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Intelligent antennas take advantage of both anteammé propagation technologies.
They have the potential to reduce multipath interiee, increase signal to noise
ratio, and introduce frequency reuse within a coefl environment. Several
challenges remain however in the growth of inteliigantennas; one of these is the
development of new beamforming algorithm for th& bise of the received signal.
This study focuses on the development and thecapph of a new simple matrix
inversion normalized constant modulus algorithm IBIMMA) for smart
antennas. The SMI-NCMA which combines the indivigoad aspects of Sample
Matrix Inversion (SMI) and the Normalized Const&tadulus algorithms (NCMA)
is described. Simulation results show that lessptexity SMI-NCMA improves the
interference suppression and gain enhancement cdassical NCMA, converges
from the initial iteration and achieves BER (biteoe rate) improvements for co-

channel interference.
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1. INTRODUCTION

The demand for mobile communication services liméed RF spectrum is
increasing at a rapid pace throughout the globes otivates the need for better
techniques to improve spectrum utilization. Smateana system was adopted by
ITU for the IMT-2000 or the Third Generation (3G)raless networks due to its
capability to improve channel capacity and intesfee suppression. A smart
antenna system combines multiple antenna elemeitts av signal-processing
capability to optimize its radiation pattern autaicelly in response to the signal
environment. Beamforming is a key technology in gnaamtenna systems so that
many different adaptive beamforming algorithms héee the subject of active
research [1],[2], [3] , [4]. Beamforming is a presan which each user’s signal is
multiplied by complex weight vectors that adjust timagnitude and phase of the
signal from each antenna element. Hence the amawsfa transmit beam in the
desired direction and minimizes the output in theerferer directions. A
beamformer appropriately combines the signals vedeby different elements of
an antenna array to form a single output. Cladgicahis is achieved by
minimizing the mean square error (MSE) betweerddwred output and the actual
array output. This principle has its roots in theditional beamforming employed
in sonar and radar systems. Adaptive implementatbrthe minimum MSE
(MMSE) beamforming solution can be realized usirgmporal reference
techniques [5], [6], [7].

Many researchers focused on the development oivamdt algorithm, i.e.,
adaptive beamforming algorithms in mobile commutiacasystems to determine
the optimal weight vectors of array antenna elemettnamically, based on
different performance criteria. The weight vectpreduce the desired radiation

pattern that can be changed dynamically, by consgléhe position of users and
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interferers to optimize the signal to noise perfance. Among these algorithms,
temporal updating algorithms such as Least Mearai®q(LMS) and Recursive
Least-Squares (RLS) which determine the optimumghtevectors sample by
sample in time domain [7], [8] take a long timectmverge. This situation becomes
worse if channel situation varies rapidly in timenthin, where in such time
variance, weight vectors updating becomes more toated. To overcome this
problem, block adaptation approach such as Samg@gixMinversion (SMI) is
employed. However, due to its discontinuity in upt the weight vectors,
adaptive block approach is unsuitable for contimudtansmission. A new
beamforming algorithm that will be easy to impletnernth less complexity and
having faster convergence speed and accurate ritactapability is extremely
crucial and a challenging issue to explore. Thiividual good aspects of both
block adaptive and sample by sample techniquesbeikmployed in this paper to
address these issues.

This paper presents a new adaptive beamformingritiign, the “SMI-
NCMA”, for smart antenna system which combinesrtbemalized CMA (NCMA)
and SMI algorithms to improve the convergence spetd small bit error rate
(BER). Section 2 of this paper gives a brief accomm adaptive beamforming
algorithms for smart antenna system. Section 3udsgs the new proposed
algorithm, the SMI-NCMA adaptive beamforming algbm. Section 4 presents
the simulation results, and finally Section 5 coels the paper.

2. ADAPTIVE BEAMFORMING ALGORITHMS

The purpose of beamforming is to form multiple lthneaowards desired users
while nulling the interferers at the same time,otlyh the adjustment of the

beamformer’s weight vectors. Fig.1 shows a gerestaptive beamforming system
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which requires a reference signal. The sigx@a) received by multiple antenna
elements is multiplied with the coefficients in aeight vectorw (series of
amplitude and phase coefficients) which adjust ghase and amplitude of the
incoming signal accordingly. This weighted sigrelsummed up, resulting in the
array outputy(n). An adaptive algorithm is then employed to miraenthe error
e(n) between a desired signd(h) and the array outpuy(n). For the beamformer,
the output at timen, y(n), is given by a linear combination of the datahst K
sensors and can be expressed as [9]:

y(n) =w" x(n) (1)
wherew=[w; ... wx] and x(n)=[x;(n) ... xx(n)], denotes Hermitian (complex
conjugate) transpose. The weight veolois a complex vector. The process of
weighting these complex weighig, ..., wx adjusted their amplitudes and phases
so that when added together they form the desiezanb Typically, the adaptive
beamformer weights are computed in order to op@ntie performance in terms of
a certain criterion.

Most adaptive algorithms are derived by firstisgta performance criterion
and then generating a set of iterative equationadjast the weights so that the
performance criterion is met. Some of the most desgly used performance
criteria include MMSE, maximum signal-to-interfeoerand-noise ratio (SINR),
maximum likelihood (ML), minimum noise variance, mmum output power and
maximum gain, etc. [10]. In order to obtain theimpim weight vectgrone needs
to know the second order statistics, which are liysumknown and change over
time. Adaptive beamforming algorithms estimate thand update the weight
vector over time. As the weights are iterativelyjuated, the performance of
beamformer approaches the desired criterion. Tdariéhm is said to be converged

when such a performance criterion is met.
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Fig.1 A generic adaptive beamforming system

There are many types of adaptive beamforming algos that exist in the
literature. Adaptive beamforming can separate $sgm@nsmitted on the same
carrier frequency, provided that they are separatdtie spatial domain. Most of
the adaptive beamforming algorithms can be categdriunder two classes
according to whether training signal is used or mbese two classes are non-blind
adaptive algorithm and blind adaptive algorithmnNiind adaptive beamforming
algorithm uses a training signd{n) to update its complex weight vector. This
training signal is sent by the transmitter to teeeiver during the training period.
Beamformer in the receiver uses this informatioedmpute new complex weight.
LMS, NLMS, RLS and SMI algorithms are categorizesdiron-blind algorithm.
Blind algorithms on the other hand do not needtaaining sequence to update its
complex vector. Constant Modulus Algorithm (CMA) 1]J1 Spectral self-
Coherence Restoral (SCORE), and Decision Directe®) (algorithms are

examples of blind adaptive beamforming algorithfifsese algorithms use some of
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the known properties of the desired signal. Indkfgorithm, the goal is to retrieve
the input signal by using output signal and pogsibk statistical information for

the input.

3. SMI-NCMA ADAPTIVE BEAMFORMING ALGORITHM

In this section, a new optimum SMI-NCMA algorithis introduced for
adaptive beamforming. In SMI-NCMA algorithm, the SMgorithm is utilized to
determine the optimum weight vectors assigned ¢h e the antenna elements of
the array instead of arbitrary value before cakmdathe final weight vector. The
weight is calculated only for the first few samptedor a small block of incoming
data. The weight coefficients derived by SMI algon are set as initial
coefficients and are updated by introducing NCMAyoailthm. However, to
improve the stability of the system and convergespeed, NCMA method is used
instead of CMA (constant modulus algorithm). NCMAGMA, but the step size is
changed as the correlation matrix is changed tadauostable system. CMA
supposes that the canal input signal is constanutae. Every modification in the
amplitude of the received signal is a canal digior{12]. So, the weights are
chosen to minimize envelope variance of the owsmrtal.

In practice, the signals are not known and th@ai environment frequently
changes. Thus, adaptive processors must continupthate the weight vector to
meet the new requirements imposed by the varyimglidons. Optimal weight
vectors can be computed by obtaining an estimatiadhe covariance matrik and
the cross-correlation matrix in a finite observation interval and then these
estimates are used to obtain the desired vector.

The estimation of botR andr over a block siz&l,—N; can be evaluated

respectively as follows [5]:



R= %le(n)xH (n) (3

1-N;

Np
r=>d (nx(n) 4)

1-N;
where,N; and N, are the lower and upper limits of observation rve or

window andn is the sample index. This limit is taken to be $ntalensure that the
effect due to changes in the signal environmenindublock acquisition does not
affect the performance of the algorithm. Also, &hgnit or block only means more
matrix inversions, making the algorithm computadibn intensive. The SMI
algorithm requires the calculation of the inverswariance matrixR and this
incurs high computational complexity. The CMA algjam avoids matrix
inversion operation by using instantaneous gradrentorJ to update the weight
vector. Ifw(n) denotes the estimate of the weight vector anthateration and(n)

iIs the mean square error, the next estimation efwtlight vector for thenf1)th
iteration,w(n+1) is estimated according to the following simpgeursion :

w(n+1) =w(n) + 4[-J(n)] (5)
wherep is a small positive constant, called the step sub®se value is
between 0 and 1. The CMA algorithm is based onstieepest-descent method
which recursively computes and updates the weigddtor. From CMA [13]

algorithm we know that:

y(n) =w" x(n) (6)
&(n) = y(n) - d(n) (7)
dm = Y 8
(n) vy (8)
w(n+1) = w(n) + ux(n)e’ (n) ©)

In the CMA algorithm, EQ.(8) shows that the prodwuettor px(n)e*(n) at

iterationn, applied to the weight vectav(n), is directly proportional to the input
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vector x(n). Therefore, the CMA algorithm experiences a gatinoise
amplification problem when the input signdh) is large, i.e., the product vector
ux(n)e*(n) is large. This is solved by normalization of tpeoduct vector at
iterationn+1 with the square Euclidean norm of the input @ex{n) at iterationn
[14]. The change of the weight vector is given as:

awv(n+1) =w(n+1)—w(n) (9)
Which is subject to the constraint in order to imize the square Euclidean

norm in weight vectow(n+1) with respect to its previous valugn). So:
wH (n+12)x(n) = C(n) (10)
where C(n) is the desired value (normalized to 1 for constamdulus
envelope). The method of Lagrange multipliers sdu® solve this constraint.
Optimization problem [details about Lagrange miuiks can be found in [14].

Using the complex constraint of EQ.(10) the conjagdagrange multiplier

becomes:
X =21 () -w' (WX ()] (11)
[x(n)]
Furthermore, substituting Eqs.(6) and (7) into Ebj)(yields:
* 2 *
= e (n) (12)
[x(r)|*

After equivalently manipulate, the weight vecton ¢ written as:

w(n+1) =w(n) + - x(n)e’ (n) (13)
[x(m)]
As can be seen from Eq.(13), the algorithm redtlvestep siz@t to make the

changes large. As a result, the step gizearies adaptively by following the
changes in the input signal level. This prevenesupdate weights from diverging
and makes the algorithm more stable and fasterergimg than when a fixed step
size is used. In addition, the NCMA algorithm i®dsas the MMSE method needs
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to cope with the large changes in the signal lew#lsnobile communication
systems. By combining the above two algorithms,rtee optimum SMI-NCMA

algorithm update the weight vectors according &ftllowing equations:

R= %le(n)xH (n),r = %Z;d* (n)x(n)

1-N, 1-N,
w, =R7'r,
y(n) =w" x(n),
e(n) = y(n)[l—ﬁ ,
w(n+1) = w(n)x(n) i€ (n)
=w(n) +—E— x(n)e’ (n) (14)

2
|x(m)]
The final weight vector of the SMI-NCMA algorithns iestimated from

Eq.(14). In the SMI-NCMA algorithm, advantages oflbthe block adaptive and
sample by sample techniques are employed. In tgmrithm, the initial weight
vector is obtained by matrix inversion through Sifjorithm, only for the first few
samples or for a small block of incoming data iadt®f arbitrary value before
calculating the final weight vector. The final wiigsector is updated by using the
NCMA algorithm. The flowchart of the SMI-NCMA algithhm is shown in Fig.2.
The above description of the adaptive proceduredas the SMI-NCMA

algorithm can be given as follows:

Step 1:Initial calculation of weight vector by matrix iaxsion (first few

samples or small block of incoming data).

Step 2:Calculate the error and scale the input vectahbyequations of the

algorithm.

Step 3:Normalize the weight vector.



Step 4:Update the weight vector by final equation undiheergence.
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Fig. 1 Flow chart of the SMI-NCMA algorithm



4. Results and discussion

In this work, we consider a simple uniform linearag antenna of 8x1 element
with half wavelength spacing between the elemdatsted at the base station to
perform spatial filtering. Data sequences are gdrdrusing Binary Phase Shift
Keying (BPSK) modulation and for the sake of simipi the radio channel is
assumed to be multipath free and non-dispersiva Widditive White Gaussian
Noise (AWGN). In the simulation, the angle of aaliwf the desired user and the
interferers are at 60°, 30° and 130° respectivEhe signal to noise ratio (SNR) is
set at 8 dB and the number of data bit length 3. ror convergence plot, bit
error rate, adaptive array pattern performancesasaght convergence of the SMI-
NCMA are evaluated and compared with typical NCM#goaithm; how use an
orthogonal initial weight vector [15]; to demons&athe merits of this new
algorithm.

Figs.3 and 4 show the MSE plot or convergence foiothe NCMA and the
SMI-NCMA algorithm respectively.
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Fig.4 Mean square error plot for the SMI-NCMA algorithm
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As shown in these figures, for the same adaptadizs or iterations, the SMI-
NCMA algorithm can achieve faster convergence thiam typically NCMA
algorithm. Also the NCMA algorithm starts to congerfrom the iteration number
200 whereas in the SMI-NCMA algorithm it starts donverge from the initial
iteration. In this case, the NCMA error is almos2391 and the SMI-NCMA error
Is almost 0.0568 at around 100 iterations.

Figs.5 and 6 present the linear and polar plothef heampattern for the SMI-
NCMA and NCMA algorithm respectively. These figureBow that the SMI-

NCMA generates deeper nulls of about —200 dB andVMWCgenerates nulls

between -50 dB and -80 dB towards the interfergitsng big improvements for

the SMI-NCMA algorithm in interference suppressiafth respect to NCMA

algorithm. Both algorithms have their main beamnped to the desired user
direction. The ratio of main lobe to the first sidbde is 43 dB and 30 dB for SMI
NCMA and NCMA respectively.
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Co—Channel Interference (CCIl) is a major factot thaits the capacity of a
cellular system. To increase the capacity of autallsystem, frequency is reused,
i.e., a frequency band is used in two differentsckélonging to different clusters,
which are sufficiently separated so that they doimerfere significantly with each
other. The BER performances with respect to the bmmof CCI of the two
algorithms are presented in Fig.7. As can be seen the figure, for CCIl equal to
10, BER for the NCMA and the SMI-NCMA are 4.53x104&d 3.6x10-2
respectively. Fig.7 also shows that BER increasesha number of interferer
increases for both algorithms and that SMI-NCMA yide about 20.5% BER
improvement at CCIl equal to 10 over that of NCMgaalthm.
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>
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10-3 | | |
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Number of CCI

Fig.7 BER performance of the SMI-NCMA and NCMA
algorithms with varying CCI
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Fig.8 shows the comparison of BER with 8-elemerterama array for SMI-
NCMA and NCMA algorithms. The BER performance igafy improved in the
SMI-NCMA algorithm compared to the NCMA algorithrthe BER rate of the
SMI-NCMA and NCMA algorithm are 1.68xIband 7.67x1T respectively. The
reduction of the BER for SMI-NCMA is 78% comparedNCMA algorithm.

0
10

—+— SMI-NCMA
—A— NCMA

Average BER

SNR (dB)

Fig.8 Performance of BER with 8-element antenna
array for SMI-NCMA and NCMA algorithms

The magnitude of the complex weights plotted ad&ims number of samples
for each antenna element is presented in Fig.9dmyguNCMA algorithm. The
convergence of the weights to their optimum vafeesNCMA algorithm is shown

in the figure. The complex weights at the iterati?©0 for NCMA algorithm are
as follows:
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Table 1 : Magnitude and phase of the complex weighfor the NCMA
algorithm

Wel g ht W1 W, W3 Wy W5 Weg W7 Wg
Magnitude 0.0447 0.0438 0.0501 0.0556 0.0548 0.0485 0.0431 0.0461

Phase 0.3391 - - 2.0474 0.3580 - . 2.1208
(radians) 1.0838 2.5960 1.2809 2.7571

Weight vector

0 200 400 600 800 1000 1200
Samples

Fig.9 Weight convergence plot of the first 8 antenna
elements for SMI-NCMA algorithm

Fig.10 shows the magnitude of the complex weigHtdtgd against the
number of samples for each antenna element by &WigNCMA algorithm. It is
evident that the weight values converge to thetmmm values for SMI-NCMA

algorithm.
The complex weights at the iteration 1200 for SMIMA algorithm are as

follows:
17



Table 2 : Magnitude and phase of the complex weightor the SMI-NCMA

algorithm
Weight W1 Wo W3 Wy Ws We W+ Wg
Magnitude 0.0366 0.0492 0.053 0.06380.0766 0.0446 0.0515 0.02
Phase - 1.2876 2.7205 - - 1.7772 - -
(radians) 0.5703 1.7236 0.0678 3.0497 1.6882

0.07;

m’«" WW W
w
5

0.06/

Weight vector

0.01: .

0 200 400 600 800 1000 1200
Samples

Fig.10 Weight convergence plot of the first 8 antera
elements for SMI-NCMA algorithm
As can be observed from Fig.10, the SMI-NCMA stadaptation to optimum
weights from the initial weight vector values. Qe tcontrary, NCMA algorithm
has to converge from the arbitrary weight valuestliis case 1) to the optimum
weight values. However, before it converges tog8mum values, the interfering

directions will change; consequently more iteragiane needed to converge.
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5. CONCLUSION
In this paper, we introduced a novel and less cermpldaptive beamforming

algorithm, the “SMINCMA”, for smart antenna systeBMI-NCMA combines the
SMI and NCMA algorithms to improve the convergespeed with small BER. In
this algorithm individual good aspects of both S@mple by sample and block
adaptive algorithms are employed. SMI-NCMA computke optimal weight
vector based on the SMI algorithm and updates tegyw vector by NCMA
algorithm. Simulation results showed that the SMINWA algorithm provides
remarkable improvements in terms of interferenggpsession, convergence rate
and BER performance over that of classical NCMAoatgms. With respect to
NCMA, SMI-NCMA provides: (1) big improvements inta@rference suppression,
(2) 13 dB gain enhancement, (3) convergence framirftial iteration (whereas
NCMA convergence from the iteration number 200)d af@) 20.5% BER
improvements at CCI equal to 10. The reductionhef BER for SMI-NCMA is
78% compared to NCMA algorithm in the case of 8radat antenna array.
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