

République Algérienne Démocratique et Populaire Université Aboubekr Belkaid– Tlemcen Faculté de Technologie Département de génie mécanique

Mémoire

Pour l'obtention du diplôme de Magister en génie mécanique (École doctoral) Option : Construction Mécanique

Simulation de l'Interaction Fluide – Structure dans une Conduite

Présenté par : M. FAKIRI HICHEM

Membres de jury :

Président :	BENACHOUR MUSTAPHA	MC"A "	Université de Tlemcen
Encadreur :	HADJOUI ABDEL HAMID	Prof.	Université de Tlemcen
Examinateurs :	BOUKHALFA ABDELKRIM	MC"A "	Université de Tlemcen
	ALIANE KHALED	MC"A "	Université de Tlemcen

Année Universitaire 2011/2012

REMERCIEMENTS

J'exprime mes gratitudes, mes reconnaissances et mes sincères remerciements à Monsieur HADJOUI ABDELHAMID pour m'avoir encadré tout le long de mon projet. La patience, le soutien et le temps trop précieux m'ayant été accordé, s'est avéré concluant, et m'a été finalement d'un grand apport.

Il y'a lieu de remercier également Monsieur BEN ACHOUR MUSTAPHA, pour avoir bien la bonté d'accepter de présider ce jury, et Messieurs BOUKHALFA ABDELKRIM et ALIANE KHALED Pour avoir examiné ce mémoire.

Toutes mes considérations à mes dignes et respectables Professeurs qui méritent autant d'égard, pour m'avoir donné le meilleur d'eux-mêmes afin d'arriver à ce stade du savoir.

FAKIRI HICHEM

Résumé

L'étude présentée dans ce mémoire concerne l'étude de l'interaction fluide- structure dans une conduite cylindrique de section circulaire avec écoulement d'un fluide laminaire et incompressible. Le fluide circulant dans la conduite crée une interaction « fluide-structure » qui se traduit par une diminution de la rigidité.

Les lois de comportement ont été établies par la relation déplacementscontraintes pour la conduite, l'équation de Navier-Stockes pour le fluide et le principe du couplage par pénalité pour l'interaction fluide structure. Le principe des travaux virtuels a été utilisé pour la détermination de l'équation du mouvement de la conduite avec fluide sous forme matricielle.

La modélisation de la conduite et du fluide est faite par la méthode des éléments finis standards, avec l'utilisation d'un élément fini de type triangulaire à trois nœuds (T3) et trois degrés de liberté par nœud.

Les fréquences propres du système sont calculées à l'aide d'un programme élaboré. Après avoir étudié la convergence et validé le programme avec plusieurs articles, plusieurs exemples ont été étudiés. L'étude de ces exemples nous ont permis de déterminer l'influence des paramètres physiques et géométriques de la structure couplée. Parmi ces paramètres nous citons la variation du diamètre de la conduite, son épaisseur, le rapport de l'épaisseur par rapport au diamètre de la conduite, le coefficient de poisson, la masse volumique du fluide, les conditions aux limites, etc...

Mots-Clés : interaction fluide structure, Canal horizontal, conduite cylindrique, élément finie, méthode de pénalité, mécanique des milieux continue, hydrodynamique, mécanique des fluides, transporteur du fluide.

Abstract

The study presented in this thesis concerns the study of fluid-structure interaction in a cylindrical pipe of circular section with laminar flow of an incompressible fluid. The fluid flowing in the pipe creates interaction "fluid-structure" which results in a decrease in rigidity.

The constitutive equations were determined by the displacement-stress relationship for the conduct, the Navier-Stokes for the fluid and the principle of coupling the penalty for fluid structure interaction.

The virtual works was used to determine the equation of motion of the driving fluid in matrix from.

Modeling of the pipe and the fluid is made by the standard finite element method with the use of a finite element type three-node triangular (T3) and three degrees of freedom per node.

The frequencies of the system are calculated using a program developed. After studying the convergence and validated the program with several items, several examples have been studied. The study of these examples has allowed us to determine the influence of physical and geometrical parameters of the coupled structure.

Among these parameters we cite the change in pipe diameter, thickness, ratio of thickness to the diameter of the pipe, Poisson's ratio, the fluid density, boundary conditions, etc. ...

Key word: fluid interaction structure, horizontal Channel, cylindrical control, finite element, method of penalty, and mechanics of the mediums continues hydrodynamic, mechanics of the fluids, conveyor of the fluid.

ملخص

ملخص

الدراسة التي قدمت في هده الرسالة تتعلق بالتفاعل السائل مع هيكل في أنبوب اسطواني لمقطع عرضي دائري مع تدفق سائل رقائق غير مضغوط السائل المتدفق داخل الأنابيب يخلق التفاعلات "السائل هيكل" و الذي يؤدي إلى انخفاض في صلابة.

تم تحديد قوانين السلوك بواسطة علاقة النزوح-التوتر لأجل الأنبوب معدلات نفير -ستوكس لسوائل مع مبدأ الاقتران لأجل التفاعل السائل- هيكل. و قد استخدمنا مبدأ العمل الظاهري لتحديد معادلة الحركة للأنبوب و سائل على شكل مصفوفات.

تم وضع نموذج للأنبوب و سائل من خلال طريقة العناصر المحدود قياسية مع استخدام العنصر المحدود من نوع مثلث ثلاث العقد (T3) و لكل عقد تحمل ثلاث درجات من الحرية.

قد تم حساب الترددات النظامية باستخدام برنامج متقدم و دلك بعد دراسة التقريبية والتحقق من صحة البرنامج مع عديد من الأمثلة. و سمحت الدراسة لنا لهده أمثلة بتحديد تأثيرات العوامل الفيزيائية والهندسية للهيكل المقرون. نذكر من بين هده المعايير التي تم التغيير فيها قطر الأنبوب و سمكه، علاقة بين السمك و القطر للأنبوب، نسبة يواسون، كتل الحجمية للسائل ،وشروط الحدود الخ....

الكلمة المفتاح :السائل التفاعل هيكل، القناة الأفقية، أسطواني سيسيطر، عنصر محدود، وطريقة من ركلة جزاء، واليات الهيد وديناميكية وسائل المستمر، وميكانيكا السوائل، الناقل من السائل.

Table des matières

Introductio	atroduction générale 2							
Chapitre I	: Bibliographique							
Introduction	n	5						
I.1.	Simulation numérique du comportement écoulement transitoire dans les faisceaux de tubes utilisant une méthode de pénalisation volume	5						
I.2.	Une méthode d'interaction en trois dimensions fluide-structure pour les valves cardiaques de modélisation	6						
I.3.	L'interaction fluide-structure dans les tuyaux à paroi épaisse	6						
I.4.	Une procédure adaptabilité du maillage pour CFD et les interactions fluide-struc	7						
I.5.	Méthodes numériques pour analyse modale de un faisceau de tubes avec interaction fluide-structure	7						
I.6.	Analyse théorique, analyse numérique et contrôle de systèmes d'interaction fluide-structure et de systèmes de type ondes	8						
I.7.	Simulation par éléments finis 3D de l'écoulement incompressible à l'interaction fluide-structure	8						
I.8.	Caractéristique dynamique d'une coque cylindrique par considération de l'interaction fluide-structure.	9						
I.9.	Analyse modale d'une structure industrielle avec prise en compte du couplage fluide/structure	10						
I.10.	Étude de l'interaction fluide/structure d'un élastique Membrane dans un micro-canal	11						
П.	Couplage entre fluide et la structure.	11						
II.1.	La méthode par pénalisation	12						

II.1.1.	Méthode SPH	12
II.1.2.	Méthode SPH avec FEM	13
П.1.3.	Méthode FEM avec FEM	14
II.1.4.	Méthode des multiplicateurs de Lagrange.	15
II.2.	Fréquence propre.	16
Chapitre II	I : Théorie sur le Domaine le du Fluide Structure & Couplage	
Théorie des	s solides	17
I.1.	Tube soumis à une pression	17
I.2.	Relations déplacements avec déformations et contraintes	18
I.2.1.	Déplacement	19
I.2.2.	Déformation.	19
I.2.3.	Contraintes	21
II.	Théorie des fluides	23
II.1.	Hypothèses.	23
II.2.	Equation de continuité	24
II.3.	Conservation de la quantité de mouvement.	25
II.4.	Relations des vitesses, déformations et contraintes	28
II.4.1.	Vitesses en Coordonnées Cylindriques	28
II.4.2.	Déformations	28
II.4.3.	Contraintes	28
III.	Couplage entre fluide et la structure.	29
III.1.	Méthode FEM avec FEM.	33

Chapitre III : Discrétisation sur Interaction Fluide-Structure

Introduction	n	34
II.	Discrétisation en élément finis	34
II.1.	Principe de l'énergie minimale	34
II.2.	Principe de travail virtuel	35
II.2.1.	Discrétisation l'équation du fluide et solide.	35
III.	Choi de l'élément Fini	35
IV.	Passage à l'élément de référence	37
V.	Partie du fluide.	39
VI.	Ecriture variationnelle faible dans le cas de fluides incompressibles	40
VII.	Discrétisation par éléments finis.	41
VIII.	Passage d'application sur le domaine structure	56
IX.	Couplage fluide et structure	59
IX.1.	Principe de couplage de pénalité	60
X.	Les équations du mouvement	61
Chapitre I	V : Résolution & Programmation MATLAB	
Introductio	n	63
II.	Programme.	63
III.	Intégration	65
IV.	Matrices de rigidité et masse élémentaire	65
V.	Assemblages des matrices élémentaires	66
VI.	Résolution.	66
VII.	Organigramme.	69

VIII.	Validation.	69	
VIII.1	La convergence fluide-structure	72	
VIII.2	Influence des différents paramètres.	73	
IX.	Interprétation des résultats.	137	
Conclusion Générale			
Référence.			

Liste des figures

Fig I.1: (a). Écoulement dans un tuyau flexible en porte à faux:9
Fig I.2: (b).Écoulement dans un tuyau flexible en porte à faux:9
Fig I.3: Géométrie industrielle étudiée. Représentation axisymétrique de l'ensemble
panier et cuve d'un réacteur de propulsion navale10
Fig. I.4: couplage structure-fluide et couplage structure-(fluide – fluide)12
Fig. I.5: Couplage SPH/FEM13
Fig. I.6: Couplage SPH/FEM/FEM13
Fig I.7: Couplage FEM/FEM15
Fig I.8:Schéma du couplage en pénalité16
Fig.II. 1:Tube cylindrique soumis à des pressions18
Fig.II. 2: Coordonnées cylindriques18
Fig.II. 3: déplacement d'un point19
Fig.II. 4:Contrainte en coordonnées cylindrique21
Fig.II. 5: Loi de Signorini (1) qui peut être régularisée
Fig.II. 6 : Elément de contact nœud à nœud
Fig.II. 7: Couplage FEM/FEM
Fig. III. 1: présentation d'élément triangulaire
Fig. III. 2:élément triangulaire de trois points nodaux pour vitesse (x) et un point nodal de
la pression (0)42
Fig. III. 3: l'équation générale du problème avec le couplage de pénalité schématisé60
Fig. III. 4:Schéma général de calcul en éléments finis62
Fig. IV. 1: Les fonctions MATLAB64
Fig. IV. 2: Organigramme d'analyse linéaire par la M.E.F. d'une structure65
Fig. IV. 3: Un organigramme (e i g s)68
Fig. IV. 4: Organigramme du couplage par pénalité entre fluide structure69
Fig. IV. 5:La convergence de fréquence en fonction de nombre des éléments72
Fig. IV. 6: La convergence de fréquence en fonction de nombre d'élément73
Fig. IV. 7:Influence du diamètre sur les fréquences propres de la conduite74
Fig. IV. 8:Influence du diamètre sur les fréquences propres de la conduite74
Fig. IV. 9:Influence du diamètre sur les fréquences propres de la conduite75
Fig. IV. 10:Influence du diamètre sur les fréquences propres de la conduite75

Fig. IV. 11:Influence du diamètre sur les fréquences propres de la conduite......76 Fig. IV. 12:Influence du diamètre sur les fréquences propres de la conduite......76 Fig. IV. 13:Influence du diamètre sur les fréquences propres de la conduite.....77 Fig. IV. 14:Influence du diamètre sur les fréquences propres de la conduite.....77 Fig. IV. 15: Influence du diamètre sur les fréquences propres d'une conduite E-L......78 Fig. IV. 16: Influence du diamètre sur les fréquences propres d'une conduite E-L......78 Fig. IV. 17: Influence du diamètre sur les fréquences propres d'une conduite E-L......79 Fig. IV. 18: Influence du diamètre sur les fréquences propres d'une conduite E-L......79 Fig. IV. 19: Influence du diamètre sur les fréquences propres d'une conduite E-L......80 Fig. IV. 20: Influence du diamètre sur les fréquences propres d'une conduite E-L.......80 Fig. IV. 21: Influence du diamètre sur les fréquences propres d'une conduite E-L.......81 Fig. IV. 22: Influence du diamètre sur les fréquences propres d'une conduite E-L.......81 Fig. IV. 23:Influence du diamètre sur les fréquences propres de la conduite E-E.82 Fig. IV. 24:Influence du diamètre sur les fréquences propres de la conduite E-E.82 Fig. IV. 25:Influence du diamètre sur les fréquences propres de la conduite E-E.83 Fig. IV. 29:Influence du diamètre sur les fréquences propres de la conduite E-E.85 Fig. IV. 30:Influence du diamètre sur les fréquences propres de la conduite E-E.85 Fig. IV. 31: Influence du diamètre sur les fréquences propres de la conduite avec fluide. Fig. IV. 32: Influence du diamètre sur les fréquences propres de la conduite avec fluide. Fig. IV. 33: Influence du diamètre sur les fréquences propres de la conduite avec fluide. Fig. IV. 34: Influence du diamètre sur les fréquences propres de la conduite avec fluide. Fig. IV. 35: Influence du diamètre sur les fréquences propres de la conduite avec fluide. Fig. IV. 36: Influence du diamètre sur les fréquences propres de la conduite avec fluide.

Fig. IV. 37	7: Influence	du diamètre	sur les f	réquences p	propres d	e la co	onduite av	ec fluide.
Fig. IV. 38	3: Influence	du diamètre	sur les f	réquences p	propres d	e la co	onduite av	ec fluide.
Fig. IV. 39 fluide	9: Influence	du diamètre	sur les	fréquences	propres	d'une	conduite	E-L avec
Fig. IV. 40 fluide): Influence	du diamètre	sur les	fréquences	propres	d'une	conduite	E-L avec
Fig. IV. 4 fluide	l: Influence	du diamètre	sur les	fréquences	propres	d'une	conduite	E-L avec
Fig. IV. 42 fluide	2: Influence	du diamètre	sur les	fréquences	propres	d'une	conduite	E-L avec
Fig. IV. 4. fluide	3: Influence	du diamètre	sur les	fréquences	propres	d'une	conduite	E-L avec
Fig. IV. 44 fluide	4: Influence	du diamètre	sur les	fréquences	propres	d'une	conduite	E-L avec
Fig. IV. 4: fluide	5: Influence	du diamètre	sur les	fréquences	propres	d'une	conduite	E-L avec
Fig. IV. 40 fluide	5: Influence	du diamètre	sur les	fréquences	propres	d'une	conduite	E-L avec
Fig. IV. 4' fluide	7: Influence	du diamètre	sur les	fréquences	propres	d'une	conduite	E-E avec
Fig. IV. 48 fluide	8: Influence	du diamètre	sur les	fréquences	propres	d'une	conduite	E-E avec
Fig. IV. 49 fluide	9: Influence	du diamètre	sur les	fréquences	propres	d'une	conduite	E-E avec
Fig. IV. 50 fluide): Influence	du diamètre	sur les	fréquences	propres	d'une	conduite	E-E avec
Fig. IV. 5 fluide	1: Influence	du diamètre	sur les	fréquences	propres	d'une	conduite	E-E avec
Fig. IV. 52 fluide	2: Influence	du diamètre	sur les	fréquences	propres	d'une	conduite	E-E avec

Fig. IV. 53: Influence du diamètre sur les fréquences propres d'une conduite E-E avec
fluide
Fig. IV. 54: Influence du diamètre sur les fréquences propres d'une conduite E-E avec
fluide
Fig. IV. 55: Influence du diamètre sur les fréquences propres de la conduite pour les trois
modes
Fig. IV. 56: Influence du diamètre sur les fréquences propres de la conduite pour les trois
modes
Fig. IV. 57: Influence du diamètre sur les fréquences propres de la conduite pour les trois
modes
Fig. IV. 58: Influence du diamètre sur les fréquences propres de la conduite pour les trois
modes E-L
Fig. IV. 59: Influence du diamètre sur les fréquences propres de la conduite pour les trois
modes E-L
Fig. IV. 60: Influence du diamètre sur les fréquences propres de la conduite pour les trois
modes E-L
Fig. IV. 61: Influence du diamètre sur les fréquences propres de la conduite E-E pour les
trois modes101
Fig. IV. 62: Influence du diamètre sur les fréquences propres de la conduite E-E pour les
trois modes101
Fig. IV. 63: Influence du diamètre sur les fréquences propres de la conduite E-E pour les
trois modes102
Fig. IV. 64:Influence du diamètre sur les fréquences propres de la conduite pour 1 ^{ere}
mode102
Fig. IV. 65:Influence du diamètre sur les fréquences propres de la conduite pour 1 ^{ere}
mode103
Fig. IV. 66: Influence d'épaisseur de la conduite sur les fréquences propres L-L103
Fig. IV. 67: Influence d'épaisseur de la conduite sur les fréquences propres L-L104
Fig. IV. 68: Influence d'épaisseur de la conduite sur les fréquences propres L-L104
Fig. IV. 69: Influence d'épaisseur de la conduite sur les fréquences propres L-L105
Fig. IV. 70: Influence d'épaisseur de la conduite sur les fréquences propres L-L105
Fig. IV. 71: Influence d'épaisseur de la conduite sur les fréquences propres L-L106
Fig. IV. 72: Influence d'épaisseur de la conduite sur les fréquences propres L-L106

Fig. IV. 73: Influence d'épaisseur de la conduite sur les fréquences propres L-L107
Fig. IV. 74: Influence d'épaisseur de la conduite sur les fréquences propres E-L107
Fig. IV. 75: Influence d'épaisseur de la conduite sur les fréquences propres E-L108
Fig. IV. 76: Influence d'épaisseur de la conduite sur les fréquences propres E-L108
Fig. IV. 77: Influence d'épaisseur de la conduite sur les fréquences propres E-L109
Fig. IV. 78: Influence d'épaisseur de la conduite sur les fréquences propres E-L109
Fig. IV. 79: Influence d'épaisseur de la conduite sur les fréquences propres E-L110
Fig. IV. 80: Influence d'épaisseur de la conduite sur les fréquences propres E-L110
Fig. IV. 81: Influence d'épaisseur de la conduite sur les fréquences propres E-L111
Fig. IV. 82: Influence d'épaisseur de la conduite sur les fréquences propres E-E111
Fig. IV. 83: Influence d'épaisseur de la conduite sur les fréquences propres E-E112
Fig. IV. 84: Influence d'épaisseur de la conduite sur les fréquences propres E-E112
Fig. IV. 85: Influence d'épaisseur de la conduite sur les fréquences propres E-E113
Fig. IV. 86: Influence d'épaisseur de la conduite sur les fréquences propres E-E113
Fig. IV. 87: Influence d'épaisseur de la conduite sur les fréquences propres E-E114
Fig. IV. 88: Influence d'épaisseur de la conduite sur les fréquences propres E-E114
Fig. IV. 89: Influence d'épaisseur de la conduite sur les fréquences propres E-E115
Fig. IV. 90: Influence d'épaisseur de la conduite sur les fréquences propres pour 1 ^{ere}
mode
Fig. IV. 91: Influence d'épaisseur de la conduite sur les fréquences propres pour 1 ^{ere}
mode
Fig. IV. 92: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres.
Fig. IV. 93: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres.
Fig. IV. 94: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres.
Fig. IV. 95: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres.
Fig. IV. 96: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres.
Fig. IV. 97: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres.

Fig.	IV.	98:	Influ	ence	d'ép	aissei	ır de	e la	cond	uite	avec	fluide	sur	les	fréc	luenc	es p	propres.
Fig.	IV.	99:	Influ	ence	d'ép	aissei	ır de	e la	cond	uite	avec	fluide	sur	les	fréc	luenc	es p	propres.
Fig.	IV.	100	: Infl	uence	e d'ép	oaisse	ur de	e la	cond	luite	avec	fluide	sur	les	fréc	quenc	ces p	propres.
Fig. E-L	IV.	101	: Infl	uence	e d'ép	oaisse	eur d	e la	cond	luite	avec	fluide	sui	r les	fré	quen	ces	propres
Fig. E-L	IV.	102	: Infl	uence	e d'ép	oaisse	eur d	e la	cond	luite	avec	fluide	sui	r les	fré	quen	ces	propres
Fig. E-L	IV.	103	: Infl	uence	e d'ép	paisse	eur d	le la	con	duite	e avec	fluide	e sur	: les	fré	quen	ces	propres
Fig. E-L	IV.	104	: Infl	uence	e d'ép	oaisse	eur d	e la	cond	luite	avec	fluide	suı	r les	fré	quen	ces	propres
Fig. E-L	IV.	105	: Infl	uence	e d'ép	oaisse	eur d	e la	cond	luite	avec	fluide	sui	r les	fré	quen	ces	propres
Fig. E-L	IV.	106	: Infl	uence	e d'ép	oaisse	eur d	e la	cond	luite	avec	fluide	suı	r les	fré	quen	ces	propres
Fig. E-L	IV.	107	: Infl	uence	e d'ép	oaisse	eur d	e la	cond	luite	avec	fluide	sui	r les	fré	quen	ces	propres
Fig. E-L	IV.	108	: Infl	uence	e d'ép	paisse	eur d	e la	cond	luite	avec	fluide	sui	r les	fré	quen	ces	propres
Fig. E-E	IV.	109	: Infl	uence	e d'ép	paisse	eur d	e la	cond	luite	avec	fluide	sui	r les	fré	quen	ces	propres
Fig. E-E	IV.	110	: Infl	uence	e d'ép	paisse	eur d	e la	cond	luite	avec	fluide	sui	r les	fré	quen	ces	propres
Fig. E-E	IV.	111	: Infl	uence	e d'ép	paisse	eur d	e la	cond	luite	avec	fluide	suı	r les	fré	quen	ces	propres
Fig. E-E	IV.	112	: Infl	uence	e d'ép	paisse	eur d	e la	cond	luite	avec	fluide	sui	r les	fré	quen	ces	propres
Fig. E-E	IV.		: Infl	uence	e d'ép	oaisse	eur d	e la	cond	luite	avec	fluide	sui	r les	fré	quen	ces	propres

Fig. IV. 114: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres
Е-Е
Fig. IV. 115: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres
E-E
Fig. IV. 116: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres
E-E
Fig. IV. 117: Influence d'épaisseur de la conduite sur les fréquences propres pour 1 ^{ere}
mode
Fig. IV. 118: Influence d'épaisseur de la conduite sur les fréquences propres pour 1 ^{ere}
mode
Fig. IV. 119: Influence de la masse volumique du fluide sur les fréquences propres 130
Fig. IV. 120: Influence de la masse volumique du fluide sur les fréquences propres131
Fig. IV. 121: Influence de la masse volumique du fluide sur les fréquences propres 131
Fig. IV. 122: Influence de la masse volumique du fluide sur les fréquences propres132
Fig. IV. 123: Influence de la masse volumique du fluide sur les fréquences propres 132
Fig. IV. 124: Influence de la masse volumique du fluidesur les fréquences propres E-L.
Fig. IV. 125: Influence de la masse volumique du fluide sur les fréquences propres E-E.
Fig. IV. 126: Influence de la masse volumique du fluide sur les fréquences propres E-E.
Fig. IV. 127: Influence de la masse volumique du fluide sur les fréquences propres E-E
134
Fig. IV 128: Influence de la masse volumique du fluide, sur les fréquences propres pour
1 ^{ere} mode
$\mathbf{F} = \mathbf{h} \mathbf{k} 1 2 0 \mathbf{k} \mathbf{k} \mathbf{k} 1 1 1 \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} \mathbf{k} k$
Fig. 1V. 129: Influence de la masse volumique du fluide sur les frequences propres pour
1 ^{ct} mode
Fig. IV. 130: Influence du rapport épaisseur/diamètre de la conduite diamètre sur les
fréquences propres
Fig. IV. 131: Zoom sur Influence du rapport épaisseur/diamètre de la conduite diamètre
sur les fréquences propres pour [0.02 à 0.19]
Fig. IV. 132: Influence de coefficient de poisson sur les fréquences propres137

Liste des Tableaux

Tableau 30 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=7,
m=variable) pour conduite sans fluide E-L
Tableau 31 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=8,
m=variable) pour conduite sans fluide E-L
Tableau 32 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=1,
m=variable) pour conduite sans fluide L-L
Tableau 33 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=2,
m=variable) pour conduite sans fluide L-L
Tableau 34 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=3,
m=variable) pour conduite sans fluide L-L
Tableau 35 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=4,
m=variable) pour conduite sans fluide L-L
Tableau 36 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=5,
m=variable) pour conduite sans fluide L-L
Tableau 37 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=6,
m=variable) pour conduite sans fluide L-L
Tableau 38 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=7,
m=variable) pour conduite sans fluide L-L
Tableau 39 la variation de Epaisseur en fonction de la fréquence propre du mode (n=7,
m=variable) pour conduite sans fluide L-L
Tableau 40 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=8,
m=variable) pour conduite sans fluide L-L
Tableau 41 : la variation du diamètre en fonction de la fréquence propre du mode (n=1,
m=variable) pour conduite avec fluide L-L
Tableau 42 : la variation du diamètre en fonction de la fréquence propre du mode (n=2,
m=variable) pour conduite avec fluide L-L
Tableau 43 : la variation du diamètre en fonction de la fréquence propre du mode (n=3,
m=variable) pour conduite avec fluide L-L
Tableau 44 : la variation du diamètre en fonction de la fréquence propre du mode (n=4
m=variable) pour conduite avec fluide L-L
Tableau 45 : la variation du diamètre en fonction de la fréquence propre du mode (n=5
m=variable) pour conduite avec fluide L-L

Tableau 46 : la variation du diamètre en fonction de la fréquence propre du mode (n=6
m=variable) pour conduite avec fluide L-L
Tableau 47 : la variation du diamètre en fonction de la fréquence propre du mode (n=7
m=variable) pour conduite avec fluide L-L
Tableau 48 : la variation du diamètre en fonction de la fréquence propre du mode (n=8
m=variable) pour conduite avec fluide L-L
Tableau 49 : la variation du diamètre en fonction de la fréquence propre du mode (n=1
m=variable) pour conduite avec fluide E-L
Tableau 50 : la variation du diamètre en fonction de la fréquence propre du mode (n=2
m=variable) pour conduite avec fluide E-L
Tableau 51 : la variation du diamètre en fonction de la fréquence propre du mode (n=3
m=variable) pour conduite avec fluide E-L
Tableau 52 : la variation du diamètre en fonction de la fréquence propre du mode (n=4
m=variable) pour conduite avec fluide E-L
Tableau 54 : la variation du diamètre en fonction de la fréquence propre du mode (n=6,
m=variable) pour conduite avec fluide E-L
Tableau 55 : la variation du diamètre en fonction de la fréquence propre du mode (n=7,
m=variable) pour conduite avec fluide E-L
Tableau 56 : la variation du diamètre en fonction de la fréquence propre du mode (n=8,
m=variable) pour conduite avec fluide E-L
Tableau 57 : la variation du diamètre en fonction de la fréquence propre du mode (n=1,
m=variable) pour conduite avec fluide E-E
Tableau 58 : la variation du diamètre en fonction de la fréquence propre du mode (n=2,
m=variable) pour conduite avec fluide E-E
Tableau 59 : la variation du diamètre en fonction de la fréquence propre du mode (n=3,
m=variable) pour conduite avec fluide E-E
Tableau 60 : la variation du diamètre en fonction de la fréquence propre du mode (n=4,
m=variable) pour conduite avec fluide E-E
Tableau 61 : la variation du diamètre en fonction de la fréquence propre du mode (n=5,
m=variable) pour conduite avec fluide E-E
Tableau 62 : la variation du diamètre en fonction de la fréquence propre du mode (n=6,
m=variable) pour conduite avec fluide E-E

m=variable) pour conduite avec fluide E-E
Tableau 64 : la variation du diamètre en fonction de la fréquence propre du mode (n=8,
m=variable) pour conduite avec fluide E-E
Tableau 65 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=1,
m=variable) pour conduite avec fluide L-L
Tableau 66 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=2,
m=variable) pour conduite avec fluide L-L
Tableau 67 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=3,
m=variable) pour conduite avec fluide L-L
Tableau 68 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=4,
m=variable) pour conduite avec fluide L-L
Tableau 69 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=5,
m=variable) pour conduite avec fluide L-L
Tableau 70 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=6,
m=variable) pour conduite avec fluide L-L
Tableau 71 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=7,
m=variable) pour conduite avec fluide L-L
Tableau 72 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=8,
m=variable) pour conduite avec fluide L-L
Tableau 73 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=1,
m=variable) pour conduite avec fluide E-L
Tableau 74 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=2,
m=variable) pour conduite avec fluide E-L
Tableau 75 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=3,
m=variable) pour conduite avec fluide E-L
Tableau 76 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=4,
m=variable) pour conduite avec fluide E-L40
Tableau 77 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=5,
m=variable) pour conduite avec fluide E-L40
Tableau 78 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=6,
m=variable) pour conduite avec fluide E-L40

Tableau 79 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=7,
m=variable) pour conduite avec fluide E-L40
Tableau 80 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=8,
m=variable) pour conduite avec fluide E-L41
Tableau 81 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=1,
m=variable) pour conduite avec fluide E-E41
Tableau 82 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=2,
m=variable) pour conduite avec fluide E-E41
Tableau 83 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=2,
m=variable) pour conduite avec fluide E-E41
Tableau 84 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=3,
m=variable) pour conduite avec fluide E-E42
m=variable) pour conduite avec fluide E-E42 Tableau 85 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=4,
m=variable) pour conduite avec fluide E-E
 m=variable) pour conduite avec fluide E-E
m=variable) pour conduite avec fluide E-E
m=variable) pour conduite avec fluide E-E
m=variable) pour conduite avec fluide E-E

Nomenclature

F	Force	[N]
k	Raideur	[N/m]
d	Déplacement	[m]
Μ	Masse globale	[Kg]
С	Amortissement globale	[N.s/m]
Κ	Rigidité globale	[N/m]
$ ho_j$	Masse volumique de la particule	$[Kg/m^3]$
m _j	Masse de la particule	[Kg]
u_s	Déplacement esclave	[<i>m</i>]
u_m	Déplacement maître	[<i>m</i>]
M _{eq}	Masse équivalente	[Kg]
M _s	Masse du solide	[Kg]
M_f	Masse du fluide	[Kg]
K _{fs}	Raideur fluide et structure	[N/m]
f _{reqc}	Fréquence	[Hz]
U	Déplacement globale	[<i>m</i>]
<i>u</i> _r	Déplacement suivant l'axe r	[<i>m</i>]
$u_{ heta}$	Déplacement suivant l'axe θ	[<i>m</i>]
u _z	Déplacement suivant l'axe z	[<i>m</i>]
$\sigma_{rr};\sigma_{ heta heta};\sigma_{zz};\sigma_{rz};\sigma_{ heta z}$	Composantes cylindriques de contraintes	$[N/m^{2}]$
$\mathcal{E}_{rr}; \mathcal{E}_{\theta\theta}; \mathcal{E}_{rz}; \mathcal{E}_{\theta z}$	Composantes cylindriques de contraintes	[-]
r;θ;z	Coordonnées cylindriques	[m]
$\sigma(M)$	Tenseur des contraintes	$[N/m^2]$
$\varepsilon(M)$	Tenseur des déformations linéaires	[-]
[d]	Matrice des composantes d'élasticité linéaire	[-]
μ	Viscosité dynamique	[N/m.s]
λ	Coefficients de Lamé	[-]
δ_{ij}	Symbole de Kronecker	[-]
ν	Coefficient de poisson	[-]

Ε	module d'Young	$[N/m^2]$
$\{\sigma\}$	Tenseur des contraintes	$[N/m^{2}]$
[D]	Matrice de comportement élastique	[-]
{ <i>ɛ</i> }	Tenseur des déformations linéaires	[—]
Re	Nombre de Reynolds	[-]
m	Masse	[Kg]
T_{ji}	Tenseur des contraintes du fluide	$[N/m^{2}]$
n_j	Vecteur unitaire normale à une surface ou à un	
	contour	[-]
p	Pression	$[N/m^{2}]$
g_i	Force de pesanteur	[N/Kg]
\dot{u}_r ; $\dot{u}_ heta$; \dot{u}_z	Vitesses en coordonnées cylindriques	[m]
ρ	Masse volumique	$[Kg/m^3]$
V	Volume	[<i>m</i> ³]
t	Temps	[<i>s</i>]
α_P	Paramètre de pénalité	[-]
G	Raideur du couplage	[N/m]
K _{SYS}	Raideur du système	[N/m]
K _{FS}	Raideur fluide structure	[N/m]
N _e	Fonction de forme à un élément	[-]
A _e	Surface de l'élément de triangle	$[m^2]$
λ; ξ; η	Coordonnées paramétrique	[-]
W	Travaille	[N.m]
W_{N-S}	Travail Navier-Stokes	[N.m]
W _{cont}	Travailcontinuité	[N.m]
K_f	Raideur du fluide	[N/m]
Ν	Fonction de forme	[—]
В	Matrice reliant les déformations aux variables	
	nodales	[-]
Н	Matrice de comportement élastique	[-]
Δt	Le pas	[<i>s</i>]
$[M]_s^e$	Masse du solide élémentaire	[Kg]

$[M]_f^e$	Masse du fluide élémentaire	[Kg]
$[K]_s^e$	Raideur du solide élémentaire	[N/m]
$[K]_{f}^{e}$	Raideur du fluide élémentaire	[N/m]
$\{F\}_s^e$	Force du solide élémentaire	[N]
$\{F\}_{f}^{e}$	Force du fluide élémentaire	[N]
$[M]_{sf}^G$	Masse globale	[Kg]
$[K]_{sf}^G$	Raideur globale	[N/m]
$\{F\}_{sf}^G$	Force globale	[N]
$\{U\}_{sf}^G$	Déplacement globale	[<i>m</i>]
Ι	Matrice identique	[-]
<>	Matrice ligne	[]
[]	Matrice	[]
{}	Vecteur	[]

Introduction Générale

Introduction

Les canalisations qui dans le passé ne servaient qu'à transporter l'eau de la rivière vers les villageois se sont largement développées, et depuis la révolution du développement industriel on trouve différentes formes de canalisations pour les différentes fluides.

Cette révolution a été provoquée par les besoins de l'être humain dans le génie civil, génie nucléaire, génie maritime, génie biomédical...etc., l'écoulement dans ces canalisations crée les phénomènes d'interaction fluide-structure.

Un des premiers grands secteurs ou les simulations numériques et expérimentales d'interaction fluide-structure sont apparues est le génie civil. Le développement de ce domaine d'application est lie à l'effondrement du pont de Tacoma Narrows (1940) et Tay Bridge (28 décembre 1879).

L'interaction fluide-structure s'intéresse au comportement d'un système constitué de deux entités mécaniques: une structure mobile ou fixe (rigide ou déformable) et un fluide (en écoulement ou au repos) autour ou à l'intérieur de la structure. L'évolution de chacune des deux entités dépendant de celle de l'autre, un phénomène de couplage apparaît.

Plus précisément, la structure influe sur l'écoulement du fluide et l'écoulement du fluide sur la structure par les déplacements et entre eux en trouve l'interface. Dans la nature il y a plusieurs situations de ce type des problèmes. Comme les hautes cheminées, les gratte-ciels, les barrages dont la structure subit l'écoulement du fluide sous l'effet de la pression, les câbles téléphonique sous l'effet du vent, les ailes d'avion, les réservoirs, sous l'effet du ballotement de la surface libre du fluide,... etc.

On trouve aussi le phénomène de l'interaction fluide-structure dans les industries pétrolières surtout les transporteurs du pétrole comme les conduites cylindriques qui joue un rôle très importent de la liaison entre les dispositions d'unité, qui provoque la vibration sur les conduites.

Ces différents effets sont nommés sous le nom des forces du fluide qui s'exercent sur la structure (modifie la géométrie) et se composent en trois types:

- La force aléatoire qui ne dépend pas du mouvement par exemple le fluide sur la structure fixe.
- la force fluide-structure pour une structure vibrante dans fluide au propre l'écoulement.
- la force fluide-élastique qui dépend du mouvement de la structure dans un écoulement de fluide. Le couplage fluide-structure apparaît systématiquement dès qu'on a une structure déformable dans un fluide en mouvement ou une structure en mouvement dans un fluide initialement au repos.

Le couplage fluide-structure

La principale problématique de ce mémoire est: comment transmettre correctement les efforts d'interaction entre le modèle Eulérien pour le fluide et le modèle Lagrangien pour la structure? Les méthodes de couplage mises en œuvre pour répondre à cette question sont appelées couplages Euler/Lagrange. Le premier réflexe est d'imposer, à la frontière du fluide et de la structure, une même cinématique. Par exemple, les vitesses des nœuds Lagrangiens composant la frontière de la structure peuvent être déterminées en interpolant les vitesses Eulériennes des nœuds voisins.

Les rôles du "maître" (celui qui impose la vitesse) et de "l'esclave" (celui qui subit) peuvent être inversés en cours de calcul.

A la place de cette première approche et pour assurer la conservation de la quantité de mouvement, le champ des forces d'interaction est évalué et appliqué en respectant le principe de l'action et de la réaction. La force d'interaction est estimée par une méthode de pénalisation consistant à permettre une légère pénétration entre les deux maillages. Une force de rappel proportionnelle à cette distance est alors évaluée par équation suivant elle est appliquée par symétrie sur le fluide et la structure.

F = -kd

Où F, d et k sont respectivement la force, la pénétration et la raideur.

Cette dernière est l'objet du problème car il est difficile d'estimer sa valeur précisément pour un problème quelconque. Si la raideur est trop faible, les interpénétrations deviendront inacceptables et le fluide traversera la structure. En théorie, la raideur devrait être très grande afin de limiter les pénétrations. Cependant, si la raideur est trop importante, la force de rappel trop grande devant les forces physiques déstabilisera le calcul. Le choix de la raideur est un problème non-linéaire délicat qui repose sur l'expérience de l'utilisateur qui doit avoir une idée de la solution physique recherchée.

Avec le développement des codes de calcul en mécanique des fluides et l'augmentation des ressources informatiques, la simulation numérique devient un outil intéressant et complémentaire pour l'étude des couplages fluide-structure.

La difficulté est de trouver une formulation adaptée pour la résolution des équations fluide-structure.

La structure de mémoire se commence par une introduction générale sur l'interaction fluide-structure et Le couplage fluide-structure par la suite on trouve le chapitre1 qui donne quelque travaux en simulation et modélisation sur (F.S.I) interaction fluidestructure avec différentes couplages par pénalité.

Chapitre2 c'est la théorie mathématique en modélisation pour fluide en écoulement laminaire incompressible dans la conduite cylindrique suivent la loi de comportement du structure avec l'équation de Navier-Stokes, couplage entre fluide-structure et cette théorie elle est discrétisé par la méthode des éléments finis dans chapitre3 en modélisation numérique.

Chapitre4 c'est la programmation en MATLAB avec les résultats graphiques, des fréquences propres pour différents paramètres géométriques et physiques du fluide et structure.

Ce travail se termine par une conclusion générale dans laquelle en trouve des remarques sur ces résultats suivie par une perspective du F.S.I.

Recherche Bibliographique

Introduction

Les domaines où l'interaction fluide structure est présente sont de nature très variés, et les travaux réalisés sont nombreux. Dans ce chapitre nous allons donner un historique général sur les travaux proches de notre sujet qui ont été faits.

I.1 Simulation numérique du comportement écoulement transitoire dans les faisceaux de tubes utilisant une méthode de pénalisation volume:

Kai Schneider [01] a travaillé sur la simulation numérique de l'écoulement plan des fluides incompressibles dans les tubes des échangeurs de chaleur et du réacteur chimique par l'utilisation de la méthode de pénalisation volumique. Dans son article, il présente la méthode de pénalisation avec un schéma numérique.

La méthode de pénalisation volumique a été proposée par Arquis et Caltagirone (1984) et généralisée par Angot et al. (1999).Elle est basée sur l'idée physique qui consiste à modéliser les murs solides (parois) et les obstacles par des corps poreux où la porosité tend vers zéro. Après avoir déterminé les équations pénalisées (différentielles), il utilise la méthode pseudo-spectrale de Fourier et la méthode d'adaptation des ondelettes.

I.2 Une méthode d'interaction en trois dimensions fluide-structure pour les valves cardiaques de modélisation :

Raoul van Loon et autre [02] utilise la modélisation numérique du couplage fluide solide lorsque le solide est un corps mince. L'écoulement est décrit par les équations de Navier Stokes instationnaires, la déformation du solide l'étant par un modèle du type Néo-Hookien, et le couplage entre le fluide et la structure se fait par les multiplicateurs de Lagrange. Avec l'utilisation de l'approche lagrangienne et eulérienne pour les problèmes tridimensionnel, il a utilisé la loi de Hooke généralisée et l'application la méthode des éléments finis en maillage.

Bien que les maillages fluide et solide ne soient pas en conformité, l'un par rapport à l'autre on peut coupler les régions respectives via un multiplicateur de Lagrange. Par rapport à d'autres approches de ce type, on améliore la précision par l'utilisation d'une méthode de maillage adaptative, peu coûteuse, appliquée au maillage fluide au voisinage de l'interface avec le solide. Pour évaluer les possibilités de la méthode, on l'applique à la résolution de problèmes modèles, bi et tridimensionnels, tous étroitement liés à la simulation numérique du mouvement des valves cardiaques en régime dynamique.

Le domaine fluide Ω^f avec le domaine solide Ω^s son intégrés dans un seul domaine est considéré comme solide. Afin de saisir l'interaction fluide-structure, ces deux domaines doivent être associés, par le couplage qui est obtenu en appliquant la condition qu'il n'y a pas de glissement au niveau de l'interface solide fluide.

Afin de distinguer les deux domaines, les multiplicateurs de Lagrange γ^{f} et γ^{c} sont mis en place pour désigner le domaine correspondant à l'interaction fluide-structure et la surface de contact solide.

I.3 *L'interaction fluide-structure dans les tuyaux à paroi épaisse*

A.S. Tijsseling [03] détermine la variation de la vitesse acoustique en fonction du rapport entre l'épaisseur et le rayon dans les tubes ou le phénomène du coup de bélier, c.à.d. l'augmentation de la pression à l'intérieur de tuyaux par la fermeture de valve qui provoque la propagation des vagues sur le long du canal.

Pour cela il a étudié le phénomène en modèle mathématique classique basé sur les équations de continuité en 2D en utilisant des coordonnées cylindriques

I.4 Une procédure adaptabilité du maillage pour CFD et les interactions fluidestructure

Klaus-Jürgen Bathe Hou Zhang [04] utilisent la réparation et l'adaptation des maillages pour obtenir efficaces CFD (dynamique des fluides) et des solutions FSI (interaction fluide structure).

Ces techniques fonctionnent sur des gradients de solution et d'impliquer l'adaptation de raffinage et de grossissement du maillage et cette technique elle est adapter par l'itération qui suive la région de fluide. Par suite vienne la résolution du système pour l'écoulement laminaire incompressible ou compressible par les équations de Navier-Stokes, qui a été adapté automatiquement avec la comparaissent entre le maillage initial et final c.à.d. voire le plus raisonnable.

I.5 *Méthodes numériques pour analyse modale de un faisceau de tubes avec interaction fluide-structure*

Jean-François SIGRIST et Daniel BROC [05] ont appliqué l'analyse sismique sur les faisceaux de tubes dans l'évaluation de la sécurité des installations nucléaires. Ces analyses nécessitent en particulier le calcul de la fréquence, la forme de mode et de la masse effective des modes propres du système. Comme les effets d'interaction peuvent influer considérablement sur le comportement dynamique de structures immergées, la modélisation numérique du faisceau de tubes doit prendre en compte l'interaction fluide structure.

Cette analyse basée sur le comportement massique du fluide dans des tubes où il y a la densité ou cumulation de la masse dans la structure, pour cela ils ont travaillé sur la méthode de la masse ajoutée. Les différentes méthodes numériques ont été exposées et comparés dans leur document, consacré à l'analyse dynamique d'un générateur de vapeur pour le système de propulsion sous-marin nucléaire, pour l'analyse modale du faisceau de tubes avec modélisation de l'interaction fluide structure.

L'objectif principal de l'étude est de démontrer l'efficacité numérique d'une méthode d'homogénéisation (élément fini), qui a été développée et appliquée à la modélisation

d'un réacteur nucléaire par [J.F. SIGRIST, D. BROC.2006], pour résoudre le problème de la densité de masse et de trouver les modes et les fréquences propres.

I.6 Analyse théorique, analyse numérique et contrôle de systèmes d'interaction fluide-structure et de systèmes de type ondes.

Le travail de **Takéo Takahashi** [06] est décomposé en trois partie, la première sur les interactions fluide structure du point de vue analytique mathématique par les équations classiques de Navier-stokes et leur utilisation au domaine numérique avec la méthode A.L.E (Arbitrary Lagrangian eulerian) et lagrangienne pour la déformation structurel et pour utiliser l'interaction fluide-structure à l'écoulement incompressible non visqueux et par suite à l'écoulement compressible et visqueux, la deuxième partie cherche à contrôler le mouvement du fluide et la structure en vitesse et dans la troisième, il détermine la rigidité par l'approche fréquentielle dans différents systèmes ; fluide externe ou interne à la structure ou solide.

1.7 Simulation par éléments finis 3D de l'écoulement incompressible à l'interaction fluide-structure:

S. Mittal et T. E. Teaduyar [07] ont résolu des problèmes en 3D impliquant des interactions fluide-structure par l'étude de la dynamique d'une conduite flexible en porte à faux (figure. I.1.).

Par suite, ils calculent l'écoulement qui passe par l'aile fixe rectangulaire avec le nombre de Reynolds 1000, 2500 et lo⁷ils révèlent des modèles d'écoulement intéressants. Pour des valeurs de Reynolds1000, 2500, c'est un calcul en éléments finis en 3D à écoulement incompressible instationnaires, impliquant des interactions fluide-structure, basé sur l'espace-temps ; déformation dans le domaine spatial/stabilisé espace-temps (DSD / SST) formulation des éléments finis.

La résolution de Les équations Navier-Stokes, c'est le principe des travaux virtuels pour assurer la stabilité numérique des calculs, qui donne une série d'intégration et impliquant la formulation variationelle de Galerkin dans l'équation. Ces intégrales sont obtenues en appelant les Galerkin/moindres carrés (Galerkin/least squares GLS).

Chapitre I

Fig I.1: (a). Écoulement dans un tuyau flexible en porte à faux:

Présentation schématique

Fig I.2: (b).Écoulement dans un tuyau flexible en porte à faux:

Élément de conduite

La résolution se fait par l'intégrale de l'équation qui correspond à la formulation de **Galerkin** par éléments finis pour trouver un système sous forme matricielle du problème:

$$M\ddot{u} + C\dot{u} + Ku = F$$

Où M, C et K sont les matrices de masse, d'amortissement et de rigidité, respectivement, et F est le vecteur de force. Les vecteurs de \dot{u} , et u correspondent à l'ensemble des inconnues pour l'accélération, la vitesse et le déplacement.

I.8 Caractéristique dynamique d'une coque cylindrique par considération de l'interaction fluide-structure.

Myung Jo Jhung, Wal Tae kimet Yong Ho Ryu [08] cherche la fiabilité de cylindres ou de réservoirs avec anneau rempli de liquide, sur les caractéristiques modales considérant l'effet d'interaction fluide-structure. Ils utilisent la méthode des 'élément finis pour la structure et la méthode de masse ajoutée à la masse de la structure pour simplifier la résolution du problème et obtenir sous forme de donnée le déplacement et la fréquence naturelle de remplissage du cylindre, la masse ajoutée représentant des donne des fréquences plus élevées.

0

I.9 Analyse modale d'une structure industrielle avec prise en compte du couplage fluide/structure.

Jean-François Sigrist, Christian Lainéet Bernard Peseux [09] utilise une analyse modale d'une structure industrielle couplée avec un fluide, avec les techniques numériques de calculs couples fluide/structure. La nature de la structure et axisymétrique en géométrie et, la modélisation du problème est réalisée par les éléments finis axisymétriques développes en série de Fourier par La discrétisation en élément fini.

La modélisation est effectuée par un code de calcul implanté dans MALAB pour permettre l'analyse modale de la structure (voire **figure .I.2**.), la comparaison se fait par ANSYS à des résultats de calcul MATLAB avec les résultats de calculs obtenus avec le code généraliste Ansys, pour l'étude de problèmes couples en pression/déplacement avec développement en série de Fourier, a partir de ca trouver les valeurs propre par MATLAB et le code de calcule Ansys ,en suite Comparaison des résultats de calcul MATLAB et Ansys fréquences propres du système couple dans des tableaux 1et2 .

Fig I.3: Géométrie industrielle étudiée. Représentation axisymétrique de l'ensemble panier et cuve d'un réacteur de propulsion navale.

I.10 Étude de l'interaction fluide/structure d'un élastique Membrane dans un microcanal.

S. Moondra and A. Upadhyay and Sushanta K. Mitra [10] utilisent la Simulation numérique de l'écoulement à travers un micro-canal bidimensionnel avec une structure intégrée élastique. Une étude pour des géométries différentes de l'élasticité de la structure et la viscosité de fluide sur le moment de flexion maximal, la contrainte de cisaillement maximale dans la structure et le déplacement maximum de la structure. Divers microsystèmes à base de silicium tels que les puits de micro-thermique, micro-puces à ADN, microréacteurs et les micro-buses ont été développés ces dernières années.

Leur étude c'est de simuler numériquement l'écoulement à travers un micro-canal avec une membrane élastique et d'étudier les effets de divers paramètres - telles que l'élasticité de la membrane, la viscosité du liquide, et la géométrie de la membrane élastique sur le déplacement de la pointe de la membrane, sa contrainte de cisaillement maximale et le moment de flexion.

II. Couplage entre fluide et la structure [11]:

Le couplage entre un fluide et une structure est la base de beaucoup de phénomènes. Parmi c'est phénomènes, la déformation de la structure, ou on peut trouver par tout, même dans le corps humain qui est une structure élastique complexe. On trouve plusieurs définitions sur le couplage fluide-structure, soit mathématique ou physique, c'est-à-dire la formulation algébrique ou physique sur les bases des données du problème à résoudre.

Le couplage c'est de créer une interface entre deux propriétés physiques différentes ou de même propriété physique, comme solide-solide, fluide-structure, fluide-fluide aussi on peut dire c'est l'interaction fluide-structure.

Ces figures montrent les différents problèmes qu'on peut trouver, sur le couplage fluide structure ou l'interface.

Chapitre I

Fig I. 4: couplage structure-fluide et couplage structure-(fluide – fluide).

Figure I.4 : Solide élastique immergé dans un fluide.

II.1 La méthode par pénalisation :

II.1.1. Méthode SPH:

La méthode SPH (*Smoothed Particle Hydrodynamics*) se caractérise par la masse des particules et par deux grandeurs de discrétisation, la distance entre les particules, diamètre de la particule.

Le principe est d'approximer un champ \vec{u} sur un domaine ω par un ensemble de points de discrétisation appelés particules. En chacune de ces particules, on peut écrire une formulation intégrale du champ.

Fig. I.5: Couplage SPH/FEM.

$$\vec{u}(\vec{X}) = \int_{W} \vec{u}(\vec{Y})\delta(\vec{X} - \vec{Y})dw \qquad (I.1)$$

Si ρ_j et m_j représentent respectivement la masse volumique et la masse d'une particule j, l'intégrale dans Eq. (*I*.1) peut être approximée par une quadrature de type Monte Carlo:

$$\vec{u}(\vec{X}_i) = \sum_i \frac{m_j}{\rho_j} \vec{u}(\vec{X}_j) W(\|\vec{X}_i - \vec{X}_j\|, h)$$
(I.2)

Le couplage SPH/FEM repose sur une méthode de contact par pénalisation. Les particules fluides sont les "nœuds" esclaves. La particule pénètre dans un élément structure d'une distance d (**voir Figure I.5**), la force appliquée est proportionnelle à cette distance: $f = k \times d$ dans laquelle k est la raideur par pénalisation.

II.1.2. Méthode SPH avec FEM:

Ce couplage est utilisé pour gérer l'interaction fluide/structure entre un maillage Lagrangien, pour la structure, et un maillage Eulérien pour le fluide. Le maillage Lagrangien étant immergé dans la grille Eulérienne.

Fig. I.6: Couplage SPH/FEM/FEM.

La distance relative entre les positions Lagrangiennes des nœuds mais la distance relative entre une particule fluide et un point interne de l'élément de la structure. Les quantités aux points internes telles que les forces d'interaction, les masses ou les vitesses sont reliées aux quantités nodales par les fonctions de forme N_I .

Un déplacement relatif construit à partir des variables Eulériennes est donné par le produit du pas de temps de calcul par la vitesse relative normale à l'élément structure : $\Delta t. \left(\dot{u}_{structure}^{\overline{n+1/2}} - \dot{u}_{fluide}^{\overline{n+1/2}} \right)$ La pénétration à chaque cycle est mise à jour par:

$$d^{n+1} = d^n + \Delta t. \left(\dot{u}_{structure}^{\overline{n+1/2}} - \dot{u}_{fluide}^{\overline{n+1/2}} \right)$$
(1.3)

III.1.3. Méthode FEM avec FEM [12]:

La méthode de FEM/FEM par pénalisation se caractérise par élément fini de la structure et du fluide par une raideur qui et entre deux nœud sous forme interface de contact ni frottement ni glissement (voir **Figure .I.7**).

Afin de présenter cette méthode, on considère un cas bidimensionnel. Soit un élément Maître à deux nœuds m1 et m2, et un nœud esclave s. L'idée principale, pour éviter la pénétration du nœud esclave au travers de l'élément maître, est d'appliquer une force de Répulsion suivant la normale à l'élément maître. L'enjeu est alors de calculer la valeur de Cette force. Considérons le repère local de l'élément maître. En considérant uniquement les forces normales, et en appliquant le principe de l'action et de la réaction, on a :

$$F_{m \to s} = -F_{s \to m} \text{ avec } F_{m \to s} = F_{m1 \to s} + F_{m2 \to s} \tag{1.4}$$

Faisons maintenant intervenir une pondération de l'effort de réaction du nœud esclave sur les nœuds de l'élément maître, au travers de la définition de la variable ξ , définie comme:

$$\xi = \frac{y_s - y_{m1}}{y_{m2} - y_{m1}} \tag{1.5}$$

On peut alors écrire les équations:

$$F_{m1\to s} = (1-\xi)F_{m\to s} \ et \ F_{m2\to s} = \xi F_{m\to s} \tag{1.6}$$

Fig I.7: Couplage FEM/FEM.

Dans notre cas le couplage avec raideur et sans amortissement. L'appellation "maître" et "esclave" sont, en général, attribuées au fluide et à la structure respectivement. K représente la raideur du ressort, u_s distance esclave et u_m distance maître. Cette méthode consiste, en fait, à disposer, à l'interface, des ressorts fictifs en tension entre tous les nœuds pénétrant et la surface de contact, la position d'équilibre de ces ressorts correspondant à un nœud esclave positionné sur le segment maître.

$$F_{m->s} = -k(u_s - u_m)$$
 (1.7)

II.1.4. Méthode des multiplicateurs de Lagrange [13]:

La méthode des multiplicateurs de Lagrange est plus naturelle que la méthode des pénalités, au détriment d'un temps de calcul plus élevé.

L'idée générale est de trouver, en respectant la contrainte spatiale issue des positions des nœuds esclaves et maîtres, la force de contact vérifiant au mieux l'équation de conservation de quantité de mouvement. Introduisons la fonction localisatrice φ du nœud esclave par rapport à l'élément maître:

$$\phi = y_s - (1 - \xi)y_{m1} + \xi y_{m2} \tag{1.8}$$

Les forces d'interactions F_i ou $i \in \{s, m_1, m_2\}$ appliquées au nœud i s'écrivent alors, en faisant intervenir un multiplicateur de Lagrange λ , ayant la dimension d'une force:

$$F_i = \lambda \frac{\partial \phi}{\partial y_i} \tag{I.9}$$

On peut alors retrouver l'expression des forces d'interaction introduites dans la méthode de pénalisation, leur valeur étant cette fois calculée mécaniquement:

La détermination des multiplicateurs de Lagrange s'effectue généralement avec des méthodes de type itératives, type Gauss*Seidel [CARPENTER, 1991], méthode coûteuse en termes de temps de calcul.

II.2 Fréquence propre du couplage [14]:

A présent, on recherche la fréquence propre du système [*Mf- Kfs- Ms*] représenté sur figure. I.8.

• Le schéma 1 de cette figure représente le principe du couplage: dès qu'il y a une interpénétration entre les masses *Ms* et *Mf*, une force de rappel représentée par un ressort de raideur *Kfs* est appliquée sur les deux masses.

• Le schéma 2 de figure. I.8 est équivalent au schéma 1 pour une masse équivalente $Meq = Ms \times Mf/Ms + Mf$ et un ressort de raideur K_{fs} .

La fréquence propre du couplage f_{reqc} est alors donnée par:

$$f_{reqc} = \frac{1}{2\pi} \sqrt{\frac{Kfs}{M_{eq}}} \tag{I.11}$$

Fig I.8:Schéma du couplage en pénalité.

Théorie sur le Domaine Fluide Structure & Couplage

Théorie des solides:

La théorie du solide ce compose en deux partie très importantes la première partie c'est la mécanique qui peut s'énoncer par le principe fondamental de la dynamique et la relation entre les déformations et les déplacements. La deuxième partie sur le comportement des matériaux par une relation contrainte-déformation. Dans notre travail ou étude on utilise les deux parties de la théorie du solide pour applique par la suite la discrétisation en éléments finis par la formulation contrainte-déplacement. L'hypothèse que nous avons appliquée consiste sur la nature du matériau qui est isotropie.

I.1 Tube soumis à une pression [15]:

L'écoulement du fluide dans la conduite crée une pression interne. En supposant un cylindre creux d'axe longitudinal z, de rayons intérieur r_1 et extérieur r_2 soumis à des pressions P_1 sur la surface intérieure, déterminons les déplacements, les déformations et les contraintes dans ce cylindre. C'est une Structure cylindrique qui a une révolution obtenu par la rotation d'une surface rectangulaire autour d'un axe de symétrie ou l'axe de la révolution. (**Figure II.1**)

Fig.II. 1:Tube cylindrique soumis à des pressions.

I.2 Relations déplacements avec déformations et contraintes:

On considère un repère cylindrique (r, θ , z) qui dû faire de d'axisymétrique de l'objet, la sollicitation intérieure va être le repère principal des contraintes et déformations. Le bon sens et de prendre les coordonnées cylindriques et de faire application d'axisymétrique sur les déplacements ou les déformations en suite les contraintes. L'utilisation des coordonnées cylindriques s'impose dans de nombreux problèmes, en particulier le problème de la révolution d'un point solide en coordonnées (r, θ , z). (**Figure II.2**).

Vecteur position : $\overrightarrow{M} = r\overrightarrow{e_r} + z\overrightarrow{e_z}$ Petit décalage : $\overrightarrow{dM} = dr\overrightarrow{e_r} + rd\theta\overrightarrow{e_\theta} + dz\overrightarrow{e_z}$ Elément de volume : $dv = rdrd\theta dz$ Dérivée des vecteurs de base :

$$\begin{array}{cccc} \frac{\partial \overrightarrow{er}}{\partial r} = \overrightarrow{0} & \frac{\partial \overrightarrow{ed}}{\partial r} = \overrightarrow{0} & \frac{\partial \overrightarrow{ez}}{\partial r} = \overrightarrow{0} \\ \frac{\partial \overrightarrow{er}}{\partial \overrightarrow{r}} = \overrightarrow{e_{\theta}} & \frac{\partial \overrightarrow{e_{\theta}}}{\partial \overrightarrow{e_{\theta}}} = -\overrightarrow{e_{r}} & \frac{\partial \overrightarrow{ez}}{\partial \overrightarrow{ez}} = \overrightarrow{0} \\ \frac{\partial \overrightarrow{er}}{\partial \overrightarrow{e}} = \overrightarrow{0} & \frac{\partial \overrightarrow{ed}}{\partial z} = \overrightarrow{0} & \frac{\partial \overrightarrow{ez}}{\partial z} = \overrightarrow{0} \end{array}$$

gradient d'un champ : gradU coordonnées cylindriques :

$$\overrightarrow{\mathbf{grad}}\mathbf{U} = \frac{\partial \mathbf{u}_r}{\partial r}\vec{e}_r + \frac{1}{r}\frac{\partial u_\theta}{\partial \theta}\vec{e}_\theta + \frac{\partial u_z}{\partial r}\vec{e}_z$$

Fig.II. 2: Coordonnées cylindriques

I.2.1. Déplacement [16]:

a). Déplacements en Coordonnées Cylindriques:

En introduisant les composantes (u_r, u_θ, w) du vecteur de déplacement \vec{u} dans la base $(\vec{e}_r, \vec{e}_\theta, \vec{e_z})$ obtenue à partir de la basse $(\vec{i}, \vec{j}, \vec{k})$ des coordonnées cartésiennes, par rotation θ autour de la direction $\vec{e_z}$. En trouve trois déplacements principaux radial, axial et circonférentiel.

$$\langle U \rangle = \langle u_r \quad u_\theta \quad u_z \rangle \tag{II.1}$$

I.2.2. Déformation [17]:

a). Déformations en Coordonnées Cylindriques:

Pour calculer le champ de déformation nous allons prendre la définition de déformation d'un cylindre [10]. On prend un solide qui est infiniment petit, qui contient les déformations du point solide M, après transformation vient M' (donc $MM'= u_r$).on prend un autre point N voisin e M, dans un premier temps dans la direction radial (Figure I.3), donc MN=dr. Le point N se transforme en N', tel que NN'= u+du.

$$\begin{cases} \varepsilon_{rr} = \frac{M'N' - MN}{MN} = \frac{du}{dr} \\ \varepsilon_{\theta\theta} = \frac{(r+u)(d\theta) - rd\theta}{rd\theta} = \frac{u}{r} - \frac{1}{r}\frac{du}{d\theta} \\ \varepsilon_{rz} = \frac{M'N' - MN}{MN} = \frac{dz}{dr} \end{cases}$$

On peut faire le même raisonnement pour les autres points voisins de $d\theta$, dz ce qui nous permet d'écrire la matrice de déformation (II.3)

Fig.II. 3: déplacement d'un point.

Le tenseur de déformation est de la forme :

$$\varepsilon(M) = \begin{bmatrix} \varepsilon_{rr} & \varepsilon_{r\theta} & \varepsilon_{rz} \\ \varepsilon_{r\theta} & \varepsilon_{\theta\theta} & \varepsilon_{\theta z} \\ \varepsilon_{rz} & \varepsilon_{\theta z} & \varepsilon_{zz} \end{bmatrix}$$
(II.2)

$$\langle \varepsilon(M) \rangle = \langle \varepsilon_{rr} \quad \varepsilon_{\theta\theta} \quad \varepsilon_{zz} \quad 2\varepsilon_{r\theta} \quad 2\varepsilon_{\theta z} \quad 2\varepsilon_{rz} \rangle \tag{II.3}$$

Avec ;

$$\begin{split} \varepsilon_{rr} &= \frac{\partial u_r}{\partial r}, \varepsilon_{\theta\theta} = \frac{u_r}{r} + \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}, \varepsilon_{zz} = \frac{\partial u_z}{\partial z}, \\ &2\varepsilon_{r\theta} = \frac{\partial u_{\theta}}{\partial \theta} - \frac{u_{\theta}}{r} + \frac{1}{r} \frac{\partial u_r}{\partial \theta}, \\ &2\varepsilon_{rz} = \frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r}, \\ &2\varepsilon_{\theta z} = \frac{1}{r} \frac{\partial u_z}{\partial \theta} + \frac{\partial u_{\theta}}{\partial z}, \end{split}$$
(II. 4)

On a :

$$\{\varepsilon(M)\} = \begin{cases} \frac{\partial u_r}{\partial r} \\ \frac{u_r}{r} + \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} \\ \frac{\partial u_z}{\partial z} \\ \frac{\partial u_{\theta}}{\partial \theta} - \frac{u_{\theta}}{r} + \frac{1}{r} \frac{\partial u_r}{\partial \theta} \\ \frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r} \\ \frac{1}{r} \frac{\partial u_z}{\partial \theta} + \frac{\partial u_{\theta}}{\partial z} \end{cases}$$
(II.5)

Qui peut être écrit sous la forme:

$$\{\varepsilon(M)\} = \begin{bmatrix} \frac{\partial}{\partial r} & 0 & 0\\ \frac{1}{r} & \frac{1}{r} \frac{\partial}{\partial \theta} & 0\\ 0 & 0 & \frac{\partial}{\partial z}\\ \frac{1}{r} \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \theta} - \frac{1}{r} & 0\\ \frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial r}\\ 0 & \frac{\partial}{\partial z} & \frac{1}{r} \frac{\partial}{\partial \theta} \end{bmatrix}$$
(II.6)

Ou: $\{\varepsilon\} = [d]\{U\}$

Avec ;

$$[d] = \begin{bmatrix} \frac{\partial}{\partial r} & 0 & 0\\ \frac{1}{r} & \frac{1}{r} \frac{\partial}{\partial \theta} & 0\\ 0 & 0 & \frac{\partial}{\partial z}\\ \frac{1}{r} \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \theta} - \frac{1}{r} & 0\\ \frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial r}\\ 0 & \frac{\partial}{\partial z} & \frac{1}{r} \frac{\partial}{\partial \theta} \end{bmatrix}$$
(II.7)

I.2.3. Contraintes [17]:

a). Contraintes en Coordonnées Cylindriques:

Les matrices des contraintes du point solide M devient:

$$\sigma(M) = \begin{bmatrix} \sigma_{rr} & \sigma_{r\theta} & \sigma_{rz} \\ \sigma_{r\theta} & \sigma_{\theta\theta} & \sigma_{\theta z} \\ \sigma_{rz} & \sigma_{\theta z} & \sigma_{zz} \end{bmatrix}$$
(11.8)

Les vecteurs de $\langle \sigma(M) \rangle$. (Figure II.4)

Fig.II. 4: Contraintes en coordonnées cylindriques.

C'est grâce à la propriété élastique des corps qu'on a pu relier la déformation à la contrainte. Si un petit élément est soumis aux trois contraintes normales σ_{zz} , $\sigma_{\theta\theta}$, σ_{rr} les composantes de déformations sont déduites directement en appliquant la loi de Hooke généralisé.

$$\forall i, j \in \{1, 2, 3\}$$

$$\sigma_{ij} = \lambda \varepsilon_{ij} \delta_{ij} + 2\mu \varepsilon_{ij} \tag{II.10}$$

 δ_{ij} défini l'indice de Kronecker

 $\forall i, j \in N, \delta_{ij} = 1 \ si, i = j \ et \ \delta_{ij} = 0 \ si, i \neq j$

Ou l'on définit ν qui est le coefficient de poisson et E le module d'Young, à partir des coefficients de Lamé λ et ν , par

$$\nu = \frac{\lambda}{2(\lambda + \mu)} \quad ; E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu} \tag{II.11}$$

La loi de Hooke a été généralisée par Cauchy (1789-1857), qui a proposé d'exprimer chaque composante du tenseur des contraintes comme une fonction linéaire des composantes du tenseur des déformations. La loi de Hooke est donc aujourd'hui souvent écrite sous la forme :

$$\{\sigma\} = [D]\{\varepsilon\} \tag{II.12}$$

Si on applique la relation(1.10) on obtient, (1.12) on à la symétrie des tenseurs de contrainte et de déformation sous forme vecteurs { σ }et { ε } de R₆, et la matrice [D] de 6×6 sont définis par

Avec ;

$$[D] = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0 & 0 & 0 \\ \nu & 1-\nu & \nu & 0 & 0 & 0 & 0 \\ \nu & \nu & 1-\nu & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix}$$
(II.13)

$$\{\sigma(M)\} = \frac{E}{(1+v)(1-2v)} \begin{cases} (1-v)\frac{\partial u_r}{\partial r} + v\frac{\partial u_z}{\partial z} + v\frac{1}{r}\left(u_r + \frac{\partial u_\theta}{\partial \theta}\right) \\ v\frac{u_r}{r} + (1-v)\frac{1}{r}\left(u_r + \frac{\partial u_\theta}{\partial \theta}\right) + v\frac{\partial u_z}{\partial z} \\ v\frac{\partial u_z}{\partial z} + v\frac{1}{r}\left(u_r + \frac{\partial u_\theta}{\partial \theta}\right) + (1-v)\frac{\partial u_z}{\partial z} \\ \frac{1-2v}{2}\left(\frac{\partial u_\theta}{\partial \theta} - \frac{u_\theta}{r} + \frac{1}{r}\frac{\partial u_r}{\partial \theta}\right) \\ \frac{1-2v}{2}\left(\frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r}\right) \\ \frac{1-2v}{2}\left(\frac{1}{r}\frac{\partial u_z}{\partial \theta} + \frac{\partial u_\theta}{\partial z}\right) \end{cases}$$
(II.14)

$$\begin{pmatrix} \sigma_{rr} \\ \sigma_{\theta\theta} \\ \sigma_{zz} \\ \sigma_{r\theta} \\ \sigma_{rz} \\ \sigma_{\thetaz} \end{pmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0 & 0 & 0 \\ \nu & 1-\nu & \nu & 0 & 0 & 0 & 0 \\ \nu & \nu & 1-\nu & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix} \begin{bmatrix} \varepsilon_{rr} \\ \varepsilon_{\theta\theta} \\ \varepsilon_{zz} \\ \varepsilon_{r\theta} \\ \varepsilon_{rz} \\ \varepsilon_{\thetaz} \\ \varepsilon_{\thetaz} \\ \varepsilon_{\theta\theta} \\ \varepsilon_{rz} \\ \varepsilon_{r\theta} \\ \varepsilon_{rz} \\ \varepsilon_{r\theta} \\ \varepsilon_{rz} \\ \varepsilon_{\theta\theta} \\ \varepsilon_{rz} \\ \varepsilon_{r\theta} \\ \varepsilon_{rz} \\ \varepsilon_{\theta\theta} \\ \varepsilon_{rz} \\ \varepsilon_{rz} \\ \varepsilon_{\theta\theta} \\ \varepsilon_{rz} \\ \varepsilon_{rz$$

II. Théorie des fluides [5]:

L'analyse d'un écoulement de fluide est décrite de façon complète par les équations de base qui sont les équations du mouvement, l'équation de continuité, l'équation de la quantité du mouvement, l'équation de la conservation d'énergie et les conditions aux limites.

II.1 Hypothèses:

Dans notre travail, nous considérons l'écoulement du fluide incompressible, irrotationnel. Avec un écoulement laminaire de R_e <<1, on suppose que la force de gravité et négligeable dans toutes les directions. La masse volumique du fluide constante dans toute la conduite cylindrique (système), c.à.d. l'équation de la conservation de la masse ne contient que les termes de vitesse.

Milieu irrotationnel implique que la déformation du fluide se fait sans rotation.

Chapitre II

Milieu incompressible implique que la viscosité seconde est nulle

Milieu de l'écoulement laminaire et de R_e<<1 permet de négliger le terme non linéaire ($((\vec{u}, \nabla), \vec{u}) = 0$), c.-à-d. on a une équation différentielle premier ordre.

II.2 Equation de continuité:

Dans un milieu continu en mouvement l'équation de continuité doit être vérifiée pour tout volume matériel $V_m(t)$.

En supposant un volume matériel V_m(t), la masse contenue dans ce volume est:

$$m = \int_{V_{m(t)}} \rho dV \tag{II.16}$$

Ou ρ désigne la densité locale. Si le volume matériel ne contient ni source ni puits, la masse qui se trouve dans V_m(t) est constante et on peut écrire:

$$\frac{d}{dt}m = \frac{d}{dt} \int_{V_{m(t)}} \rho dV = 0 \tag{II.17}$$

Nous pouvons maintenant appliquer le théorème de transport au volume V_m(t):

$$\frac{d}{dt} \int_{V_{m(t)}} \rho dV = \int_{V_{m(t)}} \frac{d\rho}{dt} + \int_{A_m(t)} \rho v. n dA \qquad (II.18)$$

Est d'après (II.17) on peut écrire:

$$\int_{V_{m(t)}} \frac{d\rho}{dt} + \int_{A_m(t)} \rho v. \, ndA = 0 \tag{II.19}$$

Si le volume $V_m(t)$ ne contient pas de surface de discontinuité, l'intégrale sur la A_m peut être remplacée par une intégrale de volume et le théorème de Green-Ostrogradsky permet d'écrire:

$$\int_{A_m(t)} \rho v. n dA = \int_{V_m(t)} \nabla \rho v dV \qquad (II.20)$$

Dans ces conditions, (II.19) devient:

$$\int_{V_{m(t)}} \left[\frac{d\rho}{dt} + \nabla \rho v dV \right] = 0 \tag{II.21}$$

Le volume d'intégration est arbitraire et par conséquent l'intégrant doit être identiquement nul:

$$\frac{d\rho}{dt} + \nabla \rho v = 0 \tag{11.22}$$

Cette équation exprime la conservation de la masse elle est applicable pour tous les points du fluide continue. On développe l'équation (*II*. 22) en coordonnées cylindriques (r, θ , z) comme suivant:

$$\frac{d\rho}{dt} + \frac{1}{r}\frac{\partial}{\partial r}(ru) + \frac{1}{r}\frac{\partial v}{\partial \theta} + \frac{\partial w}{\partial z} = 0$$
(11.23)

Si la masse est constante (II. 23) (fluide incompressible) devient:

$$\frac{1}{r}\frac{\partial}{\partial r}(ru) + \frac{1}{r}\frac{\partial v}{\partial \theta} + \frac{\partial w}{\partial z} = 0 \qquad (II.24)$$

Comme on travaille en axisymétrique (r, z) la relation (II.24) devient:

$$\frac{1}{r}\frac{\partial}{\partial r}(ru) + \frac{\partial w}{\partial z} = 0 \tag{II.25}$$

II.3 Conservation de la quantité de mouvement:

La variation de la quantité de mouvement d'un système matériel est égale à la somme de toutes les forces extérieures qui lui sont appliquées, ces forces sont de deux types les forces de volume et les forces de surface.

• Les forces de volume sont égales à:

$$\overrightarrow{F_V} = \int_{V_{m(t)}} \rho \vec{g} dV \tag{II.26}$$

• Les forces de surface sont égales à:

$$\vec{F}_{s} = \int_{A_{m(t)}} \vec{t}(n) dA \qquad (II.27)$$

En appliquant le principe de la conservation de la quantité de mouvement nous obtenons:

$$\frac{d}{dt} \int_{V_{m(t)}} \rho \vec{v} dV = \int_{V_m(t)} \rho \vec{g} dV + \int_{A_{m(t)}} \vec{t}(n) dA \qquad (II.28)$$

n: Normale extérieure.

 $\vec{t}(n)$: Vecteur contrainte agissant sur dA.

En projetant l'équation (II. 28) sur un système d'axes, nous obtenons:

$$\frac{d}{dt} \int_{V_{m(t)}} \rho v_i dV = \int_{V_m(t)} \rho g_i dV + \int_{A_{m(t)}} t_i(n) dA$$
(11.29)

$$Ou: t_i(n) = T_{ij}n_j \text{ et } T_{ji} = T_{ij}$$

Les expressions des trois composantes du vecteur contraint sous forme:

$$t_{1}(n) = T_{11}n_{1} + T_{12}n_{2} + T_{13}n_{3}$$

$$t_{2}(n) = T_{21}n_{1} + T_{22}n_{2} + T_{23}n_{3}$$

$$t_{3}(n) = T_{31}n_{1} + T_{32}n_{2} + T_{33}n_{3}$$

(II.30)

La contrainte t se compose en deux parties du point de vue physique:

✤ La contrainte associée à la pression

La contrainte associée aux forces visqueuses

$$T_{ij} = -p\delta_{ij} + \tau_{ij} \tag{II.31}$$

L'équation (II.28) prend la forme:

$$\frac{d}{dt} \int_{V_{m(t)}} \rho v_i dV = \int_{V_m(t)} \rho g_i dV + \int_{A_{m(t)}} (-p\delta_{ij} + \tau_{ij}) n_j dA \qquad (II.32)$$

En appliquant le théorème de Green-Ostrogradsky l'intégrale de surface peut être écrite sous la forme:

$$\int_{A_{m(t)}} t_i(n) \, dA = \int_{V_{m(t)}} \frac{\partial \left(-p\delta_{ij} + \tau_{ij}\right)}{\partial x_i} \, dV \tag{II.33}$$

Soit encore:

$$\int_{A_{m(t)}} t_i(n) \, dA = -\int_{V_{m(t)}} \frac{\partial p}{\partial x_i} dV + \int_{V_{m(t)}} \frac{\partial \tau_{ij}}{\partial x_i} dV \tag{II.34}$$

D'après le théorème de Reynolds, on peut écrire :

$$\frac{d}{dt} \int_{V_{m(t)}} \rho v_i dV = \int_{V_m(t)} \rho \frac{dv_i}{dt} dV \qquad (II.35)$$

Si remplace (II.34), (II.33), dans, (II.31) on trouve:

$$\int_{V_m(t)} \rho \frac{dv_i}{dt} dV = \int_{V_m(t)} \left[\rho g_i - \frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_i} \right] dV \qquad (II.36)$$

Nous intégrant sur le volume du domaine V_m(t) on trouve:

$$\rho \frac{dv_i}{dt} = \rho g_i - \frac{\partial p}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_i}$$
(11.37)

Nous allons écrire l'équation (voir II.21) sous forme de coordonnées cylindriques en

$$(\mathbf{r}, \boldsymbol{\theta}, \mathbf{z})$$
 :

$$\rho \left[\frac{\partial \dot{u}_{r}}{\partial t} + \dot{u}_{r} \frac{\partial \dot{u}_{r}}{\partial r} + \frac{\dot{u}_{\theta}}{r} \frac{\partial \dot{u}_{r}}{\partial \theta} + \dot{u}_{z} \frac{\partial \dot{u}_{r}}{\partial z} - \frac{\dot{u}_{\theta}^{2}}{r} \right] = \rho g_{r} - \frac{\partial p}{\partial r} + \mu \left[\frac{\partial^{2} \dot{u}_{r}}{\partial r^{2}} + \frac{1}{r^{2}} \frac{\partial^{2} \dot{u}_{r}}{\partial \theta^{2}} + \frac{\partial^{2} \dot{u}_{r}}{\partial z^{2}} - \frac{\dot{u}_{r}^{2}}{\partial z^{2}} - \frac{\dot{u}_{r}}{r^{2}} - \frac{2}{r^{2}} \frac{\partial \dot{u}_{\theta}}{\partial \theta} \right]$$

$$\rho \left[\frac{\partial \dot{u}_{\theta}}{\partial t} + \frac{\dot{u}_{r} \partial \dot{u}_{\theta}}{\partial r} + \frac{\dot{u}_{\theta}}{r} \frac{\partial \dot{u}_{\theta}}{\partial \theta} + \dot{u}_{z} \frac{\partial \dot{u}_{\theta}}{\partial z} - \frac{\dot{u}_{r}}{r} \right] = \rho g_{\theta} - \frac{1}{r} \frac{\partial p}{\partial \theta} + \mu \left[\frac{\partial^{2} \dot{v}}{\partial r^{2}} + \frac{1}{r} \frac{\partial \dot{u}_{\theta}}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} \dot{u}_{r}}{\partial \theta^{2}} + \frac{\partial^{2} \dot{u}_{\theta}}{\partial z^{2}} - \frac{\dot{u}_{\theta}}{r^{2}} - \frac{2}{r^{2}} \frac{\partial \dot{u}_{r}}{\partial \theta} \right] (II.38)$$

$$\rho \left[\frac{\partial \dot{u}_{z}}{\partial t} + \dot{u}_{r} \frac{\partial \dot{u}_{z}}{\partial r} + \frac{v}{r} \frac{\partial \dot{u}_{z}}{\partial \theta} + w \frac{\partial \dot{u}_{z}}{\partial z} \right] = \rho g_{z} - \frac{\partial p}{\partial z} + \mu \left[\frac{\partial^{2} \dot{u}_{z}}{\partial r^{2}} + \frac{1}{r} \frac{\partial \dot{u}_{z}}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} \dot{u}_{z}}{\partial \theta^{2}} + \frac{\partial^{2} \dot{u}_{z}}{\partial z^{2}} - \frac{2}{r^{2}} \frac{\partial \dot{u}_{r}}{\partial \theta} \right] (II.38)$$

La formule (II.38) représente l'équation de Navier-Stokes en coordonnées cylindriques d'un fluide incompressible irrotationnel.

Avec;

$$\frac{d}{dt} = \frac{\partial}{\partial r} + u\frac{\partial}{\partial r} + \frac{v}{r}\frac{\partial}{\partial \theta} + w\frac{\partial}{\partial z}$$
(11.39)

En considérant les hypothèses précédentes, l'équation (II.38) en coordonnées cylindriques prend la forme (II.40):

$$\rho \left[\frac{\partial \dot{u}_{r}}{\partial t} \right] = \rho g_{r} - \frac{\partial p}{\partial r} + \mu \left[\frac{\partial^{2} \dot{u}_{r}}{\partial r^{2}} + \frac{1}{r} \frac{\partial^{2} \dot{u}_{\theta}}{\partial \theta^{2}} + \frac{1}{r^{2}} \frac{\partial^{2} \dot{u}_{r}}{\partial \theta^{2}} + \frac{\partial^{2} \dot{u}_{r}}{\partial z^{2}} - \frac{\dot{u}_{r}}{\partial z^{2}} - \frac{2}{r^{2}} \frac{\partial \dot{u}_{\theta}}{\partial \theta} \right]$$

$$\rho \left[\frac{\partial \dot{u}_{\theta}}{\partial t} \right] = \rho g_{\theta} - \frac{1}{r} \frac{\partial p}{\partial \theta} + \mu \left[\frac{\partial^{2} \dot{u}_{\theta}}{\partial r^{2}} + \frac{1}{r} \frac{\partial \dot{u}_{\theta}}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} \dot{u}_{\theta}}{\partial \theta^{2}} + \frac{\partial^{2} \dot{u}_{\theta}}{\partial z^{2}} - \frac{\dot{u}_{\theta}}{\partial z^{2}} - \frac{2}{r^{2}} \frac{\partial \dot{u}_{r}}{\partial \theta} \right] \quad (II.40)$$

$$\rho \left[\frac{\partial \dot{u}_{z}}{\partial t} \right] = \rho g_{z} - \frac{\partial p}{\partial z} + \mu \left[\frac{\partial^{2} \dot{u}_{z}}{\partial r^{2}} + \frac{1}{r} \frac{\partial \dot{u}_{z}}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} \dot{u}_{z}}{\partial \theta^{2}} + \frac{\partial^{2} \dot{u}_{z}}{\partial z^{2}} \right]$$

Pour éviter la singularité sur les matrices de masse et de rigidité (raideur), on ajoute le terme de la pénalité p/λ à l'équation (II.40) comme suivant :

$$\rho \left[\frac{\partial \dot{u}_r}{\partial t} \right] = \rho g_r - \frac{\partial p}{\partial r} + \mu \left[\frac{\partial^2 \dot{u}_r}{\partial r^2} + \frac{1}{r} \frac{\partial^2 \dot{u}_\theta}{\partial \theta^2} + \frac{1}{r^2} \frac{\partial^2 \dot{u}_r}{\partial \theta^2} + \frac{\partial^2 \dot{u}_r}{\partial z^2} - \frac{\dot{u}_r}{r^2} - \frac{2}{r^2} \frac{\partial \dot{u}_\theta}{\partial \theta} \right] + \frac{p}{\lambda}$$

$$\rho \left[\frac{\partial \dot{u}_\theta}{\partial t} \right] = \rho g_\theta - \frac{1}{r} \frac{\partial p}{\partial \theta} + \mu \left[\frac{\partial^2 \dot{u}_\theta}{\partial r^2} + \frac{1}{r} \frac{\partial \dot{u}_\theta}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \dot{u}_\theta}{\partial \theta^2} + \frac{\partial^2 \dot{u}_\theta}{\partial z^2} - \frac{\dot{u}_\theta}{r^2} - \frac{2}{r^2} \frac{\partial \dot{u}_r}{\partial \theta} \right] + \frac{p}{\lambda} \quad (II.41)$$

$$\rho \left[\frac{\partial \dot{u}_z}{\partial t} \right] = \rho g_z - \frac{\partial p}{\partial z} + \mu \left[\frac{\partial^2 \dot{u}_z}{\partial r^2} + \frac{1}{r} \frac{\partial \dot{u}_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \dot{u}_\theta}{\partial \theta^2} + \frac{\partial^2 \dot{u}_z}{\partial z^2} \right] + \frac{p}{\lambda}$$

II.4 Relations des vitesses, déformations et contraintes:

II. 4.1. Vitesses en Coordonnées Cylindriques:

La même résolution du champ de déplacement en champ vitesse en coordonnée cylindrique du fluide incompressible.

$$\langle \dot{U} \rangle = \langle \dot{u}_r \quad \dot{u}_\theta \quad \dot{u}_z \rangle \tag{II.42}$$

II. 4.2. Déformations [18]:

a). Déformations en Coordonnées Cylindriques:

Les tensions internes en coordonnées cylindriques (r, θ, z) sont données par :

$$\tau_{rr} = 2\mu \frac{\partial \dot{u}_r}{\partial r}; \qquad \tau_{\theta\theta} = 2\mu \left(\frac{1}{r} \frac{\partial \dot{u}_{\theta}}{\partial \theta} + \frac{\dot{u}_r}{r} \right); \qquad \tau_{zz} = 2\mu \frac{\partial \dot{u}_z}{\partial z} \\ \tau_{\theta r} = \tau_{r\theta} = \mu \left(\frac{1}{r} \frac{\partial \dot{u}_{\theta}}{\partial \theta} - \frac{\dot{u}_{\theta}}{r} + \frac{1}{r} \frac{\partial \dot{u}_r}{\partial \theta} \right); \quad \tau_{\theta z} = \tau_{z\theta} = \mu \left(\frac{1}{r} \frac{\partial \dot{u}_z}{\partial \theta} + \frac{\partial \dot{u}_{\theta}}{\partial z} \right) \\ \tau_{zr} = \tau_{rz} = \mu \left(\frac{\partial \dot{u}_r}{\partial z} + \frac{\partial \dot{u}_z}{\partial r} \right) \qquad (II.43)$$

II. 4.3. Contraintes [19]:

a). Contraintes en Coordonnées Cylindriques:

La matrice des contraintes du point solide M devient:

$$\{\sigma(M)\} = 2\mu \begin{cases} \frac{\partial \dot{u}_r}{\partial r} - \frac{p}{2\mu} + \frac{1}{2} \left(\frac{1}{r} \frac{\partial \dot{u}_{\theta}}{\partial \theta} - \frac{\dot{u}_{\theta}}{r} + \frac{1}{r} \frac{\partial \dot{u}_r}{\partial \theta} \right) + \left(\frac{1}{r} \frac{\partial \dot{u}_{\theta}}{\partial \theta} + \frac{\dot{u}_r}{r} \right) - \frac{p}{2\mu} + \frac{1}{2} \left(\frac{1}{r} \frac{\partial \dot{u}_z}{\partial \theta} + \frac{\partial \dot{u}_{\theta}}{\partial z} \right) \\ \frac{1}{2} \left(\frac{1}{r} \frac{\partial \dot{u}_{\theta}}{\partial \theta} - \frac{\dot{u}_{\theta}}{r} + \frac{1}{r} \frac{\partial \dot{u}_r}{\partial \theta} \right) + \left(\frac{1}{r} \frac{\partial \dot{u}_{\theta}}{\partial \theta} + \frac{\dot{u}_r}{r} \right) - \frac{p}{2\mu} + \frac{1}{2} \left(\frac{1}{r} \frac{\partial \dot{u}_z}{\partial \theta} + \frac{\partial \dot{u}_{\theta}}{\partial z} \right) \\ \frac{1}{2} \left(\frac{\partial \dot{u}_r}{\partial z} + \frac{\partial \dot{u}_z}{\partial r} \right) + \frac{1}{2} \left(\frac{1}{r} \frac{\partial \dot{u}_e}{\partial \theta} + \frac{\partial \dot{u}_e}{\partial z} \right) + \frac{\partial \dot{u}_z}{\partial z} - \frac{p}{2\mu} \end{cases}$$
(II.44)
$$\left\{ \begin{array}{c} \frac{1}{2} \left(\frac{1}{r} \frac{\partial \dot{u}_{\theta}}{\partial \theta} - \frac{\dot{u}_{\theta}}{r} + \frac{1}{r} \frac{\partial \dot{u}_r}{\partial \theta} \right) \\ \frac{1}{2} \left(\frac{\partial \dot{u}_r}{\partial \theta} - \frac{\dot{u}_{\theta}}{r} + \frac{1}{r} \frac{\partial \dot{u}_e}{\partial \theta} \right) \\ \frac{1}{2} \left(\frac{1}{r} \frac{\partial \dot{u}_z}{\partial \theta} + \frac{\partial \dot{u}_e}{\partial z} \right) \end{array} \right\}$$

$$[\sigma(M)] = 2\mu \begin{bmatrix} \frac{\partial \dot{u}_r}{\partial r} & \frac{1}{2} \left(\frac{1}{r} \frac{\partial \dot{u}_\theta}{\partial \theta} - \frac{\dot{u}_\theta}{r} + \frac{1}{r} \frac{\partial \dot{u}_r}{\partial \theta} \right) & \frac{1}{2} \left(\frac{\partial \dot{u}_r}{\partial z} + \frac{\partial \dot{u}_z}{\partial r} \right) \\ \frac{1}{2} \left(\frac{1}{r} \frac{\partial \dot{u}_\theta}{\partial \theta} - \frac{\dot{u}_\theta}{r} + \frac{1}{r} \frac{\partial \dot{u}_r}{\partial \theta} \right) & \frac{1}{2} \frac{\dot{u}_r}{r} & \frac{1}{2} \left(\frac{1}{r} \frac{\partial \dot{u}_z}{\partial \theta} + \frac{\partial \dot{u}_\theta}{\partial z} \right) \\ \frac{1}{2} \left(\frac{\partial \dot{u}_r}{\partial z} + \frac{\partial \dot{u}_z}{\partial r} \right) & \frac{1}{2} \left(\frac{1}{r} \frac{\partial \dot{u}_z}{\partial \theta} + \frac{\partial \dot{u}_\theta}{\partial z} \right) & \frac{\partial \dot{u}_z}{\partial z} \end{bmatrix} \\ - \begin{bmatrix} \frac{p}{2\mu} & 0 & 0 \\ 0 & \frac{p}{2\mu} & 0 \\ 0 & 0 & \frac{p}{2\mu} \end{bmatrix}$$
(II.45)

La pression est déterminée dans un repère en coordonnées cylindriques (r, θ , z)

III. Couplage entre fluide et la structure [20]:

On a vu dans le chapitre de la recherche bibliographie des différentes méthodes de couplage par pénalité (SPH, SPH/FEM, FEM/FEM), alors nous avons choisi la méthode de pénalité FEM/FEM, qui contient compte de la masse du fluide et du solide par une relation de masse équivalente en couplage, aussi notre travail est basé sur la discrétisation par la méthode des éléments finis, aussi pour éviter le terme zéro dans la diagonale de la matrice de raideur[K].

Cette méthode utilise le multiplicateur de Lagrange de manière analogue pour le terme k=1/ λ , ou λ <<0 très important comme une valeur qui satisfaire la condition pour éliminer les termes nulle dans la diagonale.

La méthode de pénalisation appartient aux techniques de régularisation sur la méthode de contact entre deux milieux différents. Elle contient de conte que les contrainte unilatérales ou les forces normales de contact est proportionnelle au déplacement.

La méthode de pénalisation estime la composante normale de la force de contacte comme suivant:

$$f_n(\delta_n, \dot{\delta_n}) = \begin{cases} -k\delta_n - b\dot{\delta_n} \sin \delta_n < 0\\ 0 & \sin \delta_n \ge 0 \end{cases}$$
(II.47)

La valeur de l'interférence au contact δ_n , souvent se mesure par une distance constante qui et homogène à un volume donnée, si elle est négative alors on a la force de contact qu'on va pénaliser par un coefficient k, plus la valeur élevée plus on se rapproche de la loi de contact de **Signorini.**

Fig.II. 5: Loi de Signorini (1) qui peut être régularisée par un facteur de pénalité $k = \alpha_P$ (2).

Mais d'un point de vue mathématique pure le coefficient de k doit tendre vers l'infinie pour obtenir une approximation la plus juste possible. On numérique si un paramètre de pénalisation trop important conduit à des problèmes de convergence.

Cette approche peut s'écrit on l'équation de mouvement comme suivant :

$$\begin{cases} m\{\ddot{u}\} + k\delta_n = f \text{ si } \delta_n < 0\\ m\{\ddot{u}\} = f \qquad \text{si } \delta_n \ge 0 \end{cases}$$
(II.48)

Cette méthode est très simple à mettre en œuvre, c'est pour ça elle est plus utilisée par le codes de calcule on éléments finis, accepte les contacts "nœud à nœud" pour une simple ressent, la présence des déplacements relatifs on contacte ou les petits glissements (**Figure 1I.6**).

Fig.II. 6 : Elément de contact nœud à nœud.

Avant de parler sur le contact entre fluide-structure il faut définie les conditions aux limites mécanique, pour les deux phénomènes physique de façon générale.

• Condition aux limites mécanique solide :

$$-[\sigma_s]\{n\} + \{f_s\} = 0; sur S_s \iff [\sigma_s]\{n\} = \{f_s\}$$
(11.49)

• Condition aux limites mécanique fluide :

$$-[\sigma_f]{n} + {f_f} = 0; sur S_f \iff [\sigma_f]{n} = {f_f}$$
(11.50)

Comme en travaille sur l'interaction fluide-structure, donc on parle sur le phénomène action-réaction qui donne que (II.49) égale (II.50).

Alors on a :

$$[\sigma_s]\{n\} = [\sigma_f]\{n\}$$
(II.51)

$$\{f_s\} = \{f_f\}$$
 (11.52)

La pénalisation c'est une méthode qui prend-on considération que les forces de contact entre fluide et structure donc on a :

$$\{f_s\} = \alpha_P\{g_s\} et\{f_f\} = \alpha_P\{g_f\}$$
(11.53)

 α_P : Facteur de pénalisation.

 $\{g_s\}$ et $\{g_f\}$: c'est la nature du contact en force que nous avons choisi en raideur par rapport les déplacement.

Alors on a :

$$\{g_{s}\} = \begin{bmatrix} k & -k & -k \\ -k & k & -k \\ -k & -k & k \end{bmatrix} \begin{pmatrix} u_{ir} \\ v_{ir} \\ w_{iz} \end{pmatrix}$$

$$\{g_{f}\} = \begin{bmatrix} k & -k & -k \\ -k & k & -k \\ -k & -k & k \end{bmatrix} \begin{pmatrix} u_{ir} \\ v_{ir} \\ w_{iz} \end{pmatrix}$$
(II. 54)

Donc :

$$\{g_{sf}\} = \begin{bmatrix} k & 0 & -k & 0 & -k & 0 \\ 0 & k & 0 & -k & 0 & -k \\ -k & 0 & k & 0 & -k & 0 \\ 0 & -k & 0 & k & 0 & -k \\ -k & 0 & -k & 0 & k & 0 \\ 0 & -k & 0 & -k & 0 & k \end{bmatrix} \begin{bmatrix} u_{1r} \\ u_{2r} \\ v_{1r} \\ v_{2r} \\ w_{1z} \\ w_{2z} \end{bmatrix}$$
(II. 55)

Pour respecter la convergence du contact par pénalité il faut que g_{sf} soit égale g_{sf}^2 positivement et α_P doit etre encadré entre 10⁴ à 10⁹, donc la forme de (1.55) devient :

$$\{G\} = \{g_{sf}\} \times \{g_{sf}\}^T = [g]^2$$
 (II.56)

Donc la raideur devient sou forme (Haute femme 1983) du fluide-structure suivante :

$$[K_{SYS}] = [K_{FS}] + \alpha_P[g]^T[g] = [K_{FS}] + \alpha_P[G]$$
(11.57)

Avec :

[*K_{FS}*]: Matrice de rigidité totale (fluide + structure)

 α_P : Paramètre de pénalité pris égale à 10^4 à 10^6 voir le plus grand terme de $[K_{FS}]$ de manière à éviter les problèmes de conditionnement de la matrice globale du système.

III.1 Méthode FEM avec FEM [21]:

La méthode de FEM/FEM par pénalisation se caractérise par élément fini de la structure et du fluide par une raideur qui et entre deux nœud sous forme interface de contact (**Figure. II.7**).

Fig.II. 7: Couplage FEM/FEM.

Dans notre cas nous le couplage avec raideur et sans amortissement. L'appellation "maître" et "esclave" sont, en général, attribuées au fluide et à la structure respectivement. *K* représente la raideur du ressort, z_s distance esclave et z_m distance maître (II.58)

$$F_{m->s} = -k(z_s - z_m)$$
 (11.58)

La méthode de pénalité n'affecte pas la matrice masse, mais comme on travaille sur la fréquence propre demande la masse équivalente (voir Figure II.8) entre le fluide et la structure sou la forme suivante :

$$M_{eq} = \frac{M_s \times M_f}{M_s + M_f} \tag{11.58}$$

Discrétisation de l'Interaction Fluide-Structure

Introduction :

En vue du passage d'un problème continu à un problème discret, on dispose de plusieurs techniques concurrentes et complémentaires : les différences finies, les éléments finis et les volumes finis. Chacune de ces trois méthodes correspond à une formulation différente des équations de la physique :

- ✓ équilibre des forces en chaque point pour les différences finies
- ✓ minimisation de l'énergie ou principe des travaux virtuels pour les éléments finis
- \checkmark loi de conservation et calcul des flux pour la méthode des volumes finis.

II. Discrétisation en élément finis :

II.1 principe de l'énergie minimale [22]:

La méthode des éléments finis consiste à approcher, dans un sous-espace de dimension finie, un problème écrit sous forme variationnelle (comme minimisation de l'énergie, en général) dans un espace de dimension infinie. La solution approchée est dans

ce cas une fonction déterminée par un nombre fini de paramètres comme, par exemple, ses valeurs en certains points (les nœuds du maillage).

• Avantages : Traitement possible de géométries complexes, détermination plus naturelle des conditions aux limites, possibilité de démonstrations mathématiques de convergence et de majoration d'erreurs.

• Inconvénients : Complexité de mise en œuvre et cout en temps de calcul et en mémoire.

II.2 Principe de travail virtuel:

Pour un système matériel donné,« le travail virtuel des efforts intérieurs et extérieurs appliqués à ce système est égal au travail virtuel des quantités d'accélération du système ».

II.2.1 Discrétisation l'équation du fluide et solide [23]:

La méthode des éléments finis est une technique d'approximation des fonctions solutions par sous-domaines ou les inconnues notées U et W sont des valeurs de ces fonctions en certains nœuds de chaque sous-domaine. La démarche pour appliquer la discrétisation en élément fini, quel que soit le domaine :

Représenter le domaine du volume V par une sommation de sous-domaine du volume V^e qui et définie par domaine élémentaire du V.

Choix de l'élément réel ou référentiel par position d'un point, coordonnée, fonction d'interpolation, etc....

Représentation de la fonction solution $\{u\}$ sur l'élément choisi (fonction solution, fonction test, variables nodales).

Détermination des matrices élémentaire masse, de rigidité, du vecteur de sollicitation ou forces, assemblage).

III. Choix de l'élément Fini :

Pour l'étude nous appliquons la discrétisation en élément fini, pour une conduite de forme cylindrique simple. La structure est cylindrique, nous prenons un élément triangulaire à trois nœuds (T3) pour des coordonnées cylindriques.

Fig. III. 1: présentation d'élément triangulaire.

L'élément fini est défini pour un élément triangulaire à trois nœuds et des déplacements nodaux U_1 , V_1 , Wl, U_2 , V_2 , W_2 , U_3 , V_3 , W_3 suivant les axes Z, X et Y respectivement (Figure. III.1). Dans ce cas, le vecteur de déplacement élément { u_e } peut être exprimé par les fonctions de déplacement.

$$u(x, y, z) = \alpha_1 + \alpha_2 x + \alpha_3 z$$

$$v(x, y, z) = \alpha_4 + \alpha_5 x + \alpha_6 z$$

$$w(x, y, z) = \alpha_7 + \alpha_8 x + \alpha_9 z$$

(III.1)

Ces équations peuvent être exprimées sous forme :

$$\begin{vmatrix} u(x, y, z) \\ v(x, y, z) \\ w(x, y, z) \end{vmatrix} = \begin{vmatrix} 1 & x & z & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & x & z & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & x & z \end{vmatrix} \begin{vmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \\ \alpha_6 \\ \alpha_7 \\ \alpha_8 \\ \alpha_9 \end{vmatrix}$$
(III.2)

C.-à-d.

$$\{u_e\} = [P]\{\alpha\} \tag{III.3}$$

Les neufs coefficients α i son obtenue partir la relation (III.3).

Avec δ_e les déplacements nodaux u_i .

$$\{\alpha\} = [\mathsf{C}]^{-1}\{\delta_e\} \tag{III.4}$$

Le vecteur de déplacement (III. 1) devient:

$$\{u_e\} = [P][C]^{-1}\{\delta_e\}$$
(*III.*5)

Utilisation des fonctions d'interpolation, le vecteur de déplacement est considéré comme élément triangulaire.

$$\{\mathbf{u}_e\} = [N_e]\{\delta_e\} \tag{III.6}$$

Donc

$$[N_e] = [P][C]^{-1}$$
(111.7)

La matrice d'interpolation l'élément:

$$[N_e] = \begin{vmatrix} N_1 & 0 & 0 & N_2 & 0 & 0 & N_3 & 0 & 0 \\ 0 & N_1 & 0 & \vdots & 0 & N_2 & 0 & \vdots & 0 & N_3 & 0 \\ 0 & 0 & N_1 & 0 & 0 & N_2 & 0 & 0 & N_3 \end{vmatrix}$$
(III.8)

Les fonctions d'interpolation:

$$N_{1} = \frac{x_{2}z_{3} - z_{2}x_{3} + (z_{2} - z_{3})x + (x_{3} - x_{2})z}{2A_{e}}$$

$$N_{2} = \frac{x_{3}z_{1} - z_{3}x_{1} + (z_{3} - z_{1})x + (x_{1} - x_{3})z}{2A_{e}}$$

$$N_{3} = \frac{x_{1}z_{2} - z_{1}x_{2} + (z_{1} - z_{2})x + (x_{2} - x_{1})z}{2A_{e}}$$
(III.9)

Où A_e est la zone de l'élément triangulaire

$$A_e = \frac{1}{2} \begin{vmatrix} 1 & x_1 & z_1 \\ 1 & x_2 & z_2 \\ 1 & x_3 & z_3 \end{vmatrix} = \frac{1}{2} [x_1(z_2 - z_3) + x_2(z_3 - z_1) + x_2(z_1 - z_2)] \quad (III.10)$$

Changer les équations des droites qui transforment un triangle dans un triangle avec le 1 sommet sur l'origine des axes de coordonnées naturelles du système

IV. Passage à l'élément de référence [24] :

C'est ici que le choix de la forme de l'élément et le choix des nœuds géométriques prennent beaucoup d'importance. L'élément de référence \widehat{K} est un élément sur lequel on

effectue tous les calculs nécessaires à l'obtention du système élémentaire. Ceci n'est possible qu'après un changement de variables. Changer les équations des droites qui transforment un triangle en un triangle de référence comme présente la figure ou la sommé égal 1 sur l'origine des axes du système de coordonnées naturel.

$$r(\xi,\eta) = \lambda r_1 + \xi r_2 + \eta r_3 = \langle N \rangle \{r_n\} \quad (III.11)$$
$$z(\xi,\eta) = \lambda z_1 + \xi z_2 + \eta z_3 = \langle N \rangle \{z_n\} \quad (III.12)$$

Chapitre III

Avec: $\langle N \rangle = \langle \lambda \ \xi \ \eta \rangle$; $\langle r_n \rangle = \langle r_1 r_2 r_3 \rangle$; $\langle z_n \rangle = \langle z_1 z_2 z_3 \rangle$ Les équations(*III*. 9) est égal à:

$$N_{1} = \frac{\begin{vmatrix} 1 & 1 & 1 \\ r & r_{2} & r_{3} \\ z & z_{2} & z_{3} \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 1 \\ r_{1} & r_{2} & r_{3} \\ z_{1} & z_{2} & z_{3} \end{vmatrix}} \quad N_{1} = \frac{\begin{vmatrix} 1 & 1 & 1 \\ r_{1} & r & r_{3} \\ z_{1} & z_{2} & z_{3} \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 1 \\ r_{1} & r_{2} & r_{3} \\ z_{1} & z_{2} & z_{3} \end{vmatrix}} \quad N_{1} = \frac{\begin{vmatrix} 1 & 1 & 1 \\ r_{1} & r_{2} & r \\ z_{1} & z_{2} & z \end{vmatrix}}{\begin{vmatrix} 1 & 1 & 1 \\ r_{1} & r_{2} & r_{3} \\ z_{1} & z_{2} & z_{3} \end{vmatrix}} \quad (III.13)$$

Relations linéaires entre les coordonnées cartésiennes x, y, z et les coordonnés de référence ξ_1, ξ_2, ξ_3 sont exprimées par des équations suivante ou les coordonnée sont cylindrique du repère.

$$\begin{vmatrix} 1 \\ r \\ z \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ r_1 & r_2 & r_3 \\ z_1 & z_2 & z_3 \end{vmatrix} \begin{vmatrix} \xi_1 \\ \xi_2 \\ \xi_2 \end{vmatrix}$$
(III. 14)

De cette équation, il suit que :

$$\begin{vmatrix} \xi_1 \\ \xi_2 \\ \xi_2 \end{vmatrix} = [A]^{-1} \begin{vmatrix} 1 \\ r \\ z \end{vmatrix}$$
(*III*. 15)

A partir de ce changement des coordonnées en trouve.

$$N_{1} = \xi_{1} \quad N_{2} = \xi_{2} \quad N_{3} = \xi_{3}$$
(III.16)
Avec:
$$\begin{cases} N_{1} = 1 - \xi - \eta = \lambda \\ N_{2} = \xi \\ N_{3} = \eta \end{cases}$$

La fonction de forme pour les déplacements U et W à L'élément triangulaire cylindrique de trois nœud même transformation en élément référentielle par fonctions (paramètres) d'interpolation $\langle N \rangle = \langle \lambda \xi \eta \rangle$:

$$U(\xi,\eta) = N_1 U_1 + N_2 U_2 + N_3 U_3 \tag{III.17}$$

$$V(\xi,\eta) = N_1 V_1 + N_2 V_2 + N_3 V_3$$
 (III.18)

$$W(\xi,\eta) = N_1 W_1 + N_2 W_2 + N_3 W_3$$
 (III.19)

Le domaine de l'intégration sur l'élément triangulaire repère cylindrique est:

$$\int_{V^{e}} (\cdots) dV = \int_{0}^{1} \int_{0}^{1-\xi} \int_{0}^{2\pi} (\ldots) J d\theta d\eta d\xi$$
 (III.20)

V. Partie du fluide [25]:

L'équation de Navier-Stokes est discrétisée par la même fonction de forme pour les vitesses et les pressions, c'est à dire:

$$\begin{split} \dot{u}_r &= \langle N_i \rangle \{ \dot{u}_i \} \\ \dot{u}_\theta &= \langle N_i \rangle \{ \dot{u}_i \} \\ \dot{u}_z &= \langle N_i \rangle \{ \dot{u}_i \} \\ p &= \langle N_i \rangle \{ p_i \} \end{split} \tag{III.21}$$

On trouve dans la dynamique de fluide l'équation de Navier-Stokes en 3D pour un écoulement incompressible avec l'équation de continuité on Troie dimension sur le repère du cylindre (r, θ , z).

Equation de continuité:

$$\frac{1}{r} * \frac{\partial (r\dot{u}_r)}{\partial r} + \frac{1}{r} \frac{\partial \dot{u}_{\theta}}{\partial \theta} + \frac{\partial \dot{u}_z}{\partial z} = 0$$
(III.22)

Equation de Navier-Stokes avec le terme de pénalité on coordonnées cylindriques:

$$\left| \begin{array}{l} \rho \left[\frac{\partial \dot{u}_r}{\partial t} \right] = \rho g_r - \frac{\partial p}{\partial r} + \mu \left[\frac{\partial^2 \dot{u}_r}{\partial r^2} + \frac{1}{r} \frac{\partial^2 \dot{u}_\theta}{\partial \theta^2} + \frac{1}{r^2} \frac{\partial^2 \dot{u}_r}{\partial \theta^2} + \frac{\partial^2 \dot{u}_r}{\partial z^2} - \frac{\dot{u}_r}{r^2} - \frac{2}{r^2} \frac{\partial \dot{u}_\theta}{\partial \theta} \right] + \frac{p}{\lambda} \\ \rho \left[\frac{\partial \dot{u}_\theta}{\partial t} \right] = \rho g_\theta - \frac{1}{r} \frac{\partial p}{\partial \theta} + \mu \left[\frac{\partial^2 \dot{u}_\theta}{\partial r^2} + \frac{1}{r} \frac{\partial \dot{u}_\theta}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \dot{u}_\theta}{\partial \theta^2} + \frac{\partial^2 \dot{u}_\theta}{\partial z^2} - \frac{\dot{u}_\theta}{r^2} - \frac{2}{r^2} \frac{\partial \dot{u}_r}{\partial \theta} \right] + \frac{p}{\lambda} \quad (III.23) \\ \rho \left[\frac{\partial \dot{u}_z}{\partial t} \right] = \rho g_z - \frac{\partial p}{\partial z} + \mu \left[\frac{\partial^2 \dot{u}_z}{\partial r^2} + \frac{1}{r} \frac{\partial \dot{u}_z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \dot{u}_\theta}{\partial \theta^2} + \frac{\partial^2 \dot{u}_z}{\partial z^2} \right] + \frac{p}{\lambda} \quad (III.23)$$

Nous prenons ρ , p = csts et la force volumique ρg nul qui nous donne l'équation de Navier-Stokes suivant:

$$\rho\left[\frac{\partial \dot{u}_{r}}{\partial t}\right] = -\frac{\partial p}{\partial r} + \mu\left[\frac{\partial^{2} \dot{u}_{r}}{\partial r^{2}} + \frac{1}{r}\frac{\partial^{2} \dot{u}_{\theta}}{\partial \theta^{2}} + \frac{1}{r^{2}}\frac{\partial^{2} \dot{u}_{r}}{\partial \theta^{2}} + \frac{\partial^{2} \dot{u}_{r}}{\partial z^{2}} - \frac{\dot{u}_{r}}{r^{2}} - \frac{2}{r^{2}}\frac{\partial \dot{u}_{\theta}}{\partial \theta}\right] + \frac{p}{\lambda}$$

$$\rho\left[\frac{\partial \dot{u}_{\theta}}{\partial t}\right] = -\frac{1}{r}\frac{\partial p}{\partial \theta} + \mu\left[\frac{\partial^{2} \dot{u}_{\theta}}{\partial r^{2}} + \frac{1}{r}\frac{\partial \dot{u}_{\theta}}{\partial r} + \frac{1}{r^{2}}\frac{\partial^{2} \dot{u}_{\theta}}{\partial \theta^{2}} + \frac{\partial^{2} \dot{u}_{\theta}}{\partial z^{2}} - \frac{\dot{u}_{\theta}}{\partial z^{2}} - \frac{2}{r^{2}}\frac{\partial \dot{u}_{r}}{\partial \theta}\right] + \frac{p}{\lambda} \quad (III.24)$$

$$\rho\left[\frac{\partial \dot{u}_{z}}{\partial t}\right] = -\frac{\partial p}{\partial z} + \mu\left[\frac{\partial^{2} \dot{u}_{z}}{\partial r^{2}} + \frac{1}{r}\frac{\partial \dot{u}_{z}}{\partial r} + \frac{1}{r^{2}}\frac{\partial^{2} \dot{u}_{z}}{\partial \theta^{2}} + \frac{\partial^{2} \dot{u}_{z}}{\partial z^{2}} - \frac{p}{r^{2}}\frac{\partial \dot{u}_{r}}{\partial \theta}\right] + \frac{p}{\lambda}$$

En formulation de Galerkine les fonctions tests sont assimilées aux fonctions de forme. On pose

$$W = \int_{\Omega} \delta_i (\mathcal{L}(u) - F) \, d\Omega = 0, i = 1, 2 \dots N \tag{III.25}$$

L'équation de mouvement du cylindre et représenté on déplacement radiale u_r , circonférentielle u_{θ} et axiale u_z suivant le repère r, θ et z

$$\begin{cases} u_r(r,\theta,z) = \overline{u_r}(r,z)\cos n\theta\sin(k_m,z) \\ u_\theta(r,\theta,z) = \overline{u_\theta}(r,z)\sin n\theta\sin(k_m,z) \\ u_z(r,\theta,z) = \overline{u_z}(r,z)\cos n\theta\sin(k_m,z) \end{cases}$$
(111.26)

- n numéro du mode circonférentiel et k_m le numéro du mode axial
- Pour une conduite Encastrée libre $k_m = m\pi/L$
- Pour encastrée-encastrée $k_m = m\pi/L$
- Pour une conduite libre- libre $k_m = (2m + 1)\pi/2L$

Nous choisissons les fonctions test sous la forme:

$$\delta = \begin{cases} \delta \dot{U} \\ \delta p \end{cases}, \text{ avec } \delta \dot{U} = \begin{cases} \delta \dot{u}_r \\ \delta \dot{u}_\theta \\ \delta \dot{u}_z \end{cases}$$
(111.27)

L'écriture faible s'écrit :

$$W = W_{N-S} + W_{cont} \tag{III.28}$$

Ou l'indice *N-s* désigne les termes de conservation de la masse pour les équations de Navier-Stokes et l'indice *Cont* désigne les termes de continuité.

$$\begin{split} W_{N-S} &= \int_{\Omega} \delta \dot{u}_{r} \left[\rho \left[\frac{\partial \dot{u}_{r}}{\partial t} \right] + \frac{\partial p}{\partial r} - \mu \left[\frac{\partial^{2} \dot{u}_{r}}{\partial r^{2}} + \frac{1}{r} \frac{\partial^{2} \dot{u}_{\theta}}{\partial \theta^{2}} + \frac{1}{r^{2}} \frac{\partial^{2} \dot{u}_{r}}{\partial z^{2}} - \frac{\dot{u}_{r}}{\partial z^{2}} - \frac{\dot{u}_{r}}{r^{2}} - \frac{2}{r^{2}} \frac{\partial \dot{u}_{\theta}}{\partial \theta} \right] \\ &\quad - \frac{p}{\lambda} \right] d\Omega \\ &\quad + \int_{\Omega} \delta \dot{u}_{\theta} \left[\rho \left[\frac{\partial \dot{u}_{\theta}}{\partial t} \right] - \frac{1}{r} \frac{\partial p}{\partial \theta} \right] \\ &\quad - \mu \left[\frac{\partial^{2} \dot{u}_{\theta}}{\partial r^{2}} + \frac{1}{r} \frac{\partial \dot{u}_{\theta}}{\partial r} + \frac{1}{r^{2}} \frac{\partial^{2} \dot{u}_{\theta}}{\partial \theta^{2}} + \frac{\partial^{2} \dot{u}_{\theta}}{\partial z^{2}} - \frac{\dot{u}_{\theta}}{r^{2}} - \frac{2}{r^{2}} \frac{\partial \dot{u}_{r}}{\partial \theta} \right] - \frac{p}{\lambda} \right] d\Omega \\ &\quad + \int_{\Omega} \delta \dot{u}_{z} \left[\rho \left[\frac{\partial \dot{u}_{z}}{\partial t} \right] + \frac{\partial p}{\partial z} - \mu \left[\frac{\partial^{2} \dot{u}_{z}}{\partial r^{2}} + \frac{1}{r^{2}} \frac{\partial \dot{u}_{z}}{\partial \theta^{2}} + \frac{\partial^{2} \dot{u}_{z}}{\partial z^{2}} - \frac{2}{r^{2}} \frac{\partial \dot{u}_{r}}{\partial \theta} \right] - \frac{p}{\lambda} \right] d\Omega \\ &\quad + \int_{S} \delta \dot{u}_{z} \left[\rho \left[\frac{\partial \dot{u}_{z}}{\partial t} \right] + \frac{\partial p}{\partial z} - \mu \left[\frac{\partial^{2} \dot{u}_{z}}{\partial r^{2}} + \frac{1}{r^{2}} \frac{\partial \dot{u}_{z}}{\partial \theta^{2}} + \frac{\partial^{2} \dot{u}_{z}}{\partial z^{2}} \right] - \frac{p}{\lambda} \right] d\Omega \\ &\quad + \int_{S} \delta \dot{u}_{z} \left[\rho \left[\frac{\partial \dot{u}_{z}}{\partial t} \right] + \frac{\partial p}{\partial z} - \mu \left[\frac{\partial^{2} \dot{u}_{z}}{\partial r^{2}} + \frac{1}{r^{2}} \frac{\partial \dot{u}_{z}}{\partial \theta^{2}} + \frac{\partial^{2} \dot{u}_{z}}{\partial z^{2}} \right] - \frac{p}{\lambda} \right] d\Omega \\ &\quad + \int_{S} \delta \dot{u}_{z} \left[\rho \left[\frac{\partial \dot{u}_{z}}{\partial t} \right] + \frac{\partial p}{\partial z} - \mu \left[\frac{\partial^{2} \dot{u}_{z}}{\partial r^{2}} + \frac{1}{r^{2}} \frac{\partial \dot{u}_{z}}{\partial \theta^{2}} + \frac{\partial^{2} \dot{u}_{z}}{\partial z^{2}} \right] - \frac{p}{\lambda} \right] d\Omega \\ &\quad + \int_{S} \delta \dot{u}_{r} \left[\rho \left[\frac{\partial \dot{u}_{z}}{\partial t} \right] + \frac{\partial p}{\partial z} - \mu \left[\frac{\partial^{2} \dot{u}_{z}}{\partial r^{2}} + \frac{1}{r^{2}} \frac{\partial \dot{u}_{z}}{\partial \theta^{2}} + \frac{\partial^{2} \dot{u}_{z}}{\partial z^{2}} \right] - \frac{p}{\lambda} \right] d\Omega \\ &\quad + \int_{S} \delta \dot{u}_{r} \left(\frac{\partial \dot{u}_{r}}{\partial r} n_{r} + \frac{\partial \dot{u}_{r}}{\partial r} n_{\theta} \right) dS - \oint_{S} \delta \dot{u}_{z} \left(\frac{\partial \dot{u}_{z}}{\partial z} n_{r} + \frac{\partial \dot{u}_{z}}{\partial z} n_{z} \right) dS \\ &\quad + \oint_{S} \delta \dot{u}_{u} \left(\frac{\partial \dot{u}_{\theta}}{\partial r} n_{\theta} + \frac{\partial \dot{u}_{\theta}}{\partial r} n_{\theta} \right) dS - \oint_{S} \delta \dot{u}_{r} \left(\frac{\dot{u}_{r}}{r^{2}} n_{r} \right) dS - \oint_{S} \delta \dot{u}_{u} \left(\frac{\partial \dot{u}_{z}}{r^{2}} n_{r} \right) dS \\ &\quad - \oint_{S} \delta \dot{u}_{z} \left(\frac{1}{r^{2}} \frac{\partial u}{\partial r} n_{z} \right) dS - \int_{S} \delta \dot{u}_{r} \left(\frac{u}{r^{2}} n_{r} \right) dS \\ &\quad - \int_{S} \delta \dot{u}_{z} \left(\frac{1}{$$

$$W_{cont} = -\int_{\Omega} \delta p \left(\frac{1}{r} * \frac{\partial (r\dot{u}_r)}{\partial r} + \frac{1}{r} \frac{\partial \dot{u}_{\theta}}{\partial \theta} + \frac{\partial \dot{u}_z}{\partial z} \right) d\Omega$$
(III.30)

 $n=(n_r, n_{\theta_i}, n_z)$ étant la normale à la frontière dirigée vers l'extérieur de la frontière, les conditions aux limites associées à l'entrée u = u et à la sortie p = p.

VII. Discrétisation par éléments finis:

Le domaine de calcule Ω est représenté par un ensemble de sous domaines élémentaires Ω_e donc:

$$\Omega = \sum_{i=1}^{Nelet} \Omega_e^i \Longrightarrow W = \sum_{i=1}^{Nelet} W_e^i$$
(III.31)

Nelet= Nombre total d'éléments.

 W_e^i : Formulation faible élémentaire.

La forme conservative des équations de Navier-Stokes est discrétisée en utilisant la même approximation pour *u*, *v*, *w et p* c'est à dire:

Chapitre III

$$\dot{u}_r = \langle N_i \rangle \{ \dot{u}_i \} \quad \dot{u}_\theta = \langle N_i \rangle \{ \dot{u}_i \} \quad \dot{u}_z = \langle N_i \rangle \{ \dot{u}_i \} \quad p = \langle N_i \rangle \{ p_i \} \tag{III.32}$$

Dans la formulation Galerkine, la fonction de forme est identique pour les fonctions test et les variables.

$$\delta \dot{u}_r = \langle N_i \rangle \{ \delta \dot{u}_i \} \quad \delta \dot{u}_r = \langle N_i \rangle \{ \delta \dot{u}_i \} \quad \delta \dot{u}_r = \langle N_i \rangle \{ \delta \dot{u}_i \} \quad \delta p = \langle N_i \rangle \{ \delta p_i \} \quad (III.33)$$

 $\langle N \rangle$ sont des fonctions d'interpolation pour les vitesses et $\langle N \rangle$ sont des fonctions d'interpolation pour la pression.

 $\mathbf{\hat{u}}_{n}$, et {P_n} sont les variables nodales associées à chaque élément triangulaire.

Les éléments utilisés dans une discrétisation par éléments finis des équations de Navier Stokes par la famille Taylor-Hood qui sont généralement subdivisés en deux familles, pour une pression continue (la famille de Taylor capot) et la famille de **Crouzeix Raviart** pour pression discontinue. Dans 2-D ou 3-D.

On trouve deux éléments quadrilatères et triangulaire sont utilisés avec différentes combinaisons de polynômes de vitesse et de pression. Dans notre cas on appliquée l'élément triangulaire de type P1⁺-P0 (la famille de Taylor Hood d'élément mini). Famille de Taylor Hood d'élément mini exige que le nombre d'inconnue pression ne dépasse jamais le nombre d'inconnue de vitesse. Puisque nous voulons résoudre les équations de Navier-Stokes par des méthodes d'élément finis pour différentes dimensions de la grille, cette demande doit être valide indépendamment du nombre d'éléments comme montre la (**figure III.2**).

Fig. III. 2:élément triangulaire de trois points nodaux pour vitesse (x) et un point nodal de la pression (0).

Si on remarque que le nombre d'inconnues de la vitesse sera plus grand que le nombre d'inconnue de la pression on peut ajouter le nombre de la pénalité pour éviter de trouver des matrices singulières.

$$\begin{split} W_{N-S} \\ &= \int_{\Omega} \delta \dot{u}_{r} \rho \left[\frac{\partial \dot{u}_{r}}{\partial t} \right] d\Omega + \int_{\Omega} \delta \dot{u}_{r} \left(\frac{\partial p}{\partial r} \right) d\Omega \\ &+ \int_{\Omega} \mu \left[\left(\frac{\partial \delta \dot{u}_{r}}{\partial r} + \frac{\partial \dot{u}_{r}}{\partial r} \right) + \delta \dot{u}_{r} \left(\frac{1}{r} \frac{\partial^{2} \dot{u}_{\theta}}{\partial \theta^{2}} \right) + \delta \dot{u}_{r} \left(\frac{1}{r^{2}} \frac{\partial^{2} \dot{u}_{r}}{\partial \theta^{2}} \right) + \left(\frac{\partial \delta \dot{u}_{r}}{\partial z} + \frac{\partial \dot{u}_{r}}{\partial z} \right) - \delta \dot{u}_{r} \left(\frac{\dot{u}_{r}}{r^{2}} \right) \\ &- \delta \dot{u}_{r} \left(\frac{2}{r^{2}} \frac{\partial \dot{u}_{\theta}}{\partial \theta} \right) \right] d\Omega - \int_{\Omega} \delta \dot{u}_{r} \left(\frac{p}{\lambda} \right) d\Omega \\ &+ \int_{\Omega} \delta \dot{u}_{\theta} \rho \left[\frac{\partial \dot{u}_{\theta}}{\partial t} \right] - \delta \dot{u}_{\theta} \left(\frac{1}{r} \frac{\partial p}{\partial \theta} \right) \\ &+ \mu \left[\int_{\Omega} \left(\frac{\partial \delta \dot{u}_{\theta}}{\partial r} + \frac{\partial \dot{u}_{\theta}}{\partial r} \right) d\Omega + \int_{\Omega} \delta \dot{u}_{\theta} \left(\frac{1}{r} \frac{\partial \dot{u}_{\theta}}{\partial r} \right) d\Omega + \int_{\Omega} \frac{1}{r^{2}} \left(\frac{\partial \delta \dot{u}_{\theta}}{\partial \theta} + \frac{\partial \dot{u}_{\theta}}{\partial \theta} \right) d\Omega \\ &+ \int_{\Omega} \delta \dot{u}_{z} \rho \left[\frac{\partial \dot{u}_{z}}{\partial z} + \frac{\partial \dot{u}_{z}}{\partial z} \right] d\Omega - \int_{\Omega} \delta \dot{u}_{\theta} \left(\frac{\dot{u}_{\theta}}{r^{2}} \right) d\Omega - \int_{\Omega} \delta \dot{u}_{\theta} \left(\frac{2}{r^{2}} \frac{\partial \dot{u}_{r}}{\partial \theta} \right) d\Omega \right] - \int_{\Omega} \delta \dot{u}_{\theta} \left(\frac{p}{\lambda} \right) d\Omega \\ &+ \int_{\Omega} \delta \dot{u}_{z} \rho \left[\frac{\partial \dot{u}_{z}}{\partial z} + \frac{\partial \dot{u}_{z}}{\partial z} \right] d\Omega + \int_{\Omega} \delta \dot{u}_{z} \left(\frac{\partial p}{\partial z} \right) d\Omega \\ &+ \int_{\Omega} \delta \dot{u}_{z} \left(\frac{\partial \delta \dot{u}_{z}}{\partial z} + \frac{\partial \dot{u}_{z}}{\partial z} \right) d\Omega + \int_{\Omega} \left(\delta \dot{u}_{z} \frac{1}{r} \frac{\partial \dot{u}_{z}}{\partial r} \right) d\Omega + \frac{1}{r^{2}} \int_{\Omega} \left(\frac{\partial \delta \dot{u}_{z}}{\partial \theta} + \frac{\partial \dot{u}_{z}}{\partial \theta} \right) d\Omega \\ &+ \int_{\Omega} \delta \dot{u}_{z} \left(\frac{\partial \delta \dot{u}_{z}}{\partial \theta} + \frac{\partial \dot{u}_{z}}{\partial z} \right) d\Omega + \int_{\Omega} \left(\delta \dot{u}_{z} \frac{p}{\lambda} \right) d\Omega + \int_{S} \delta \dot{u}_{r} p n_{r} dS + \int_{S} \delta \dot{u}_{\theta} p n_{\theta} dS \\ &+ \int_{S} \delta \dot{u}_{z} p n_{z} dS - \oint_{S} \delta \dot{u}_{r} \left(\frac{\partial \dot{u}_{z}}{\partial r} n_{r} + \frac{\partial \dot{u}_{\theta}}{\partial r} n_{\theta} \right) dS - \oint_{S} \delta \dot{u}_{z} \left(\frac{\partial \dot{u}_{z}}{\partial z} n_{z} + \frac{\partial \dot{u}_{z}}{\partial z} n_{z} \right) dS \\ &+ \oint_{S} \delta \dot{u}_{z} \left(\frac{\partial \dot{u}_{\theta}}{\partial r} n_{\theta} + \frac{\partial \dot{u}_{\theta}}{\partial r} n_{\theta} \right) dS - \oint_{S} \delta \dot{u}_{r} \left(\frac{\dot{u}_{r}}{r^{2}} n_{r} \right) dS - \oint_{S} \delta \dot{u}_{z} \left(\frac{\partial \dot{u}_{z}}{r^{2}} n_{z} \right) dS \\ &+ \int_{S} \delta \dot{u}_{z} \left(\frac{\partial \dot{u}_{\theta}}{\partial r} n_{\theta} \right) dS - \oint_{S} \delta \dot{u}_{r} \left(\frac{\dot{u}_{r}}{r^{2}} n_{r} \right) dS - \int_{S} \delta \dot{u}_{z} \left(\frac{\partial \dot{u}_{z}}{r^{2}} n_{z} \right) dS \\ &+ \int_{S} \delta \dot{u}_{z} \left(\frac{\partial \dot{u}_{z}}{r^{2}} n_{z} \right)$$

On a distribué l'intégrale en plusieurs termes

$$\begin{split} W_{N-S} &= \int_{\Omega} \left(\delta \dot{u}_{r} \rho \left[\frac{\partial \dot{u}_{r}}{\partial t} \right] d\Omega + \delta \dot{u}_{\theta} \rho \left[\frac{\partial \dot{u}_{\theta}}{\partial t} \right] + \delta \dot{u}_{z} \rho \left[\frac{\partial \dot{u}_{z}}{\partial t} \right] \right) d\Omega \\ &+ \int_{\Omega} \left(\delta \dot{u}_{r} \left(\frac{\partial p}{\partial r} \right) + \delta \dot{u}_{\theta} \left(\frac{1}{r} \frac{\partial p}{\partial \theta} \right) + \delta \dot{u}_{z} \left(\frac{\partial p}{\partial z} \right) \right) d\Omega \\ &+ \int_{\Omega} \mu \left[\left(\frac{\partial \delta \dot{u}_{r}}{\partial r} + \frac{\partial \dot{u}_{r}}{\partial r} \right) + \delta \dot{u}_{r} \left(\frac{1}{r} \frac{\partial^{2} \dot{u}_{\theta}}{\partial \theta^{2}} \right) + \delta \dot{u}_{r} \left(\frac{1}{r^{2}} \frac{\partial^{2} \dot{u}_{r}}{\partial \theta^{2}} \right) + \left(\frac{\partial \delta \dot{u}_{r}}{\partial z} + \frac{\partial \dot{u}_{r}}{\partial z} \right) \\ &- \delta \ddot{u}_{r} \left(\frac{\dot{u}_{r}}{\partial r} + \frac{\partial \dot{u}_{\theta}}{\partial r} \right) d\Omega + \int_{\Omega} \delta \dot{u}_{\theta} \left(\frac{1}{r} \frac{\partial \dot{u}_{\theta}}{\partial r} \right) d\Omega \\ &+ \mu \left[\int_{\Omega} \left(\frac{\partial \delta \dot{u}_{\theta}}{\partial \theta} + \frac{\partial \dot{u}_{\theta}}{\partial r} \right) d\Omega + \int_{\Omega} \left(\frac{\partial \delta \dot{u}_{\theta}}{\partial z} + \frac{\partial \dot{u}_{\theta}}{\partial z} \right) d\Omega - \int_{\Omega} \delta \dot{u}_{\theta} \left(\frac{\dot{u}_{\theta}}{r^{2}} \right) d\Omega \\ &- \int_{\Omega} \delta \dot{u}_{\theta} \left(\frac{2}{r^{2}} \frac{\partial \dot{u}_{r}}{\partial \theta} \right) d\Omega \right] \\ &+ \mu \left[\int_{\Omega} \left(\frac{\partial \delta \dot{u}_{z}}{\partial z} + \frac{\partial \dot{u}_{z}}{\partial z} \right) d\Omega + \int_{\Omega} \left(\delta \dot{u}_{z} \frac{1}{r} \frac{\partial \dot{u}_{z}}{\partial r} \right) d\Omega - \int_{\Omega} \delta \dot{u}_{\theta} \left(\frac{\dot{u}_{\theta}}{r^{2}} \right) d\Omega \\ &+ \int_{\Omega} \delta \dot{u}_{\theta} \left(\frac{2}{\sigma d} + \frac{\partial \dot{u}_{z}}{\partial \theta} \right) d\Omega \right] \\ &+ \mu \left[\int_{\Omega} \delta \dot{u}_{\theta} \left(\frac{2}{\sigma d} + \frac{\partial \dot{u}_{z}}{\partial \theta} \right) d\Omega \right] - \int_{\Omega} \left(\delta \dot{u}_{z} \frac{1}{r} \frac{\partial \dot{u}_{z}}{\partial r} \right) d\Omega + \frac{1}{r^{2}} \int_{\Omega} \left(\frac{\partial \delta \dot{u}_{z}}{\partial \theta} + \frac{\partial \dot{u}_{z}}{\partial \theta} \right) d\Omega \\ \\ &+ \int_{\Omega} \delta \dot{u}_{z} \left(\frac{\partial \delta \dot{u}_{z}}{\partial \theta} + \frac{\partial \dot{u}_{z}}{\partial \theta} \right) d\Omega \right] - \int_{\Omega} \left(\delta \dot{u}_{z} \frac{p}{\partial r} \right) - \delta \dot{u}_{\theta} \left(\frac{p}{\lambda} \right) - \delta \dot{u}_{z} \frac{p}{\lambda} \right) d\Omega \\ \\ &+ \int_{S} \delta \dot{u}_{z} p n_{z} dS - \oint_{S} \delta \dot{u}_{z} p n_{z} dS \\ &+ \oint_{S} \delta \dot{u}_{z} p n_{z} dS - \oint_{S} \delta \dot{u}_{z} \left(\frac{\partial \dot{u}_{r}}{\partial r} n_{r} + \frac{\partial \dot{u}_{r}}{\partial r} n_{r} \right) dS \\ \\ &- \oint_{S} \delta \dot{u}_{z} \left(\frac{\partial \dot{u}_{z}}{\partial z} n_{z} \right) dS - \oint_{S} \delta \dot{u}_{\theta} \left(\frac{\dot{u}_{\theta}}{r^{2}} n_{r} \right) dS \\ \\ &- \int_{S} \delta \dot{u}_{z} \left(\frac{1}{r^{2}} \frac{n}{r} n_{z} \right) dS - \oint_{S} \delta \dot{u}_{\theta} \left(\frac{\dot{u}_{r}}{r^{2}} n_{r} \right) dS \\ \\ &- \int_{S} \delta \dot{u}_{z} \left(\frac{1}{r^{2}} \frac{n}{r} n_{z} \right) dS - \oint_{S} \delta \dot{u}_{\theta} \left(\frac{u}{r^{2}} n_{r} \right) dS$$
 (III.35)

$$\begin{split} W_{N-S} &= \langle \delta \dot{u}_{r} \quad \delta \dot{u}_{\theta} \quad \delta \dot{u}_{z} \rangle \bigg[\int_{\Omega} (\{N\} \langle N \rangle + \{N\} \langle N \rangle + \{N\} \langle N \rangle) d\Omega \bigg] \bigg\{ \begin{matrix} \dot{u}_{r} \\ \dot{u}_{g} \\ \dot{u}_{z} \end{matrix} \bigg\} \\ &+ \langle \delta \dot{u}_{r} \quad \delta \dot{u}_{\theta} \quad \delta \dot{u}_{z} \rangle \bigg[\mu \int_{\Omega} \bigg[(\{N_{r}\} \langle N_{r} \rangle) + \left(\frac{n^{2}}{r} \langle N \rangle\right) + \left(\frac{n^{2}}{r^{2}} \langle N \rangle\right) \\ &+ \langle \kappa_{n}^{2} \{N_{x}\} \langle N_{x} \rangle \rangle - \{N\} \bigg(\frac{\langle N \rangle}{r^{2}} \bigg) - \{N\} \frac{n}{r^{2}} \langle N \rangle \bigg] d\Omega \\ &+ \int_{\Omega} \bigg[\mu \bigg[(\{N_{r}\} \langle N_{r} \rangle) + \{N_{r}\} \langle \frac{N}{r} \rangle + \frac{n^{2}}{r^{2}} (\langle N \rangle \langle N \rangle) + \kappa_{n}^{2} \{N_{x}\} \langle N_{x} \rangle - \{N\} \bigg(\frac{\langle N \rangle}{r^{2}} \bigg) \\ &- \{N\} \bigg(\frac{2n}{r^{2}} \langle N \rangle \bigg) \bigg] d\Omega \\ &+ \int_{\Omega} \bigg[\mu \bigg[\{N_{x}\} \langle N_{x} \rangle + \left\{\frac{N}{r} \right\} \langle N_{r} \rangle + \kappa_{m}^{2} \{N_{x}\} \langle N_{x} \rangle + \frac{n^{2}}{r^{2}} \langle N \rangle \langle N \rangle \\ &+ \{N_{r}\} \langle N_{r} \rangle \bigg] d\Omega \\ &+ \int_{\Omega} \bigg[\mu \bigg[\{N_{x}\} \langle N_{x} \rangle + \left\{\frac{N}{r} \right\} \langle N_{r} \rangle + \kappa_{m}^{2} \{N_{x}\} \langle N_{x} \rangle + \frac{n^{2}}{r^{2}} \langle N \rangle \langle N \rangle \\ &+ \{N_{r}\} \langle N_{r} \rangle \bigg] d\Omega \\ &+ \int_{S} \bigg[\langle N \rangle \langle N_{x} \rangle + \left\{\frac{N}{r} \right\} \langle N_{r} \rangle + \kappa_{m}^{2} \{N_{x}\} \langle N_{x} \rangle + \frac{n^{2}}{r^{2}} \langle N \rangle \langle N \rangle \\ &+ \{N_{r}\} \langle N_{r} \rangle \bigg] d\Omega \\ &+ \int_{S} \bigg[\langle N \rangle \langle N_{x} \rangle + \left\{\frac{N}{r} \right\} \langle N_{r} \rangle + \kappa_{m}^{2} \{N_{x}\} \langle N_{x} \rangle + \frac{n^{2}}{r^{2}} \langle N \rangle \langle N \rangle \\ &+ \left\{ N_{r} \langle N \rangle \langle N \rangle \bigg] \bigg] d\Omega \\ &+ \int_{S} \bigg[\langle N \rangle \langle N_{x} \rangle + \left\{\frac{N}{r} \right\} \langle N \rangle \langle N \rangle + \left\{\frac{N}{r} \right\} \langle N \rangle \langle N \rangle \\ &+ \left\{\frac{N}{r^{2}} \langle N \rangle \langle N \rangle \rangle \bigg] \bigg] d\Omega \\ &+ \int_{S} \bigg[\langle N \rangle \langle N \rangle \rangle \langle N \rangle \langle N \rangle \rangle \langle N \rangle \\ &+ \left\{ N_{x} \langle N \rangle \langle N \rangle \rangle \rangle dS - \int_{S} \bigg[\langle N \rangle \langle N \rangle \langle N \rangle \rangle dS \\ &- \int_{S} \bigg[\langle N \rangle \langle N \rangle \rangle dS - \int_{S} \bigg[\langle N \rangle \langle N \rangle \rangle dS \\ &- \int_{S} \bigg[\langle N \rangle \langle N \rangle \rangle dS - \int_{S} \bigg[\langle N \rangle \langle N \rangle \rangle \\ &+ \left\{ \delta u_{r} - \delta \dot{u}_{\theta} - \delta \dot{u}_{\tau} \right\} \bigg] \bigg] \frac{n}{\rho_{W}} \bigg] \langle N \rangle \\ (III.36)$$

Ecrire équation (III.35) on forme matricielle ;

W_{N-S}
$= \langle \delta \dot{u}_r \ \ \delta \dot{u}_\theta \ \ \delta \dot{u}_z \rangle \left[\rho \left[\int_{\Omega} \left(\begin{matrix} N_1^2 & 0 & 0 & N_1 N_2 & 0 & 0 & N_1 N_3 & 0 & 0 \\ 0 & N_1^2 & 0 & 0 & N_1 N_2 & 0 & 0 & N_1 N_3 & 0 \\ 0 & 0 & N_1^2 & 0 & 0 & N_1 N_2 & 0 & 0 & N_1 N_3 \\ N_1 N_2 & 0 & 0 & N_2^2 & 0 & 0 & N_2 N_3 & 0 & 0 \\ 0 & N_1 N_2 & 0 & 0 & N_2^2 & 0 & 0 & N_2 N_3 & 0 \\ 0 & 0 & N_1 N_2 & 0 & 0 & N_2^2 & 0 & 0 & N_2 N_3 \\ N_1 N_3 & 0 & 0 & N_2 N_3 & 0 & 0 & N_3^2 & 0 & 0 \\ 0 & N_1 N_3 & 0 & 0 & N_2 N_3 & 0 & 0 & N_3^2 & 0 & 0 \\ 0 & 0 & N_1 N_3 & 0 & 0 & N_2 N_3 & 0 & 0 & N_3^2 & 0 \\ 0 & 0 & N_1 N_3 & 0 & 0 & N_2 N_3 & 0 & 0 & N_3^2 & 0 \\ 0 & 0 & N_1 N_3 & 0 & 0 & N_2 N_3 & 0 & 0 & N_3^2 & 0 \\ 0 & 0 & N_1 N_3 & 0 & 0 & N_2 N_3 & 0 & 0 & N_3^2 & 0 \\ \end{matrix} \right) \right] d\Omega \left[\begin{pmatrix} \dot{u}_1 \\ \dot{v}_1 \\ \dot{w}_1 \\ \dot{u}_2 \\ \dot{v}_2 \\ \dot{v}_2 \\ \dot{u}_3 \\ \dot{v}_3 \\ \dot{w}_3 \end{pmatrix} \right]$
$-\langle \delta \dot{u}_r \ \delta \dot{u}_\theta \ \delta \dot{u}_z \rangle \frac{1}{\rho} \left[\int_{\Omega} \left(\begin{pmatrix} N_1 N_{1,r} & 0 & 0 & N_1 N_{2,r} & 0 & 0 & N_1 N_{3,r} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$
$+ \frac{n}{r} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$
$+ \langle \delta \dot{u}_r \ \ \delta \dot{u}_\theta \ \ \delta \dot{u}_z \rangle \Bigg[\mu \left(\begin{matrix} N_{1,r}^2 & 0 & 0 & N_{1,r} N_{2,r} & 0 & 0 & N_{1,r} N_{3,r} & 0 & 0 \\ 0 & N_{1,r}^2 & 0 & 0 & N_{1,r} N_{2,r} & 0 & 0 & N_{1,r} N_{3,r} & 0 \\ 0 & 0 & N_{1,r}^2 & 0 & 0 & N_{1,r} N_{2,r} & 0 & 0 & N_{1,r} N_{3,r} \\ N_{1,r} N_{2,r} & 0 & 0 & N_{2,r}^2 & 0 & 0 & N_{2,r} N_{3,r} & 0 & 0 \\ 0 & 0 & N_{1,r} N_{2,r} & 0 & 0 & N_{2,r}^2 & 0 & 0 & N_{2,r} N_{3,r} & 0 \\ 0 & 0 & N_{1,r} N_{2,r} & 0 & 0 & N_{2,r}^2 & 0 & 0 & N_{2,r} N_{3,r} & 0 \\ 0 & 0 & N_{1,r} N_{2,r} & 0 & 0 & N_{2,r}^2 & 0 & 0 & N_{2,r} N_{3,r} & 0 \\ 0 & 0 & N_{1,r} N_{3,r} & 0 & 0 & N_{2,r} N_{3,r} & 0 & 0 & N_{3,r}^2 & 0 \\ 0 & 0 & N_{1,r} N_{3,r} & 0 & 0 & N_{2,r} N_{3,r} & 0 & 0 & N_{3,r}^2 & 0 \\ 0 & 0 & N_{1,r} N_{3,r} & 0 & 0 & N_{2,r} N_{3,r} & 0 & 0 & N_{3,r}^2 \\ 0 & 0 & N_{1,r} N_{3,r} & 0 & 0 & N_{2,r} N_{3,r} & 0 & 0 & N_{3,r}^2 \\ \end{matrix} \right) \Bigg] \left\{ \begin{matrix} \dot{u}_1 \\ \dot{v}_2 \\ \dot{v}_2 \\ \dot{v}_2 \\ \dot{v}_3 \\ \dot{v}_3 \\ \dot{v}_3 \end{matrix} \right\}$
$+ \mu \left[\int_{\Omega} \frac{n^2}{r^2} \begin{pmatrix} N_1^2 & 0 & 0 & N_1 N_2 & 0 & 0 & N_1 N_3 & 0 & 0 \\ 0 & N_1^2 & 0 & 0 & N_1 N_2 & 0 & 0 & N_1 N_3 & 0 \\ 0 & 0 & N_1^2 & 0 & 0 & N_1 N_2 & 0 & 0 & N_1 N_3 \\ N_1 N_2 & 0 & 0 & N_2^2 & 0 & 0 & N_2 N_3 & 0 & 0 \\ 0 & N_1 N_2 & 0 & 0 & N_2^2 & 0 & 0 & N_2 N_3 & 0 \\ 0 & 0 & N_1 N_2 & 0 & 0 & N_2^2 & 0 & 0 & N_2 N_3 \\ N_1 N_3 & 0 & 0 & N_2 N_3 & 0 & 0 & N_3^2 & 0 & 0 \\ 0 & N_1 N_3 & 0 & 0 & N_2 N_3 & 0 & 0 & N_3^2 & 0 \\ 0 & 0 & N_1 N_3 & 0 & 0 & N_2 N_3 & 0 & 0 & N_3^2 \end{pmatrix}$
$+ \left[\frac{1}{r} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$

	/ N	V_{1}^{2}	0	0		$N_1 N_2$	2 0		0	N_1	N ₃	0	0	١
	1	0	N_{1}^{2}	0		0	N_1	V_2	0		0	N_1N_3	0	
		0	0	N_{1}^{2}		0	0		N_1N_2		0	0	N_1N	3
	N_1N	2	0	0		Ν	$I_2^2 = 0$		0	N_2	N_3	0	0	
$+k_m^2$	2 0	-	$N_1 N_2$	0			0 N-	2	0	Ī	0	N_2N_3	0	
• ••••	0		0	N_1N	2		0 0	1	V_{2}^{2}	(0	0	N_2N	3
	N_1N	3	0	0		$N_2 N_2$	₃ 0		0		N_3^2	0	0	
	0		N_1N_3	0		0	N_2	N_3	0		0	N_{3}^{2}	0	
	\ 0		0	N_1N	3	0	0		N_2N_3		0	0	N_3^2	/
	(N_{1}^{2})	0	0	$N_1 N_2$	0	0	$N_1 N_3$	0	0\					
	0	0	0	0	0	0	0	0	0)					
	0	0	0	0	0	0	0	0	0					
1	N_1N_2	0	0	N_2^2	0	0	N_2N_3	0	0					
$-\frac{1}{2}$	0	0	0	Ō	0	0	0	0	0					
r^{2}	0	0	0	0	0	0	0	0	0					
	N_1N_3	0	0	N_2N_3	0	0	N_{3}^{2}	0	0					
	0	0	0	0	0	0	0	0	0 /					
`	0	0	0	0	0	0	0	0	0 /					
	(N_1^2)	0	0	$N_1 N_2$	0	0	$N_1 N_2$	0	0\] '	(ůı)		
		0	Õ	0	0	0	0	0	0)		v ₁			
	Ō	0	Õ	0	0	0	0	0	0		Ŵ	1		
27	N_1N_2	0	0	N_2^2	0	0	N_2N_2	0	0		<i>ü</i> 2	2		
$-\frac{2n}{r^2}$	0	0	0	Õ	0	0	0	0	0	dΩ	{ v _z	2		
	0	0	0	0	0	0	0	0	0		Ŵ.	2		
	N_1N_3	0	0	N_2N_3	0	0	N_{3}^{2}	0	0	1	u	3		
	0	0	0	0	0	0	Ő	0	0		ν.			
	\ 0	0	0	0	0	0	0	0	0 /		\w	J		
										J .	I .	-		

= 0

(111.37)

$W_{N-S} = \langle \delta \dot{u}_r$	δü _θ	$\delta \dot{u}_{z} \rangle \Biggl[\left[\rho \left[\int_{\Omega} \begin{pmatrix} N_{1}^{2} & 0 & 0 & N_{1}N_{2} & 0 & 0 & N_{1}N_{3} & 0 & 0 \\ 0 & N_{1}^{2} & 0 & 0 & N_{1}N_{2} & 0 & 0 & N_{1}N_{3} & 0 \\ 0 & 0 & N_{1}^{2} & 0 & 0 & N_{1}N_{2} & 0 & 0 & N_{1}N_{3} \\ N_{1}N_{2} & 0 & 0 & N_{2}^{2} & 0 & 0 & N_{2}N_{3} & 0 & 0 \\ 0 & N_{1}N_{2} & 0 & 0 & N_{2}^{2} & 0 & 0 & N_{2}N_{3} & 0 \\ 0 & 0 & N_{1}N_{2} & 0 & 0 & N_{2}^{2} & 0 & 0 & N_{2}N_{3} \\ N_{1}N_{3} & 0 & 0 & N_{2}N_{3} & 0 & 0 & N_{3}^{2} & 0 & 0 \\ 0 & N_{1}N_{3} & 0 & 0 & N_{2}N_{3} & 0 & 0 & N_{3}^{2} & 0 \\ 0 & 0 & N_{1}N_{3} & 0 & 0 & N_{2}N_{3} & 0 & 0 & N_{3}^{2} & 0 \\ 0 & 0 & N_{1}N_{3} & 0 & 0 & N_{2}N_{3} & 0 & 0 & N_{3}^{2} & 0 \\ \end{pmatrix} \Biggr] \Biggr] \Biggr]$
		$-\frac{1}{\rho} \left[\int_{\Omega} \left(\begin{pmatrix} N_1 N_{1,r} & 0 & 0 & N_1 N_{2,r} & 0 & 0 & N_1 N_{3,r} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$
		$+\frac{n}{r}\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & N_1^2 & 0 & 0 & N_1N_2 & 0 & 0 & N_1N_3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$
		$+ k_m \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$
		$+ \left[\mu \begin{pmatrix} N_{1,r}^2 & 0 & 0 & N_{1,r}N_{2,r} & 0 & 0 & N_{1,r}N_{3,r} & 0 & 0 \\ 0 & N_{1,r}^2 & 0 & 0 & N_{1,r}N_{2,r} & 0 & 0 & N_{1,r}N_{3,r} & 0 \\ 0 & 0 & N_{1,r}^2 & 0 & 0 & N_{1,r}N_{2,r} & 0 & 0 & N_{1,r}N_{3,r} \\ N_{1,r}N_{2,r} & 0 & 0 & N_{2,r}^2 & 0 & 0 & N_{2,r}N_{3,r} & 0 \\ 0 & 0 & N_{1,r}N_{2,r} & 0 & 0 & N_{2,r}^2 & 0 & 0 & N_{2,r}N_{3,r} \\ 0 & 0 & N_{1,r}N_{2,r} & 0 & 0 & N_{2,r}^2 & 0 & 0 & N_{2,r}N_{3,r} \\ N_{1,r}N_{3,r} & 0 & 0 & N_{2,r}N_{3,r} & 0 & 0 & N_{3,r}^2 & 0 \\ 0 & 0 & N_{1,r}N_{3,r} & 0 & 0 & N_{2,r}N_{3,r} & 0 & 0 & N_{3,r}^2 & 0 \\ 0 & 0 & N_{1,r}N_{3,r} & 0 & 0 & N_{2,r}N_{3,r} & 0 & 0 & N_{3,r}^2 & 0 \\ 0 & 0 & N_{1,r}N_{3,r} & 0 & 0 & N_{2,r}N_{3,r} & 0 & 0 & N_{3,r}^2 \end{pmatrix} \right] \begin{pmatrix} \dot{u}_1 \\ \dot{v}_1 \\ \dot{v}_2 \\ \dot{v}_2 \\ \dot{v}_2 \\ \dot{w}_3 \\ \dot{v}_3 \\ \dot{w}_3 \end{pmatrix}$
		$+ \mu \left[\int_{\Omega} \frac{n^2}{r^2} \begin{pmatrix} N_1^2 & 0 & 0 & N_1 N_2 & 0 & 0 & N_1 N_3 & 0 & 0 \\ 0 & N_1^2 & 0 & 0 & N_1 N_2 & 0 & 0 & N_1 N_3 & 0 \\ 0 & 0 & N_1^2 & 0 & 0 & N_1 N_2 & 0 & 0 & N_1 N_3 \\ N_1 N_2 & 0 & 0 & N_2^2 & 0 & 0 & N_2 N_3 & 0 & 0 \\ 0 & N_1 N_2 & 0 & 0 & N_2^2 & 0 & 0 & N_2 N_3 \\ 0 & 0 & N_1 N_2 & 0 & 0 & N_2^2 & 0 & 0 & N_2 N_3 \\ N_1 N_3 & 0 & 0 & N_2 N_3 & 0 & 0 & N_3^2 & 0 & 0 \\ 0 & N_1 N_3 & 0 & 0 & N_2 N_3 & 0 & 0 & N_3^2 & 0 \\ 0 & 0 & N_1 N_3 & 0 & 0 & N_2 N_3 & 0 & 0 & N_3^2 & 0 \\ \end{pmatrix}$
		$+ \left[\frac{1}{r} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$
$$W_{cont} = -\int_{\Omega} \delta p \left(\frac{1}{r} \frac{\partial}{\partial r} (r\dot{u}_{r}) + \frac{1}{r} \frac{\partial \dot{u}_{\theta}}{\partial \theta} + \frac{\partial \dot{u}_{z}}{\partial z} \right) d\Omega = 0 \qquad (III.39)$$

$$W_{cont} = -\langle \delta p_{1} \quad \delta p_{2} \quad \delta p_{3} \rangle \left(\int_{\Omega} \left(\{N\} \langle N, r \rangle + n \{\frac{N}{r}\} \langle N \rangle + km \{N\} \langle N \rangle \right) d\Omega \right) \begin{cases} \dot{u}_{1} \\ \dot{v}_{1} \\ \dot{u}_{2} \\ \dot{v}_{2} \\ \dot{v}_{3} \\ \dot{v}_{3} \\ \dot{w}_{3} \end{cases} = 0 \quad (III.40)$$

 \checkmark La masse du fluide

$$\begin{bmatrix} M_f \end{bmatrix} = \rho \left[\int_{\Omega} \begin{pmatrix} N_1^2 & 0 & 0 & N_1 N_2 & 0 & 0 & N_1 N_3 & 0 & 0 \\ 0 & N_1^2 & 0 & 0 & N_1 N_2 & 0 & 0 & N_1 N_3 & 0 \\ 0 & 0 & N_1^2 & 0 & 0 & N_1 N_2 & 0 & 0 & N_1 N_3 \\ N_1 N_2 & 0 & 0 & N_2^2 & 0 & 0 & N_2 N_3 & 0 \\ 0 & N_1 N_2 & 0 & 0 & N_2^2 & 0 & 0 & N_2 N_3 \\ 0 & 0 & N_1 N_2 & 0 & 0 & N_2^2 & 0 & 0 & N_2 N_3 \\ N_1 N_3 & 0 & 0 & N_2 N_3 & 0 & 0 & N_3^2 & 0 & 0 \\ 0 & N_1 N_3 & 0 & 0 & N_2 N_3 & 0 & 0 & N_3^2 & 0 \\ 0 & 0 & N_1 N_3 & 0 & 0 & N_2 N_3 & 0 & 0 & N_3^2 & 0 \\ 0 & 0 & N_1 N_3 & 0 & 0 & N_2 N_3 & 0 & 0 & N_3^2 & 0 \\ \end{bmatrix}$$
(III.42)

 \checkmark La raideur du fluide

$\left[K_{f}\right]$			
$= \int_{\Omega} \left[\mu \left(\begin{pmatrix} N_{1,r}^2 & 0 & 0 \\ 0 & N_{1,r}^2 & 0 \\ 0 & 0 & N_{1,r}^2 \\ N_{1,r}N_{2,r} & 0 & 0 \\ 0 & N_{1,r}N_{2,r} & 0 \\ 0 & 0 & N_{1,r}N_{2,r} \\ N_{1,r}N_{3,r} & 0 & 0 \\ 0 & N_{1,r}N_{3,r} & 0 \\ 0 & 0 & N_{1,r}N_{3,r} \end{pmatrix} \right]$	$\begin{array}{ccccccc} N_{1,r}N_{2,r} & 0 \\ 0 & N_{1,r}N_{2,r} \\ 0 & 0 \\ N_{2,r}^2 & 0 \\ 0 & N_{2,r}^2 \\ 0 & 0 & N \\ N_{2,r}N_{3,r} & 0 \\ 0 & N_{2,r}N_{3,r} \\ 0 & 0 \end{array}$	$\begin{array}{cccc} 0 & N_{1,r}N_{3,r} \\ 0 & 0 \\ N_{1,r}N_{2,r} & 0 \\ 0 & N_{2,r}N_{3,r} \\ 0 & 0 \\ N_{2,r}^2 & 0 \\ 0 & 0 \\ N_{2,r}N_{3,r} & 0 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$+\frac{n^2}{r^2}\begin{pmatrix} N_1^2 & 0 & 0 & N_1N_2 & 0\\ 0 & N_1^2 & 0 & 0 & N_1N_2\\ 0 & 0 & N_1^2 & 0 & 0\\ N_1N_2 & 0 & 0 & N_2^2 & 0\\ 0 & N_1N_2 & 0 & 0 & N_2^2\\ 0 & 0 & N_1N_2 & 0 & 0\\ N_1N_3 & 0 & 0 & N_2N_3 & 0\\ 0 & N_1N_3 & 0 & 0 & N_2N_3\\ 0 & 0 & N_1N_3 & 0 & 0 \end{pmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{pmatrix} 0 & 0 \\ N_3 & 0 \\ 0 & N_1 N_3 \\ 0 & 0 \\ N_3 & 0 \\ 0 & N_2 N_3 \\ 0 & 0 \\ \frac{2}{3} & 0 \\ 0 & N_3^2 \end{pmatrix} $	
$+\frac{1}{r}\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & N_1N_{1,r} & 0 & 0 & N_1N_{2,r} & 0 & 0 & N_1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$-\frac{1}{r^2} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & N_1 N_1 & 0 & 0 & N_1 N_2 & 0 & 0 & N_1 N_1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$+k_m^2 \begin{pmatrix} N_1^2 & 0 & 0 & N_1N_2 & 0 \\ 0 & N_1^2 & 0 & 0 & N_1N_2 \\ 0 & 0 & N_1^2 & 0 & 0 \\ N_1N_2 & 0 & 0 & N_2^2 & 0 \\ 0 & N_1N_2 & 0 & 0 & N_2^2 \\ 0 & 0 & N_1N_2 & 0 & 0 \\ N_1N_3 & 0 & 0 & N_2N_3 & 0 \\ 0 & N_1N_3 & 0 & 0 & N_2N_3 \\ 0 & 0 & N_1N_3 & 0 & 0 \end{pmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

$-\frac{1}{r^2} \begin{pmatrix} N_1^2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ N_1 N_2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ N_1 N_3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$-\frac{2n}{r^2}\begin{pmatrix} N_1^2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ N_1N_2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ N_1N_3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$	$ \begin{pmatrix} N_1N_2 & 0 & 0 & N_1N_3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$
$+ \left(\begin{pmatrix} N_1 N_{1,r} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ N_2 N_{1,r} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ N_3 N_{1,r} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$+ \frac{n}{r} \begin{pmatrix} 0 & 0 & 0 \\ 0 & N_1^2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & N_1 N_2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$+ k_m \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & N_1^2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & N_1 N_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & N_1 N_3 \end{pmatrix}$	$\left(\begin{array}{cccccccccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

(111.43)

Chapitre III

$$\begin{bmatrix} K_f \end{bmatrix} = \begin{bmatrix} [K_{uvw}] & [K_{puvw}] \\ [K_{uvwp}] & [\frac{1}{\lambda}] \end{bmatrix}$$
(III. 47)

Le terme $\frac{p}{\lambda}$, forme de pénalité, est utilisé pour éviter que la matrice de raideur soit singulière

Pour avoir la forme matrice dite (U,P) on applique le théorème de Brezzi (1974) [7], elle est réalisée par l'assemblage de tous les termes des différentes matrices et nous donne la matrice élémentaire globale comme suit:

$$\begin{bmatrix} [\mu(K_{u})] & [0] & [0] & [K_{pu}] \\ [0] & [\mu(K_{v})] & [0] & [K_{pv}] \\ [0] & [0] & [\mu(K_{w})] & [K_{pw}] \\ [K_{up}] & [K_{vp}] & [K_{wp}] & \left[\frac{1}{\lambda}\right] \end{bmatrix} \begin{pmatrix} u \\ v \\ w \\ p \end{pmatrix}$$
(III. 48)

$$K_{f}^{e} = \begin{bmatrix} [\mu(K_{u})] & [0] & [0] & [K_{pu}] \\ [0] & [\mu(K_{v})] & [0] & [K_{pv}] \\ [0] & [0] & [\mu(K_{w})] & [K_{pw}] \\ [K_{up}] & [K_{vp}] & [K_{wp}] & [\frac{1}{\lambda}] \end{bmatrix}$$
(III. 49)

La force du fluide c'est que la force volumique suivant l'axe \overrightarrow{or} :

$$\int_{\Omega} \{\delta u\} \langle N_i \rangle^T F_r d\Omega = \begin{cases} f_r \\ 0 \\ 0 \end{cases}$$
(111.50)

Note: l'intégration du fluide se fait dans un domaine choisi en coordonnées cylindriques tel que $d\Omega = rd\theta \, dr \, dz$

On remplace ce domaine par le domaine de référence deux dimensions en même coordonnée par la forme suivant.

$$\int_{V_e} (\cdots) dV = \int_0^1 \int_0^{1-\xi} \int_0^{2\pi} (\cdots) r 2A_f d\eta d\xi$$
 (III.51)

Avec;

$$r = \langle N \rangle \{r_n\}; \ z = \langle N \rangle \{z_n\}$$

$$\langle N \rangle = \langle 1 - \xi - \eta \quad \xi \quad \eta \rangle$$

(III.52)

Ou :

$$\{r_n\} = \begin{cases} r_1 \\ r_2 \\ r_3 \end{cases}; \ \{z_n\} = \begin{cases} z_1 \\ z_2 \\ z_3 \end{cases}$$
(III.53)

On trouve la relation finale :

$$\begin{bmatrix} M_{u} & [0] & [0] & [0] \\ [0] & [M_{v}] & [0] & [0] \\ [0] & [0] & [M_{w}] & [0] \\ [0] & [0] & [0] & \begin{bmatrix} 1 \\ \lambda \end{bmatrix} \end{bmatrix} \begin{pmatrix} \ddot{u} \\ \ddot{v} \\ \ddot{v} \\ \ddot{p} \end{pmatrix}^{*} + \begin{bmatrix} [\mu(K_{u})] & [0] & [0] & [K_{pv}] \\ [0] & [\mu(K_{w})] & [K_{pw}] \\ [K_{up}] & [K_{vp}] & [K_{wp}] & \begin{bmatrix} 1 \\ \lambda \end{bmatrix} \end{bmatrix} \begin{pmatrix} u \\ v \\ w \\ p \end{pmatrix} = \begin{pmatrix} f_{r} \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad (III.54)$$

VIII. Passage d'application sur le domaine structure:

La structure subie des déformations quand le fluide traverse la conduite intérieurement alors en utilise la référence de Jean-Louis Batoz et Gouri Dhatt pour (1990) la modélisation des structures par élément finis de volume1 pour solides élastiques [26].

Les déformations en coordonnées cylindriques sont:

$$\{\varepsilon\} = \begin{cases} \frac{\partial u_r}{\partial r} \\ \frac{1}{r} \left(\frac{\partial u_{\theta}}{\partial \theta} + u_r \right) \\ \frac{\partial u_z}{\partial z} \\ \frac{1}{r} \left(r \frac{\partial u_{\theta}}{\partial r} + \frac{\partial u_r}{\partial \theta} - u_{\theta} \right) \\ \frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r} \\ \frac{1}{r} \frac{\partial u_z}{\partial \theta} + \frac{\partial u_{\theta}}{\partial z} \end{cases} = [B]\{u_n\}$$
(III.55)

Avec:

$$\langle u_n \rangle = \langle u_{r_1} \quad u_{\theta_1} \quad u_{z_1} \quad u_{r_2} \quad u_{\theta_2} \quad u_{z_2} \quad u_{r_3} \quad u_{\theta_3} \quad u_{z_3} \rangle$$

On utilise le principe des travaux virtuels (PTV)

$$\forall \delta \vec{u} \quad \int_{V} (\rho \vec{u}) dV = \int_{V} \vec{\sigma} \delta \vec{u} dV + \int_{V} \vec{f} \delta \vec{u} dV + \int_{S} \vec{T} \delta \vec{u} dS \quad (III.56)$$

Pour chaque élément M :

- L'approximation nodale des déplacements

$$\{\vec{u}(M)\} = [N(M)]\{u_e\}$$
(111.57)

- Le champ des déplacements :

$$\{\varepsilon(M)\} = [\overline{B}]\{u_e\}$$
(111.58)

Avec ;

$$\begin{split} [\bar{B}] &= [B][\theta_n][k_m] \\ \{u_e\} &= [\bar{B}]\{\overline{u_e}\} \end{split}$$

[B] Matrice d'opérateur différentiel appliqué aux fonctions de forme (d'interpolation)

- Le champ de contrainte:

$$\{\sigma(M)\} = [\overline{B}]\{\varepsilon(M)\} = [D][\overline{B}]\{\overline{u_e}\}$$
(111.59)

Le premier terme :

$$\int_{V} \left(\rho \vec{\ddot{u}}\right) dV = \{\delta \overline{u_e}\}^T [M]\{\overline{\ddot{u}_e}\}$$
(111.60)

Avec ;

$$[M] = \int_{V} \left[[\theta_n] [k_m] \right]^T \langle N \rangle^T \rho \left[[\theta_n] [k_m] \right] \langle N \rangle dV \qquad (III.61)$$

[M] : La matrice de masse élémentaire.

Le second terme :

$$\int_{V} \vec{\sigma} \delta \vec{u} dV = \{\delta \overline{u_e}\}^T [K] \{\overline{u_e}\}$$
(111.62)

Avec ;

$$[K] = \int_{V} \left[[B][\theta_n][k_m] \right]^T [H] \left[[B][\theta_n][k_m] \right] dV \qquad (III.63)$$

[K] : La matrice de raideur élémentaire.

Le travail des champs de force sur l'élément :

$$\delta T_e = \int_V \vec{f} \,\delta \vec{u} \,dV + \int_S \vec{T} \,\delta \vec{u} \,dS \tag{III.64}$$

$$\delta T_e = \{\delta \overline{u_e}\}^T \{F_e\} \tag{III.65}$$

Avec ;

$$\{F_e\} = \int_V \left[[\theta_n] [k_m] \right]^T \langle N \rangle^T \{f\} dV + \int_V \left[[\theta_n] [k_m] \right]^T \langle N \rangle^T \{T\} dV$$
(III.65)

Dans notre travail on utilise les fonctions paramétriques à la masse et raideur sous la forme suivante:

$$[k] = \int_0^1 \int_0^{1-\xi} \int_0^{2\pi} [\bar{B}]^T [H] [\bar{B}] |J| d\eta d\xi \, d\theta \qquad (III.66)$$

La numérisation de l'intégration pour la matrice de rigidité devient:

$$[k] = \sum_{i=1}^{NPI} ([\bar{B}]^T (\omega_i | 2A|.r.[H][\bar{B}])_{\xi_i,\eta_i})$$
(III.67)

Où [H] (6*6) est la matrice d'élasticité pour un matériau isotrope:

$$[H] = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0 & 0 & 0 \\ \nu & 1-\nu & \nu & 0 & 0 & 0 & 0 \\ \nu & \nu & 1-\nu & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} & 0 \\ 0 & 0 & 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix}$$
(III.68)

En appliquant l'intégration par les points de Gauss. Dans notre cas [k] a été calculé par un seul point de Gauss:

Ou

$$\xi_i = \eta_i = \frac{1}{3}$$
; $\omega_i = \frac{1}{2}$; $r_m = \frac{1}{3}(r_1 + r_2 + r_3)$

Soit

$$[k] = |J|r_m[\bar{B}]^T[H][\bar{B}]$$
(111.69)

La matrice [m] et sa relation en intégrale

$$[m] = \int_0^1 \int_0^{1-\xi} \int_0^{2\pi} [\bar{B}]^T \langle N \rangle^T \langle N \rangle [\bar{B}] \rho J d\eta d\xi d\theta \qquad (III.70)$$

Cette intégrale est calculée de façon numérique :

$$[m] = \sum_{i=1}^{NPI} \left([\bar{B}]^T \{ N \} (\rho \omega_i 2A. r. \langle N \rangle [\bar{B}])_{\xi_i, \eta_i} \right)$$
(III.71)

Les forces externes appliquées sont calculées numériquement :

$$\{f_{ext}\} = \iint_{0}^{1} \int_{0}^{1-\eta} \int_{0}^{2\pi} [\bar{B}]^T \langle N_N \rangle^T \{f_n\} (2Ar)_{\xi_i \eta_i}$$
(III.72)

se transforme en calcul numérique:

$$\{f_{nr}\} = \sum_{i=1}^{NPI} \left([\bar{B}]^T \langle N_1 f_r N_1 f_z N_2 f_r N_2 f_z N_3 f_r N_3 f_z \rangle^T (w_i \, 2Ar)_{\xi_i \eta_i} \right)$$
(III.73)

Cette intégrale numérique passe par les points d'interpolation de Gauss w_i d'interpolation

IX. Couplage fluide et structure:

On utilise le couplage par pénalité qui est appliqué sur la matrice de rigidité du système fluide structure (Haute femme 1983) [27]

$$[K_{SYS}] = [K_{FS}] + \alpha_P[G]^T[G]$$
 (III.74)

Avec ;

[*K_{FS}*] : Matrice de rigidité totale (fluide+structure)

 α_P : Paramètre de pénalité pris égale à 10⁴ à 10⁶ voir le plus grand terme de[K_{FS}] de manière à éviter les problèmes de conditionnement de la matrice globale du système. D'une manière générale, on s'intéresse à des équations des relations supplémentaires de type :

$$[G]{q} = {U} \tag{III.75}$$

Avec;

[G] : matrice de raideur qui relie entre les degrés de liberté du déplacement.

{U} : vecteur des déplacements imposés.

Afin d'appliquer le couplage, il faut passer à la méthode de Galerkin discontinue en temps (GDT), cette méthode est valable dans le cas où le terme non linéaire $(\vec{u}.\nabla)\vec{u}$ est négligé et dans notre cas ce terme est déjà négligé. On remplace les vitesses par des déplacements [28].

IX.1 Principe de couplage de pénalité:

L'équation du mouvement de la structure couplée est de la forme :

$$\begin{cases} [M_s]\{\ddot{U}\} + [K_s]\{U\} = \{F_s\} \\ [M_{eq}]\{\ddot{U}\} + [K_{FS} + \alpha_P[g]^T[g]]\{U\} = \{F_g\} \\ [M_f]\{\ddot{U}_{\ddot{p}}\} + [K_f]\{U_{p}\} = \{F_g\} \end{cases}$$
(II. 76)

Les matrices de masse [M]et de rigidité [K] : se font suivant le schéma de la figure III.3:

La sommation de la masse globale du solide et fluide.

Remplacer la masse de solide et fluide en couplage par masse équivalente.

> La sommation de la matrice de raideur globale du solide et fluide au niveau du couplage pour trouver $[K_{FS}]$.

Ajouter la matrice $[\alpha_P[G]^T[G]]$ par une sommation on trouve $[K_{SYS}]$.

Fig. III. 3: l'équation générale du problème avec le couplage de pénalité schématisé.

X. Equations du mouvement :

Avant de passer aux équations du mouvement du fluide et de la structure, on fait l'assemblage global de la masse et de la raideur sous forme matricielle. L'application du couplage se fait au niveau de la rigidité par la loi (2.65) et la masse équivalente. Formulation matricielle élémentaire fluide et solide:

$$W_{solde}^{e} = \langle \delta U_{s} \rangle ([M]_{s}^{e} \{ \ddot{U} \} + [K]_{s}^{e} \{ U \} + \{ F \}_{s}^{e}) = 0$$

$$\Rightarrow [M]_{s}^{e} \{ \ddot{U} \} + [K]_{s}^{e} \{ U \} + \{ F \}_{s}^{e} = 0$$
(III.77)

$$W_{fluide}^{e} = \langle \delta U_{f} \rangle \left([M]_{f}^{e} \left\{ \begin{matrix} \ddot{U} \\ \dot{p} \end{matrix} \right\} + [K]_{f}^{e} \left\{ \begin{matrix} \dot{U} \\ \dot{p} \end{matrix} \right\} + \{F\}_{f}^{e} \right) = 0$$

$$\Rightarrow [M]_{f}^{e} \left\{ \begin{matrix} \ddot{U} \\ \ddot{p} \end{matrix} \right\} + [K]_{f}^{e} \left\{ \begin{matrix} \dot{U} \\ \dot{p} \end{matrix} \right\} + \{F\}_{f}^{e} = 0$$
 (III.78)

- > $[M]_s^e$: Matrice masse élémentaire de solide.
- \succ $[M]_{f}^{e}$: Matrice masse élémentaire de fluide.
- \succ [K]^e_s: Matrice de rigidité élémentaire de solide.
- \succ $[K]_{f}^{e}$: Matrice de rigidité élémentaire de fluide.
- ▶ ${F}_{s}^{e}$: Vecteur force élémentaire de solide.
- \succ {*F*}^{*e*}_{*f*}: Vecteur force élémentaire de fluide.

La forme matricielle générale du problème, après avoir utilisé la méthode GDT est donnée par :

$$w = \sum_{i=1_e}^{Nelt} w_e^i \Longrightarrow W_{sf}^G = \langle \delta U_{sf} \quad \delta P \rangle \left(\begin{bmatrix} [M_s] & [0] \\ [0] & [M_f] \end{bmatrix}_{sf}^G \{ \ddot{U}_{\vec{p}} \} + \begin{bmatrix} [K_s] & [0] \\ [0] & [K_f] \end{bmatrix}_{sf}^G \{ U_{\vec{p}} \} + \{ F_{\vec{p}} \}_{sf}^G \right) = 0 \quad (III.79)$$

$$[M]\{\ddot{U}\} + [K]\{U\} = \{F\}$$
(III.80)

Où :

 $M = \begin{bmatrix} \begin{bmatrix} M_S \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ M_f \end{bmatrix} \end{bmatrix}_{sf}^{G}$: Matrice masse globale de fluide et solide $K = \begin{bmatrix} \begin{bmatrix} K_S \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ K_f \end{bmatrix} \end{bmatrix}_{sf}^{G}$: Matrice de rigidité globale de fluide et solide $F = \begin{cases} F \\ F \end{cases}_{sf}^{G}$: Vecteur force globalede fluide et solide $V = \{U\} = \begin{cases} U \\ P \end{cases}$: Vecteur des variables globales

Fig. III. 4:Schéma général de calcul en éléments finis.

Résolution & Programmation MATLAB

Introduction:

La résolution du système (III.63) obtenu dans le chapitre précédent nécessite le plus souvent l'utilisation de méthodes numériques, qui nous mène à élaborer à programme de calcul.

Dans notre cas nous avons élaboré un programme IFSP pour la détermination des fréquences propres, avec différents variables de la structure (diamètre, épaisseur, module de Young, coefficient de poisson, masse volumique) et du fluide (masse volumique).

II. Programme [29]:

La réalisation du programme, est faite sur un ordinateur PENTIUM(R), mémoire 2Go en langage Fortran 90 sous environnement MATLAB R2010a, cette version est plus rapide que les autres versions.

Les caractéristiques MATLAB sont illustrés à la (figure IV.1).

Fig. IV. 1: Les fonctions MATLAB.

Ces développements, qui remontent au moins au milieu des années 1960 lorsque FORTRAN et d'autres langues ont été utilisés pour développer les boîtes à outils spécifiques à l'application, ont été partiellement échoué en raison de capacités limitées de logiciels. MATLAB, introduit dans le milieu 1980, est l'une des avancées les plus importantes, profond dans l'informatique et applications et les sciences.

MATLAB (**Matrix Laboratory**) est une haute performance, c'est un logiciel d'environnement intensif de données pour l'utilisateur de haute efficacité et des calculs numériques scientifiques. MATLAB est basé sur un langage de haut niveau par la matrice tableau avec les états de flux de contrôle, fonctions, structures de données, entrée / sortie, et des fonctionnalités de programmation orientée objet.

Dans la programmation en MATLAB il faut choisir la base de calcul à suivre pour obtenir les résultats, ça veut dire soit un chemin analytique ou matriciel. L'analytique en MATLAB c'est l'utilisation de tout ce qui est scientifique (la dérivée, les équations différentielles, l'intégrale, etc...) et pour le chemin matriciel tout ce qui concerne les propriétés matricielles.

La création de notre programme est basée sur ses deux critères:

 la première partie du programme IFSP la réalisation de la géométrie en forme matriciel (nœuds, éléments, coordonnée, assemblages).

– la deuxième partie c'est analytique (l'intégrale, calcule les masses et les rigidités élémentaires).On trouve à l'intérieur du programme IFSP une troisième partie qui et intégré dans la deuxième partie, c'est le couplage entre fluide et solide par pénalité. La programmation est organisée en plusieurs parties:

- Parties fichiers de données
- Données géométriques avec les caractéristiques physiques.
- Fichiers calcul des intégrales.
- Partie de la résolution du système.

III. Intégration:

Intégrale numérique en formule de *Hammer*, est déterminée par le calcul symbolique pour l'élément fini triangulaire est réalisé sur MATLAB. Les valeurs de ces intégrales sont stockées automatiquement avec les données dans des fichiers sous forme matrices et des vecteurs.

IV. Matrices de rigidité et masse élémentaire :

Le calcul des matrices de rigidité et masse élémentaires se fait séparément pour la structure seule et le fluide seul, les éléments de la discrétisation sont stockés automatiquement comme c'est présenté sur la **figure III.4**. Les éléments sont ensuite assemblés dans la matrice globale **figure III.3**.

L'assemblage se fait par le nombre de degré de liberté, et ceci pour introduire la condition de couplage.

L'assemblage des matrices élémentaire se fait par le remplissage on somation des éléments de la structure et du fluide pour un maillage donnée ou structuré, l'idée d'assemblage c'est de réaliser la globalité des matrice élémentaires (la matrice globale) pour la rigidité du fluide, de la structure et la masse, mais l'assemblage se fait différemment en MATLAB, c'-à-d il faut définir la taille de la matrice globale par le nombre de degré de liberté comme une valeur initiale de la boucle, sons oublier le couplage entre le fluide et la structure par la méthode de pénalité en matrice globale en rigidité et la masse équivalente du couplage.

Il est réalisé en utilisant l'organigramme suivant:

VI. Résolution:

Une fois les matrices globales réalisés, pour la rigidité et la masse, on obtient la forme générale du problème (IV.1), pour puisse définir les fréquences.

$$[[K] - w2[M]]{q} = \{0\}$$
 (IV.1)

Pour cela nous transformons le problème généralisé (IV.1) en un problème standard (IV.2).

$$[[A] - w2[I]]{z} = \{0\}$$
 (IV.2)

Pour calculer les «*n*» premières fréquences et modes propres d'un système vibratoire nous utilisons la commande de MATLAB suivantes :

```
[modes,omega] = eigs(K,M,n,'sm');
f = sqrt(diag(omega))/(2*pi);
```

Avec ;

n: nombre d'itération sm: précision

Nous avons appliqué le code ou la commande "eigs" dans MATLAB pour trouver les valeurs propres et les vecteurs propres de notre système.

Cette commande permet de résoudre le système qu'on a sous forme matricielle par la méthode d'élimination Gauss-Jordon, qui consiste à transformer le système en un système équivalent dans le bloc gauche, c'est-à-dire la transformation de la matrice (A|I) sous forme $(I|A^{-1})$.

La méthode d'élimination Gauss-Jordon triangularise les matrices en utilisant les sous-programmes suivants:

L'algorithme de Gauss-Jordan est le suivant :

- Pour *k* allant de 1 à *n*
 - Si il existe une ligne i ≥ k telle que a^{k-1}_{ik} ≠ 0
 Echanger cette ligne i et la ligne k : l_i l_k

•
$$l_k^k \leftarrow \frac{1}{a_{kk}^{k-1}} l_k^{k-1}$$

Pour i allant de 1 à n et ≠k

•
$$l_i^k \leftarrow l_i^{k-1} - a_{ik}^{k-1} \times l_k^k$$

- Sinon A n'est pas inversible, abandonner (on sait ici que le rang de la matrice est k – 1).
- Après l'étape k de l'algorithme, la colonne k a tous ces coefficients nuls sauf un : celui de la diagonale, qui vaut 1.

Programme qui calcule le polynôme à n degré de liberté n du système:

```
For k = 1: n-1

For i = k+1: n

If A (i,k) = 0

Lambda = A (i,k)/A(k,k);

A (i, k+1: n) = A (i, k+1: n) - lambda*A (k, k+1: n);

b (i) = b(i) - lambda*b(k);

End

End

End
```

Pour calculer la matrice sup (les éléments supérieurs de la matrice) pour minimiser le magasin du stockage

C'est l'organigramme qui résume notre calcul sous la forme suivante :

Fig. IV. 3: Un organigramme (e i g s).

VII. Organigramme:

L'organigramme du programme élaboré est donné dans la figure suivante:

VIII. validation:

La validation de notre programme, a été faite en faisant une étude de la convergence, et en étudiant des exemples ou les résultats obtenus, sont comparés avec les résultats expérimentaux [30] et d'autres donnés par la référence [31].

Pour cela nous étudions les cas d'une conduite cylindrique avec les caractéristiques suivantes:

Exemple 1:

On a une conduite cylindrique caractérisé par les paramètres suivants:

- le module de Young $E=2.01\times10^{11}$ Pa.
- coefficient de poisson $\nu = 0.29$.
- la masse volumique du solide $\rho_s = 7812Kg/m^3$ avec le rapport entre la masse volumique du fluide et solide $\rho_s/\rho_f = 0.1282$.

- épaisseur e=0.0015m.
- rapport entre rayon et l'épaisseur R/e=164.63.
- rapport entre la longueur et rayon de la conduite L/R = 6.21.

Mo	ode	Fréquences Hz				
m	n	Expérimentale [32]	FEM [33]	Programme IFSP	£ %	ε %
1	2	1150	1170.2	1182.66	1.4	0.53
1	3	640	647.9	650.90	0.85	0.23
1	4	688	671.2	681.37	-0.48	0.75
1	5	995	965.5	963.24	-1.62	-0.12
1	6	1430	1387.5	1364.92	-2.33	-0.820
1	7	1938	1900.5	1910.47	-0.72	0.26
2	3	2070	2133.4	2205.62	3.2	1.76
2	4	1430	1407.3	1397.47	-1.12	-0.36
2	5	1313	1272.4	1282.83	-1.16	0.41
2	6	1570	1512.1	1567.18	-0.09	1.78
2	7	2050	1957.7	1981.16	-1.7077	0.5956

Tableau IV. 1: Fréquences propres.

Exemple 2:

On a une conduite cylindrique caractérisé par les paramètres suivant:

- le module de Young $E=2.05\times10^{11}$ Pa.
- coefficient de poisson $\nu = 0.3$.

– la masse volumique du solide $\rho_s = 7800 Kg/m^3$ avec le rapport entre la masse volumique du fluide et solide $\rho_s/\rho_f = 0.1282$.

- épaisseur e=0.0015m.
- rapport entre rayon et l'épaisseur R/e=51.50.
- rapport entre la longueur et rayon de la conduite L/R= 2.99.

Mo	ode	Fréquences Hz				
m	n	Expérimentale [32]	FEM [33]	Programme IFSP	£ %	£%
1	3	616	630.6	622.6	0.50	-0.68
1	4	945	932.1	961.52	0.87	1.56
1	5	1479	1452.0	1470.05	-0.30	0.62
2	4	1628	1649.0	1631.01	0.09	-0.55
2	5	1851	1819.3	1851.12	0.0032	0.87
2	3	1969	2042.6	1987.79	0.5	-1.4
1	6	2151	2110.5	2145.14	-0.14	0.80
2	6		2344.9	2333.86		-0.24

Tableau IV. 2: Fréquences propres.

Exemple 3:

On a une conduite cylindrique caractérisé par les paramètres suivants:

- le module de Young $E=2.10\times10^{11}$ Pa.
- coefficient de poisson $\nu = 0.28$.

– la masse volumique du solide $\rho_s = 7800 Kg/m^3$ avec le rapport entre la masse volumique du fluide et solide $\rho_s/\rho_f = 0.1282$.

- épaisseur e = 0.0015 m.
- rapport entre rayon et l'épaisseur R/e=38.96.
- rapport entre la longueur et rayon de la conduite L/R=7.9.

Мо	ode	Fréquences Hz				
m	n	Expérimentale [32]	FEM [33]	Programme IFSP	£ %	ε%
1	3	760.0	780.0	770.20	0.67	0.14
1	2	293.0	316.0	309.27	2.70	-1.1

2	3	886	921	919.75	1.87	-0.07
3	3	1371	1484	1479.71	3.81	-0.15
3	4	1673	1729	1789.92	3.38	1.73
4	4	2045	2168	2140.19	2.27	-0.65
4	5	2667	2735	2692.10	0.47	-0.79
5	5	2970	3103	3097.54	2.10	-0.09

Tableau IV.3: Fréquences propres.

VIII.1 Etude de la convergence :

On étudie la convergence de la conduite pour différents nombres d'éléments, en fonction de la fréquence jusqu'à ce qu'on obtient même valeur.

Fig. IV. 5:La convergence de fréquence propre en fonction de nombre des éléments.

Fig. IV. 6: La convergence de fréquence propre en fonction de nombre d'élément.

III.2 Influence des différents paramètres:

Nous étudions l'influence des différents paramètres de la structure et les caractères géométriques et physiques, parmi ces caractéristiques:

- la variation du diamètre.
- l'épaisseur.
- rapport d'épaisseur/diamètre.
- coefficient de poisson.
- la masse volumique du fluide.

Sur les fréquences propres de la conduite cylindrique avec/sans fluide.

1) L'influence du diamètre de la conduite:

Nous déterminons les fréquences propres d'une conduite avec/ sans fluide et avec la variation du diamètre interne.

Fig. IV. 7:Influence du diamètre sur les fréquences propres de la conduite.

Fig. IV. 8:Influence du diamètre sur les fréquences propres de la conduite.

Fig. IV. 9:Influence du diamètre sur les fréquences propres de la conduite.

Fig. IV. 10:Influence du diamètre sur les fréquences propres de la conduite.

Fig. IV. 11:Influence du diamètre sur les fréquences propres de la conduite.

Fig. IV. 12:Influence du diamètre sur les fréquences propres de la conduite.

Fig. IV. 13:Influence du diamètre sur les fréquences propres de la conduite.

Fig. IV. 14:Influence du diamètre sur les fréquences propres de la conduite.

Fig. IV. 15: Influence du diamètre sur les fréquences propres d'une conduite E-L.

Fig. IV. 16: Influence du diamètre sur les fréquences propres d'une conduite E-L.

Fig. IV. 17: Influence du diamètre sur les fréquences propres d'une conduite E-L.

Fig. IV. 18: Influence du diamètre sur les fréquences propres d'une conduite E-L.

Fig. IV. 19: Influence du diamètre sur les fréquences propres d'une conduite E-L.

Fig. IV. 20: Influence du diamètre sur les fréquences propres d'une conduite E-L.

Fig. IV. 21: Influence du diamètre sur les fréquences propres d'une conduite E-L.

Fig. IV. 22: Influence du diamètre sur les fréquences propres d'une conduite E-L.

Fig. IV. 23:Influence du diamètre sur les fréquences propres de la conduite E-E.

Fig. IV. 24:Influence du diamètre sur les fréquences propres de la conduite E-E.

Fig. IV. 25:Influence du diamètre sur les fréquences propres de la conduite E-E.

Fig. IV. 26:Influence du diamètre sur les fréquences propres de la conduite E-E.

Fig. IV. 27: Influence du diamètre sur les fréquences propres de la conduite E-E.

Fig. IV. 28:Influence du diamètre sur les fréquences propres de la conduite E-E.

Fig. IV. 29:Influence du diamètre sur les fréquences propres de la conduite E-E.

Fig. IV. 30:Influence du diamètre sur les fréquences propres de la conduite E-E.

Fig. IV. 31: Influence du diamètre sur les fréquences propres de la conduite avec fluide.

Fig. IV. 32: Influence du diamètre sur les fréquences propres de la conduite avec fluide.

Fig. IV. 33: Influence du diamètre sur les fréquences propres de la conduite avec fluide.

Fig. IV. 34: Influence du diamètre sur les fréquences propres de la conduite avec fluide.

Fig. IV. 35: Influence du diamètre sur les fréquences propres de la conduite avec fluide.

Fig. IV. 36: Influence du diamètre sur les fréquences propres de la conduite avec fluide.

Fig. IV. 37: Influence du diamètre sur les fréquences propres de la conduite avec fluide.

Fig. IV. 38: Influence du diamètre sur les fréquences propres de la conduite avec fluide.

Fig. IV. 39: Influence du diamètre sur les fréquences propres d'une conduite E-L avec fluide.

Fig. IV. 40: Influence du diamètre sur les fréquences propres d'une conduite E-L avec fluide.

Fig. IV. 41: Influence du diamètre sur les fréquences propres d'une conduite E-L avec fluide.

Fig. IV. 42: Influence du diamètre sur les fréquences propres d'une conduite E-L avec fluide.

Fig. IV. 43: Influence du diamètre sur les fréquences propres d'une conduite E-L avec fluide.

Fig. IV. 44: Influence du diamètre sur les fréquences propres d'une conduite E-L avec fluide.

Fig. IV. 45: Influence du diamètre sur les fréquences propres d'une conduite E-L avec fluide.

Fig. IV. 46: Influence du diamètre sur les fréquences propres d'une conduite E-L avec fluide.

Fig. IV. 47: Influence du diamètre sur les fréquences propres d'une conduite E-E avec fluide.

Fig. IV. 48: Influence du diamètre sur les fréquences propres d'une conduite E-E avec fluide.

Fig. IV. 49: Influence du diamètre sur les fréquences propres d'une conduite E-E avec fluide.

Fig. IV. 50: Influence du diamètre sur les fréquences propres d'une conduite E-E avec fluide.

Fig. IV. 51: Influence du diamètre sur les fréquences propres d'une conduite E-E avec fluide.

Fig. IV. 52: Influence du diamètre sur les fréquences propres d'une conduite E-E avec fluide.

Fig. IV. 53: Influence du diamètre sur les fréquences propres d'une conduite E-E avec fluide.

Fig. IV. 54: Influence du diamètre sur les fréquences propres d'une conduite E-E avec fluide.

Nous déterminons l'influence du diamètre de la conduite pour les trois modes de la conduite cylindrique par apport la fréquence propre.

Fig. IV. 55: Influence du diamètre sur les fréquences propres de la conduite pour les trois modes.

Fig. IV. 56: Influence du diamètre sur les fréquences propres de la conduite pour les trois modes.

Fig. IV. 57: Influence du diamètre sur les fréquences propres de la conduite pour les trois modes.

Fig. IV. 58: Influence du diamètre sur les fréquences propres de la conduite pour les trois modes E-L.

Fig. IV. 59: Influence du diamètre sur les fréquences propres de la conduite pour les trois modes E-L.

Fig. IV. 60: Influence du diamètre sur les fréquences propres de la conduite pour les trois modes E-L.

Fig. IV. 61: Influence du diamètre sur les fréquences propres de la conduite E-L pour les trois modes.

Fig. IV. 62: Influence du diamètre sur les fréquences propres de la conduite E-L pour les trois modes.

Fig. IV. 63: Influence du diamètre sur les fréquences propres de la conduite E-L pour les trois modes.

Fig. IV. 64:Influence du diamètre sur les fréquences propres de la conduite pour 1^{er} mode.

Fig. IV. 65:Influence du diamètre sur les fréquences propres de la conduite pour 1^{ere} mode.

2) Influence de l'épaisseur de la conduite avec/son fluide:

Nous étudions l'influence pour des différents d'épaisseur Sur les fréquences propres de la conduite cylindrique avec/sans fluide.

Fig. IV. 66: Influence d'épaisseur de la conduite sur les fréquences propres L-L.

Fig. IV. 67: Influence d'épaisseur de la conduite sur les fréquences propres L-L.

Fig. IV. 68: Influence d'épaisseur de la conduite sur les fréquences propres L-L.

Fig. IV. 69: Influence d'épaisseur de la conduite sur les fréquences propres L-L.

Fig. IV. 70: Influence d'épaisseur de la conduite sur les fréquences propres L-L.

Fig. IV. 71: Influence d'épaisseur de la conduite sur les fréquences propres L-L.

Fig. IV. 72: Influence d'épaisseur de la conduite sur les fréquences propres L-L.

Fig. IV. 73: Influence d'épaisseur de la conduite sur les fréquences propres L-L.

Fig. IV. 74: Influence d'épaisseur de la conduite sur les fréquences propres E-L.

Fig. IV. 75: Influence d'épaisseur de la conduite sur les fréquences propres E-L.

Fig. IV. 76: Influence d'épaisseur de la conduite sur les fréquences propres E-L.

Fig. IV. 77: Influence d'épaisseur de la conduite sur les fréquences propres E-L.

Fig. IV. 78: Influence d'épaisseur de la conduite sur les fréquences propres E-L.

Fig. IV. 79: Influence d'épaisseur de la conduite sur les fréquences propres E-L.

Fig. IV. 80: Influence d'épaisseur de la conduite sur les fréquences propres E-L.

Fig. IV. 81: Influence d'épaisseur de la conduite sur les fréquences propres E-L.

Fig. IV. 82: Influence d'épaisseur de la conduite sur les fréquences propres E-E.

Fig. IV. 83: Influence d'épaisseur de la conduite sur les fréquences propres E-E.

Fig. IV. 84: Influence d'épaisseur de la conduite sur les fréquences propres E-E.

Fig. IV. 85: Influence d'épaisseur de la conduite sur les fréquences propres E-E.

Fig. IV. 86: Influence d'épaisseur de la conduite sur les fréquences propres E-E.

Fig. IV. 87: Influence d'épaisseur de la conduite sur les fréquences propres E-E.

Fig. IV. 88: Influence d'épaisseur de la conduite sur les fréquences propres E-E.

Fig. IV. 89: Influence d'épaisseur de la conduite sur les fréquences propres E-E.

Fig. IV. 90: Influence d'épaisseur de la conduite sur les fréquences propres pour le 1^{er} mode.

Fig. IV. 91: Influence d'épaisseur de la conduite sur les fréquences propres pour le 1^{er} mode.

Fig. IV. 92: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres.

Fig. IV. 93: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres.

Fig. IV. 94: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres.

Fig. IV. 95: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres.

Fig. IV. 96: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres.

Fig. IV. 97: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres.

Fig. IV. 98: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres.

Fig. IV. 99: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres.

Fig. IV. 100: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres.

Fig. IV. 101: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres E-L.

Fig. IV. 102: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres E-L.

Fig. IV. 103: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres E-L.

Fig. IV. 104: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres E-L.

Fig. IV. 105: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres E-L.

Fig. IV. 106: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres E-L.

Fig. IV. 107: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres E-L.

Fig. IV. 108: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres E-L.

Fig. IV. 109: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres E-E.

Fig. IV. 110: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres E-E.

Fig. IV. 111: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres E-E.

Fig. IV. 112: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres E-E.

Fig. IV. 113: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres E-E.

Fig. IV. 114: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres E-E.

Fig. IV. 115: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres E-E.

Fig. IV. 116 a: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres E-E.

Fig. IV. 117 b: Influence d'épaisseur de la conduite avec fluide sur les fréquences propres E-E. Echelle logarithmique.

Fig. IV. 118: Influence d'épaisseur de la conduite sur les fréquences propres pour 1^{ere} mode.

Fig. IV. 119: Influence d'épaisseur de la conduite sur les fréquences propres pour 1^{ere} mode.

3) Influence de la masse volumique du fluide:

Dans cette partie nous étudions l'influence de la masse volumique du fluide sur la conduite cylindrique de section circulaire on fréquence propre.

Fig. IV. 120: Influence de la masse volumique du fluide sur les fréquences propres.

Fig. IV. 121: Influence de la masse volumique du fluide sur les fréquences propres.

Fig. IV. 122: Influence de la masse volumique du fluide sur les fréquences propres.

Fig. IV. 123: Influence de la masse volumique du fluide sur les fréquences propres.

Fig. IV. 124: Influence de la masse volumique du fluide sur les fréquences propres.

Fig. IV. 125: Influence de la masse volumique du fluide sur les fréquences propres E-L.

Fig. IV. 126: Influence de la masse volumique du fluide sur les fréquences propres E-E.

Fig. IV. 127: Influence de la masse volumique du fluide sur les fréquences propres E-E.

Fig. IV. 128: Influence de la masse volumique du fluide sur les fréquences propres E-E.

Nous déterminons l'influence de la masse volumique du fluide par apport la fréquence on mode 1

Fig. IV. 129: Influence de la masse volumique du fluide sur les fréquences propres pour 1^{ere} mode.

Fig. IV. 130: Influence de la masse volumique du fluide sur les fréquences propres pour 1^{ere} mode.

4) Influence de l'Épaisseur/Diamètre:

On études l'influence du rapport e/d avec la constant d'épaisseur et la variation du diamètre de la conduite cylindrique.

Fig. IV. 131: Influence du rapport épaisseur/diamètre de la conduite diamètre sur les fréquences propres.

Fig. IV. 132: Zoom sur Influence du rapport épaisseur/diamètre de la conduite diamètre sur les fréquences propres pour [0.02 à 0.19].

5) Influence le coefficient de poisson:

Nous étudions l'influence de coefficient de poisson sur conduite cylindrique.

conduite solide avec fluide

Fig. IV. 133: Influence de coefficient de poisson sur les fréquences propres.

IX. Interprétations des résultats:

D'après les tableaux IV.2 et IV.3, nous remarquons une parfaite concordance avec les résultats expérimentaux [30] et ceux donnés par la référence [31]. Le graphe des figures IV. 5 et IV. 6, nous montre que la convergence est rapide, à partir de vingt éléments nous obtenons des résultats satisfaisants.

Nous avons aussi l'influence des différents paramètres de la structure et ses caractères géométriques et physiques, nous pouvons conclure:

L'augmentation du diamètre de la conduite fait augmenter la fréquence de la structure, en l'absence du fluide, pour toutes les conditions aux limites et pour les modes de vibration circonférentiels ou axiaux, figures IV. 7 jusqu'à IV. 30 ; il augmente la rigidité de la structure.

La présence du fluide par contre fait généralement diminuer la fréquence de la structure complète, car elle agit comme une masse ajoutée. Dans certains modes élevés flexionnels ou axiaux, la fréquence reste pratiquement constante ou diminue : nous avons l'influence de l'augmentation du diamètre (il augmente la rigidité) et l'influence de la présence du fluide (elle augmente la masse) qui agissent simultanément. Figures IV. 31 jusqu'à IV. 65.

Dans les figures IV. 66 jusqu'à IV. 119, nous remarquons que l'épaisseur de la conduite fait diminuer la fréquence de la structure complète, dans le cas de présence du fluide ou non, la masse de la structure augmente.

L'augmentation de la masse volumique fait diminuer la fréquence de la structure complète pour les modes axiaux élevés et cette influence diminue pour les modes axiaux faibles. L'augmentation des modes circonférentiels par contre fait augmenter la fréquence de la structure ; figures IV. 120 jusqu'à IV. 130.

La figure IV. 131 présente l'influence du rapport épaisseur /diamètre sur la fréquence propre. Elle diminue rapidement jusqu'à la valeur e/d = 0.01, et à partir de cette valeur la variation est plus lente ; la rigidité de la conduite est presque constante à partir de cette valeur.

L'augmentation du coefficient de poisson entraine une diminution de la fréquence propre du système couplé, figure IV. 133, il entraine une diminution de la rigidité de la conduite.

Les conditions aux limites eux aussi ont une influence sur la structure, l'encastrement par exemple augmente la rigidité de la structure.

Conclusion Générale

L'objectif de ce travail est de faire une étude sur la modélisation de l'interaction fluide structure d'un écoulement laminaire incompressible dans une conduite cylindrique par la méthode des éléments finis avec couplage de pénalité.

Les équations de Navier Stokes sont déterminées à l'aide des équations du mouvement et la conservation de masses suivant les coordonnées cylindriques. Les équations du comportement de la conduite sont déterminées en coordonnées cylindriques, le couplage dans cette étude a été réalisé par la méthode de pénalité qui prend en considération l'équilibre des déplacements du fluide et de la structure au niveau de l'interface de contact.

La modélisation de la conduite et du fluide est faite par la méthode des éléments finis standards, avec l'utilisation d'un élément fini de type triangulaire à trois nœuds (T3) et trois degrés de liberté par nœud.

Un programme en MATLAB a été élaboré pour calculer les fréquences propres du tuyau transportant le fluide. Une étude de convergence a été faite. Pour valider le programme élaboré, on a comparé nos résultats avec des résultats expérimentaux [30] et des résultats donnés par la référence [31]. Plusieurs exemples ont été traités pour déterminer l'influence des différents paramètres géométriques et physiques sur le phénomène d'interaction fluidestructure. Ce travail nous a permis d'aboutir aux conclusions suivantes :

- La présence du fluide dans la structure donne une influence très importante sur la fréquence propre du système, elle agit comme une masse ajoutée.
- Le diamètre de la conduite augmente considérablement la rigidité de la structure couplée, tandis que l'épaisseur diminue de sa rigidité.
- La masse volumique joue un rôle très important, son fait diminuer la fréquence de la structure complète pour les modes axiaux élevés et cette influence diminue pour les modes axiaux faibles. L'augmentation des modes circonférentiels par contre fait augmenter la fréquence de la structure.
- L'augmentation du rapport épaisseur /diamètre fait diminuer rapidement la fréquence propre jusqu'à la valeur e/d = 0.01, et à partir de cette valeur la variation est plus lente ; la rigidité de la conduite est presque constante à partir de cette valeur.
- L'augmentation du coefficient de poisson entraine une diminution de la fréquence propre du système couplé, il entraine une diminution de la rigidité de la conduite.
- Les conditions aux limites eux aussi ont une influence importante sur la structure.

Plusieurs développements futurs basés sur ce domaine sont envisageables. Parmi les plus importants, en perspective, nous recommandons dans ce domaine, les points suivants :

- La modélisation de la conduite par élément finis coque.
- Mise en place de chicanes sur la conduite circulaire et déterminer les paramètres optimums (largeur, hauteur, la géométrie, la forme de la section, etc...).

Référence Bibliographie

CHAPITRE I :Recherche Bibliographique

[01]	Kai Schneider [Numerical simulation of the transient flow be haviour in tube								
	bundles using a volume pénalisation méthode]; Laboratoire de Modélisation et								
	Simulation Numérique en Mécanique, CNRS and Université d'Aix Marseille &								
	Centre de Mathématiques et d'Informatique, Université de Provence, 39 rue F.								
	Joliot-Curie, 13453 Marseille - Cedex 13, France Marie Farge, Laboratoire de								
	Météorologie Dynamique, CNRS, Ecole Normale Supérieure, 24 rue Lhomond,								
	75231 Paris - Cedex 05, France ; Ecole Polytechnique, Paris, 6-9_ July 2004.								
[02]	Raoul van Loon, Patrick D. Anderson, Frank P.T. Baaijens , Frans N. van de								
	Vosse, [A three-dimensional fluid-structure interaction method for heart valve								
	modeling] Fluid-solid interactions: modeling, simulation, bio-mechanical								
	applications ,2005 Academia des sciences.								
[03]	A.S. Tijsseling [Water hammer with fluid-structure interaction in thick-walled								
	pipes]Department of Mathematics and Computer Science, Eindhoven University								
	of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.								
[04]	Klaus-Jürgen Bathe ^{a,*} , Hou Zhang ^b [A mesh adaptivity procedure for CFD and								
	fluid-structure interactions]; Massachusetts Institute of Technology, Cambridge,								
	MA, USA ADINA R&D, Inc., Watertown, MA, USA_2009.								
[05]	Jean-François SIGRIST et Daniel BROC [Investigation of numerical method								
	for modal analysis of a tube bundle with fluid-structure interaction]; Service								
	Technique et Scientifique DCN Propulsion 44620 la montagne, France : jean-								

<u>francois.sigrist@dcn.fr</u>, Laboratoire d'Etudes Sismiques CEA Saclay 91191 GIF sur Yvette, France : <u>dbroc@cea.fr</u>2007 par l'ASME.

- [06] Takéo Takahashi [Analyse théorique, analyse numérique et contrôle de systèmes d'interaction fluide-structure et de systèmes de type ondes] ; Institut Élie Cartan Nancy CNRS UMR 7502 - INRIA Lorraine projet CORIDA B.P. 239 - 54506 Vandoeuvre-lès-Nancy Cedex.
- [07] S.Mital et T.E.Tezduyzr [Parallel fini element simulation of 3D incompressible flow :fluid/structure interactions] ;Aerospace Engineering, II T Kanpus Kanpur 20801 6, India ,Aerospace Engineering and Mechanics, Amy HPC Research Centes Universiw of Minnesota, Minneapolis, MN 55415, U,S,A 1995.
- [08] Myung jo Jhung, Wal Taekim et Yong Horyu [Dynamic characteristics of cylindrical shells considering fluid-structure interaction]; Safety Research Division, Korea Institute of Nuclear Safety 19 Guseong-dong, Yuseonggu,Daejeon,305-338,Korea*Corresponding author. E-mail: <u>mjj@kins.re.kr</u> Received August 3, 2009.
- [09] Jean-François Sigrist, Christian Lainé et Bernard Peseux [Analyse modale d'une structure industrielle avec prise en compte du couplage fluide/structure];
 Mécanique & Industries 6, 553–563 (2005) AFM, EDP Sciences 2005 DOI: 10.1051/meca:2005067.
- [10] S. Moondra and A. Upadhyay and Sushanta K. Mitra [Investigation of Fluid Structure Interaction of an Elastic Membrane in a Microchannel]; Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India. Email: <u>skmitra@me.iitb.ac.in</u>.
- [11] Aquelet Nicolas Modélisation de l'impact hydrodynamique par un couplage fluide-structure 14 décembre 2004.
- [12] Grégory Haboussa Contribution à la validation des Méthodes Numérique pour les problèmes Dynamique Couplés Fluide-Structure, le 8 Février 2008.
- [13] Aquelet Nicolas Modélisation de l'impact hydrodynamique par un couplage fluide-structure 14 décembre 2004.
- [14] David V. Hutton Fundamentals of Finite Element Analysis, 2004.

CHAPITRE II : Théorie sur le domainne du Fluide Structure & Couplage

- [15] Olagnon Christian Elasticité et résistance des matériaux, 2009.
- [16] Jean-Louis Batoz; Gouri-Dhatt Modélisation des structures par élément finis (Volume 1:Solides Elastique), 30 juin 1990, HERMES, livre.
- [17] Sébastien Candel Mécanique des fluides Dunod BORDÈRENT, paris 1990 ISBN

2-04-018753-7, livre.

- [18] Bernhard Gatzhammer A Partitioned Approach for Fluid-Structure Interaction on Cartesian Grids, these de doctorates.
- [19] Mme LABED Zohra née Mansour Analyse élastique d'un tube cylindrique, 22 décembre, 2007.
- [20] Grégory Haboussa Contribution à la validation des Méthodes Numérique pour les problèmes Dynamique Couplés Fluide-Structure, le 8 Février 2008, , thèse de doctorat.
- [21] Aquelet Nicolas Modélisation de l'impact hydrodynamique par un couplage fluide-structure 14 décembre 2004, thèse de doctorat.

CHAPITRE III : Discritisation sur Intéraction Fluide-Structure

- [22] André Fortin Introduction aux méthodes de discrétisation des équations aux dérivées partielles;1997-2011, livre.
- [23] O.C. Zienkiewicz, CBE, FRS;R.L. Taylor;P. Nithiarasu The Finite Element Method for Fluid Dynamics Sixth edition; 2000, 2005, livre.
- [24] Manue Lv azquez et Eloisa Lopez ElMétodo de los Elementos Finitos Aplicaddo Alanalisis Estructural; Madrid, marzo de 2001, thèse de doctorat.
- [25] O.C. Zienkiewicz; R.L. Taylor El Método de los Elementos Finitos; Volumen 2 Mecanica de solidos y fluidos. Dynamica y no Linealidad; 1994, 1995, livre.
- [26] O.C. Zienkiewicz, CBE, FRS; R.L. Taylor The Finite Element Method for Solid and Structural Mechanics Sixth edition, 2000, 2005, livre.
- [27] Mohammed Nabil Ouissi Comportement aux séismes des structures de réservoirs de stockage liquide, 2009,2010, thèse de doctorat.
- [28] Kouakou Donatien Formulation éléments finis espace-temps pour les équations de Navier-Stocks; Juillet 2001, thèse de doctorat.

CHAPITRE IV : Résulution & Programmation MATLAB

- [29] Sergey E. Lyshevski Enginering and Scientific Computations Using MATLAB, 2003, livre.
- [30] Young-Soo Seo, Weui-Bong Jeong , Wan-Suk Yoo Frequency Response
 Analysis of Cylindrical Shells Conveying Fluid Using Finite Element Method,
 2005 Journal of mechanical science and Technology, vol 19, No 2, pp 625-633.
- [31] Young Liang Zhang, Jason M. Reese, Daniel Gorman Finite element Analysis of Cylindrical Shells Conveying fluid, Computer Methods in Applied Mechanics and Engineering, Volume 191, Issue 45, 25 October 2002, Pages 5207-5231.

- [32] J.Y.Sehell, C.G.Pussey, Vibration study of clamped-free circular cylindrical sehell, 1971 AIAA Journal 9 1004-1011.
- [33] Young Liang Zhang, Jason M. Reese, Daniel Gorman Finite element method for modeling the vibration of initially-tensioned thin walled orthotropic Cylindrical tubes convening fluid 2001, Journal of Sound and Vibration 245 93-12.

ANNEXE

diamètre		Fréquence HzX10 ³											
0,03	0,38981775	1,49430373	3,33210289	5,90187829	9,20363829	13,2373795	18,0030889	23,5007465					
0,04	0,44334306	1,66062383	3,70390182	6,56160914	10,2337408	14,7202891	20,0212382	26,1365652					
0,05	0,46837482	1,80027741	4,01581075	7,11471913	11,0969888	15,962609	21,7115612	28,3438203					
0,06	0,4989338	1,9175791	4,27770386	7,57901275	11,8214861	17,0051108	23,1298665	30,1957258					
0,07	0,52496222	2,017517	4,50078862	7,97445173	12,4384823	17,8928653	24,3375789	31,7725942					
0,08	0,54743492	2,10381562	4,69340612	8,31585698	12,9711407	18,6592408	25,3801343	33,1337908					
0,09	0,56706375	2,17920045	4,861652	8,6140489	13,4363609	19,3285703	26,290653	34,3225774					
0,1	0,58437767	2,24569905	5,01005779	8,87706736	13,8466951	19,9189225	27,0937242	35,3710678					

Tableau 4 : la variation du diamètre en fonction de la fréquence propre du mode (n=1, m=variable) pour
conduite sans fluide L-L

diamètre				Fr	équence HzX	10 ³			
0,03	1,5149797	1,33442077	1,23988776	0,98658778	0,92643523	0,85073228	0,76077248	0,73536934	0,65781207
0,04	1,68019325	1,3796564	1,31041629	1,00185757	0,92608	0,85807404	0,76538725	0,74502681	0,66703572
0,05	1,81979742	1,44115998	1,32787034	1,01046361	0,92558359	0,8626558	0,76854729	0,75136505	0,67272384
0,06	1,93740453	1,49381724	1,33349015	1,01608294	0,92515672	0,86578868	0,77090139	0,75576917	0,6765504
0,07	2,03775812	1,53610025	1,33617175	1,02007564	0,92481338	0,8680659	0,77275546	0,75895958	0,6792913
0,08	2,12449635	1,57037599	1,33769747	1,02307285	0,92453895	0,86979568	0,77427089	0,76134829	0,68134778
0,09	2,20031156	1,59862231	1,33865293	1,02541191	0,92431764	0,87115406	0,77554099	0,76318667	0,68294635
0,1	2,26721856	1,62226874	1,33928927	1,02729124	0,92413684	0,87224894	0,77662432	0,76463537	0,68422399

Tableau 5 : la variation du diamètre en fonction de la fréquence propre du mode (n=2, m=variable) pour conduite sans fluide L-L

diamètre				F	réquence HzX1	10 ³			
0,03	3,39372269	2,9782292	2,77208643	2,20778788	2,07773567	1,90409347	1,70299662	1,64551699	1,47137277
0,04	3,76232037	3,07704102	2,93182088	2,24275913	2,07701595	1,92053738	1,713387	1,66681932	1,49177449
0,05	4,07411262	3,21530615	2,96993115	2,26243198	2,07594587	1,93080644	1,72049522	1,68074853	1,5043843
0,06	4,33693219	3,33337737	2,98202347	2,27525686	2,07501972	1,93783181	1,72577267	1,6904149	1,51288015
0,07	4,56126726	3,42800052	2,98782244	2,28435858	2,07427381	1,94294064	1,72990715	1,69742213	1,51897212
0,08	4,75520395	3,50463681	2,99113989	2,29118501	2,07367763	1,94682268	1,73326529	1,70267993	1,52354649
0,09	4,92474006	3,56776274	2,99322686	2,29650891	2,07319705	1,94987217	1,73606193	1,70673901	1,52710444
0,1	5,07436952	3,62059407	2,9946221	2,30078419	2,07280466	1,95233078	1,73843337	1,7099492	1,52994942

Tableau 6 : la variation du diamètre en fonction de la fréquence propre du mode (n=3, m=variable) pour
conduite sans fluide L-L

diamètre				F	réquence HzX1	10 ³			
0,03	6,02414574	5,27975578	4,91728088	3,91751521	3,6896048	3,37886367	3,02214284	2,91977567	2,61037576
0,04	6,67753373	5,45351202	5,20195324	3,98006456	3,6883782	3,40804767	3,04061541	2,9573907	2,64642707
0,05	7,23041805	5,69929744	5,26892873	4,01523054	3,68650622	3,42627696	3,05324751	2,98195575	2,66872708
0,06	7,6965555	5,90895981	5,29007385	4,03814331	3,68488178	3,43875034	3,06261511	2,99899567	2,68375966
0,07	8,09448081	6,07686286	5,30023645	4,05439791	3,6835728	3,44782219	3,06994116	3,01135052	2,69454282
0,08	8,43850877	6,21280609	5,30606285	4,0665855	3,68252656	3,45471642	3,07587972	3,02062687	2,70264198
0,09	8,73926559	6,32476515	5,30973462	4,07608838	3,68168333	3,46013262	3,08081546	3,02779502	2,70894281
0,1	9,00471647	6,41845674	5,31219298	4,08371818	3,68099499	3,46449973	3,08499311	3,03347012	2,71398187

Tableau 7 : la variation du diamètre en fonction de la fréquence propre du mode (n=4, m=variable) pour
conduite sans fluide L-L

diamètre				Fréquenc	ce HzX10 ³				
0,03	9,40614992	8,23890075	7,67540522	6,11573808	5,76200956	5,27500422	4,71818771	4,55811388	4,07480545
0,04	10,4257096	8,50899645	8,12072503	6,21374345	5,76013223	5,32056747	4,74705058	4,61670504	4,13097764
0,05	11,2885759	8,89303728	8,22479722	6,26882882	5,75722957	5,34903074	4,76678384	4,654947	4,1657364
0,06	12,0161264	9,22046204	8,25757941	6,30471163	5,75470753	5,36850823	4,78140951	4,68146891	4,18917323
0,07	12,6372426	9,48258249	8,2733523	6,33016277	5,75267472	5,38267505	4,79283873	4,70070035	4,20598782
0,08	13,1742478	9,69477762	8,28240471	6,34924327	5,75104994	5,39344181	4,80209511	4,71514394	4,21861876
0,09	13,6437192	9,86952222	8,28811432	6,36411914	5,74974051	5,40190068	4,80978159	4,72630953	4,22844608
0,1	14,0580854	10,0157485	8,29193974	6,3760619	5,74867173	5,40872137	4,8162822	4,73515358	4,23630602

Tableau 8 : la variation du diamètre en fonction de la fréquence propre du mode (n=5, m=variable) pour
conduite sans fluide L-L

diamètre				F	réquence HzX1	10 ³			
0,03	13,5396966	11,855626	11,0464314	8,8024389	8,29493327	7,59249756	6,79111827	6,5605168	5,86465167
0,04	15,0068015	12,2434625	11,6881019	8,9437785	8,29226098	7,65807943	6,83267991	6,64474632	5,9454159
0,05	16,2485348	12,7964869	11,837508	9,02320948	8,28809873	7,69905058	6,86109193	6,69970527	5,99540188
0,06	17,2955899	13,2678435	11,8845124	9,07494443	8,2844797	7,72708844	6,88214382	6,73781685	6,02911048
0,07	18,1894944	13,6451179	11,9071423	9,11163567	8,28156227	7,74748227	6,8985879	6,76545337	6,05329673
0,08	18,9623602	13,9505093	11,9201377	9,13914079	8,27923042	7,76298197	6,91189943	6,78621263	6,07146643
0,09	19,6380381	14,2019913	11,928338	9,1605836	8,27735124	7,77515956	6,92294807	6,802264	6,08560386
0,1	20,2344114	14,4124263	11,9338344	9,17779773	8,27581749	7,78497896	6,93228809	6,8149811	6,0969115

Tableau 9 : la variation du diamètre en fonction de la fréquence propre du mode (n=6, m=variable) pour
conduite sans fluide L-L

diamètre				Fréquenc	e HzX10 ³				
0,03	18,4247573	16,1299051	15,0303375	11,9776017	11,288361	10,3313292	9,24092248	8,926972	7,97990436
0,04	20,4207767	16,6568853	15,9040589	12,1701537	11,2847494	10,420569	9,29749141	9,04150159	8,08973163
0,05	22,1102589	17,4096187	16,1070381	12,2783564	11,2790986	10,476322	9,33615988	9,1162172	8,15771325
0,06	23,5349077	18,0510752	16,17085	12,3488255	11,2741831	10,5144765	9,36480623	9,16802584	8,20356107
0,07	24,7511959	18,5644395	16,2015836	12,3988004	11,2702203	10,5422294	9,38717686	9,20559572	8,23645919
0,08	25,8028041	18,9799708	16,2192388	12,4362618	11,2670528	10,5633224	9,4052808	9,23381899	8,26117462
0,09	26,7221786	19,3221417	16,2303828	12,4654655	11,2645003	10,5798948	9,42030294	9,25564443	8,28040575
0,1	27,5336497	19,608459	16,2378539	12,4889093	11,2624171	10,593258	9,43299871	9,2729387	8,2957879

Tableau 10 : la variation du diamètre en fonction de la fréquence propre du mode (n=7, m=variable) pour
conduite sans fluide L-L

diamètre				Fi	réquence HzX1	.0 ³			
0,03	24,0613042	21,061713	19,6271012	15,6412095	14,7422766	13,491484	12,0675873	11,6574665	10,4205524
0,04	26,6676038	21,7492402	20,7685718	15,8928518	14,7375813	13,6080212	12,141472	11,8069576	10,5639135
0,05	28,8737141	22,7324056	21,033364	16,0342523	14,730213	13,6808298	12,1919746	11,9044693	10,6526591
0,06	30,7340432	23,5701293	21,1165688	16,1263374	14,7238017	13,7306571	12,2293836	11,9720822	10,7125135
0,07	32,3223089	24,2405186	21,1566525	16,1916394	14,7186326	13,7669011	12,2585925	12,0211136	10,7554637
0,08	33,6955394	24,7831331	21,1796845	16,2405886	14,714501	13,794448	12,2822261	12,0579492	10,7877318
0,09	34,8960993	25,2299438	21,194225	16,2787471	14,7111716	13,8160911	12,301833	12,0864369	10,8128402
0,1	35,9557574	25,6038166	21,2039747	16,309379	14,7084544	13,8335434	12,3184008	12,1090125	10,8329236

Tableau 11 : la variation du diamètre en fonction de la fréquence propre du mode (n=8, m=variable) pour
conduite sans fluide L-L

diamètre				Fr	équence HzX1	10 ³			
0,03	3,64768158	3,12657614	2,53600218	2,21939785	2,02975079	1,74373236	1,54067476	1,50093096	1,4645256
0,04	3,73747979	3,26628868	2,57410404	2,29514514	2,06411481	1,75637869	1,55222095	1,51430745	1,47674252
0,05	3,88212849	3,30010861	2,62726716	2,32765256	2,08110063	1,76418352	1,55999756	1,52273645	1,48402377
0,06	4,01759327	3,3041782	2,68010256	2,34045198	2,09154002	1,76949856	1,56559042	1,52853082	1,48884981
0,07	4,13205355	3,30111077	2,72651437	2,34565615	2,09869244	1,77335555	1,56980404	1,53275416	1,49228579
0,08	4,2274835	3,29645516	2,76594176	2,34779341	2,1039259	1,77628343	1,57309122	1,53596668	1,49485916
0,09	4,30752927	3,29172803	2,79929966	2,34858751	2,107931	1,77858236	1,57572638	1,53849129	1,49686016
0,1	4,375369	3,2873572	2,8276744	2,34875545	2,11109873	1,78043556	1,5778855	1,54052699	1,49846164

Tableau 12 : la variation du diamètre en fonction de la fréquence propre du mode (n=1, m=variable) pour
conduite sans fluide E-L

diamètre		Fréquence HzX10 ³											
0,03	6,09910537	5,21099057	4,2078529	3,70705103	3,38133213	2,91301453	2,58690761	2,51282402					
0,04	6,23870033	5,44859148	4,26966707	3,83020118	3,4464724	2,93346291	2,60677421	2,53457152					
0,05	6,47052927	5,5111821	4,35730406	3,88385244	3,47771475	2,94613621	2,62008854	2,54829023					
0,06	6,69109609	5,52111387	4,44531823	3,90473051	3,49649609	2,95478599	2,62961992	2,5577502					
0,07	6,87873492	5,51761501	4,52288186	3,91304232	3,50918287	2,96107151	2,63677417	2,56466725					
0,08	7,03569542	5,51077773	4,58883483	3,91634971	3,51837692	2,9658473	2,64233921	2,56994352					
0,09	7,16759887	5,50347683	4,6446489	3,91749818	3,52536428	2,96959963	2,6467902	2,57409981					
0,1	7,27952049	5,49658049	4,69212624	3,91765693	3,53086172	2,97262591	2,65043044	2,57745784					

Tableau 13 : la variation du diamètre en fonction de la fréquence propre du mode (n=2, m=variable) pour
conduite sans fluide E-L

diamètre		Fréquence HzX10 ³											
0,03	8,56382532	7,30690056	5,88830916	5,20215723	4,73683858	4,08805514	3,63646024	3,52998554	3,44685275				
0,04	8,75479471	7,64220277	5,97401098	5,37259342	4,83277228	4,1163969	3,66454017	3,56025264	3,47510325				
0,05	9,07508302	7,73332562	6,09627022	5,44719465	4,87838412	4,13398951	3,68333788	3,57934953	3,49200584				
0,06	9,3816063	7,74908355	6,21954116	5,47604236	4,90557683	4,14600663	3,69678094	3,59252779	3,50323093				
0,07	9,64306716	7,74517328	6,32829145	5,48740031	4,92384074	4,15474346	3,70686318	3,60217103	3,51123073				
0,08	9,86207058	7,73619303	6,42078095	5,49183906	4,93702347	4,16138401	3,71470087	3,60953183	3,51722519				
0,09	10,04625	7,72637	6,49905	5,49331	4,94701	4,1666	3,72097	3,61533	3,52189				
0,1	10,20261	7,71699	6,56562	5,49344	4,95485	4,17081	3,72609	3,62002	3,52562				

Tableau 14 : la variation du diamètre en fonction de la fréquence propre du mode (n=3, m=variable) pour
conduite sans fluide E-L

diamètre				Fi	équence HzX	10 ³			
0,03	11,03243	9,40619	7,57142	6,69936	6,09365	5,26482	4,68696	4,54867	4,44115
0,04	11,27527	9,83912	7,6811	6,91707	6,22032	5,30109	4,72322	4,5875	4,47743
0,05	11,68445	9,95867	7,83804	7,01257	6,28032	5,32362	4,74749	4,612	4,49914
0,06	12,0772	9,98022	7,9966	7,04936	6,31594	5,33901	4,76483	4,62892	4,51356
0,07	12,41269	9,97589	8,13655	7,06375	6,33979	5,35021	4,77784	4,6413	4,52385
0,08	12,6939	9,96476	8,25558	7,06931	6,35697	5,35872	4,78795	4,65075	4,53155
0,09	12,93049	9,95242	8,3563	7,07111	6,36997	5,36541	4,79603	4,65821	4,53754
0,1	13,13139	9,94058	8,44196	7,07121	6,38016	5,3708	4,80263	4,66423	4,54234

Tableau 15 : la variation du diamètre en fonction de la fréquence propre du mode (n=4, m=variable) pour
conduite sans fluide E-L

diamètre				Fr	équence HzX	10 ³			
0,03	13,50265	11,50689	9,25566	8,19742	7,45105	6,44231	5,73783	5,56798	5,43596
0,04	13,79759	12,03741	9,38936	8,46241	7,60841	6,48651	5,78227	5,6154	5,48026
0,05	14,29584	12,18533	9,58103	8,57877	7,6828	6,51399	5,812	5,64532	5,50679
0,06	14,77495	12,21265	9,77489	8,62349	7,72685	6,53277	5,83325	5,66598	5,52441
0,07	15,18456	12,2079	9,94605	8,64091	7,75629	6,54643	5,84918	5,6811	5,53697
0,08	15,52804	12,19463	10,09162	8,64759	7,77746	6,55681	5,86155	5,69265	5,54639
0,09	15,8171	12,17976	10,2148	8,64971	7,79347	6,56497	5,87145	5,70176	5,55371
0,1	16,06258	12,16545	10,31955	8,64977	7,80601	6,57156	5,87953	5,70912	5,55957

Tableau 16 : la variation du diamètre en fonction de la fréquence propre du mode (n=5, m=variable) pour
conduite sans fluide E-L

diamètre				Fr	équence HzX	10 ³			
0,03	15,97366	13,60827	10,94046	9,69589	8,80872	7,62015	6,78888	6,58759	6,43101
0,04	16,32081	14,23637	11,09822	10,00814	8,99676	7,6723	6,84148	6,64361	6,48334
0,05	16,90823	14,41262	11,32463	10,14536	9,08553	7,70472	6,87667	6,67896	6,51468
0,06	17,47377	14,44571	11,55379	10,198	9,13801	7,72689	6,90182	6,70337	6,5355
0,07	17,95754	14,44052	11,75616	10,21845	9,17304	7,74301	6,92067	6,72124	6,55034
0,08	18,36333	14,42511	11,92828	10,22625	9,19822	7,75527	6 <i>,</i> 93532	6,73489	6,56147
0,09	18,70488	14,40772	12,07392	10,22869	9,21723	7,76491	6,94703	6,74565	6,57012
0,1	18,99498	14,39095	12,19775	10,22872	9,23212	7,77268	6,95659	6,75435	6,57704

Tableau 17 : la variation du diamètre en fonction de la fréquence propre du mode (n=6, m=variable) pour
conduite sans fluide E-L

diamètre				Fr	équence HzX1	10 ³			
0,03	18,44507	15,71002	12,62555	11,19455	10,16653	8,79817	7,84	7,60736	7,42619
0,04	18,84449	16,43567	12,80739	11,55408	10,38522	8,85827	7,90076	7,67198	7,48655
0,05	19,52114	16,64024	13,06855	11,71214	10,48838	8,89565	7,94141	7,71276	7,52269
0,06	20,17314	16,67908	13,33302	11,7727	10,54929	8,9212	7,97046	7,74092	7,54671
0,07	20,73111	16,67346	13,5666	11,79617	10,58992	8,93979	7,99223	7,76154	7,56383
0,08	21,19923	16,6559	13,76527	11,8051	10,61909	8,95392	8,00915	7,77729	7,57667
0,09	21,59329	16,63598	13,93336	11,80786	10,64112	8,96503	8,02267	7,78971	7,58665
0,1	21,92802	16,61675	14,07629	11,80786	10,65836	8,974	8,03372	7,79975	7,59464

Tableau 18 : la variation du diamètre en fonction de la fréquence propre du mode (n=7, m=variable) pour
conduite sans fluide E-L

diamètre				Fi	·équence HzX1	10 ³			
0,03	20,91667	17,81193	14,3108	12,6933	11,52439	9,97628	8,89114	8,62721	8,42142
0,04	21,36841	18,63513	14,51672	13,1001	11,77373	10,04433	8,96007	8,70043	8,48981
0,05	22,13433	18,868	14,81263	13,279	11,89127	10,08666	9,00617	8,74664	8,53076
0,06	22,87281	18,91259	15,11242	13,34748	11,96061	10,1156	9,03912	8,77855	8,55798
0,07	23,50498	18,90653	15,3772	13,37398	12,00683	10,13665	9,06381	8,80192	8,57738
0,08	24,03545	18,88683	15,60242	13,38402	12,04001	10,15266	9,083	8,81977	8,59192
0,09	24,48203	18,86439	15,79297	13,38711	12,06504	10,16525	9,09833	8,83384	8,60323
0,1	24,86139	18,84268	15,95498	13,38707	12,08463	10,1754	9,11086	8,84523	8,61228

Tableau 19 : la variation du diamètre en fonction de la fréquence propre du mode (n=8, m=variable) pour
conduite sans fluide E-L

diamètre				Fréquenc	e HzX10 ³				
0,03	40,7611571	20,8513061	18,8368858	16,7791967	15,4184316	14,6055948	14,1346708	13,1178374	12,6030465
0,04	51,8666968	21,2095103	18,9597241	16,9741091	15,5143548	14,7239586	14,2584419	13,1930389	12,6882494
0,05	65,3166493	21,4667288	19,0639303	17,0696502	15,5721573	14,800156	14,3332788	13,241158	12,7400593
0,06	83,5317894	21,6593725	19,1438279	17,1250566	15,6110503	14,8531043	14,3834158	13,2746978	12,7751542
0,07	112,83722	21,80848	19,20505	17,16106	15,6391	14,89195	14,41937	13,29945	12,8006
0,08	182,17054	21,92704	19,25285	17,18633	15,66031	14,92162	14,44642	13,31849	12,81993
0,09	367,48232	22,02342	19,29098	17,20507	15,67694	14,94501	14,46751	13,33359	12,83514
0,1	163,6045	22,10324	19,32201	17,21954	15,69034	14,96392	14,48443	13,34587	12,84743

Tableau 20 : la variation du diamètre en fonction de la fréquence propre du mode (n=1, m=variable) pour
conduite sans fluide E-E

diamètre				Fréquen	ce HzX10 ³				
0,03	66,8848828	34,5867487	31,210256	27,5867994	25,6128759	24,2444133	23,3584706	21,7957812	21,0065373
0,04	85,1135936	35,1708961	31,414466	27,9102375	25,7730617	24,4399177	23,5565948	21,906789	21,147544
0,05	107,19275	35,58829	31,5823	28,07763	25,86895	24,56452	23,67683	21,9778	21,23269
0,06	137,09438	35,90014	31,70997	28,1785	25,93336	24,65053	23,75759	22,02728	21,29008
0,07	185,20033	36,1412	31,80759	28,2458	25,97981	24,71332	23,8156	22,0638	21,33154
0,08	299,00961	36,33272	31,8838	28,29393	26,01497	24,76112	23,8593	22,09188	21,36297
0,09	603,19534	36,48835	31,94461	28,3301	26,04255	24,7987	23,89342	22,11415	21,38764
0,1	268,55234	36,6172	31,99412	28,35831	26,06477	24,829	23,9208	22,13226	21,40754

Tableau 21 : la variation du diamètre en fonction de la fréquence propre du mode (n=2, m=variable) pour

conduite sans fluide E-E

diamètre				1	Fréquence HzX	K10 ³			
0,03	93,2198016	48,40426	43,6675498	38,4937556	35,8655451	33,9456718	32,6602294	30,5238528	29,4427475
0,04	118,62731	49,2177	43,95734	38,94246	36,09083	34,2193	32,93364	30,67227	29,6393
0,05	149,40314	49,79816	44,19203	39,17845	36,22523	34,39317	33,09968	30,76717	29,75782
0,06	191,08289	50,23156	44,36966	39,32228	36,31542	34,51293	33,21128	30,83329	29,83764
0,07	258,13713	50,56646	44,50521	39,41899	36,38044	34,60023	33,29147	30,88208	29,89527
0,08	416,7728	50,83249	44,61091	39,48852	36,42965	34,66662	33,35191	30,91959	29,93892
0,09	840,76921	51,04863	44,69521	39,54099	36,46825	34,71876	33,3991	30,94935	29,97318
0,1	374,32742	51,22757	44,76383	39,58203	36,49935	34,76078	33,43697	30,97354	30,00081

Tableau 22 : la variation du diamètre en fonction de la fréquence propre du mode (n=3, m=variable) pour
conduite sans fluide E-E

diamètre				Fr	équence HzX	10 ³			
0,03	119,62014	62,24746	56,15017	49,43053	46,13676	43,66641	41,98699	39,26722	37,88969
0,04	152,22367	63,29109	56,52686	50,00378	46,4273	44,01848	42,33592	39,45363	38,14171
0,05	191,71707	64,03541	56,82939	50,30756	46,6003	44,24187	42,54788	39,57279	38,29362
0,06	245,2033	64,59101	57,05769	50,49369	46,71632	44,39557	42,69037	39,65581	38,3959
0,07	331,25161	65,02029	57,23166	50,61929	46,79994	44,50754	42,79278	39,71706	38,46973
0,08	534,82219	65,36124	57,36723	50,70985	46,86322	44,59264	42,86997	39,76415	38,52565
0,09	1078,91937	65,63825	57,47529	50,7783	46,91285	44,65945	42,93025	39,80151	38,56953
0,1	480,3587	65,86757	57,56322	50,83192	46,95285	44,71326	42,97864	39,83187	38,60491

Tableau 23 : la variation du diamètre en fonction de la fréquence propre du mode (n=4, m=variable) pour

conduite sans fluide E-E

diamètre				Fr	équence HzX	10 ³			
0,03	146,04885	76,10178	68,64359	60,38002	56,41606	53,39558	51,32471	48,0171	46,34135
0,04	185,85586	77,37596	69,10775	61,07756	56,7719	53,82624	51,74925	48,24176	46,64883
0,05	234,07588	78,28446	69,47858	61,44881	56,98353	54,09924	52,00717	48,38536	46,83414
0,06	299,38088	78,96254	69,75786	61,67697	57,12539	54,28697	52,18057	48,4854	46,95889
0,07	404,44309	79,4864	69,97047	61,83126	57,22761	54,42368	52,30522	48,5592	47,04893
0,08	652,9956	79,90247	70,13606	61,94267	57,30497	54,52753	52,39917	48,61594	47,11713
0,09	1317,31927	80,2405	70,26801	62,02698	57,36564	54,60905	52,47255	48,66094	47,17065
0,1	586,50098	80,52032	70,37535	62,09307	57,41453	54,6747	52,53145	48,69752	47,2138

Tableau 24 : la variation du diamètre en fonction de la fréquence propre du mode (n=5, m=variable) pour
conduite sans fluide E-E

diamètre				Fi	réquence HzX	10 ³			
0,03	172,49199	89,96168	81,14241	71,33593	66,69943	63,12901	60,66805	56,7702	54,79537
0,04	219,50627	91,4666	81,69435	72,15764	67,1206	63,63831	61,16824	57,03326	55,15831
0,05	276,45752	92,53945	82,1337	72,59619	67,37086	63,961	61,47215	57,20139	55,37702
0,06	353,58754	93,34013	82,46412	72,86625	67,53856	64,1828	61,67647	57,3185	55,52425
0,07	477,67373	93,95869	82,7155	73,04913	67,65939	64,34426	61,82335	57,4049	55,63052
0,08	771,23209	94,44997	82,91119	73,18131	67,75083	64,4669	61,93408	57,47132	55,71101
0,09	1555,84615	94,84909	83,06709	73,28141	67,82254	64,56315	62,02055	57,52401	55,77416
0,1	692,69972	95,17948	83,19389	73,35992	67,88034	64,64065	62,08997	57,56683	55,82508

Tableau 25 : la variation du diamètre en fonction de la fréquence propre du mode (n=6, m=variable) pour
conduite sans fluide E-E

diamètre				Fr	équence HzX1	10 ³			
0,03	198,94308	103,82457	93,64412	82,29536	76,98499	72,86474	70,01451	65,52499	63,25061
0,04	253,16672	105,56032	94,28401	83,24116	77,47148	73,45273	70,59039	65,82653	63,669
0,05	318,85171	106,79761	94,79202	83,74693	77,76038	73,82511	70,94027	66,01924	63,92112
0,06	407,81018	107,72097	95,17369	84,05881	77,95393	74,08101	71,17553	66,15347	64,09083
0,07	550,92587	108,4343	95,46388	84,27021	78,09337	74,26725	71,34465	66,2525	64,21333
0,08	889,50322	109,00083	95,68973	84,42311	78,19889	74,40869	71,47214	66,32863	64,30611
0,09	1794,44275	109,46108	95,86963	84,53897	78,28164	74,51968	71,57172	66,38902	64,37892
0,1	798,92944	109,84209	96,01592	84,62987	78,34834	74,60904	71,65165	66,4381	64,43761

Tableau 26 : la variation du diamètre en fonction de la fréquence propre du mode (n=7, m=variable) pour
conduite sans fluide E-E

diamètre				Fréqu	uence HzX10 ³	3			
0,03	225,39861	117,68903	106,14737	93,25677	87,2717	82,6017	79,36275	74,28064	71,70643
0,04	286,83276	119,65568	106,87533	94,32661	87,82352	83,26839	80,01432	74,62072	72,18027
0,05	361,2529	121,05745	107,45208	94,89954	88,15105	83,6905	80,41019	74,83804	72,46579
0,06	462,04173	122,10354	107,88504	95,25319	88,37045	83,9805	80,67638	74,98942	72,658
0,07	624,19001	122,91167	108,21411	95,49308	88,5285	84,19154	80,86774	75,10109	72,79673
0,08	1007,79364	123,55349	108,47015	95,66667	88,6481	84,35179	81,01201	75,18694	72,90181
0,09	2033,0782	124,0749	108,67406	95,79826	88,74189	84,47752	81,12468	75,25504	72,98426
0,1	905,17642	124,50654	108,83986	95,90153	88,81748	84,57875	81,21513	75,31039	73,05073

Tableau 27 : la variation du diamètre en fonction de la fréquence propre du mode (n=8, m=variable) pour
conduite sans fluide E-E

Epaisseur				Fr	équence HzX	10 ³			
0,001	19,41038	16,49971	13,1359	11,6377	10,40472	8,82082	7,79972	7,61352	7,41994
0,002	9,13624491	7,47150437	6,30885262	5,40513162	4,98313031	4,33452566	3,83116785	3,72682264	3,63684041
0,003	6,34171566	4,55585343	4,03244709	3,44226047	3,07909177	2,838154	2,52011427	2,43657223	2,37757626
0,004	5,10837572	3,38774769	2,74887105	2,52289514	2,16709751	2,06655481	1,86898293	1,79261274	1,75120617
0,005	4,56741686	2,72104673	2,01009644	1,9832636	1,68986639	1,57151842	1,47787703	1,40594395	1,37770372
0,006	4,54439925	2,27140543	1,62986694	1,55300614	1,38937402	1,25815666	1,20916551	1,14763232	1,12941474
0,007	5,40783527	1,94364364	1,37934147	1,25290481	1,17787767	1,05848785	1,00751726	0,96368803	0,95072092

Tableau 28 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=1, m=variable) pour
conduite sans fluide E-L

Epaisseur				Fr	équence HzX1	10 ³			
0,001	45,37437	38,66399	30,47967	27,23414	24,38926	20,66953	18,4158	17,89616	17,45944
0,002	21,45454	17,48003	14,6433	12,69735	11,58856	10,16491	9,04103	8,76693	8,5607
0,003	14,87492	10,7173	9,33692	8,1172	7,1166	6,66286	5,94505	5,7338	5,59945
0,004	11,96347	7,97242	6,3818	5,95049	5,0271	4,8321	4,40896	4,21771	4,12616
0,005	10,68222	6,40743	4,69961	4,65408	3,94667	3,65487	3,48629	3,30606	3,24664
0,006	10,61823	5,35264	3,84597	3,61617	3,25154	2,93776	2,84341	2,69762	2,65951
0,007	12,62828	4,5831	3,25438	2,92153	2,75933	2,48434	2,36382	2,26779	2,23317

Tableau 29 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=3, m=variable) pour

conduite sans fluide E-L

Epaisseur				Fr	équence HzX	10 ³			
0,001	58,42081	49,78982	39,18792	35,0604	31,39803	26,61751	23,73624	23,05922	22,49491
0,002	27,6394	22,5058	18,82798	16,35697	14,90059	13,09144	11,65264	11,29717	11,03042
0,003	19,15959	13,80844	12,0018	10,46139	9,14371	8,58231	7,6622	7,38901	7,21544
0,004	15,40603	10,27234	8,20629	7,66896	6,46554	6,2179	5,68251	5,43525	5,3173
0,005	13,75337	8,25664	6,05445	5,98845	5,08074	4,70006	4,49319	4,26023	4,18393
0,006	13,66903	6,89823	4,95717	4,65147	4,18685	3,78163	3,66205	3,4762	3,42678
0,007	16,25516	5,90706	4,1946	3,75864	3,55344	3,20025	3,04386	2,9228	2,87653

Tableau 30 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=4, m=variable) pour
conduite sans fluide E-L

Epaisseur				Fr	équence HzX	10 ³			
0,001	71,47739	60,92227	47,90227	42,89079	38,4095	32,56922	29,05849	28,2256	27,53294
0,002	33,82821	27,53489	23,01549	20,01853	18,21428	16,01975	14,26522	13,82895	13,50142
0,003	23,44705	16,90115	14,66868	12,80656	11,17226	10,50287	9,38004	9,04522	8,83225
0,004	18,85095	12,57337	10,03206	9,3881	7,90542	7,60416	6,95658	6,65355	6,50902
0,005	16,82671	10,10673	7,41042	7,32306	6,21567	5,74589	5,50047	5,21502	5,12167
0,006	16,72206	8,44453	6,06881	5,68735	5,1228	4,62618	4,48093	4,2553	4,19445
0,007	19,8847	7,23161	5,13521	4,59618	4,34804	3,9166	3,72423	3,57821	3,52031

Tableau 31 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=5, m=variable) pour
conduite sans fluide E-L

Epaisseur				Fr	équence HzX	10 ³			
0,001	84,53898	72,05789	56,61966	50,72313	45,42224	38,52276	34,38155	33,39359	32,57221
0,002	40,01893	32,56558	27,20439	23,68099	21,52881	18,94894	16,87824	16,36148	15,97303
0,003	27,73588	19,99459	17,33655	15,15217	13,20153	12,42396	11,0982	10,70191	10,44945
0,004	22,29702	14,87492	11,85844	11,10756	9,34601	8,99062	8,2309	7,87222	7,70103
0,005	19,90112	11,95722	8,76687	8,65784	7,35103	6,79204	6,50794	6,17012	6,05963
0,006	19,77618	9,99116	7,18066	6,72352	6,05907	5,47106	5,29991	5,03466	4,96232
0,007	23,51556	8,55643	6,07599	5,43393	5,14289	4,63317	4,40476	4,23381	4,16431

Tableau 32 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=6, m=variable) pour
conduite sans fluide E-L

Epaisseur				Fi	équence HzX	10 ³			
0,001	97,6032	83,19511	65,33866	58,55642	52,43559	44,47722	39,70496	38,5624	37,61209
0,002	46,21062	37,5971	31,39403	27,34389	24,84377	21,87856	19,49146	18,89438	18,44495
0,003	32,02541	23,0884	20,00494	17,49799	15,23119	14,34531	12,8165	12,35884	12,06684
0,004	25,7437	17,17672	13,68514	12,82715	10,78699	10,37717	9,50533	9,09107	8,89317
0,005	22,9761	13,8079	10,12354	9,99272	8,4866	7,83836	7,51548	7,12537	6,99771
0,006	22,83088	11,53794	8,2926	7,75982	6,99549	6,31612	6,11894	5,81414	5,73028
0,007	27,14712	9,88138	7,01686	6,27178	5,93787	5,34985	5,08537	4,88949	4,80843

Tableau 33 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=7, m=variable) pour
conduite sans fluide E-L

Epaisseur		Fréquence HzX10 ³											
0,001	110,66877	94,33305	74,05848	66,3901	59,44914	50,43213	45,02845	43,7316	42,65223				
0,002	52,40278	42,62901	35,58402	31,00697	28,15891	24,80839	22,10474	21,42746	20,91699				
0,003	36,31528	26,18235	22,67359	19,84388	17,26104	16,26679	14,53485	14,01589	13,68432				
0,004	29,19066	19,47862	15,51201	14,54678	12,22819	11,76375	10,7798	10,31001	10,08537				
0,005	26,05135	15,65866	11,48031	11,32763	9,62229	8,88476	8,52304	8,0807	7,93582				
0,006	25,88587	13,08478	9,40457	8,79619	7,93199	7,16127	6,93798	6,59368	6,4983				
0,007	30,77903	11,20638	7,95774	7,10968	6,7329	6,06657	5,76601	5,54522	5,4526				

Tableau 34 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=8, m=variable) pour
conduite sans fluide E-L

Epaisseur				Fr	équence HzXI	10 ³			
0,001	2,34181627	1,88668172	1,71570151	1,29717337	1,17817153	1,11009178	0,98745606	0,97007106	0,86894909
0,002	0,9151259	0,85466197	0,76273961	0,62747793	0,58969436	0,54388807	0,48691811	0,46899473	0,41949913
0,003	0,57765228	0,51154936	0,44429807	0,39996141	0,39085204	0,35576286	0,32112634	0,305068	0,27105249
0,004	0,42546381	0,35725512	0,30399938	0,28987098	0,27905125	0,26157091	0,23871654	0,22443633	0,19830985
0,005	0,33516979	0,27594266	0,23745806	0,21807456	0,21036437	0,20229037	0,18950608	0,17664265	0,15571091
0,006	0,275372	0,22562715	0,1965641	0,17392337	0,16800594	0,15890134	0,15645902	0,14503257	0,12788293
0,007	0,23296148	0,19112719	0,16767	0,14640814	0,13805628	0,13332017	0,12763837	0,12250681	0,10825292

Tableau 35 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=1, m=variable) pour
conduite sans fluide L-L

Epaisseur				Fr	équence HzX1	10 ³			
0,001	9,09860349	7,20554126	6,63887989	5,05223136	4,62778063	4,31283972	3,84258935	3,75651762	3,3635476
0,002	3,57156693	3,27699009	2,94129525	2,43270847	2,31540141	2,11257847	1,89367873	1,82102888	1,62692475
0,003	2,23463144	1,99485458	1,71402834	1,55113442	1,52331832	1,38172833	1,24859003	1,18521821	1,05388872
0,004	1,64283097	1,40368145	1,18046808	1,13114774	1,07115412	1,01521364	0,92804358	0,87156403	0,77292438
0,005	1,29359743	1,08715368	0,92941674	0,8445622	0,8141978	0,77945811	0,73664509	0,68514174	0,60797108
0,006	1,06272063	0,88967247	0,77025352	0,67204494	0,65515509	0,61254987	0,60659226	0,56128832	0,49975595
0,007	0,89913197	0,75378817	0,65729852	0,56672765	0,53873808	0,51801792	0,49329001	0,47193186	0,42302079

Tableau 36 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=2, m=variable) pour
conduite sans fluide L-L

Epaisseur				Fi	réquence HzX1	10 ³			
0,001	20,3696382	16,0758865	14,848541	11,3119392	10,3794105	9,65299429	8,60212503	8,4030163	7,52174241
0,002	8,00183619	7,31753259	6,57435668	5,4421352	5,19254051	4,72831123	4,23891378	4,0752363	3,6395723
0,003	4,99836735	4,46801009	3,83180653	3,47488942	3,40706986	3,09258291	2,79479305	2,65257772	2,35880304
0,004	3,67306129	3,14803661	2,6429105	2,53384387	2,3918332	2,27199936	2,07724693	1,95036926	1,7307733
0,005	2,89193123	2,43925101	2,08338961	1,8898548	1,82115555	1,74192367	1,6488162	1,5327499	1,36185026
0,006	2,37573973	1,99644652	1,72689396	1,5029994	1,46746437	1,36978698	1,35684238	1,25497373	1,11959432
0,007	2,01007069	1,69158078	1,47374249	1,26782379	1,20681101	1,15944171	1,1038263	1,05403857	0,94760309

Tableau 37 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=3, m=variable) pour
conduite sans fluide L-L

Epaisseur				Fr	équence HzX1	10 ³			
0,001	36,1504079	28,4953029	26,3426295	20,0757439	18,431958	17,1295093	15,2656013	14,9084665	13,3433059
0,002	14,204589	12,9747748	11,6609494	9,65547696	9,2206379	8,39050395	7,522328	7,23124364	6,45732312
0,003	8,86789027	7,93053867	6,79692215	6,1687347	6,04395599	5,48790196	4,9595378	4,70694351	4,18571343
0,004	6,51556508	5,59016027	4,69054669	4,49767384	4,24090258	4,03159721	3,68617876	3,46073425	3,07178549
0,005	5,1022718	4,26045426	3,62718587	3,33711875	3,22021763	3,08370532	2,88794609	2,68823637	2,37893446
0,006	4,21407576	3,54592708	3,06624901	2,66643753	2,60474751	2,43006446	2,40722011	2,2261333	1,98737213
0,007	3,56547766	3,00448733	2,61681123	2,24943509	2,14214721	2,05747266	1,95870016	1,86899685	1,68200969

 $\label{eq:tableau} \textbf{Tableau 38}: la variation de Epaisseur en fonction de la fréquence propre du mode (n=4, m=variable) pour$

conduite sans fluide L-L

Epaisseur				Fi	réquence HzX1	10 ³			Fréquence HzX10 ³											
0,001	56,4402233	44,4633077	41,1208156	31,3434934	28,7852481	26,7422014	23,8329164	23,2726695	20,8281592											
0,002	22,1796165	20,2484675	18,2009048	15,0726444	14,3996187	13,0990578	11,7438612	11,288978	10,0801388											
0,003	13,8430452	12,3823663	10,6092562	9,6323736	9,43414056	8,56761492	7,74278286	7,34827403	6,53459424											
0,004	10,1702434	8,73002288	7,3232663	7,02259917	6,61830003	6,29395208	5,75480743	5,40263217	4,79594138											
0,005	8,00693015	6,76595145	5,77630495	5,23514465	5,04364252	4,82203768	4,56785795	4,24513669	3,77429356											
0,006	6,57766828	5,53810424	4,78828318	4,16230654	4,0669744	3,79330916	3,7577085	3,47476121	3,10308141											
0,007	5,56530162	4,69249963	4,08647565	3,51152108	3,34472507	3,21208821	3,05784966	2,91680016	2,62623903											

Tableau 39 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=5, m=variable) pour
conduite sans fluide L-L

Epaisseur				F	réquence HzX1	10 ³			
0,001	81,2388277	63,9797072	59,1829566	45,1151011	41,4391946	38,4909847	34,3040089	33,4955403	29,9762504
0,002	31,9268335	29,1385173	26,1941527	21,6935909	20,7294433	18,8539283	16,9034806	16,2484039	14,5079941
0,003	19,9237725	17,8234566	15,2687628	13,8657277	13,5776392	12,3316913	11,1445061	10,5765477	9,40542901
0,004	14,6370562	12,5676043	10,5410313	10,1085999	9,52399872	9,05904072	8,28311622	7,77604805	6,90322875
0,005	11,52349	9,74052679	8,31517822	7,53504268	7,25910288	6,93961849	6,57468874	6,10988847	5,43283479
0,006	9,46649216	7,97296737	6,89298064	5,990587	5,85413148	5,45949809	5,40829645	5,00085031	4,46671553
0,007	8,00952127	6,75560872	5,88272254	5,05406638	4,81453421	4,62327779	4,40125578	4,19744095	3,78028685

Tableau 40 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=6, m=variable) pour
conduite sans fluide L-L

Epaisseur				Fi	réquence HzX1	10 ³			
0,001	110,54604	87,04436	80,52894	61,39049	56,39372	52,37579	46,67882	45,57701	40,78753
0,002	43,4461752	39,6448592	35,6406398	29,5182759	28,2100752	25,6550794	23,0011561	22,1094911	19,7408643
0,003	27,1100295	24,253777	20,7754087	18,8687558	18,4744407	16,7801069	15,1646874	14,3917454	12,7982015
0,004	19,9159731	17,1028837	14,3438169	13,755658	12,9579786	12,326845	11,2710901	10,5809681	9,39363568
0,005	15,6793896	13,2558989	11,3156388	10,2530836	9,87735273	9,44219388	8,94637626	8,31366512	7,39291014
0,006	12,8805282	10,8505039	9,3803283	8,15126555	7,96620756	7,4286174	7,3589739	6,80439246	6,07826723
0,007	10,8981203	9,19380401	8,00554081	6,87706005	6,5515657	6,29103257	5,98890719	5,71091172	5,14414748

Tableau 41 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=7, m=variable) pour
conduite sans fluide L-L

Epaisseur				Fi	équence HzX1	.0 ³			
0,001	144,3617	113,65714	105,15864	80,16956	73,64875	68,39653	60,95728	59,51702	53,26194
0,002	56,7375766	51,7674317	46,5403125	38,5466567	36,8414744	33,5024734	30,0368551	28,8722075	25,7787217
0,003	35,4017745	31,6732929	27,1291623	24,6414248	24,1245239	21,9128369	19,8033053	18,7938465	16,7128939
0,004	26,0069642	22,3358374	18,7316003	17,9637538	16,92022	16,0973466	14,7187131	13,8173772	12,267149
0,005	20,4746056	17,3120497	14,77767	13,3892514	12,8983772	12,3297495	11,6829077	10,856455	9,65450934
0,006	16,819757	14,1706993	12,2503125	10,6443295	10,403191	9,70065486	9,60973024	8,88537834	7,9377282
0,007	14,2310825	12,007073	10,4549189	8,98049155	8,5558101	8,21534341	7,82079398	7,45720434	6,71781407

Tableau 42 la variation de Epaisseur en fonction de la fréquence propre du mode (n=7, m=variable) pour
conduite sans fluide L-L

diamètre				Fi	réquence HzX1	0 ³					
					-1						
0,001	144,3617	113,65714	105,15864	80,16956	73,64875	68,39653	60,95728	59,51702	53,26194		
0,002	56,7375766	51,7674317	46,5403125	38,5466567	36,8414744	33,5024734	30,0368551	28,8722075	25,7787217		
0,003	35,4017745	31,6732929	27,1291623	24,6414248	24,1245239	21,9128369	19,8033053	18,7938465	16,7128939		
0,004	26,0069642	22,3358374	18,7316003	17,9637538	16,92022	16,0973466	14,7187131	13,8173772	12,267149		
0,005	20,4746056	17,3120497	14,77767	13,3892514	12,8983772	12,3297495	11,6829077	10,856455	9,65450934		
0,006	16,819757	14,1706993	12,2503125	10,6443295	10,403191	9,70065486	9,60973024	8,88537834	7,9377282		
0,007	14,2310825	12,007073	10,4549189	8,98049155	8,5558101	8,21534341	7,82079398	7,45720434	6,71781407		

Tableau 43 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=8, m=variable) pour
conduite sans fluide L-L

diamètre				F	réquence HzX1	10^{3}			
0,04	0,9218701	0,47825743	0,3398574	0,27829806	0,23459934	0,21960606	0,20153303	0,18070752	0,17286656
0,05	0,83354346	0,46104871	0,33465937	0,27457732	0,22937764	0,22243891	0,20005818	0,18100365	0,1721424
0,06	0,77034862	0,44860307	0,33146648	0,27181952	0,2300769	0,22165265	0,19926781	0,18224966	0,17177332
0,07	0,72284072	0,43911534	0,32923484	0,26985393	0,23306671	0,21963861	0,19884592	0,18393298	0,17149643
0,08	0,68589227	0,43159126	0,32748596	0,26856919	0,23603	0,21808037	0,19861459	0,18570152	0,17120581
0,09	0,65646889	0,42541226	0,32599194	0,2678892	0,23859649	0,21701716	0,19848686	0,1873723	0,1709009
0,1	0,63264594	0,42017165	0,32464005	0,26775271	0,24068223	0,21635057	0,19841969	0,18887572	0,17060652

Tableau 44 : la variation du diamètre en fonction de la fréquence propre du mode (n=1, m=variable) pour
conduite avec fluide L-L

diamètre				Fi	équence HzX1	0 ³			
0,04	3,5337345	1,85671618	1,31269216	1,08725365	0,91888858	0,85423219	0,78357585	0,70202104	0,66439992
0,05	3,19510283	1,79059251	1,29399569	1,07043235	0,89861298	0,86549954	0,77818644	0,70238724	0,66363633
0,06	2,95291382	1,74318177	1,28257076	1,05814386	0,89684612	0,86637858	0,77550451	0,7074099	0,66284395
0,07	2,77090968	1,70722893	1,27462572	1,04957979	0,90574015	0,86026509	0,77417848	0,71436225	0,66196063
0,08	2,6294154	1,67878032	1,26842843	1,04417536	0,91559781	0,85459289	0,77351692	0,72154997	0,6610101
0,09	2,51679574	1,65540539	1,2631533	1,04150569	0,92415396	0,85046621	0,77320029	0,72820466	0,66006603
0,1	2,42567593	1,63552349	1,25839047	1,04119496	0,93094916	0,84774611	0,77307765	0,73407022	0,65920692

Tableau 45 : la variation du diamètre en fonction de la fréquence propre du mode (n=2, m=variable) pour
conduite avec fluide L-L

diamètre				F	réquence HzXI	10 ³			
0,04	7,88890514	4,15556722	2,93486159	2,4357245	2,05963134	1,91214704	1,75402831	1,57162268	1,48390121
0,05	7,88890514	4,15556722	2,93486159	2,4357245	2,05963134	1,91214704	1,75402831	1,57162268	1,48390121
0,06	7,13283989	4,00791693	2,89368742	2,39712454	2,01408684	1,93757716	1,74203128	1,57224721	1,48278314
0,07	6,18588847	3,82209655	2,85109354	2,34956879	2,02687363	1,9282033	1,73326848	1,59906327	1,47952821
0,08	5,87007788	3,75872592	2,83748377	2,33739092	2,04821388	1,91561601	1,73186263	1,61517483	1,47758926
0,09	5,61874884	3,7066422	2,8259045	2,33148103	2,06678075	1,90630903	1,73121098	1,63006335	1,47566628
0,1	5,41543606	3,66230994	2,81545138	2,33092896	2,08147934	1,90009403	1,73098036	1,64315232	1,4739299

Tableau 46 : la variation du diamètre en fonction de la fréquence propre du mode (n=3, m=variable) pour
conduite avec fluide L-L

diamètre	Fréquence HzX10 ³											
					equence marti	10						
0,04	13,9864543	7,37415197	5,20600906	4,32361778	3,6566976	3,39325598	3,11270933	2,78914256	2,63127131			
0,05	12,645943	7,11236323	5,13336797	4,25453883	3,57575537	3,43852475	3,09145094	2,7901483	2,6296154			
0,06	11,687356	6,92501417	5,08904507	4,20434149	3,56421454	3,4457794	3,08105904	2,81003809	2,6271753			
0,07	10,9670885	6,783091	5,05826145	4,16962689	3,59645773	3,42334539	3,07601873	2,8377196	2,62415692			
0,08	10,4072239	6,670822	5,03427366	4,14797862	3,63387724	3,40106728	3,07356717	2,86631295	2,62084473			
0,09	9,96169421	6,57853843	5,01386756	4,13754117	3,66646843	3,38449625	3,07244366	2,89272091	2,61755958			
0,1	9,6013064	6,49996839	4,99544664	4,13665542	3,69224475	3,3733774	3,07205969	2,91591756	2,61460116			

Tableau 47 : la variation du diamètre en fonction de la fréquence propre du mode (n=4 m=variable) pour
conduite avec fluide L-L

diamètre				F	réquence HzX1	10 ³			
0,04	21,8262056	11,5123633	8,12607072	6,75090575	5,7100641	5,29753636	4,85958834	4,35453697	4,10647367
0,05	19,7342567	11,1038255	8,01297283	6,64264304	5,58360511	5,36831458	4,8264196	4,356038	4,10411501
0,06	18,2383537	10,8115189	7,94397719	6,56402571	5,56473751	5,3803394	4,81023921	4,38707189	4,10043656
0,07	17,1143773	10,5901126	7,89606471	6,50970997	5,61448257	5,34566827	4,80240903	4,4302889	4,09582483
0,08	16,2407275	10,4149725	7,85873361	6,47588891	5,67257668	5,31092782	4,79861194	4,47492719	4,09074969
0,09	15,5455105	10,2710015	7,82697847	6,45963263	5,72320199	5,28501402	4,796881	4,51614371	4,08571525
0,1	14,9831687	10,1484097	7,79831288	6,45831885	5,76322497	5,26758719	4,79629925	4,55233454	4,08118717

Tableau 48 : la variation du diamètre en fonction de la fréquence propre du mode (n=5 m=variable) pour
conduite avec fluide L-L

diamètre				F	réquence HzX1	10 ³			
0,04	31,4080811	16,570157	11,6950182	9,71757111	8,21971668	7,62497452	6,99465049	6,26778905	5,90949228
0,05	28,3977116	15,9822606	11,5324737	9,56141881	8,0376244	7,72693171	6,94692366	6,26989738	5,90627045
0,06	26,2450915	15,5616729	11,4333228	9,44806777	8,00980243	7,74478522	6,92366771	6,31455101	5,90107804
0,07	24,6276952	15,2431207	11,3644752	9,36979682	8,08093726	7,69515817	6,91242717	6,37675436	5,89451979
0,08	23,370532	14,9911378	11,3108356	9,32109931	8,16430071	7,645185	6,90698518	6,44100184	5,8872909
0,09	26,2450915	15,5616729	11,4333228	9,44806777	8,00980243	7,74478522	6,92366771	6,31455101	5,90107804
0,1	21,5609703	14,6075964	11,2240225	9,29589544	8,29440573	7,58271335	6,90368781	6,55238878	5,87367324

Tableau 49 : la variation du diamètre en fonction de la fréquence propre du mode (n=6 m=variable) pour
conduite avec fluide L-L

diamètre				Fi	réquence HzX1	10 ³			
0,04	48,8972882	23,7834024	16,3150338	13,5089587	11,6404049	10,2063239	9,63314527	8,59367006	8,03879212
0,05	38,6362519	21,7476359	15,691848	13,0108491	10,9378003	10,5143624	9,45295069	8,53171302	8,03607106
0,06	35,7075181	21,1754445	15,5570594	12,8564503	10,8993962	10,5391036	9,42133244	8,59246224	8,02908924
0,07	33,5069941	20,7420841	15,4634705	12,7498696	10,995809	10,4718018	9,40606125	8,67710314	8,02023097
0,08	31,7965917	20,3992877	15,3905575	12,6835916	11,1090362	10,4038259	9,39867513	8,76452438	8,0104572
0,09	30,4355487	20,1174834	15,3285383	12,6518209	11,2077551	10,352995	9,39532359	8,84522784	8,00076006
0,1	29,3346689	19,8774995	15,2725535	12,6493666	11,2857728	10,318744	9,39421382	8,91606803	7,99204776

Tableau 50 : la variation du diamètre en fonction de la fréquence propre du mode (n=7 m=variable) pour
conduite avec fluide L-L
diamètre		Fréquence HzX10 ³											
0,04	55,7979555	29,4443572	20,7794789	17,2689649	14,6078224	13,54927	12,4292718	11,1378154	10,4989296				
0,05	50,4498207	28,3999187	20,4910725	16,9909155	14,2841178	13,7305918	12,3444873	11,1414719	10,4935054				
0,06	46,6255809	27,652802	20,315164	16,7891547	14,2335039	13,7632799	12,3032201	11,2207926	10,4844587				
0,07	43,7522248	27,086972	20,1930278	16,6499098	14,359083	13,6755843	12,2832981	11,3313223	10,4729469				
0,08	41,51886	26,6393917	20,0978764	16,5633471	14,5067681	13,5868362	12,2736687	11,4454819	10,4602369				
0,09	39,741682	26,2714426	20,0169424	16,5218804	14,6355455	13,5204318	12,2693042	11,550864	10,447626				
0,1	38,3042212	25,9580895	19,9438833	16,5187135	14,7373104	13,4756651	12,2678643	11,6433594	10,4362989				

Tableau 51 : la variation du diamètre en fonction de la fréquence propre du mode (n=8 m=variable) pour
conduite avec fluide L-L

diamètre		Fréquence HzX10 ³											
0,04	2,73982123	0,54958185	0,29905386	0,23886105	0,18696455	0,16774045	0,15259653	0,14493247	0,14381868				
0,05	2,50663003	0,5249331	0,28073869	0,22581977	0,18881266	0,16673811	0,15335841	0,14490128	0,14395043				
0,06	1,02226788	0,42092618	0,28306927	0,22899822	0,18043472	0,16807945	0,14983266	0,14458929	0,14231424				
0,07	2,57441504	0,48680855	0,25734502	0,21479603	0,1922425	0,16828371	0,15452823	0,14502764	0,14407101				
0,08	2,83286575	0,47099992	0,25013121	0,21224552	0,19371268	0,16958479	0,15507641	0,14514335	0,14412766				
0,09	3,35857114	0,45678113	0,24500603	0,21047124	0,1949116	0,1708483	0,15560123	0,14526462	0,14423741				
0,1	4,6630656	0,44393947	0,24152125	0,20916005	0,19576099	0,1720022	0,15609552	0,14540251	0,14443088				

Tableau 52 : la variation du diamètre en fonction de la fréquence propre du mode (n=1 m=variable) pour
conduite avec fluide E-L

diamètre				Fi	réquence HzX1	10 ³			
0,04	4,48820871	0,90506727	0,49248424	0,39375776	0,31011468	0,27733564	0,25306096	0,24012356	0,23740368
0,05	4,10562795	0,86448165	0,46240922	0,37239098	0,31317933	0,27589719	0,25410727	0,23988699	0,23764036
0,06	4,04694614	0,83092607	0,44031866	0,36083197	0,31608077	0,27677773	0,25497586	0,2398091	0,23778779
0,07	4,21652863	0,80170648	0,42415992	0,35406217	0,31875999	0,27871408	0,25584405	0,23987256	0,23789969
0,08	4,63993803	0,77568035	0,4124825	0,34968206	0,32109692	0,28091028	0,25671985	0,23998737	0,23804103
0,09	5,50113721	0,75227531	0,40426803	0,34658886	0,32294161	0,28302208	0,25757232	0,24010816	0,23827337
0,1	7,63802589	0,73114083	0,39875235	0,3443291	0,32414008	0,28494031	0,25838159	0,24022913	0,23865689

Tableau 53 : la variation du diamètre en fonction de la fréquence propre du mode (n=2 m=variable) pour

conduite avec fluide E-L

diamètre				F	réquence HzX1	10 ³			
0,04	6,25396484	1,26306567	0,68757086	0,54968663	0,43409184	0,3876195	0,35410711	0,33602503	0,33181215
0,05	5,72030024	1,2064354	0,64568028	0,51989125	0,43837113	0,3857494	0,35546438	0,33558642	0,33215222
0,06	5,63828141	1,1596127	0,61493511	0,50372337	0,44239979	0,38707582	0,35661947	0,33539988	0,33236942
0,07	5,87442087	1,11884081	0,5924829	0,49420245	0,44609959	0,38983062	0,35780706	0,33544006	0,33254156
0,08	6,46424676	1,08252625	0,57629786	0,48800109	0,44930535	0,39292439	0,35902031	0,33556639	0,33275562
0,09	7,664017	1,0498705	0,56494962	0,48360492	0,45180397	0,39588928	0,3602073	0,33570403	0,33309418
0,1	10,64105	1,02038	0,55736	0,48041	0,45337	0,39858	0,36134	0,33583	0,33364

 Tableau 54 : la variation du diamètre en fonction de la fréquence propre du mode (n=3 m=variable) pour conduite avec fluide E-L

diamètre				F	réquence HzX1	10 ³			
0,04	8,02529404	1,62187417	0,88316503	0,70595202	0,55832907	0,49811753	0,45534449	0,43214696	0,42646867
0,05	7,34000122	1,5491647	0,82944125	0,66769604	0,56382218	0,49581566	0,45702051	0,43150951	0,42691171
0,06	7,23451677	1,489046	0,79002562	0,64690655	0,56897736	0,49758697	0,45846812	0,43121539	0,4271986
0,07	7,53737012	1,43669646	0,76126478	0,63463258	0,57369779	0,50116087	0,45997874	0,43123353	0,42742997
0,08	8,29407681	1,39007062	0,74055713	0,62661292	0,57777429	0,50515399	0,46153171	0,43137345	0,42771486
0,09	9,83340076	1,34814337	0,72606043	0,62091721	0,58093208	0,50897417	0,46305485	0,43153121	0,42815698
0,1	13,65306	1,31029	0,71638	0,61679	0,58287	0,51244	0,46451	0,43168	0,42887

Tableau 55 : la variation du diamètre en fonction de la fréquence propre du mode (n=4 m=variable) pour

conduite avec fluide E-L

diamètre	Fréquence HzX10 ³											
0,04	9,79908423	1,98103932	1,07897801	0,86236613	0,68267925	0,60870785	0,55666643	0,52836415	0,52123132			
0,05	8,96192279	1,89223548	1,01341332	0,81563565	0,68938578	0,60597389	0,55866444	0,52752975	0,52177716			
0,06	8,83291545	1,81880809	0,96532019	0,79021924	0,69566715	0,60818977	0,56040691	0,52712877	0,52213372			
0,07	9,20255141	1,75486972	0,93024388	0,77519163	0,70140826	0,6125833	0,56224193	0,52712535	0,52242395			
0,08	10,12634	1,69792	0,90501	0,76536	0,70636	0,61748	0,56414	0,52728	0,52278			
0,09	12,00565	1,64671	0,88736	0,75836	0,71018	0,62215	0,566	0,52746	0,52332			
0,1	16,66903	1,60048	0,87558	0,7533	0,7125	0,62639	0,56777	0,52762	0,52419			

Tableau 56 : la variation du diamètre en fonction de la fréquence propre du mode (n=6, m=variable) pour
conduite avec fluide E-L

diamètre	Fréquence HzX10 ³											
0,04	11,57415	2,34039	1,2749	1,01886	0,80709	0,71934	0,65803	0,62463	0,61605			
0,05	10,58499	2,23548	1,19749	0,96364	0,81501	0,71618	0,66035	0,6236	0,6167			
0,06	10,43243	2,14874	1,14072	0,9336	0,82241	0,71884	0,66239	0,62309	0,61712			
0,07	10,86889	2,07321	1,09932	0,91582	0,82918	0,72405	0,66455	0,62307	0,61747			
0,08	11,95987	2,00593	1,06955	0,90416	0,835	0,72985	0,66679	0,62324	0,6179			
0,09	14,17939	1,94544	1,04874	0,89587	0,83948	0,73538	0,66898	0,62344	0,61854			
0,1	19,68705	1,89082	1,03487	0,88988	0,84218	0,74039	0,67108	0,62362	0,61957			

Tableau 57 : la variation du diamètre en fonction de la fréquence propre du mode (n=7, m=variable) pour
conduite avec fluide E-L

diamètre				Fi	réquence HzX1	10 ³			
0,04	13,34993	2,69984	1,47089	1,17539	0,93152	0,83001	0,75942	0,72092	0,71089
0,05	12,20871	2,57882	1,38163	1,11169	0,94066	0,82641	0,76207	0,7197	0,71164
0,06	12,03258	2,47876	1,31617	1,07701	0,94919	0,82951	0,7644	0,71908	0,71214
0,07	12,53587	2,39163	1,26846	1,05648	0,95697	0,83555	0,76689	0,71904	0,71255
0,08	13,79411	2,31403	1,23415	1,04301	0,96367	0,84224	0,76946	0,71922	0,71304
0,09	16,35396	2,24425	1,21018	1,03342	0,96881	0,84863	0,772	0,71944	0,71379
0,1	22,70622	2,18124	1,19421	1,02649	0,9719	0,85442	0,77441	0,71964	0,71498

Tableau 58 : la variation du diamètre en fonction de la fréquence propre du mode (n=8, m=variable) pour

conduite avec fluide E-L

diamètre				Fr	équence HzX1	0 ³ z			
0,04	15,12613	3,05934	1,66691	1,33194	1,05598	0,94068	0,86082	0,81723	0,80576
0,05	13,83281	2,92222	1,5658	1,25976	1,06633	0,93665	0,86379	0,81581	0,80661
0,06	13,6331	2,80884	1,49166	1,22045	1,07598	0,9402	0,86642	0,81509	0,80717
0,07	14,20324	2,71011	1,43762	1,19716	1,08479	0,94705	0,86924	0,81502	0,80764
0,08	15,62875	2,62217	1,39878	1,18188	1,09235	0,95465	0,87215	0,81522	0,80821
0,09	18,52902	2,5431	1,37165	1,17099	1,09817	0,9619	0,87502	0,81547	0,80906
0,1	25,72606	2,47171	1,35358	1,16313	1,10164	0,96846	0,87776	0,81568	0,8104

Tableau 59 : la variation du diamètre en fonction de la fréquence propre du mode (n=1, m=variable) pourconduite avec fluide E-E

diamètre				Fı	équence HzX1	10 ³			
0,04	74,14418	5,64116	2,75804	2,10283	2,05752	1,90949	1,72573	1,51758	1,44582
0,05	66,54168	5,65931	2,79584	2,11392	2,06244	1,91215	1,72677	1,51925	1,44753
0,06	61,09895	5,6943	2,83222	2,12277	2,06552	1,91389	1,72736	1,52059	1,44866
0,07	56,9709	5,73908	2,8676	2,13006	2,06766	1,91512	1,72772	1,52176	1,44945
0,08	53,71625	5,79007	2,90218	2,13626	2,06924	1,91604	1,72795	1,52282	1,45004
0,09	51,07761	5,84524	2,93603	2,14163	2,07047	1,91673	1,72809	1,52383	1,45048
0,1	48,89284	5,90332	2,96919	2,14636	2,07145	1,91728	1,72819	1,52479	1,45083

Tableau 60 : la variation du diamètre en fonction de la fréquence propre du mode (n=2, m=variable) pour

conduite avec fluide E-E

diamètre				Fr	équence HzX1	10 ³			
0,04	169,20861	12,9845	6,4219	4,85985	4,7482	4,37403	4,01449	3,51831	3,33144
0,05	169,20861	12,9845	6,4219	4,85985	4,7482	4,37403	4,01449	3,51831	3,33144
0,06	151,85934	13,02521	6,51077	4,88693	4,75744	4,38045	4,01659	3,522	3,33533
0,07	139,43906	13,1049	6,59621	4,90797	4,7634	4,38466	4,01775	3,52496	3,33789
0,08	130,019	13,20725	6,67925	4,92509	4,76761	4,3876	4,01842	3,52753	3,3397
0,09	116,57087	13,45039	6,83966	4,95193	4,77325	4,39141	4,01903	3,53207	3,34205
0,1	111,58538	13,58355	6,91732	4,96284	4,77525	4,39269	4,01915	3,53417	3,34285

Tableau 61 : la variation du diamètre en fonction de la fréquence propre du mode (n=3, m=variable) pourconduite avec fluide E-E

diamètre		Fréquence HzX10 ³											
0,04	217,12413	16,67791	8,26297	6,2462	6,09898	5,61505	5,16347	4,52436	4,28039				
0,05	194,86204	16,73004	8,37748	6,28104	6,11069	5,62338	5,16608	4,52907	4,28537				
0,06	178,92475	16,83227	8,48755	6,30807	6,11826	5,62883	5,16751	4,53285	4,28866				
0,07	166,83725	16,96362	8,59451	6,33005	6,12363	5,63265	5,16832	4,53612	4,29097				
0,08	157,30728	17,11346	8,69895	6,34853	6,12765	5,63546	5,16878	4,53911	4,29268				
0,09	149,58111	17,27575	8,80111	6,36446	6,13081	5,6376	5,16903	4,54192	4,29398				
0,1	143,18393	17,44672	8,90111	6,37845	6,13335	5,63927	5,16915	4,5446	4,29501				

Tableau 62 : la variation du diamètre en fonction de la fréquence propre du mode (n=4, m=variable) pour

conduite avec fluide E-E

diamètre				Fr	équence HzX1	0 ³			
0,04	265,10728	20,37503	10,10556	7,63377	7,45074	6,85757	6,31319	5,53134	5,23036
0,05	237,92542	20,4386	10,24572	7,67636	7,46496	6,86781	6,31629	5,53708	5,23643
0,06	218,46614	20,56341	10,38044	7,70937	7,47417	6,87452	6,31799	5,54167	5,24044
0,07	203,70743	20,7238	10,51134	7,73619	7,4807	6,87923	6,31894	5,54566	5,24326
0,08	192,07145	20,9068	10,63914	7,75873	7,48561	6,88269	6,31947	5,5493	5,24534
0,09	182,63789	21,10501	10,76416	7,77817	7,48945	6,88532	6,31975	5,55271	5,24694
0,1	174,82702	21,31383	10,88653	7,79523	7,49255	6,88738	6,31988	5,55597	5,24819

 Tableau 63 : la variation du diamètre en fonction de la fréquence propre du mode (n=5, m=variable) pour

conduite avec fluide E-E

diamètre				Fréquence	HzX10 ³				
0,04	313,12562	24,07406	11,94892	9,02196	8,80301	8,10087	7,46327	6,5388	6,18084
0,05	281,02039	24,14908	12,11474	9,07228	8,81976	8,11303	7,46687	6,54556	6,18801
0,06	258,03653	24,29648	12,27411	9,11126	8,83062	8,121	7,46883	6,55098	6,19274
0,07	240,60466	24,48593	12,42896	9,14292	8,83832	8,12659	7,46992	6,55568	6,19607
0,08	226,86112	24,70211	12,58014	9,16953	8,8441	8,1307	7,47052	6,55996	6,19853
0,09	215,71891	24,93626	12,72801	9,19247	8,84863	8,13383	7,47083	6,56398	6,20041
0,1	206,4933	25,18295	12,87275	9,21261	8,85229	8,13627	7,47096	6,56782	6,20189

Tableau 64 : la variation du diamètre en fonction de la fréquence propre du mode (n=6, m=variable) pour
conduite avec fluide E-E

diamètre				Fr	équence HzX1	10 ³			
0,04	361,16389	27,77414	13,79269	10,41048	10,15554	9,34461	8,61353	7,54652	7,13161
0,05	324,13324	27,86062	13,98418	10,46853	10,17483	9,35869	8,61763	7,55431	7,13988
0,06	297,62334	28,03061	14,1682	10,51347	10,18735	9,36792	8,61985	7,56054	7,14533
0,07	277,51718	28,24914	14,34701	10,54996	10,19622	9,37439	8,62108	7,56595	7,14917
0,08	261,66521	28,4985	14,52157	10,58065	10,20289	9,37915	8,62175	7,57089	7,152
0,09	248,81365	28,76861	14,6923	10,60709	10,20812	9,38278	8,62208	7,57551	7,15417
0,1	238,17272	29,05319	14,85942	10,6303	10,21234	9,38562	8,62222	7,57993	7,15588

 Tableau 65 : la variation du diamètre en fonction de la fréquence propre du mode (n=7, m=variable) pour conduite avec fluide E-E

diamètre				Fré	quence HzX1	0 ³			
0,04	409,21383	31,47479	15,63668	11,79918	11,5082	10,5886	9,76388	8,55437	8,08253
0,05	367,25656	31,57274	15,85383	11,86494	11,53005	10,60459	9,76848	8,56319	8,0919
0,06	337,21976	31,76534	16,06252	11,91584	11,54423	10,61508	9,77096	8,57024	8,09807
0,07	314,43868	32,01294	16,26528	11,95718	11,55428	10,62244	9,77233	8,57637	8,10242
0,08	296,47775	32,2955	16,46322	11,99193	11,56184	10,62786	9,77307	8,58195	8,10563
0,09	281,91642	32,60157	16,65682	12,02188	11,56775	10,63198	9,77343	8,58719	8,10808
0,1	269,85982	32,92405	16,84631	12,04816	11,57253	10,63521	9,77357	8,59219	8,11002

Tableau 66 : la variation du diamètre en fonction de la fréquence propre du mode (n=8, m=variable) pour
conduite avec fluide E-E

Epaisseur	Fréquence HzX10 ³											
0,001	1,74486199	0,70099376	0,36422781	0,29844214	0,26910983	0,20994053	0,20379977	0,18151539	0,17225387			
0,002	0,82129248	0,33727804	0,15583188	0,14533372	0,13241858	0,10359693	0,09911897	0,08917173	0,08311391			
0,003	0,53036371	0,21972426	0,10405316	0,08744672	0,08440611	0,06864449	0,06463168	0,0583636	0,05352332			
0,004	0,39293151	0,16350049	0,07912148	0,06464228	0,05674119	0,05130392	0,04768679	0,04290077	0,03904147			
0,005	0,31857353	0,13191943	0,06408225	0,0511561	0,04167433	0,04093297	0,03766686	0,03355911	0,03064342			
0,006	0,28221351	0,11273974	0,05388646	0,04222395	0,03412966	0,03250565	0,03104857	0,02727328	0,02518117			
0,007	0,29009374	0,10034291	0,04641419	0,03587746	0,02924582	0,02667436	0,02627169	0,022761	0,02132095			

Tableau 67 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=1, m=variable) pour

conduite avec fluide L-L

Epaisseur		Fréquence HzX10 ³										
0,001	6,68686061	2,72704883	1,40046809	1,17312031	1,04834034	0,8190645	0,79533589	0,70726838	0,65614834			
0,002	3,14268701	1,31095156	0,60937245	0,56275801	0,51621721	0,40457205	0,38782549	0,34702763	0,31775868			
0,003	2,02755615	0,85347416	0,40810263	0,34167292	0,32588281	0,26826274	0,25326983	0,22694001	0,20606716			
0,004	1,50099904	0,63475346	0,31003443	0,25271837	0,21973867	0,20064636	0,18697256	0,16671629	0,15146464			
0,005	1,21609795	0,51192488	0,25086308	0,20009705	0,16221816	0,15997466	0,1476886	0,13036987	0,11936464			
0,006	1,07675399	0,43728404	0,21075893	0,16524296	0,13378851	0,12674217	0,1216774	0,10598687	0,09818944			
0,007	1,10698832	0,38882109	0,18137578	0,14047237	0,11474574	0,10452517	0,10270277	0,08859737	0,08310156			

Tableau 68 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=2, m=variable) pour
conduite avec fluide L-L

Epaisseur				Fi	réquence HzX1	.0 ³			
0,001	14,9280763	6,10465303	3,12854059	2,6313187	2,34747139	1,83444838	1,78166486	1,58368058	1,46366211
0,002	7,01363808	2,93411769	1,36575143	1,25876441	1,1560023	0,90620187	0,86918416	0,77691476	0,70946938
0,003	4,52412293	1,90997015	0,91502581	0,7654799	0,72864379	0,6009471	0,56776012	0,5079987	0,4607226
0,004	3,34871611	1,42037	0,69502294	0,5662339	0,49161081	0,44953266	0,41917922	0,37315651	0,33898914
0,005	2,71275629	1,14544138	0,56226812	0,44837096	0,36330363	0,35832279	0,331109	0,29179766	0,26725467
0,006	2,40171015	0,97835899	0,47229218	0,37030384	0,29987544	0,28389227	0,27276642	0,23725445	0,21985976
0,007	2,46925045	0,86978669	0,40637056	0,31482009	0,25723467	0,23432906	0,23012666	0,19839863	0,18606192

Tableau 69 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=3, m=variable) pour
conduite avec fluide L-L

Epaisseur				Fi	réquence HzX1	10 ³				
					•					
0,001	26,4664654	10,8334053	5,5479832	4,67284455	4,16631135	3,25601016	3,16257502	2,81067303	2,59435401	
0,002	12,4332695	5,20659746	2,42473313	2,23322398	2,05171912	1,60848483	1,54310722	1,37877038	1,25795713	
0,003	8,01950875	3,38909545	1,62473766	1,35882248	1,29255148	1,06670375	1,00805744	0,9014924	0,81728582	
0,004	5,93566581	2,52025791	1,23402204	1,00516329	0,87225987	0,79797125	0,74427601	0,66218311	0,60153522	
,										
0,005	4,80820069	2,03238693	0,99824699	0,79595979	0,64484307	0,63600622	0,5879035	0,51780664	0,47430138	
0,006	4,25676222	1,73588597	0,83844763	0,65739307	0,53239543	0,50391335	0,48429588	0,42103907	0,39019718	
0,007	4,37653835	1,54316131	0,72136968	0,55891001	0,45671747	0,41606027	0,40852511	0,35212904	0,33020709	

Tableau 70 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=4, m=variable) pour
conduite avec fluide L-L

Epaisseur		Fréquence HzX10 ³											
0,001	26,4664654	10,8334053	5,5479832	4,67284455	4,16631135	3,25601016	3,16257502	2,81067303	2,59435401				
0,002	12,4332695	5,20659746	2,42473313	2,23322398	2,05171912	1,60848483	1,54310722	1,37877038	1,25795713				
0,003	8,01950875	3,38909545	1,62473766	1,35882248	1,29255148	1,06670375	1,00805744	0,9014924	0,81728582				
0,004	5,93566581	2,52025791	1,23402204	1,00516329	0,87225987	0,79797125	0,74427601	0,66218311	0,60153522				
0,005	4,80820069	2,03238693	0,99824699	0,79595979	0,64484307	0,63600622	0,5879035	0,51780664	0,47430138				
0,006	4,25676222	1,73588597	0,83844763	0,65739307	0,53239543	0,50391335	0,48429588	0,42103907	0,39019718				
0,007	4,37653835	1,54316131	0,72136968	0,55891001	0,45671747	0,41606027	0,40852511	0,35212904	0,33020709				

Tableau 71 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=5, m=variable) pour
conduite avec fluide L-L

Epaisseur				Fi	réquence HzX1	10 ³			
0,001	41,3016512	16,9132255	8,65871745	7,29766218	6,50482273	5,08372939	4,93803436	4,38823019	4,04814197
0,002	19,4014143	8,12835406	3,78628695	3,48610828	3,20335375	2,51141558	2,40958056	2,15258415	1,96317729
0,003	12,5136066	5,29082603	2,53722447	2,12169087	2,0175835	1,66553013	1,57415383	1,40741323	1,27573347
0,004	9,2617675	3,93439854	1,92702112	1,56950012	1,36167085	1,24596071	1,1622573	1,03378954	0,9390955
0,005	7,5023639	3,17274543	1,55879131	1,24285876	1,00682547	0,99302505	0,91806766	0,80839079	0,74050296
0,006	6,64184863	2,70984998	1,30921871	1,02650688	0,8313476	0,78679901	0,75626213	0,65733501	0,60920102
0,007	6,82878685	2,40893026	1,12636801	0,87273905	0,7131935	0,64971492	0,63789464	0,54978364	0,5155359

Tableau 72 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=6, m=variable) pour

conduite avec fluide L-L

Epaisseur				Fr	équence HzX1	0 ³			
0,001	59,433475	24,3440684	12,4607106	10,5057518	9,36298638	7,31759325	7,10802774	6,31634168	5,8249987
0,002	27,9180005	11,6993662	5,45039995	5,0174047	4,61089782	3,61498894	3,46859715	3,09835033	2,82511583
0,003	18,00637	7,61514799	3,6524791	3,05407945	2,90373115	2,39742304	2,26604497	2,02575714	1,83605824
0,004	13,3269865	5,66278138	2,77401471	2,25924042	1,95983798	1,7934988	1,67311998	1,4879726	1,35166689
0,005	10,7952173	4,56650809	2,24389672	1,78906482	1,44924676	1,42937767	1,32159898	1,16354741	1,06585788
0,006	9,55694349	3,9002432	1,88460185	1,4776428	1,19673048	1,1325465	1,08866314	0,94613987	0,87687016
0,007	9,82596888	3,46708625	1,62136264	1,25630514	1,0266615	0,93529111	0,91823344	0,7913604	0,7420472

Tableau 73 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=7, m=variable) pour
conduite avec fluide L-L

Epaisseur				Fr	équence HzX1	0^3 z			
0,001	80,8618156	33,1258911	16,9539374	14,297095	12,7407852	9,9575891	9,67254207	8,59499686	7,92490822
0,002	37,9829721	15,9196134	7,41706164	6,82710324	6,27434332	4,91919911	4,72015069	4,21606349	3,84376481
0,003	24,497763	10,362048	4,97049505	4,15598287	3,95098823	3,26237872	3,08372685	2,75652048	2,49825563
0,004	18,1312958	7,70539647	3,77499785	3,0743803	2,66675709	2,44058272	2,2768611	2,02472955	1,83924688
0,005	14,6867388	6,21366682	3,05355922	2,4345749	1,97210394	1,94506189	1,79849516	1,58327426	1,45036442
0,006	13,0020271	5,30705862	2,56459374	2,01079831	1,62854223	1,54115362	1,48149701	1,28745179	1,19320324
0,007	13,368064	4,71762289	2,20635074	1,70960614	1,39711992	1,27278714	1,24953987	1,07685775	1,00973979

Tableau 74 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=8, m=variable) pour
conduite avec fluide L-L

Epaisseur				Fr	équence HzX1	0^3 z			
0,001	98,22023	8,4019	4,04427	3,49214	1,79665	1,75597	1,47925	1,42823	1,41771
0,002	6,79657	4,10637	2,20681	1,40881	0,88251	0,87069	0,72798	0,70067	0,69356
0,003	4,17506	1,88378	1,46468	0,79874	0,57858	0,57619	0,4788	0,45955	0,45236
0,004	3,06112	1,2163	0,9703	0,53052	0,42958	0,42577	0,35472	0,33964	0,3322
0,005	2,38752	0,93465	0,6624	0,3891	0,34053	0,33326	0,2805	0,26804	0,26046
0,006	1,93841	0,76031	0,48448	0,30778	0,28024	0,26903	0,23108	0,22052	0,21286
0,007	1,62025	0,63991	0,37352	0,25755	0,23672	0,22135	0,19575	0,18671	0,17896

 $\label{eq:tableau} \textbf{Tableau 75}: la variation de Epaisseur en fonction de la fréquence propre du mode (n=1, m=variable) pour$

conduite avec fluide E-L

Epaisseur				Fre	équence HzX1	0^3 z			
0,001	161,40567	13,8353	6,66211	5,73205	2,97584	2,90654	2,45725	2,36998	2,33933
0,002	11,18796	6,74721	3,63436	2,31494	1,46194	1,44031	1,20958	1,16188	1,14612
0,003	6,85863	3,10483	2,40929	1,31376	0,95878	0,95232	0,79566	0,76141	0,74869
0,004	5,02507	2,00649	1,59594	0,87365	0,71145	0,70369	0,58951	0,56252	0,55038
0,005	3,91799	1,54075	1,09092	0,64165	0,56439	0,55016	0,46613	0,44391	0,43177
0,006	3,18033	1,25271	0,79876	0,50784	0,4652	0,44377	0,38394	0,36527	0,35294
0,007	2,65791	1,0539	0,61646	0,42477	0,39335	0,36561	0,32511	0,30938	0,29676

Tableau 76 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=2, m=variable) pour
conduite avec fluide E-L

Epaisseur				Fr	équence HzX1	0 ³ z			
0,001	225,23002	19,30673	9,29671	7,99238	4,16418	4,06212	3,44077	3,31835	3,26931
0,002	15,61255	9,41423	5,07119	3,2288	2,04635	2,01211	1,69379	1,62672	1,60236
0,003	9,5654	4,33571	3,36105	1,83285	1,34289	1,32938	1,11422	1,0658	1,04726
0,004	7,00705	2,80155	2,2273	1,21925	0,99596	0,98269	0,82555	0,78725	0,77015
0,005	5,46292	2,15056	1,5233	0,89578	0,78992	0,76843	0,65277	0,62123	0,60432
0,006	4,4342	1,7482	1,11577	0,70906	0,65133	0,61984	0,53763	0,51119	0,49404
0,007	3,70569	1,47055	0,86142	0,59296	0,55092	0,51093	0,4552	0,43301	0,41542

Tableau 77 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=3, m=variable) pour
conduite avec fluide E-L

Epaisseur				Fré	quence HzX1	0^3 z			
0,001	289,25696	24,79036	11,93671	10,25919	5 <i>,</i> 35533	5,21939	4,42608	4,26873	4,2018
0,002	20,04785	12,0895	6,51104	4,14507	2,63215	2,58478	2,17887	2,09261	2,05976
0,003	12,27963	5,56967	4,31514	2,3532	1,72776	1,70722	1,43334	1,3709	1,34653
0,004	8,99483	3,59816	2,86048	1,5656	1,2811	1,26222	1,06201	1,01253	0,99043
0,005	7,01249	2,76156	1,9569	1,15042	1,01592	0,98716	0,83973	0,79896	0,77726
0,006	5,69189	2,24469	1,43364	0,91066	0,83782	0,79633	0,69159	0,65745	0,63546
0,007	4,75671	1,88808	1,10702	0,76147	0,70878	0,65657	0,58553	0,55691	0,53434

Tableau 78 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=4, m=variable) pour

conduite avec fluide E-L

Epaisseur				Fréq	uence HzX10 ³	z			
0,001	2,48E+05	353,37277	30,27934	14,57907	12,52884	6,54768	6,37742	5,41218	5,21997
0,002	1,21E+04	24,48786	14,76838	7,95222	5,0624	3,21854	3,15786	2,66432	2,55893
0,003	5569,6676	14,99716	6,80497	5,27026	2,8741	2,11294	2,08541	1,75271	1,6763
0,004	3598,16047	10,98515	4,39545	3,49446	1,91229	1,56651	1,542	1,29865	1,23803
0,005	276,15594	8,5641	3,37309	2,39104	1,40528	1,24212	1,20611	1,02684	0,97687
0,006	224,46909	6,95127	2,74163	1,75188	1,11241	1,02445	0,97298	0,84568	0,80384
0,007	188,80766	5,80916	2,30599	1,3529	0,93012	0,86677	0,80235	0,71596	0,68093

Tableau 79 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=5, m=variable) pour
conduite avec fluide E-L

Epaisseur	Fréquence HzX10 ³ z											
0,001	417,53441	35,77105	17,22264	14,79996	7,74063	7,53583	6,39868	6,17163	6,0695			
0,002	28,93031	17,44911	9,39409	5,98028	3,8052	3,73115	3,14996	3,02548	2,97585			
0,003	18,46719	12,28293	3,60397	3,11712	2,51	2,39799	2,1263	2,01271	1,92048			
0,004	12,9768	5,19309	4,12885	2,25915	1,85203	1,82191	1,53538	1,46364	1,43155			
0,005	10,11676	3,98489	2,82545	1,66025	1,46841	1,42516	1,21402	1,15487	1,12357			
0,006	0,08212	0,03239	0,0207	0,01314	0,01211	0,0115	0,01	0,0095	0,00919			
0,007	0,06862	0,02724	0,01599	0,01099	0,01025	0,00948	0,00846	0,00805	0,00772			

Tableau 80 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=6, m=variable) pour

conduite avec fluide E-L

Epaisseur				Fré	équence HzX1	$0^{3}z$			
0,001	481,72179	41,26427	19,86687	17,07189	8,9339	8,69445	7,38539	7,12353	7,00393
0,002	33,37409	20,13088	10,83632	6,89845	4,39203	4,30456	3,63571	3,49213	3,43417
0,003	20,43657	9,27733	7,18185	3,91662	2,8837	2,84223	2,39177	2,28748	2,24569
0,004	14,96918	5,99092	4,76348	2,6061	2,13763	2,10189	1,77216	1,68932	1,65223
0,005	11,67002	4,59684	3,26001	1,91528	1,69476	1,64427	1,40124	1,33292	1,29681
0,006	9,47227	3,73607	2,38886	1,51614	1,39792	1,32652	1,15401	1,09682	1,06028
0,007	0,07916	0,03142	0,01845	0,01268	0,01183	0,01094	0,00977	0,00929	0,00892

Tableau 81 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=7, m=variable) pour
conduite avec fluide E-L

Epaisseur				Fre	équence HzX1($\mathbf{)}^{3}\mathbf{z}$			
0,001	545,92413	46,75832	22,51146	19,34428	10,12735	9,85318	8,37221	8,07555	7,93852
0,002	37,81863	22,81325	12,27876	7,81678	4,97893	4,87803	4,12151	3,95886	3,89256
0,003	23,15729	10,51391	8,13796	4,43805	3,26917	3,22074	2,71136	2,59316	2,54557
0,004	16,962	6,78885	5,39823	2,95309	2,42326	2,38191	2,00897	1,91502	1,87294
0,005	13,22363	5,20886	3,69466	2,17034	1,92114	1,86341	1,58849	1,51099	1,47008
0,006	10,7333	4,23343	2,70747	1,71805	1,5847	1,50334	1,30821	1,24334	1,20196
0,007	8,96979	3,56058	2,09116	1,43637	1,34101	1,23998	1,10748	1,05325	1,01071

Tableau 82 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=8, m=variable) pour

conduite avec fluide E-L

Epaisseur				Fréqu	ience HzX10 ³	z			
0,001	2050,06827	62,1563	26,01455	20,38861	19,69873	18,62472	17,01711	14,98845	14,20974
0,002	527,41769	35,27653	12,67243	9,98431	9,64419	8,98588	8,22697	7,3805	6,94733
0,003	216,13421	21,8246	8,24624	6,54871	6,42311	5,86952	5,25258	4,84615	4,52403
0,004	139,19901	13,79823	6,04731	4,89819	4,80297	4,33869	3,7933	3,5789	3,3079
0,005	102,61283	9,51429	4,73773	3,96461	3,79689	3,425	2,94844	2,8187	2,57648
0,006	80,26424	7,09227	3,87044	3,34498	3,12674	2,81711	2,40459	2,31311	2,09155
0,007	80,26424	7,09227	3,87044	3,34498	3,12674	2,81711	2,40459	2,31311	2,09155

Tableau 83 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=1, m=variable) pour
conduite avec fluide E-E

Epaisseur	Fréquence HzX10 ³ z											
0,001	3359,45	102,49	43,21	33,62	32,62	30,61	28,29	24,85	23,44			
0,002	867,474	57,997	21,036	16,461	15,899	14,85	13,668	12,244	11,464			
0,003	356,698	35,785	13,678	10,797	10,559	9,736	8,723	8,045	7,468			
0,004	229,611	22,648	10,021	8,06	7,903	7,208	6,302	5,945	5,463			
0,005	169,101	15,636	7,842	6,52	6,254	5,693	4,9	4,685	4,258			
0,006	132,184	11,661	6,398	5,507	5,151	4,683	3,997	3,847	3,461			
0,007	107,146	9,247	5,369	4,77	4,368	3,961	3,37	3,252	2,907			

Tableau 84 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=2, m=variable) pour
conduite avec fluide E-E

Epaisseur	Fréquence HzX10 ³ z											
0,001	4681,48343	143,10302	60,51722	46,94642	45,60406	42,68657	39,62003	34,77422	32,74805			
0,002	1210,35262	80,90244	29,45491	22,98595	22,19646	20,74963	19,13989	17,13947	16,01744			
0,003	498,24063	49,8728	19,14723	15,07509	14,72843	13,62486	12,21359	11,26384	10,43664			
0,004	320,67233	31,57395	14,02362	11,24671	11,02909	10,09228	8,82344	8,32545	7,63651			
0,005	236,09505	21,80481	10,96986	9,09709	8,73068	7,97212	6,86142	6,5626	5,9534			
0,006	184,51403	16,26378	8,94631	7,68821	7,19215	6,55784	5,59816	5,38981	4,84195			
0,007	149,54356	12,89419	7,50426	6,66386	6,09925	5,54756	4,71988	4,55627	4,07214			

Tableau 85 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=2, m=variable) pour
conduite avec fluide E-E

Epaisseur				Fréqu	uence HzX10 ³	Z			
0,001	6007,63614	183,81382	77,85749	60,30654	58,60572	54,79725	50,97097	44,72209	42,07838
0,002	1554,13054	103,86958	37,89108	29,52555	28,50774	26,6609	24,6214	22,0452	20,5826
0,003	640,09566	64,00299	24,6282	19,36326	18,90856	17,52022	15,7098	14,48932	13,41245
0,004	411,94387	40,52432	18,03524	14,44131	14,16305	12,98181	11,34958	10,71051	9,81504
0,005	303,25286	27,98935	14,10539	11,68113	11,21396	10,25556	8,82644	8,44337	7,6532
0,006	236,97745	20,87677	11,50116	9,87529	9,23839	8,43626	7,20192	6,935	6,22689
0,007	192,05233	16,54949	9,64552	8,56342	7,83486	7,13644	6,07245	5,86288	5,23972

Tableau 86 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=3, m=variable) pour
conduite avec fluide E-E

Epaisseur	Fréquence HzX10 ³ z								
0,001	7335,61739	224,56567	95,21258	73,6806	71,61534	66,92152	62,3299	54,67901	51,41878
0,002	1898,30357	126,86403	46,33472	36,07172	34,82487	32,57723	30,10701	26,95523	25,15273
0,003	782,08741	78,15188	30,11421	23,65562	23,0934	21,41857	19,20857	17,71753	16,39148
0,004	503,30784	49,48559	22,05073	17,63924	17,30072	15,87348	13,87753	13,0975	11,99595
0,005	370,48319	34,18068	17,24411	14,26819	13,70007	12,54066	10,79286	10,32557	9,35493
0,006	289,49998	25,49444	14,05876	12,06507	11,28694	10,31605	8,80682	8,4813	7,61344
0,007	234,61037	20,20834	11,78921	10,46532	9,57244	8,72648	7,42599	7,17038	6,40848

Tableau 87 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=4, m=variable) pour
conduite avec fluide E-E

Epaisseur	Fréquence HzX10 ³ z								
0,001	7335,61739	224,56567	95,21258	73,6806	71,61534	66,92152	62,3299	54,67901	51,41878
0,002	1898,30357	126,86403	46,33472	36,07172	34,82487	32,57723	30,10701	26,95523	25,15273
0,003	782,08741	78,15188	30,11421	23,65562	23,0934	21,41857	19,20857	17,71753	16,39148
0,004	503,30784	49,48559	22,05073	17,63924	17,30072	15,87348	13,87753	13,0975	11,99595
0,005	370,48319	34,18068	17,24411	14,26819	13,70007	12,54066	10,79286	10,32557	9,35493
0,006	289,49998	25,49444	14,05876	12,06507	11,28694	10,31605	8,80682	8,4813	7,61344
0,007	234,61037	20,20834	11,78921	10,46532	9,57244	8,72648	7,42599	7,17038	6,40848

 $\label{eq:tableau} \textbf{Tableau 88}: la variation de Epaisseur en fonction de la fréquence propre du mode (n=5, m=variable) pour$

conduite avec fluide E-E

Epaisseur	Fréquence HzX10 ³ z								
0,001	8664,54832	265,33854	112,57514	87,06179	84,6289	79,05278	73,69278	64,64049	60,76429
0,002	2242,67955	149,87263	54,78213	42,62125	41,14494	38,49612	35,59465	31,86743	29,72537
0,003	924,14887	92,31048	35,60278	27,95013	27,28065	25,31843	22,70861	20,94711	19,37216
0,004	594,71917	58,4525	26,06817	20,83886	20,44032	18,76622	16,40638	15,48545	14,17809
0,005	437,75083	40,37551	20,38444	16,85681	16,18765	14,82659	12,75997	12,2085	11,05765
0,006	342,053	30,11451	16,61774	14,25623	13,33667	12,19652	10,4123	10,02816	9,0008
0,007	277,19385	23,86901	13,93412	12,36845	11,31101	10,3171	8,78003	8,47833	7,57782

Tableau 89 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=6, m=variable) pour
conduite avec fluide E-E

Epaisseur	Fréquence HzX10 ³ z								
-									
0,001	9994,01532	306,12299	129,94171	100,44693	97,64446	91,1879	85,05772	74,60444	70,11262
0,002	2587,16829	172,88916	63,23157	49,17263	47,46661	44,41642	41,08337	36,7808	34,2994
0,003	1066,24847	106,47455	41,09272	32,2458	31,46925	29,2191	26,20932	24,17742	22,35375
0,004	686,15659	67,42256	30,08667	24,0394	23,58101	21,65953	18,9357	17,87391	16,36089
0,005	505,03915	46,57227	23,52564	19,4463	18,67604	17,11297	14,72746	14,09181	12,76092
0,006	394,62298	34,7359	19,17749	16,44817	15,38705	14,07735	12,01808	11,57532	10,3886
0,007	319,79152	27,53067	16,07969	14,27226	13,05013	11,90803	10,13432	9,7865	8,74746

Tableau 90 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=7, m=variable) pour
conduite avec fluide E-E

Epaisseur	Fréquence HzX10 ³ z								
0,001	99940,2	3061,23	1299,42	1004,47	976,445	911,879	850,577	746,044	701,126
0,002	2587,17	172,889	63,2316	49,1726	47,4666	44,4164	41,0834	36,7808	34,2994
0,003	1066,25	106,475	41,0927	32,2458	31,4692	29,2191	26,2093	24,1774	22,3537
0,004	68,6157	6,74226	3,00867	2,40394	2,3581	2,16595	1,89357	1,78739	1,63609
0,005	50,5039	4,65723	2,35256	1,94463	1,8676	1,7113	1,47275	1,40918	1,27609
0,006	39,4623	3,47359	1,91775	1,64482	1,53871	1,40773	1,20181	1,15753	1,03886
0,007	31,9792	2,75307	1,60797	1,42723	1,30501	1,1908	1,01343	0,97865	0,87475

Tableau 91 : la variation de Epaisseur en fonction de la fréquence propre du mode (n=8, m=variable) pour
conduite avec fluide E-E

Résumé

L'étude présentée dans ce mémoire concerne l'étude de l'interaction fluide- structure dans une conduite cylindrique de section circulaire avec écoulement d'un fluide laminaire et incompressible. Le fluide circulant dans la conduite crée une interaction « fluide-structure » qui se traduit par une diminution de la rigidité.

Les lois de comportement ont été établies par la relation déplacements-contraintes pour la conduite, l'équation de Navier-Stockes pour le fluide et le principe du couplage par pénalité pour l'interaction fluide structure. Le principe des travaux virtuels a été utilisé pour la détermination de l'équation du mouvement de la conduite avec fluide sous forme matricielle.

La modélisation de la conduite et du fluide est faite par la méthode des éléments finis standards, avec l'utilisation d'un élément fini de type triangulaire à trois nœuds (T3) et trois degrés de liberté par nœud.

Les fréquences propres du système sont calculées à l'aide d'un programme élaboré. Après avoir étudié la convergence et validé le programme avec plusieurs articles, plusieurs exemples ont été étudiés. L'étude de ces exemples nous ont permis de déterminer l'influence des paramètres physiques et géométriques de la structure couplée. Parmi ces paramètres nous citons la variation du diamètre de la conduite, son épaisseur, le rapport de l'épaisseur par rapport au diamètre de la conduite, le coefficient de poisson, la masse volumique du fluide, les conditions aux limites, etc...

Mots-Clés : interaction fluide structure, Canal horizontal, conduite cylindrique, élément finie, méthode de pénalité, mécanique des milieux continue, hydrodynamique, mécanique des fluides, transporteur du fluide.

Abstract

The study presented in this thesis concerns the study of fluid-structure interaction in a cylindrical pipe of circular section with laminar flow of an incompressible fluid. The fluid flowing in the pipe creates interaction "fluid-structure" which results in a decrease in rigidity.

The constitutive equations were determined by the displacement-stress relationship for the conduct, the Navier-Stokes for the fluid and the principle of coupling the penalty for fluid structure interaction.

The virtual works was used to determine the equation of motion of the driving fluid in matrix from. Modeling of the pipe and the fluid is made by the standard finite element method with the use of a finite element type three-node triangular (T3) and three degrees of freedom per node.

The frequencies of the system are calculated using a program developed. After studying the convergence and validated the program with several items, several examples have been studied. The study of these examples has allowed us to determine the influence of physical and geometrical parameters of the coupled structure.

Among these parameters we cite the change in pipe diameter, thickness, ratio of thickness to the diameter of the pipe, Poisson's ratio, the fluid density, boundary conditions, etc. ...

Key word: fluid interaction structure, horizontal Channel, cylindrical control, finite element, method of penalty, and mechanics of the mediums continues hydrodynamic, mechanics of the fluids, conveyor of the fluid.