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Electrocardiogram (ECG) signals describe the electrical activity of the heart, and are

universally by physicists in the diagnosis of cardiac pathologies. However, during the

acquisition of ECGs they are often contaminated with different sources of noise, making

interpretation difficult. Different techniques have been used to filter the ECG signal, in

order to optimize the signal to noise ratio (S/N). In this paper, an approach based on

morphological filtering is developed in order to filter the ECG. Morphological filtering is

concerned with the detection of the ECG morphology, therefore allowing the suppression

of noises and particularly baseline wandering. The implemented filter is evaluated using

signals taken from the MIT-BIH ECG universal database. The results show that the

performance of this filter is good compared with other filtering techniques.

Keywords: ECG; Denoising; Baseline correction; Mathematical morphology; Morpho-

logical filtering

1. Introduction

Electrocardiogram (ECG) signals are often contaminated

by various noises which can disturb the phase and ampli-

tude characteristics of the signal [1–4]. The baseline corres-

ponds to the layout which would be observed on an ECG

if the heart did not have any electric activity. This line is

generally horizontal if the patient does not carry out any

movement [5–6], but during monitoring of the ECG signal,

movements of the patient can modify the relative positions

of the electrodes, which may lead to a corrugated layout of

this line. Therefore good filtering is required.

Different methods have been developed to filter baseline

wandering and noise, including band-pass filtering, which

reduces the influence of muscle noise, 60 Hz interference

and baseline wandering [7]. A band-pass filter was con-

structed from a low-pass filter and cascaded high-pass filter.

A second technique is the adaptive filter [8]. This is based

on the least mean square method, to minimize the mean

square error between the primary input and the reference

input. The structure of the combined linear adaptive filter is

transformed to a simple and effective linear comb filter.

Thirdly, the wavelet denoising technique was also used [9].

This was based on generating a constructed denoised ECG

signal by extracting and combining the delimited QRS

complexes from the second-level wavelet denoising, and

the P and T waves from the fourth- or fifth-level wavelet

denoising outputs. The most suitable wavelet function and

decomposition discrete wavelet transform (DWT) level for

the denoising process are determined by means of the mean

square error value. Each author claims good results when

ECG signals from the MIT-BIH database were tested [7–9].

In this work we are interested in morphological filtering.

The filter is implemented under the MATLAB 7 environ-

ment and evaluated using ECG signals from the MIT-BIH

universal database [10]. Morphological filtering is

widespread in the field of signal processing and image

processing, due to its robustness and simple and fast
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calculation [11–13]. In this article we propose a modified

version of morphological filtering—modified morphologi-

cal filtering (MMF)—for the correction of the baseline and

the suppression of noise in ECG signals [14].

Morphological filters are nonlinear signal transforma-

tions that locally modify geometric feature signals, and also

satisfy causality [15]. They stem from the basic operation of

a set-theoretical method for signal analysis—mathematical

morphology of opening and closing [16]. These operators

constitute a fundamental stage of morphological filter, and

are modified to become modified morphological filtering.

The paper is organized as follows. The mathematical

morphology (MM) operator is introduced in x2. The MMF

algorithm for the ECG signal is described in x3. The

experimental results are presented and discussed in x4 and

evaluated in x5. Finally, a conclusion is given in x6.

2. Mathematical morphology

Mathematical Morphology is a branch of mathematics

which present strong bonds with the algebra and trellis

theory and probability [17–18]. The development of

mathematical morphology was inspired by problems in

signal processing, which is its principal field of application.

One of the basic ideas of mathematical morphology is to

study or treat a set with the help of another set, called the

structuring element, which is used as a probe [19]. Each

position of the structuring element is assessed as if it touches or

is included as an initial set. According to the answer, a set of

outputs is built, to obtain basic operators to obtain basic

operators which are explained in the next title 2. Such

morphological operators privilege the concept of form than

information on the amplitude of the signals, when these are

used in signal processing. Mathematical morphology is a

nonlinear method of signal processing based on two morpho-

logical operators (erosion and dilation) and two others which

combine the first two (opening and closing). These morpho-

logical operators use a form of reference, called the structuring

element, with which the signal or image is compared

locally. The following paragraphs explain this concept in more

detail.

2.1. Basic morphology operators

Mathematical morphology has been introduced in principle

as a signal processing method, based on set theory [20–21].

The basic concept of mathematical morphology is to

modify the shape information of a signal, considered a

set, by transforming it through its interaction with another

object, called the structuring element. In practice, the

structuring element is compact and of a simpler shape than

the original object.

2.1.1. Morphological processing of sets. Morphological

filters of sets are set processing filters processing input m

– D sets by interacting them via Minkowski set addition or

subtraction with structuring elements that are compact n –

D sets (n�m). For this purpose two basic operations are

introduced by mathematical morphology. The first one

derives from the following. If A � Rm and B � Rm the set A

� B is defined as:

A� B ¼ aþ b : a 2 A; b 2 Bf g ¼
[
a2A

Ba ¼
[
b2B

Ab; ð1Þ

where Ab ¼ aþ b : a 2 Af g is a set obtained by shifting the

origin of the set A at distances determined by the element b

of the set B; 2 denotes the set inclusion, and [ denotes the

set union. This operation is called the Minkowski addition.

The second operation was introduced by Hadwiger under

the name of Minkowski subtraction. It associates to A and

B the set A Y B, defined by:

AY B ¼ AC � B
� �C¼

\
b2B

Ab; ð2Þ

where AC denotes the complement of the set A, \ denotes

the set intersection and Ab is a set obtained by shifting the

origin of the set A at distances determined by the elements

of the set B. Let BS ¼ �b : b 2 Bf g denote the symmetric

set of B with respect to the origin, and Ø denote the empty

set.

The basic morphological processing of sets are the

erosion A Y BS , dilation A � BS, opening A � B, and

closing A . B of A by B. These operations are defined as

follows:

A Y BS ¼ x : Bx � Af g ¼
\
b2B

A�b ð3Þ

A� BS ¼ x : Bx \ A 6¼ ;f g ¼
[
b2B

A�b ð4Þ

A � BS ¼ A Y BS
� �

� B ð5Þ

A � BS ¼ A � BS
� �

Y B: ð6Þ

From equations (3)–(6) and figure 1 we observe the

following. Geometrically, the erosion of A and B are

defined as the set of all point x such that the moving Bx is

contained in the original set A; the dilation of A by B is

defined as the set of all point x such that Bx intersects A.

Algebraically, the erosion of A by B is equal to the

Minkowski set subtraction of BS from A; the dilation of A

by B is the Minkowski sum of A and BS. Dilating A is

equivalent to eroding AC and complementing the result as

implied by equation (2). The opening of A by B is the set

resulting from erosion of A by B followed by the

Minkowski sum with B; this cascade does not generally

recover A, but rather a subset of A which is the morpho-

logically most essential part with respect to B. From

equations (1), (3) and (5) it follows that:

AB ¼
[

Bx�X
Bx: ð7Þ
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An example of closing and opening operations is further

shown in figure 1. An interesting consequence of the pro-

perties listed in table 1 is that the set resulting from the

closing operation always includes the initial set. Figure 1

shows that erosion shrinks the set A, whereas dilation

expands A.

The opening suppresses the sharp capes and cuts the

narrow isthmuses of A, whereas the closing fills in the thin

gulfs and small lobes. Thus, if the structuring element B has

a regular shape, both opening and closing can be thought

of as nonlinear filters which smooth the contours of the

input signal.

The dual operation of opening is the closing operation.

Morphological closing of the set A by the set B can be

expressed as a dilation operation followed by erosion of the

dilated result, using the same structuring element. Some

basic properties of erosion and dilation are summarized in

table 2 and basic properties of closing and opening are

defined in table 1.

2.1.2. Morphological processing of signals. The basic

concept of morphological signal processing is to modify

the shape of a signal, by transforming it through its

intersection with another object called the structuring

element. The shape information of a signal can be extracted

by using a structuring element to operate on the signal.

Thus, a structuring element has to be designed depending on

the shape characteristics of the signal that is to be extracted.

There are two possible cases in functional mathematical

morphology. The structuring element can be:

. flat; or

. voluminal; e.g. affected by grey-level amplitude in

images.

We are interested here with the structuring case of a flat

element. For the same reasons, all these transformations

will be illustrated in only one dimension on the ECG signal.

The basic operators of modified morphological filtering

include dilation (�) , erosion (Y), opening (�) and closing

(.) [22–23].
Let f(n) be the original 1D signal, which is the discrete

function over a domain f nð Þ ¼ 0; 1:::::::::::; N� 1f g. And

let B(m) be the structuring element, which is the discrete

function over a domain B mð Þ ¼ 0; 1:::::::::::; M� 1f g.
Two basic morphological operators, the erosion and the

dilation, can be defined as:

fYBð Þ nð Þ ¼ MIN
m¼0;:::M�1

f nþmð Þ � B mð Þf g ð8Þ

f� Bð Þ nð Þ ¼ MAX
m¼0;:::M�1

f n�mð Þ þ B mð Þf g; ð9Þ

where Y denotes the operators of erosion and � denotes

the operators of dilation. Based on the dilation and erosion,

two other basic morphological operators, opening (�) and
closing (.) can be further defined:

f � Bð Þ nð Þ ¼ fYB� Bð Þ nð Þ ð10Þ

f � Bð Þ nð Þ ¼ f� BYBð Þ nð Þ: ð11Þ
Figure 1. Erosion, dilation, opening and closing of a set A

(original set) by B. The shaded areas correspond to the

interior of the set, the dark solid curve to the boundary of

the transformed sets, and the dashed curve the boundary of

the original set.

Table 1. Basic properties of closing and opening.

Closing Opening

Extensivity: A � A � B Antiextensivity: A � B � A

Idempotence:

A � Bð Þ � B ¼ A � B
Idempotence: A � Bð Þ � B ¼ A � B

Translation invariance:

Að Þx � B ¼ A � Bð Þx
Translation invariance:

Að Þx�B ¼ A � Bð Þx
Increasing:

A1 � A2 ) A1 � B � A2 � Bð Þ
Increasing:

A1 � A2 ) A1 � B � A2 � Bð Þ
Duality: A � Bð ÞC¼ A � B Duality: A � Bð ÞC¼ AC � B

Table 2. Basic properties of dilation and erosion.

Dilation Erosion

Commutative: A� BS ¼ BS � A Non-commutative:

A Y BS 6¼ BS YA

Associative:

A� BS
� �

� CS

¼ A� BS � CS
� �

Translation invariance:

Að ÞxY BS ¼ AYBS
� �

x

Translation invariance:

Að ÞX � BS ¼ A� BS
� �

X

Increasing:

A1 � A2 ) A1YBS � A2YBS

Increasing:

A1 � A2

) A1 � BS � A2 � BS

Decreasing:

B1 � B2

) A1Y B2ð ÞS� AY B1ð ÞS

Duality: A� BS ¼ ACYB
� �C

Duality: AY BS
� �C¼ AC � B
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To obtain the eroded function of f(n), we attribute to f(n)

its minimal value in the field of the structuring element

B(m)¼ (0,0,0,0,0) which is a line segment, and with each

new displacement of B(m), the structuring element B(m)

plays the same role as a moving window. The width of such

window is chosen empirically as B¼ 5. This is illustrated in

figure 2, where these operations are applied to an ECG

signal. The illustration shows a reduction in the peaks of

the ECG signal and a widening of the valleys. Erosion is an

operator of shrinking in which the values of f Y B are

always less than those of f.

Similarly, the dilation can be performed by taking of

set sums. Its complexity is the same as erosion and is related

to convolution, where instead of doing summation of

products, a maximum of sums is computed. This transfor-

mation fills the valleys and thickens the peaks. Figure 2

shows that dilation is an operation of expansion in which

values of f�B are always greater than those of f.

Morphological opening can be expressed as an erosion

operation followed by a dilation of the eroded result, using

the same structuring element. The dual operation of

opening is the closing operation. Morphological closing

can be expressed as a dilation operation followed by an

erosion of the dilated result, using the same structuring

element.

Figure 2 shows that the opening by B smoothes the graph

off from below by cutting down its peaks. The closing

smoothes the graph of f from above by filling up its valleys

(suppress pits).

Subtracting from f its opening or closing by B provides

respectively the peaks and valleys of f. The width of these

peaks and valleys depends on the size of B. Therefore,

opening and closing by a structuring element B can be used

effectively to suppress noise and for baseline wandering

detection in ECG signals.

In practice, the morphological operators that are chosen

are based on different application scenarios of signal

processing. Sometimes it is difficult to obtain prior knowl-

edge of the noise impulse from a signal, especially when it

has both positive and negative impulses of noise. If this is

the case, some combinations of the four operators need to

be defined, such as the average (AVG) filter formulated

below:

AVG fð Þ ¼ f � Bþ f � Bð Þ=2 ð12Þ

The average filter can be used to flatten the noise

impulse, corresponding to the smoothing filter. The

difference filter (DIF) can be used to extract the impulsive

features, namely:

f � B� f � B ¼ f � B� fð Þ þ f� f � Bð Þ ð13Þ

f . B7 f and f7 f � B are two types of morphological top-

hat transform [24, a high-pass filter with good performance.

f . B7 f is called the black top-hat transform, and is used

to extract negative impulse of noise; f � B7 f is called the

white top-hat transform, and is used to extract positive

impulse of noise. Thus the filter can be used to extract all

noises impulses simultaneously.

3. Modified morphological filtering algorithm for the ECG

signal

In the MMF algorithm [25], the baseline correction and

noise suppression are performed as follows:

fb ¼ fO � Bo � Bc ð14Þ

f ¼ 1

2
fO � fbð Þ � Bpair þ fO � fbð Þ � Bpair

� �

¼ 1

2
fbc � B1 Y B2 þ fbcY B1 � B2ð Þ

ð15Þ

Figure 3 is a block diagram describing the structure of the

MMF of the ECG signals. It consists of five blocks. The

first is concerned with the acquisition of ECG signals

(fo: original ECG signal). This step is followed by another

which allows the detection of the baseline drift. This

detection is achieved using the morphological operators

defined in equation (14). Bo and Bc are structuring elements

for opening and closing. This baseline drift is subtracted

from the original ECG signal leading to a correction of

baseline fbc.

The following steps aim to exploit this correction of

baseline to remove the noise and finally to generate a

filtered ECG signal f, which is the resulting signal after

noise suppression. It is achieved through the suppressing

approach given above (15). Bpair (B1, B2) is selected accord-

ing to the purpose of analysis and the morphological

properties of the ECG signal. B1 is selected to be a

triangular shape to retain the peaks and valleys and B2 is a

line segment to remove noise. Therefore, the shape, length

and height (amplitude) of structuring element should be

selected according to the signal to be analysed. The shape

of structuring element can vary from regular to irregular

curves, such as flat, triangle and semicircle.

4. Results and interpretation

The MMF is implemented and tested using ECG signals

from the MIT-BIH database. The ECG signals selected

for these tests have high level of noise and baseline

wandering. As can be seen from figures 4 and 5, which

illustrate a noisy ECG signal (record 101) and ECG signals

after baseline correction (figure 4) and the resulting filtered

ECG signal (figure 5), the algorithm operates as follows.

First, the ECG signal is opened by a structuring element

Bo, which means two morphology operations are applied:

erosion and dilation. The first removes the peaks and

enlarges the width of minimum regions, and the second

increases dilation, preserves the valleys and enlarges the

width of maximum regions.
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The operation of opening by the structuring element

Bo generates a signal made up of valleys which are

removed by the second operation, i.e. closing dilation þ
erosion, by the structuring element Bc. This leads to the

baseline drift fb, which is illustrated in figures 4(b)–4(c).

After selecting the morphological operators, the structur-

ing element B(Bo, Bc) is the next key component which is

used for correction of the baseline in the morphology

analysis. Generally, only when the shape information of

the ECG signal is matched to those of structuring

element can the ECG signal be preserved. Therefore, the

shape, length and height of the structuring element

should be selected according to the ECG signal to be

extracted, i.e. the baseline drift.

Figure 2. Erosion, dilation, opening and closing of signal by a set B¼ (0,0,0,0,0).

Noise and baseline wandering suppression of ECG signals 91



In our algorithm, flat structuring elements B(Bo, Bc) are

used for correction of the baseline. They were selected

because they present the simplest structuring element with a

straightforward application. Thus, Bc and Bo took different

lengths and it depends on the duration (or width) of the

characteristic wave and the sample frequency (FS¼ 360 Hz)

of the ECG signal.

The ECG signal consists of the QRS complexes, P and T

waves. Their duration Dw is generally up to 0.2 s, therefore

leading to a number of DWFS samples during this element.

So the structuring element Bo is selected as Lo¼ 0.2FS to be

of length larger than DWFS, to extract the wave character-

istic. The length of the structuring element Bc is selected to

be longer than Bo, at about 1.5 Lo, because the closing

Figure 3. Block diagram of MMF.

Figure 4. Results of baseline detection by MMF: (a)

original ECG signal 101; (b) baseline detection with a

varying minimum; (c) baseline detection, with a fixed

minimum.

Figure 5. Results of the baseline correction and denoised

signal by MMF: (a) baseline correction with a fixed

minimum; (b) baseline correction with a varying minimum;

(c) denoised signal with a varying minimum.
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operation is used to remove the valleys left by the opening

operation.

The results we obtained show that the minimum, i.e.

erosion in the operation of closing, plays a very significant

role for the detection of the baseline drift. Figure 4(c)

illustrates the case where the minimum is selected with a

fixed value [73, 4]. To improve this result the minimum

must be selected proportional to the variation of the

baseline drift.

This correlation of the variation of the minimum with the

baseline is illustrated in the operation of closing max þ
min, such as the maximum is fixed at a value correlated to

the variations of the baseline (figure 4(b)). The final stage

leading to the correction of the baseline is the subtraction

of disturbed ECG signal with the detected baseline drift

signal fb.

Figure 5(a) illustrates the case where baseline correc-

tion is achieved respectively by a fixed minimum value

and varying the minimum value; and the denoised ECG

signal. Similarly, figures 6(b), 7(b) and 8(b) illustrate the

case where the minimum of the operation of closing is

selected to be proportional to the variation of the

baseline drift applied to the ECG signal with more

baseline drifts and noise. The following steps of the

algorithm are as follows.

After the correction of the baseline drift, the following

stage is the suppression of noise. This consists of the

application of operators of modified morphologies. In

fact, the signal obtained after correction of the baseline is

treated simultaneously by the closing and opening opera-

tions, followed by a summation then a division by two, to

generate at the end the filtered signal. Thus, the AVG filter

can be used to delete the noises impulses.

It should be noted that the shape of the structuring

element in the suppression of noise is different to that from

the correction of the baseline. Indeed, it can take two

different forms of equal lengths: a triangular form B1 to

maintain the peaks and the valleys, or a straight form

(segment of null amplitude) B2. In our case the size of the

structuring element was fixed at five sample units each, with

values of B1¼ (0,1,5,1,0) and B2¼ (0,0,0,0,0). This value is

fixed in an empirical way where the minimum and the

maximum are fixed at optimal values in the stage of the

suppression of the noise. As shown in figures 6(c) and 8(c),

good suppression of the noise can be observed.

5. Evaluation of results

In this section we will compare two methods, morpholo-

gical filtering and denoising by thresholding wavelet

shrinkage [26]. Denoising by the thresholding wavelet

shrinkage method is based on the following points:

. The characteristics of a signal can be represented by a

reduced number of coefficients.

. The noise affects all wavelet coefficients.

. By reducing wavelet coefficients to zero, the noise can

be removed by preserving the characteristics of the

signal.

. The use of thresholding methods makes it possible to

determine the value of the threshold starting from the

statistics of the signal.

We saw that it was possible to carry out a decomposition

in wavelets of a signal, then to rebuild this signal starting

from its wavelet coefficients. However, this technique

would not have been of great interest if these coefficients

were not modified, because one would obtain a final signal

identical to the initial signal. Therefore, to filter a signal by

thresholding, one should follow the stages represented by

the diagram in figure 9.

Figure 6. Results of MMF: (a) original ECG signal 113; (b)

signal after baseline correction; (c) denoised signal.
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Figure 7. Results of MMF: (a) original ECG signal 209; (b)

signal after baseline correction; (c) denoised signal.

Figure 8. Results of MMF: (a) original ECG signal 222; (b)

signal after baseline correction; (c) denoised signal.

5.1. Filtering evaluation criteria

So far we have evaluated the filtering performance using only

qualitative criteria. A quantitative evaluation is also required

to have an overall assessment of filtering. The parameters

used are signal to noise ratio (SNR), root mean square error

(RMSE), mean squared error (MSE) and normalized mean

squared error (MSEn). These are given by:

SNR ¼ 10 log

PN
n¼1 f nð Þ � f
� �2

PN
n¼1 f nð Þ � ~f
� �2 ð16Þ

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1 f nð Þ � ~f nð Þ
� �2

N
� 100

vuut
ð17Þ

MSE ¼

PN
n¼1 f nð Þ � ~f nð Þ
� �2

N
� 100 ð18Þ

MSEn ¼

PN
n¼1 f nð Þ � ~f nð Þ
� �2

PN
n¼1 f nð Þð Þ2

� 100 ð19Þ

The correlation is calculated between the noising signal

and the filtering signal. In the above equations
~f ¼ rebuilt signal; f ¼ the average of the original signal; and

f¼ original signal. Tables 3–5 represent the results

obtained for each method. It can be clearly seen that the

morphological filtering results are better than the wavelet

results; the SNR value and the correlation in morphological
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filtering are larger than the wavelet values. However we

found that the RMSE, MSE and MSEn values in

morphological filtering were too weak in comparison to

the wavelet values.

6. Conclusion

In this work we implemented a modified version of

morphological filtering. It was shown that using mor-

phology operators, closing and opening a filtering

operation can be implemented. This implementation was

tested and evaluated for suppression of baseline drift and

noise in ECG signals. The results illustrate the good

performance of such an approach and show that the

choice of the minima of the operations of closing

is important, as it can affect detection of the variations

of baseline drift, and consequently performance of the

filter.
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