment starting from an unknown lo-
cation with no a priori knowledge [1, 2, 3, 4, 5, 6, 7, 8], a SLAM system simulta-
neously computes an estimate of the robot location and the landmarks locations.
While continuing its motion, the robot builds a complete map of landmarks and
uses these to provide continuous estimates of the vehicle location.

Techniques for solving the SLAM problem have focused in using probabilis-
tic methods taking account of the uncertainty in the measurement. Two main
groups of techniques have been considered depending on the way of representing
such uncertainty: a) Gaussian filters and b) non-parametric filters, which will be
discussed later in this chapter.
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1.3.3 Vision based SLAM

SLAMMethods using cameras to observe the environment are referred to as vision
based SLAM approaches [29, 30, 14, 31, 32, 33]. In an image, several information
associated with objects within the scene, such as width, height, color and texture
could be inferred. Using current image processing techniques of edge and corner
detection, features can be distinguished and identified in a single image frame.
Inherently, 2D images cannot provide the distance information of these features;
they do however return a bearing to the feature, relative to the camera. Repeated
observations and position estimates of the camera, then allow triangulation of the
feature’s global position, which can then be used in the SLAM algorithm. This
method is known as Bearing-Only SLAM [17, 34, 35, 36, 37].

1.3.4 SLAM Formulation

Consider a mobile robot moving through an unknown static environment. The
robot executes controls and collects observations of features in the world. Both the
controls and the observations are corrupted by noise. Simultaneous Localization
and Mapping (SLAM) process recovers a map of the environment and the path
of the robot from a set of noisy controls and observations. As error in the robot’s
path correlates errors in the map (due to control error, the robot’s pose becomes
more uncertain as the robot moves and therefore the uncertainty in the estimated
positions of newly observed landmarks also increases), the state of the robot and
the map must be estimated simultaneously.

The vehicle travels through the environment using its sensors to observe fea-
tures around it. The state of the system at time t (figure 1.4) can therefore be
represented by the augmented state vector, xt, consisting of the nr dimensional
vector representing xt

r, and the N observed landmarks, xt
i, i = 1, ..., N , relative

to the global frame.

xt =


xt
r

xt
1
...

xt
N

 (1.7)

The vehicle state at time t, xt
r, may contain any number of properties of the

vehicle, including location, velocity and acceleration for example. This informa-
tion can be generated using odometers attached to the wheels of the robot, inertial
navigation units, or simply by observing the control commands executed by the
robot. Regardless of origin, any measurement of the robot’s motion will be re-
ferred to generically as a control. The control at time t will be written ξt. The
observations zt of the robot at time t are the detected landmarks.
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Figure 1.4: System Model in a SLAM algorithm

Using the above defined notation, the primary goal of SLAM is to recover the
best estimate of the system state (the robot pose and the landmarks positions),
given the set of noisy observations zt and controls ξt.

In probabilistic terms, this is expressed by the following posterior, referred to
in the sequel as the SLAM posterior:

p(xt | zt, ξt) (1.8)

Dynamic Model
The dynamic model or motion model is the relationship between the robot’s

paste state, xt−1
r , and its current state, xt

r, given a control input ξt

xt
r = f

(
xt−1
r , ξt, νt

)
(1.9)

Where the transition function f is a function representing the mobility, kinematics
and dynamics of the robot and ν is a random vector describing the unmodelled
aspects of the vehicle (process noise such as wheel sleep or odometry error).

The dynamic model can also be represented as a probabilistic function:

p(xt
r | xt−1

r , ξt) (1.10)

Observation Model
The observation model describes the physics and the error model of the robot’s

sensor. The observations are related to the system state according to:



1.3. Simultaneous Localization and Mapping - An overview 15

zt = h
(
xt
)
+wt (1.11)

Where zt is the observation vector at time t and h is the observation model.
The vector zti is an observation at instant t of the i’th landmark location xt

i

relative to the robot’s location xt
r. This type of observation will be referred to as

a vehicle-landmark observation.

w is a random vector describing both measurement noise and uncertainties in
the measurement model itself (observation noise such as sensor inaccuracy).

In probabilistic notation, the observation model can be represented by:

p(zt | xt) (1.12)

Given a model for the motion and observation, the SLAM process consists of
generating the best estimate for the system states given the information available
to the system. This can be accomplished using a recursive, three stage procedure
comprising prediction, observation and update of the posterior. This recursive
update rule, known as filtering for SLAM, is the basis for the majority of SLAM
algorithms.

For a robust estimation of the vehicle and landmarks states, the SLAM prob-
lem has been addressed with approaches based on Bayesian filtering, with a pre-
diction and an update steps. A SLAM solution method can be summarized with
the algorithm given in figure 1.5. In the prediction step, the system state is
predicted from the previous state based on the motion model of the robot

p(xt|t−1 | ξt,xt−1|t−1) (1.13)

The estimated state xt|t−1 is used to predict the measurement zt|t−1 = h(xt|t−1)
which will be matched with current measurement zt. If a matching is found for
a given feature (this means that the feature has been re-observed), the process
state is updated based on measurements of the map made at time step t (this is
the update step).

p(xt|t | zt, ξt) (1.14)

If no matching is found for the current measurements, the algorithm check
if these measurements correspond to candidate features and augment the system
state with the state of the new features.
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Figure 1.5: The general steps of a SLAM algorithm

SLAM filtering implies that a problem involving N landmark will require the
estimation of a mean state vector of sizeM (M = N ∗nL+nr)) and an associated
covariance matrix of size M2 [38], with nL and nr are the size of the feature and
the robot states respectively. Also each vehicle-observation requires M2 update
time and a storage size of M2 to maintain the joint covariance matrix. So the
overall computational costs grow quadratically with the number of landmarks.

1.3.4.1 Gaussian Filters

Extended Kalman Filter (EKF) is the most well-known Gaussian filter for treating
the SLAM problem, where the belief is represented by a Gaussian distribution.
The main goal of EKF (see annex C for more details on Kalman Filtering) is the
estimation of the current state of a dynamic system by using data provided by the
sensor measurements. Extended Kalman Filter is a recursive system, that only
uses the information of the previous step and the actual measurements in order
to estimate the current state and update the system. Whenever a landmark is
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observed by the on-board sensors of the robot, the system determines whether it
has been already registered and updates the filter. In addition, when a part of the
scene is revisited, all the gathered information from past observations is used by
the system to reduce uncertainty in the whole mapping. This strategy is known
as closing-the-loop.

In EKF-based SLAM approaches [39, 40, 9], the environment is represented
by a stochastic map M = (x̂,P), where x is the estimated state vector containing
the vehicle state xr and the environment features state xi, i = 1 · · ·N , and P
(equation 1.15) is the error covariance matrix, where all the correlations between
the elements of the state vector are defined. M is built incrementally, using the
set of measurements zt obtained by sensors such as cameras or lasers.

Pt = E[(xt − x̂t)(xt − x̂t)T ] =


Pt

rr Pt
r1 · · · Pt

rN

Pt
1r Pt

11 · · · Pt
1N

...
...

. . .
...

Pt
Nr Pt

N1 · · · Pt
NN

 (1.15)

The sub-matrices, Prr, Pri and Pii are, respectively, the robot to robot, robot
to feature and feature to feature covariances. The sub-matrices Pij are the feature
to feature cross-correlations. x and P will change in dimension as features are
added or deleted from the map.

The Extended Kalman Filter performs the two previously described steps: a)
the prediction step, which estimates the current state based on the previous states
and the control ξ; and b) the update step, which uses the current information
provided by robot on-board sensors to refine prediction.

Prediction
At each time step of the filter we obtain the predicted state x and covariance

P using the state transition function.

xt|t−1 =


f
(
x
t−1|t−1
r , ξ

)
x
t−1|t−1
1

...

 (1.16)

Pt|t−1 = FPt−1|t−1FT +Qt−1 (1.17)

where

F =
∂f

∂x

∣∣∣∣
xt−1|t−1

= diag

(
∂f

∂xr

∣∣∣∣
x
t−1|t−1
r

, I

)

is the Jacobian of f with respect to the state vector x and Q is the process noise
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covariance.

Update
The update to include a new measurement incorporates the innovation ε,

which is the difference between the observation and its prediction, and the covari-
ance S. We also inject the measurement noise via covariance R.

xt|t = xt|t−1 +Wtεt (1.18)

Pt|t = Pt|t−1 −WtStWtT (1.19)

Where

Wt = Pt|t−1HT (St)−1 (1.20)

St = HPt|t−1H+Rt (1.21)

ε = zt − h(xt|t−1) (1.22)

Q and R are block-diagonal matrices defining the error covariance matrices char-
acterizing the noise in the model and the observations, respectively.

W is the Kalman Gain, S is the innovation covariance and H is the Jacobian
of the measurement model h with respect to the state vector:

H =
∂h

∂x

∣∣∣∣
xt|t−1

A measurement of feature xi is not related to the measurement of any other
feature so

∂hi

∂x
= [

∂hi

∂xr
0 · · · ∂hi

∂xi
0 · · · ] (1.23)

where hi is the measurement model for the i’th feature and then

Si =
∂hi

∂xr
Prr

∂hi

∂xr

T

+
∂hi

∂xi
Pir

∂hi

∂xr

T

+
∂hi

∂xr
Pri

∂hi

∂xi

T

+
∂hi

∂xi
Pii

∂hi

∂xi

T

+R (1.24)

which depends only on the measurements of the feature i and the vehicle state.
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The best way to view the update step is as a correction to the prediction,
based on the measurement and weighted by W to favor the prediction or the
measurement depending on the relative certainty of each (encoded by S). In the
prediction the uncertainty can only ever increase, because of the addition of pro-
cess noise, whereas the update step allows for a decrease since the measurements
are improving the knowledge of the state.

Initialization

In the creation of a new stochastic map at step 0, a base reference must be
selected. It is a common practice to build a map relative to a fixed base reference
different from the initial vehicle location. This normally requires the assignment of
an initial level of uncertainty to the estimated vehicle location. In the theoretical
linear case, the vehicle uncertainty should always remain above this initial level.
In practice, due to linearizations, when a nonzero initial uncertainty is used, the
estimated vehicle uncertainty rapidly drops below its initial value, making the
estimation inconsistent after very few EKF update steps [38].

A good alternative is to use, as base reference, the initial vehicle location, and
thus we initialize the map with perfect knowledge of the vehicle location.

Given a set of i measurements Zi = [z1, z2, ..., zi] we wish to initialize a new

entity Li (feature) into a stochastic map modelled as a mean x
t|t
i and covariance

matrix P
t|t
i .

Initialization consists of stacking the new landmark position xi into the map
as

x
t|t
+ =

[
xt|t

x
t|t
i

]
(1.25)

and defining the pdf of this new state conditioned on measurement zi.

The augmented covariance matrix is specified by:

P
t|t
+ =

[
Pt|t P

t|t
xi

P
t|t
ix P

t|t
i

]
(1.26)

Figure 1.6 gives a graphic description to the augmentation of the state vector and
the covariance matrix with a new feature measurement.
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Figure 1.6: Representation of the EKF-SLAM state vector and covariance matrix
augmenting

1.3.4.2 Non-Parametric Filters

Simultaneous Localization and Mapping (SLAM) problem has also been tackled
by using non-parametric filters such as the histogram filter or the particle filter
(PF). The main difference compared to Gaussian filters is the possibility of dealing
with multimodal data distribution, using multiple values (particles) to represent
the belief [42].

Particle filter SLAM also known as FastSLAM decouples map of features from
pose. FastSLAM exploits the fact that if the robot pose was known all of the
features would be uncorrelated and processes all of the feature measurements
independently [42].

p(x0:t
r ,xt

1, ...,x
t
N |zt, ξt) = p(x0:t

r |zt, ξt)p(xt
1, ...,x

t
N |zt, ξt)

= p(x0:t
r |zt, ξt)

∏
i=1:N

p(xt
i|xt

r, z
t, ξt)

where x0:t
r is the set of robot positions from time 0 to t.

The SLAM problem is then decomposed into a robot path estimation problem
and a collection of feature estimation problems that are conditioned on the robot
path estimation. The robot path posterior p(x0:t

r |zt, ξt) is represented by a set
of particles, and the distributions p(xt

i|xt
r, z

t, ξt) are represented by particle sets,
where each set is attached to one particular robot particle.

Robot path estimation FastSLAM maintains a set of K particles x
t,[k]
r , k =

1 : K where the superscript [k] refers to the k-th particle in the set, obtained by
sampling from the motion model. Each particle represents a guess of the robot’s
path.

That is, each estate xt of the system can be represented by multiple particles,
one for each hypothesis.

xt = x1
[m],x

2
[m], ...,x

t
[m] (1.27)
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where each particle xt
[m] represents m different hypotheses of the estimation

of the vehicle pose at a time step t, represented as:

xt
[m] ∼ p(xt|zt,xt−1

[m] ) (1.28)

where xt and zt represent the estimated state of the vehicle and the measure-
ments at time step t.

In comparison with EKF-based filters, PF present more robustness to periods
of considerably uncertainty and sensor noise, due to its multi-modal data distri-
bution. However, Gaussian filters usually have a polynomic computational cost,
whereas the computational cost of a non-parametric filter may be exponential.
During last years, several interesting approaches based on particle filters have been
presented as an alternative to EKF-based techniques [41, 42], with the aim of solv-
ing the SLAM problem. Stachniss [41] proposes the use of a Rao-Blackwellized
particle filter for local map representation, combined with some techniques for
particle reduction and a ”Closing the loop” strategy. The strongest point of this
approach is the possibility of dealing with periods of great uncertainty, due to its
ability to recover already vanished hypotheses. This represents a considerable im-
provement with respect to EKF-based approaches, which do not allow to recover
hypotheses that have been already vanished in the past even if these hypotheses
were correct.

Alternatively, Montemerlo [42] has proposed a new PF-based approach named
FastSlam, which combines the use of particles with Kalman filters for map rep-
resentation. That is, each particle xt

[m] (composed by all the hypothesis of the

robot pose estimation at time state t) has, at the same time, K Kalman filters
representing each landmark pose estimation with respect to the vehicle pose.

St = xt
[m], x̂1,[m],P1,[m], ..., x̂K,[m],PK,[m] (1.29)

where xt
[m] represents all the hypotheses of the robot pose estimation at time

t (eq.1.27) and x̂K,[m] and PK,[m] represent the estimate state vector (mean)
and the covariance matrix of each landmark with respect to each particle. The
update process in FastSlam is carried out in the same way as in EKF approaches.
In addition, a weight is assigned to each particle depending on its reliability.

This hybrid method has provided reliable solutions to several problems of
EKF-based approaches such as the high computational cost that requires to up-
date filters containing considerable amount of data. That is, since the problem
is divided into multiple small Kalman Filters containing only Gaussians of two
dimensions (for 2D feature location), the computational cost can be reduced to
O(M logK), where M is the number of particles and K the number of landmarks.
However, if the complexity of the environment requires the use of 3D data the
computational cost increases considerably, forcing the reduction of the number of
features at each step, which has a direct effect on the quality of the results.
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1.4 SLAM in large-scale areas

The main open problem of the current state of the art SLAM approaches and
particularly vision based approaches is mapping large-scale areas [9]. Relevant
shortcomings of this problem are, on the one hand, the computational burden,
which limits the applicability of the EKF-based SLAM in large-scale real time
applications and, on the other hand, the use of linearized solutions which com-
promises the consistency of the estimation process. Added to this, the challenges
posed by vision over laser sensors, which include the very high input data rate, the
inherent 3D quality of visual data, the lack of direct depth measurement and the
difficulty in extracting long-term features to map [9]. Due to those factors, there
have been relatively few successful vision-only SLAM systems which are able to
construct persistent and consistent map while closing loops to correct drift.

The computational complexity of the EKF stems from the fact that the covari-
ance matrix Pt represents every pairwise correlation between the state variables.
Incorporating an observation of a single landmark will necessarily have an affect
on every other state variable. This makes the EKF computationally infeasible for
SLAM in large environment.

Methods like Network Coupled Feature Maps [17], Sequential Map Joining
[43], and the Constrained Local Submap Filter (CRSF) [44] have been proposed
to solve the problem of SLAM in large spaces by breaking the global map into
submaps. This leads to a more sparse description of the correlations between
map elements. When the robot moves out of one submap, it either creates a new
submap or relocates itself in a previously defined submap. By limiting the size
of the local map, this operation is constant time per step. Local maps are joined
periodically into a global absolute map, in an O(N2) step. Each approach reduces
the computational requirement of incorporating an observation to constant time.
However, these computational gains come at the cost of slowing down the overall
rate of convergence.

The Constrained Relative Submap Filter [44] proposes to maintain the local
map structure. Each map contains links to other neighboring maps, forming a
tree structure (where loops cannot be represented). The method converges by
revisiting the local maps and updating the links through correlations. Whereas in
the hierarchical SLAM [45], the links between local maps form an adjacency graph.
This method allows to reduce the computational time and memory requirements
and to obtain accurate metric maps of large environments in real time.

1.4.1 Hierarchical SLAM

The hierarchical SLAM approach [45] consists on the lower (or local) map level,
which is composed of a set of local maps that are guaranteed to be statistically
independent, and the upper (or global) level, which is an adjacency graph whose
arcs are labeled with the relative location between local maps (figure 1.7).

The local level contains the information of the local areas where features and
vehicle are represented with respect to a local reference frame. The global level
consists on a graph in which the relative locations between local maps are de-
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scribed. The size of local maps can be determined depending on each situation.

Figure 1.7: Two level hierarchical SLAM model [45]

Each local map Mj = MBj = (x̂Bj ,PBj ) is composed by: i) the state vector
x̂B , containing the pose of the vehicle xr and the features xi, i = 1 : N with
respect to a base reference system Bj , and ii) the covariance matrix PBj . The
base reference Bj may be the initial current vehicle location when the map is
initialized, or it may be associated to a set of local features, such as corner,
a pair of points, etc. Data association process is carried out using Individual
Compatibility Nearest Neighbor (ICCN) to establish correspondences and Joint
Compatibility test to ensure the robustness of the matchings. In addition, each
local map must contain the relation between its reference frame and the one of
its neighbors, in order to estimate the global position of the vehicle when it is
required. The decision to close a local map Mj and start a new local map is
made once the number of features in the current local map reaches a maximum,
or the uncertainty of the vehicle location with respect to the base reference of the
current map reaches a limit. The new local map Mj+1 will have the the current
vehicle position as base frame, which corresponds to the last vehicle position in
the map Mj .

At the upper level, the topology of the environment is represented by a graph
in which each node j corresponds to a local map Mj of the local level. An
arc c(j, k) in the graph represents a known topological relation between local
maps Mj and Mk detected during the mapping process. The properties of those
topological relations are the relative transformations between the base reference

of both maps,(xjk = x
Bj

Bk
). At the global level, these relative transformations are



24 Chapter 1. Simultaneous Localization And Mapping

maintained in a relative stochastic map MG = (x̂G,PG).

x̂G =


...

x̂jk

...

 ; PG =

 . 0 0
0 Pjk 0
0 0 .

 (1.30)

where x̂G and PG represent the state vector and covariance matrix of global
stochastic map.

Every time a local map is created or modified, the new values are included
in this relative stochastic map. Since local maps are independent, the covariance
matrix P is block diagonal by construction (eq.1.30).

While the vehicle is navigating, a set of local maps are built and an estimation
of the vehicle pose is computed. Uncertainty grows considerably as the robot
is moving within the environment. Therefore, the author proposed to reduce
such uncertainty and correct the misalignments by benefiting of the information
provided when the vehicle crosses already visited areas. The main idea is to
use the information of the robot pose, provided by the relation between the local
maps, and the relocation algorithm RS detailed in [67] in order to predict whether
an area has already been visited. Once a loop is detected, the next step is to fuse
both maps MB

i and MB′

j that are representing the same area. in [45], the author
proposes a local map joining technique:

MB
j+k = (x̂B

j+k,P
B
j+k)

were x̂B
j+k and PB

j+k represent the state vector and the covariance resultant of the

fusion of the maps MB
j and MB′

k in the reference frame B.
Since the relative reference frames of both maps are known, the main goal of

the algorithm is to transform one of the maps and its features into the reference
system of the other one.

1.4.2 Constrained Local Submap Filter

Williams [44] proposed to reduce the complexity of EKF by using local maps
linked among them forming a tree structure, presenting the so-called Constrained
Local Submap Filter (CLSF) (figure 1.8). The local map is composed by a set
of landmarks located in the surrounding navigation area of the vehicle/sensor.
Each single map has its own reference system and all the landmarks are defined
with respect to that reference. A relation between the coordinate system of each
submap and the global map is computed. Each time a new local map is created,
a new covariance matrix is defined containing only the new local landmarks and
the pose of the vehicle/camera, initialized in the origin of the submap with zero
uncertainty. In this way, the EKF update step of each submap does not require
to deal with a huge amount of data and the partial accumulated error is rela-
tively small. The state vector of the submap might contain not only the relative
estimation of all the landmarks but also the global position of some of them and



1.4. SLAM in large-scale areas 25

the relationship between the local and the global map. therefor the system will
detect duplicate landmarks, finding their correspondences in the global map in a
data association process.

Figure 1.8: The constrained local submap filter. The SLAM frontier is constructed
in a local map (b) which periodically registers with a global map (a) to produce
an optimal global estimate (c) [44]

At every instant of time, data from local maps are merged with the global map
taking into account all the global information and several constraints to ensure
the global consistency. The state vector at time t is defined as:

xt =



xBG

xt
1
G

xt
1
B

xt
2
B

...

xt
n
B


(1.31)

where xBG determines the relation between the local B and the global G reference

frames and xt
i
G
and xt

i
B
indicate the location of a landmark i with respect to the

global frame G and the local frame B, respectively.
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During the local update step, only the local covariance matrix is updated:

Pt =

[
PtG 0

0 PtB

]
(1.32)

were PtB represents the covariance matrix of the local area, that is, the cor-

relation of vehicle/sensor and all the landmarks between each other, and PtG

represents the estimate covariance of the local map and its element respects to
the global reference.

When a global update is required, the process needs to determine the global
position of each feature. As can be seen in equation (1.31), each local map contains
some features that are both related to local and global reference frame. Therefore,
using this information and the relation between the landmark’s local map and the
global frame, the constraint (equation (1.33)) must hold on in order to guarantee
the stability of the global system and ensure the correctness of the landmark pose
prediction.

xt
i
G − (xBG ⊕xt

i
B
) = 0 (1.33)

the CLSF method presented by Williams provides a reliable solution to reduce
the high computational cost of EKF when dealing with a huge amount of data.
However, when dealing with huge sensor noise, the method is restricted to small
environments due to the lack of closing-the-loop constraints. That is, when the
uncertainty of the measurements grows considerably, global constrains might not
be enough to assure success in the global estimation process.

1.5 Proposed Vision based SLAM in large-scale
areas

We are interested in visual navigation of a mobile robot in large spaces using
a mono-camera as sensory input. We propose a procedure to build a global
representation of the environment based on several size limited feature based
local maps built using an EKF based SLAM approach.

1.5.1 Feature selection

The mobile robot is supposed to travel through a locally planar environment and
use its camera to observe features around it. Usually the features used in vision-
based SLAM algorithms are salient and distinctive objects detected from images.
Typical features might include regions, edges, object contours, corners etc.

In our work, the map features (figure 1.9) are obtained using the SIFT feature
detector [46], which maps an image data into scale-invariant coordinates relative
to local features (see appendix B section B.1.2). These features are highly dis-
tinctive and invariant to image scale and rotation. The work of Mikolajczyk and
Schmid [47] proved that SIFT features remain stable to affine distortions, change
of viewpoint, noise and change in illumination.
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Heuristic map management criteria are used to decide when to initialize new
features: essentially, the requirement is to keep a predefined number of features
visible from all camera locations. A typical number used is 10; whenever fewer
than 10 features are visible new ones are detected and initialized.

Features are not deleted from the map when they leave the field of view, but
remain in the map and can be re-observed when the camera moves back and
they become visible again. In some cases it is necessary to delete features which
are not being reliably matched on a regular basis: some features detected will
be frequently occluded or may contain parts of objects at very different depths.
These features will lead to failed correlation attempts and can be removed from
the map automatically.
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Figure 1.9: Features detected using the SIFT algorithm

1.5.1.1 Feature selection in dynamic environments

One of the problems of SLAM is environment’s change over time. Some changes
may be relatively slow, such as the change of appearance of a tree across different
seasons, or the structural changes that most office buildings are subjected to
over time, or change in illumination. Others are faster, such as the change of
door status or the location of furniture items, such as chairs. Even faster may
be the change of location of other agents in the environment, such as cars or
people. As example, imagine a robot facing a closed door that previously was
modelled as open. Such an observation may be explained by two hypotheses,
namely that the door status changed, or that the robot is not where it believes
to be. Unfortunately, there are almost no mapping algorithms that can learn
meaningful maps of dynamic environments.

To deal with the SLAM in dynamic scenes with moving object we propose
an algorithm for motion segmentation (chapter 2) to remove the outliers features
which are associated with moving objects. In other words, the detected features
which correspond to the moving parts in the scene are not considered in the
built map. For more feature tracking reliability we use a bounding box around
the moving objects (figure 1.10). Moreover, the newly detected features are not
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added directly to the map but they should be detected and matched in at least n
consecutive frames (in our application n = 5).
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Figure 1.10: Features detected in a scene with moving objects

1.5.2 Local map building

The SLAM system is modeled at each time step t as a multivariate Gaussian
with mean xt composed of the robot xr and features xi state vectors in the global
coordinate system G (eq. 1.34) and a covariance matrix Pt of size (3 + 3N) ×
(3 + 3N) (eq.1.35). N is the number of features in the map.

x =


xr

x1

x2

...
xN

 (1.34)

Pt =


Pt

rr Pt
r1 · · · Pt

rN

Pt
1r Pt

11 · · · Pt
1N

...
...

. . .
...

Pt
Nr Pt

N1 · · · Pt
NN

 (1.35)

All sub-matrices Prr (robot to robot covariance), Pri (robot to feature co-
variance), Pii (feature to feature covariance), and Pij (feature to feature cross-
correlations) are of size 3× 3.

The robot state vector xr is defined by its 2D position vector (xtr, y
t
r)

T at
time t, (its position in the Z direction being constant ztr = 0) and the robot’s
orientation (yaw) relative to the X axis, γtr.

xr =

xryr
γr
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The map features Li, i = 0, ..., N are represented by their 3D position in the
global coordinate system:

xi =

xiyi
zi


1.5.2.1 Dynamic Model

The dynamic model or motion model is the relationship between the system paste
state, xt−1, and its current state, xt, given a control input ξt

xt = f
(
xt−1, ξt,vt

)
(1.36)

Where f is a function representing the mobility, kinematics and dynamics of the
robot (transition function) and v is a random vector describing the unmodelled
aspects of the vehicle (process noise such as wheel sleep or odometry error).

We define a robot control ξt at time step t as any ”motor actuation” performed
by the robot since the last time step t− 1. A typical situation for ground vehicles
is to take the increment of the robot odometry (increments in x− r,y− r, and the
heading γr) as the control. One alternative is to set ξt = 0 with large uncertainty,
i.e. the robot is close to its last position up to a degree of uncertainty.

We assume static features. In this case, the only variables of the state vector
that actually change over time are those of the robot pose. At each time step,
the pose of the robot xr changes according to the transition model

xt
r = f − r

(
xt−1
r , ξt,vt

)
=

xt−1
r + (νt−1 +V) cos(γt−1

r )∆t
yt−1
r + (νt−1 +V) sin(γt−1

r )∆t
γt−1
r + (ωt−1 +Ω)∆t

 (1.37)

ν and ω are the linear and the angular velocities, respectively. V and Ω are
their associated Gaussian distributed perturbations, respectively.

In this part of the chapter we consider that the global coordinate system is
the robot’s starting position. Therefore the robot pose and the corresponding
covariance matrix are initialized to zeros.

Considering a constant velocity model for the smooth robot motion, the Ja-
cobian of f with respect to xr is given by:

F =
∂f

∂x

∣∣∣∣
(xt−1|t−1,ξ=0)

= diag

(
∂f

∂xr

∣∣∣∣
(x

t−1|t−1
r ,ξ=0)

, I

)
(1.38)

where

∂f

∂xr

∣∣∣∣
(x

t−1|t−1
r ,ξ=0)

=

 1 0 − sin(γt−1
r )(νt−1 +V)∆t

0 1 cos(γt−1
r )(νt−1 +V)∆t

0 0 1

 (1.39)
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1.5.2.2 Observation Model

A feature Li is represented in the state vector by its 3D location in the world
coordinate system G:

xt
i = (xti, y

t
i , z

t
i)

Making a measurement of a feature Li consists of determining its projection
in the camera image. Using a perspective projection, the observation model in
the image coordinate system I (see section 1.2.6 for frames definition) is obtained
as follows:

zti = h(xt
i) =

ox + f
yt
i
C

xt
i
C

oy + f
zt
i
C

xt
i
C

 (1.40)

where ox and oy are the coordinates of the image center and f is the focal length

of the camera. xt
i
C
= (xti

C
, yti

C
, zti

C
) are the coordinates of the feature Li in the

camera coordinate frame C (see section 1.2.6 for frames definition). They are
related to xi by:

Cxt
i =

xti
C

yti
C

zti
C

 =

 cos(γtr) sin(γtr) 0
− sin(γtr) cos(γtr) 0

0 0 1

xti − xtr
yti − ytr
zti − h

−

xRcyRc
zRc

 (1.41)

h is the high of the robot coordinate system and (xRc , y
R
c , z

R
c ) are the coordinates

of the camera center in the robot frame R.
The measurement model is then:

zti = h(xt
i) =

ox + f
−(xt

i−xt
r) sin(γ

t
r)+(yt

i−yt
r) cos(γ

t
r)−yR

c

(xt
i−xt

r) cos(γ
t
r)+(yt

i−yt
r) sin(γ

t
r)−xR

c

oy + f
zt
i−h−zR

c

(xt
i−xt

r) cos(γ
t
r)+(yt

i−yt
r) sin(γ

t
r)−xR

c

 (1.42)

1.5.2.2.1 Adding new features

Let N−1 denote the number of landmarks in the map at some time step. The
system state vector and covariance matrix are then:

x =


xr

x1

x2

...
xN−1
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P =


Prr Pr1 · · · Pr(N−1)

P1r P11 · · · P1(N−1)

...
...

. . .
...

P(N−1)r P(N−1)1 · · · P(N−1)(N−1)


Adding a new feature LN consists in introducing the feature state in the system

state vector and expand the covariance with a new row and column to include its
correlation and cross-correlation.

x+ =

[
x
xN

]

P+ =



Prr
∂g
∂xr

T

P P1r
∂g
∂xr

T

...

P(N−1)r
∂g
∂xr

T

∂g
∂xr

Prr
∂g
∂xr

Pr1 · · · ∂g
∂xr

Pr(N−1)
∂g
∂xr

Prr
∂g
∂xr

T
+ ∂g

∂xN
R ∂g

∂xN

T


where g is the inverse function of h and R is the sensor noise covariance matrix.

1.5.2.2.2 Subtracting outliers from the map

Some stationary objects in the scene can start moving. In this case, their
corresponding features should be deleted from the built map. Deleting a feature
Li from the map consists in deleting it as element from the system state vector
and the corresponding columns and rows in the covariance matrix.

xt =



xt
r

xt
1
...

xt
i−1

xt
i+1
...
xt
n


(1.43)

Pt =

 Pt
r · · ·Pt

r,i−1 Pt
r,i+1 · · · Pt

r,n
...

...
. . .

...
...

Pt
n,r · · ·Pt

i−1,r Pt
i+1,r · · · Pt

n

 (1.44)
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1.5.3 Features initialization

When a feature is first detected, measurement from a single camera position
provides good information on its direction relative to the camera, but its depth
is initially unknown.

Since depth information is not provided, EKF can not be directly initialized,
leading to a new challenge known as Bearing-Only SLAM. An early approach was
proposed by Deans [48], who combined Kalman filter and bundle adjustment in
filter initialization, obtaining accurate results at the expense of increasing filter
complexity. In [9], Davison uses for initialization an A4 piece of paper as a land-
mark to recover metric information of the scene. Then, whenever a scene feature
is observed a set of depth hypotheses are made along its direction. In subsequent
steps, the same feature is seen from different positions reducing the number of hy-
potheses and leading to an accurate landmark pose estimation. Besides, Lemaire
[37] proposed a 3D Bearing-Only SLAM algorithm based on EKF filters, in which
each feature is represented by a sum of Gaussians.

In our application, to estimate the 3D position of the detected features, we use
an approach based on epipolar geometry [49, 50]. This geometry represents the
geometric relationship between multiple viewpoints of a rigid body and it depends
on the internal parameters and relative positions of the camera (see appendix A
for more details). The two and three views geometry have been used in our case.

1.5.3.1 Two-views geometry

The epipolar geometry is illustrated in figure 1.11.

Figure 1.11: Illustration of the epipolar geometry

The fundamental matrix F (a 3×3 matrix of rank 2 ) encapsulates this intrinsic
geometry. It describes the relationship between matching points: if a point X̃ is
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imaged as xi in the first view, and x′
j in the second, then the image points must

satisfy the relation xT
i Fxj = 0. The fundamental matrix is independent of scene

structure. However, it can be computed from correspondences of imaged scene
points alone, without requiring knowledge of the cameras internal parameters or
relative pose.

Given a set of n pairs of image correspondences (xj ,x
′
j), j = 1..n, we compute

R and t such the epipolar error is minimized

min
F

n∑
j=1

x′
jFxj

For the minimization, we use the Random Sample Consensus (RANSAC) algo-
rithm [51] (see appendix A for more details on using RANSAC for motion param-
eters estimation).

Essential matrix computing:
Knowing the camera calibration matrix K, we can calculate the essential matrix
E as follows (see appendix A):

E = KTFK (1.45)

The camera calibration matrix K encodes the transformation from image co-
ordinates to pixel coordinates in the image plane. It depends on the so-called
intrinsic parameters:

• focal distance f (in mm),

• principal point (or image centre) coordinates ox,oy (in pixel),

• width (sx) and height (sy) of the pixel footprint on the camera photosensor
(in mm),

• angle θ between the axes (usually π/2).

The ratio sy/sx is the aspect ratio (usually close to 1).

K =

f/sx f/sx cos θ ox
0 f/sy oy
0 0 1


compute the camera matrices and motion parameters:
The camera coordinate systems corresponding to tow views are related by a ro-
tation matrix, R, and a translation vector, t:

xj = Rxi + t (1.46)

Taking the vector product with t, followed by the scalar product with xj , we
obtain:

xj .(t ∧Rxi) = 0 (1.47)
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This can also be written as

xjExi = 0 (1.48)

where

E = t×R (1.49)

is the essential matrix, and t× denotes skew symmetric cross product matrix for
t

t× =

 0 −tz ty
tz 0 −tx
−ty tx 0


The rotation R and translation t between the two camera frames are then

calculated by singular value decomposition SVD decomposition of E.

Suppose that the SVD decomposition of E is Udiag(1, 1, 0)VT . The factor-
ization E = t×R corresponds to (see appendix A):

t× = UZUT R = UWVT (1.50)

where

W =

0 −1 0
1 0 0
0 0 1

 and Z =

 0 1 0
−1 0 0
0 0 0


The SVD decomposition of E allows also to compute the camera projection

matrices. Supposing that the projection matrix at the first view is the P = [I|0],
the projection matrix for the second view is then given by: P ′ = [UWVT |t].

Triangulation and 3D reconstruction:
Given the camera matrices P and P ′, let xi and xj be two corresponding points
satisfying the epipolar constraint xT

i Fxj = 0. It follows that xi lies on the epipolar
line Fxj and so the two rays back-projected from image points xi and xj lie in a
common epipolar plane. Since they lie in the same plane, they will intersect at
some point. This point is the reconstructed 3D scene point M.

Analytically, the reconstructed 3D point X̃ can be found the following equa-
tion:

e = zixi − zjxj (1.51)

where e is the epipole at the first view. zi and zj are the depth of the space

point X̃ with respect to the first and second views, respectively.

The three points xi, e, and xj are known and are collinear, so we can solve
for Z:

z =
(e× xj).(xi × xj)

∥xi × xj∥2
(1.52)
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1.5.3.2 Three-views geometry

The trifocal tensor approach is an extension to the case of three views of the
two-view geometry description (see appendix A). The 3 × 3 × 3 trifocal tensor
T describes the relationship between three images of the same static scene. It
encapsulates the projective geometry between the different viewpoints and is in-
dependent from the structure of the scene. Knowing the projection matrices of
the three cameras, Pi=1,2,3, the entries of the trifocal tensor are given by

Ti,j,k = (−1)i+1.det

 ai

bj

ck

 (1.53)

where ai denotes matrix P1 without row i and bj and ck represent the j-th
row of P2 and the k-th row of P3 respectively [49, 50].

1.5.4 Features Matching

At step t, the onboard camera obtains a set of measurements zti (i = 1, ...,m) of
m environment features. Feature matching corresponds to data association, also
known as the correspondence problem, which consists in determining the origin
of each measurement, in terms of the map features Lj , j = 1, ..., N . The result
is a hypothesis

Ht = [ht1, ..., h
t
m] (1.54)

associating each measurement zti with its corresponding map feature. hti = 0
indicates that zti does not come from any feature in the map. For data association
a measure of the discrepancy between a predicted measurement that each feature
would generate and an actual sensor measurement is measured by the innovation
ε given by (1.22).

The measurement zti can be considered corresponding to the feature j if the

Mahalanobis distance D2
ij

t
[53] satisfies:

D2
ij

t
= εT

t
S−1tεt < th (1.55)

Where the covariance St and the innovation εt are given by equations (1.21) and
(1.22), respectively.

In order to establish the consistency of a hypothesis Ht , measurements can
be jointly predicted using the function hHt

hHt(xt|t−1) =

 hht
1
(xt|t−1)
...

hht
m
(xt|t−1)

 (1.56)

which can also be linearized around the current estimate to yield:
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hHt(xt|t−1) ≃ hHt(x̂t|t−1) +HHt(xt|t−1 − x̂t|t−1)

(1.57)

HHt =

 Hht
1

...
Hht

m


The joint innovation and its covariance are:

εtHt = zt − hHt(x̂t|t−1)

(1.58)

SHt = HHtPtHT
Ht +RHt

Measurements zt can be considered compatible with their corresponding fea-
tures according to Ht if the Mahalanobis distance satisfies:

D2
Ht = εTHtS−1

HtεHt < th (1.59)

In our application, as we are using SIFT features, the matching between fea-
ture is checked using a product of the Mahalanobis distance between measure-
ments and their predictions and the Euclidean distance between the descriptor
vectors of the features. This will allow using the advantage of looking for feature
matching based on the prediction of their position based on the system model
and the advantage of the scale-space invariance parameters.

D2 = D2
Ht +D2

desc < th (1.60)

where D2
desc =∥ desc1 − desc2 ∥ is the Euclidean distance between the descriptor

vectors of the features.

Additionally, corresponding features should satisfy the epipolar constraint (see
appendix A), hence an image point xt

i that corresponds to xt−1
i is located on or

near the epipolar line that is induced by xt−1
i . The distance of the image point

xt
i from that epipolar line is computed as follows:

D2
epi =

(xt
i
TFxt−1

i )2

(Fxt−1
i

∣∣
1
)2 + (Fxt−1

i

∣∣
1
)2

(1.61)

where Fxt−1
i

∣∣
j
is the j component of the vector Fxt−1

i . F is the fundamental

matrix which is computed based on the estimations from the Extended Kalman
Filter. Knowing the camera position at instants t, the estimated camera position
at instant t − 1, and the camera calibration matrix K (see appendix A for the
definition of K), the fundamental matrix F is computed as follows:

F = K−TR[t]×K
−1 (1.62)
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where R is the rotation matrix and [t]× is the skew matrix corresponding to the
translation vector t. The notation K−T denotes the transpose of the inverse K.

Therefore, our cost function for features matching is the sum of D2 and D2
epi

D2
match = D2 +D2

epi (1.63)

Measurements for which correspondences in the map cannot be found by data
association can be directly added to the current stochastic state vector as new
features.

Feature close to an obstacle
If a well initialized feature is detected too close to a moving object (less then the
image patches half size), this feature is considered as occluded and no matching
is performed. These features are not used as well for motion estimation.

1.5.5 Local and Global Mapping

In our study, we are interested in robot navigation in large spaces. For that, we
propose a procedure to build a global representation of the environment based
on several size limited local maps built using the previously described approach.
Two methods for local map joining are proposed, the first method consists in
transforming each local map into a global frame before to start building a new
local map. While in the second method, the global map consists only in a set of
robot positions where new local maps started (i.e. the base references of the local
maps). In both methods, the base frame for the global map is the robot position
at instant t0.

Each local map is built as follows: at a given instant tk, a new map is initialized
using the current vehicle location, xtk

R , as base reference Bk = xtk
r , k = 1, 2, ...

being the local map order. Then, the vehicle performs a limited motion acquiring
sensor information about the Li neighboring environment features. An EKF-
based technique is used to model the local maps.

The ’k’th local map is defined by:

Mk = (xk,Pk)

where xk is the state vector in the base reference Bk of the Lk detected features
and Pk is their covariance matrix estimated in Bk.

1.5.5.1 Key-Instants

The decision to start building a new local map at an instant tk is based on
two criteria: the number of features in the current local map and the scene cut
detection result (see section 2.3.2 for the definition of scene cut detection). The
instant tk is called a key-instant.
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In our application we defined two thresholds for the number of features in the
local maps: a lower Th− and a higher Th+ thresholds. A key-instant is selected
if the number of features nkl in the current local map k is larger then the lower
threshold and a scene cut has been detected or the number of features has reached
the higher threshold. This allows keeping reasonable dimensions of the local maps
and avoids building too small maps.

IF ( nkl > Th− AND scene-cut ) OR (nkl > Th+)

start a new local map Mk+1

ELSE

continue with the local map Mk

END IF

1.5.5.2 Key-Frames

At the key-instants tk some frames are selected to be used for features initialization
in the new local map. These frames are called key-frames. The motion between
two frames must be sufficiently large to accurately compute the 3D positions of
matched points. For that we select frames relatively far from each other.

1.5.5.3 First Method for Global Map Building

In this method the first local map is used as global map. Each finalized local map
is transferred to the global map before starting a new one, by computing the state
vectors and the covariance matrix.

The goal of map joining is to obtain one full stochastic map:

M = (x0
(0⊕1⊕2⊕...),P

0
(0⊕1⊕2⊕...)) (1.64)

where x0
(0⊕1⊕2⊕...) is a concatenation in the frame B0 of all sets of features from

local maps M0, M1, M2, ...:

x0
(0⊕1⊕2⊕...) = (x0

0,x
0
1,x

0
2, ...)

T (1.65)

The location x1
i of feature i from the local map M1 is given in the frame B0

as follows: (
x0
i

1

)
= T1→0.

(
x1
i

1

)
(1.66)

T1→0 = (R|t) is the transformation matrix corresponding to rotation R and t
from frame B1 = xt1

x = (xt1r , y
t1
r , γ

t1
r )T to frame B0 = x0

r = (0, 0, 0)T :
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T1→0 =


cos(γt1r ) 0 − sin(γt1r ) yt11

0 1 0 0
sin(γt1r ) 0 cos(γt1r ) yt12

0 0 0 1

 (1.67)

As each camera position xtk
r corresponding to the frame reference Bk is given

in the previous frame reference Bk−1, the coordinates of a feature point i vector
from frame Bk to B0 is obtained by successive transformations:

(
x̄0
i

1

)
= Tk→(k−1)T(k−1)→(k−2)...T1→0.

(
xk
i

1

)
(1.68)

Where the transformation matrix from Bk to Bk−1, Tk→k−1 = (R|t), is given by:

Tk→(k−1) =


cos(γtkr ) 0 − sin(γtkr ) xtkr

0 1 0 0
sin(γtkr ) 0 cos(γtkr ) ytkr

0 0 0 1

 (1.69)

The covariance P0
(0⊕1⊕2⊕...) of the joint map is obtained from the linearization

of the state transition function f . As the local maps are independents, the Jaco-
bian (from linearization) is then applied separately to the local map covariance:

P0
(0⊕1⊕2⊕...) =

∂f

∂xr

∣∣∣∣
0

P0
∂f

∂xr

∣∣∣∣
0

T

+
∂f

∂xr

∣∣∣∣
1

P1
∂f

∂xr

∣∣∣∣
1

T

+ ...+
∂f

∂xr

∣∣∣∣
i

Pi
∂f

∂xr

∣∣∣∣
i

T

+ ...

(1.70)

where ∂f
∂yr

∣∣∣
k
is the Jacobian of the state transition function f with respect to yr

in the reference frame k.

1.5.5.4 Second Method for Global Map building

In this method, the global map is limited to the set of the coordinates of the
origins of the local maps:

MB
G = (x̄0

r, x̄
1
r, x̄

2
r, ...) (1.71)

where x̄k
r are the robot coordinates in B0, where it decides to build the local map

Mk at instant tk. (
x̄k
r

1

)
= Tk→0.

(
xtk
r

1

)
(1.72)

t0 = 0 and x̄0
r = xt0

r = (0, 0, 0).

The transformation matrix Tk→0 is obtained by successive transformations:

Tk→0 = T1→0.T2→1...T(k−1)→(k−2) (1.73)
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where Ti→i−1 = (R|t) is the transformation matrix corresponding to rotation R
and translation t of frame Bi regarding to frame Bi−1:

Ti→i−1 =


cos(γtir ) 0 − sin(γtir ) xtir

0 1 0 0
sin(γtir ) 0 cos(γtir ) ytir

0 0 0 1

 (1.74)

In this case, for feature matching at instant t, the robot uses the local map
with the closest base frame to its current location:

argmin
i
(∥ x̄k

i − x̄t
r ∥) (1.75)

where x̄t
r is the robot position at instant t in B0.

1.6 Experimental Results & Evaluation

1.6.1 Feature selection and matching

Figure 1.13 shows a comparison between matching of features detected in two
frames (figure1.12), using Mahalanobis distance between measurements and their
predictions with consistency hypothesis (1.13.c), by using Euclidean distance be-
tween features descriptors as in [46] (1.13.d), and using the proposed method
with a combination of the Mahalanobis distance with consistency hypothesis and
Euclidean distance between features descriptors (1.13.e). We can see that the
proposed matching is more accurate.

a) SIFT features on the first frame b) SIFT features on the second frame

Figure 1.12: SIFT feature on two consecutive frames

Figures 1.15 and 1.16 represent a comparison of the number of matches be-
tween the three methods for feature matching: The method used in [9] based
on the Shi and Thomasi feature detector, the SIFT features matched using the
Mahalanobis distance and SIFT features matched using the proposed approach.
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Two data set have been used for this evaluation with changes in scaling (the se-
quence with corridor used in the previous tests) and change in oriantation (the
building sequence 1.14). For each data set, we matched the feature in image 1 to
the features in image n (where n = 2, 3, ..., 6).

From those experimental result, we can observe that our feature matching
outperforms the Shi and Thomasi feature matching used in [9] and the SIFT
features matched by only Mahalanobis distance.

c) Features matching based on Mahalanobis distance with consistency hypothesis
-

d) Features matching based on Euclidean distance between features descriptors (Lowe method)
-

e) Features matching based on Eq.(1.63)

Figure 1.13: SIFT feature matching
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Figure 1.14: Building sequence

Figure 1.15: Feature matching in case of change in scaling
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Figure 1.16: Feature matching in case of change in orientation

Figure 1.17 shows an example with a feature detected on a moving object.
As the feature has not been detected during 10 consecutive frames before being
occluded by the moving objects, this feature will not be added to the system
state. The figure shows also an example with well initialized features which will
be occluded by the moving object. These features stay in the system state.

Figure 1.17: Features initialized on a moving object or occluded by a moving
object

1.6.2 Mapping and localization

Figure 1.18 shows an example of SLAM using the proposed algorithm for global
map building. Black squares describes the positions where the feature matching
has passed from a local frame to an other. The ellipses around the features on
the original frame represents the estimated covariance. The ellipses are drown in
cyan color around non matched feature and in red for matched features.
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Figure 1.18: Example of Mapping and localization in a real scene

Figure 1.19 represents for the same image sequence an estimation of the camera
position error and its corresponding 2σ variance bounds. Position errors are
plotted as x and y distances to camera location (calculated using the vehicle
odometry) in meters.
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Figure 1.19: Estimation errors for camera position and its corresponding 2σ vari-
ance bounds. Position errors are plotted as x and y distances to camera location
(calculated using the vehicle odometry) in meters.

Figure 1.20 shows the result of the algorithm in a scene with moving objects.
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Figure 1.20: Results in a scene with moving objects

Figure 1.21 represents the evolution in time of the uncertainty around the
camera position. The uncertainty continues growing until a previous position has
been identified (closing loop) by feature matching.
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Figure 1.21: Frame-by-frame camera position uncertainty evolution

Figure 1.22, shows an example for the detection of loops using the SLAM
process. In this example, the robot cruises two times across a defined path (real
path drawn in red in the figure). At the first round the position error accedes
5m and the uncertainty around the robot position reaches 6.2m (cyan ellipses in
the figure). After loop detection, the uncertainty is reduced. During the second
round the position error is limited to a maximum of 1m and the uncertainty to a
maximum of 2 meters (magenta ellipses in the figure) before the detection of the
close the loop.
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Figure 1.22: Closing the loop

1.7 Integrating other sensors data in the SLAM
process

In this section we suppose that, added to the monocular camera, the robot is
equipped with an inertial navigation system (INS), wheel encoders, and a global
positioning system (GPS) for outdoor navigation. Each of these sensors can be
used separately by the robot for its localization but they are subject to a lot of
error sources affecting the accuracy of the obtained robot positioning.

Two schemas of integration can be imagined, in the first case, the data from
the INS and encoder sensors are used in the SLAM algorithm for angular and
linear velocity estimation, respectively, and the data from the GPS, when avail-
able, is used for a geo-referencing the localization of the robot and therefor the
map features. While in the seconde case, the estimated camera motion from cam-
era/INS/encoders is used to improve the GPS positioning. In both cases, the
robot can continue tracking its GPS position even if the GPS signal is lost.

The following paragraphs give an overview of the functioning principles of the
different sensors

1.7.1 GPS data correction using INS/Encoders data

Positioning using global positioning systems (GPS) is determined, at any time, by
measuring the time delay in a radio signal broadcast from several satellites, and
using this and the speed of propagation to calculate the distance to the satellites.
Position on earth is then calculated by triangulation of intersecting radio signals
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at the GPS receiver. Using the GPS for positioning is subject to several sources
of errors, as listed below.

Clock inaccuracies and rounding errors: Despite the synchronization
of the receiver clock with the satellite time during the position determination,
the remaining inaccuracy of the time still leads to an error of about 2 m in the
position determination. Rounding and calculation errors of the receiver translate
into approximately 1 m of error.

Multipath effect: The multipath effect is caused by reflection of satellite
signals (radio waves) on objects. This effect mainly appears in the neighborhood
of large buildings or other elevations. The reflected signal takes more time to
reach the receiver than the direct signal. The resulting error typically lies in the
range of a few meters.

Satellite orbits: Although the satellites are positioned in very precise orbits,
slight shifts of the orbits are possible due to gravitation forces. The sun and the
moon have a weak influence on the orbits. The orbit data are controlled and
corrected regularly and are sent to the receivers in the package of ephemeris data.

Other spatial and geometry factors affect the accuracy of the GPS measure-
ments. A typical civilian GPS receiver provides 6 to 12 meters accuracy, depend-
ing on the number of satellites available. This accuracy can be reduced to 1 m
by using a differential GPS (DGPS) which employs a second receiver at a fixed
location to compute corrections to the GPS satellite measurements.

The GPS measurements are called pseudo-ranges (instead of ranges) since the
estimated times of transmission are corrupted by different biases. The positioning
equations for ns satellites in sight at time instant t can be defined as:

rti =

√
(Xt

i − xt)
2
+ (Y t

i − yt)
2
+ (Zt

i )
2 + bt + wt

i (1.76)

for i = 1, ..., ns, where r
t
i is the pseudo-range between the user and the ith

satellite, [Xt
i , Y

t
i , Z

t
i ]

T is the position of the ith satellite, bt is a bias term resulting
from the clock offset, wt

i is the measurement error and [xt, yt] is the vehicle position
to be estimated (the vehicle altitude is zt = 0 in our application). These equations
will be used as measurement equations in the proposed navigation solutions.

1.7.1.1 Wheel encoders

This section describes the main elements of differential odometry. The idea is to
integrate information regarding distance and yaw rate using the measurements
given by the vehicle odometers. Fig. 1.23 shows encoders located on the front
or rear wheels. The first index of the different variables refers to the front f or
rear r axes whereas the second index corresponds to the left l and right r sides of
the car. Consequently, the wheel radii (resp. angular velocities) are denoted as
Rrl ,Rrr, Rfl and Rfr (resp. wrl, wrr, wfl, and wfr). The other notations used
in Fig. 1.23 are L for the length between wheels and γr for the vehicle yaw rate
(change of angle of direction).
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Figure 1.23: Illustration of the wheel encoders

The mean speed of the vehicle at time t can be computed as [207]:

V (wt
rr, w

t
rl, Rrr, Rrl) =

wt
rrRrr + wt

rlRrl

2
(1.77)

The yaw rate of the vehicle can be calculated as a function of the angular
velocities of each wheel. By neglecting side slip effects and modeling the vehicle
as a rigid body, the vehicle yaw rate at time t expresses as

γ̇tr = h(wt
rr, w

t
rl, Rrr, Rrl) =

wt
rrRrr + wt

rlRrl

L
(1.78)

1.7.1.2 Inertial navigation System INS

The inertial navigation system (INS) is a self-contained navigation technique in
which measurements provided by accelerometers and gyroscopes are used to track
the position and orientation of an object relative to a known starting point, ori-
entation and velocity. INS typically contain three orthogonal rate-gyroscopes and
three orthogonal accelerometers, measuring angular velocity and linear accelera-
tion respectively. By processing signals from these devices it is possible to track
the position and orientation of a robot on which the INS device is mounted.

Inertial navigation systems usually can only provide an accurate solution for a
short period of time. As the acceleration is integrated twice to obtain the position,
any error in the acceleration measurement will also be integrated and causes a
bias on the estimated velocity and a continuous drift on the position estimate
by the INS. Additionally, the INS software must use an estimate of the angular
position of the accelerometers when conducting this integration. Typically, the
angular position is tracked through an integration of the angular rate from the
gyro sensors. These also produce unknown biases that affect the integration to
get the position of the unit.

The accelerometers deliver a non gravitational acceleration (also referred to
as specific force fp) and the gyrometers measure the rotation rate of the sensor
cluster Ωip in order to keep track of the vehicle orientation.
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The differential equations relating the measured quantities to the dynamics
are defined as follows:

v̇en = Rp2nfp + gn − (Ωen + 2Ωie)ve − Ω2
iepn (1.79)

Ra2b: rotation matrix from frame a to frame b,
pb: location of the vehicle in the frame b,
Ωab: rotation rate from frame a to frame b,
va = [ẏt, ẋt]: velocity relative to frame a

The subscripts refer to the different coordinate frames, i.e., i: inertial frame,
e: earth centered earth fixed frame, n: local geographic frame, p: platform frame.

The velocity ẋR of the vehicle in the G frame is given by:

ẋR =

(
λ̇

ϕ̇

)
=

(
1
Rλ

0

0 1
Rϕcosλ

)
(1.80)

where gn is the gravitational acceleration in the local geographic frame, λ and
ϕ are the latitude and longitude of the mobile, Rλ is the earth radius of curvature
in a meridian at a given latitude and Rϕ is the transverse radius (we consider the
WGS84 model for which the earth is an ellipsoid). These equations are integrated
to obtain the vehicle position and velocity. This integration will entail a drift in
stand-alone INS estimates due to a bias affecting the INS measurements (denoted
as ba for the accelerometer bias and as bg for the gyroscope bias).

1.7.1.3 Integration GPS/INS/Encoders

Kalman filtering provides a powerful tool to create synergism between two navi-
gation sensors - GPS receivers and INS - since it is able to take advantage of both
systems’ characteristics to provide a common, integrated navigation implementa-
tion with a performance superior to either of the sensor subsystems

The wheel encoders measures the Y-direction velocity in the vehicle frame,
while two non-holonomic constraints are applied to the X and Z directions of the
vehicle frame. The non-holonomic constraints imply that the vehicle does not
move in the up or transverse directions, which holds in most cases. The Wheel
encoders provides the absolute velocity information to update the centralized
Kalman filter. During GPS outages, the non-holonomic constraints as well as
the absolute velocity information can constrain the velocity and consequently the
position drift of the free inertial system.

The error states estimated by the GPS/INS Extended Kalman filter include
position errors, velocity errors, misalignment angles, as well as accelerometer and
gyro biases. All of these error states are 3×1 vectors. Due to the centralized pro-
cessing approach, the double differenced ambiguities ( ∆∇N) are also contained
in the error states. The dynamic model for the GPS/INS Extended Kalman filter
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is given in equation 1.81 []
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where
δre is the position error vector
δve is the velocity error vector
ϵe is the misalignment angle error vector
wf is the accelerometer noise
ww is the gyro noise
δbb is the vector of the accelerometer bias errors
δdb is the vector of the gyro bias errors
diag(αi) is diagonal matrix of time constants for the accelerometer bias models
diag(βi) is diagonal matrix of time constants for the gyro bias models
wb is the driving noise for the accelerometer biases
wd is the driving noise for the gyro biases
Re

b is the direction cosine matrix between b frame and e frame
δx is the error states vector, and
FGPS/INS is the dynamic matrix for GPS/INS integration strategy

To take into account that in practice the tire radius may change based on the
load and driving conditions and that the INS body frame does not always coincide
with the vehicle frame, the wheel encoders scale factor and the tilt angles between
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the b and v frames are modeled as random constants.
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δṠ
ϵ̇b−v


=



0 I 0 0 0 0 0 0
Ne −2Ωe

ie −F e Re
b 0 0 0 0

0 0 −Ωe
ie 0 Re

b 0 0 0
0 0 0 −diag(αi) 0 0 0 0
0 0 0 0 −diag(βi) 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.



δre

δve

ϵe

δbb

δdb

∆∇N
δS
ϵb−v



+



0 0 0 0
Re

b 0 0 0
0 Re

b 0 0
0 0 I 0
0 0 0 I
0 0 0 0
0 0 0 0
0 0 0 0


.


wf

ww

wb

wd

 = FGPS/INS/WE .δx+G.w (1.82)

where FGPS/INS/WE is the dynamic matrix for GPS/INS/Wheel encoders
integration strategy, δS is the Wheel encoders scale factor error state, and ϵb−v =
[δα δβ δγ]T is the error vector of the tilt angles between the body frame and
the vehicle frame corresponding to the X, Y and Z axes respectively.

Since the wheel speed is measured in the vehicle frame, and the velocities in
GPS/INS system are parameterized in ECEF frame, the Wheel encoders update
can be either carried out in the e frame by transforming the Wheel encoders
measurement into the e frame or carried out in the v frame by transforming the
GPS/INS integrated velocities into the v frame. In our application, the Wheel
encoders update is carried out in v frame, and the GPS/INS integrated veloci-
ties are transformed from e frame into v frame. The measurement equation is
expressed in equation 1.83 with two non-holonomic constraints being applied into
the X and Z axes of the vehicle frame. 0

S.vWE

0

 = Rv
b .(R

e
b)

T .ve (1.83)

where vWE is the Wheel encoder measurement, S is the Wheel encoder scale
factor, and Rv

b is the direction cosine matrix between the b and v frames calculated
by the following:

Rv
b = R3(γ).R1(α).R2(β) (1.84)

where α, β, γ are the tilt angles between the b and v frames with respect to the
X, Y and Z axes, respectively. The measurement model in the extended Kalman
filter is generally expressed by equation 1.85:

Z = H.δx+ wm (1.85)
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where H is the design matrix, wm is the measurement noise and Z is the mea-
surement residual.

By linearizing equation 1.82, the measurement residual is expressed by:

Z =

 0
S.vWE

0

−Rv
b .(R

e
b)

T .ve =

 0
S.vWE

0

− vR (1.86)

where vR is the integrated velocity expressed in the v frame.
The design matrix is expressed by a matrix in equation ??

H =

[
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e
b)

T Rv
b .(R

e
b)

T .V E O3×3 · · ·
O3×3 OAR×AR −vWE V V · · ·

]
(1.87)

where V E is the skew symmetric matrix of the integrated velocity in ECEF frame
ve , V V is the skew symmetric matrix of the integrated velocity expressed in
vehicle frame vv , 0 is a zero matrix with the subscripted dimensions and AR is
the number of float ambiguities. AR is equal to zero when all the ambiguities are
fixed.

1.7.2 GPS/INS/Encoders integration in the VSLAM pro-
cess

In this section we propose to use the integrated sensors technique GPS/INS/Encoders
on the VSLAM process for geo-localizing the obtained robot position and feature
map from the VSLAM. This will increase the robustness of the positioning during
the outage periods and in less featured environments.

In this case the the camera linear and angular velocities in the VSLAM pro-
cess are updated based on the data from the Wheel encoders and INS sensors,
respectively. Tow Extended Kalman Filter works in parallel mode. The estimated
position of the VSLAM EKF is used to update the GPS/INS/Encoders integration
EKF and the estimated velocities (linear and angular) from the GPS/INS/Encoders
integration EKF is used to update the camera motion in the VSLAM EKF.

The proposed framework has been analyzed with different simulated GPS out-
ages. Figure 1.24 illustrates an example where the GPS signal was lost during
30seconds. The black curve shows that the GPS localization error is 3.6meters.
The dashed blue curve shows that even if the integration of GPS, INS, and wheels
encoders data reduces the error on the robot position to less than 1m, it is not
reliable during the GPS outage where the error grows continuously. While the pro-
posed framework combining GPS/INS/Encoders localization, and visual SLAM
localization, remains stable even during the GPS outage (red curve).

Figure 1.25 shows an example of the robot localization in a real environment.
The blue curve in figure 1.25.a represents the obtained robot path using the
proposed algorithm, and the red curve is the GPS data. The initial GPS position
is the mean of the GPS measurements during few minutes of initialization. Figure
1.25.b represents the built local maps. Each local map is represented by a different
color. In this experiment the maximum number of features in the local maps is
fixed to 60 features.
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Figure 1.24: Robot Localization in case of GPS outage
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a) Robot path superimposed to a geo referenced map

b) The built local maps

Figure 1.25: Robot localization in a real environment

1.8 Conclusion

In this chapter we introduced a feature based method for simultaneous localization
and mapping in large environments for a mobile robot using a mono-camera as
sensory input. The proposed approach builds several size limited local maps and
combine them into a global map. The extended kalman filtering is used to build
the local maps where the 3D position of the features is initialized by the epipolar
geometry principle.
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For a robust matching, the algorithm uses a product of three parameters: the
Mahalanobis distance between measurements and their predictions, the Euclidean
distance between the descriptor vectors of the features, and the distance of the
feature to the induced epipolar line (epipolar constraint). This allows using the
advantage of looking for feature matching based on the prediction of their posi-
tion based on the system model and the advantage of the space-scale invariance
parameters.

The chapter introduces also the use of other sensors (GPS, INS and encoders)
data in the visual SLAM process. The proposed framework combines two Ex-
tended Kalman Filters (EKF), the first one, referred to as the integration filter,
is dedicated to the improvement of the GPS localization based on data from an
Inertial Navigation System (INS) and wheels’ encoders. The second EKF im-
plements the V-SLAM process. The linear and angular velocities in the dynamic
model of the V-SLAM EKF filter are given by the GPS/INS/Encoders integration
filter. In the other hand, the output of the V-SLAM EKF filter is used to update
the dynamics estimation in the integration filter and therefore the geo-referenced
localization. Tests in real environment demonstrated the increase of the accuracy
and the robustness of the positioning during GPS outage and allows a SLAM in
less featured environments.





Chapter 2

Motion Estimation and
Segmentation

2.1 Introduction

The apparent motion field existing in an image sequence is a rich source of informa-
tion about the composition of the viewed scene. In dynamic scene understanding,
the recovering and interpretation of this motion field is of importance for a range
of applications, such as moving object detection and tracking, image indexing,
and compression.

Moving object detection or motion segmentation can be considered as a clas-
sification problem. Given a set of data points (the intensity values in each frame
of the sequence) we want to find a clustering of these data points that best corre-
spond to some properties of the scene. A segmentation is considered good if the
computed clusters are homogeneous with respect to the feature vector, with the
additional constraint that no two clusters can be similar (otherwise their pixels
might be grouped together into the same class).

This work introduces a new method for simultaneously detecting the mov-
ing objects (foregrounds) and estimating their motion in image sequences taken
with a moving observer. The algorithm combines a Gaussian Mixture Model
(GMM ) background subtraction approach and a Maximum a Posteriori Proba-
bility (MAP)- MRF framework. This enables us to exploit the simplicity and
capability of the GMM approach to adapt to illumination changes and small mo-
tions in the scene, the advantages of spatio-temporal dependencies that moving
objects impose on pixels, and the interdependence of motion and segmentation
fields.

The algorithm starts with the estimation and the compensation of the camera
motion between the previous and the current frames using method based on dense
motion analysis. To deal with the problem of outliers in the estimation of the
camera motion, we propose to use an initialization phase. This means that before
starting moving the robot builds a model of the scene by detecting the static and

61
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the moving parts. Subsequently, during navigation, the initially detected moving
parts are not considered for the camera motion estimation.

In a second step, an apparent scene cut or strong camera pan is detected by
evaluating whether or not the squared difference between the current frame and
the compensated frame from the camera motion, exceeds a given threshold. The
evaluation is performed only within the background regions of the previous frame.
In case of a scene cut between two consecutive frames, the segmentation algorithm
is reset, i.e. all parameters are set to their initial values, as the camera motion in
this case cannot be correctly compensated.

In a third step, the new compensated frame is then used to update the GMM
model of the background, as in the case of a static camera. In this model, the pixel
intensity is modeled by a mixture of Gaussian distributions to model variations
in the background. The GMM parameters are learned from color observations in
consecutive images.

In a fourth step, the background model, the current frame, the compensated
frame from camera motion, and the previous segmentation (object mask) are used
in a maximum a posteriori probability (MAP) framework to detect moving objects
in the current frame and estimate their motion field.

In the last step, in order to avoid the common problem of fragmentation in
background subtraction methods and accelerate the learning of the background
model (new static regions), the background model is re-updated based on the
results of the MAP-MRF optimization.

The first part of this chapter gives a literature overview of the most important
methods for motion segmentation, and in the second part, the proposed approach
is described in more details.

2.2 Motion Segmentation Methods - An overview

In the literature we can find different classification of the methods dealing with
moving objects Segmentation. The classification could be based on the informa-
tion used for segmentation (motion-based methods, spatiotemporal methods, 2D
methods, 3D methods, change detection methods, optical flow based methods,
joint estimation/segmentation methods), or it could be based on the sequences
to be segmented (methods for sequences taken with a static camera, methods
for sequences taken with a moving camera, methods for sequences with a static
background, methods for sequences with a dynamic background).

In this chapter, we will describe the well known methods for motion segmen-
tation based on the used information. Moreover, we describe how these methods
can be used in the case of image sequences taken with a moving camera.

2.2.1 Motion segmentation based on change detection

Change detection is probably the oldest and the most popular technique in mo-
tion segmentation. It attempts to detect moving regions in a sequence frame by
background subtraction or by differencing between two or three successive frames.
The differentiation is made in a pixel-by-pixel fashion. The decision, whether a
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pixel s ∈ S (S being the set of pixels indices) at spatial position x = (x, y) belongs
to a changed or to an unchanged image part, is based on the evaluation of the
frame difference (d(f t, f ′)):

d(f ts, f
′
s) =∥ f ts − f ′s ∥ (2.1)

where f t is the current frame and f ′ is the previous frame (f ′ = f t−1) or a model
of the background.

In order to distinguish between relevant changes due to object’s motion or
brightness changes, as well as irrelevant temporal changes due to noise, the frame
difference is compared to a threshold Tch. In the simplest case this threshold
is tuned manually. A pixel s ∈ S is considered as part of a changed region
(foreground), if the frame difference exceeds the threshold.

Change detection through simple thresholding can lead to significant errors
and inaccuracy in general situations. For this reason, change detection is usually
inserted into a hierarchical or a relaxation algorithm [120, 128]. In this case, the
initial change detection is refined by a motion compensated prediction/update or
a threshold evaluation-update process (see Figure 2.1 for example [121]).

Figure 2.1: Change detector block diagram. (d(f t, f ′): frame difference, OM ,
OMi: object masks)

In the first step, the threshold operation is performed using an initial value for
the threshold. Then, a two dimensional median filter is used in order to smooth
the boundaries of the changed regions. The last step is to eliminate small isolated
regions of the change detection mask. After these three steps, the initial threshold
is re-evaluated, it is adapted to the standard deviation of the noise based on the
available unchanged regions. The process repeats with the new threshold until the
system is stable. The result is the objects Mask (OM) (change detection mask).

The hard problem for motion segmentation methods based on change detection
is the occlusion problem where two or more regions overlap in the images.

2.2.1.1 Temporal differencing

The approach of temporal differencing [120, 121, 127, 128, 200] makes use of pixel-
wise difference between two or three consecutive frames in an image sequence to
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extract moving regions. Temporal differencing methods are adaptive to dynamic
environments, but they detected only the boundaries of moving objects and not
the objects themselves unless they are highly textured [130].

To void some false detections, an improved version based on three-frame dif-
ference (equation 2.2) instead of two-frame difference (equation 2.1) has been
proposed in [200]:

d(f ts, f
t−1
s , f t+1

s ) = |f ts − f t−1
s |.|f ts − f t+1

s | (2.2)

Where f t−1, f t, f t+1 are three consecutive frames in an image sequence with f t

the reference frame (current frame). In this case, there is difference only if there
are differences among all the three frames, and foregrounds are detected also by
thresholding the frame difference.

2.2.1.2 Background subtraction

Background subtraction is one of the most successful method for obtaining sil-
houettes of moving objects by comparing the sequence frames to a background
model. The numerous approaches to this method differ in the type of the back-
ground model, the procedure used to update the background model, and in the
subtraction and decision procedure. In the following we present the well known
approaches for background subtraction and background modeling.

2.2.1.2.1 subtraction and decision
In this paragraph, we focus on the ways in which backgrounds are subtracted

from image frames containing moving objects to produce the segmentation, lt, at
time t. All of the methods involve measuring some distance d(f ts, Bgs) between an
incoming image sites (pixels), s, and the background model, and then thresholding
the differences:

lts =

{
1, if d(f ts, Bgs) ≥ Th(.);
0, otherwise.

(2.3)

where Th(.) is a threshold function that is typically constant.
The simplest distance metric is the Euclidean distance [91, 136]

d(f ts, Bgs) =∥ f ts − µt
s ∥ (2.4)

with µt
s is the mean value of the background, Bg, at site s.

A generalized version of the Euclidean distance takes variance into considera-
tion [99]

d(f ts, Bgs) =

∥∥∥∥f ts − µt
s

Σs

∥∥∥∥ (2.5)

Rather than finding some absolute distance away from a mean, this standard-
izes the distances across pixels with different variances from the background model
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(as described in the next section).
A more general version of the standardized Euclidean distance is the Mahalanobis
distance [115]

d(f ts, Bgs) =

√
(f ts − µt

s)
TΣ−1

s (f ts − µt
s) (2.6)

with Σs is n× n variance matrix at site s in the background model (n is the
dimension of the color space). This metric is more accurate, as it does not assume
that the data is clustered spherically about the mean.

2.2.1.2.2 Background modeling
Background modeling is the most important part of any background subtrac-

tion algorithm. The goal is to construct and maintain a representation of the
scene. The simplest background model is the temporally averaged image, a back-
ground approximation that is similar to the current static scene.

A good model for the background to be used for motion segmentation based
on background subtraction must handel some of the inconsistencies due to:

• Moving shadows:
They differ from the background image and are therefore identified as parts
of the moving objects.

• Stationary objects:
The background image can become corrupted by new stationary objects.
For example a parked car in a street should be classified as a part of the
background, otherwise it will continue to be detected as moving object.

• Non-stationary background:
The background can contain moving parts, for example, in an outside scene,
the wind can make tree branches move. This kind of background motion
causes the color pixel intensity values to vary significantly with time. For
example, one pixel can be part of a leaf at one frame and a part of the sky
on the seconde.

• Camouflage:
If some of the foreground pixels have same colors as the background, this
may produce holes in the computed foreground object.

• Illumination change:
For example, shadows from slowly moving clouds or other variable lighting
conditions cause inclusion of background elements in the computed fore-
ground. Also sudden changes in illumination alter the appearance of the
background.

In order to reduce the influence of these problems on motion segmentation,
several methods have been proposed to build an adaptive model for the back-
ground:



66 Chapter 2. Motion Estimation and Segmentation

Accumulative Difference
The algorithm add a memory to the motion detection process to forme accu-

mulative difference images [100]. This memory contains a counter for each pixel
accounting the number of its consecutive classification as background. If this
number exceeds a given threshold, the pixel is finally identified as background
pixel.

Kalman Filter for background modeling
The Kalam filter has been used in several work to model the background

[91, 136, 198, 199]. In this model each pixel is modeled by a Kalman filter to
predict its next value. The background is updated according to the equation:

Bgt+1
s = Bgts + (θ1(1− lts) + θ2l

t
s)d(f

t
s, Bg

t
s) (2.7)

where Bgt+1 is the next predicted background, lt is the current binary segmenta-
tion (foreground=1, background=0), and d(f ts, Bgs) is the difference between the
current frame, f t, and the currently predicted background, Bgt:

d(f ts, Bg
t
s) = ∥f ts −Bgts∥ (2.8)

The learning rates, θ1 and θ2, are chosen (or learned) based on how quickly
the background of the scene is changing. Typical values for θ1 and θ2 are 0.1 and
0.01, respectively [136].

By using equation (2.7), the background model is updated quickly when a pixel
is labeled ’background’ than when it is labeled ’foreground’. A value of θ2 = 0
implies that pixels labeled ’foreground’ have no effect on the background model.
While at first this may seem appropriate, it also implies that moving objects that
come to rest will never be incorporated into the background model. But with
θ2 ≫ 0 the ghost foreground objects will have an adverse effect on background
model.

A limitation of this model is that it considers a constant noise over all pix-
els which cannot model the local variations in pixel intensity caused by lighting
effects.

Statistical modeling of the background
The principle in statistical background modeling for motion segmentation is

deduced from a Bayesian decision for pixel classification as background (Bg) or
foreground (Fg).

Given the current frame value, f ts, at site s ∈ S, the Bayesian decision R:

Rs =
p(Bgs | f ts)
p(Fgs | f ts)

=
p(f ts | Bgs)p(Bgs)
p(f ts | Fgs)p(Fgs)

(2.9)

In generale case we don’t know anything about the foreground objects that can
be seen nor when and how often they will be present. Therefore, we set p(Fgs) =
p(Bgs) and assume uniform distribution for the foreground object appearance
p(f ts | Fgs) = cFg. Then we decide that the pixel belongs to the background if:

p(f ts | Bgs) > cth(= R.cFg) (2.10)
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where cth is a threshold value. We will refer to p(f ts | Bgs) as the background
model and is noted in the remainder of this document as p(f ts) .

The problem is then how to efficiently estimate the density function and to
adapt it to possible changes as the change in illumination or a new stationary
objects.

Several models have been proposed to solve the problem of estimating and
adapting the background density function. In the following, two of the well known
methods are presented: a parametric Gaussian Mixture model (GMM) and a non-
parametric k Nearest Neighbors (k-NN) model.

• Parametric Gaussian Mixture Model
The basis of this model has been proposed by Stauffer and Grimson [99]. In this
model [92, 94, 99, 100, 115, 147] each pixel is modelled as a mixture of Gaussians
(equation 2.11) and an algorithm is used to figure out which pixel belongs to
which normal distribution. The number of normal distributions (Gaussians), K,
is normally set as a parameter from the beginning, however some algorithms also
estimate this number [115, 201].

p(f ts) =
K∑

k=1

ωt
s,kN (f ts, µ

t
s,k,Σ

t
s,k) (2.11)

where ωt
s,k’s (with

K∑
k=1

ωt
s,k = 1) denote the mixing weights of Gaussian distribu-

tions and define how the pervious pixel evidence (past frames) correlate with the
associated distributions.
N (f ts, µ

t
s,k,Σ

t
s,k) is the normal distribution of the component k and is given by:

N (f ts, µ
t
s,k,Σ

t
s,k) =

1√
(2π)n|Σt

s,k|
e(−

1
2 (f

t
s−µt

s,k)
TΣt

s,k
−1

(ft
s−µt

s,k)) (2.12)

with µt
s,1, ..., µ

t
s,K are the means and Σt

s,1, ...,Σ
t
s,K are the covariances matrices

that describe the Gaussian components at pixel s. n is the dimension of the color
space (number of channels RGB, YUV,...). If the channels are considered inde-

pendent, then Σt
s,k = σt

s,k
2
I with I is the identity matrix.

Model update procedure
Each incoming pixel value f ts is checked against all the gaussians at that location.
Component k is declared as the matched component if the observation is within
Bσt

s,k from its mean µt
s,k.

For Stauffer [99], the comparison is done by comparing the gaussian probability

value. A match with component k̂ is found if:

p(f ts) > p(µt
s,k̂

+Bσt
s,k̂

) (2.13)

Instead of doing the comparison by an expensive evaluation of the density function
to verify the ownerships of the measurement f ts to the components, Gordon et Al.
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[94] use the Euclidian distance

dts =
(
f ts − µt

s,k̂

)2
(2.14)

to do the comparison. A match with the component k̂ is found if:

dts < Bσt
s,k̂

(2.15)

In [115], it is demonstrated that the parameter B can be approximated by B =√
−2ln(

√
2πσcthr).

When a matching is found using 2.13 or 2.15, the parameters of the matched
component k̂ are updated as follows:

ωt+1

s,k̂
= (1− α)ωt

s,k̂
+ α

µt+1

s,k̂
= (1− ρ)µt

s,k̂
+ ρf ts

(σt+1

s,k̂
)2 = (1− ρ)(σt

s,k̂
)2 + ρ

(
f ts − µt

s,k̂

)2 (2.16)

Where α is a user-defined learning rate with 0 ≤ α ≤ 1. This parameter incorpo-
rates exponential forgetting which enables to control how long past pixel values
influences the model of the background. The higher the value of α, the faster the
past background model is forgotten and vice versa. In [160], a time-varying gain
is used αt = 1/t with a lower bound αmin.
The learning rate for the parameters ρ is computed in [99] by αN(f ts, µ

t
s,k̂
, σt

s,k̂
)

and in [160] it is approximated as follows by ρ ≈ α/ωt
s,k̂

.

If no matched component can be found, the component with the least weight
is replaced by a new component with mean equal to the new data, f ts, a large
initial variance, σ0, and a small weight, ω0. In [161], ω0 is equal to α and the
component with the least weight is discarded only if the maximum number of
components is reached. The rest of the components maintain the same means
and variances, but lower their weights to achieve exponential decay:

ωt+1
s,k = (1− α)ωt

s,k (2.17)

Finally, all the weights are re-normalized to sum up to one.

Pixels Classification
To determine whether the pixel s is a background or a foreground pixel, given

its value f ts, we first order all components by their values of (ωt
s,k/σ

t
s,k). Higher-

rank components thus have low variances and high probabilities, which are typical
characteristics of background. If i1, i2, ..., iK are the component order after sort-
ing, the first M components that satisfy the following criterion are declared to be
the background components:

iM∑
k=i1

ωt
s,k ≥ Th (2.18)
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where Th is the weight threshold. It represents a measure of the minimum portion
of the data that should be accounted for by the background. This takes the ”best”
distributions until a certain portion, Th, of the recent data has been accounted
for. If a small value for Th is chosen, the background model is usually unimodal.
If this is the case, using only the most probable distribution will save processing.

If Th is higher, a multimodal distribution caused by a repetitive background
motion (e.g., leaves on a tree) could result in more than one color being included
in the background model. This results in a transparency effect which allows the
background to accept two or more separate colors [99].

s is declared as a background pixel if f ts is within B times the standard devi-
ation from the mean of any one of the background components.

From this model we see that if a new object comes into the scene and remains
static for long time, its weight will be constantly increasing and becomes larger
than the threshold and therefore it can be considered to be a part of the back-
ground. The object should be static for approximately log(Th)/log(1−α) frames
[161]. For example for Th = 0.9 (for a multimodel learning) and α = 0.001 (to
keep trace of the history) we get 105 frames.

Number of components
One of the improvement proposed for this method for background modeling

using a Mixture of Gaussians is the work of Zivkovic [201], in which not only
the parameters but also the number of components of the mixture is constantly
adapted for each pixel. In this model, at each time a component is generated or
deleted to update the number of components and choose compact models for the
data. The generation and delation rules are inspired by the works in [202] and
[203], respectively.

The generation rule simply adds a new component whenever there is a new
sample that is not well described by the current distribution, i.e. no matching is
found as defined above. When a new component k is generated for the pixel s, it
is initialized by:

wt
s,k = α, µt

s,k = f ts, σ
t
s,k = σ0

where σ0, in [201], is computed by:

σ0 = 0.2
med

0.68
√
2

with med is the median of differences ∥ f t − f t−1 ∥ for all pixels between two
successive frames and for a number of pairs of images. In practice, in [201] the
maximal number of components is fixe.

The deletion rule is added to discard the obsolete components. A component
k is deleted if its weight becomes negative ws,k < 0. This also ensures that the
weights stay positive.

• Non-parametric k Nearest Neighbors (k-NN) model

These methods [114, 159], initially founded by El Gammel & Al. [114], show
some trade off in using mixture model with adaptive scheme: if the background
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model adapts too slowly to changes in the scene, then we will construct a very
wide and inaccurate model that will have low detection sensitivity. On the other
hand, if the model adapts too quickly, this will lead to two problems: the model
may adapt to the targets themselves, as their speed cannot be neglected with
respect to the background variations, and it leads to inaccurate estimation of the
model parameters.

To overcome these problems, a model which keeps a sample for each pixel of the
scene and estimates the probability that a newly observed pixel value is from the
background has been proposed is [114]. The model estimates these probabilities
independently for each new frame as follows.

Let f1s , f
2
s , ..., f

N
s be a recent sample of intensity values for a pixel at site

s. Using this sample, the probability density function that this pixel will have
intensity value f ts at time t can be non-parametrically estimated using the kernel
estimator K as

p(f ts) =
1

N

N∑
i=1

K(f ts − f is) (2.19)

If a Normal function N (0,Σ) is used for the kernel estimator function K, where
Σ represents the kernel function bandwidth, then the density can be estimated as

p(f ts) =
1

N

N∑
i=1

1√
(2π)n | Σ |

e−
1
2 (f

t
s−fi

s)
T
Σ−1(ft

s−fi
s) (2.20)

with n is the dimension of the color space.
If we assume independence between the different color channels with a different

kernel bandwidths σ2
j for the jth color channel, then

Σ =

σ2
1 0 0
0 σ2

2 0
0 0 σ2

3


and the density estimation is reduced to

p(f ts) =
1

N

N∑
i=1

n∏
j=1

1√
2πσ2

j

e
− (ft

s,j−fi
s,j)

2

2σ2
j (2.21)

where f ts,j is the jth color channel for pixel s at time t.
Using this probability estimate, the pixel s is considered a foreground pixel if

p(f ts) < Th where the threshold Th is a global threshold over all the image that
can be adjusted to achieve a desired percentage of false positives.

Density estimation using a normal kernel function is a generalization of the
Gaussian mixture model, where each single sample of the N samples is considered
to be a Gaussian distribution N (0,Σ) by itself. This allows the estimation of the
density function more accurately and depending only on recent information from
the sequence. This also enables the model to quickly ”forget” about the past and
concentrate more on recent observation. At the same time, it avoids the inevitable



2.2. Motion Segmentation Methods - An overview 71

errors in parameter estimation, which typically require large amounts of data to
be both accurate and unbiased.

The N samples used to model the background needs to be updated contin-
uously to adapt to changes in the scene. The update is performed in a first-in
first-out manner. That is, the oldest sample/pair is discarded and a new sam-
ple/pair is added to the model. The new sample is chosen randomly from each
time interval of length N frames.

Given a new pixel sample, there are two alternative mechanisms to update the
background model:

1. Selective Update: add the new sample to the model only if it is classified as
a background sample.

2. Blind Update: just add the new sample to the model.

There are tradeoffs to these two approaches. The first enhance detection of the
targets, since target pixels are not added to the model. This involves an update
decision: we have to decide if each pixel value belongs to the background or
not. The simplest way to do this is to use the detection result as an update
decision. The problem with this approach is that any incorrect detection decision
will result in persistent incorrect detection later, which is a deadlock situations.
So, for example, if a tree branch might be displaced and stayed fixed in the new
location for a long time, it would be continually detected.

The second approach does not suffer from this deadlock situation since it does
not involves any update decisions; it allows intensity values that do not belong
to the background to be added to the model. This leads to bad detection of the
targets (more false negatives) as they erroneously become part of the model. This
effect is reduced by increasing the time window over which samples are taken, as
a smaller proportion of target pixels will be included in the sample. But as we
increase the time window more false positives will occur because the adaptation
to changes is slower and rare events are not as well represented in the sample.

2.2.2 Motion segmentation based on motion field

These methods [102, 107, 148] perform segmentation based on the estimated dis-
placement or optical flow of image pixels.

The optical flow describes how the image is changing with time. The estima-
tion of the optical flow is itself a very active research topic [103, 112]. Ideally, the
projection into the two dimensional image plane of the three dimensional velocity
field seen by the camera should be computed. However, this is not just difficult
to achieve in practice, it is usually impossible to achieve perfectly even in theory
[103].

Once the dense optical flow field is obtained, motion segmentation algorithms
try to extract regions with homogeneous motions. The principles of these ap-
proaches can be summarized as follows: Suppose we have M sets of parameters
vectors, where each set defines a correspondence or a flow vector at each pixel.
Flow vectors defined by the mapping parameters are called model-based or syn-
thesized flow vectors. Thus, we have M synthesized flow vectors at each pixel.
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The segmentation procedure then assigns the label of the synthesized vector which
is closest to the estimated flow vectors at each site. However, there is a problem
with this simple scheme: both the number of classes,M , and the mapping param-
eters for each class are not known a priori. Assuming a particular value forM , the
mapping parameters for each class could be computed in the least squares sense
provided that the estimated optical flow vectors associated with the perspective
classes are known. That is, we need to know the mapping parameters to find
the segmentation labels, and the segmentation labels are needed to find the map-
ping parameters. This suggests an iterative procedure for clustering where both
the segmentation labels and the class means are unknown as in the K-means ap-
proach proposed by Wand and Adelson [104], and the MAP technique of Murray
and Buxton [107] (see section 2.2.3).

Wand and Adelson [104] proposed a layered video representation in which the
image sequence is decomposed into layers by means of an optical-flow-based im-
age segmentation, and ordered in depth along with associated maps defining their
motions, opacities, and intensities. In the layered representation, the segmenta-
tion labels denote the layer in which a particular pixel resides. The segmentation
method is based on the affine motion model and clustering in a six-dimensional
parameter space. The image is initially divided into small blocks. Given an opti-
cal flow field, a set of affine parameters are estimated for each block. To determine
the reliability of the parameters estimates, the sum of squares distances between
the synthesized, ũ, and estimated, u, flow vectors is computed as:

ϵ =
∑
s∈B

∥ us − ũs ∥2

where B refers to a block of pixels. Obviously, if the flow within the block complies
with an affine model, the residual will be small. On the other hand, if the block
falls on the boundary between two distinc motions, the residual will be large.
The motion parameters for blocks with acceptably small residuals are selected as
candidate layer models. to determine the appropriate number M of layers, the
motion parameters of the candidate layers are clustered in the six-dimensional
parameter space. The initial set of affine model parameters are set equal to
the mean of the M clusters. Then the segmentation label of each pixel site is
selected as the index of the parameter set that yields the closest optical flow
vector at that site. After all sites are labeled, the affine parameters of each layer
are recalculated based on the new segmentation labels. This procedure is repeated
until the segmentation labels no longer change or a fixed number of iterations is
reached.

A limitation of this segmentation method is that it lacks constraints to enforce
spatial and temporal continuity of the segmentation label.

2.2.3 Motion segmentation based on Markov random fields

Markov random fields (MRF ) define an efficient and powerful framework for spec-
ifying nonlinear interactions between features of the same nature or of a different
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one. They help to combine and organize spatial and temporal information by in-
troducing strong generic knowledge about the features to be estimated. MRF
models have been successfully introduced in many fundamental issues of im-
age analysis and computer vision such as image restoration [182], edge detection
[183], image segmentation [184, 185], surface reconstruction [186], motion analysis
[162, 163, 166, 167, 187], or scene interpretation [188].

We will start with a short introduction to Markov Random Fileds and Gibbs
distribution then we describe some of the well known methods using MRF for
motion segmentation.

2.2.3.1 MRF labeling - Theoretical background

Contextual constraints are ultimately necessary in the interpretation of visual
information. A scene is understood through the spatial and visual context of the
objects in it; the objects are recognized in the context of object features at a
lower level representation; the object features are identified based on the context
primitives at an even lower level; and the primitives are extracted in the context of
image pixels at the lowest level of abstraction. The use of contextual constraints
is indispensable for a complex vision system.

Markov random field theory provides a convenient and consistent way of mod-
eling context dependent entities. This is achieved through characterizing mutual
influences among such entities using MRF probabilities. The theory tells us how
to model the a priori probability of contextual dependent patterns. A particu-
lar MRF model favors its own class of patterns by associating them with larger
probabilities than other pattern classes. In the following, we will briefly review
the concept of MRF defined on graphs [190].

Let G={S,A} be a graph, where S={s1, s2, ..., sm} is the set of nodes and
A is the set of arcs connecting them. We define a neighbourhood system on G,
denoted by:

N = {N(s1),N(s2), ...,N(sm)}
where N(si), i = 1, 2, ...,m is the set of all nodes in S that are neighbors of Si,
such that:
i) si /∈ N(si), and
ii) if sj ∈ N(si) then si ∈ N(sj)
Let L={L1, L2, ..., Lm} be a family of random variables defined on S, in which
each random variable Li takes a value li in a given set Λ (the random variables
Li’s can be numerical as well as symbolic, e.g. interpretation labels). The family
L is called a random field. L is a MRF on G, with respect to the neighbourhood
system N if and only if

1. p(L = l) > 0, for all realizations l of L;

2. p(li|lj , ∀sj ̸= si) = p(li|lj , sj ∈ N(si))

where p(L = l) = p(L1 = l1, L2 = l2, ..., Lm = lm) (abbreviated by p(l))
and p(li|lj) are the joint and conditional probability functions, respectively. In-
tuitively, the MRF is a random field with the property that the statistics at a
particular node depend mainly on that of its neighbors.
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An important feature of the MRF model defined above is that its joint p.d.f
has a general functional form, known as Gibbs distribution, which is defined based
on the concept of cliques. A clique c, associated with the graph G, is a subset of
S such that it contains either a single node, or several nodes that are all neighbors
of each other. If we denote the collection of all the cliques of G, with respect to
the neighbourhood system N, as C(G,N), the general form of a realization of
p(l) can be expressed by the following Gibbs distribution:

p(l) =
1

Z
e−U(l) (2.22)

where U(l) =
∑

c∈C Vc(l) is called the Gibbs energy function and Vc(l) the clique
potential functions defined on the corresponding cliques c ∈ C(G,N). Finally,
Z =

∑
l∈L e

−U(l) is a normalizing constant called the partition function.

In case of a labeling problem, when we have both prior information together
with knowledge about the distribution of our data, the most optimal labeling
of the graph G can be obtained based on the maximum a posteriori probability
(MAP)-MRF framework. According to the Bayes rule, the posterior probability
of our system can be computed by using the following formulation:

p(l|g) = p(g|l)p(l)
p(g)

(2.23)

where p(l) is the prior probability of labelings l, p(g|l) is the conditional proba-
bility distribution function (p.d.f.) of the observations g, also called the likelihood
function of l for g fixed, and p(g) is the density of g which is a constant when g
is given.

By associating an energy function to p(g|l) and p(l) (denoted by U(g|l) and
U(l) respectively), we can express the posterior probability as:

p(l|g) ∝ e−U(l|g) (2.24)

where
U(l|g) = U(g|l) + U(l) (2.25)

The most optimal labeling, given the observation field g, can be found by
minimizing the energy function U(l|g).

Due to its unique property of combining both global and local information,
the MRF model-based approach, applied to image processing, provides potential
advantages in knowledge representation, learning and optimization. This is the
reason why we use this approach.

Several methods have used Markov Random Filed for motion segmentation.
These methods can be grouped into two categories: pixel based methods and re-
gion based methods. The work of Wang et al. [176] will be discussed separately
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as it includes in the same framework pixel based and region based processing.

2.2.3.2 Pixel based MRF methods for motion segmentation

In the algorithms described in [162, 163, 164, 165, 166], the Markov Random
Field has been introduced to model the spatial and/or the temporal dependency
between pixels during the motion segmentation process. The MRF modeling in
these works is summarized in following paragraphs.

2.2.3.2.1 Murray’s method
In [107] Murray and Buxton search for the maximum of the a posteriori prob-

ability of the motion segmentation label fields, L, given the optical flow data. It
is a measure of how well the current segmentation lt explains the observed optical
flow data ut and how well it conforms to the prior expectations.

Using the Bayes theorem, the a posteriori probability is expressed as:

p(Lt = lt|U = ut) = p(lt|ut) =
p(ut|lt)p(lt)

p(ut)
(2.26)

where Lt and U t are the segmentation labels and the motion fields and ut =
{uts, s ∈ S} and lt = {lts, s ∈ S} are their realizations, respectively, with S being
the set of sites (pixels) indices. p(ut|lt) is the conditional pdf of the optical flow,
ut, given the segmentation, lt, and p(lt) is the a priori pdf of the segmentation.
p(ut) is constant with respect to the segmentation labels, and hence can be ignored
during MAP optimization.

The conditional probability p(ut|lt) is a measure of how well the synthesized
optical flow, ũ, modeled by a quadratic parameter model that depends on the
segmentation label, fits the estimated optical flow, u. Assuming that the mis-
match between the observed flow and the synthesized flow is modeled by a white
Gaussian noise with zero mean and variance σ2, the conditional pdf p(ut|lt) is
expressed as:

p(ut|lt) = 1

(2πσ2)m/2
exp

(
−

m∑
i=1

(ϵtsi)
2/2σ2

)
(2.27)

where m is the number of flow vectors available at site si, and

(ϵtsi)
2 =∥ ut

si − ũt
si ∥

2

The prior pdf p(lt) is modeled by a Gibbs distribution which introduces local
constraints on the segmentation:

p(lt) =
1

Q

∑
ζ∈Ω

exp (−U(l)) δ(lt − ζ) (2.28)

where Ω denotes the discrete sample space of l, Q is the partition function
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Q =
∑
ζ∈Ω

exp (−U(l))

and U(l) is a potential function expressed as a sum of local cliques Vc(l
t
s, l

t
r):

U(l) =
∑

Vc(l
t
s, l

t
r)

Vc(l
t
s, l

t
r) =

 −β, lts = ltr;

+β, otherwise;

with β is positive number.
Because the model parameters corresponding to each label are not known a

priori, the MAP optimization alternates between estimation of the model pa-
rameters and assignment of the segmentation labels and it is performed by the
simulated annealing algorithm [205].

Note that this method is limited by the accuracy of the available optical flow
estimates.

2.2.3.2.2 Migdal’s method
Based on the Gaussian Mixture Model of Stauffer and Grimson [99], Migdal

et al. [162] used three Markov random fields to improve the pixels classification
as background (Bg) and foreground (Fg) by modeling the spatial and temporal
dependencies between adjacent pixels. The first MRFM1 is used to encode spatial
relationship and the second MRFM2 is used for temporal segmentation continuity
by looking at past segmentation. The third MRF M3 exploits a full temporal
constraint using a batch computation model.

The segmentation at each time t, lt, is obtained by estimating the maximum
a posteriori (MAP):

p(lt | f t) = p(f t | lt)p(lt)
p(f t)

(2.29)

As the optimization is done over segmentation variate:

p(lt | f t) ∝ p(f t | lt).p(lt)

The prior, p(lt), and the likelihood function, p(gt | lt), are modeled by Gibbs
distributions and therefor the maximization of the MAP is equivalent to the min-
imization of the sum of their corresponding energy functions .

U = U(f t | lt) + U(lt)

Likelihood term

U(f t | lt) =
∑
s

V (f ts | lts)
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V (f ts | lts) =

 d(f ts), lts = 0;

ln 224, lts = 1;

with d(f ts) =
∥gt

s−µ∥
2σ2 is the Mahalanobis distance between the current observation

f ts and the matched Gaussian model and µ and σ are, respectively, the mean and
the variance of this model.

As no model is used for the foreground, the probability of seeing a pixel s
with color fs, given that the segmentation of that pixel has been determined to
be foreground is assumed to be a uniform distribution in the RGB space and is
therefore equal to 1

224 = e− ln 224 .

Prior term

The energy function of the prior is composed of two terms, a spatial, US , and
a temporal terms, UT .

- Spatial term

US(l
t) =

∑
s,r

VS(l
t
s, l

t
r)

VS(l
t
s, l

t
r) =


ψ1, lts = ltr = 1;

ψ2, lts = ltr = 0;

ψ3, lts ̸= ltr;

where VS is a two-clique potential function and ψ1, ψ2 and ψ3 are constants with
(ψ1 < ψ2 < ψ3).

- Temporal term

UT (l
t) =

∑
s

VT (l
t
s, l

t−1
s )

VT (l
t
s, l

t−1
s ) =


θ1, lts = lt−1

s = Bg;

θ2, lts = lt−1
s = Fg;

θ3, lts ̸= lt−1
s ;

where VT is a two-clique potential function and θ1, θ2 and θ3 are constants
with (θ1 < θ2 < θ3), i.e. more emphasis is done for foreground classification.

2.2.3.2.3 Zhou’s method
In this work [163] also a MRF is used to model the spatial-temporal connectiv-

ity between pixels augmented with connectivity of pixels in different resolutions
for classification foreground/background. The GMM is used also in this case to
maintain the background model.
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Image pyramids are built to model the phenomena of different temporal-spatial
resolution scales. Each node in the graph represents the state of a pixel at cer-
tain resolution scale. The spatial-temporal dependencies are modeled using the
links between the nodes. The classification foreground/background exploits the
inference within and between different spatial-temporal resolution scales using a
Markov random field representation.

Spatial term
The potential function representing the connection between two adjacent pix-

els in the same resolution scale is defined mathematically as follows:

VS(l
t
s, l

t
r) =

 c1, lts ̸= ltr;

0, lts = ltr;

s and r are adjacent pixels in the same resolution scale.
VS has a positive value when there exists discontinuity in foreground label

image and is 0 otherwise. So, this connection is used to penalize the discontinuity
in foreground blob extraction.

Scaling-Spatial term
The connectivity between pixels at multiple resolution scales is represented by

the following potential function:

VSS(l
t
s, l

t
r) =

 c2, lts ̸= ltr;

0, lts = ltr;

lts, l
t
r are corresponding pixels segmentation at adjacent resolution scales in the

pyramid.
VSS has a positive value when the corresponding labeling at two adjacent res-

olution levels do not agree.

Temporal term
The temporal cotinuity of the segmentation process is modeled with the fol-

lowing function

VT (l
t
s, l

t−1
s ) =

 c2, lts ̸= lt−1
s ;

0, lts = lt−1
s ;

The authors introduced another musure to represent the probability of new object
appearing and disappearing.
The optimization is based on Gibbs sampling with the simulated annealing algo-
rithm.

2.2.3.3 Region Based MRF Methods for motion segmentation

These methods [167, 168, 169, 170, 171] start with segmenting the current frame
and estimating the motion vector on each region and then apply MRF process to
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merge and classify regions as moving or not moving. In the following paragraphs
we will describe some of the well known methods using MRF at region level for
motion segmentation. For these methods, a site corresponds to region.

2.2.3.3.1 Cucchiara and Gelgon Methods
In the methods proposed by Cucchiara et al. [170] and Gelgon and Bouthemy

[171], each frame of the image sequence is segmented into regions using a region
growing algorithm based on color [174] and a Region Adjacency Graph (RAG)
is created. The motion vector in the regions is estimated through partitioned
region matching. A measure of motion reliability is also computed and a MRF
framework is used to merge regions according to the motion parameters (velocity
and reliability). The largest region is assumed to be the background and its
motion is considered as the motion of the camera, while other regions are classified
as moving objects. [170] and [171] differ in the method used for region motion
estimation and the algorithm used MRF optimization.

The joint probability distribution of the motion segmentation field and the
observation field is modeled by a Gibbs distribution with the following energy
functions:

U(lt, gt) = U1(l
t, gt) + U2(l

t) + U3(l
t) (2.30)

The observation field, gt, is composed of the region motion vector and the
reliability of the motion estimation:

gts = {ut
s, φ

t
s}, s ∈ S

with S is the set of region indices.

Motion term
This term penalizes the segmentation if the same label has been affected to

neighbors regions with different motion vectors.

U1(l
t, gt) =

∑
s,r∈S

V1(l
t
s, g

t
s, l

t
r, g

t
r)

V1(l
t
s, g

t
s, l

t
r, g

t
r) =

 c1 ∥ ut
s − ut

r ∥
√
ρts.ρ

t
r, lts = ltr

0, lts ̸= ltr

Geometrical regularization term
This term enhances the fusion of two adjacent regions with a long shared

border and a small distance between centroids.

U2(l
t) =

∑
s,r∈S

V2(l
t
s, l

t
r)

V2(l
t
s, l

t
r) =


−c2 ζs,r

ζs,r+
√

(xs−xr)2
, lts = ltr

0, lts ̸= ltr
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with ζs,r is the length of the shared border between sites s and r, and xs and xr

are the coordinates of their centers.

labeling optimization term

U3(l) = c3.
∑
s,r∈S

V3(ls, lr)

V3(ls, lr) =

 0, lts = ltr;

1, lts ̸= ltr.

c1, c2, c2 are constants defined empirically.

Optimization
In the work of Cucchiara the optimization of the energy function is performed with
a multi-scale iterative algorithm. Whereas, in the work of Gelgon and Bouthemy
the optimization is done using the Highest Confidence First (HCF) algorithm
[175].

2.2.3.3.2 Patras’ Method
In [167], Patras applies the watershed segmentation algorithm, proposed by

[172], to obtain an oversegmentation on the intensity image of the current frame.
After building the Region Adjacency Graph RAG from the intensity segments,
with the assumption that each watershed segment has a correspondence in at least
two consecutive frames (a correspondence either in the next or in the previous
frame), the author apply the Markov Random Field to detect the independently
moving objects. The number of these regions is considered as known and pro-
vided as user-specified parameter. The motion field induced by the regions is
approximated by 6-parameter affine models and estimated jointly with the MRF
classification procedure.

The energy function for the Gibbsian model of the joint probability function
distribution of the motion segmentation field and the observation is given by:

U(lt, gt) = U1(l
t, gt) + U2(l

t, gt) + U3(l
t) (2.31)

In this case the observation is composed of the previous estimated segmen-
tation, lt−1, the 6-parameter affine motion model at each site (region), θs, the
previous, f t−1, the current, f t, and the next, f t+1, frames in the sequence:

gts = {lt−1
s , θts, f

t, f t−1, f t+1} s ∈ S

with S is the set of region indices.

Motion term
This term therm express how well the current motion model and label field

conform with the image intensities.
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U1(l
t, gt) =

∑
s∈S

V1(l
t
s, g

t
s)

V1(l
t
s, g

t
s) = min

(∑
i∈Rs

(
di

(
f t, f̃ t−1

))2
,
∑
i∈Rs

(
di

(
f t, f̃ t+1

))2)

di(f
t, f̃ t+1) and di(f

t, f̃ t−1) are, respectively, the forward and backward motion
compensated intensity differences at pixels i of region s:

di(f
t, f̃ t+1) = f t(xs)− f t+1(xs + us(θs))

di(f
t, f̃ t−1) = f t(xs)− f t−1(xs − us(θs))

where xs denotes the spatial coordinates of a pixel at site (region) s and us(θs)
is the optical flow at site s based on the affine parameters θs.

Temporal term

U2(l
t, gt) =

∑
s∈S

V2(l
t
s, g

t
s)

V2(l
t
s, g

t
s) = c1Qs

where Qs is the number of pixels of region Rs whose motion-based projections in
the previous frame have a label different than lts. The smaller the Qs, the higher
the probability that Rs has the label lts.
c1 is a constant that controls the temporal consistency of the label field.

Spatial term

U3(l
t) =

∑
s,r∈S

V3(l
t
s, l

t
r)

V3(l
t
s, l

t
r) =

 −c2.ζs,r, lts = ltr;

c2.ζs,r, lts = ltr.

with ζs,r is the length of the shared border between neighbor sites s and r, and
c2 is a constant defined empirically.

Optimization with respect to the spatial energy term U3(l) tends to minimize
the total border length between neighboring objects.

The optimization process of the total energy function iterates between the
following phases:
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Labeling phase: lt,k+1 = argmin
l
U(lt, θt,k, lt−1, f t, f t−1, f t+1)

Motion estimation phase: θt,k+1 = argmin
θ
U(lt,k, θt, lt−1, f t, f t−1, f t+1)

where k denotes the iteration index.

In the labeling phase, the minimization of the energy function is done with
respect to lt, keeping the motion parameters θt ”frozen”, using the Iterative Con-
ditional Modes (ICM). In the motion estimation phase, the minimization of the
energy function is done with respect to the motion parameters θt, keeping the
label field lt ”frozen”.

2.2.3.3.3 Tsaig Method
As in the previous method, the algorithm proposed by Tsaig and Averbuch

[168, 169] start with color-based watershed segmentation of the current frame
and spatio-temporal merging (post-processing step) of the small regions. The
motion field for the obtained regions is estimated using a robust gradient-based
parametric technique [173]. Then it uses MRF process for graph labeling over the
Region Adjacency Graph. In this case only two regions are considered, foreground
and background.

The energy function for the Gibbsian model of the joint probability function
distribution of the motion segmentation field and the observation is given by:

U(lt, gt) = U1(l
t, gt) + U2(l

t, gt) + U3(l
t, gt) (2.32)

The measurement correspond to the Motion Vector of the region, us, the sum
of the mean values of the color components within the region, As, and a memory
of the number of times the region was classified as foreground in the past:

gts = {ut
s, A

t
s,M

t
s}, s ∈ S

with S is the set of region indices.

Motion term

this term states that moving regions should be classified as foreground, whereas
static regions should be classified as background. The magnitude of the motion
vector is not taken into consideration.

U1(l
t, gt) =

∑
s∈S

V1(l
t
s, g

t
s)

V1(l
t
s, g

t
s) =

 −c1Qt
s, (lts = Fg,ut

s ̸= 0)or(lts = Bg,ut
s = 0);

c1Q
t
s, (lts = Fg,ut

s = 0)or(lts = Bg,ut
s ̸= 0).

With Qt
s is the number of pixels in region s at time t.
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Temporal continuity term

This term is used to maintain the coherency of the segmentation through time.

U2(l
t, gt) =

∑
s∈S

V2(l
t
s, g

t
s)

V2(l
t
s, g

t
s) =

 −c2M t
sQ

t
s, lts = Fg;

c2M
t
sQ

t
s, lts = Bg.

Spatial continuity term

This term expresses the relationships between pairs of regions. A similarity
measure is used in order to incorporate the spatial properties of the regions into
the optimization process. Specifically, two regions with similar spatial properties
are likely to belong to the same moving object, thus more weight is given to an
equal labeling for two regions.

U3(l
t, gt) =

∑
s,r∈S

V3(l
t
s, g

t
s, l

t
r, g

t
r)

V3(l
t
s, g

t
s, l

t
r, g

t
r) =


−γ1~(At

s −At
r)ζs,r, lts = ltr = Fg;

γ2~(At
s −At

r)ζs,r, lts = ltr = Bg;

γ3~(At
s −At

r)ζs,r, lts ̸= ltr;

With ~(d) is the similarity function shown in figure 2.2
where the constants Tl, Th, dl and dh determine the effect of neighboring regions

Figure 2.2: The similarity function ~(d)
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on one another, and ζs,r is the length of the shared border between neighbor sites
s and r.

The constants c1, c2, γ1, γ2, and γ3 determine the relative contributions of the
three terms to the energy functions and they are defined from experience.

Optimization
The minimization of the energy function is performed using HCF (iterative de-
terministic relaxation scheme)[87].

2.2.3.4 Joint intensity and spatio-temporal segmentation

Although the above algorithms can identify successfully multiple moving objects
in the scene, the boundaries are inaccurate. The boundary information neglected
by the initial intensity segmentation field could no longer be recovered by the
motion vector field, and the temporal information could not act on the spatial
information.

To deal with this problem, wang et al. [176] proposed an algorithm where the
intensity segmentation, motion estimation and the spatio-temporal segmentation
are performed jointly in the same framework.

The method tends to maximize a posterior MAP estimation of the displace-
ment vector field U , the intensity segmentation field Z, and the spatio-temporal
segmentation field L. The realization at time t of U , Z, and L are denoted by
ut, zt, and lt, respectively.

(ût, ẑt, l̂t) = arg max
(ut,zt,lt)

p(ut, zt, lt | f t, f t−1, f t+1) (2.33)

where p(ut, zt, lt | f t, f t−1, f t+1) is the posterior probability density function
(pdf) given the three video frames.

p(ut, zt, lt | f t, f t−1, f t+1) =
p(ut, zt, lt, f t, f t−1, f t+1)

p(f t, f t−1, f t+1)
(2.34)

The nominator is constant with respect to the unknowns and

p(ut, zt, lt, f t, f t−1, f t+1) = p(f t−1, f t+1 | f t,ut)p(f t | zt)p(zt)p(ut | lt)p(lt | zt)
(2.35)

Motion term
The conditional probability density function p(f t−1, f t+1 | f t, ut) qualifies how

well the motion estimation fits the given frames. This likelihood is modeled by a
Gibbs distribution with the energy function:

U1(l | ut) =
∑
s∈S

(
(d(f ts, f̃

t−1
s ))2 − 2βd(f ts, f̃

t−1
s )d(f ts, f̃

t+1
s ) + (d(f ts, f̃

t+1
s ))2

)
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with S is the set of pixels indices.
d(f ts, f̃

t−1
s ) = f t(xs)−f t−1(xs−ut

s) and d(f
t
s, f̃

t+1
s ) = f t(xs)−f t+1(xs+ut

s) are
the backward and forward displaced frame difference at site s, respectively.
β is a correlation coefficient of d(f ts, f̃

t−1
s ) and d(f ts, f̃

t+1
s ), and xs is the spatial

coordinates of the site s.

Spatial term
The term p(f t | zt) shows how well the intensity segmentation fits the scene.

Assuming Gaussian distribution for each segmented region in the frame, the con-
ditional probability density is expressed as Gibbs distribution with the energy
function:

U2(f
t | zt) = c1

∑
s∈S

(f ts − µzt
s
)2

where zts = j designates the assignment of site s to region j, µj is the mean of
the intensity within region j.

The intensity segmentation is also constrained with the a priori probability
p(zt) which is modeled by a Markov Random Filed with the Gibbs energy function:

U3(z
t) = c2

∑
s∈S

∑
r∈Ns

1

∥ xs − xr ∥2
(1− δ(zts − ztr))

where δ(.) is the Kronecker delta function, ∥ . ∥ denotes the Euclidian distance,
xs is the spatial position of the site s, and Ns is the set on neighbors of s.
Thus two neighboring pixels are more likely to belong to the same class than to
different classes. The constraint becomes strong with the decrease of the distance
between the neighboring sites.

Temporal term
The term p(ut | lt) is the conditional pdf of the displacement field given the

video segmentation field. As Gibbs distribution, the energy function for p(ut | lt)
is:

U4(u
t | lt) = c3

∑
s∈S

∑
r∈Ns

1

∥ xs − xr ∥2
δ(lts − ltr) ∥ ut

s − ut
r ∥2

The smoothness constraint of the motion vectors is imposed only when the
two pixels have the same spatio-temporal segmentation label.

Spatio-Temporal term
The last term p(lt | zt) represents the probability density of the spatio-

temporal segmentation field when the intensity segmentation field is given. The
energy function for a representation by a Gibbs distribution of p(lt | zt) is the
following:

U5(l
t | zt) = c4

∑
s∈S

∑
r∈Ns

1

∥ xs − xr ∥2
(
1− δ(lts − ltr)

) (
1 + βg(Dt

s, D
t
r)
)
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g(Dt
s, D

t
r) =

 1, Dt
s < Dt

r;

0, otherwise

where Ns is the set on neighbors of s and Dt
s is the distance between the pixel

(site) s and the nearest boundary pixel in zt.

The first term in the potential function encourages the spatial connectivity,
while the second term gives a penalty on the pixel closer to the boundary of the
intensity segmentation field if the two pixels are not of the same video segmenta-
tion class. The parameter β controls the strength of the constraint imposed by
the intensity segmentation field.

The contributions of the motion, spatial, temporal and saptio-temporal terms
are controlled with parameters c1, c2, c3, and c4 defined empirically.

Optimization
the minimization is done using the iterated conditional modes (ICM) algorithm

in two steps. Firstly, ut and zt are updated given the estimate of the spatio-
temporal segmentation field lt as ut and zt are conditionally independent and
secondly, the spatio-temporal segmentation lt is updated assuming the motion
field ut and the intensity segmentation field zt are given.

2.2.4 Motion segmentation with a moving observer

Motion segmentation in the case of a moving camera is much more complicate
because we need to separate the motion due to the camera (egomotion) from
the motion due to the objects. As the observer moves, the images it collects
representing the world change, even if everything in the field of view is static,
i.e., nothing else is moving. From this sequence of images the observer can infer
information relating to its own motion, as well as the depth structure of the
environment in witch it is moving and this can be used after by the observer for
path planning and obstacle avoidance. The non static objects in the environment
of the observer are referred to as ’moving independently’.

Motion segmentation methods in the case of a moving camera can be classified
in two groups: layered motion approaches and hierarchical approaches.

2.2.4.1 Layered Motion Methods

These methods for motion segmentation [104, 109, 113] are much suitable for
video coding. They try to group scattered regions with same motion into a single
model, called layer. More gain can be obtained by representing a motion layer
with a single set of motion parameters than by representing each region with an
individual set of parameters. By grouping the motions in the scene into differ-
ent motion layers, more efficient coding can be achieved through a hierarchical
manner. Besides, segmentation for coding purpose needs a more accurate motion
boundary to avoid the prediction artifact. For this purpose, the algorithms focus
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on finding global motion homogeneity instead of local motion homogeneity. The
idea is to estimate the dominant motion over the entire image, warp the images
according to the dominant motion, extract the regions that do not agree with
the dominant motion, and for each region estimate the dominant motion again
over that region and extract the moving objects in the region by warping and
differencing.

2.2.4.2 Hierarchical methods

In these approaches the dominant motion over the entire image is recovered.
Assuming that most of the image is occupied by a static scene, the motion of
most pixels in the image is due to the egomotion, this is the dominant motion.
The idea is to align the scene by compensating out the global motion, then apply
motion segmentation methods (described in sections 2.2.1 and 2.2.3) as in the
case of a static camera [96, 120, 126, 136, 142].

In [96], the pixels in each image are shifted to compensate for camera ro-
tation. The optical flow is computed with a gradient-based technique and the
optical flow vectors with small magnitudes are discarded. Then the vectors with
similar locations, magnitudes, and directions are clustered together using a spatial
consistency test.

In [142], The apparent motion induced by the camera motion is represented
by a 2D parametric motion model, and compensated for using the values of the
motion model parameters estimated by a multi-resolution robust statistical tech-
nique. Then, regions whose motion cannot be described by this global model
estimated over the entire image, are extracted. The detection of these non con-
forming regions is achieved through a statistical regularization approach based on
multiscale Markov random field (MRF) models.

In the following, we will present the well known methods for camera motion
estimation and compensation.

2.2.4.3 Methods for camera motion estimation and compensation

Motion compensation in an image sequence is the warping of the global image
changes due to the camera motion. Before a sequence of images can be motion
compensated efficiently, the motion of the camera have to be estimated.

The camera motion is generally represented by a parametric motion model
where the spacial coordinates, x′

s = (x′s, y
′
s)

T , of a pixel (site) s (s ∈ S) in the
current frame, f t, are function of their corresponding location, xs = (xs, ys)

T , in
the pervious frame, f t−1. Table 2.1 gives a summary of the mostly used motion
models.

Parameters a = (a1, ..., an), n ∈ {2, 3, 6, 8, 17} in the motion models are ob-
tained by minimizing a disparity measure between a region R in the current frame
and the mapped region in the previous frame.

min
θ

∑
s∈R

∥ f t(xs)− f t(Θ(xs)) ∥ (2.36)
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where ∥ . ∥ is the distance measure and Θ(xs) is the transformation applied to
the coordinates of site s and is given by one of the models in table 2.1.

The widely used methods to solve this minimization problem are robust regres-
sion methods like random sample consensus (RANSAC) [51], the least median of
squares (LMedS) regression [189] and the least trimmed squares (LTS) regression
[101].

RANSAC selects P number of samples out ofM measurements where P is the
number of parameters of the model to estimate. Given a priori knowledge of the
maximum measurement error, a number of points are selected from a the region
R in the previous frame. If at least a minimum number of points are within the
expected measurement error (inlier points), the estimate is accepted. Finally, a
least squares fit to the selected points is computed and this is the estimate pro-
duced by RANSAC. RANSAC is guaranteed to succeed if the minimum number
of accepted points (inlier points) is greater than (M + P + 1)/2. LMS proceeds
identically except it does not use an expected error to classify selected points.
Instead all possible P sets are evaluated and the estimate with least median of
squared residual is selected. All points with a squared residual smaller than or
equal to the least median of squared residual are considered good points. The final
least squares step and the number of inlier points necessary for LMS to succeed
are identical to RANSAC.

Finally, LTS is an improvement over LMS. In LMS the evaluation of a trial set
P depends on the errors in the data points P , i.e., the median of squared residuals
of a data set may have been considerably lower if the initial estimate would have
been improved by a least squares step. Therefore, LTS improves each subset of
”good” points by improving the fit with repeated least squares [101]. The least
squares iteration has converged when the set of good points has become stable.
LTS finds the good points set with the minimum least squares residual. The LTS
process is robust even if (M − P − 1)/2 measurements is not respected.

Methods for camera motion estimation can be grouped in two categories:
methods based on tracking particular features and methods based on dense mo-
tion analysis.

2.2.4.3.1 Camera motion estimation based on features tracking
As said above, if two successive frames in a video sequence taken from a moving

camera can be related, it will be possible to extract information regarding the
depth of objects in the environment and the speed of the camera. But comparing
every pixel in the two images is computationally prohibitive. Intuitively, one can
imagine relating two images by matching only locations in the image that are in
some way interesting. Such locations are referred to as interest points or features
and are located using an features detector. Finding a relationship between images
is then performed using only these points. This reduces the required computation
time.

Many different feature detectors have been proposed with a wide range of
definitions for what points in an image are interesting. Some detectors find points
of high local symmetry, others find areas of highly varying texture, while others
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locate corner points. Some of the well known methods for feature points detection
are describe in appendix B.

The camera motion is estimated by tracking the detected feature points in
multiple views. The mostly used algorithm for feature tracking is the one using
Lukas-Kanade optical flow based algorithm [196]. The tracker takes as input the
coordinates of the feature points to track in the first image and at each iteration,
it takes a new image and returns the location of these feature points in that image
using information from the previous image.

The Lukas-Kanade algorithm is an optical flow based technique which relies
on the assumption that brightness of every point of a moving or a static objects
does not change in time.

Let’s consider a point at spatial position x = (x, y) undergoes a small dis-
placement in time dt, such that its new position is given by x′ = (x+ dx, y+ dy).
Using Taylor series for brightness gives the following:

f(x+ dx, y + dy, t+ dt) = f(x, y, t) +
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂t
dt+ ... (2.37)

where ”...” are higher order terms. ∂f
∂x = fx,

∂f
∂y = fy and ∂f

∂t = ft are the deriva-

tives of the image at (x, y, t) respectively.
f(x, y, t) is the frame brightness at spatial position x = (x, y) and time t.
According to the brightness assumption, f(x+ dx, y + dy, t+ dt) = f(x, y, t):

∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂t
dt+ ... = 0 (2.38)

Neglecting the higher order terms and dividing the equation by dt we obtain
the optical flow equation:

fx
dx

dt
+ fy

dy

dt
+ ft = 0 (2.39)

where dx/dt and dy/dt are the optical flow components in the x and y directions
respectively:

u = (ux, uy) = (
dx

dt
,
dy

dt
)

The equation (2.39) alone does not suffice for the computation of the flow
components and additional constraints are required. Several approaches have
been proposed to obtain additional constraints for the solution of the optical flow
constraint equation. The solution as given by Lucas and Kanade is a non-iterative
method which assumes a locally constant flow.

Assuming that the flow u = (ux, uy) is constant in a small window of size
m × m with m > 1, which is centered at pixel x, y and numbering the pixels
within as 1...n, n = m3, a set of equations can be found:
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fx1ux + fy1uy = −ft1
fx2ux + fy2uy = −ft2 (2.40)

...

fxnux + fynuy = −ftn

which can be written as 
fx1 fy1

fx2 fy2

...
...

fxn
fyn


[
ux
uy

]
=


−ft1
−ft2
...

−ftn


or

Au⃗ = −b (2.41)

With this there are more than two equations for the two unknowns and thus
the system is over-determined. To solve the over-determined system of equations,
the least squares method is used in the LucasKanade optical flow estimation:

ATAu⃗ = AT (−b)

u⃗ = (ATA)−1AT (−b)

or [
ux
uy

]
=

 ∑
i

f2xi

∑
i

fxifyi∑
i

fxifyi

∑
i

f2yi

−∑i fxifti

−
∑
i

fxifti


A modified version of Lucas & Kanade approach which has been used in our

implementations is given in appendix B.2.

2.2.4.3.1.1 Camera motion estimation
Once the correspondence (f t−1, f t) is known, the ego-motion of the camera

or the mapping between the images (f t−1, f t), can be estimated using a transfor-
mation model and an optimization method.

The mapping between a reference image f t−1 and a target image f t can be
expressed as:

f t(xs) = g(f t−1(T (xs))) (2.42)

where T is a coordinate transformation and g is an intensity transformation.
If we assume that no intensity changes are present, i.e. g(xs) = xs, the map-

ping equation can be simplified to:

f t(xs) = f t−1(T (xs)) (2.43)
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This equation gives us a mapping between the points in the two images, namely:

xr = T (xs) (2.44)

where xs is the spatial position of the point s in the image f t−1 and xr is the
spatial position of its corresponding point in f t.

The model parameters are estimated ,then, by minimizing using following
squared error:

ϵ =
1

2

N∑
i=1

(xr − T (xs))
2

(2.45)

where N is the number of features (corners).

The most popular approach for this robust estimation problem is the RANSAC
(RANdom SAmple Consensus) algorithm. The idea is to repeatedly guess a set
of model parameters using small subsets of correspondences that are drawn ran-
domly from the input set of correspondences C. With a large number of draws,
there is a high probability to draw a subset of correspondences that are part of
the good motion model. After each subset draw, the motion parameters for this
subset are determined and the number of correspondences in C that are consistent
with these parameters is counted. The set of model parameters with the largest
support is considered to be the camera motion model.

• Remove outliers features

To delete the outliers features, i.e. the features associated with moving objects,
two methods have been proposed. In [151] the model parameter estimation is
performed in two steps:

• Compute the initial estimate of the camera motion model T0 using the full
feature set.

• discard the features with squared error exceeding a given error and recom-
pute the final estimate of the camera motion using only remaining feature
set.

In this method, it is assumed for outliers detection that the portion of moving
objects in the images is relatively small compared to the background.

In [120], the considered features are only those within background regions of
the previous frame. In case of the first frame the background regions are not
known and therefor, pixels which distance from the left or right border is less
than 10 pixels are used as observations points, assuming that there is no moving
object near the left and right image border.
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2.2.4.3.2 Camera motion estimation based on dense motion
The well known of these methods is the one proposed by Dufaux and Konrad

[173]. The algorithm is hierarchical and consists of three stages. In the first
stage, a low-pass image pyramid is built. Then, an initial translation is estimated
with full pixel precision at the top of the pyramid using a modified n-step search
matching. In the third stage, a gradient descent is executed at each level of the
pyramid starting from the initial translation at the coarsest level.

The technique is designed to minimize the sum of the squared differences
(SSD) between the current frame f and the motion compensated previous frame
f ′

E =
N∑
s=1

ϵ2s, with ϵs = (f ′s′ − fs) (2.46)

where fs and f ′s′ denote the intensity of image f at pixel s and the intensity of f ′

at the corresponding pixel s′ (s′ = s+ d, where d is the displacement).
Summation is carried out over N pairs of pixels (s) and (s′) within image

boundaries.
A perspective (eight-parameter) model is used for the camera motion

x′s′ =
a0+a2xs+a3ys

a6xs+a7ys+1

y′s′ =
a1+a3xs+a5ys

a6xs+a7ys+1

where (xs, ys) and (x′s′ , y
′
s′) are spatial coordinates of pixels s and s′ in images

f and f ′, respectively. The motion parameters (a0, ..., a7) are computed using a
gradient descent method.

This model is suitable when the scene can be approximated by a planar surface,
or when the scene is static and the camera motion is a pure rotation around its
optical center.

In order to improve convergence and reduce computational complexity, a low-
pass image pyramid is used; the gradient descent is applied at the top of the
pyramid and then iterated at each level until convergence is achieved. To assure
convergence in the presence of large displacements, the gradient descent should
start within a convergence ”basin” of the global minimum of E. To achieve this,
an initial, coarse estimate of the translation component of the displacement at
the top level of the pyramid is computed by applying an n-step search matching
algorithm proposed by Koga et al. [177].

The motion parameters a = (a0, ..., a7) are estimated using an iterative pro-
cedure:

at+1 = at +H−1b (2.47)

where
at and at+1 are parameters set at iteration t and t+ 1, respectively;
H is n× n matrix equal to one-half times the Hessian matrix of E;
b is a n-element vector equal to minus one-half times the gradient of E;
n is the number of parameters of the model (8 in this case).
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The coefficients of the matrix H and the vector b are given by:

Hkl =
1

2

N∑
s=1

∂2ϵ2s
∂ak∂al

∼=
N∑
s=1

∂ϵs
∂ak

∂ϵs
∂al

and

bk = −1

2

N∑
i=1

∂ϵ2s
∂ak

= −
N∑
s=1

ϵs
∂ei
∂ak

The gradient descent starts at the top level of the pyramid, then follows at
the subsequent levels in a top-down approach. At each level, the gradient descent
is iterated until a suitable convergence criterion. Nmax iterations are carried
out, but the process may stop earlier if the update term is smaller than a preset
threshold. The projection of the motion parameters from one level onto the next
one consists merely of multiplying a0 and a1 by 2, and dividing a6 and a7 by
two. Finally, the procedure stops at the base level of the pyramid where the final
motion parameters are obtained.

2.2.4.3.3 Image warping After camera motion estimation, the frames are
warped or in an other word aligned to compensate out the global motion.

The general meaning of the term ”image warping” refers to the process of
geometrically transforming two-dimensional images. This transformation can be
a simple scaling or rotation and it can be a complex and irregular mapping.

An image warp is defined by a mapping from the coordinate space, (x, y), of
a source image, f , to the coordinate space, (x′, y′), of a destination image, f ′. If
the destination coordinates are specified as a function of the source coordinates,
the mapping is called a forward warping.

(x′, y′) = T (x, y) (2.48)

T is the mapping function.
If the source coordinates are specified as a function of the destination coordi-

nates, the mapping is called an inverse warping.

(x, y) = T (x′, y′) (2.49)

A warp described by a forward mapping is performed by scanning the source
image pixel by pixel, calculating the corresponding location in the destination
image by evaluating the mapping function, and painting that location in the
destination image with the color of the source pixel. On the other hand, a warp
described by an inverse mapping is performed by scanning the destination image
pixel by pixel, calculating the corresponding location in the source image by
evaluating the mapping function, and painting the destination pixel with the
color of the calculated source location.

The spatial transformation may map the area corresponding to a pixel onto an
area that is not centered on integer pixel coordinates and may be of a different size
or shape than the mapped pixel. In forward mapping this means that the color
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of the single source pixel has to be distributed over several destination pixels; in
inverse mapping the destination pixel has to be interpolated from several source
pixels. If this is done improperly, e.g. by simply rounding the mapped coordinates
to the nearest pixel, the result will be nonuniform intensity and/or holes in the
destination image in the forward mapping case, and some aliasing artifacts in the
inverse mapping case.

In the case of image warping for camera motion compensation, an inverse map-
ping is applied to the image f t to move it backward and delete the transformation
due to the camera motion.

(x, y) = T (x′, y′) = T−1(x′, y′) (2.50)

where T−1 is the inverse of the camera motion model.

In general, a pixel (x′, y′) in the warped image do not correspond to a sin-
gle pixel (x, y) in the original image; that is, it doesn’t have integer coordinates.
Therefore, the intensity (color) f ′ value assigned to the pixel (x′, y′) must be com-
puted as an interpolated combination of the pixel intensity (color) values closest
to (x, y) in the source image. The most used method for interpolation are:

•Nearest-neighbor interpolation: also known as zero-order interpolation, which
simply assigns to point (x′, y′) in the destination image the value of the nearest
pixel (x, y) in the source image. It is the fastest interpolation method, though it
can produce image artifacts called jaggies or aliasing error.

• Bilinear interpolation: also known as first-order interpolation, which assigns
to Point (x′, y′) in the destination image a value that is a bilinear function of the
four nearest pixels (x, y) in the source image.

Bilinear interpolation results in an improvement in image quality over nearest-
neighbor interpolation, but may still result in less-than-desirable smoothing ef-
fects.

• Bicubic interpolation, which assigns to point (x′, y′) in the destination image
a value that is a bicubic function of the 16 nearest pixels (x, y) (4 x 4 neighbor-
hood) in the source image. This interpolation method reduces resampling artifacts
even further then in the bilinear interpolation. It preserves the fine detail present
in the source image at the expense of the additional time it takes to perform the
interpolation.

2.2.5 Conclusion

In this section we summarized the problem of motion segmentation and the well
known methods solving it. We grouped these methods into three groups: motion
segmentation based on change detection, motion segmentation based on motion
field analysis and motion segmentation based on Markov random fields. We also
presented how these methods for motion segmentation can be used in the case of
a moving observer by estimating and compensating the camera motion.
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In the following section, we will present the method we propose to solve the
problem of motion segmentation. The method estimates simultaneously the mo-
tion field and segment the moving objects in the scene.

2.3 Proposed method for motion estimation and
segmentation

This work introduces a new algorithm for simultaneous motion estimation and
segmentation of image sequences taken with a moving camera. The algorithm
exploits both the advantages of the GMM background subtraction approach with
its simplicity and capability to adapt to illumination changes and small motions
in the scene, and the advantages of the MRF approach with its power to model
non-linear interactions between features of different nature to take advantage of
space and time dependencies that moving objects impose on pixels.

The use of the background model and the motion information competitively in
the MAP-MRF decision framework produces more accurate and visually attrac-
tive silhouettes that are less affected by noise than traditional pixel-wise methods.

Figure 2.18 illustrates the different steps of the proposes approach. At time
t, the algorithm starts with the estimation and the compensation of the camera
motion between the previous frame, f t−1, and the current frame, f t using the
method proposed by Dufaux and Konrad [173].

In the second step, an apparent scene cut or strong camera pan is detected
by evaluating whether or not the squared difference between the current frame,
f t, and the compensated previous frame from camera motion, f̃ t−1, exceeds a
given threshold, ThSC . The evaluation is performed only within the background
regions of the previous frame. In case of a scene cut between two consecutive
frames, the segmentation algorithm is reset, i.e. all parameters are set to their
initial values, as the camera motion in this case cannot be correctly compensated.

The new compensated frame is used, in the third step, to update the GMM
model of the background, Bg, as in the case of a static camera. The model used
for the background is the one introduced by Stauffer and Grimson [99].

In a fourth step, the background model, Bg, the current frame, f t, the com-
pensated frame from camera motion, f̃ t−1, and the previous segmentation (object
mask), OM, are used in a maximum a posteriori probability (MAP) framework to
detect moving objects in the current frame and estimate their motion field.

In a last step, in order to avoid the common problem of fragmentation in
background subtraction methods and accelerate the learning of the background
model (new static regions), the background model is re-updated based on the
results of the MAP-MRF optimization.

The different steps of the algorithm are described in more details in the fol-
lowing sections.
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Figure 2.3: Algorithm for motion segmentation with a moving observer

2.3.1 Camera motion estimation and compensation

We implemented two methods for camera motion estimation and compensation
(CMEC): a method based on feature tracking and a method based on dense motion
analysis (see section 2.2.4.3).

To deal with the problem of outliers in the estimation of the camera motion,
we propose to use an initialization phase. This means that before to start moving
the robot (the camera) takes some time to build a model for the scene and detect
the static and the moving parts. During robot motion, the detected moving parts
are not considered for the camera motion estimation.

2.3.1.1 Feature based approach

For the method based on feature tracking, we used the Harris corner detector
[191, 194]. Farin et al. [206] have shown that the Harris detector has the best
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performance for accuracy and repeatability of detection compared to other meth-
ods for corner detection.

In our implementation a perspective motion model xr = T (xs) with eight
parameters is used for the camera motion.

xr = T (xs) =

 a0+a2xs+a3ys

a6xs+a7ys+1

a1+a3xs+a5ys

a6xs+a7ys+1

 (2.51)

The RANSAC algorithm for parameters estimation can be described with the
following steps:

1. Draw a subset S of size |S| of correspondences. Four correspondences are re-
quired to solve for the eight free parameters of the perspective motion model.

2. Compute the parameters a = (a1, ..., a8) of the motion model from the cor-
respondences in S.

3. Determine the set of inliers I, which is the set of correspondences I =
{xs ↔ x̂r} that comply with the motion model.

4. Repeat steps 1-3 several times (N) and choose the set of inliers for which
|I| is largest.

5. Apply least-squares approximation of the motion parameters with the set
of inliers to minimize the squared error (equation 2.45):

ϵ =
1

2

∑
i

(xr − T (xs))
2

To avoid the requirement of a non-linear optimization, we multiply the Euclidean
distance by the denominator of the transform model:

ϵ =
1

2

∑
i

((
xr −

a0 + a2xs + a3ys
a6xs + a7ys + 1

)2

+

(
yr −

a1 + a3xs + a5ys
a6xs + a7ys + 1

)2
)
(a6xs+a7ys+1)2

ϵ =
1

2

∑
i

[(a0 + a2xs + a3ys − xr(a6xs + a7ys + 1))
2

+(a1 + a3xs + a5ys − yr(a6xs + a7ys + 1))
2
]

After imposing the necessary condition ∂ϵ/∂ai = 0 for an error minimum, this
results in a linear equation system from which we can obtain ai.
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Figures 2.4 and 2.5 show examples with no moving objects (static scene) and
with moving objects, respectively.

frame ft frame difference ft − ft−1 frame difference ft − f̃t−1

Figure 2.4: Feature tracking based CMEC algorithm in a static scene

frame ft and detected fea-
tures

frame difference ft − ft−1 frame difference ft − f̃t−1

Figure 2.5: Feature tracking based CMEC algorithm in a dynamic scene

The drawback of this method for camera motion estimation is that it works
only in the case of well textured environment. Figures 2.6 and 2.7 show the results
of the warping in a well and less textured scenes, respectively. We can see that
in less textured environment (Figure 2.7) the estimated motion model does not
represent the correct motion of the camera which leads to a distortion of the
wrapped frame f̃ t−1.

frame ft and detected fea-
tures

frame f̃t−1 frame difference ft − f̃t−1

Figure 2.6: Feature tracking based CMEC algorithm in a well textured scene
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frame ft and detected fea-
tures

frame f̃t−1 frame difference ft − f̃t−1

Figure 2.7: Feature tracking based CMEC algorithm in a less textured scene

Figure 2.9 shows the mean square difference between successive frames (f t−1

and f t) in an image sequence (figure 2.8) and the mean square difference between
the current frame f tand the compensated previous frame from camera motion
f̃ t−1.

diff1 =
√
(mean((f t − f t−1)2)) (2.52)

diff2 =

√
(mean((f t − f̃ t−1)2)) (2.53)

The error in diff1 include also the error due to the interpolation in the warping
procedure (see section 2.2.4.3.3).

Figure 2.8: First and Last frames of the lab sequence
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Figure 2.9: Mean Square Differences diff1 and diff2

2.3.1.2 Dense flow based approach

Figures 2.10, 2.11, and 2.12 show the results of the camera motion estimation and
compensation based on dense motion in the case of static scene, dynamic scene,
and less textured dynamic scene, respectively. We can see that, even we lost
some information from the motion of the foreground, this method can robustly
handle the camera motion (global motion). This method is the one we used in
our implementation for motion segmentation with a moving observer.

frame ft frame difference ft − ft−1 frame difference ft − f̃t−1

Figure 2.10: Dense motion based CMEC algorithm in a static scene

frame ft frame difference ft − ft−1 frame difference ft − f̃t−1

Figure 2.11: Dense motion based CMEC algorithm in a dynamic scene
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frame ft frame difference ft − ft−1 frame difference ft − f̃t−1

Figure 2.12: Dense motion based CMEC algorithm in a less textured dynamic
scene

Figure 2.13 shows the mean square differences (equations (2.52) and (2.53))
in the image sequence offigure 2.8. We can see that the camera motion is well
estimated compared to the feature tracking based estimation method.
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Figure 2.13: Mean Square Differences diff1 and diff2

The parameters a = {a1, ..., a8} of the projective model of the camera motion
encode movement along all three spatial axes, zoom (i.e., scale in each of the
image coordinates x and y), and rotation (including rotations due to panning,
tilting, and movement about the optical axis) as follows:

a3 : Translation in X direction;
a6 : Translation in Y direction;
a1, a2, a4, a5 : Scaling (zooming), Rotation, Shearing;
a7, a8 : Chirping and keystoning.

Figure 2.14 shows the estimated parameters for the camera motion in the
sequence of figure 2.8. We can see that only parameters representing translation
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(a3 and a6) which are changing a lot.
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Figure 2.14: Camera Motion Parameters a = {a1, ..., a8}

The method was tested also on another image sequence (figure 2.15) where
there is more changing in zooming then in translation or rotation. The sequence
contains also a moving object.

We can see from figures 2.16 and 2.17 that also in this case the motion estima-
tion method based on dense motion performed well and the estimated parameters
represent camera motion (big and constant zooming (a1 and a5) with a small
change due to translation (a3 and a6)).

Figure 2.15: First and Last frames of the Office sequence
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Figure 2.16: Mean Square Differences diff1 and diff2
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Figure 2.17: Camera Motion Parameters a = {a1, ..., a8}

2.3.1.3 Camera motion compensation given its 3D motion

As seen in chapter 1, the SLAM process estimates the 3D camera motion. In
this section we propose using the estimated 3D camera motion from the SLAM
to derive the 2D camera motion parameters for its compensation.
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Figure 2.18: Algorithm for motion segmentation with a moving observer

The coordinate in the camera frame system of a point in the space (xC , yC , zC)
and the coordinates in the image frame system of the point image (x, y) are related
by the perspective transformation:

x = f
xC

zC
, y = f

yC

zC
(2.54)

where f is the camera focal length.

Let (xC , yC , zC) be the coordinates in the camera frame system of a stationary

point at time t and (x′
C
, y′

C
, z′

C
) its corresponding coordinates at time t′. When
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the camera undergoes a 3D rotation and translation, the relationship between the
3D point coordinates before and after the camera motion is: x′C

y′C

z′C

 =

 1 −wz wy

wz 1 −wx

−wy wx 1

 xC

yC

zC

+

 tx
ty
tz

 (2.55)

2.3.2 Scene cut detection

A scene cut detector consists in detecting highly uncorrelated consecutive frames.
It evaluates whether or not the squared difference between the current original
frame f t and the compensated previous frame from camera motion f̃ t−1 exceeds
a given threshold ThSC (equation 2.56). The evaluation is only performed within
the background regions of the previous frame.

1

NBg

∑
s/lts=0

(
f ts − f̃ t−1

s

)2 > ThSC ⇒ scene cut

≤ ThSC ⇒ no scene cut
(2.56)

NBg denotes the number of background pixels, lts is the value of the classification

at site s and time t, and f ts and f̃ t−1
s are the intensity at site (pixel) s of frames

f t and f̃ t−1, respectively.
In case of a scene cut between two consecutive frames, the camera motion

can not be compensated correctly. Two cases are considered: - if the camera
can retrieve cursorily its place and therefore the correct scene view. The few
false frames are detected and canceled by the scene cut detector. Instead, in
case where the gap between the last ”correct frame” and the new ones persist
for several seconds, the algorithm is re-initialized: the robot stops, takes time to
detect moving object to avoid outliers in camera motion estimation when it starts
moving. The first frame after the initialization of the algorithm is considered
as the current background to be updated. In our implementation, the process
decides to re-initialize after 7 to 9 scene cuts from the last ”correct frame”.

2.3.3 Gaussian Mixture Background Modeling

To model the background we use the Gaussian Mixture Model (GMM) introduced
by Stauffer and Grimson [99] given by equation 2.11 (section 2.2.1.2.2).

In this model each pixel is modeled as a mixture of Gaussians. The number
of normal distributions (Gaussians), K, is set as a parameter from the beginning.

In our implementation, the channels of the feature space are considered as
independent (Σt,k = σ2

t,kI with I the identity matrix) and the matching of the
actual data with the distributions is done using the Mahalanobis distance (equa-
tion 2.57) instead of the Euclidean distance (equation 2.14):

dts = (f ts − µt
s,k)

TΣt
s,k

−1
(f ts − µt

s,k) =
∥ f ts − µt

s,k ∥2

(σt
s,k)

2
(2.57)
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The parameters of the matched component k̂ are updated using equations
2.16.

Number of components

From our experiences, the number of components in the case of Gaussian Mix-
ture modeling for background subtraction, is generally small and 2 components
are enough, as there are only two classes (background, foreground), if the learning
rates (α,ρ) and the background threshold are well chosen.

Figure 2.19 shows the segmentation results obtained with a GMM algorithm
with 2 and 5 components applied on the sequence ”02463C1AL” from USF-NIST
1 [204]. In this sequence, a person at the far right side of the camera’s field of
view is moving (walking) to the left side, turns toward the camera, and walks
back to the right.

The parameters of the algorithms (determined empirically) are:
GMM with 2 Gaussians: α = 0.05, ρ = 0.0005, and T = 0.0001.
GMM with 5 Gaussians: α = 0.01, ρ = 0.0075, and T = 0.6.
The initial value for the standard deviation is σ0 = 222 in both cases.

A GMM model with a number of components K = 2 and a good choice
of learning parameters is faster then a GMM model with 5 components and it
can guaranty a multi-modality of the system on a particular image sequence.
However, a given set of learning parameters for a two GMM model can not be
used for different image sequences. The two GMM algorithms described above
have been tested on several image sequences and the obtained results demonstrate
that a the GMM model with K = 5 can always adapt to these sequences which
is not the case with the GMM model with K = 2 as it is shown in figure 2.20 2.

1the sequence can be found at http://figment.csee.usf.edu/GaitBaseline
2the sequence can be found at http://www.cvg.cs.rdg.ac.uk/datasets/index.html
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a) Original frame b) segmentation with K=2 b) segmentation with K=5

Figure 2.19: Segmentation with different number of components in the GMM
model. (sequence ”02463C1AL” from USF-NIST)
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a) Original frame b) segmentation with K=2 b) segmentation with K=5

Figure 2.20: Segmentation with different number of components in the GMM
model.
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2.3.4 MRF modeling for motion estimation and segmenta-
tion

GMM motion segmentation is pixel based, that is, each pixel is processed against
its background model independently of other pixels in the image. Furthermore,
there is no time dependency in this technique as the output of a subtraction
process at time t has nothing to do with its output at time t − 1. To take
advantage of both the space and time dependencies that moving objects impose
on the image pixels, we combine the segmentation and the motion estimation
process in a Markov Random Field (MRF) framework.

Given the current frame, f t, the compensated previous frame from camera
motion, f̃ t−1, the background model, Bg, and the previous segmentation object
mask, OM, we wish to compute the maximum a posteriori probability (MAP)
estimate of the motion field, U t, and the segmentation label field L. We use the
notations ut = {ut

s, s ∈ S} and lt = {lts, s ∈ S} for the realizations of U t and Lt,
respectively. S is the set of pixels’ indices. In this work we are concerned with
binary classification ; at each site (pixel) s, s ∈ S, the label value ls can be either
0 (background) or 1 (foreground).

Using the Bayes rule, the posteriori probability density function (pdf) of ut

and lt given f t and f̃ t−1 can be expressed as:

p(ut, lt | f t, f̃ t−1) =
p(f t | ut, lt, f̃ t−1)p(ut | lt, f̃ t−1)p(lt | f̃ t−1)

p(f t | f̃ t−1)
(2.58)

The denominator is constant with respect to the unknowns. Thus the MAP
estimate corresponds to the following:

(ût, l̂t) = max
ut,lt

(
p(f t | ut, lt, f̃ t−1)p(ut | lt, f̃ t−1)p(lt | f̃ t−1)

)
(2.59)

The conditional pdf p(f t | ut, lt, f̃ t−1) quantifies how well the motion field and
motion segmentation estimates fit the current frame. As the color space and
motion field are mutually independent (given the spatial information, we cannot
predict the optical flow and the same, given the optical flow at a spatial location,
we cannot predict its colors), the probability p(f t | ut, lt, f̃ t−1) is a product of
two terms modelled by Gibbs distributions:

p(f t | ut, lt, f̃ t−1) = T1(l
t, f t, f̃ t−1).T2(u

t, f t, f̃ t−1) (2.60)

The term T1 models a normally distributed noise around the site’s color:

T1(l
t, f t, f̃ t−1) =

∏
s∈S

1

(2π)
3
2σt

s,k̂

 .e−U1(l
t,ft,f̃t−1) (2.61)

with
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U1(l
t, f t, f̃ t−1) =

∑
s∈S

∥ f ts − µt,k̂|s ∥2

2(σt
s,k̂

)2
(2.62)

is is the energy function.

σt
s,k̂

and µt
s,k̂

are, respectively, the variance and the mean at time t of the

matched component k̂ at site s in the background GMM model.
The coefficient

∏
s∈S

1

(2π)
3
2 σt

s,k̂

is incorporated in the partition function Z.

The second term in the likelihood, T2(u
t, f t, f̃ t−1), models the quality to ob-

tain the current frame from the previous one using the estimated motion field .
It is modeled by a Gibbs distribution with the energy function:

U2(u
t, f t, f̃ t−1) =

∑
s∈S

ε2s (2.63)

where

εs =∥ f t(xs)− f̃ t−1(xs + ut
s) ∥ (2.64)

is the displaced frame difference (DFD) at site s, xs is the coordinate of the site
s, f t(xs) is the intensity of the frame f t at site s, and us is the motion field at
this site.

T2 is maximized when the motion field minimizes the DFD function, indicat-
ing that accurate optical flow estimates are obtained.

The second term in (2.59) is the conditional pdf of the displacement field given
the motion field and the previous frame. Neglecting the dependence on the previ-
ous frame, this term is imposed only when the neighboring pixels share the same
segmentation label to smooth the motion field. We model this pdf also by a Gibbs
distribution with the energy function

U3(u
t | lt) = λ

∑
s∈S

∑
r∈Ns

ε′s,rδ
(
lts − ltr

)
(2.65)

Where
ε′s,r =∥ ut

s − ut
r ∥2 (2.66)

denotes the squared displacement difference between neighboring sites s and r.
Ns is the set of neighbors of the site s, δ is the Kronecker function and λ is a
scalar used to control the emphasis of the constraint.

• Neglecting the dependence on the previous frame, f̃ t−1, the third term in (2.59)
represents the a priori probability of the segmentation in order to encourage for-
mation of contiguous regions. It is modelled by a Gibbs distribution with the
energy function:
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U4(l
t) = β

∑
s∈S

∑
r∈Ns

V
(
lts, l

t
r

)
(2.67)

Where β control the emphasis of this term and

V
(
lts, l

t
r

)
=


− 1

1+ε′s,r
, if lts = ltr

+ 1
1+ε′s,r

, otherwise
(2.68)

denotes a two-clique potential function.
In this function, two neighbors sites s and r are more likely classified to be

part of the same object if they have the same motion.

In summary the a posteriori pdf (2.58) can be rewritten as:

p(ut, lt | f t, f̃ t−1) ∝

exp
{
−U1(l

t, f t, f̃ t−1)− U2(u
t, f t, f̃ t−1)− U3(u

t, lt)− U4(l
t)
}

(2.69)

Substituting U1, U2, U3, and U4 with equations (2.62),(2.63),(2.65), and (2.67),
respectively, the maximization of the a posteriori pdf p(ut, lt | f t, f̃ t−1) is equiv-
alent to minimizing the energy function

U = U1 + U2 + U3 + U4 =
∑
s∈S

∥ f ts − µt,k̂|s ∥2

2(σt
s,k̂

)2
+
∑
s∈S

ε2s+

λ
∑
s∈S

∑
r∈Ns

ε′s,rδ
(
lts − ltr

)
+ β

∑
s∈S

∑
r∈Ns

V
(
lts, l

t
r

)
(2.70)

Where εs, ε
′
s,r, and V (lts, l

t
r) are given in equations (2.64), (2.66), and (2.68),

respectively.

2.3.5 Background model re-updating

After the MRF optimization of the motion segmentation, some of the pixels de-
tected as belonging to the background using the GMM model became part of
the foreground (false background detection) and others detected with the GMM
model as belonging to the foreground became part of the background (false fore-
ground detection). In this case the model of the background should be updated
according to the finale result of motion segmentation. For this, we propose to
reevaluate the parameters of the model corresponding to the changed pixels. The
reevaluation should be done inversely to the learning process in GMM model.

• False background detection
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The parameters of the matched component in the GMM background model
are re-updated as follows:

ωt+1

s,k̂
= 1

1−α (ω
t
s,k̂

− α)

µt+1

s,k̂
= 1

1−ρ (µ
t
s,k̂

− ρf ts)

(σt+1

s,k̂
)2 = 1

1−ρ ((σ
t
s,k̂

)2 + ρ ∥ f ts − µt
s,k̂

∥2)

(2.71)

Where α is the same learning rate used in the learning phase of the GMM model
(see section 2.2.1.2.2). ωt

s,k̂
, µt

s,k̂
, and σt

s,k̂
are, respectively, the weight, the mean,

and the standard deviation of the matched model at changed pixels.

• False foreground detection
In this case we admit that we have surely a background pixel and then the

parameters of the closest component (k̂) to this pixel in the GMM background
model are re-updated as follows:

ωt+1

s,k̂
= (1− α′)ωt

s,k̂
− α′

µt+1

s,k̂
= (1− ρ′)µt

s,k̂
+ ρ′f ts

(σt+1

s,k̂
)2 = (1− ρ′)(σt

s,k̂
)2 + ρ′ ∥ f ts − µt

s,k̂
∥2

(2.72)

α′ >> α to have a fast forgetting of the past background model and ρ′ = α′/ωk̂.

2.3.6 Implementation

The previously described approach has been implemented in matlab and tested on
synthetic and real image sequences. To show the advantage of using the motion
field in the segmentation process, a simplified version of the proposed algorithm
has been implement as well.

2.3.6.1 Simplified Model

A simplified version of the global algorithm in which the posterior depends only on
the previous segmentation, the current frame and the background model, without
estimation of the motion field, can be defined as

p(lt | f t, f̃ t−1) =
p(f t | lt, f̃ t−1)p(lt | f̃ t−1)

p(f t)
(2.73)

The maximization of the corresponding a posteriori pdf is then equivalent to
the minimization of the energy function (neglecting in this case also the depen-
dence on the pervious frame in the priori probability function)

U(lt | f t, f̃ t−1) = U1(f
t | lt, f̃ t−1) + U2(l

t) (2.74)
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with

U1(f
t | lt, f̃ t−1) =

∑
s∈S

∥ f ts − µt,k̂|s ∥2

2(σt
s,k̂

)2
(2.75)

and
U2(l

t) = β
∑
s∈S

∑
r∈Ns

V
(
lts, l

t
r

)
+ γ

∑
s∈S

V ′ (lts, lt−1
s

)
(2.76)

The first term in the prior energy function (2.76) is the spatial smoothing
function as in the global algorithm with the following potential function

V
(
lts, l

t
r

)
=

 −1, if lts = ltr

+1, otherwise
(2.77)

whereas the second term in (2.76) is used to introduced a temporal continuity
with the potential function

V ′(lts, l
t−1
s ) =

 −1, lts = lt−1
s = 0;

0, otherwise;
(2.78)

With this potential function, as we are interested in background estimation,
we want that if a pixel was classified as background at time t−1, it would remain
background at time t. Aside from that, we did not want to impose any other
relationship on a pixel’s segmentation.

2.3.6.1.1 Optimization For the simplified version of the algorithm, the op-
timization is done using the simulated annealing with metropolis algorithm as
follows:

• Initialization (current solution, Temperature)

• Calculation of the CurrentCost

• Loop

– NewState

– Calculation of the NewCost

– if ∆(CurrentCost−NewCost) ≤ 0 then

∗ CurrentState = NewState

– else

∗ if exp (CurrentCost−Newcost)
Temperature > randomnumber in [0, 1] then

· Accept CurentState = NewState
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∗ else

· Reject

– Decrease Temperature

• Exit Loop and stop when StopCriteriom

2.3.6.2 General algorithm

In the case of the global algorithm, the optimization of equation (2.3.4) with
respect to all unknowns is a difficult problem. To this effect, we perform the
minimization of the energy function U (2.3.4) by iterating over the following two
steps:
1. Update the motion field U , given the best estimate of the segmentation field,
L = l. This step involves minimization of the energy function:

EU =
∑
s∈S

ε2s + λ
∑
s∈S

∑
r∈Ns

ε′s,rδ
(
lts − ltr

)
(2.79)

which contains all terms in (2.3.4) that depend on u. Where εs and ε′s,r are given
with the equations (2.64) and (2.66), respectively.
2. Update the segmentation field L, assuming the motion field U = u is given.
This step involves the minimization of the energy function containing all terms
that contain l as well as the spatial information:

EL =
∑
s∈S

∥ f ts − µt,k̂|s ∥2

2(σt
s,k̂

)2
+ β

∑
s∈S

∑
r∈Ns

V
(
lts, l

t
r

)
(2.80)

with V (lts, l
t
r) is given with equation (2.68).

At each step the optimization is carried out using the ICM algorithm. The
optimization procedure stops when a (local) minimum is reached.

The parameters λ and β (or β and γ for the simplified version) in the proposed
algorithm, control the weight of the potentials in the MAP estimation. These
parameters have been determined empirically.

In our implementations, the motion field has been initialized using the Lucas-
Kanade method for optical flow estimation (see section 2.2.4.3.1 for a description
of this method).

2.3.7 Experimental results

The above algorithms have been tested on synthetic scenes and real image se-
quences. For all our experiments, the used parameters of the background gaussian
mixture model are:

number of components: K = 5
learning rate for the weighting: α = 0.01
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learning rate for the parameters: ρ = 0.0075
matching threshold: 4 times the standard deviation distance from the
mean of the components.
the threshold for selecting the background components (modes): Th =
0.8

2.3.7.1 results using the simplified Model

Figure 2.21 shows the optimization of the motion segmentation using the MRF
procedure on a synthetic image sequence. Fig2.21-a and Fig2.21-b are the frames
f t−1 and f t of the sequence, respectively. Fig2.21-c is the result of the GMM
segmentation step and Fig2.21-d is the result after the MRF optimization. In
Fig2.21-c and Fig2.21-d, the black pixels are background whereas the white pixels
correspond to the foreground.

a) frame ft−1 b) frame ft

c) GMM segmentation d) MRF optimization

Figure 2.21: Segmentation optimization in MRF procedure

Figures 2.22 and 2.23 show the results obtained with the simplified version
of the proposed algorithm for motion segmentation in real scene sequences taken
with a static and a moving camera, respectively. Each row shows the original
frame, the foreground mask and the combination of the original frame and the
mask.
From these figures one can notice that the results are acceptable in the case of still
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camera, whereas in the case of moving camera, even if the foreground is detected,
the contour is not smooth.

frame 28

frame 49

Figure 2.22: Simplified version of the algorithm in the case of a static camera.

frame 10

frame 29

Figure 2.23: Simplified version of the algorithm in the case of a moving camera.

If there is an error in the the camera motion estimation and compensation, as
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in Figure 2.24 where suddenly a big part of the frame is detected as moving, this
will be detected with the scene cut detection procedure, and therefore the current
frame will not be used to update the background model.

Figure 2.24: Error in motion estimation and compensation at frame 27

2.3.7.2 Results using the global algorithm

For the global algorithm, the used parameters for the MRF framework are λ = 1.0
and β = 0.5 in the case of a static camera, and λ = 0.7 and β = 0.5 in the case
of a moving camera.

Figures 2.25 shows the results obtained in the case of a static camera. Com-
paring the first row of figure 2.25 with the results in figure 2.22, one can notice
that by using the motion field in the MRF framework, we obtain more smoothed
borders.

The third result in figure 2.25 presents a more complicate case where the mo-
tion field of the foreground is not a regular translation as the foreground is moving
toward the camera.

Figures 2.26 and 2.27 show examples with a moving camera. In the example
of figure 2.27, there are some false detections of some winding parts of the green
plant and the trees’ leaves. These false detections have been filtered based on
their size, except the regions connected to the real foreground.
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a)Original frame b) Foreground Mask c) Motion field

Figure 2.25: Motion segmentation with static camera
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a) Original frame c) Foreground Mask d) Motion field

Figure 2.26: Motion segmentation with moving camera - first example.
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frame15

frame 20

frame 30

frame 35

frame 40

Figure 2.27: Motion segmentation with moving camera - second example.

2.3.7.3 Method evaluation

To show the advantage gained with the use of theMRF segmentation to re-update
theGMM model, the method is compared to the classical GMM algorithm. Figure
2.28 shows that the learning in the proposed algorithm is faster compared to the
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classical GMM algorithm. The proposed algorithm needs only 25 frames to learn
the part of the background which was covered by the foreground at the beginning,
instead of the 42 frames needed by the classical GMM algorithm.
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frame 12

frame 21

frame 26

frame 32

frame 43

a) Original Frame b) Classical GMM c) Proposed Method

Figure 2.28: Background Model updating
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For a qualitative comparison between the segmentation results (background /
Foreground) obtained with the classical GMM algorithm and the proposed algo-
rithm, we considered the classification, in time, of three pixels of the sequence of
figure 2.28. The considered pixels are depicted in figure 2.29. Pixel ’P1’ is located
on the foreground on the first frame, then it becomes part of the background after
5 frames. Pixel ’P2’ is a background pixel and becomes part of the foreground
from frame 12 to frame 19. Whereas, pixel ’P3’ is always part of the background.
Each row in figure 2.30 represents the red values of the considered pixels in the
original image sequence, the background model obtained with the classical GMM
algorithm, and the background model obtained with the proposed algorithm.

The results demonstrate the stability of the proposed algorithm as it selects
the more representative GMMs for the background model. Figure 2.30.a shows
also the fast adaptation of background using the proposed algorithm.

P1

P2

P3

Figure 2.29: Ground truth pixels
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a) pixel p1(39,123)
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b) pixel p2(100,100)
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c) pixel p3(300,200)

Figure 2.30: evolution of the background model at the ground truth pixels
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For a further quantitative evaluation of the proposed global algorithm we
estimated the percentage of the pixels belonging to the moving objects and are
correctly assigned to the foreground (percentage of true foreground detection) and
the percentage of the background pixels that are incorrectly classified as belonging
to the foreground (percentage of false background detection). The ground truth
used for the evaluations is obtained by segmenting manually some frames of the
sequences.

Figure 2.31 shows the ground truth used for this evaluation.

Figure 2.31: Ground-truth for quantitative evaluation of the proposed motion
segmentation algorithm in the case of a still camera

Figures 2.32 and 2.33 represent the percentage of true foreground detection and
the percentage of the false background detection at some frames of the sequence,
respectively. The comparison is made after an initialization time. The lower
percentage of true foreground detection is generally due to the less textured part
of the foreground or when it stops moving for few moments. This last case appears
with a big false background detection ( in this sequences this problem appears
each time the persons stop to change their direction).
The first part in both graphs correspond to the learning process.

Figure 2.32: Percentage of true foreground detection



2.3. Proposed method for motion estimation and segmentation 127

Figure 2.33: Percentage of False Background detection

The same experiences have been made on a sequence with a moving camera.
The ground truth are shown in figure 2.34 and the percentage of true foreground
detection and false background detection are given in figures 2.35 and 2.36, re-
spectively.

Figure 2.34: Ground-truth for quantitative evaluation of the proposed motion
segmentation algorithm

Figure 2.35: Percentage of true foreground detection
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Figure 2.36: Percentage of False Background detection

2.3.8 Conclusion

In this chapter, an overview of the most important methods for motion segmen-
tation has been presented. We proposed a new method for simultaneous motion
estimation and segmentation of image sequences taken with a moving camera.
In the proposed method, we model the space and time dependencies that moving
objects impose on the image pixels as fields of random variables. Compared to the
per-pixel background subtraction methods, our approach provides higher quality
silhouettes of the foreground objects.

The feedback of the MRF optimization results to update the background model
enables the acceleration of the learning of the new stationary regions and therefore
avoids the fragmentation problem.

The moving object mask detected by the motion segmentation algorithm will
be used in the following chapters for Simultaneous Localization And Mapping
(SLAM) algorithm to exclude the moving part of the scene from the map by
removing the outliers features, and for the path planning algorithms for obstacle
avoidance.



Chapter 3

Navigation System

3.1 Introduction

In this chapter we present the proposed path planning system for mobile robot
navigation. It is composed of a global path planning and a local path planning
procedures.

The global path planning process, based on the global estimated map and the
global positioning of the robot by the SLAM system (see chapter 1), calculates a
path allowing the robot to reach a user defined goal. The output of this process
is a set of intermediate goals between the current and final robot positions. If the
global map is not known and no final goal is defined by the user, the global path
planning process defines a set of arbitrary goals, based on the successive local
maps, allowing a maximum exploration of the environment.

On the other hand, the local path planning process allows the robot to follow
the planned path while avoiding unplanned obstacles in the SLAM system and
detected moving obstacles using the motion segmentation system (see chapter
2). The position of the detected moving objects is predicted by a Kalman filter
tracking procedure applied to the output object mask from the motion detec-
tion process and the used sensors for static obstacles detection are infrared and
ultrasound sensors.

The local path planning procedure is based on two fuzzy logic controllers: a
goal seeking controller and an obstacle avoidance controller. The goal seeking
controller tries to find the optimal path to the intermediate goals (defined by the
global path planning), while the obstacle avoidance controller has for mission to
avoid obstacles. A command fusion scheme based on a conditioned activation for
each controller arbitrates between the two behaviors.

The fuzzy logic controller for obstacle avoidance is equipped with reinforce-
ment learning algorithm, which consists of a scalar reinforcement signal as a
performance feedback from the environment enabling the navigator to tune itself.

129
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3.2 Global Path Planning

In this section we present a method by which an autonomous robot in possession
of a feature based representation of its surrounding can decide where to move so
as to reach a user define goal or to best explore its environment. the algorithm
we used in our work is the one developed by Bradley Hasegawa [240] in which
the problem is formulated as a selective traveling salesman problem (S-TSP),
then converted to an optimal constraint satisfaction problem where each point of
interest is assigned a value, and each edge connecting points is assigned a cost,
and solved using the Constraint Based A* algorithm to choose the most valuable
and feasible ordered set of waypoints. Figure 3.1 represents the diagram of the
method [240].

Figure 3.1: Diagram of the algorithm for path planning from a feature based map

The system uses the D* algorithm [241, 242] in order to search the visibility
graph for the least cost path between every pair of candidates. D* performs an
incremental search and creates the candidate graph. It saves its last calculated
set of least cost paths. Then, when the map updates and a new visibility graph
is built, the system tells D* what edges changed in the visibility graph. D* then
searches the visibility graph only as much as it needs, in order to update its
saved set of least cost paths, to accurately reflect the least cost paths through the
visibility graph between every pair of candidates.

The candidate graph is passed to the solver module which returns an ordered
subset of candidates to visit. The D* search module uses then its stored set of
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least cost paths to fill in the path between these candidates.

3.2.1 The Solver Module

The solver module takes a candidate graph as input and outputs an ordered
subset of candidates to visit. There are four versions of the solver module: the
greedy version, the full horizon version, the receding horizon version, and the
fixed horizon version. The greedy version simply searches through all of the edges
leading out of the vertex representing the robot for the edge with the lowest
weight and returns the candidate at the other end of this edge. The full horizon
version solves the TSP on the candidate graph and returns the resulting sequence
of candidates. The receding horizon version solves the S-TSP on the candidate
graph for the constant horizon length L and returns the resulting ordered subset
of candidates. The fixed horizon version solves the S-TSP on the candidate graph
for a horizon length of L-d, where L is a constant and d is the distance the robot
has traveled since the last horizon, and returns the resulting ordered subset of
candidates.

To solve the S-TSP, [240] formulates the problem as an Optimal Constraint
Satisfaction Problem (OCSP). An OCSP consists of a set of variables with finite
domains, a set of constraints which map each assignment to the variables to true
or false, and a utility function that maps each assignment to the variables to a real
number. A solution to an OCSP is an assignment to the variables that maximizes
the utility function such that the constraints are satisfied.

In order to formulate the S-TSP as an OCSP, one variable is created for each
candidate. Each variable can take the value of either 1 or 0. The candidate cor-
responding to a variable that is assigned to 1 is included in the ordered subset of
candidates that is the solution to the S-TSP, while the candidate corresponding
to a variable assigned to 0 is not included. Each variable also has its own utility
function, called an attribute utility function. This function maps a variable as-
signed to 1 to the utility of the corresponding candidate and a variable assigned
to 0 to zero. The utility of an assignment to the entire set of variables is equal to
the sum of the values of the attribute utility functions of the individual variables.
To describe the constraint, the sub-graph formed by removing every vertex corre-
sponding to a candidate whose variable is assigned to 0 (and every edge including
such a vertex) from the candidate graph is considered. The constraint over the
OCSP variables is that the solution to the TSP on this sub-graph must have a
length that is less than or equal to the horizon length L.

The S-TSP formulated as an OCSP is solved with the constraint-based A*
algorithm [242]. Constraint-based A* is an efficient method based on A* search
of enumerating the possible assignments to the variables from highest to lowest
value of the utility function. To maximize the utility function for a partial assign-
ment to the variables, it is sufficient to assign each of the unassigned variables to
a value that maximizes its attribute utility function. Constraint-based A* takes
advantage of this fact in order to efficiently find the next best full assignment
to the variables, and in order to efficiently calculate an admissible heuristic dur-
ing the search. In order to solve the S-TSP, constraint-based A* enumerates full
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assignments to the variables one at a time and checks the constraint for each
assignment. The approach in [240] checks the constraint on an assignment by
running the Concorde TSP solver on the subgraph corresponding to the assign-
ment. The first full assignment that constraint-based A* finds is consistent must
correspond to the subset of candidates in the solution to the STSP, since these
assignments are generated in best first order.

3.2.1.1 Constraint-based A*

Constraint-based A* uses a form of state-space search to enumerate the vari-
able assignments of an OCSP in best-first order. Constraint-based A* improves
upon the efficiency of A* by exploiting a requirement that the utility function
of an OCSP be mutually preferential independent (MPI). If each decision vari-
able xi has an attribute utility function gi(xi) defined for it, and if the utility
function for full assignments to the decision variables is a function of the val-
ues of the attribute utility functions, that is the utility function is of the form
G(g1(x1), g2(x2), , gn(xn)), then the utility function for full assignments is a multi-
attribute utility function. An MPI utility function is a multiattribute utility func-
tion which can be maximized by maximizing the attribute utility of each decision
variable independent of all of the other decision variables. For example, an addi-
tive utility function G(g1(x1), g2(x2), , gn(xn)) = g1(x1) + g2(x2) + ...+ gn(xn) is
MPI because we can find the assignment that maximizes G by finding the value
for x1 that maximizes g1(x1), the value for x2 that maximizes g2(x2), and so on.
Constraint-based A* takes advantage of MPI utility functions in order to limit
the expansion of each search tree node to only its best child, and to efficiently
calculate an admissible heuristic at each node.

In the constraint-based A* framework, search states are partial or full assign-
ments to the decision variables. In order to move from one state to the next,
constraint-based A* finds a variable that has not been assigned in the current
state and assigns it one of its possible values. Given state {x1 = 0}, if we choose
the next variable to be x2, then {x1 = 0} can transition to {x1 = 0, x2 = 0}
or {x1 = 0, x2 = 1}. The initial state of the search tree is the state in which
no decision variables have been assigned a value, and leaves of the search tree
are states in which all of the decision variables have been assigned a value. The
search proceeds by expanding the search node with the best estimated utility until
it reaches a leaf.

3.2.2 Environment exploration

In case of environment exploration, the robot should try (i) to visit areas that
are open and sparsely populated with features ; (ii) to stay away from areas that
have already been visited ; (iii) to visit areas that are close to and reachable from
the current position.
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3.3 Local Path Planning

3.3.1 Fuzzy Logic and Fuzzy Control

Fuzzy Logic (FL) is based on the concept of fuzzy sets, proposed by Lotfy Zadeh
in 1965, in which membership is expressed in varying degrees of truth. That is,
FL is a multivalued logic that allows intermediate values to be defined between
conventional evaluations like yes/no, true/false, black/white, etc. Notions like
rather warm or pretty cold can be formulated mathematically and processed by
computers.

Fuzzy logic is a way of reasoning that can cope with uncertain, imprecise, or
partial information. It is often confused with probability. The difference between
probability and fuzzy logic is clear when we consider the underlying concept that
each attempts to model. Probability is concerned with the undecidability in the
outcome of clearly defined and randomly occurring events, while fuzzy logic is
concerned with the ambiguity or undecidability inherent in the description of the
event itself. Fuzziness is usually expressed as ambiguity rather than imprecision
or uncertainty and remains a characteristic of perception as well as concept.

Fuzzy control is one of the important applications of fuzzy theory. It works
rather different than conventional controllers; expert knowledge is used instead of
differential equations to describe a system. This knowledge can be expressed in a
very natural way using linguistic variables, which are described by fuzzy sets.

The basic configuration of a Fuzzy Logic Controller comprises four principal
components [208, 209, 210, 211, 223]: Fuzzifier, Defuzzifier, decision making logic,
and knowledge base component (Figure 3.2):

Figure 3.2: Fuzzy Controller block diagram

Input variables xi, i = 1, ..., n of the controller are state variables of the plant
to be controlled. These variables are based on measurements at instant t and
have somewhat uncertain values (for example distance between a robot and an
obstacle, the speed of the robot, the direction of moving obstacles,...).

The controller should be able to determine control values yj , j = 1, ...,m (for
example a rotation angle, change of the speed, ...) based on the current mea-
surements and the prior knowledge of an expert. The prior knowledge is made
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available as a set of linguistic rules of the form:

Rr : IF x1 isA
r
1 AND/OR ...AND/OR xn isA

r
n THEN y1 isB

r
1 , ..., ym isBr

m

Ar
i ( respectively Br

j ) are linguistic terms of input (respectively output) vari-
ables described by l membership functions µi,1, ..., µi,l ( respectively p member-
ship functions ηj,1, ..., ηj,p) in their universes of discourse. AND and OR are fuzzy
operators [208, 210].

The fuzzification interface transforms the input variables (crisp) to fuzzy sets
or linguistic terms by determining their membership degree.

3.3.1.1 Knowladge Base

The knowledge base provides necessary definitions used to characterize the fuzzy
control rules and the fuzzy data manipulations in the fuzzy logic controller. It
contains the fuzzy sets defined on the input and output universes of discourse and
a set of decision making rules.

The designer of a fuzzy controller is inevitably faced with two specific ques-
tions when building the set terms: (i) How does one determine the shape of the
membership functions corresponding to the fuzzy sets? and (ii) How many sets
are necessary?

According to fuzzy set theory, the choice of these parameters is subjective and
there are few empirical rules for helping defining fuzzy sets [212]: (i) A fuzzy set
should be sufficiently wide to allow measurement noise handling, and (ii) A certain
amount of overlap between fuzzy sets is desirable. If there is a gap between two
sets no rules will fire for values in the gap. Consequently the controller function
is not defined. The most common shapes of membership functions are triangular,
trapezoidal, and gaussian (bell curve) functions [212].

The designer of the fuzzy controller should also define the fuzzy operators
for aggregation, activation, and accumulation which will be used in the inference
engine.

3.3.1.2 Fuzzification

The first step in Fuzzy Logic Control is to fuzzify the input variables into linguistic
variables linked to fuzzy sets. This step consists of determining the degree of
membership of each input to the fuzzy sets via membership functions.
Example

For the fuzzification of the car speed value x0 = 70km/h the two membership
functions µA and µB from Figure 3.3 can be used, which characterise a low and
a medium speed fuzzy set, respectively. The given speed value of x0 = 70km/h
belongs with a grade of µA(x0) = 0.75 to the fuzzy set ’low’ and with a grade of
µB(x0) = 0.25 to the fuzzy set ’medium’.
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Figure 3.3: Example of fuzzification

3.3.1.3 Inference Engine

This part of a fuzzy controller combines the facts obtained from the fuzzification
with the rule base and conducts the fuzzy reasoning process. It is done in tree
steps [212]:

Aggregation: The aggregation operation is used when calculating the degree of
fulfillment or firing strength αr of the condition of a rule r. It combines
the membership degrees of the input variables using the fuzzy operators
(AND,OR). The commonly used operators for the fuzzy AND are min or
product and for the fuzzy OR are max or algebraic sum.

Activation: The activation of a rule is the deduction of the conclusion, possibly
reduced by its firing strength. It uses the min or product operators. Both
operators work well, although the product operators results in a slightly
smoother control as it preserves the initial shape of the output membership
curve.

Accumulation: All activated conclusions are accumulated , using the max or
sum operations.

The Inference engine is designed by its activation and accumulation opera-
tors and the most used inference engine mechanisms are the Max-Min and Max-
product.

Example
For a fuzzy system with two inputs x1 and x2, one output y, and two fuzzy

rules (the linguistic term S stands for ’small’, M for ’medium’, L for ’large’, N for
’negative’ and P for ’positive’)
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(1) IF (x1 = P) AND (x2 = M) THEN (y = M)
(2) IF (x1 = N) OR (x2 = S) THEN (y = S)

The inference is evaluated as follows: Each rule contains two premises, which are
differently connected. In rule 1 the connective operation is the intersection, which
can be performed by the min operation (µ1 = min(µA1,1(x1), µA1,2(x2)), and in
rule 2 the premise is a union of the two premises, which can be performed by
the max operation (µ2 = max(µA2,1

(x1), µA2,2
(x2)). µA1,1

, µA1,2
, µA2,1

, and µA2,2

are the membership functions defining the fuzzy partitions of the inputs variables
universes of discourses.

The membership functions of the conclusion of each rule is determined using
the degree of fulfillment of the corresponding rule by applying either the Max-Min
inference method or the Max-Prod inference method as shown in Figure 3.4.

Figure 3.4: Example of the application with two premises with (a) max/min
inference and (b) max-prod inference

3.3.1.4 Defuzzification

The resulting fuzzy set from the inference process must converted to a crisp value
that can be sent to the controlled system as a control signal. This operation is
called defuzzification. There are several defuzzification methods [208, 209, 210],
the most commonly used are maximum and center of gravity techniques.

Maximum Defuzzification Technique [210, 220]
This method gives the output with the highest membership function (equation

3.1). This defuzzification technique is very fast but is only accurate for peaked
output.

y∗j / µB′(y∗) ≥ µB′(y), for all y ∈ Y (3.1)
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where y∗ is the defuzzified value, µB′(y) is the degree of membership of the output
y to the fuzzy set B′ (obtained after Accumulation) and Y is the output universe
of discourse.

Centre of gravity (COG) technique [208, 210, 220]
This is the most commonly used technique for defuzzification and is also known

as center of gravity or center of area (equation 3.2). This technique was developed
by Sugeno in 1985. The disadvantage of this technique is that it is computationally
difficult for complex membership functions.

y∗j =

∫
µB′(y)y∫
µB′(y)

(3.2)

3.3.1.5 Takagi-Sugeno controller

In the rule based systems, fuzzy sets are used both in the premises and in the
conclusions. This kind of inference is called Mamdani inference [211, 220, 223].
A modified inference scheme, developed by Takagi and Sugeno [217, 218, 219],
represents the conclusions by functions of the inputs data:

Rr : IF x1 isA
r
1 AND/OR ...AND/OR xn isA

r
n THEN yrj = F r

j (x1, ..., xn), (j = 1..m)

The function F r
j represents a direct mapping from the input space X1×X2...×

Xn with the input values x1, ..., xn to the output space Y .
The order-0 Takagi-Sugeno controller is a particular version where the output

in the rule decision part is given by a real number:

Rr : IF x1 isA
r
1 AND/OR ...AND/OR xn isA

r
n THEN yrj = crj , (j = 1..m)

The final output is determined as a weighted mean value over all R rules
according to:

y∗j =

∑
r µ

rF r
j (x1, ..., xn)∑
r µ

r
(3.3)

where µr is the degree of fulfillment of rule r calculated by combining input
membership values using fuzzy AND and OR operators.

3.3.1.6 fuzzy logic implementation

Although there have been many successful applications of fuzzy control, control
designers still need to face two major obstacles in implementing a fuzzy control.
The first is the acquisition of fuzzy rules, and the second is the definition of optimal
parameters of membership functions for the linguistic rules. However, there exists
no guidelines for designing fuzzy controllers. Manual designs may require long
period of trial and error and much input from experts are required. This provides
the motivation for adaptive fuzzy control, where the focus is on the automatic
on-line synthesis and tuning of fuzzy controller parameters. Several parameter
identification techniques have been proposed for tuning fuzzy controllers. We can
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find methods based on supervised learning [212, 213, 214, 215, 216, 231], and
others on unsupervised learning [231, 234, 235].

Obtaining effective and quality training data in the case of our application for
mobile robot navigation in unknown environment is not an easy task and probably
impossible to represent the varying environment. For these reasons, we opt for
solving the problem of fuzzy controller adaptation using an unsupervised learning
paradigm known as reinforcement learning (RL) [236, 237, 238] (see section 3.3.2).

3.3.1.7 Application of Fuzzy Logic for mobile robot navigation

The development of techniques based on fuzzy logic (FL) for autonomous nav-
igation in real-world environments received considerable interest in the current
research on robotics. The existent methods using FL for robot navigation are
often hierarchical behavior-based methods [220, 221, 222, 223, 224, 225, 226],
where a set of simple behavior processing units (such as ”seek the goal”, ”ovoid
obstacles”,...,) are coordinated with an arbitration strategy and command fusion
process (figure 3.5).

These behaviors work independently and are not activated all together, each
behavior is only activated when needed. The arbitration strategy decides which
behaviors should be activated depending on the state of the environment [227].
Several behaviors may also be simultaneously activated. In this case, a command
fusion is needed to combine the results of activated behaviors.

Algorithms for mobile robot navigation based on fuzzy logic differ in the num-
ber and type of behaviors and the used combination strategies.

Figure 3.5: Behavior-based navigation strategy

The command fusion process can be a simple strategy as switching system,
where only the behavior with high importance is used and other behaviors are
ignored or summation process, where the resulting command is a weighted sum
of the activated behaviors. It can be also more complicated strategy as fuzzy
fusion process, where the output of activated behaviors are combined by a fuzzy
operator [227, 228].
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Other authors proposed methods based on adaptive fuzzy controllers for mo-
bile robot navigation allowing the system to acquire knowledge and adapt it be-
havior by interacting with the environment. These methods have also an hierar-
chical architecture and depend on the used learning process [224, 229, 230, 231,
232, 233, 234, 235]. They can be classified into two classes: navigation methods
with online learning and navigation methods with off-line learning.

Methods with off-line learning for mobile robot navigation are based, usually,
on supervised learning algorithms, where a set of possible situations and corre-
sponding decisions are presented to the robot [220, 224]. These techniques are
well suited for some classes of environment. Where the robot is called to navigate
in similar architecture without hard changing of the environment (new type of
obstacles, moving obstacles,...).

In the other side, methods with online learning have the possibility to adapt
themselves to new situations in their environment [229, 235], but the chose of the
learning policy is not easy and therefor their utilization is limited to the environ-
ment where possible errors are tolerated, for example with navigation methods
based on reinforcement learning, bumping or approaching an obstacle or take a
false way during the learning should be tolerated.

3.3.2 Reinforcement learning for fuzzy controller

3.3.2.1 Reinforcement learning

Reinforcement learning algorithms attempt to find a policy that maps states of
the world to the actions an agent ought to take in those states [236, 237]. The
environment, in return, provides a reward which can be positive or negative.
The reinforcement learning algorithm consists to find a policy for maximizing
cumulative reward for the agent over the course of the problem.

The environment is typically formulated as a finite-state Markov decision pro-
cess (MDP), and reinforcement learning algorithms for this context are highly
related to dynamic programming techniques. State transition probabilities and
reward probabilities in the MDP are typically stochastic but stationary over the
course of the problem.

Reinforcement learning differs from the supervised learning problem in that
correct input/output pairs are never presented, nor sub-optimal actions explicitly
corrected. Further, there is a focus on on-line performance, which involves finding
a balance between exploration (of unknown territory) and exploitation (of current
knowledge). The exploration v.s. exploitation tradeoff in reinforcement learning
has been mostly studied through the multi-armed bandit problem [236].

Formally, the basic reinforcement learning model consists of:

• a set of environment states S = {st},

• a set of actions A = {at}, and

• a set of scalar ”rewards” rt in R.

At each time t, the agent perceives its state st ∈ S and the set of possible ac-
tions A(st). It chooses an action at ∈ A(st) and receives from the environment the
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new state st+1 and a reward rt+1. Based on these interactions, the reinforcement
learning agent must develop a policy π : S → A which maximizes the quantity
R =

∑
t rt for MDPs which have a terminal state, or the quantity R =

∑
t γtrt

for MDPs without terminal states (where γt is some ”future reward” discounting
factor between 0 and 1).

After we have defined an appropriate return function to be maximised, we need
to specify the algorithm that will be used to find the policy with the maximum
return. There are two main approaches, the value function approach and the
direct approach.

The direct approach entails the following two steps [236, 237]

1. For each possible policy, sample returns while following it.

2. Choose the policy with the largest expected return.

One problem with this is that the number of policies can be extremely large,
or even infinite. Another is that returns might be stochastic, in which case a
large number of samples will be required to accurately estimate the return of
each policy.

The problems with the direct approach might be ameliorated if we assume
some structure in the problem and somehow allow samples generated from one
policy to influence the estimates made for another. Value function approaches
do this by only maintaining a set of estimates of expected returns for one policy
π (usually either the current or the optimal one). In such approaches one at-
tempts to estimate either the expected return starting from state s and following
π thereafter,

V (st) = E[R|st, π] (3.4)

or the expected return when taking an action at in state st and following π
thereafter,

Q(st, at) = E[R|st, π] (3.5)

We can choose optimal actions by simply choosing the action with the highest
value at each state. In order to do this using V , we must either have a model of
the environment, in the form of probabilities P (st+1|st, a) to transit from state st
to st+1 while applying the action at = π(s), which allow us to calculate Q simply
through:

Q(st, at) =
∑
st+1

V (st+1)P (st+1|st, at) (3.6)

or we can employ the so-called Actor-Critic methods [236], in which the model is
split into two parts: the critic, which maintains the state value estimate V , and
the actor, which is responsible for choosing the appropriate actions at each state.

Given a fixed policy π, Estimating E[R|.] for γt = 0 is trivial, as one only has
to average the immediate rewards. The most obvious way to do this for γt > 0 is
to average the total return after each state.

The above methods can converge to the optimal policy. This is usually done
by following a policy pi that is somehow derived from the current value estimates,
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i.e. by choosing the action with the highest evaluation most of the time, while
still occasionally taking random actions in order to explore the space.

An alternative method to find the optimal policy is to search directly in the
policy space. Policy space methods define the policy as a parameterized function
π(st, θt) with parameters θt. Commonly, a gradient method is employed to adjust
the parameters. However, the application of gradient methods is not trivial, since
no gradient information is assumed.

3.3.2.2 Q learning

It exists several approaches for reinforcement learning without models. Some are
based on policy iteration (see section 3), such as the Actor Critic Learning [239],
and others on value iteration, such as Q-Learning or SARSA. The Q-Learning,
proposed by Watkins [238], is perhaps the more popular of Reinforcement algo-
rithms, for its simplicity.

In this algorithm, the agent observes the present state, st, and executes an
action, at, according to the evaluation of the return that it makes at this stage.
It updates its evaluation of the action’s value while taking in account, a) the
immediate reinforcement, rt, and b) the estimated value of the new state, V (st+1),
that is defined by:

V (st+1) = max
at

Q(st+1, at) (3.7)

The updates are made by:

Q(st+1, at) = Q(st, at) + β (rt + γV (st+1)−Q(st, at)) (3.8)

β is a learning rate such that β → 0 as t→ ∞.
This equation can be written:

Q(st+1, at) = (1− β)Q(st, at) + β (rt + γV (st+1)) (3.9)

This update corresponds to the barycenter of the old and new evaluations, weighted
by β.

The evaluations of the Q-values, are independent of the policy followed by
the agent. The later can follow any policy, while continuing to construct correct
evaluations of the action’s value.

3.3.2.3 Fuzzy controller optimization using Q-learning

In this paragraph we consider the order-0 Takagi-Sugeno fuzzy controller FC,
which is used in our mobile robot navigation. The controller has n inputs and
one output variables and is described by a set of N fuzzy rules such as:

Rr : IF x1 is A
r
1 AND/OR ...AND/OR xn isA

r
n THEN yr = cr, r = 1, .., N

(3.10)
We suppose a partition of input universes of discourses with triangular mem-

bership functions, µAr
i
, and the conjunction in the premise part of the rules is the
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product operator. These constraints are not restrictive but allow model simplifi-
cation.

Let xt = (x1, ..., xn) be an input vector. The output y(x) = FC(x) is then
given by:

y(x) =

∑
r
µr(x).cr∑
r
µr(x)

(3.11)

where µr(x) =
∏
i

µAr
i
(xi) is the degree of fulfillment of rule r using the product

for the AND conjunction.
If we consider strong fuzzy set partitions (50% overlapping of the fuzzy sets)

then,
∑
r
µr(x) = 1, ∀x ∈ X and

y(x) =
∑
r

µr(x).cr (3.12)

We call the premise part of a rule r: sr = (x1 isA
r
1 AND ...AND xn isA

r
n) a

state of the system. For the FC adaptation using a Q-learning algorithm we con-
sider a 0-order Takagi-Sugeno fuzzy controller where each rule r has K possible
conclusions ark with quality factor qrk (k = 0..K). a is used for rule conclusions
instead of c in Eq(3.21) for a coherent notation with reinforcement learning algo-
rithm.

Rr : If x is sr then y = ar1 with qr1
or y = ar2 with qr2
or ...
or y = arK with qrK

Using Eq(3.12) for an input vector xt at time t, one can define the inferred
action, A(xt), and its associated quality, Q(xt, A(xt)), by:

A(xt) =
∑
r

µr(xt).a
r
k(r) (3.13)

Q(xt, A(xt)) =
∑
r

µr(xt).q
r
kr (3.14)

with kr being the subscript of the chosen conclusion for the rule r.

Conclusion Selection

During the exploration phase of the learning algorithm, the K possible con-
clusions are not modified as in supervised learning. They are analyzed and their
q-values are updated. In the exploitation phase of the fuzzy controller, a greedy
policy will take the best conclusion among the proposed ones; their initial choice
is therefore important. If there is no knowledge about the process to control,
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the K possible conclusions are equally distributed in the output universe of dis-
course. The q-values are initialized to zero to give the same chance for all possible
conclusions.

Let q̂rt be the maximum q-value for the rule r at time t:

q̂rt = max
k

(qrk,t) (3.15)

The value of the new state xt+1 after application of action A(xt) corresponding
to the maximum q-value at state xt is then (see equation 3.7)

V (xt+1) =
∑
r

µr(xt).q̂
r
t (3.16)

and the updates are given by:

∆qrk,t =

{
β (rt + γV (st+1)−Q(st, at))µ

r(xt) if k = kr

0 otherwise
(3.17)

with rt is the system reward factor and β and γ are the learning parameters (see
paragraph 3.3.2.2).

3.3.3 Proposed Navigation Algorithm

The purpose of the proposed local navigation algorithm is to follow the global
path defined by the global path planing algorithm while avoiding the unplanned
obstacles in the SLAM algorithm (moving obstacles). The inputs of the naviga-
tion algorithm are the global robot position, the speed of the robot, the global
path as a set of intermediate target points, the data from ultrasonic and infrared
sensors, and the path and position of the moving obstacles detected by the motion
segmentation algorithm (chapter 2) and tracked by a Kalman filter (see 3.3.3.1.2
of this chapter).

The proposed navigation system include two behaviors implemented by fuzzy
logic controllers: Goal Seeking behavior and Obstacle Avoiding behavior. The
behaviors are coordinated by a conditioned activation fusion scheme (figure 3.3.3).

The proposed algorithm has been adapted and implemented for a car-like
robot ”ROBUDEM” equipped with sonar sensors and a vision camera.
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Figure 3.6: Local Navigation system

3.3.3.1 Sensory data

3.3.3.1.1 Data from US and Infrared sensors
The ”ROBUDEM” robot is equipped with eight sonar sensors grouped in 4

pairs as shown in figure 3.7.
For robot navigation the sensors are grouped in five groups (figure 3.7).

Figure 3.7: Groups of Sensors

The distance di measured by the ith sensor group is expressed as:
For i = 1, ..., 5,

di = min{dimax,minj{{dij}}; j = 1..2 (3.18)

where dij is the distance measured by the jth sensor of the sensor group i.

3.3.3.1.2 Data from vision system
The position with respect to the camera’s optic axis and the speed of the

detected moving objects (see chapter 2) is estimated by a Kalman filter based
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tracking procedure. Whereas the position of these objects with respect to the
robot (depth position) is estimated by epipolar geometry applied to detected
features on the moving object.

Moving Object Tracking
A moving obstacle is defined by a bounding box around the estimated object

mask and its position is the center of the bounding box.The estimation of the 2D
position and speed of moving object from the motion segmentation blobs could
be quite noisy. In our application we use a Kalman filter tracking procedure to
estimate to true 2D position and speed of the moving objects. The size of the
bounding is defined only from the segmentation process and is not estimated by
the Kalman filter.

To use Kalman filter for object tracking we assume that the motion of the
objects is almost constant over frames. The commonly used model for 2D tracking
can be found in [56]. In this model, the state vector is the position (x, y) of the
center of the moving object bounding box. In our application, this model is
augmented by the speeds u and v along the X and Y axis, respectively, of the
tracked objects.

The dynamic model giving the system state at time t function of the state at
t− 1 is:

xt = Ftxt−1 +N (0,Qt) (3.19)

where the state transition matrix is derived from the theory of motion under
constant speed which can be expressed with equations:

pt = pt−1 + vt∆t

vt = vt−1

p, v, and ∆t are position, velocity and time step, respectively.
Ft is given then by:

Ft =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


The process noise is assumed to be drawn from a zero mean multivariate

normal distribution with covariance Qt, N (0,Qt).

Qt =


0 0
0 0
q2 0
0 q2


At time t an observation (or measurement) zt of the true state xt is made

according to
zt = Htxt + vt (3.20)
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where Ht is the observation model which maps the true state space into the
observed space and vt is the observation noise which is assumed to be zero mean
Gaussian white noise with covariance Rt

vt ∼ N (0,Rt)

The measurements are the positions of the blobs center in the object mask
and are obtained from the motion segmentation process, so

H =

[
1 0 0 0
0 1 0 0

]
The initial state, and the noise vectors at each step {x0, w1, ...,wt, v1...vt} are

all assumed to be mutually independent.
The Kalman filter is a recursive estimator. This means that only the estimated

state from the previous time step and the current measurement are needed to
compute the estimate for the current state. The state of the filter is represented
by two variables:

x̂t|t the estimate of the state at time t;
Pt|t the error covariance matrix (a measure of the estimated accuracy
of the state estimate).

Each time a new moving object is detected, we initiate a new Kalman Filter
and use the measured position of the detected blob as the expected value of the
position coordinates for the initial state. From a single frame, we do not know
the velocity of the moving object, but since it could be traveling in any direction
we suppose that it initial velocity is 0. For the covariance matrix, there is no
reason to suppose that the position and the velocity are correlated, so P0 is block
diagonal matrix. The uncertainty about the initial position coordinates is really
the same as our measurement error (i.e., how really we can localize the blob).
In our implementation we used an accuracy error equal to a few pixels for each
coordinate (3 or 4 pixels) and for the velocity accuracy an error of 15 to 20 pixels
is used.

x0 =


x0
y0
0
0



P0 =


42 0 0 0
0 42 0 0
0 0 202 0
0 0 0 202


The Kalman filter has two distinct phases (see appendix C): Predict and Up-

date. The predict phase uses the estimate from the previous timestep to produce
an estimate of the current state. In the update phase, measurement information
from the current timestep is used to refine this prediction to arrive at a new,
(hopefully) more accurate estimate.
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3.3.3.1.2.1 Depth estimation

To estimate the position of the detected moving object toward the robot (depth
of the objects), the epipolar geometry procedure is applied on the detected features
on these objects (see appendix A for more details).

For more navigation security, the considered distance ”robot-moving object”
is the smallest estimated distance corresponding for the closest feature.

3.3.3.1.3 results of the tracking process Figure 3.8 and 3.9 show results
for the tracking procedure. The track is represented by a surrounding box around
the moving object and a path of the box center at each time-lapse.

In the case of 3.9, each time the moving objects meet, an object is considered
as lost and the two objects are merged in one big object, and when the objects
separate, an new object is created.

Figure 3.8: Tracking of moving objects in the scene

Figure 3.9: Tracking of moving objects in the scene
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3.3.3.2 Goal seeking behavior

This fuzzy controller calculates the turn angle allowing the robot to reach the in-
termediate targets defined by the global path planing process. The model of the
controller is based on the distance of the robot to the goal and the goal direction.
The fuzzy logic controller is of a ”Sugeno” type [217, 218, 219] described by a set
of N fuzzy rules:

Rr : IF x1 is A
r
1 AND x2 is A

r
2 THEN yr = cr, r = 1, .., N (3.21)

The inputs of the goal seeker are the goal distance (x1) and the goal direction
(x2). The goal distance ranges between [0,7] and the goal direction between
[−180 ◦,180 ◦]. Ar

1 and Ar
2 are the fuzzy partitions defined on the input universes

of discourse (see next paragraph)
The output y of the controller is the turn angle of the robot, which ranges between
−180 ◦ and 180 ◦.

3.3.3.2.1 Fuzzification of inputs and output variables
Input 1: Goal direction

The direction of the goal is fuzzified into 11 Gaussian fuzzy sets:

• Back Right (BR): The center of this fuzzy set is −180 ◦ and its variance is
19 ◦.

• Oblique Back Right (OBR): The center of this fuzzy set is −135 ◦ and its
variance is 19 ◦.

• Right (R): The center of this fuzzy set is −90 ◦ and its variance is 19 ◦.

• Oblique Front Right (OFR): The center of this fuzzy set is −45 ◦ and its
variance is 9.5 ◦.

• Front Right (FR): The center of this fuzzy set is −22.5 ◦ and its variance is
9.5 ◦.

• Front (F): The center of this fuzzy set is 0 ◦ and its variance is 9.5 ◦.

• Front Left (FL): The center of this fuzzy set is 22.5 ◦ and its variance is
9.5 ◦.

• Oblique Front Left (OFL): The center of this fuzzy set is 45 ◦ and its variance
is 9.5 ◦.

• Left (L): The center of this fuzzy set is 90 ◦ and its variance is 19 ◦.

• Oblique Back Left (OBL): The center of this fuzzy set is 135 ◦ and its vari-
ance is 19 ◦.

• Back Left (BL): The center of this fuzzy set is 180 ◦ and its variance is 19 ◦.
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The membership functions of the first input variable ”goal direction” are depicted
in Figure (3.10).

Figure 3.10: Membership functions for the goal angle

Input 2: Goal distance

The distance of the goal to the robot is fuzzified into four Gaussian fuzzy sets:

• Very Near (VN): the center of this fuzzy set is 1 and its variance is 0.525.

• Near (NR): the center of this fuzzy set is 2 and its variance is 0.525.

• Medium (M): the center of this fuzzy set is 3.5 and its variance is 0.525.

• Far (FR): the center of this fuzzy set is 5 and its variance is 0.525.

The membership functions of the second input variable ”goal distance” are
depicted in Figure (3.11).
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Figure 3.11: Membership functions for the goal distance

Output: Turn angle
Since we want our robot to choose a smooth path to its goal, we have opted for
a fuzzy distribution of the turn angle such that it covers 360 ◦.
Since the model of our fuzzy controller is a ”Sugeno”, the output membership
functions are of a constant type.
The turn angle of the robot is fuzzified into 11 constant fuzzy sets:

• Back Right (BR): The turn angle is −180 ◦.

• Oblique Back Right (OBR): The turn angle is −135 ◦.

• Right (R): The turn angle is −90 ◦.

• Oblique Front Right (OFR): The turn angle is −45 ◦.

• Front Right (FR): The turn angle is −22.5 ◦.

• Front (F): The turn angle is 0 ◦.

• Front Left (FL): The turn angle is 22.5 ◦.

• Oblique Front Left (OFL): The turn angle is 45 ◦.

• Left (L): The turn angle is 90 ◦.

• Oblique Back Left (OBL): The turn angle is 135 ◦.

• Back Left (BL): The turn angle is 180 ◦.
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3.3.3.2.2 Fuzzy Inference Engine and Fuzzy Rule Base

Each fuzzy rule corresponds to a fuzzy relation. The product-operator chosen
is ”Min”.
The goal seeker functions as follows: If the target is located on the left side of the
robot, then it has to reach it by turning left and vice-versa. The fuzzy rule base
of the goal seeker is presented in Table (3.1):

G ang\G dist FR M NR VN

BR OBR OBR BR BR

OBR R R OBR OBR

R OFR OFR R R

OFR FR FR OFR OFR

FR F FR FR FR

F F F F F

FL F FL FL FL

OFL FL FL OFL OFL

L OFL L L L

OBL L L OBL OBL

BL OBL OBL BL BL

Table 3.1: Inference Table for the Goal Seeking Behavior

Figure (3.12) shows a graphical representation of dependency of the turn angle
on the goal distance and the goal direction.

Figure 3.12: Turn angle as a function of goal distance and goal direction
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We can see from this figure that the turn angle increases with the increase of
the goal direction. This is logical since the robot has to reach the goal direction
to get to its target.

It’s clear also that the dependency of the turn on the goal direction is more
important than its dependency on the goal distance. If the distance is very short,
then the turn angle increases rapidly with the goal direction and if this distance
is long, the dependency of the turn angle on the goal direction is less important.

3.3.3.3 Obstacle Avoidance behavior

The 0-order Takagi-Sugeno (eq.3.22) fuzzy controller used for obstacle avoidance
is based on the distances to the obstacle detected by the sonar and infrared sensors
as well as the estimated distance to the detected moving obstacles.

Rr : IF x1 is A
r
1 AND x2 is A

r
2 AND ... AND x8 is A

r
8

THEN yr1 = cr1, AND yr2 = cr2 (3.22)

r = 1, .., N

The inputs x1, x2, ..., x5 are distance to obstacles detected by the ultrasound and
infrared sensors, x6 is the goal direction, x7 is the estimated distance to moving
obstacles by the tracking process and x8 is the direction of the moving obstacles.
The output of the controller are the change of orientation and the change of speed
to apply to the robot.

This fuzzy controller is equipped with an online reinforcement learning algo-
rithm. The actions correspond to the possible scalar outputs of the controller and
the states correspond to the different combinations of the input fuzzy variables of
the controller.

To help convergence of the learning algorithm, the K rule conclusions take
into account the evident decisions. This means if an obstacle is detected on the
left side of the robot, the decision of the navigation process is to turn to the right
an vice-versa. Then, all possible conclusions are considered as turn to the right
(or turn to the left if the obstacle is on the right side of the robot).

In the same idea, if the robot has the choice between two directions, the rule
decisions should favor the direction to the goal. This means that most of them
are defined in the direction of the goal and few of them are left in the other side
to avoid convergence of the algorithm to local minima.

The reinforcement learning algorithm is as follows (see section 3.3.2.3):

1. Initialize Q(s,a) to 0 for all state s and action a

2. Perceive current state s

3. Choose an action a according to action value function

4. carry out action a in the environment. Let the next state be s′ and the
reward be r.
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5. Update action value function from s, a, s′, and r:

Qt+1(s, a) = (1− αt)Qt(s, a) + βt(r + γmax
a′∈A

Qt(s
′, a′))

where αt is a learning rate parameter and γ is a fixed discounting factor
between 0 and 1.

6. Return to 2

3.3.3.4 Command Fusion

The two previously described behaviors are independent. The go to goal behavior
is activated if no obstacle is detected in its way. But when the readings from front
sensors go below a given threshold (adapted from experience), the avoid obstacles
is activated. In this case the readings from lateral and rear sensors are used to
help decision.

3.3.4 Experimental results

The simulation of the robot navigational behavior is done with simulator Mo-
RoS3D. A simulator as such increases safety when developing and testing algo-
rithms. In MoRoS3D a robot can be placed in a 3D environment and interact
with that environment in a manner similar to that of the robot in the real physi-
cal situation. Although MoRoS3D visualizes the entire surroundings of the robot,
the robot software only ”sees” the information it collects through its sensors, just
like with a physical robot. The MoRoS3D simulator provides simple interaction
with the user and offers different virtual cameras including on-board and tracking
ones. Simple distance sensors, such as Laser, US and IR, are simulated. Sensor
simulation is actually a geometrical problem that comes to calculating intersec-
tions between shapes. Figure 3.13 shows the training of the path planning system
in the a realistic environment. The evolution of the training error is also repre-
sented with respect to the number of training epochs (figure 3.14). We can see
that the user defined ’smooth’ path is almost found by the learning process after
few training epochs.
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Figure 3.13: Training of the path planing system

Figure 3.14: Training error compared to a chosen smooth trajectory

Figure 3.15 shows the results of the developed path planning system in some
realistic cases.
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Figure 3.15: Results of the navigation strategy, presented in the MoRoS3D multi
robot simulator



156 Chapter 3. Navigation System

3.4 Conclusion

In this chapter we presented an adaptive navigation solution for a mobile robot.
While following a predefined path by the global path planing process based on the
environment model (SLAM output), the robot uses an unsupervised learning ap-
proach (reinforcement learning)to adept itself to navigate around the unmodelled
obstacles and improve its performance. The approach adopts a behaviorist design
and a strategy for multi-behaviors coordination. The inputs of navigation process
are ultrasound data and the position and size of the detected moving objects. A
Kalman filter is used to predict the motion of the moving objects.



Final Conclusions and
Future Work

This work has introduced three tasks needed for mobile robot navigation relying
on a single on-board camera as sensory input: Detection of moving object and
estimation of their motion and position ; feature based simultaneous localization
and mapping ; and learning based path planing. The path planing process uses
also ultrasound sensors for obstacle detection.

The main contributions for the proposed algorithm for moving objects detec-
tion and motion estimation are:

• The combination of the Gaussian Mixture Model (GMM) background sub-
traction approach and a Maximum a Posteriori Probability Markov Random
Field (MAP-MRF) framework to solve the problem. This has enabled ex-
ploiting the simplicity and capability of the GMM approach to adapt to
illumination changes and small motions in the scene and the advantages
of spatio-temporal dependencies that moving objects impose on pixels and
the interdependence of motion and segmentation fields. Tacking into ac-
count the spatial information (background model) estimated with the GMM
model, as well as the simultaneous estimation of the motion while segment-
ing has permitted a good detection of the moving objects and avoided arti-
facts and blurring caused with motion compensation.

• A feedback of the MRF segmentation results is used to re-update the back-
ground model. This has resulted in accelerating the learning of the new
stationary regions and therefore avoiding the fragmentation problem.

As a future work we can study the automatic estimation of the number of
components in the GMM model as well as the automatic learning of the MRF
model parameters.

The proposed algorithm for simultaneous localization and mapping is a solu-
tion for vision based SLAM problem in large environment. The approach builds
several size limited local maps and combine them into a global map. For a robust
matching the algorithm uses a product of three parameters: the Mahalanobis
distance between measurements and their predictions, the Euclidean distance be-
tween the descriptor vectors of the features, and the distance of the feature to
the induced epipolar line (epipolar constraint). This allows using the advantage

157



158 Chapter 3. Navigation System

of looking for feature matching based on the prediction of their position based
on the system model and the advantage of the space-scale invariance parameters.
Another contribution of the proposed SLAM algorithm is the use of the epipolar
geometry principle to estimate the 3D position of the features. To avoid intro-
ducing outlier features in the built map, the algorithm uses the segmentation
algorithm to detected the moving objects and therefore eliminates the associated
features.

An extension for the proposed SLAM algorithm could be the fusion of the
data from other sensors as the inertial sensors or robot wheel encoders for a more
robust and fast localization and mapping.

The built feature based map is exploited by a global path planning algorithm
of B. Hasegawa [240] to generate the safe path.

The estimated 3D position of the detected moving objects and the data from
ultrasound sensors are used by an adaptive fuzzy controller for obstacle avoidance.
The output of this obstacle avoidance behavior is fused with the output of a goal
seeking behavior for a safe navigation of the mobile robot. The multi-behavior
coordination.
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Appendix A

Imaging - Fundamental
Definitions

This appendix introduces the basic geometric concepts of multiple-view computer
vision. The focus is on geometric models of perspective cameras, and the con-
straints and properties such models generate when the same 3D scene is observed
by multiple cameras (multiple views).

A.1 Image Formation

An image is created by projecting the 3D scene on a 2D image plane. The drop
from three-dimensional world to a two-dimensional image is a projection process
in which one dimension is lost. The usual way for modeling this process is by
central projection in which a ray from a point in space is drawn from a 3D world
point through a fixed point in space, the center of projection. This ray will in-
tersect a specific plane in space chosen as the image plane. The image plane is
located at the distance of the focal length from the origin of the 3D axis along
the Z-direction, and it is perpendicular to it. The complete scene is located at
positive Z-ordinates and we view the image with viewing direction on negative
Z-direction.

Let I(x, y) be the image intensity at time t at the image point (x, y). The
intersection of the ray with the image plane represents the image of the point.
This model is in accord with a simple model of a camera, in which a ray of light
from a point in the world passes through the lens of a camera and impinges on
a film or digital device, producing an image of the point. Ignoring such effects
as focus and lens thickness, a reasonable approximation is that all the rays pass
through a single point, the center of the lens.
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Figure A.1: The Perspective Projection

In order to analyze the mapping process, it is advisable to first define the
projective space Pn. The Euclidean space Rn can be extended to a projective space
Pn by representing points as homogeneous vectors. In this text, we denote the
homogeneous counterpart of vector x as x̃. A linear transformation of Euclidean
space Rn is represented by matrix multiplication applied to the coordinates of the
point. In just the same way a projective transformation of projective space Pn

is a mapping of the homogeneous coordinates representing a point, in which the
coordinate vector is multiplied by a non-singular matrix.
Central projection is then simply a mapping from P3 to P2. To describe this
mapping, three coordinate systems need to be taken into account: the camera,
image and world coordinate system.

Consider a point in P3 in the camera coordinate system, written in terms of
homogeneous coordinates X̃c(Xc, Yc, Zc, T )

T . We can now see that the set of
all points X̃(X,Y, Z, T )T for fixed X, Y and Z, but varying T , form a single
ray passing through the point center of projection. As a result, all these points
map onto the same point, thus the final coordinate of X̃(X,Y, Z, T )T is irrelevant
to where the point is imaged. In fact, the image point is the point in P2 with
homogeneous coordinates x̃c(xc, yc, f)

T , as defined by the projection equation

 xc
yc
f

 =

 1 0 0 0
0 1 0 0
0 0 1 0



Xc

Yc
Zc

1

 , (A-1)

with f the focal length of the camera lens.
The mapping may thus be represented in its most simple form by a mapping of
3D homogeneous coordinates, represented by a 3 × 4 matrix P0 with the block
structure P0 = [I3×3 |03×1 ] , where I3×3 is the identity matrix and 03×1 is a zero
3-vector.

In the image coordinate system, the mapping from x̃c(xc, yc, f)
T to image

coordinates is described. This mapping takes into account different centers of
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projection (x0, y0), non-square pixels and skewed coordinate axes. As such, it
encompasses all the internal camera parameters. This mapping can be expressed
in terms of matrix multiplication as:

x̃i =

 x
y
1

 =

 αx αx cot(θ) x0
0 αy y0
0 0 1

 xc
yc
f

 = K

 xc
yc
f

 , (A-2)

where (x0, y0) is the coordinate of the principle point or image center, αx and αy

denote the scaling in the x and y direction and θ is the angle between the axes,
which is in general equal to π/2. The matrix K is an upper triangular matrix
which provides the transformation between an image point and a ray in Euclidean
3-space. It encompasses all internal camera parameters and is called the camera
calibration matrix. Throughout this work, we will assume that the cameras are
calibrated, which means that K is known.

As a last step of projection, the description of the transformation between the
camera and the world coordinate system is required. Changing coordinates in
space is equivalent to multiplication by a 4× 4 matrix:

Xc

Yc
Zc

1

 =

[
R t
0T 1

]
Xw

Yw
Zw

1

 , (A-3)

with R the rotation matrix and t the translation vector.
Concatenating the expressions A-3, A-2 and A-1, it is clear that the most

general image projection can be represented by an arbitrary 3× 4 matrix of rank
3, acting on the homogeneous coordinates of the point in P3 mapping it to the
imaged point in P2:

x̃ =

 x
y
1

 = K

 1 0 0 0
0 1 0 0
0 0 1 0

[ R t
0T 1

]
Xw

Yw
Zw

1

 = K [R| t]


Xw

Yw
Zw

1

 .
(A-4)

It thus turns out that the most general imaging projection is represented by
an arbitrary 3 × 4 matrix of rank 3, acting on the homogeneous coordinates of
the point in P3 mapping it to the imaged point in P2:

x̃ = PX̃, (A-5)

with:
P = K [R| t] (A-6)

This matrix P is known as the camera matrix. It expresses the action of a
projective camera on a point in space in terms of a linear mapping of homogeneous
coordinates.

When returning to non-homogeneous coordinates for a camera based in the
origin and ignoring non-square pixel aspect ratios (this means P = [I3×3 |03 ]), it
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can be observed that to map a 3D point X = (X,Y, Z) to the image coordinates
x = (x, y, f), the following perspective projection equations can be written:

x =

(
x
y

)
=
f

Z

(
X
Y

)
, (A-7)

in which x and y are the image coordinates. In order to reduce the complexity of
some equations and for numerical stability, we can parameterize the depth by a
proximity factor d = 1

Z .

A.2 Two-View Image Geometry

A.2.1 Two-View Geometry described by the Fundamental
MAtrix

The geometry between two views is called the epipolar geometry. This geometry
depends on the internal parameters and relative position of the two cameras. The
fundamental matrix F encapsulates this intrinsic geometry and was introduced
by Faugeras in [49] and Hartley in [50]. It is a 3 × 3 matrix of rank 2. The fun-
damental matrix describes the relationship between matching points: if a point
X̃ is imaged as x̃ in the first view, and x̃′ in the second, then the image points
must satisfy the relation x̃′TFx̃ = 0. In this section, the epipolar geometry is
described and the fundamental matrix is derived. The fundamental matrix is in-
dependent of scene structure. However, it can be computed from correspondences
of imaged scene points alone, without requiring knowledge of the cameras internal
parameters or relative pose.

To describe this mapping, first the geometric entities involved in epipolar ge-
ometry are introduced in figure A.2. Here, the epipole ẽ is the point of intersection
of the line joining the camera centers (the baseline) with the image plane. Equiv-
alently, the epipole is the image in one view of the camera center of the other
view. It is also the vanishing point of the baseline (translation) direction. An
epipolar plane is a plane containing the baseline. There is a one-parameter family
of epipolar planes. An epipolar line is the intersection of an epipolar plane with
the image plane. The epipolar line corresponding to x̃ is the image in the second
view of the ray back-projected from x̃. Any point x̃′ in the second image match-
ing the point x̃ must lie on the epipolar line l̃′. All epipolar lines intersect at the
epipole. An epipolar plane intersects the left and right image planes in epipolar
lines, and defines the correspondence between the lines.

The mapping from a point in one image to a corresponding epipolar line in
the other image may be decomposed into two steps. In the first step, the point x̃
is mapped to some point x̃′ in the other image lying on the epipolar line l̃′. This
point x̃′ is a potential match for the point x̃. In the second step, the epipolar line
l̃′ is obtained as the line joining x̃′ to the epipole ẽ′. Figure A.2 illustrates this
mapping process.
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Figure A.2: The mapping process from one camera according to the epipolar
geometry

Consider a plane π in space not passing through either of the two camera
centers. The ray through the first camera center corresponding to the point x̃
meets the plane π in a point X̃. This point X̃ is then projected to a point x̃′ in
the second image. This procedure is known as transfer via the plane π. Since X̃
lies on the ray corresponding to x̃, the projected point x̃′ must lie on the epipolar
line l̃′ corresponding to the image of this ray, as illustrated in A.2. The points
x̃ and x̃′ are both images of the 3D point X̃ lying on a plane. The set of all
such points x̃i in the first image and the corresponding points x̃′

i in the second
image are projectively equivalent, since they are each projectively equivalent to
the planar point set X̃′. Thus there is a 2D homography Hπ mapping each x̃i to
x̃′
i.

Given the point x̃′ the epipolar line l̃′ passing through x̃′ and the epipole ẽ′

can be written as l̃′ = ẽ′ × x̃′ = [ẽ′]× x̃′ ([ẽ′]× being the skew-symmetric matrix
form of ẽ′). Since x̃′ may be written as x̃′ = Hπx̃, we have:

l̃′ = [ẽ′]× Hπx̃ = Fx̃, (A-8)

where we define F = [ẽ′]× Hπ as the fundamental matrix. Since [ẽ′]× has rank 2
and Hπ rank 3, F is a matrix of rank 2, which is logic as F represents a mapping
from a 2-dimensional onto a 1-dimensional projective space.

The fundamental matrix satisfies the condition that for any pair of correspond-
ing points x̃ and x̃′ in the two images

x̃′TFx̃ = 0 (A-9)

This is true, because if points x̃ and x̃′ correspond, then x̃′ lies on the epipolar
line l̃′ = Fx̃ corresponding to the point x̃. In other words 0 = x̃′T l̃′ = x̃′TFx̃.
Conversely, if image points satisfy the relation x̃′TFx̃ = 0 then the rays defined by
these points are coplanar. This is a necessary condition for points to correspond.
The importance of the relation A-10 is that it gives a way of characterizing the
fundamental matrix without reference to the camera matrices, i.e. only in terms
of corresponding image points. This enables F to be computed from image cor-
respondences alone.
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A.2.1.1 Estimating F: the eight-point algorithm

If a number of point correspondences x̃ ↔ x̃′ is given, we can use equation (A-10)
to compute the unknown matrix F.

Each point correspondence gives rise to one linear equation in the unknown
entries of F. From a set of n point correspondences, we obtain a n× 9 coefficient
matrix A by stacking up one equation for each correspondence.

- In general A will have rank 8 and the solution is the 1-dimensional right
null-space of A.

- The fundamental matrix F is computed by solving the resulting linear system
of equations, for n > 8.

- If the data are not exact and more than 8 points are used, the rank of A will
be 9 and a least-squares solution is sought.

- The least-squares solution for F is the singular vector corresponding to the
smallest singular value of A.

- This method does not explicitly enforce F to be singular, so it must be done
a posteriori.

- Replace F by F′ such that detF′ = 0, by forcing to zero the least singular
value.

- It can be shown that F′ is the closest singular matrix to F in Frobenius
norm.

- Geometrically, the singularity constraint ensures that the epipolar lines meet
in a common epipole

A.2.1.2 Estimating F using RANSAC algorithm

Automatic methods for finding point correspondence make mistakes very often
in practice, thus introducing outliers in the point correspondences for the funda-
mental matrix estimation. It is well known that least-square estimation is very
sensitive to outliers, therefore several robust estimation techniques have been ap-
plied to overcome the outlier problem. Among them, random sampling consensus
(RANSAC) technique has been widely used in many computer vision problems.
The basic idea of using RANSAC for fundamental matrix estimation is as follows:
randomly selecting a number of minimal subsets of point correspondences to deter-
mine the fundamental matrix for each subset, and then find the best fundamental
matrix that is most consistent with the entire set of point correspondences.

Given a set of point correspondences, denoted by X = (x̃k, x̃
′
k) | k = 1, ..., n,

the RANSAC algorithm for fundamental matrix estimation consists of the follow-
ing steps:

1. Randomly select a number of subsets of eight point correspondences from
the entire set X.

2. For each subset, indexed by j, compute the corresponding fundamental ma-
trix Fj by using a linear estimation algorithm (previous describe algorithm).



Appendix A 167

3. For each estimate Fj , compute the residue rj for each point correspondence
and count the total number of consistent correspondences, i.e. r2j < σ2,

where σ2 is a predefined constant.

4. Keep the fundamental matrix Fj that yields the most consistent correspon-
dences.

5. Refine the fundamental matrix estimation by applying the linear estimation
algorithm or the M-estimator on the set of consistent point correspondences
only.

Assume the outlier percentage in the entire correspondence set X is τ . Thus,
the total number of randomly selected subsets N required in RANSAC to achieve
a probability P that at least one selected subset does not contain any outlier is
given by

N =
log(1− P )

log[1− (1− τ)q]
(A-10)

where q is the size of the minimal subset, i.e 8 in this case.

A.2.2 Two-View Geometry described by the Essential Ma-
trix

The essential matrix is the specialization of the fundamental matrix to the case of
normalized image coordinates. Historically, the essential matrix was introduced
by Longuet-Higgins in [243] before the fundamental matrix, and the fundamental
matrix may be thought of as the generalization of the essential matrix in which the
inessential assumption of calibrated cameras is removed. The essential matrix has
fewer degrees of freedom, and additional properties, compared to the fundamental
matrix.

Consider a camera matrix decomposed as P = K[R|t], and let x̃ = PX̃ be a
point in the image. If the calibration matrix K is known, then we may apply its
inverse to the point x̃ to obtain the point x̂ = K−1x̃. Then x̂ = [R|t]X̃, where
x̂ is the image point expressed in normalized coordinates. It may be thought of
as the image of the point X̃ with respect to a camera [R|t] having the identity
matrix I as calibration matrix. The camera matrix K−1P = [R |t ] is called
a normalized camera matrix, the effect of the known calibration matrix having
been removed. Now, consider a pair of normalized camera matrices P = [I|0]
and P′ = [R|t]. The fundamental matrix corresponding to the pair of normalized
cameras is customarily called the essential matrix and has the form:

E = [t]× R = R
[
RT t

]
× (A-11)

The essential matrix can then be defined as:

x̂′TEx̂ = 0 (A-12)

in terms of the normalized image coordinates for corresponding points x̃ and
x̃′. Substituting for x̂ and x̂′ gives x̃′TK′−1T

EK−1x̃ = 0. Comparing this with
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the relation x̃′TFx̃ = 0 for the fundamental matrix, it follows that the relationship
between the fundamental and essential matrices is:

E = K′TFK (A-13)

This relationship shows that once the camera calibration matrix K is known, the
essential matrix can be calculated from the fundamental matrix.

The essential matrix holds all the information about the ”external” calibration
parameters: rotation and translation between the two camera frames.

E = R [t]× , (A-14)

with [t]× the skew-symmetric matrix form of the translation vector.

A.2.3 Triangulation

Given the camera matrices P and P ′, let x̃ and x̃′ be two corresponding points
satisfying the epipolar constraint x̃′TFx̃ = 0 . It follows that x̃′ lies on the epipolar
line Fx̃ and so the two rays back-projected from image points x̃ and x̃′ lie in a
common epipolar plane. Since they lie in the same plane, they will intersect at
some point. This point is the reconstructed 3D scene point X̃.

Analytically, the reconstructed 3D point X̃ can be found by solving for depth
parameter Z or Z ′ in the following equation:

ẽ = Zx̃− Z ′x̃′ (A-15)

The depths Z and Z ′ are unknown. Both encode the position of X̃ in space,
as Z is the depth of X̃ whit respect to the camera at the first view and Z ′ is the
depth of M with respect to the camera at the second view.

The three points x̃, ẽ and x̃′ are known and are collinear, so we can solve for
Z using the following expression:

Z =
(ẽ× x̃′).(x̃× x̃′)

∥ x̃× x̃′ ∥2
(A-16)

A.3 Three-View Geometry

The trifocal tensor approach is an extension to the case of three views of the
two-view geometry description. This approach maintains a similar projective
geometry spirit and has been proposed and developed by Sashua [244], Hartley
[245] and Faugeras [246]. The trifocal tensor is a 3× 3× 3 array of numbers that
relate the coordinates of corresponding points or lines in three views. Just as the
fundamental matrix is determined by the two camera matrices, and determines
them up to projective transformation, so in three views, the trifocal tensor is
determined by the three camera matrices, and in turn determines them, again up
to projective transformation.
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Figure A.3: A line in 3-space is imaged as the corresponding triplet l,l′,l′′ in three
views indicated by their centers, c,c′,c′′, and image planes.

Consider a line L in 3D space, which is projected onto three cameras, resulting
in 3 lines l, l′ and l′′ in image space, as illustrated by Figure A.3. These lines are
obviously inter-related. The trifocal tensor expresses this relation by mapping
lines 2 images to a line in the remaining image. According to the three-view
geometry model, the incidence relation for the ith coordinate li of l can be written
as:

li = l′
TTil′′ (A-17)

By definition, the set of three matrices T1, T2, T3 constitute the trifocal tensor in
matrix notation. In tensor notation, the basic incidence relation A-17 becomes:

li = l′j l
′′
kT

jk
i (A-18)

By defining the vectors ai and bi as the ith columns of the camera matrices
for the three views, the three-view trifocal tensor formulation can also be written
as:

T jk
i = ajib

k
4 − aj4b

k
i , (A-19)

where a4 and b4 are the epipoles in views two and three respectively, arising from
the first camera.

As with the fundamental matrix, once the trifocal tensor is known, it is possible
to extract the three camera matrices from it, and thereby obtain a reconstruction
of the scene points and lines. As ever, this reconstruction is unique only up to a
3D projective transformation; it is a projective reconstruction.

It is straightforward to compute the fundamental matrices F21 and F31 be-
tween the first and the other views from the trifocal tensor:

F21 = [e′]× [T1, T2, T3] e′′; F31 = [e′′]×
[
T T
1 , T T

2 , T T
3

]
e′ (A-20)

To retrieve the camera matrices, the first camera may be chosen as P = [I|0].
Since F21 is known from equation A-20, it is possible to derive the form of the
second camera as:

P′ = [[T1, T2, T3] e′′|e′] (A-21)
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The third camera cannot be chosen independently of the projective frame of the
first two. It turns out that P′′ can be written as:

P′′ =
[(

e′′e′′
T − I

) [
T T
1 , T T

2 , T T
3

]
e′|e′′

]
(A-22)

This decomposition shows that the trifocal tensor may be computed from
the three camera matrices, and that conversely the three camera matrices may
be computed, up to projective equivalence, from the trifocal tensor. Thus, the
trifocal tensor completely captures the three cameras up to projective equivalence
and we are able to generalize the method for two views to three views. There are
several advantages to using such a three-view method for reconstruction.

• It is possible to use a mixture of line and point correspondences to compute
the projective reconstruction. With two views, only point correspondences
can be used.

• Using three views gives greater stability to the reconstruction, and avoids
unstable configurations that may occur using only two views for the recon-
struction.
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Visual Features

B.1 Feature detection

The navigation map is built with features present in the environment that can
be detected by the external sensor. Recognizable features are essential for SLAM
since the algorithm will not operate correctly in a featureless environment.

There are two types of features, primitive and high-level features. Primitive
features are defined as features which can be described by simple geometrical
definitions. Common examples are points and lines. While the high level features,
referred to in the literature as landmarks, are more complex and can, therefore,
be intrinsically more distinctive for the environment. These landmarks should
be invariant to geometric transformation, eg. doors, objects and the feature
extraction can be seen as a filter which permits the handling of noise from sensors
and dynamics in the environment.

In the field of robot navigation, the mostly used primitive features are corners
and SIFT (Scale Invariant Feature Transform) features. In the following we will
give an overview on these primitive features extraction methods.

B.1.1 Corner detection Methods

Corners are local image features characterized by locations where variations of
intensity function f in both X and Y directions are high. In mathematical def-
inition this means both partial derivatives fx and fy are large. The quality of a
corner detector is often judged based on its ability to detect the same corner in
multiple images, which are similar but not identical, for example having different
lighting, translation, rotation and other transforms.

Different corner detectors exist, and they can be classified in tree main groups:
edge-relation methods, topology methods, and autocorrelation methods. The
detectors that do not fit into one of these categories are discussed in a separate
paragraph.
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B.1.1.1 Edge-Relation Methods

Kitchen and Rosenfeld [191] were the first to apply differential geometry op-
erators to corner detection. They proposed a cornerness measure for each pixel
based on the change of gradient direction (second-order derivatives) along an edge
contour weighted by the local gradient magnitude. Corners are then identified by
the local maximum of this measure, which can be done in a computationally effi-
cient manner by applying non-maximum suppression to the gradient magnitudes
before weighting the second-order derivatives. This corner detector suffers from
sensitivity as it relies on second-order derivative terms and has been shown to
have a poor repeatability rate and localization.

A popular corner detector designed for motion estimation was proposed by
Wang and Brady [191]. They applied differential geometry operators to detect
corners based on the measurement of surface curvature, but derived a simplified
cornerness measure suitable for real-time applications while improving perfor-
mance relative to the Kitchen and Rosenfeld operator.

B.1.1.2 Topology Methods

Beaudet [192] developed one of the first corner detectors and the insights
gained from his approach are exploited by many other corner detectors. The
Beaudet operator is a rotationally invariant measure of cornerness given by the
determinant of the Hessian matrix. Since the Hessian matrix involves the compu-
tation of second-order derivatives this operator is sensitive to noise. In addition,
it has been shown to be unstable in scale space. This approach can be viewed
as looking for high curvature edges by calculating image Gaussian curvature (i.e.
the product of two principle curvatures).

Deriche extended Beaudet’s operator by applying it at multiple scales. Lines
are drawn between the corresponding corners at each scale and the intersection
of these lines with the nearest zero crossing of the Laplacian image are defined as
the position of the corner. This method improves the localization relative to the
Beaudet approach, but the Deriche operator still suffers from sensitivity to noise.

B.1.1.3 Autocorrelation Methods

The Moravec operator [193] considers a local window in the image and de-
termines the average change of intensity resulting from shifting the window by
a small amount in various directions. This operation is repeated for each pixel
position which is assigned an interest value equal to the minimum change pro-
duced by these shifts. Corners are the local maximum of the interest values. This
operator has been shown to be sensitive to noise along strong edges because only
the minimum intensity change is considered for each pixel position.

Many of the weaknesses of the Moravec operator are addressed by the Harris
operator [191, 194]. This operator estimates the measure of local autocorrela-
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tion using first-order derivatives which is suggested by performing an analytic
expansion of the Moravec operator. The response is isotropic as the variation of
the autocorrelation over different orientations can be calculated from the prin-
ciple curvatures of the local autocorrelation. The Harris operator is generally
considered the best operator with respect to detecting true corners, but has poor
localization.

The Forstner [195] operator uses a similar measure of cornerness to the Harris
operator (although, how this measure is calculated differs greatly) and uses local
statistics to calculate the selection threshold. The result is better localization at
the cost of increased computation.

B.1.1.4 Other Methods

Another corner detector algorithm based on brightness comparisons within a
circular mask has been proposed by Smith and Brady [191]. SUSAN (Smallest
Univalue Segment Assimilating Nucleus) assumes that within a relatively small
circular region pixels belonging to a given object will have relatively uniform
brightness. The algorithm computes the number of pixels with similar brightness
to the pixel at the center of the mask (the nucleus of the mask). These pixels are
called the USAN (Univalue Segment Assimilating Nucleus) of the mask. Corners
are detected by applying the mask to all pixels in the image and then finding
the local minima in this new USAN map. This corner detector is robust to noise
(no spatial derivatives are computed), fast to compute, but only has an average
repeatability rate.

Trajkovic and Hedley [191] have proposed a corner detector that uses the same
intuition used in the SUSAN operator. For a given point in the image, the vari-
ation in brightness along all lines passing through the point are considered. At
corners the variation in brightness will be high for all lines. The repeatability
rate of this algorithm is not as strong as the Harris operator, but it is one of the
fastest available corner detectors.

The use of corners for camera motion estimation works well for small motion,
but will fail if there are large scale or viewpoint changes between the images. This
is because the corner detectors used are not scale-invariant, and the correlation
measures are not invariant to viewpoint, scale and illumination change. The first
problem is addressed by scale-space theory, which has proposed feature detectors
with automatic scale selection [178]. In particular, scale-space interest point de-
tectors have been shown to have much greater repeatability than their fixed scale
equivalents [198]. The second problem suggests the need for local descriptors of
image regions that are invariant to the imaging process.
Geometrical invariance can be acheived by assuming that the regions to be matched
are locally planar, and by describing them in a manner which is invariant under
homographies. Many authors use feature descriptors which are invariant under
special cases of this group e.g. similarities or affinities. The well known approach
is Lowe’s SIFT features [198] , which uses a characteristic scale and orientation
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at interest points to form similarity invariant descriptors.

B.1.1.5 Harris corner detector

Harris corner detector is one of the most frequently used operator in many
application areas, as motion tracking, stereo matching, and image database re-
trieval. It is relatively simple but still efficient and reliable.
This corner detector is based on a local structure matrix (tensor):

Cstr = G(r, σ)
[
f2x fxfy
fxfy f2y

]
(A-1)

with G(r, σ) is a smoothing Gaussian filter of a selected size σ. fx and fy are the
spatial derivatives and ft is the temporal derivative of the intensity function f .

denoting in (A-1) the smoothing by f̂f , we have:

Cstr =

[
f̂2x f̂xfy

f̂xfy f̂2y

]
(A-2)

The local structure matrix Cstr is:

• Symmetric and therefore it can be diagonalized by rotation of the coordinate
axes. The diagonal entries are the two eigenvalues λ1 and λ2:

Cstr =

[
λ1 0
0 λ2

]
(A-3)

• Positive definite which means the eigenvalues are nonnegative (λ1 ≥ 0, λ2 ≥
0).

Assume λ1 ≥ λ2 ≥ 0, a corner is a location where the smaller eigenvalue, λ2, is
large enough.
In Harris method a corner is detected at location x when

H(x) > Thr (A-4)

Where H(x) is a measure of corner strength:

H(x) = detCstr − α(traceCstr)

= λ1λ2 − α(λ1 + λ2)
2 (A-5)

α is a parameter and H ≥ 0 if 0 ≤ α ≤ 0.25.

Usually, Thr is set close to zero and fixed, while α is a variable parameter.
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• Larger α⇒ smaller H⇒ less sensitive detector: less corners detected (Figure
B.1.a).

• Smaller α ⇒ larger H ⇒ more sensitive detector: more corners detected
(Figure B.1.b).

Figure B.1: Harris corner detector

B.1.2 SIFT feature detector

The SIFT approach [178], for image feature generation, takes an image and trans-
forms it into a collection of local feature vectors. Each of these feature vectors
is invariant to any scaling, rotation or translation of the image. To extract these
features the SIFT algorithm applies a 4 stage filtering approach:

1. Detection of the keypoints candidates as extrema of Difference-of-Gaussian
(DOG) function in the image scale space.

2. Localization of the keypoints as extrema of the second order Taylor expan-
sion of DOG function.

3. Assignment of orientation according to the major gradient direction around
each keypoint at the selected scale.

4. Calculation of the local keypoint descriptors based on the set of surrounding
image gradients.

Scale-Space Extrema Detection

This stage of the filtering attempts to identify those locations and scales that
are identifiable from different views of the same object. This can be efficiently
achieved using a ”scale space” function. The scale space is defined by the function:

L(x, y, σ) = G(x, y, σ) ∗ f(x, y) (A-6)
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Where f(x, y) is the input image, ∗ is the convolution operator, and G(x, y, σ) is
a variable-scale Gaussian

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

Difference of Gaussians is then used to detect stable keypoint locations in
the scale-space by locating local extrema of the difference D(x, y, σ) between two
Gaussian-blurred images, one with scale k times the other:

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (A-7)

The difference-of-Gaussian filter is in effect a tunable bandpass filter. To
detect the local maxima and minima of D(x, y, σ) each point is compared with
its 8 neighbours at the same scale, and its 9 neighbours up and down one scale.
If this value is the minimum or maximum of all these points then this point is
an extrema and it is selected as a candidate interest point (called keypoint in the
SIFT framework).

Keypoint Localistaion

The location of the keypoints corresponds to the extremum x̄ of the second
order Taylor expansion of the scale space function D(x, y, σ) (eq.A-8), having the
origin at the sample point.

D(x) = D +
∂DT

∂x
x+

1

2
xT ∂

2D

∂x2
x (A-8)

where x = (x, y, σ)T is the offset from the sample point. The location x̄ is
determined by taking the derivative of equation (A-8) with respect to x and
setting it to zero, giving

x̄ = −∂
2D−1

∂x2

∂D

∂x
(A-9)

Local extrema with low contrast are rejected because they are sensitive to
noise, and keypoints that correspond to edges are also discarded.

Orientation Assignment

This step aims to assign a consistent orientation to the keypoints based on
local image properties. The approach taken to find an orientation is:

• The scale of the keypoint is used to select the Gaussian smoothed image,
L, with the closest scale, so that all computations are performed in a scale-
invariant manner.

• Compute gradient magnitude, m

m(x, y) =
√

(L(x+ 1, y, σ)− L(x− 1, y, σ))2 + (L(x, y + 1, σ)− L(x, y − 1, σ))2
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• Compute orientation, θ

θ(x, y) = atan

(
L(x, y + 1, σ)− L(x, y − 1, σ)

L(x+ 1, y, σ)− L(x− 1, y, σ)

)

• Form an orientation histogram from gradient orientations of sample points
in the neighborhood of the keypoint. The contribution of each neighboring
pixel is weighted by the gradient magnitude and a Gaussian window with a
σ that is 1.5 times the scale of the keypoint.

• Peaks in the histogram correspond to dominant orientations. A separate
keypoint is created for the direction corresponding to the histogram maxi-
mum, and any other direction within 80% of the maximum value.

• Some points will be assigned multiple orientations

• Fit a parabola to the 3 histogram values closest to each peak to interpolate
the peaks position

Keypoint Descriptor

Once a keypoint orientation has been selected, the feature descriptor is com-
puted as a set of orientation histograms on a 4 × 4 pixel neighborhood. The
orientation histograms are relative to the keypoint orientation.

Like before, the contribution of each pixel is weighted by the gradient magni-
tude, and by a Gaussian with σ = 1.5 times the scale of the keypoint.

Histograms contain 8 bins each, and each descriptor contains an array of 4
histograms around the keypoint. This leads to a SIFT feature vector with 4×4×
8 = 128 elements. This vector is normalized to enhance invariance to changes in
illumination. Figure B.2 shows an example of a 2× 2 descriptor array computed
from 8× 8 set of samples.

Figure B.2: SIFT feature descriptor (from [46])
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Figure B.3 shows an example on feature detection using the above described
algorithm. The arrows indicate scale and orientation and their starting points are
the features’ position.
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Figure B.3: features detected using the SIFT algorithm
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B.2 Pyramidal Lucas-Kanade feature tracker

In this section the Pyramidal implementation of the Lucas Kanade feature tracker
will be briefly summarized based on the description of [197].

Let f and f ′ be two 2D grayscaled images. The two quantities fs = f(xs) =
f(xs, ys) and f ′s = f ′(xs) = f ′(xs, ys) are then the grayscale value of the two
images at the location xs = [xs ys]

T of the site (pixel) s.

Consider a selected feature s at location xs = [xs ys]
T on the first image f .

The goal of feature tracking is to find the location xr = xs+us = [xs+us,x ys+
us,y]

T of the site r on the second image f ′ such as fs and f ′r are ”similar”. The
vector us = [us,x us,y]

T is the image velocity at site s, also known as the optical
flow at site s and us,x and us,y are its X- and Y-components, respectively.

Let ωx and ωy two integers. We define the image velocity us at site s as being
the vector that minimizes the residual function e at site s defined as follows:

es =

xs+ωx∑
xi=xs−ωx

ys+ωy∑
yi=ys−ωy

(f(xi, yi)− f ′(xi + us,x, yi + us,y))
2

(A-10)

So the similarity function is measured on a image neighborhood of size (2ωx+
1)×(2ωy+1). This neighborhood is called the integration window. Typical values
for ωx and ωy are between 2 and 7 pixels.

A small integration window would be preferable in order not to ”smooth out”
the details contained in the images. That is especially required for closest moving
objects. And at the other side to handle large motions, it is intuitively preferable
to pick a large integration window. There is therefore a natural tradeoff when
choosing the integration window size. In attempt to solve this problem, a modified
version of the Lucas-Kanade tracking algorithm with pyramidal implementation
has been used.

In this algorithm the following equation is used to construct recursively the
pyramidal representations of an image f :

fJ (xs, ys) =
1
4f

J−1(2xs, 2ys)+
1
8

(
fJ−1(2xs − 1, 2ys) + fJ−1(2xs + 1, 2ys)+
fJ−1(2xs, 2ys − 1) + fJ−1(2xs, 2ys + 1)

)
+

1
16

(
fJ−1(2xs − 1, 2ys − 1) + fJ−1(2xs + 1, 2ys + 1)+
fJ−1(2xs − 1, 2ys + 1) + fJ−1(2xs + 1, 2ys − 1)

) (A-11)

This equation is only defined for values of xs and ys such that 0 ≤ 2xs ≤
nJ−1
x − 1 and 0 ≤ 2ys ≤ nJ−1

y − 1 with J the level of the image f and nJx and nJy
the with and height of fJ , respectively.

Therefore, the with nJx and the height nJy of fJ are the largest integers that
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satisfy the two conditions:

nJx ≤ nJ−1
x + 1

2

nJy ≤
nJ−1
y + 1

2

From the pyramid representation equation (A-11) the corresponding coordi-
nates xJ

s of a point s are given by:

xJ
s =

xJ−1
s

2J

The overall pyramidal tracking algorithm proceeds as follows: first, the dis-
placement (optical flow) is computed at the deepest pyramid level, say Jm. Then
the result of computation is propagated to the upper level Jm − 1 in a form of
an initial guess for the displacement. This guess is then refined at this level. The
result is then propagated to next upper level, say Jm − 2 and so on until the
original image (level 0) is reached.

In order to compute the optical flow at site s and level J , it is necessary to
find the residual pixel displacement vector uJ

s = [uJs,x uJs,y]
T that minimizes the

new image matching error function εJ :

εJ(uJ
s ) =

xJ
s+ωx∑

xi=xJ
s−ωx

yJ
s +ωy∑

yi=yJ
s −ωy

(
fJ(xi, yi)− f ′J (xi +

∗uJs,x + uJs,x, yi +
∗uJs,y + uJs,y)

)2
(A-12)

Where ∗uJ
s = [∗uJs,x

∗uJs,y] is the initial guess for optical flow at site s and level
J available from the computations done from level Jm to level J +1. The propa-
gation of the initial guess for optical flow from level J to the next level J − 1 is
done by:

∗uJ−1
s = 2(∗uJ

s + uJ
s ) (A-13)

with ∗uJm
s = [0 0]T

The integration window is of constant size (2ωx + 1)× (2ωy + 1) for all values of
J .
The residual flow vector uJ

s = [uJs,x uJs,y]
T is computed through a standard

Lucas-Kanade step.
At the minimum, the first derivative of ε with respect to u is zero:

∂ε(us)

∂us

∣∣∣∣
us=ûs

= [0 0]
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We obtain:
ûs = G−1

s bs (A-14)

With

Gs =

xJ
s+ωx∑

xi=xJ
s−ωx

yJ
s +ωy∑

yi=yJ
s −ωy

[
f2s,xi

fs,xifs,yi

fs,xifs,yi f2s,yi

]

and

b =

xJ
s+ωx∑

xi=xJ
s−ωx

yJ
s +ωy∑

yi=yJ
s −ωy

[
fs,tfs,xi

fs,tfs,yi

]

fs,x and fs,y are the spatial derivatives and fs,t is temporal derivative at site s.
This is possible only if the matrix G is invertible. In practice the estimation

of the displacement us is done by an iterative approximation (Newton-Raphson
iteration scheme)
The final optical flow us is given by:

us =
∗u0

s + u0
s (A-15)

This solution can be expressed in the following form:

us =

Jm∑
J=0

2JuJ
s (A-16)

summary of the algorithm

Initialization of pyramidal guess: ∗uJm = [∗uJm
x

∗uJm
y ] = [0 0]T

for J = Jm down to 0 with step of −1

Location of a point s on image fJ : xJ
s =

xJ−1
s

2J

Derivatives of fJ with respect to x and y at location xs = (xs, ys)
of the point s:

fx(xs, ys) =
1

2
(fJ(xs + 1, ys)− fJ(xs − 1, ys))

fy(xs, ys) =
1

2
(fJ(xs, ys + 1)− fJ(xs, ys − 1))

Spatial gradient matrix:

Gs =

xJ
s+ωx∑

xi=xJ
s−ωx

yJ
s +ωy∑

yi=yJ
s −ωy

[
f2s,xi

fs,xi
fs,yi

fs,xifs,yi f2s,yi

]
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Initialization of iterative Lucas-Kanade method: us = [0 0]T

for k = 1 to K with step of 1

Image difference at point s:

fs,t = fJ (xi, yi)− f ′J(xi +
∗uJs,x + uJs,x, yi +

∗uJs,y + uJs,y)

Image mismatch vector:

b =

xJ
s+ωx∑

xi=xJ
s−ωx

yJ
s +ωy∑

yi=yJ
s −ωy

[
fs,tfs,xi

fs,tfs,yi

]

Optical flow (Lucas-Kanade):

ûs = G−1
s bs

Guess for next iteration:

us =
∗us + us

end of for-loop on k
Guess for next level J − 1:

∗uJ−1
s = 2(∗uJ

s + uJ
s )

end of for-loop on J
Final optical flow vector:

us =
∗u0

s + u0
s

Location of point s on image f ′:

x′
s = xs + us

The clear advantage of a pyramidal implementation is that each residual op-
tical flow vector uJ

s can be kept very small while computing a large overall pixel
displacement vector us. Assuming that each elementary optical flow computation
step can handle pixel motions up to us,max, then the overall pixel motion that the
pyramidal implementation can handle becomes us,maxfinal = (2Jm+1 − 1)us,max.
For example, for a pyramidal depth of Jm = 3, this means a maximum pixel
displacement gain of 15. This enables large pixel motions, while keeping the size
of the integration window relatively small.

• Declaring a feature ”lost” during the tracking process
There are two possibilities where a feature can be declared as lost. The first case
is when the point falls outside of the image and the other case is when the image
patch around the tracked point varies too much between image f and f ′ (the
point disappears due to occlusion for example). For this, a point is declared as
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lost if its final cost function ε(us) is large than a given threshold. This measure
permit to use a high sensitive corner detector.

An another case are the areas with repetitive structures (several feature in a
small area), the tracking can easily switch to a similar structure in the neighbor-
hood and this errors would be difficult to detect.
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B.3 Feature Matching

Feature matching known also as data association is the process of matching ob-
servations that are received by the filter to the features to which they corre-
spond.Given that the state estimation process relies on generating statistical es-
timates of the locations of features in the environment, statistical methods are
used for establishing these associations. The most common method for associ-
ating observations to features in the map relies on nearest neighbor techniques
[53, 83, 84]. A Nearest Neighbor association is taken in this case to be the closest
association in a statistical sense.

A key weakness of the SLAM filtering is its dependence on correct association
of observed features to mapped ones. A miss-association results in an inconsistent
reduction of estimated uncertainty while increasing the actual error. A single
incorrect assignment may cause the filter to diverge (i.e., fail irretrievably). In
situations with high feature clutter and large location uncertainties, it becomes
necessary to devise a means of ensuring correct association. Although this problem
has been addressed using complex data association methods as multiple hypothesis
approaches [31, 32] or joint compatibility criteria [33, 85], it still requires further
research to add the robustness required for cluttered outdoor environments.

B.3.1 Features Matching techniques

In this subsection we will describe some algorithms that have been used widely
for feature point matching.

B.3.1.1 Cross-Correlation Matching

The simplest and most common technique for matching feature points in im-
ages f1 and f2 is to use a cross-correlation (CC) of the image content [33]. Around
each feature point a small window of size ω × ω is selected and the two image
patches are correlated against each other.

CC(x1,x2) =

∑
xi∈(N(x1),N(x2))

f1(xi).f2(xi)√ ∑
xi∈N(x1)

f21 (xi).
√ ∑

xi∈N(x2)

f22 (xi)
(A-17)

where N(x1) and N(x2) are the set of neighboring pixels lying inside the window
ω around the feature points x1 and x2, respectively.

The correlation A-17 is evaluated for each possible feature match - that is
every possible combination of features in image f1 with features in image f2.
After correlation, the maximum value for each feature point is selected. The
algorithm can be accelerated by limiting the search range for correlations to a
small search radius.
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B.3.1.2 Mean Square Error Matching

Another algorithm for estimating feature matches in images was originally pro-
posed in [29]. It uses not only the intensity values -i.e. gray level values -but takes
all three RGB color channels into account. For comparison small image patches
are created again, based on a given window size w. Then the difference between
two pixel values is evaluated based on the Euclidian distance in RGB color space.
Finally, a summation over all pixels in this image patch and normalization with
the window size is carried out.

The mathematical description gives rise to a mean square error (MSE) formu-
lation (evaluated in color space) between the two image patches. Image values
are now 3-tuples taken from the RGB color space and the distance is evaluated
with the Euclidian norm:

MSE(x1,x2) =
1

w2

∑
xi∈(N(x1),N(x2))

∥ f1(xi)− f2(xi) ∥ (A-18)

where N(x1) and N(x2 are the set of neighboring pixels as before.
Selection of best matches and the symmetry constraint has to be applied as

already described in the preceding sections. Since this is an error and not a
similarity measure, the minimum value -and not the maximum as above -has to
be used for matching features.

The drawback of this approach is the high impact of small variations in illu-
mination. So it can only be useful in a rigid hardware environment, where all
lighting, exposure and posing conditions can be controlled precisely. In addition,
its application is generally limited to small baseline applications and the results in
section four are therefore very unsatisfactory. A variation to this approach using
a different color space, where luminance and colors are separated from each other
-i.e. the L*a*b color space -is straightforward, but results are still not convincing
[30].

B.3.1.3 Iterative Closest Point Matching

This is a geometry-based method for feature matching. The idea is to find a
transformation T that minimizes the geometric distance

D = min
T

∑
x1,x2

d(x1,x2) (A-19)

between all feature points x1 of the first image and their nearest neighbor feature
point x2 of the second image.





Appendix C

Kalman Filtering

The Kalman filter, introduced by Rudolph Emil Kalman in the 1950s, is a recur-
sive filter that estimates the state of a dynamic system from a series of incomplete
and noisy measurements. It’s recursive in the way that only the estimated state
from the previous time step and the current measurement are needed to compute
the estimate for the current state.

C.1 Discrete Kalman Filter

The basic Kalman Filter addresses the general problem of estimating the state x ∈
Rn of a discrete-time controlled process that is governed by the linear stochastic
difference equation:

xt = Axt−1 +But +wt−1 (A-1)

where A is the state transition model which is applied to the previous state xt−1;
B is the control-input model which is applied to the control vector ut−1; wt is
the process noise which is assumed to be drawn from a zero mean multivariate
normal distribution with covariance Qt, wt = N (0,Qt).

At time t an observation (or measurement) zt of the true state xt is made
according to

zt = Hxt + vt (A-2)

where H is the observation model which maps the true state space into the ob-
served space and vt is the observation noise which is assumed to be zero mean
Gaussian white noise with covariance Rt, vt = N (0,Rt).

The initial state, and the noise vectors at each step x0, w1, ..., wt, v1 ... wt

are all assumed to be mutually independent.
The Kalman filter has two distinct phases: Predict and Update.

Prediction The predict phase uses the state estimate from the previous time-
step x̂t−1|t−1 to produce an estimate of the state at the current time-step x̂t|t−1
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and an estimate of the error covariance matrix Pt|t which is a measure of the
estimated accuracy of the state estimate.

x̂t|t−1 = Ax̂t−1|t−1 +But−1 (A-3)

Pt|t−1 = APt−1|t−1A
T +Qt−1 (A-4)

Update In the update phase, measurement information at the current time-
step is used to refine the prediction to arrive at a new, (hopefully) more accurate
state estimate.

x̂t|t = x̂t|t−1 +Ktẽt (A-5)

Pt|t = (I−KtH)Pt|t−1 (A-6)

where

ẽt = zt −Hx̂t|t−1 is the innovation residual

Kt = Pt|t−1H
TS−1

t is the Kalman gain

St = HPt|t−1H
T +Rt is the innovation covariance

C.2 Extended Kalam Filter

The previously described Kalman filter addresses the estimation of the state vector
in a linear model of a dynamical system. If, however, the model is non linear, we
may extend the use of Kalman filtering through a linearisation procedure. The
resulting filter is referred to as the extended Kalman Filter (EKF).

Consider a nonlinear dynamical system described by the state-space model:

xt = f(xt−1,ut,wt−1) (A-7)

zt = h(xt,vt) (A-8)

where, as before, the random variables wt = N (0,Qt) and vt = N (0,Rt)
represent the process and measurement noise. Here, however, the functional
f denotes a nonlinear transition matrix function that is possibly time-variant.
Likewise, the functional h denotes a nonlinear measurement matrix that may be
time-variant, too.

The basic idea of the extended Kalman filter is to linearize the state-space
model of Eqs. (A-7) and (A-8) at each time instant around the most recent state
estimate, x̂t−1|t−1. This is done by computing the Jacobians of f and h:

Ft =
∂f

∂x

∣∣∣∣
x̂t−1|t−1,ut

(A-9)

Ht =
∂h

∂x

∣∣∣∣
x̂t−1|t−1

(A-10)
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Once a linear model is obtained, the standard Kalman filter equations are
applied using the computed Ft and Ht as the state transition and observation
matrices, respectively.

Prediction

x̂t|t−1 = f(x̂t−1|t−1,ut) (A-11)

Pt|t−1 = FtPt−1|t−1F
T
t +Qt (A-12)

Update

ẽt = zt − h(x̂t|t−1) (A-13)

Kt = Pt|t−1H
TS−1

t (A-14)

St = HPt|t−1H
T +Rt (A-15)

x̂t|t = x̂t|t−1 +Ktẽt (A-16)

Pt|t = (I−KtH)Pt|t−1 (A-17)
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Abstract 

In this Thesis we present a navigation solution for a mobile robot. The proposed system uses vision input to enable the robot to build a 

feature based map of its environment, localize efficiently itself without any artificial markers or other modification, detect and track 

the moving objects, and navigate without colliding with obstacles. 

The Simultaneous Localization and Mapping (SLAM) process is tackled as a stochastic problem using Extended Kalman Filter (EKF). 

Our contribution consists in building a global map of the environment based on several local maps. The SIFT features are used in our 

implementation and their descriptors are used as a matching constraint. The 3D initialization of the features is based on the visual 

geometry theory. 

To avoid using outlier features, a motion segmentation and estimation (MSE) process is used to detect the moving part of the scene. 

Subsequently, during map building, the detected features on the moving parts are excluded. The MSE process consists in camera 

motion estimation and compensation, scene cut or strong camera motion detection, background Gaussian Mixture Model (GMM) 

model update, and a Maximum a Posteriori Probability Markov Random Field (MAPMRF) framework to detect the moving objects in 

the scene and estimate their motion. Two methods for camera motion estimation and compensation are used, one uses the 2D 

projection of the 3D motion estimated in the SLAM process and the other method uses the dense motion analysis proposed by Dufaux 

and Konrad. 

We considered also the case, where the robot is equipped with other localization sensors such as inertial navigation system (INS), 

wheel encoders, and a global positioning system (GPS). Two solutions are considered. The first consists in integrating the data from 

the INS and encoders data in the dynamic model of the vehicle to estimate its motion in the SLAM process and using the GPS data for 

geo-localizing the robot and the built map. The second solution consists in using the data from the INS and encoders in a Kalman filter 

to correct the GPS data, the estimated linear and angular velocities by this filter are used as prediction in the SLAM filter and the 

output of this one are used to update the dynamics estimation in the integration filter. This solution will increase the accuracy and 

the robustness of the positioning during the outage of the GPS system and allows a SLAM in less featured environments. 

The estimated map is used in a path planning process to generate a list of waypoints allowing the robot to reach the user defined goals. 

The robot uses then a navigation process to follow the planned path and avoiding the unplanned obstacles or moving objects in the 

scene. For this procedure, added to vision, infrared and ultrasound sensors are used for obstacles detection. 

The navigation procedure is based on two fuzzy logic controllers: a goal seeking controller and an obstacle avoidance controller. The 

goal seeking controller tries to find the path to the intermediate waypoints, while the obstacle avoidance controller has for mission to 

avoid obstacles. The 3D position of the moving obstacles is estimated using the epipolar geometry applied to the detected features on 

the moving objects. A command fusion scheme based on a conditioned activation for each controller arbitrates between the two 

behaviors. The reinforcement learning algorithm is used to adapt the obstacle avoidance fuzzy controller. 

Keywords: Mobile robots, Adaptive learning, Motion Segmentation, Motion Estimation, Simultaneous Localization and Mapping, 

Fuzzy Logic, Reinforcement Learning 

Résumé 

Cette thèse introduit une approche pour la navigation de robot mobile en utilisant la vision par mono camera pour la construction 

d’une carte de l’environnement, la localisation du robot dans la carte construite, et la navigation sécurisée du robot dans son 

environnement. La localisation et la cartographie de l’environnement sont traitées simultanément par le processus SLAM sous forme 

d’un problème stochastique en utilisant le filtre de Kalman étendu. Notre contribution consiste dans la construction d’une carte globale 

de l’environnement base sur plusieurs cartes locales pour simplifier la complexité du problème. Les points caractéristiques utilisés 

pour modéliser l’environnement sont de type SIFT et leur profondeur est estimée par la théorie de la géométrie visuelle. 

Pour éviter d’utiliser les points caractéristiques associés aux objets mobiles dans le modèle de l’environnement nous utilisons un 

processus de segmentation et d’estimation de mouvement dans les séquences vidéo. Ce processus estime le mouvement de la camera 

pour l’´eliminer, détecte les coupures de scène ou grand mouvement dans la séquence vidéo, met jour le modèle GMM représentant le 

fond de la scène, et détecte les objets en mouvement et estime leur mouvement par un estimateur du maximum posteriori du Champs 

aléatoires de Markov. 

Le mouvement de la camera est estimé par deux approches: la première par la projection du mouvement 3D estimé par le processus du 

SLAM et la deuxième par la technique de l’analyse du mouvement dans le plan de l’image proposée par Dufaux et Konrad. Nous 

avons considéré aussi le cas où le robot est équipé avec d’autres capteurs 

de localisation tels que les systèmes inertiels INS, les encodeurs des roues, et les systèmes de positionnement global GPS. Deux 

solutions sont proposées. La première consiste intégrer les données de l’INS et des encodeurs dans le modèle dynamique du véhicule 

pour estimer son mouvement dans le processus du SLAM et utiliser les données du GPS pour géo-localiser le robot et la carte 

construite. Tandis que dans la deuxième approche les données de l’INS et des encodeurs sont utilisées dans un filtre de Kalman pour 

corriger les données du GPS et les vitesses linéaires et angulaires estimées par le filtre sont utilisées comme prédiction au filtre du 

SLAM. Cette dernière solution augmente la précision et la robustesse du positionnement durant l’absence du signal GPS et permet un 

SLAM dans des espaces moins texturés. 

La carte construite de l’environnement est utilisée pour une planification globale des trajectoires libre. Ces derniers sont définis sous 

formes d’une liste de points but. Le robot utilise ensuite un processus de navigation pour suivre les chemins planifiés et éviter les 

obstacles non représenté dans la carte et les objets en mouvement. Pour cette tâche de navigation le robot utilise en plus de la vision 

par camera, des capteurs ultrason et infrarouge. Le processus de navigation est bas´e sur les contrôleurs en logique floue adaptés par 

l’apprentissage par renforcement. 

Mots clés : Robots Mobiles, Apprentissage Adaptatif, Segmentation de mouvement, Estimation de Mouvement, Localisation et 

cartographie simultanées, Logique Floue, Apprentissage par renforcement. 



 :ملخص 

انُظاو انًقتزذ ٚستخذو انزؤٚت بكايٛزا أزادٚت نتًكٍٛ . فٙ ْتّ انزسانت َقذو زلا نهًلازت نهزٔبٕث انًتسزك

تسذٚذ يٕقؼّ داخم انخزٚطت دٌٔ استؼًال ػلاياث اصطُاػٛت أٔ أ٘ تؼذٚم , انزٔبٕث يٍ بُاء خزٚطت نًسٛطّ

 .ٔ انتُقم بذٌٔ زٕادث , كشف ٔتؼقب الأخساو انًتسزكت, آخز

 Extended)ٚتى دراستّ كتسهسم ػشٕائٙ باستؼًال يزشر كانًاٌ انًٕسغ  (  SLAM)بُاء انخزائظ ٔ انتًٕقغ 
Kalman Filter . ) انطزٚقت انًقتززت تقٕو ػهٗ بُاء خزٚطت انًسٛظ يكَٕت يٍ ػذة خزائظ يسهٛت يًثهت بُقاط

 .تى زسابّ بطزٚقت انُٓذست انبصزٚت ٚ SIFTؼذ انذاخهٙ نُقاط انب  .  3Dبثلاث أبؼاد SIFTيًٛزة يٍ َٕع 

انطزٚقت انًقتززت . َقتزذ طزٚقت نتدزئت انسزكت ٔ تقذٚزْا, نتدُب استخذاو انًًٛزاث انًُتًٛت نلأخساو انًتسزكت

 . نتسذٚذ الأخساو انًتسزكت MAP-MRFنهًٕقغ ٔ ( background)نتًثٛم انخهفٛت  GMMتستؼًم ًَٕدج 

فٙ . GPS, INS  ٔencodersبأَظًت أخزٖ نهتًٕقغ يثم ر انزٔبٕث انًدٓزة انزسانت تأخذ أٚضا بؼٍٛ الاػتبا

فٙ  INS  ٔencodersالأٔنٗ تقٕو ػهٗ ديح انبٛاَاث يٍ : ْتّ انسانت ًٚكٍ استؼًال إزذٖ انطزٚقتٍٛ انتانٛتٍٛ

تسذٚذ انًٕقغ انؼانًٙ  ن GPSٔ استؼًال يؼطٛاث  SLAMانتًثٛم انذُٚايٛكٙ نهزٔبٕث نتقٛٛى ززكتّ داخم ػًهٛت 

(Geo localization) انطزٚقت انثاَٛت تتًثم فٙ استؼًال انًؼطٛاث يٍ ال. نهزٔبٕث ٔ انخزٚطت انًبُٛتINS 
ٔeucoders  داخم يزشر كانًاٌ نتصسٛر يؼطٛاث الGPS .نسزػاث انخطٛت ٔ انذٔراَٛت انًسسٕبت  بانًزشر ا

ْذِ انطزٚقت تسًر .  SLAMٚتى ػٍ طزٚق َتائح  ال  فٙ زٍٛ تصسٛر انًزشر SLAMتستؼًم كتقذٚز داخم 

فٙ أياكٍ بؼلاياث يًٛزة  SLAMٔ إيكاَٛت استؼًال ال  GPSبزٚادة دقت ٔ يتاَت انتًٕقغ خلال اَقطاػاث َظاو ال

 .قهٛهت 

نتدُب . انخزٚطت انًبُٛت تستؼًم نتًكٍٛ انزٔبٕث يٍ انتسزك داخم يسٛطّ نهٕصٕل إنٗ انًٕاقغ انًطهٕبت

  Infraredأخٓزة الاستشؼار , بانزٚادة إنٗ انكايٛزا,  انزٔبٕث ٚستؼًم, ث اندذٚذة فٙ انًٕقغانؼطبا
ٔ.ultrasound     

باستؼًال ( Adaptive fuzzy logique)انتسزك ٚتى بطزٚقت انتسكى بانًُطق انغايض انًكٛف

.Reinforcement leurning    
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