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Intelligent antennas take advantage of both antenna and propagation technologies. 

They have the potential to reduce multipath interference, increase signal to noise 

ratio, and introduce frequency reuse within a confined environment. Several 

challenges remain however in the growth of intelligent antennas; one of these is the 

development of new beamforming algorithm for the best use of the received signal. 

This study focuses on the development and the application of a new simple matrix 

inversion normalized constant modulus algorithm (SMI-NCMA) for smart 

antennas. The SMI-NCMA which combines the individual good aspects of Sample 

Matrix Inversion (SMI) and the Normalized Constant Modulus algorithms (NCMA) 

is described. Simulation results show that less complexity SMI-NCMA improves the 

interference suppression and gain enhancement over classical NCMA, converges 

from the initial iteration and achieves BER (bite error rate) improvements for co-

channel interference. 
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1. INTRODUCTION 

 The demand for mobile communication services in a limited RF spectrum is 

increasing at a rapid pace throughout the globe. This motivates the need for better 

techniques to improve spectrum utilization. Smart antenna system was adopted by 

ITU for the IMT-2000 or the Third Generation (3G) wireless networks due to its 

capability to improve channel capacity and interference suppression. A smart 

antenna system combines multiple antenna elements with a signal-processing 

capability to optimize its radiation pattern automatically in response to the signal 

environment. Beamforming is a key technology in smart antenna systems so that 

many different adaptive beamforming algorithms have bee the subject of active 

research [1],[2], [3] , [4]. Beamforming is a process in which each user’s signal is 

multiplied by complex weight vectors that adjust the magnitude and phase of the 

signal from each antenna element. Hence the array forms a transmit beam in the 

desired direction and minimizes the output in the interferer directions. A 

beamformer appropriately combines the signals received by different elements of 

an antenna array to form a single output. Classically, this is achieved by 

minimizing the mean square error (MSE) between the desired output and the actual 

array output. This principle has its roots in the traditional beamforming employed 

in sonar and radar systems. Adaptive implementation of the minimum MSE 

(MMSE) beamforming solution can be realized using temporal reference 

techniques [5], [6], [7]. 

Many researchers focused on the development of software algorithm, i.e., 

adaptive beamforming algorithms in mobile communication systems to determine 

the optimal weight vectors of array antenna elements dynamically, based on 

different performance criteria. The weight vectors produce the desired radiation 

pattern that can be changed dynamically, by considering the position of users and 
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interferers to optimize the signal to noise performance. Among these algorithms, 

temporal updating algorithms such as Least Mean Square (LMS) and Recursive 

Least-Squares (RLS) which determine the optimum weight vectors sample by 

sample in time domain [7], [8] take a long time to converge. This situation becomes 

worse if channel situation varies rapidly in time domain, where in such time 

variance, weight vectors updating becomes more complicated. To overcome this 

problem, block adaptation approach such as Sample Matrix Inversion (SMI) is 

employed. However, due to its discontinuity in updating the weight vectors, 

adaptive block approach is unsuitable for continuous transmission. A new 

beamforming algorithm that will be easy to implement with less complexity and 

having faster convergence speed and accurate tracking capability is extremely 

crucial and a challenging issue to  explore. The individual good aspects of both 

block adaptive and sample by sample techniques will be employed in this paper to 

address these issues. 

 This paper presents a new adaptive beamforming algorithm, the “SMI-

NCMA”, for smart antenna system which combines the normalized CMA (NCMA) 

and SMI algorithms to improve the convergence speed with small bit error rate 

(BER). Section 2 of this paper gives a brief account on adaptive beamforming 

algorithms for smart antenna system. Section 3 discusses the new proposed 

algorithm, the SMI-NCMA adaptive beamforming algorithm. Section 4 presents 

the simulation results, and finally Section 5 concludes the paper. 

2. ADAPTIVE BEAMFORMING ALGORITHMS 

 The purpose of beamforming is to form multiple beams towards desired users 

while nulling the interferers at the same time, through the adjustment of the 

beamformer’s weight vectors. Fig.1 shows a generic adaptive beamforming system 
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which requires a reference signal. The signal x(n) received by multiple antenna 

elements is multiplied with the coefficients in a weight vector w (series of 

amplitude and phase coefficients) which adjust the phase and amplitude of the 

incoming signal accordingly. This weighted signal is summed up, resulting in the 

array output, y(n). An adaptive algorithm is then employed to minimize the error 

e(n) between a desired signal d(n) and the array output  y(n). For the beamformer, 

the output at time n, y(n), is given by a linear combination of  the data at the K 

sensors and can be expressed as [9]:  

 )()( nxwny H=  (1) 

  where w=[w1 … wK] and  x(n)=[x1(n) … xK(n)],   denotes Hermitian (complex 

conjugate) transpose. The weight vector w is a complex vector. The process of 

weighting these complex weights w1, …, wK adjusted their amplitudes and phases 

so that when added together they form the desired beam. Typically, the adaptive 

beamformer weights are computed in order to optimize the performance in terms of 

a certain criterion. 

  Most adaptive algorithms are derived by first setting a performance criterion 

and then generating a set of iterative equations to adjust the weights so that the 

performance criterion is met. Some of the most frequently used performance 

criteria include MMSE, maximum signal-to-interference-and-noise ratio (SINR), 

maximum likelihood (ML), minimum noise variance, minimum output power and 

maximum gain, etc. [10]. In order to obtain the optimum weight vector, one needs 

to know the second order statistics, which are usually unknown and change over 

time. Adaptive beamforming algorithms estimate them and update the weight 

vector over time. As the weights are iteratively adjusted, the performance of 

beamformer approaches the desired criterion. The algorithm is said to be converged 

when such a performance criterion is met.  



5 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 A generic adaptive beamforming system 

 There are many types of adaptive beamforming algorithms that exist in the 

literature. Adaptive beamforming can separate signals transmitted on the same 

carrier frequency, provided that they are separated in the spatial domain. Most of 

the adaptive beamforming algorithms can be categorized under two classes 

according to whether training signal is used or not. These two classes are non-blind 

adaptive algorithm and blind adaptive algorithm. Non-blind adaptive beamforming 

algorithm uses a training signal d(n) to update its complex weight vector. This 

training signal is sent by the transmitter to the receiver during the training period. 

Beamformer in the receiver uses this information to compute new complex weight. 

LMS, NLMS, RLS and SMI algorithms are categorized as non-blind algorithm. 

Blind algorithms on the other hand do not need any training sequence to update its 

complex vector. Constant Modulus Algorithm (CMA) [11], Spectral self-

Coherence Restoral (SCORE), and Decision Directed (DD) algorithms are 

examples of blind adaptive beamforming algorithms. These algorithms use some of 
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the known properties of the desired signal. In blind algorithm, the goal is to retrieve 

the input signal by using output signal and possibly the statistical information for 

the input. 

3. SMI-NCMA ADAPTIVE BEAMFORMING ALGORITHM 

   In this section, a new optimum SMI-NCMA algorithm is introduced for 

adaptive beamforming. In SMI-NCMA algorithm, the SMI algorithm is utilized to 

determine the optimum weight vectors assigned to each of the antenna elements of 

the array instead of arbitrary value before calculating the final weight vector. The 

weight is calculated only for the first few samples or for a small block of incoming 

data. The weight coefficients derived by SMI algorithm are set as initial 

coefficients and are updated by introducing NCMA algorithm. However, to 

improve the stability of the system and convergence speed, NCMA method is used 

instead of CMA (constant modulus algorithm). NCMA is CMA, but the step size is 

changed as the correlation matrix is changed to avoid unstable system. CMA 

supposes that the canal input signal is constant modulus. Every modification in the 

amplitude of the received signal is a canal distortion [12].  So, the weights are 

chosen to minimize envelope variance of the output signal. 

  In practice, the signals are not known and the signal environment frequently 

changes. Thus, adaptive processors must continually update the weight vector to 

meet the new requirements imposed by the varying conditions. Optimal weight 

vectors can be computed by obtaining an estimation of the covariance matrix R and 

the cross-correlation matrix r in a finite observation interval and then these 

estimates are used to obtain the desired vector. 

  The estimation of both R and r over a block size N2−N1 can be evaluated 

respectively as follows [5]: 
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where, N1 and N2 are the lower and upper limits of observation interval or 

window and n is the sample index. This limit is taken to be small, to ensure that the 

effect due to changes in the signal environment during block acquisition does not 

affect the performance of the algorithm. Also, large limit or block only means more 

matrix inversions, making the algorithm computationally intensive. The SMI 

algorithm requires the calculation of the inverse covariance matrix R and this 

incurs high computational complexity. The CMA algorithm avoids matrix 

inversion operation by using instantaneous gradient vector J to update the weight 

vector. If w(n) denotes the estimate of the weight vector at the nth iteration and J(n) 

is the mean square error, the next estimation of the weight vector for the (n+1)th 

iteration, w(n+1) is estimated according to the following simple recursion : 

 )]([)()1( nJnwnw −+=+ µ  (5) 

  where µ is a small positive constant, called the step size whose value is 

between 0 and 1. The CMA algorithm is based on the steepest-descent method 

which recursively computes and updates the weight vector. From CMA [13] 

algorithm we know that:  

 )()( nxwny H=   (6) 
  )()()( ndnyne −=   (7) 

  
)(

)(
)(

ny

ny
nd =                  (8)  

  )()()()1( * nenxnwnw µ+=+   (9) 
In the CMA algorithm, Eq.(8) shows that the product vector µx(n)e*(n) at 

iteration n, applied to the weight vector w(n), is directly proportional to the input 



8 

 

vector x(n). Therefore, the CMA algorithm experiences a gradient noise 

amplification problem when the input signal x(n) is large, i.e., the product vector  

µx(n)e*(n) is large. This is solved by normalization of the product vector at 

iteration n+1 with the square Euclidean norm of the input vector x(n) at iteration n 

[14]. The change of the weight vector is given as: 

 )()1()1( nwnwnw −+=+δ   (9) 
 Which is subject to the constraint in order to minimize the square Euclidean 

norm in weight vector w(n+1) with respect to its previous value w(n). So: 

  )()()1( nCnxnwH =+   (10) 
 where C(n) is the desired value (normalized to 1 for constant modulus 

envelope). The method of Lagrange multipliers is used to solve this constraint. 

Optimization problem [details about Lagrange multipliers can be found in [14]. 

Using the complex constraint of Eq.(10) the conjugate Lagrange multiplier 

becomes:  

  )]()()([
)(

2 **
2

* nxnwnC
nx

T−=λ   (11) 

Furthermore, substituting Eqs.(6) and (7) into Eq.(11) yields:  
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After equivalently manipulate, the weight vector can be written as: 
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As can be seen from Eq.(13), the algorithm reduces the step size µ to make the 

changes large. As a result, the step size µ varies adaptively by following the 

changes in the input signal level. This prevents the update weights from diverging 

and makes the algorithm more stable and faster converging than when a fixed step 

size is used. In addition, the NCMA algorithm is used as the MMSE method needs 
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to cope with the large changes in the signal levels of mobile communication 

systems. By combining the above two algorithms, the new optimum SMI-NCMA 

algorithm update the weight vectors according to the following equations: 
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The final weight vector of the SMI-NCMA algorithm is estimated from 

Eq.(14). In the SMI-NCMA algorithm, advantages of both the block adaptive and 

sample by sample techniques are employed. In this algorithm, the initial weight 

vector is obtained by matrix inversion through SMI algorithm, only for the first few 

samples or for a small block of incoming data instead of arbitrary value before 

calculating the final weight vector. The final weight vector is updated by using the 

NCMA algorithm. The flowchart of the SMI-NCMA algorithm is shown in Fig.2. 

The above description of the adaptive procedure based on the SMI-NCMA 

algorithm can be given as follows: 

Step 1: Initial calculation of weight vector by matrix inversion (first few 

samples or small block of incoming data). 

Step 2: Calculate the error and scale the input vector by the equations of the 

algorithm. 

Step 3: Normalize the weight vector. 
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Step 4: Update the weight vector by final equation until convergence. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1   Flow chart of the SMI-NCMA algorithm 
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4. Results and discussion  

In this work, we consider a simple uniform linear array antenna of 8×1 element 

with half wavelength spacing between the elements, located at the base station to 

perform spatial filtering. Data sequences are generated using Binary Phase Shift 

Keying (BPSK) modulation and for the sake of simplicity the radio channel is 

assumed to be multipath free and non-dispersive with Additive White Gaussian 

Noise (AWGN). In the simulation, the angle of arrival of the desired user and the 

interferers are at 60°, 30° and 130° respectively. The signal to noise ratio (SNR) is 

set at 8 dB and the number of data bit length is 300. Error convergence plot, bit 

error rate, adaptive array pattern performances and weight convergence of the SMI-

NCMA are evaluated and compared with typical NCMA algorithm; how use an 

orthogonal initial weight vector [15]; to demonstrate the merits of this new 

algorithm. 

Figs.3 and 4 show the MSE plot or convergence plot for the NCMA and the 

SMI-NCMA algorithm respectively. 
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Fig.3 Mean square error plot for the NCMA algorithm 
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Fig.4 Mean square error plot for the SMI-NCMA algorithm 
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As shown in these figures, for the same adaptation size or iterations, the SMI-

NCMA algorithm can achieve faster convergence than the typically NCMA 

algorithm. Also the NCMA algorithm starts to converge from the iteration number 

200 whereas in the SMI-NCMA algorithm it starts to converge from the initial 

iteration. In this case, the NCMA error is almost 0.2591 and the SMI-NCMA error 

is almost 0.0568 at around 100 iterations. 

Figs.5 and 6 present the linear and polar plot of the beampattern for the SMI-

NCMA and NCMA algorithm respectively. These figures show that the SMI-

NCMA generates deeper nulls of about −200 dB and NCMA generates nulls 

between -50 dB and -80 dB towards the interferers, giving big improvements for 

the SMI-NCMA algorithm in interference suppression with respect to NCMA 

algorithm. Both algorithms have their main beam pointed to the desired user 

direction. The ratio of main lobe to the first side lobe is 43 dB and 30 dB for SMI 

NCMA and NCMA respectively. 
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Fig.5 Comparison of linear beampattern of SMI-CMA and NCMA algorithms  
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Fig.6 Comparison of polar beampattern of SMI-NCMA and NCMA algorithms 

           SMI-NCMA  
           NCMA 

Angle (°) 

G
ai

n 
(d

B
) 

            SMI-NCMA 
          Desired user 
            Interferers 
            NCMA 



15 

 

 

Co–Channel Interference (CCI) is a major factor that limits the capacity of a 

cellular system. To increase the capacity of a cellular system, frequency is reused, 

i.e., a frequency band is used in two different cells belonging to different clusters, 

which are sufficiently separated so that they do not interfere significantly with each 

other. The BER performances with respect to the number of CCI of the two 

algorithms are presented in Fig.7. As can be seen from the figure, for CCI equal to 

10, BER for the NCMA and the SMI-NCMA are 4.53×10−2 and 3.6×10−2 

respectively. Fig.7 also shows that BER increases as the number of interferer 

increases for both algorithms and that SMI-NCMA provide about 20.5% BER 

improvement at CCI equal to 10 over that of NCMA algorithm. 
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Fig.7 BER performance of the SMI-NCMA and NCMA 
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Fig.8 shows the comparison of BER with 8-element antenna array for SMI-

NCMA and NCMA algorithms. The BER performance is greatly improved in the 

SMI-NCMA algorithm compared to the NCMA algorithm. The BER rate of the 

SMI-NCMA and NCMA algorithm are 1.68×10−2 and 7.67×10−2 respectively. The 

reduction of the BER for SMI-NCMA is 78% compared to NCMA algorithm. 
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Fig.8 Performance of BER with 8-element antenna 
array for SMI-NCMA and NCMA algorithms 
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Table 1 : Magnitude and phase of the complex weights for the NCMA 

algorithm 

Weight w1 w2 w3 w4 w5 w6 w7 w8 
Magnitude 0.0447 0.0438 0.0501 0.0556 0.0548 0.0485 0.0431 0.0461 

Phase  
(radians) 

0.3391 -
1.0838 

-
2.5960 

2.0474 0.3580 -
1.2809 

-
2.7571 
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Fig.9 Weight convergence plot of the first 8 antenna 
elements for SMI-NCMA algorithm 

 

Fig.10 shows the magnitude of the complex weights plotted against the 

number of samples for each antenna element by using SMI-NCMA algorithm. It is 

evident that the weight values converge to their optimum values for SMI-NCMA 

algorithm. 

The complex weights at the iteration 1200 for SMI-NCMA algorithm are as 

follows: 
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Table 2 : Magnitude and phase of the complex weights for the SMI-NCMA 
algorithm 

Weight w1 w2 w3 w4 w5 w6 w7 w8 
Magnitude 0.0366 0.0492 0.053 0.0638 0.0766 0.0446 0.0515 0.02 

Phase  
(radians) 

-
0.5703 

1.2876 2.7205 -
1.7236 

-
0.0678 

1.7772 -
3.0497 

-
1.6882 
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Fig.10 Weight convergence plot of the first 8 antenna 
elements for SMI-NCMA algorithm 

 
As can be observed from Fig.10, the SMI-NCMA starts adaptation to optimum 

weights from the initial weight vector values. On the contrary, NCMA algorithm 

has to converge from the arbitrary weight values (in this case 1) to the optimum 

weight values. However, before it converges to its optimum values, the interfering 

directions will change; consequently more iterations are needed to converge. 
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5. CONCLUSION 

In this paper, we introduced a novel and less complex adaptive beamforming 

algorithm, the “SMINCMA”, for smart antenna system. SMI-NCMA combines the 

SMI and NCMA algorithms to improve the convergence speed with small BER. In 

this algorithm individual good aspects of both the sample by sample and block 

adaptive algorithms are employed. SMI-NCMA computes the optimal weight 

vector based on the SMI algorithm and updates the weight vector by NCMA 

algorithm. Simulation results showed that the SMI-NCMA algorithm provides 

remarkable improvements in terms of interference suppression, convergence rate 

and BER performance over that of classical NCMA algorithms. With respect to 

NCMA, SMI-NCMA provides: (1) big improvements in interference suppression, 

(2) 13 dB gain enhancement, (3) convergence from the initial iteration (whereas 

NCMA convergence from the iteration number 200), and (4) 20.5% BER 

improvements at CCI equal to 10. The reduction of the BER for SMI-NCMA is 

78% compared to NCMA algorithm in the case of 8-element antenna array. 
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