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Abstract

This thesis presents a free vibration analysis of functionally graded material (FGM)
sandwich plates with porosity distribution conducted using the p-version of the finite element
method, which is based on the first-order shear deformation theory. The sandwich plate
consisted of two FGM face sheet layers and a homogeneous core layer. Five porosity
distribution models of FGM sandwich plates were assumed and analyzed. This study
systematically explored the impact of the thickness ratio, boundary conditions, volume fraction
exponents, and porosity coefficients of the top and bottom layers of FGM sandwich plates on
the natural frequency. This work marks the first comprehensive analysis of these factors under
various boundary conditions for a functionally graded sandwich plate, providing valuable
insights into their vibrational dynamics. The findings are contextualized within the existing
literature and demonstrate the accuracy and efficiency of the model, establishing it as a robust

numerical tool for studying the free vibration analysis of FGM sandwich plates with porosity.

Keywords: FGM sandwich plate; free vibration analysis; p-version of finite element method;

porosity distribution.



Résumé

Cette these présente une analyse de vibration libre des plaques sandwich en matériau a
gradient fonctionnel (FGM) avec une distribution de porosité en utilisant la méthode des
éléments finis de la p-version, basée sur la théorie de la déformation en cisaillement du premier
ordre. La plague sandwich se composait de deux couches de feuilles FGM et d'une couche
centrale homogéne. Cing modeéles de distribution de porosité des plagues sandwich FGM ont
été supposeés et analysés. Cette étude a exploré systématiquement l'impact du rapport
d'épaisseur, des conditions aux limites, des exposants de fraction volumique et des coefficients
de porosité des couches supérieure et inférieure des plaques sandwich FGM sur la fréquence
naturelle. Ce travail marque la premiére analyse compléte de ces facteurs sous différentes
conditions aux limites pour une plague sandwich a gradient fonctionnel, offrant des
perspectives précieuses sur leur dynamique vibratoire. Les conclusions sont contextualisées
dans la littérature existante et démontrent I'exactitude et I'efficacité du modele, I'établissant
comme un outil numérique robuste pour I'étude de l'analyse de vibration libre des plaques

sandwich FGM avec porosite.

Mots-clés : plaque sandwich FGM ; analyse de vibration libre ; p-version de la méthode des
éléments finis ; distribution de porosité.
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General Introduction

General Introduction

Scientific advancements in material technology and the evolution of modern industries have
spurred the demand for increasingly advanced materials tailored to specific properties. This
demand has catalyzed the transformation of materials from their basic states into composites,
where the combination of different materials confers superior properties. Composite materials,
typically composed of a matrix with embedded reinforcement, offer enhanced properties, such
as stiffness, fatigue resistance, and weight reduction. However, conventional composite
materials often suffer from issues such as discontinuity of properties and stress concentrations
at interfaces, which lead to structural vulnerabilities, particularly in high-temperature

environments.

One innovative solution to these challenges is the utilization of Functionally Graded
Materials (FGM), where the material properties vary continuously with the thickness. By
eliminating sharp interfaces and introducing gradient transitions, FGM offer improved
structural integrity and tailored performance, reminiscent of those of natural materials such as
bones and teeth. Originally conceptualized in the 1980s for aerospace and fusion reactor
applications, FGM have been widely used in various engineering sectors including aerospace,
power generation, and machinery. The increasing application of FGM underscores the

importance of understanding their complex behavior and performance characteristics.

In this context, this thesis focuses on the application of FGM in sandwich structures.
Sandwich structures consisting of lightweight cores sandwiched between strong face sheets
offer unique advantages in engineering applications. By integrating FGM into sandwich
structures, we aim to enhance their mechanical and functional properties while addressing the

current limitations in weight and strength.

One specific challenge addressed in this study is the impact of porosity on the mechanical
behavior of FGM sandwich plates. Porosity can lead to reduced strength and stiffness as well
as increased susceptibility to fatigue and failure. Investigating the effects of porosity on FGM
sandwich plates is a critical aspect of our research as it allows the development of strategies to

mitigate these effects and optimize the performance of these structures.
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The motivation behind this research stems from the need to advance materials science and
engineering, particularly in areas where lightweight and high-strength materials are critical,
such as the aerospace and automotive industries. By studying the behavior of FGM sandwich
structures, including the effects of porosity, we seek to contribute to the development of

innovative solutions to real-world engineering challenges.

FGM sandwich structures exhibit complex behaviors that require sophisticated numerical
tools for analysis. The finite element method is a powerful and efficient method that is widely
used in the analysis of the complex behavior of these materials. The objectives of this thesis are
to investigate the mechanical behavior and manufacturing techniques of FGM sandwich
structures, with a specific focus on understanding the effects of porosity on their performance.

In general, the behavior of structural elements made of FGM sandwiches, for instance plates,
can be described by three-dimensional (3D) or two-dimensional (2D) theories. Although the
3D approach is more accurate, it is difficult to implement. Therefore, the 2D approach is widely
used owing to its simplicity and low computational costs. For decades, classical and first-order

shear deformation theories have been used to analyze FGM structural component behaviors.

By addressing these objectives, including the study of porosity effects, we aim to contribute
to a broader understanding of FGM and their applications in engineering, paving the way for

the development of advanced materials with tailored properties and enhanced performance.
Aims and objectives

The overall aim of this thesis is to advance the understanding of the linear behavior of FGM
sandwich plates with porosity using the p-version of the finite element method. This was

accomplished by achieving four main objectives:

e Verify p-version of the FEM numerical model based on the first-order shear deformation
theory.

e Investigate the linear free-vibration behavior of isotropic and FGM sandwich plates with
different parameters.

o We further explored the linear free vibration behavior of the FGM sandwich plate.

e Effect of porosity distribution on free vibration of functionally graded sandwich plate.
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Thesis Organization

The present work deals with the free vibrations of an FGM sandwich plate with porosity, which

is organized into six chapters as follows:

Chapter I, presents a brief literature review related to the mechanical behavior of FGM
sandwich plates, considering the influence of porosity distribution within the layers and
focusing on various aspects of FGM sandwich plates, with particular attention to their
vibration characteristics. Special emphasis is placed on investigating the effects of the
material gradient distribution, structural composition, and porosity distribution on the

vibration response of the FGM sandwich plates.

Chapter 11, provides an overview of the key concepts and methodologies relevant to
modeling sandwich structures and FGM. In Section 11.1, we delve into the mechanical
properties of sandwich structures, encompassing different assembly types, modes of
damage, adhesive requirements, and material advantages and drawbacks, while
surveying various modeling techniques. section 11.2, offers an examination of FGM,
including diverse manufacturing approaches, with a particular emphasis on the solid
freeform fabrication method owing to its inherent advantages and manufacturing

adaptability. Furthermore, it elucidates the multiple application domains.

Chapter 111, we present the main plate theories frequently employed to model FGM
sandwich plates, alongside a layered approach aimed at elucidating the interfacial
influences observed in conventional composite materials. Additionally, was introduced
to describe the particularities of the p-version of the finite element method for modeling

the free vibration of plates.

Chapter 1V addresses several key aspects that are essential for our investigation. In
Section 1V.1, we scrutinized the geometric layout of the FGM sandwich plate model.
Subsequently, we delve into the mathematical formulation of the first-order shear
deformation theory. In addition, we amalgamate and elaborate on the element

description, displacement interpolation, and shape functions pertinent to the P-version
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of the finite element method. Moving forward, we elucidate the derivation of equations
for strain, kinetic energy, and motion, contributing to a thorough delineation of the plate
behavior. Moreover, we discuss the validation study conducted to ascertain the accuracy
and dependability of our numerical approach. In Section 1V.2, computer implementation
and computational considerations are employed to efficiently conduct calculations on
the machines. We then embark on a parametric study in section 1V.3, aimed at exploring
the effects of varying parameters, such as the volumetric fraction of layers, on the free

vibration analysis of functionally graded sandwich plates.

Chapter V, the effect of porosity distribution on free vibration of functionally graded
sandwich plate is investigated. In Section V.1, we define five porosity distribution
models and study the convergence and comparison of the FGM sandwich plate with
porosity with results in the literature to verify the accuracy of the model for intact FGM
plates. In Section V.2, we present a comprehensive parametric study to investigate the
influence of key factors, including the effect of the thickness ratio, boundary conditions,
volume fraction exponents, and porosity coefficients of the top and bottom layers of the

FGM sandwich plates on the natural frequency.

Chapter VI, the conclusions and potential further work are discussed.
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Literature Review

In this chapter, a brief literature review is presented, focusing on two key points: the mechanical
behavior of functionally graded material sandwich plates and the effects of porosity distribution

on the vibration response of the FGM sandwich plates.
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1.1 Vibration of FGM plates

In recent years, the study of the mechanical behavior of FGM plates has emerged as a focal
point in materials science and engineering. Researchers have turned to sophisticated analytical
and computational methods to unravel the complexities of mechanical performance. The
analysis of FGM plates has become increasingly important in materials science and engineering
because of their spatial variations in material composition and properties, offering diverse
applications across industries. This introduction sets the stage for exploring the mechanical

intricacies and performance of FGM plates using atomistic methods.

The general idea of The concept of FGM was Sendai Group Establishing the
structural gradients FGM first considered in Japan proposed a concept of concept of FGM
was initially proposed for during the design of a metallic FGM (Nino,

polymeric materials space shuttle Koizumi and Hirai)

a conterence

1972 1983 1984 1985

V0 years

1986 1987 2021
Investigation and research Launching a National The 1st International The 16th International
conducted for FGM (with Project called FGM Part | Conference on Conference on
Special Coordination (with Special Coordination Functionally Graded Functionally Graded
Funds for Promoting Funds for Promoting Materials (FGM 1990) Materials (FGM 2021)
Science and Technology) Science and Technology) in Sendai, Japan in Hartford, USA

Figure I-1: Historical overview of relevant milestones in the research and development of
FGM [1]

Several studies have been conducted on the vibration of FGM plates. Swaminathan et al. [2]
provided a comprehensive review encompassing various analytical and numerical methods
employed for this purpose, focusing on the stress, vibration, and buckling characteristics of
FGM plates. For example, analytical methods such as the classical plate theory and numerical
techniques such as finite element analysis have been utilized to predict the behavior of FGM
plates under different loading conditions.

Similarly, Swaminathan et al. [3] used thermal analysis to discuss mathematical
idealizations, modeling techniques, and solution methods pertinent to FGM plates subjected to
thermal loads. They explored various temperature profiles and their effects on the mechanical
response of the FGM plates. For instance, linear and nonlinear temperature gradients across the
thickness of a plate have been investigated to understand thermal stresses and deformation
behaviors.

Alimoradzadeh et al. [4] extended this study by exploring the nonlinear dynamic responses

of FGM composite beams on nonlinear viscoelastic foundations under moving mass loads and




Literature Review

temperature variations. They conducted numerical simulations to analyze the influence of the
temperature rise, material distribution parameters, and moving mass characteristics on the
dynamic behavior of FGM beams. Their study highlighted the importance of considering
material nonlinearity and dynamic loading conditions in the design of FGM.

Another facet of research, elucidated by Thai et al. [5], involved a comprehensive review of
various theories for modeling and analyzing functionally graded plates and shells, emphasizing
single-layer theories and three-dimensional elasticity solutions. They provided examples of
theoretical models, such as first-order shear deformation theory, which has been widely used to
predict the global responses of functionally graded plates and shells under mechanical and
thermal loadings.

Furthermore, Gupta and Talha [6] presented an extensive review of the structural response
of FGM and structures, offering insights into thermo-electro-mechanical loadings and
fabrication procedures. They discussed case studies of FGM plates and shells subjected to
combined thermal and mechanical loading conditions, highlighting the importance of

considering material heterogeneity and environmental effects in the design and analysis.
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Figure 1-2: The annual number of publications using the search titles “functionally graded

materials”. (Based on the Web of Science search system in the duration)

Kanu et al. [7] focused on fracture analysis of FGM materials, highlighting computational
advances such as multiscale simulations and extended finite element methods. They provided
examples of crack propagation studies in FGM structures using advanced numerical techniques,
demonstrating the utility of these methods in predicting the fracture behavior and structural

integrity.
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Additionally, Toudehdehghan et al. [8] provided an overview of FGM applications,
manufacturing processes, and mathematical idealizations, underscoring the need for simplified
homogenization schemes for efficient analysis. They discussed examples of homogenization
techniques used to model FGM microstructures and predict macroscopic material properties,
highlighting the importance of accurate material characterization and modeling assumptions.

The reviewed literature underscores the multifaceted exploration of FGM plates,
encompassing various analytical, numerical, and experimental approaches. These
investigations have significantly contributed to the understanding of the mechanical, thermal,
and dynamic responses of FGM structures, paving the way for advancements in material science

and engineering applications.

.2 Vibration of FGM sandwich plates

In recent years, the study of vibrations in FGM plates has become a focal point of research.
Research on the vibration behavior of FGM sandwich plates has been extensively explored by
scholars aiming to enhance our understanding of these complex structures in various
applications. Garg et al. [9] conducted a thorough literature review on sandwich FGM structures
and explored analysis methods and theories across plates, beams, and shells, considering factors
such as porosity and hygrothermal loading, to set a benchmark for future research.

Dat et al. [10] investigated the free vibration of functionally graded sandwich plates with
stiffeners using the finite element method. They employed a power-law distribution for the
material properties in the thickness direction and conducted a parametric study to analyze the
influence of the material distribution and stiffener parameters on the plate vibration
characteristics. Wang [11] aims to develop a robust algorithm for analyzing the free vibration
of moderately thick circular cylindrical shells under various conditions, crucial for applications
in structural, rock, and aerospace engineering. By proposing an adaptive finite element method,
they sought to enhance the accuracy and reliability of solutions compared to conventional finite
element methods for such analyses. Wang et al. [12] address the dynamic behavior of
moderately thick circular cylindrical shells commonly used in engineering applications,
emphasizing the impact of micro-crack damage on vibration characteristics. They highlighted
the importance of accurately capturing free vibration frequency and mode changes due to
stiffness weakening in damaged regions and proposed improvements to conventional finite
element methods for better precision in local oscillation solutions.

Belalia examined the free vibrations of FGM sandwich plates using von Karman’s

assumptions and a geometrically nonlinear formulation [13]. The p-version of the FEM was
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used for the geometrically nonlinear free vibration of the bi-FGM sandwich plates [14]. The bi-
FGM sandwich elliptic plates’ linear and geometrically nonlinear free vibrations was explored
by Belalia [15] using a curved hierarchical finite element. Wang [16] tackles precision
challenges in eigensolutions and buckling load predictions for curved beams with crack
damage, introducing a finite element method and advocating for adaptive mesh refinement to
enhance solution accuracy. Wang et al. [17] proposed an hp-version adaptive finite element
method for precise eigensolutions in moderately thick circular cylindrical shell vibrations,
integrating error homogenization and higher-order interpolation to efficiently achieve high-
precision results. Burlayenko et al. [18] developed a three-dimensional modeling approach to
understand the free vibrations and static responses of FGM sandwich plates. Their work utilized
the finite element method within the ABAQUSTM code, incorporating a 3-D brick graded finite
element for an accurate representation. Parametric studies were conducted by varying the
volume fraction profile and ceramic volume fraction, providing insights into material behavior.
Irfan et al. [19] reviewed finite element formulations developed after 2000 for analyzing
sandwich plates, covering theories such as first-order shear deformation, higher-order shear
deformation, and mixed solid-shell elements. Their comprehensive review addressed emerging
areas, including piezoelectric structures, and reflected the evolution of analytical methods for
understanding the behavior of complex sandwich structures. Yaylaci et al. [20] tackled the
continuous and discontinuous contact problems of functionally graded layers on rigid
foundations. The study involved analytical and finite-element solutions, demonstrating the
compatibility between the two approaches. Their work emphasized the importance of material
properties and loading conditions in understanding the contact behavior of FGM layers. Zhang
et al. [21] delved into stress intensity factors (SIFs) in linear elastic fracture mechanics,
extracting SIFs for various crack configurations using the p-version finite element method (P-
FEM). Their study verified the effectiveness and accuracy of P-FEM in comparison with other
numerical methods, highlighting its significance in assessing structural and material damage.
Recent studies by Ghazwani and Van Vinh introduced novel theories for the bending and
free vibration analysis of bifunctionally graded sandwich plates. Ghazwani's [22] study focused
on establishing an nth-order shear deformation theory and simplifying the analysis by
incorporating only four unknown displacement functions. Van Vinh [23] proposed a hybrid
quasi-3D theory, combining polynomial and trigonometric functions to capture the distribution
of transverse shear strains and thickness stretching effects. Both studies contributed to

advancing the understanding of complex sandwich plate structures.
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Kumar et al. [24] conducted a comprehensive review of the literature on buckling and free
vibration analysis of shear deformable isotropic and laminated composite sandwich plates and
shells. Their article covered various theories, finite-element models, and experimental methods.
Meksi et al. [25] introduced a new shear deformation plate theory for illustrating the bending,
buckling, and free vibration responses of functionally graded material sandwich plates. Their
theory involves a displacement field with integrals, accounting for a quasi-parabolic
distribution of the transverse shear stress. The proposed model was validated through analytical
solutions and the influence of critical parameters on the behavior of functionally graded
sandwich plates.

In summary, the culmination of these research endeavors to understand the dynamics and
behavior of functionally graded material sandwich plates and lay a solid foundation for future
investigations in the field of structural mechanics. Areas ripe for exploration include the
development of advanced analytical and computational methods to more accurately model the
complex behaviors exhibited by FGM sandwich plates under various loading conditions.
Furthermore, there is a growing need to explore novel materials and manufacturing techniques
that can further enhance the performance and functionality of FGM sandwich plates,
particularly in demanding applications, such as aerospace, automotive, and civil engineering.
Additionally, future research could delve deeper into the optimization of the porosity
distribution patterns and material compositions to tailor the mechanical properties of FGM
sandwich plates for specific applications, thereby maximizing their efficiency and

effectiveness.

1.3 Vibration of FGM sandwich plates with porosity

In the fabrication process of FGM sandwich plates, the constituent materials have different
solidification temperatures, which causes the creation of porosities or microscopic voids. Many
studies have been conducted that have considered the impact of porosity on the free vibration
of FGM sandwich plates. Hadji et al. [26] investigates the effect of porosity distribution pattern
on the free vibration analysis of porous FG plates, considering various boundary conditions and
material variations. Heshmati and Jalali [27] explored the free vibration behavior of sandwich
circular and annular plates with a core made of materials with functionally graded porosity and

analyzed different porosity distributions in the radial direction.

12



Literature Review

Figure 1-3: A top view of a radial cross-section of a cylinder showing graded porosity

distribution in the radial direction [27]

Daikh and Zenkour [28] propose a new porosities distribution for bending analysis of FGM
sandwich plates, while Daikh and Zenkour [29] study the free vibration and mechanical
buckling of porous functionally graded sandwich plates, utilizing a new and simple higher-
order shear deformation theory.

Zhang et al. [30] presented a comprehensive analysis of the free vibration and damping
properties of porous FG sandwich plates by considering a modified Fourier-Ritz method and
investigating the effects of evenly and unevenly distributed porosities within the face layers.
Tran et al. [31] utilizes an edge-based smoothed finite element method to investigate the static
bending and free vibration of functionally graded porous plates, examining the influence of
geometric parameters and material properties on plate behavior.

Quan et al. [32] focused on the nonlinear vibration of porous FG sandwich plates under blast
loading by employing an analytical approach to study the effects of volume fraction index,
porosity coefficient, and type of porosity distribution.

Van Vinh and Huy [33] establish a finite element model to study the static bending, free
vibration, and buckling of functionally graded sandwich plates with porosity, considering the
effects of various parameters on plate response. Kumar Sah and Ghosh [34] analyze the free
vibration and buckling of multi-directional porous FGM sandwich plates, investigating the
influence of porosity models and geometric parameters. Hirannaiah et al. [35] investigate the

effects of thermo-mechanical load coupling and porosity distributions on the vibration and
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buckling characteristics of FGSPs with cutouts, employing a Finite Element (FE) formulation
to study plate behavior under different loading conditions.

Belkhodja et al. [36] analyzed the thermal buckling and thermomechanical bending
responses of sandwich plates with FGM face layers, considering the effects of thermal loads
and porosity distributions on plate behavior. Karakoti [37] develop a finite element formulation
for the nonlinear transient response of porous FGM sandwich plates and shell panels, examining
the effects of volume fraction index, porosity model, and blast load parameters. Merdaci et al.
[38] examined the free vibration response of functionally graded plates with different porosity
distributions, and evaluated the influence of material properties and porosity volume fractions
on plate behavior. Shivaramaiah et al. [39] investigate the nonlinear behavior of two-directional
functionally graded porous plates (TDFGPP) using various porosity distributions and material
properties, exploring the effects of volume fraction gradation profiles on plate response.

These studies collectively contribute to advancing our understanding of the mechanical
behavior and vibrational characteristics of functionally graded porous materials, offering
insights for engineering applications.

1.4 Gaps in existing literature

FGM sandwich structures are subjected to non-symmetric charges in many engineering
fields and industries. However, in the manufacturing process, the constituent materials of the
two thin face sheets have different solidification temperatures, leading to the generation of two
different microvoids or porosities inside the layers on the top and bottom face sheets of the
FGM sandwich plates. However, a notable research gap emerges from the absence of
comprehensive studies dedicated to investigating the free vibration of FGM sandwich plates
with various porosity coefficients and volume fraction exponents in the top and bottom layers.
To the best of our knowledge, there are no publications in the available literature that address
this specific aspect. This conspicuous void underscores the need for further research in this area.

Addressing this gap is imperative, and prompts the scientific community to conduct rigorous
inquiries. Delving into this unexplored territory will help scientists avoid problems associated
with different porosity coefficients for the top and bottom layers, thereby advancing our
understanding and contributing to the enhancement of FGM sandwich plate design and
performance. Through comprehensive analysis, this research contributes to the advancement of

FGM technology and lays the groundwork for future studies in this field.
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1.5 Summary

This chapter provides a comprehensive and in-depth review of the vibration behavior of
FGM sandwich plates, specifically focusing on the impact of varying porosity distributions. It
traces the historical evolution of research in this domain, incorporating recent advancements
and identifying critical avenues for further exploration, notably emphasizing the role of
porosity. With clearly delineated objectives aimed at bridging existing research gaps, this
chapter provides a comprehensive framework for targeted and purposeful investigations, laying
a strong foundation for subsequent studies. In the ensuing chapter, we will delve into diverse
theories, development methods, and methodologies employed in modeling sandwich structures

and FGM, expanding upon the insights gleaned from this examination.
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Chapter |1

Preliminaries

This chapter focuses on the synergistic potential of sandwich structures and FGM, which are two
advanced composite materials known for their unique properties and applications. Sandwich
structures, composed of lightweight cores sandwiched between high-strength face sheets, offer
exceptional stiffness-to-weight ratios and customizable performance attributes. In contrast, FGM
exhibit gradient compositions and properties, allowing for precise control over their mechanical,
thermal, and electrical characteristics. By exploring the characteristics and applications of both
sandwich structures and FGM, this chapter aims to elucidate their combined potential in innovative

engineering solutions across diverse industries and applications.
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I1.1 Sandwich structures

Sandwich panels have been successfully utilized for many years in the aviation and
aerospace industries as well as in marine, mechanical, and civil engineering applications. This
is attributed to their high rigidity and strength-to-weight ratio [40]. The use of sandwich
construction in aerospace structures can be traced back to World War 1I, when the British
bomber de havilland mosquito employed such construction [41].

Initially, the sandwich structure was a simple assembly featuring basic coverings made of
fabric, thin metal, and soft wood used as the core. The classical sandwich construction
comprises a relatively thick core and low-density material that separates the relatively thin yet
rigid upper and lower faceplates. The materials employed in sandwich constructions have been
diverse, but recently there has been increased interest owing to the introduction of novel
materials for use in facings and cores [42].

The advancement of modern technologies demands the utilization of materials possessing
specific high mechanical properties tailored to their applications, while maintaining low
densities. This aim primarily targets a reduction in the structural mass. Composite materials
fulfill these criteria, offering low density, high strength, significant rigidity, and excellent
durability. Sandwich materials are among the most commonly used composite materials and

occupy a significant niche in the construction of composite components.

11.1.1 Definition

A sandwich material consists of a core, which is typically lightweight with poor mechanical
characteristics, sandwiched between two skins made of a material possessing strong mechanical
properties. Thin, rigid, and resilient skin adheres to a core composed of soft, lightweight
materials. This configuration provides sandwich materials with an excellent bending strength
and remarkable lightness. The overall performance of sandwich structures depends on their
constituent material properties (face sheets, adhesive, and core), geometric dimensions, and
loading type. The effective design and application of sandwich construction necessitate
thorough characterization and understanding of not only the constituent sandwich materials but

also the overall structure under quasi-static and dynamic loads [43].

11.1.2 Sandwich ingredients

The sandwich concept is a well-established construction technique that combines

lightweight properties with rigidity and strength. Essentially, a sandwich structure comprises a
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low-density material onto which two thin layers of stronger and more rigid materials are
adhered.

The skin (or layers) must withstand bending moments and can vary in nature, for example,
metal, laminate, wood (plywood), or even thermoplastic sheets. The core, which is the central
element of a sandwich structure, typically exhibits poor mechanical characteristics. Its role
involves resisting shear stresses resulting from skin sliding under a load and maintaining
separation. Figure 11-1 illustrates the various constituent elements of a composite material used

in sandwich construction.

adhesive

Sandwich plate

Figure 11-1: Diagram of a sandwich plate

11.1.2.1 The skins
Generally, thin skins can be made of any material that can be obtained in a layered form,
including wood, metal, or composite materials. The choice of the material nature and sequence
depends on the use of composite materials. Skins aim to withstand bending forces, which are
reflected in the normal stresses (tension or compression). Quoting Allen [44], 'Nearly all
structural materials available in thin sheet form can be used to form the faces of a sandwich
panel,’ offering a wide variety in material selection. This flexibility allows for efficient design
that enables the use of each material component to its utmost potential. The key properties
crucial for the skin include the following:
e Impact resistance
e Surface finish
e Wear resistance
e High stiffness providing elevated flexural rigidity
e High tensile and compressive strength

e Environmental resistance (chemical, UV, heat, etc.)
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Commonly used skin materials can be categorized into two main groups: metallic and non-
metallic. The first group comprises steel, stainless steel, and aluminum alloys, which offer a
wide variety of alloys with different strength properties, while exhibiting limited stiffness
variation. The larger of the two groups is the latter, encompassing materials such as plywood,
cement, veneers, reinforced plastics, and fiber composites.

The most significant nonmetallic materials are fiber composites, which have had a
substantial impact on sandwich construction since their introduction. This is because most
composites offer strength properties similar or even superior to those of metals, although their
stiffness is often lower. Hence, to achieve the required stiffness, composites are frequently

sandwiched between lightweight cores [45].

11.1.2.2 The core
The core, which is typically lightweight, generally has very low bending strength. The
fundamental function of a sandwich structure is to transmit mechanical actions from one skin
to another through transverse shear. The cores used in load-bearing sandwich constructions can
be categorized into four groups: corrugated cardboard, honeycomb, balsa wood, and foams.
First, the core must have a low density to add minimal weight to the total sandwich. The key
properties of interest for the core include the following.
e Density
e Shear modulus
e Shear strength
e Stiffness perpendicular to faces
e Thermal insulation

e Sound insulation

There are two types of cores:

Solid cores [46] encompassing the:
Balsa or cellular wood (Figure 11-2a)
Various cellular foams (Figure 11-2b)

YV V V

Resins filled with hollow glass microspheres are referred to as syntactic foam. This

solid or cellular core was considered isotropic.
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Figure 11-2: Solid core sandwich materials

e Hollow cores [46], primarily honeycomb in type (Figure 11-3), comprising the
following:

> Lightweight metallic alloys

> Kraft papers

» Polyamide papers, such as Nomex paper.

(a)

Figure 11-3: Hollow core sandwich materials: (a) honeycomb; (b) corrugated core

The core can be made from the following materials:
e Foams: Lightweight, inexpensive, easily machinable, yet with very poor mechanical

properties.

21



Preliminaries

e Balsa: Known for its various uses and qualities, including lightness, high thermal and
acoustic insulation, and resistance to thermal variation.

e Honeycomb: Typically made from thin-plate materials (aluminum alloy, polyamide
paper).

11.1.2.3 The interface

Sandwich structures can be assembled through bonding, welding, or brazing. Numerical
simulations typically assume a flawless bond between components, irrespective of the layer
assembly method. This component is of crucial importance because it bonds the core and skin
together. It must enable solid assembly of the structure by forming a continuous, nonporous,

and uniform thickness bond.

1 Adhesive

Figure I1-4: Adhesion mechanisms

11.1.3 Type of sandwich structures

Currently, a wide variety of sandwich cores are employed in structural engineering, as

depicted in Figure 11-5.

11.1.4 Applications for sandwich materials

The use of sandwich structures continues to increase rapidly for various applications,
including satellites, aircraft, ships, automobiles, railcars, wind turbines, and bridge
construction. The sandwich method finds extensive application in naval and maritime

construction, with new markets on the horizon.
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(a) Honcycomb (square) (b) Corrugation (c) Pyramidal
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Figure 11-5: Variety of cellular networks configured as cores of sandwich panel structures

Contemporary land designs mostly limit the use of concrete, steel, and a few aluminum
alloys. Sandwich materials assembled through bonding also find applications in automotive and
railway construction. In this study, glass/polyester laminate skins and expanded polystyrene
foam cores were used.

Sandwich materials are in demand for metro and tramway systems, which require frequent
starts. Access doors made of sandwich panels with composite glass/polyester or aluminum skins
adhered by internal adhesives are prevalent, utilizing cores of aluminum honeycombs or
Nomex.

Aerospace construction involves the use of sandwich panels and co-cured composite
laminates (carbon/epoxy, kevlar/epoxy) for landing gear doors and various fairings (between
fuselage wings, engine pylons, flap tracks).

Engine cowls are commonly constructed using carbon/epoxy skins that adhere to aluminum
honeycomb cores. Numerous helicopter parts are either monolithic or sandwiched, featuring
composite skins bonded to honeycomb cores [47].

In astronautics and defense sectors, where heat and thermal variations are critical, solar
reflectors use carbon/epoxy skins and Nomex honeycomb cores. In the future, the sandwich

concept may serve as a substitute material for various modules constituting these structures.
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11.1.5 Manufacturing processes

In many cases, the manufacturing of sandwich structures involves standard composite
processing technologies, such as contact molding, vacuum bag molding, resin injection
molding, press molding, filament winding, and centrifugation. These methods enable
integration of a core within the thickness of the manufactured structure. This section highlights

the most commonly used process for developing a sandwich structure.

11.1.5.1 Wet process technologies (direct impregnation)

Traditionally, sandwiches are obtained through implementation processes known as 'wet lay-
up,” in which dry reinforcements are impregnated with thermosetting resin during shaping. This
can be achieved through contact molding, simultaneous spraying, resin injection, or filament
winding. Structures produced via contact or simultaneous spraying exhibit average mechanical
properties, particularly if the skins are made from chopped fibers. The resin content, porosity
rate, and overall laminate quality depend on the molder skill. Those generated by filament
winding or resin injection (vacuum or pressure) showcase higher mechanical properties due to
the potential use of continuous fiber reinforcements (unidirectional, fabrics) and achieving
higher fiber content.

11.1.5.2 Dry process technologies (indirect impregnation)

Dry lay-up methods or indirect impregnation processes involve the creation of sandwich
structures with skins obtained from a pre-impregnated material. Implementation occurs under
vacuum in an oven, heated press, or vacuum autoclave. The use of pre-impregnated materials
ensures uniform and high-quality reinforcement impregnation, granting the sandwich
component good mechanical properties owing to the high fiber content. Excess resin in the pre-
impregnated material, which is extracted through appropriate pressure and temperature
applications, can be used for core-to-skin bonding.

e Bonding Assembly: Bonding remains a prevalent method for assembling
sandwiches, involving the joining of preformed cores and skins using adhesives. The
shaping and assembly phases were distinct. Surface preparation is crucial to ensure
high-quality bonding.

» Cleaning to eliminate grease or dust and enhance the surface roughness.

» Priming via chemical treatment of metallic skin adhesives tailored to the constituent

materials of the sandwich must be uniformly applied. The stack (core + adhesive +
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skin) is heated and placed under pressure, which can be applied using a press, vacuum

autoclave, or vacuum bag molding.

11.1.6 Designing sandwich structures

Although primarily intended to withstand bending forces, sandwich structures are also
engineered to meet other requirements, such as thermal and acoustic insulation. The choice of
the sandwich type depends predominantly on its intended application. The key goals for a
'sandwich’ designer include selecting appropriate materials constituting the structure and
determining the respective thicknesses of the skin and core to withstand bending moments,
shear, and axial stresses induced by applied forces. Generally, the design is based on sandwich
theory (homogeneous beam theory) and the selection of materials possessing the requisite

properties.

11.1.7 Geometric characteristic of sandwiches

Owing to the fabrication of sandwiches, the mechanical properties are tailored by varying
the nature of the skin (whether identical or not), core, and thickness of each phase. Generally,
the skins have the same thickness, tr, and the ratio ts/ hc (where hc is the core thickness) falls
between 0.01 and 0.1, sandwiches are classified into three categories based on the value of the
d/ts ratio [42], where d represents the distance between the neutral axes of the sandwich skins:

e For ad/ts ratio below 5.77, the sandwich is termed as thick-skinned.
e Forad/ts ratio between 5.77 and 100, the sandwich is termed thin-skinned.

e Forad/ts ratio above 100, the sandwich is termed very thin-skinned.

These limits were defined in relation to the contribution of each constituent to the bending
and shear stiffness of the sandwich.

d=h.+tg

Figure 11-6: Diagram of a sandwich
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11.1.8 Sandwich materials plates

A sandwich material consists of a low-density material (core) bonded to high-stiffness and
high-strength layers (skins). The primary function of the core is to transmit mechanical action
from one skin to another through transverse shear. The skins can be made of laminates or
metallic materials with thicknesses h1 (lower skin) and hz (upper skin). The core thickness was
denoted as h¢, and the total sandwich thickness was H (H = hy + he + h2). At each point in the
sandwich structure, the coordinate system is selected such that the (X, y) plane represents the
mid-plane [48].

The assumptions underlying the theory of sandwich materials are as follows [48].

e Core thickness was greater than that of the skin (h¢ > > hy, hy).

e The core displacements uc and v¢ in the x- and y-directions are linear functions of the
z-coordinate.

e The displacements u and v in the x- and y-directions were uniform within the skin
thickness.

e The transverse displacement w is independent of the variable z, and strain &, IS
neglected.

e The core only transmits transverse shear stresses 6xz, Oyz; Stresses Gxx, Oyy, Oxy, and
oz are neglected.

e The transverse shear stresses tx; and ty; were neglected within the skin.

e Finally, the theory addresses elasticity problems in small deformations.

11.1.9 Assembling techniques for sandwich materials

11.1.9.1 The bonding of skin on the soul
For sandwich structures to fulfill their roles effectively, it is crucial to ensure perfect bonding
between the core and skin to distribute the loads evenly between them. Assembly was achieved,

as depicted in Figure 11-7, through bonding using resins compatible with the materials involved.

11.1.9.2 Folding technique

After the implementation, sandwich panels can be formed by folding, as illustrated in Figure
I1-8. The process begins by stripping a strip of one of the coverings along the folding axis and
to a width determined by the plate thickness and the desired folding angle. The material was

then folded and the angle was held in the chosen position.
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epoxy glue

(a) : corrugated sheet bonding

(b) : panels with square tubes

NS [N

(¢) : panels with inverted &

Figure I1-7: panels made by gluing from various profiles

Figure 11-8: Folding sandwich panels

11.1.10 Advantages of sandwich structures

The primary advantage of sandwich structures over traditional monolithic composites is their

exceptionally high specific stiffnesses. Core density typically ranges from approximately 100

kg/m™. By altering the nature and thickness of the skin and/or core, the structure can be tailored

to suit the specific requirements. Enhancing the stiffness, which is indicative of the material's

bending behavior, is achieved by increasing either the core thickness, leading to an increase in

its moment of inertia, or the elastic modulus of the skin. Because the core possesses a low

density, the mass of the composite does not significantly increase.
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Composite sandwich materials offer significant advantages over conventional materials.
They provide various functional benefits such as lightweight, mechanical and chemical
resistance, reduced maintenance, and design flexibility. They can prolong the equipment
lifespan owing to their mechanical and chemical properties, contributing to enhanced safety
through better impact and fire resistance. In addition, they offer superior thermal or acoustic
insulation, and in some cases, good electrical insulation. These materials expand design
possibilities by enabling lightweight structures and complex forms capable of fulfilling multiple
functions. Across diverse application markets (automotive, construction, electrical, industrial
equipment, etc.), these remarkable performances have driven innovative technological

solutions.

1.2 Functionally graded materials

FGM represent one of the latest developments in revolutionizing material design in the 21st
century. They have extensive application in various fields. Enhancing the structural part
performance often leads to seeking different, often conflicting, but locally optimized properties
within the same material. The development of composite materials has enabled the combination
of the specific properties of different materials within a single piece. Locally optimizing these
properties, for instance, combining a high-hardness material on the surface with a tough
material, poses challenges, such as addressing interface issues. For example, adhering a ceramic
layer to a metallic structure forms a thermal barrier coating for high-temperature applications.
Sudden transitions in the material properties across discrete material interfaces can lead to
interlaminar stress or high stress concentrations, resulting in plastic deformation or cracking.

FGM have been employed to mitigate these adverse effects. In recent years, FGM have been
developed owing to their excellent mechanical properties, high performance, and heat
resistance. Initially designed as barrier materials in reactors and high-temperature applications,
FGM have expanded into the military, automotive, biomedical, and semiconductor industries,

and various high-temperature environments.

11.2.1 FGM concept

A material with gradient properties is a type of composite material composed of two or more
materials with varying volume fractions and a microstructure designed to have a spatial
continuity of variables. An FGM was created by continuously changing the volume fractions

throughout its thickness to achieve a specific profile.
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FGM are typically made from a blend of metals and ceramics (Figure 11-9) using a powder
metallurgy process. The metal-rich side is usually placed in regions where mechanical
properties such as hardness need to be high. Conversely, the ceramic-rich side, which has lower
conductivity and higher temperature resistance, is positioned in regions with significant

temperature gradients.

Metal and Ceramic Ceramic FGM

Metal

Figure 11-9: type of ceramic and metal FGM material

The concept of FGM was developed by a group of scientists in Japan at the in 1984. The
idea was to create materials that could be used as thermal barriers in space structures and fusion
reactors [49], [50], [51]. An example of such a material is shown in Figure 11-10 [52], in which

spherical or nearly spherical particles are embedded in an isotropic matrix.
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Figure 11-10: FGM with the volume fractions of the constituent phases graduated in a

single direction [52]
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By gradually varying the volume fraction of the constituent materials, their material

properties showed minimal and continuous changes from one point to another, addressing

interface issues and alleviating thermal stress concentrations. This is because the ceramic

components of FGM can withstand high temperatures, resulting in better thermal resistance,

whereas the metallic constituents provide stronger mechanical strength and reduce the

likelihood of catastrophic failure. Therefore, a typical FGM is a nonhomogeneous compound

composed of different material phases (usually ceramic-metal), enabling a continuous transition

of desired properties through a composition gradient.

Most FGM consist of ceramics and metals with specific mechanical properties:

YV V.V ® V V VY

>
>

High-temperature side for ceramics
Good thermal resistance
Resistance to oxidation

Low thermal conductivity
Low-temperature side for metals
Good mechanical strength

High thermal conductivity

Very good toughness

Intermediate layers for material continuity
Addressing interface issues
Alleviating thermal stress

The continuous change in composition, and thus in the microstructure of an FGM material,

is illustrated in Figure 11-11, resulting in a gradient that determines the properties of the FGM.

Metad

Figure 11-11: Concept of materials with graded properties [54]
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11.2.2 FGM development methods

Our literature review revealed the various fabrication methods employed to create FGM.

These techniques are briefly described below:

m Centrifugal Force Methods
Powder Metallurgy Methods
Additive Manufacturing Methods
Vapour Deposition Methods

i Infiltration Methods

I Thermal Spray Methods

® Tape and Slip Casting Methods

@ Electrodeposition Methods 10%

@ Others 13%

Figure 11-12: Contribution of manufacturing methods in the production of FGM
(Based on the Web of Science search system in the duration of 1990-12/2019)

11.2.2.1 Deposition based methods

a. Chemical Vapor Deposition (C.V.D) and Physical VVapor Deposition (P.V.D)

Chemical and physical vapor deposition techniques involve the deposition of atoms from the
source material onto the substrate surface. C.V.D. and P.V.D. techniques can be employed to

prepare FGM on complex-shaped substrates [53].

Vapour Deposition Methods

Physical Vapor Chemical Vapor
Deposition (PVD) Deposition (CVD)

Cathodic Arc

Deposition Atmospheric Pressure

Electron Beam
Low Pressure

Deposition
Evaporative Deposition Ultrahigh Vacuum
Elose spoce Hot Filament
Sublimation c
Pulsed Laser
F Laser Assisted
Deposition

Sputter Deposition Electron Assisted

Sublimation Sandwich

Method Direct Liquid Injection

Figure 11-13: Classifications of VVapor Deposition Methods used to produce FGM [54]
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Figure 11-14: Chemical Vapor Deposition (CVD) process [55]
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Figure 11-15: Physical Vapor Deposition (PVD) process [54]

b. Electrodeposition methods (EPD)

Electrophoretic deposition is a process in which a stable colloidal suspension is placed in a
cell that contains two electrodes. It involves the movement of charged particles within the
solution towards either the cathode or anode based on the charge of the particles, owing to an

applied electric field [56].
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Figure 11-16: (a) Schematic diagram of EPD process, and (b) Concept of EPD process for
produced FGM [57]

c. Thermal spray method

The thermal spray technique is fundamental for producing FGM and generating thin surface
coatings via spraying. These coatings provide vital protection against corrosion, wear, and
thermal and electrical factors, which are crucial for components enduring diverse service

conditions. Various processes under thermal spray coating were employed to fabricate FGMs
with graded properties, as illustrated in Figure 11-17 [58].

Thermal Spray Coating Processes
Combustion Bleotrcal ‘ ‘ Cold
‘ Atmospheric [ ColdGas |
Flame Spray Plasma Spray Spraying
: Method
|| High-velocity » . High-velocity
Oxygcn Fuel Arc Spmy Air Fuel

Vacuum Plasma

Detonation Gun Spray

+ Warm Spray

Low-pressure
Plasma Spray

Figure 11-17: Types of thermal spray coating processes [58]
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11.2.2.2 Solid state methods

a. Powder metallurgy (PM)

In this technique, the powders were successively poured into a steel mold. Slight
compression was applied upon pouring each powder. Subsequently, all layers are compacted.

Typically, this process is followed by isostatic pressure and lubrication. Densification is the
final stage [59].

Material A g 7N ; r Hot Press e
Material B g Mixing  Stacking cﬂm“;mm ( —] Pt Foa
HIP
f c—r

Figure 11-18: Fabrication process of the FGM by powder Metallurgy [59]

b. Additive manufacturing methods

Recently, additive manufacturing (AM) methods have emerged as influential tools for
advancing FGM development, shifting from conventional metal production models to
sophisticated layer-by-layer fabrication, as depicted in Figure 11-19 [60]. This transition
replaced the traditional approach of using intricate machinery with a simpler mold-based
process.

Materiah Descngtom
»{) S)“-'- o ®
X T RN
SN S - - G N - s/
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Dhevigs & Modelling Frodet Duscripton Addsne Mamibatureg Mow. Pocewsing Fual FGM Proshuct

Figure 11-19: Concept of functionally graded additive manufacturing method [60]
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c. Hybrid methods with additive manufacturing

Owing to the high costs and time associated with additive manufacturing (AM) for producing

FGMs, researchers have sought alternative methods while retaining the key properties achieved
by AM [61], such as the Wire and Arc Additive Manufacturing (WAAM) method and the
Friction Stir Additive Manufacturing (FSAM) method. FSAM, a new technique for FGM
production, leverages the benefits of Friction Stir Welding (FSW) and offers improved

manageability and advantages over traditional approaches [62].
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Figure 11-20: (a) Concept of WAAM process for produced FGM, (b) double-wire feeding
units [54]
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Figure 11-21: Concept of FSAM process for manufactured FGM [54]

11.2.2.3 Liquid state methods
a. Centrifugal force methods
Numerous methods, including centrifugal force techniques, slip casting, tape casting, and

infiltration, fall under the liquid-state principle for producing FGM with gradient properties.

While these methods offer cost advantages and can generate materials with continuous

properties [63], challenges include difficulties in controlling the gradation and wettability

between materials, as well as issues related to molten metal [1].
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Figure 11-22: Centrifugal force methods for producing FGM (a) centrifugal casting method,

(b) centrifugal slurry method, and (c) centrifugal pressurization method [54]

b. Slip casting method
Slip casting involves pouring a suspension into a porous mold that drains liquid owing to
capillary forces, leaving a compacted powder layer on the surface of the mold. A green body
was obtained upon drying. Slip casting comprises two essential stages:
e Formation of the layer or 'setting.’

e Consolidation of the layer or 'solidification’.

Filtration, which occurs during casting, is a process in which a portion of the water in the
slip is eliminated. This water migrates through the already formed layer as follows:
e Suction capability of plaster [64] (conventional casting).

e Pressure is applied to slip (pressure casting).

In the case of manufacturing multilayers, after the formation of the first layer, deposition of
the second layer occurs such that the slip does not penetrate the formed layer. This process was

repeated sequentially for subsequent layers.

c. Tape casting method

Tape casting involves pouring a slurry of fine powders in an aqueous or nonagueous
suspension onto a flat support in thin and uniform layers. The resulting products were sheets
with controlled thicknesses (25-1000 um). After the paste solidified, the sheets were demolded
and cut. The solvent used must have a very low boiling point and viscosity. It should be soluble
with the binder, plasticizer, and other additives but should not be soluble or reactive with the
ceramic powder. The binder provides high mechanical strength to the green product, allowing
handling. Typically, a plasticizer is added to a binder to reduce its viscosity. The binder,
plasticizer, and deflocculant were completely removed during the drying process. The tape-
casting process is widely used to produce laminated composite materials using two methods:

either by directly creating multilayered tapes through a system of multiple blades, as in the case
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of tri-layers developed by [65], or by stacking separately prepared layers, which are then bonded
through a thermocompression step [66].
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Figure 11-23: Schematic illustration of tape casting process [67]

d. Infiltration method

Infiltration is a liquid-state process for producing FGM, wherein a molten matrix fills the
space between the dispersed stages containing preformed ceramic particles [68]. This method
can be conducted with or without pressure, utilizing capillary action or gaseous/mechanical
pressure, as shown in Figure 11-24. This process involves chemical interactions at the interface,

resulting in the formation of the FGM structure, offering advantages such as rapid preparation.

Pressure Inert gas
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Figure 11-24: Schematic illustration of infiltration process (a) squeeze casting method, (b)
pressure method [54]
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e. Langmuir-Blodgett method

In recent years, the Langmuir-Blodgett (LB) film method has garnered increasing interest
among researchers and engineering communities for producing graded structures. This process
facilitates the deposition of uniform film materials with high precision down to a single-
molecular-layer thickness [54]. LB films, utilized as active layers or passive insulators in
electronic applications, offer the advantages of precisely controlled internal layer structures at
the molecular level and precise regulation of film thickness.
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Figure 11-25: Schematic illustration of the Langmuir-Blodgett method [54]

11.2.3 Physical and mechanical properties of FGM

The FGM material chosen for this work is (Aluminium-Ceramic). The Physical and

mechanical properties of Aluminium and Ceramic are presented in Table I1-1.

11.2.4 Applications of FGM

In the present era, with the adaptable production of composite materials to meet specific
application needs and functional requirements, the use of FGM spans across an extensive range.
Figure 11-26 outlines diverse application domains for FGM, which holds significant potential
for applications facing severe operational conditions or requiring precise sensitivity [55]. These
applications span aerospace, automotive, biomedical, defense, energy, marine, and civil

engineering, as detailed in the subsequent subsections.
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Table 11-1: Physical and mechanical properties of Aluminium and Ceramic

properties Aluminium Ceramic
Physical *  Aluminum's melting » Fusion advantage in foundry
temperature: Around operations.
660°C, facilitating « Density: 3800 kg/m?.
foundry operations. + Utilization across various sectors:
» Highly ductile, allowing housing, design, ceramic and
easy shaping. metallurgical industries,
» Density: 2700 kg/m3. aerospace, medical, and coatings.
mechanical » Tensile strength. « High Young's Modulus (covalent

« Penetration  resistance
(hardness).
+ Malleability  (forming

into sheets).
* Ductility (forming into

wires).

and ionic bonding).

High hardness (abrasives, cutting
tools, friction surfaces requiring
wear resistance, high mechanical
strength, heat resistance, high
rigidity).

Excellent compressive strength,
tension

200

not  suitable  for
(Compression strength =
MPa).

2@
S

Figure 11-26: Areas of practical applications for FGM [54]
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11.2.4.1 Aerospace applications

Initially utilized in spacecraft to mitigate thermal stresses between external and internal
surfaces, FGM have found applications in diverse aerospace applications. Presently, a multitude
of aircraft and spacecraft components leverage FGM, including rocket nozzles, heat exchange
panels, solar panels, turbine wheels, spaceplane noses, protective layers for combustion
chambers, structural elements, rocket engine parts, reflectors, camera housings, caps, and the
leading edges of missiles and space shuttles, as shown in Figure 11-27 [54]. Moreover, FGM
serve as thermal barriers, lining the walls of planes (such as spaceplane frames) and offering

resistance against heat generated from air friction on the aircraft's exterior.

—

F16 Components

Hubble Space Telescope Space Shuttle Orbiter parts Eurocopter Critical Parts

Figure 11-27: FGM parts in Aerospace applications [54]

11.2.4.2 Automotive applications

Because of their high cost [69], FGM have limited applications in the automotive sector,
primarily in critical components such as diesel engine pistons, cylinder liners, combustion
chambers, racing car brakes, driveshafts, and flywheels, as depicted in Figure 11-29.
Additionally, FGM can be used in coatings for automotive bodies [54].
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Figure 11-28: FGM parts in automotive applications [54]

11.2.4.3 Biomedical applications

Human tissues such as bones and teeth exhibit natural FGM properties. In instances where
damage occurs and necessitates replacement, a compatible material that fulfills the original
function of the tissue is needed. Functionally graded materials are ideal for this purpose. FGM
have diverse applications in the dental [70] and orthopedic fields, specifically in tooth and bone

replacement [71]. Figure I1-29 illustrates a schematic view of an FGM dental implant featuring
a graded material composition [72].

100/dVH Ul 18ydiy

FGM implant ©

Figure 11-29: Schematic view of the FGM dental implant with graded material composition
[72]
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11.2.4.4 Defense applications

The capability of FGM to impede crack propagation is crucial, especially in defense
applications. They serve as effective penetration-resistant materials used in armor plates and
bulletproof vests [73]. Additionally, FGM have significant applications in the construction of

bulletproof vehicle bodies.

11.2.4.5 Energy applications
FGM play a crucial role in the energy sector by providing efficient thermal barriers and
protective coatings for blades in gas turbine engines. They are also instrumental in applications

such as thermoelectric generators, energy-conversion devices, solar cells, and sensors [74].

11.2.4.6 Electrical/electronic applications

FGM are used in the electrical and electronics industries in many ways, including field stress
relaxation in the electrode and field-spacer interface, diodes, semiconductors, insulators, and
sensors. Thermal-shielding elements in microelectronics are also made from functionally

graded carbon nanotube materials [69].

11.2.4.7 Marine applications
FGM play a role in the marine and submarine industries and are applied in propeller shafts,

diving cylinders, sonar domes, composite piping systems, and cylindrical pressure hulls [69].

11.2.4.8 Civil engineering applications

The functional grading of concrete elements aligns their internal compositions with their
distinct structural and thermal performance requirements. This alignment involves continuously
altering material traits, such as porosity, strength, or rigidity, across up to three dimensions,
aiming to minimize mass and achieve multifunctional properties. A lower porosity enhances
structural traits, whereas a higher porosity improves heat insulation. Figure 11-30 depicts curves

illustrating the characteristics of hardened concrete with varying porosities [75].
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Figure 11-30: Curves of hardened concrete characteristics depending of the porosity [75]

11.2.4.9 Other miscellaneous applications

FGM find applications in cutting tool insert coatings, heat exchangers, tribology, fire
retardant doors, and defense pads to prevent crack propagation. The scope of their application
is poised to grow further if future advancements lead to reduced production costs for these

materials.

11.2.5 Material properties of the FGM structures

Materials with property gradients can be created by continuously altering the constituents of
materials with non-uniform microstructures, resulting in spatially graduated macro properties.
An FGM can be defined by the variation in the volume fractions. Most researchers utilize
power, exponential, or sigmoid functions to describe volume fractions [76].

Researchers commonly employ the power, exponential, and sigmoid laws to describe the
volume fractions when designing the variation of the desired property in an FGM across any

direction.

11.2.5.1 Power-law (P-FGM)
The power law for material gradation, has been extensively employed by researchers and is
prevalent in the stress analysis of FGM [77]. For the analysis of an FGM plate with uniform
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thickness 'h," as depicted in Figure 11-31, the effective material property P(z) in a specific
direction (along z) can be determined according to this law.

P(z)=P,+ (P +P,)V(2) (1.1)

where n represents each effective material property. P1 and P> correspond to the material

properties at the topmost (z = + h/2) and bottommost (z = — h/2) surfaces of the plate,

respectively. The material properties depend on the volume fraction V of the FGM, following

the power law as follows:

V(z) = (§+5)n (11.2)

h

where (0 <n <) is the volume fraction exponent (or power-law index).

b

h/2

h 2J/

X

Figure 11-31: Coordinate system for a gradient property FGM sandwich plate

11.2.5.2 Sigmoid law(S-FGM)

When a single FGM power law function is added to the multilayered composite, stress
concentrations appear at one of the interfaces in which the material is continuous but changes
rapidly. Therefore, Chung and Chi [78] developed another law called the sigmoid law, which
is a combination of two power-law functions, to ensure the smooth distribution of stresses
among all interfaces. This law is also used to reduce the stress intensity factors in cracked
structures [79]. The two power law functions are defined as follows:

—z2\
Vl(z)=§(h}/52) For0<z<h/2 (11.3)

n
vz(z)zg(%j) For —h/2<2z<0 (11.4)

By using the rule of mixture, the effective properties of the S-FGM can be calculated by
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P(2) =Py + (P =P (1-2(*22)") Foro<zsh/2 (115)
P(z) =P, + (P —P) ((M22)")  For—h/2=z20 (11.6)

11.2.5.3 Exponential law (E-FGM)

The exponential law is commonly applied to address issues related to the fracture
mechanisms of FGM. This law, introduced by Kim and Paulino [80] and further elaborated by
Zhang et al. [81], defines the distribution of properties across the thickness of the FGM plates

as follows:

P(z) = Pye w(np;)(=+2) (11.7)

The effective mass density (p) was determined using the rule of mixtures, irrespective of the
micromechanical model employed [82]. The impact of Poisson's ratio on deformation is
considered significantly lower than that of Young's modulus, as reported by Delale and Erdogan

[83]. Consequently, Poisson’s ratio of the plates was assumed to remain constant.

1.3 Summary

In this chapter, we provide an overview of the key concepts and methodologies relevant to
modeling sandwich structures and FGM. Initially, we delved into the mechanical properties of
sandwich structures, encompassing different assembly types, modes of damage, adhesive
requirements, and material advantages and drawbacks, while surveying various modeling
techniques. Subsequently, the chapter offers an examination of FGM, including diverse
manufacturing approaches, with a particular emphasis on the solid freeform fabrication method
owing to its inherent advantages and manufacturing adaptability. Furthermore, it elucidates
multiple application domains and explores avenues for enhancing and broadening these
domains by means of cost-reduction strategies tied to optimizing the most promising
manufacturing technique. Given the broad applicability of sandwich structures and FGM, a
thorough investigation of their behavior is imperative. Accordingly, the succeeding chapter

elaborates on the array of theories utilized for analyzing FGM sandwich structures.
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Chapter I

Modeling of FGM sandwich plates
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Chapter 111

Modeling of FGM sandwich plates

The utilization of FGM in engineering applications, such as plates, beams, and shells, has
surged owing to their tailored material properties, which are often achieved by blending two
distinct materials such as ceramics and metals. FGM effectively mitigate thermal stresses,
withstand high temperatures, and resist corrosion. In the realm of FGM sandwich plates, two
common configurations exist: sandwich plates with FGM cores and isotropic skins and those
with isotropic cores and FGM skins. To harness their benefits, a comprehensive understanding
of their vibration, bending, dynamic, and buckling behaviors is imperative. Typically, the
behavior of FGM plates is elucidated using either three-dimensional (3D) or two-dimensional
(2D) theories. Although the former boasts superior accuracy, its implementation is challenging,
leading to the popularity of the latter owing to its simplicity and computational efficiency.
The prevalent 2D plate theories are as follows:
e The Classical Plate Theory (CPT) is ideal for thin plates but disregards transverse shear
effects.
e First-order shear deformation theory (FSDT) caters to moderately thick plates by
incorporating transverse shear effects.

e Higher-Order Shear Deformation Theories (HSDTS), tailored for thicker plates.

These models rely on assumptions regarding the strains or stresses through the thickness of the
plate, thereby facilitating the reduction of 3D complexities to 2D formulations. Given their
extensive application in modeling FGM plates, this chapter briefly outlines these theories and
examines the particularities of the p-version of the finite element method in order to use them

to model freely vibrating plates using a quadrilateral p-element.
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I11.1 Different plate theories for FGM sandwich modeling

A plate is characterized as a solid object enclosed by two parallel flat surfaces, known as
faces, with substantial lateral dimensions (width and length for rectangular plates or diameter
for circular plates) compared to the thickness of the plate.

Plates are categorized into thin and thick groups, where a plate is considered thin when the
ratio of thickness to side length is less than 1/20 [84].

I11.1.1 Classical plate theory (CPT)

The Classical Plate Theory (CPT) is based on the Love-Kirchhoff assumptions, asserting
that a normal to the plate's mid-plane remains perpendicular after deformation, effectively
neglecting the transverse shear deformation effects. This theory, deemed the simplest among
Elasticity-based Structural Load (ESL) theories, is suitable only for thin plates, where the
deflection caused by transverse shear deformations is negligible compared with that induced by
the curvature of the plate. For a homogeneous isotropic plate, the shear contribution to
deflection is directly linked to the slenderness ratio (L/h) [85], [86]. In the vast majority of thin-
plate scenarios, Classical Plate Theory (CPT) provides accurate results that closely align with
those derived from the 3D theory of elasticity. Given the aforementioned assumptions, the

displacement field of CPT can be represented as follows [83], [87].

u(x,y,z)=uy(x,y)— Z% (1.1a)
v(x,y,2z)=vy(x,y) — Zaa—V::’ (11.1b)
w(x,y,z)=wy(x,y) (11.1c)

Where (uo, vo, wo) represents the displacement field components on the mid-plane of the
plate (z = 0).
In Classical Plate Theory, the following assumptions are considered, as established by [88]:
¢ No deformation occurred in the midplane of the plate.
e The normal stress o is negligible compared to other components.
e Normal to the mid-plane before deformation remained normal to the mid-plane after
deformation.

e The effect of the rotational inertia is negligible.
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Let's consider an FGM plate with length "a" and width "b," having a thickness "h." Here, u
(x,y,2),v(x,Y, z), and w (X, y, z) represent the displacements of the plate, while uo, vo, and wo

are the components of the displacement field on the mid-plane of the plate (see Figure 111-1).

Figure 111-1: Undeformed and deformed geometry of a plate under Kirchhoff’s
hypotheses [86]

Given the neglect of transverse shear effects in the Classical Plate Theory, the obtained
results are inaccurate for thick plates, particularly those composed of advanced composites. To

address this limitation, the First-Order Shear Deformation Theory has been developed.

111.1.2 First-order shear deformation theory (FSDT)

The First-order shear deformation theory, also known as the Mindlin-Reissner theory [89],
[90], or the Mindlin plate theory, expanded upon the classical plate theory by incorporating the
effects of transverse shear strains. In accordance with this theory, transverse straight lines
maintain their straightness after deformation but may not necessarily be normal to mid-plane
post-deformation (see Figure 111-2 [83]). Consequently, the transverse shear strain remained
uniform throughout the thickness. In addition, this theory assumes a zero value for transverse
normal stress 6.

The displacement field of FSDT is expressed as follows [83], [87]:

u(x,y,2) =uo(x,y) + 20, (x,5) (111.2a)
v (x,y,2) = v(x,y) +20,(x,y) (111.2b)
w (x,y,2) = wo(x,y) (111.2¢)
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In this formulation, u, , vy, and w, represent the displacements of a point on the plane z =

0 ,while @, and @,, denote the rotations about the y and x axes, respectively.

Figure 111-2: Undeformed and deformed geometries of a plate under the assumptions of the
FSDT [86]

Owing to the constancy of the transverse shear strains throughout the plate thickness, the
transverse shear stress also remains constant. However, in practice, the shear stress typically
varies parabolically with the plate thickness. Therefore, the FSDT requires a shear correction
factor to account for this parabolic variation and ensure adherence to the shear stress-free
boundary conditions on the plate surfaces, where the shear stress must be zero at the top and

bottom surfaces of the plate.

111.1.3 Higher-order shear deformation theories (HSDTYS)

To address the drawbacks of CPT and FSDT, such as achieving a realistic variation of
transverse shear strains and stresses across the plate thickness and avoiding the necessity of
Shear Correction Factors (SCFs), numerous higher-order shear deformation theories have been
devised [91], [92], [93], [94], [95], [96], [97]. These models operate on the premise of nonlinear
stress distribution throughout the thickness and can depict section warping in the deformed
state, as depicted in Figure 111-3 [86].
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sy

Figure 111-3: Undeformed and deformed geometry of a plate according to the CPT, FSDT
and HSDT [86]

The most advanced HSDT rely on Taylor series expansions of displacement fields to
approximate the 3D theory [98]. The displacement is thus assumed to follow the form:

w;(x,y,z) = u;(x,y) + z(Z)El)(x, y) + zzwgz)(x, P+...... +zj(Z)§j) (x,y) (111.3)

Where i = 1,2,3, and j defines the order used in the theory.
The Reissner-Mindlin first-order theory corresponds to the Taylor series expansion up to the
order j=1 and Q)gl) = 0. When a first-order model fails to adequately address a specific problem,
it becomes necessary to transition to a higher-order model (2nd order, 3rd order, or beyond) in

the series expansion of displacements.

111.1.3.1 Second-order shear deformation theories (SCSDT)
Second-order shear deformation theories (SCSDT) [99] generally produce slightly improved
results compared to FSDT but encounter similar limitations, necessitating correction factors. In

these theories, the displacement field is typically described as follows:

u(x,y,z) = ug(x,y) + z0,(x,y) + z22¥(x,y) (111.4a)
v(x,y,2) = vo(x,y) + 20, (x,y) + z*¥,(x,y) (111.4b)
w(x,y,z) = wo(x,y) +20,(x,y) + z22¥,(x, y) (111.4c)

where the parameters ¥y, ¥, and ¥, are the second order functions.
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111.1.3.2 Third order shear deformation theory (TSDT)
Numerous Third-order Shear Deformation Theories (TSDT), also known as Parabolic Shear
Deformation Theory, have been proposed by various researchers [94], [95], [96]. The

displacement field according to Reddy's TSDT is as follows:

ulx,v,z) = ug(x,y) + z0,(x,y) + 22%,.(x,y) + 23, (x, y) (111.53)
v(x,y,2) = vo(x,y) + 20, (x,y) + z2¥,(x,¥) + 237, (x,y) (111.5b)
w(x,y,2) = wo(x,y) (111.5¢)

where the parameters ¥, ¥, , {, , {, are the high order functions.

As the order of expansion increases, the number of additional parameters also increases,
often making the interpretation challenging. To mitigate this complexity, simplifications were
devised to reduce the displacement parameters. These simplifications involve truncating the
latter terms of the Taylor series through the introduction of a "shear function.” Subsequently,

the proposed displacement field form is expressed as follows:

u(x,y,2) = ug(x,y) — 222 + £(2)0,(x, y) (I11.62)
v(x,y,2) = vo(x,y) — z‘% + £(2)6,(x,y) (111.6b)
w(x,y,2) = wo(x,y) (111.6¢)

In the provided expression, f(z) represents the shear function, dictating the distribution of

transverse shear strains and stresses throughout the plate's thickness, denoted by h.
Furthermore, w,, and w,,,, are given by Z—V: and g—v; , respectively, where @, and @,, represent

rotations about the y and x axes, respectively.

In accordance with equation (I11-6), the displacement field of the CPT is derived by setting
f(z) = 0, while that of the FSDT is derived by setting f (z) = z. Furthermore, the displacement
field of Reddy's TSDT [86], [96] is obtained by utilizing the following function:
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f(z)=z—% (1.7)

This theory facilitates a parabolic distribution of the transverse shear stress and ensures
compliance with the shear stress-free surface conditions at the top and bottom surfaces of the
plate. Consequently, it offers a favorable approximation of transverse shear stresses in

comparison to solutions derived from three-dimensional elasticity.

52



Modeling of FGM sandwich plates

111.1.3.3 Sinusoidal Shear Deformation Theory (SSDT)

Another variant of HSDT, known as Sinusoidal Shear Deformation Theory (SSDT), was
introduced by Touratier [100]. This theory uses a sinusoidal trigonometric function and
represents a significant example within the family of trigonometric HSDT. This was

implemented in the following setting:

f(2) =2sin (%) (111.8)

111.1.3.4 Hyperbolic Shear Deformation Plate Theory (HSDPT)
An HSDPT was introduced by Soldatos [101] and derived using the following expression:

Z

f(2)=hsinh (2)=zcosh(3) (111.9)
111.1.3.5 Exponential Shear Deformation Plate Theory (ESDPT)
The ESDPT developed by Karama et al. [102] was formulated using the following

expression:

f(2) = ze72@/M* (111.10)

111.1.3.6 Refined Plate Theory (RPT)

Although HSDT eliminates the need for SCF, their equations of motion are more intricate
than those of the FSDT. Thus, Shimpi [103] devised a simplified plate theory called the RPT,
which decomposes the transverse displacement into bending and shear components. Notably,
Shimpi's theory involves fewer unknowns (four) and governing equations than the FSDT, and
it does not require SCF, providing a parabolic shear distribution across the plate thickness.
Moreover, the RPT shares many similarities with the CPT concerning the equations of motion,
boundary conditions, and stress resultant expressions. The displacement field of the RPT is

expressed as follows:

u(x,y,2) = ug(x,y) — 2282 4 f(7) 2D (11.113)
v(x,3,2) = vo(x,y) = 2 2LE 4 f(7) 2D (111.11b)
w(x,y,z) = wy(x,y) + ws(x,y) (111.11c)

Where wy and ws are the bending and shear components of transverse displacement,

respectively.
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111.1.3.7 quasi-3D theory

It is important to acknowledge that the aforementioned plate theories neglect the thickness
stretching effect (i.e., €, =0) by assuming a constant transverse displacement throughout the
thickness. This effect becomes notable in moderately thick and thick plates and warrants further
consideration. Quasi-3D theories, which are HSDT, incorporate a higher-order variation of both
in-plane and transverse displacements through the thickness, thereby accounting for both shear
deformation and thickness stretching effects [104]. The displacement field of quasi-3D theory
is represented as follows:

u(x,y,2) = ug(x,y) = 252 + f(2) 9 (x,7) (111.12a)
v(x,y,z) =vy(x,y) — Z% + (@, (x,y) (111.12b)
w(x,y,z) = wo(x,y) + g(2)p,(x,y) (111.12c)

Where ug, v, Wy, @y, @, and @, are six unknown displacements of the midplane of the plate,

and g(z) and f (z) are shear functions with

g9(z) =12 (111.13)

All the previously mentioned theories have been widely utilized by numerous researchers to

precisely forecast the behavior of FGM sandwich plates.

111.2 Layered approach

These approaches are specifically aimed at describing the interfacial effects of conventional
composite materials. Various models based on layered approaches have been proposed [96],
[105], [106]. The multilayer approach is subdivided into substructures (corresponding to each
layer or group of layers). An FSDT or HSDT model was applied to each substructure, imposing
a displacement field that satisfied the continuity at the interfaces between different layers.
Models of this type are relatively costly (the order of the behavior equations depends on the
number of layers), but they allow for more accurate results, particularly concerning out-of-plane
stress calculations. In general, models derived from the layered approach can be classified into
two groups: discrete layer models, in which each layer is considered as a plate, imposing
continuity conditions in displacements or stresses at the interfaces, and zigzag models, in which
the kinematics inherently satisfy contact conditions and are independent of the number of layers
(Figures. 111-4 and 111-5).
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1 ]
Premier ordre Ordre supéneur

Figure 111-4: Displacement fields of discrete layer models, kinematic approach [107]

Premier ordre Ordre superieur
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Figure 111-5: Displacement fields of zig-zag models, kinematic approach [107]

111.2.1 Zigzag models

To reduce the number of unknown parameters, Di Sciuva was the first to propose a first-
order zigzag model [108]. In this model, membrane displacements result from the superposition
of the overall displacement field of the FSDT and a zigzag function (using the Heaviside
function). The zigzag function contributes to membrane displacements that are continuous in z;

however, its first derivative is discontinuous at the interface (see Figure I11-6).
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Lineaire Zg-Zag Lineaire + Zig-Zag

Figure 111-6: Displacement fields of first order zig-zag models [107]

Thus, the transverse deformations were discontinuous, ensuring continuity of the transverse
shear stresses at the interfaces. Building on this concept [109], several authors have made
significant improvements to the zigzag model. The primary enhancement was the introduction
of a nonlinear displacement distribution. The zigzag field (piecewise linear) was superimposed

on a higher-order displacement field (often cubic) (see Figure 111-7).

& z z
Non Linéaire Zig-Zag Non Lin¢aire + Zig-Zag
P 7 "
3 / R
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] e T -
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Figure 111-7: Displacement fields of higher order zig-zag models [107]

The compatibility conditions were satisfied on the upper and lower surfaces of the plates to
reduce the number of parameters. In the works of Ossadzow [110] and Karama [111], the zigzag
function was added to the "sin" displacement function [100] to refine shear effects. The zigzag

model ensures a good compromise between the solution accuracy and computational cost.
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However, as the slenderness decreases, the calculation of transverse shear stresses becomes less
precise [109].

I11.3 P-version of the finite element method

The p-version of the finite element method originated from the work of Babuska [112], [113]
and Szabo [114]. While maintaining the initial mesh, it involves introducing new degrees of
freedom by increasing the degree of interpolation of shape functions in certain areas. The
history of the p-version of the finite element method has been marked by significant milestones,
including the proposal of hierarchical shape function concepts and use of high-degree Lagrange
functions. Additionally, hierarchical functions were introduced into finite elements to detect the
emergence of an efficient p-version [115], the study of p-version convergence [112].

The p-version requires simpler meshing, a solid theoretical foundation, and a reputation for
providing robust and accurate solutions that converge exponentially to various problems.

111.3.1 Mesh adaptation

Modification of the discretization parameters is necessary to enhance the accuracy of a finite
element solution for a linear elasticity problem. Thus, the mesh can be refined, and the
interpolation degree used on the elements can be increased or both simultaneously. Various
procedures exist for refining finite-element solutions. Broadly speaking, these are divided into
two categories. H-refinement, in which the same class of elements continues to be used but with
changes in size, enlarging, and reducing size in certain areas to allow for maximum economy
in seeking the desired solution. P-refinement, where we continue to use the same element size
and simply increase, usually hierarchically, the polynomial order used in their definition.

To solve a physical problem using the finite element method, the engineer must make a series
of assumptions and approximations to transform a real object into a numerical model. The
discretization thus obtained, defined by a mesh and the approximation degrees of the elements,
allows us to obtain an approximate solution. Based on the above, we determine the displacement
field of the element and the corresponding vibration equation.

Each element has a continuous displacement field expressed by approximation functions and
displacements at selected points in the space of the element. These points are often the corner
nodes. According to the simplest linear form of the approximation function, the displacement
field{u}of the element can be expressed as follows [113]:

{u} = YL Nidi = [NV;]{d;} (1.14)
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where [Ni] comprise the shape functions of the first-order element, {di} is the vector of
unknown nodal displacements, and i indicates the node number and number of corner nodes,

respectively.

111.3.2 Implementation of the p-version

111.3.2.1 Legendre polynomials
The orthogonal Legendre polynomial Pi(§) for a domain defined between [-1, +1] is defined
as
P,(® =1 (111.15)

P,(®) = —-L [(x2 = 1)], forn=1,2, 3, ... (111.16)

2Mn! dx™

These are solutions of the following differential equation forn=0, 1, 2, ...:

1 -x®)y/ — 2xy/ +n(n+ 1)y =0 (111.17)

111.3.2.2 Shifted legendre polynomials
The shape functions used were constructed from shifted Legendre polynomials [116].
Shifted Legendre polynomials form a set of functions analogous to Legendre polynomials but

are defined on the interval [a, b]:

% _ 26—a-b
P (%) = P" (?) (111.18)
They are orthogonal to interval [a, b].

Unlike the Legendre polynomials defined in [-1, 1], the shifted Legendre polynomials are

defined in [0, 1]. Therefore, Equation (I11-18) becomes
Pi(®) = h(25 — 1) (111.19)

111.3.2.3 P-version and hierarchical interpolation functions
Since the inception of the finite element method, high interpolation degrees have been tested

with varying degrees of success. A finite element approximation,
u, = 2, Nia; (111.20)

is said to be hierarchical if the transition from n to n+1 does not alter the shape functions.
Among the advantages of the p-version, the hierarchical formulation is as follows:
e Allows for the utilization of an 'industrial' mesh with consistent element sizes

throughout computations,
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e Provides solutions less sensitive to numerical inaccuracies,
e Maintains a favorable convergence rate most of the time,
e Offers an economic error indicator necessary for the implementation of an

automated computational procedure.

a. One-dimensional elements

Linear elasticity and other problems can be formulated and solved by using simple element
shapes. Once the element and corresponding shape functions have been determined, the
following operations follow a well-defined standard path. To interpolate the problem for each
element, a basis must be established for each element. Several choices are possible, but
generally, the base functions used for finite elements interpolate, meaning that the nodal values
are the values of the unknowns at the nodes, and interpolation is performed based on these
values. The simplest method involves using displaced Legendre polynomials. In this method,
the characteristics of the displaced Legendre polynomials are employed to obtain hierarchical

shape functions for a one-dimensional element.

N (§)=1-¢ (111.21a)

N, (§) =¢ (111.21b)

Nipa(§) = V20— 1 [} Py (8)dt i>2 (111.21c)
£=0 0<E&<l1 =1

node l node Z

Figure I11-8: One-dimensional elements

where N1 and N2 are the nodal or external shape functions of nodes (1 and 2) of the one-
dimensional p-element, respectively. Ni (i = 3, 4, ...) are internal shape functions. The internal
shape functions are termed 'hierarchical’ because the set of shape functions of degree p includes
those of lower degrees p-1, p-2, ..., 1. The nodal shape functions connect with other elements

to ensure the continuity of displacements, whereas the hierarchical shape functions enrich the
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displacement field within the element. Figure 111-9 illustrates the hierarchical structure of a

stiffness matrix corresponding to a polynomial degree p=3.

2

el ——
©

g— || —
—

- ||

Figure 111-9: Hierarchical structure of a stiffness matrix corresponding to the polynomial
degree p=3

b. Two-dimensional p-elements

e Polynomial spaces

For a square domain Il ={0<é¢,n <1}, three commonly used two-dimensional

polynomial spaces exist [117].
e Serendipity family space SP (IT)

This corresponds to the set of monomials & n with i,j =0,1,...... ,p Where i +j =

01,...... , p including the monomial { ) if p = 1 and the monomials &’ nandn’ §ifp > 2.

By using Pascal's triangle for a hierarchical quadrilateral element, this polynomial space can

be represented as follows:
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Figure 111-10: Serendipity Family [118]

e Lagrange family space SP9 (IT)

This corresponds to the set of monomials éi nj withi =0,1,...... ,pandi,j=0,1,...... ,q.

Polynomial space is represented as follows:

Figure I11-11: Lagrange Family [118]

e Mixed family space SP4d

It consists of the set of monomials common to both the aforementioned polynomial spaces;

formally, §79 = §P n §P4, Coté and Charron [117] compared the Lagrange and Serendipity
families in the case of plate vibrations using the p-version of FEM. They concluded a better
convergence of the Lagrange family compared to the Serendipity family, and they developed
another polynomial family derived from the Serendipity family, called the enriched Serendipity

family.
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c. Quadrilateral element-p

The intersection of four one-dimensional elements in different directions forms a square
element containing four corner nodes, four sides, and one face (Figure 111-12). The combination
of shape functions from two one-dimensional elements with two different directions (& and 1)
yields shape functions for the quadrilateral element, which are divided into three groups

corresponding to the geometry of the element, as follows:

n
Side 3

O "

Side 4 Internal Side 2
E=0et0< n<I 0<&<1 et0< <l g=let0<n<l

O L o
Side /
n=0et0< &<l

Figure 111-12: Quadrilateral element

e Corner node shape functions

Each corner node of the quadrilateral element contains a bilinear function.

Node 1: N™(&,7) = Ny ()N, (1) (111.222)
Node 2: N™2(£,1) = N,(§)N; (1) (111.22b)
Node 3: N™(&,1) = N2(§)No (1) (111.22c)
Node 4: N™(&,1) = N;(&)N, (1) (111.22d)

as shown in Figure 111-13.
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vr & @

Figure 111-13: Shape functions on the quadrilateral element [118]

e Shape Functions on the Sides

There are (p-1) shape functions for each side of the element, as shown in Figure 111-14.

Side 1: N°(§,m) = Ni42(H)N1(m)
Side 2: N*2(§,1) = Ny(§)Niy2 (1)
Side 3: N*3(§,1m) = Nyy2(§)No (1)
Side 4: N**(§,1) = N1(§)Niy2 (1)

where i=1, ....,p

G&O

(111.23a)

(111.23b)

(1.23¢)

(111.23d)

Figure I11-14: Quadratic shape functions on the sides of the quadrilateral element [118]
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e Internal Shape Functions

There are (p-1) and (p-1) internal shape functions corresponding to the element face, as

shown in Figure 111-15.

Face: N™(&,1) = Ni42(E)Nps2 () (111.24)

where i,j =0,1,...... ,p;i+j=01,...... P

Figure 111-15: Quadratic internal shape function on the quadrilateral element [118]

111.4 Summary

In this chapter, we introduce the primary plate theories commonly used for modeling FGM
sandwich plates. The earliest and simplest theory, known as CPT, lacks consideration of
transverse shear deformation effects, thus effectively describing only the behavior of thin plates.
The FSDT assumes a uniform transverse displacement field across the plate thickness, leading
to constant transverse shear stress throughout. However, the actual transverse shear stresses
exhibit a parabolic distribution through the thickness, necessitating a shear correction factor for
accurate characterization, which is contingent upon factors such as the end conditions, material
properties, and thickness profile. In HSDTSs, the in-plane displacement field is expanded with
respect to the thickness coordinate to capture the intricate variations. A layered approach is
introduced to describe the interfacial effects of conventional composite materials. Finally, a was
introduced to describe the particularities of the p-version of the finite element method to use

them to model free vibration plates.
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Chapter IV

Vibration Analysis of FGM Sandwich
Plates Using p-version of The Finite
Element Method
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Chapter IV

Vibration Analysis of FGM Sandwich Plates Using p-version of The Finite
Element Method

In this chapter, we address several key aspects that are essential to our investigation. Initially,
we examined the geometric configuration of the model FGM sandwich plate to provide a
foundational understanding of its structural layout. Following this, we delve into the
mathematical formulation of first-order shear deformation theory, elucidating its principles and
significance within our analytical framework. Additionally, we integrate and detail the element
description, displacement interpolation, and shape functions relevant to the p-version of the
finite element method, which serve as fundamental components of the numerical analysis.
Moving forward, we present the derivation of equations for strain, kinetic energy, and motion,
contributing to a comprehensive characterization of plate behavior. Furthermore, we discuss
the validation study conducted to ensure the accuracy and reliability of our analytical approach.
This chapter includes a detailed implementation of the code used to analyze the vibration of the
system. Finally, we embark on a parametric study aimed at exploring the effects of varying
parameters, such as the volumetric fraction of layers, on the free vibration analysis of

functionally graded sandwich plates.
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IV.1 Geometric configuration

Figure V-1 presents an illustration of a rectangular FGM sandwich plate with uniform
thickness depicted within a rectangular coordinate system (X, Y, Z). In this configuration, the
top and bottom face sheets of the sandwich plates are situated at z = £h/2, whereas the vertical
positions of the bottom, the two interfaces, and the top are denoted as hy =-h /2, h;, h,, and h;

=h /2, respectively.

FGM

X A ' Homogeneous Core

. " l FGM

Figure IV-1: Geometry of sandwich plate with FGM skins and homogeneous core

The stress-strain relationships for each layer in X, y directions under plane stress conditions
are related by

i [Qi, Qi 0 0

Oxx 01 (e
Oyy Q22 0 0 0] fey
Txy p = Qs O 0 Vxy (IV.1)
Txz sym é Ll} 4 0 Vxz
) el

where, (Oxx Oyy) Tays Tz Tyz) ANA (Exx, Eyy) Vieys Vazs Vyz) TEPresent the stress and strain
components, respectively.
The elasticity constants Q}k are expressed as a function of the effective material properties,

such as Young’s modulus E@ (z) and Poisson’s ratio vV (z), and are defined as follows:

g® (2)

0L, = Qb = ———— IV.2a
Q11 QZZ 1—(v(i)(z)) ( )
Qi =v®(2) Qi, (1V.2b)
~ =i A ED(z)

QALH- - QéS - Qé6 - 2(1+vD(2)) (|V2C)
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The effective material characteristics of the FGM layers, such as mass density p@ (z), are
considered to be graded in the thickness direction according to a power-law distribution and

can be written as [15].

Ei(2)] [VO(2) 0 0 |[E.—Enl [Enm
viz)l=| o vD(2) 0 Ve — Vi | + | Vi (1V.3)
pi(z) 0 0 1740 (2) Pc — Pm Pm

where, the indices (c) and (m) denote ceramic and metal materials, respectively.
V@ (z) denotes the volume fractions of the FGM sandwich for the (i) layer (i = 1, 2, 3) and

assumes they are as follows:

V() = (Z22)", 2 € [ho, ] (IV.4a)
1=t

V@ (z) =1, z € [hy, hy) (1V.4b)

VO (2) = (Z22)7, 7 € [y, hs] (IV.4c)
27 1t3

where n,; and n, denotes the volume fraction exponents of the bottom and top layers,

respectively, (0 < nq,n, < 400).

IV.2 Mathematical formulation
IV.2.1 Displacement field

According to the FSDT, the displacement field u,, u, and us at point (x, y, z) are defined
as [86].

u(x,y,2,t) =u(x,yt) + 260, (x,y,t) (1V.5a)
uy,(x,y,z,t) =v(x,y,t) — z6,(x,y,t) (1Vv.5b)
us(x,y,z,t) =w(x,y,t) (1v.5c)

This theory uses three displacements of the middle surface and five variables to characterize
the deformation (u, v, and w) and two rotations (6,.and 6,) of transverse normal to the midplane
about the x and y axes, respectively. However, the Mindlin plate theory approach fails to fulfill
the transverse shear boundary conditions at the top and bottom surfaces because of its
assumption of a constant shear angle throughout the thickness, maintaining the plane sections
as a plane after deformation. Consequently, shear correction factors (k) are necessary for the
equilibrium considerations. Mindlin suggests that these factors are linearly dependent on

Poisson’s ratio (v), providing two estimations based on comparisons with the more precise
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solution of three-dimensional elasticity. The initial estimation yields 0.75 < k < 0.91 for

0 <v <0.5, while the second estimation, derived from shear wave velocity, results in k ~ 0.86

when v = (.3, aligning well with the commonly assumed value of k = 5/6 [119].

The Green strain tensor can be expressed in terms of displacement gradients by [120].

€ _ 6u1
XX Ix
_ auz
&y = oy
6u3
€=,
_ 6u1 Buz
Yxy = ay ax
_ 6u1 BU3
Yxz = 0z 0x
= us | Ouz

Yyz = ady 0z

(IV.6a)
(IV.6b)
(IV.6¢)
(IV.6d)
(IV.6e)

(IV.6f)

Using the Mindlin plate theory and inserting Eq. (IV.5) into Eq. (IV.6), the strain-

displacement [120] relationships are expressed as.

- ou
XX aX
_
&y = oy
_ou
Yxy = dy = 0x
ow
Yxz ey + a
ow
-0, +=
sz b ay
a0
A
XX - aX
_ 00y

IVV.3 P-version of the finite element method

IVV.3.1 Element description

(IV.7a)

(IV.7b)
(IV.7¢)

(IV.7d)

(IV.7e)

(IV.7f)

(IV.79)

(IV.7h)

A rectangular, four-node finite element based on first-order shear deformation theory, with

five degrees of freedom per node, was used to perform free vibration of the FGM sandwich
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plates. Figure V-2 shows the geometry and the corresponding nodal variables of the finite

element.

v y

Figure 1V-2: Geometry and corresponding nodal variables of the element finite

IV.3.2 Displacement interpolation and shape functions

The in-plane displacements (u, v) and out-of-plane displacements (w, 6, and 6,,) are denoted

as
u —
{*} =31 Ny (IV.8)
where
_ N; (&) 0 _ Q2j-1
N; [ 0 NG| % { Qzj } (V-9)
and
w
{eyI = X1 Njg (IV.10)
where
NEn) 0 0 d3j-2
N;=| 0 N ) 0 | and q; = {QBj—l} (Iv.11)
0 0 N(En) 93

where g; is the vector of generalized in-plane displacements, q; represents the vector of
generalized transverse displacement and rotations, respectively, and N(é,n) are the shape
functions of rectangular finite p-element.

In the p-element, shape functions are classified into three categories. Firstly, the shape

functions of the nodes at the vertices of the element, secondly the shape functions of the four
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sides of the element and finally the functions of the internal shapes. The shape functions used
in the present p-element are given as:

e Four shape functions of vertex

N1(§,m) = g1(§)g:(m) (1V.12a)
Ny (§,m) = 92(§)g9:(m) (1V.12b)
N3(§,n) = 92($)g2(n) (1V.12c)
N,(&,m) = 9:1(§)9.(m) (1V.12d)

e (p — 1) hierarchical shape functions on each side

N3 n) = gi42(£)g:1() (IV.13a)
N3 2(Em) = g2(§) giv2 () (1V.13b)
N31e3(Em) = gi+2(£)g2(n) (IV.13c)
N3t ) = 91(§)gir2(m) (1V.13d)

e (p — 1)? internal hierarchical shape functions
NEernal(E,m) = gir2(§)giv2 () (IV.14)

where g;(¢) and g;(n) are the uni-dimensional hierarchical shape functions and are given

as:
GO =1-§ 6O =& g =V2i—1 [{ Py (Ddr 22 (IV.15a)
g =1-n, g:() =1, gixa() =V20—1 [} Py (Ddr 22 (IV.15b)
and P;(t) is shifted Legendre polynomials and are given as:

Py(t) =1, Pb(t)=21—-1 (1V.16a)
Pii(0) = ]% [(=2j — 1+ 4 + 2))P(@) = jP_ (D], j=12,.. (IV.16b)

IV.4 Strain, Kinetic Energy, and Motion Equations

The strain energy U and kinetic energy T of the functionally graded moderately thick plate

can be written as follows:
1 2 2 2
U= E [Allgxx + Aza&xx + 2A125xx€yy + A66yxy

+ Z(Bllgxx)(x + Blzgxx)(y + Blzgyy)(x + Bzzgyy)(y + B66X9%y)
+(D11X§ + Dzz)(;zz + 2D12Xx)(y + D66X3%y) + (544)’332 + S55y3§z)]dxdy (IV.17)
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T=1jf [11 (( ) (th’) +(2) )+13 ((a:tx) +(3) )] dxdy (IV.18)

where Ajj, Bij, Djj, and S;j are extensional, bending-extensional, bending and shear stiffness

constants and 113 are the inertia constants of the FGM plate and are given by

(Agj, By, Dy) = Zia ' 00 (Lz,20dz (o k = 1,2,6) (IV.19a)
(Sy) = Ziak [yt “)d Gk =4,5) (IV.19b)
(I, I3) = iy f p“) (2)(1,2%)dz (IV.19c)

where k is a shear correction factor of FSDT (k = 5/6) [119], Q](,? are the coefficients of the

elasticity matrix.

Lagrangian of the system is given by

L=T-U (IV.20)
7 ()~ (5) = (1v.21)

We obtain the following motion equation
[K.1{Q}+ [M]{0} =0 (IV.22)

The substitution of {Q} = —w?{Q} in the above equation leads to

([K.] — w?*[MD{Q} =0 (IV.23)
Using Egs. (IV.17)- (IV.18) in conjunction with Lagrange's equations, the final equation of
motion yields.

[K — KTK[ 'K, — w?*M]{Q} = 0 (IV.24)

Where {Q} = {QW Qe,, ng} in the vector of generalized amplitudes and [K.] = [K —
KTK{'K,].
Where [K;] is the submatrix of internal degrees of freedom, [K,] is the submatrix of the

coupling terms, and [K] is the submatrix of the main degrees of freedom.

The element mass matrix M, and element stiffness matrices K, K;and K, are given as
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LNN, 0 0
M=['[| 0 LNN 0 |abdédn (IV.25)
0 LN\
K
dN; aN;
“ox 3t 5, ey s iy
aNlalvjl - 44% j 556_5 ]
L 4| T an on
ON; ON; ON; ON;
fo 52N DesGe gy Dt ONON, ) ON:ONy|abdédy
00 44 lan’ S NI\;] T’ 12 an af 66 af an
44N IVj
ON; ON; ON; ON;
S N-% -D %%—D %aﬂ 666_15_]+D116_la_]
554Vi af’ 12 af ar] 66 an af ) n T] g g
+S55N; N;
(Iv.26)
11 22 66 22 1o Ty Age =t =
11 aE 3¢ an on’ 9t an at an
) Ly, awon, R (IV.27)
0 BNLON] aNlaNJ aNlaNJ+B 6N10N]
_ 1 .1 4 IZEE_ 66%6_51 11 af a 66 a,r’ af
K= o g MO o ow o, an, N an,oN abdédn (1V.28)
* 722 5y on 66 9¢ a9’ 12 9y B¢ 66 5¢ an

IV.5 Code implementation

The final section of this chapter focuses on code implementation to determine the natural
frequencies of the FGM sandwich plate. Based on the first-order plate theory and formulation
using the quadrilateral p-element, the Fortran 90 code. First, we introduce the programming
environment, software, and hardware used, followed by a program flowchart to explain the
development steps. A general description of parameter dictionaries, data files, and output files
is provided in this section. The final section includes a detailed explanation of each subroutine’s
task of executing the calculation code.

IV.5.1 Programming environment

Building upon the detailed mathematical formulas from the preceding chapter,a FORTRAN
90 program was developed based on the p-version of the finite element method to determine
the natural frequencies of a plate under various physical and geometric parameters and

boundary conditions.
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The software utilized in this study includes Origin 9.0, for graph plotting and mode analysis,
and MATLAB for the symbolic computation of shape functions and their derivatives. The
program was executed on a PC equipped with a Core i5 processor (2.30 GHz) and 8 GB of
RAM.

The calculation program comprises three main components.

e Input files
e Calculation program
e Output file.

IV.5.2 Main program

The various stages involved in developing a calculation program are illustrated in the
flowchart (Figure 1V-3).

IV.5.3 Program description

IVV.5.3.1 Data file

All the necessary data for implementing the calculation program are contained within the
data file. The data can be divided into four categories.

a. Geometric Parameters
The parameters required to define the geometry of the plate were as follows:

e H: Plate thickness.

e X(i), Y(i): Coordinates of the nodes at the vertices of the elements, where they are

utilized in blending functions (refer to Chapter I11).

b. Physical Parameters
The physical parameters utilized in the program include the following.

e PRm: Poisson’s ratio.

e SC: Shear correction factor.

e Em: Young's modulus of the metal.

e Ec: Young's modulus of the ceramic.

e ROm: Surface mass density of the metal.

e ROc: Surface mass density of the ceramic.

e ENI1: Volume fraction (bottom layer).

e ENZ2: volume fraction (top layer).

e XCI1: Porosity coefficient (bottom layer).

e XCI2: Porosity coefficient (top layer)
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(o)

1

Introduction of data describing
the plate geometry

(S/P ELEM, S/P IMATRIX),
boundary conditions, and the
degree of the p-element
polynomial

|

Generation of global lists of nodes
(vertices, sides, internal).

Assignment of restrained nodes.

S/P INPUT

1

Computation of Gauss points and
weights.

S/P GAUSS

|

Generation of degrees of freedom
lists

|

Determination of p-element
connectivity.

S/P CONNECT

|

Calculation of element stiffness and
mass matrices.

S/IP MATRIX

|

Application of boundary conditions
on the generated matrices
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Assembling the global matrices

[Ke] and [M]

|

Calculation of eigenvalues and

eigenvectors of the equation system
[M1{q} + [K]{q} = 0 using the Jacobi
method.

S/P JACOBI

|

Generation of the results file to

display the natural frequencies

End

Figure 1V-3: Flowchart of the developed program

c. Element Parameters

All necessary parameters that identify the p-element are stored in the data file.

NTE: Total number of elements.

NTN: Total number of nodes.

NTC: Total number of sides.

NNR: Number of restrained nodes.
NCR: Number of restrained sides.
NMH: Degree of p-element polynomial.
NMODE: Specific mode number.

d. Boundary Conditions

To facilitate the solution of the generalized eigenvalue problem, it is crucial to consider the

significance of boundary conditions. To solve the system of equations, it is sufficient to
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incorporate the imposed (zero) values of the boundary-node displacements into these equations.
The quadrilateral p-element depicted in Figure V-4 contains four nodes at the vertices and four
sides, with each node having three degrees of freedom:

e w: displacement along the z-axis.

e 0Ox: rotation of the cross section around the x-axis.

e 0y rotation of cross-section around the y-axis

s

4 Side 3

Side 4 Side 2

¢ 9

| Side 1

Figure IV-4: Numbering of nodes and sides of the p-element

In the subroutine (S/P INPUT), a numbering order for nodes and sides of the quadrilateral
p-element exists to ensure the accurate assignment of boundary conditions.

The boundary conditions for the plate element in the data file are introduced following the
layout indicated in Tables IV-1 and IV-2.

In the tables below, the value (0 or 1) defines the state of freedom of the nodes and sides of
the p element. A value of '1' indicates that the degree of freedom is restricted, whereas '0'
signifies that the degree of freedom is free. In the context of applying boundary conditions in
the calculation program, the rows and columns of the stiffness and mass matrices corresponding

to the restricted degrees of freedom were removed.
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Table 1V-1: Introduction of node boundary conditions

nodes u v ® Ox Oy
1 10r0 10r0 10r0 10r0 10r0
2 10r0 10r0 10r0 10r0 10r0
3 10r0 10r0 10r0 10r0 10r0
4 10r0 10r0 10r0 10r0 10r0

Table IV-2: Introduction of side boundary conditions

side u v (0 Ox 0y

1 10r0 10r0 10r0 10r0 10r0
2 10r0 10r0 10r0 10r0 10r0
3 10r0 10r0 10r0 10r0 10r0
4 10r0 10r0 10r0 10r0 10r0

IVV.5.3.2 Programming

The calculation program developed in this study allows for the analysis of the linear free
vibration of plates with arbitrary geometric shapes using a quadrilateral p-element. This enables
the determination of frequencies and eigenvectors. The flowchart in Figure 1VV-3 illustrates the
main subroutines and development steps of this program. The following subroutines are deemed

essential for executing the calculation program:

a. Geometric description of the plate by the p-element
The subroutine ELEM performs the task of geometric description of the plate using Cartesian
coordinates (X, y) of the nodes at the vertices, and parametric functions of the sides describing

the plate boundaries and their derivatives with respect to local coordinates (&, n).

b. Jacobian Matrix
The subroutine IMATRIX calculates the determinant and components of the Jacobian matrix

to be used in the calculation of element stiffness and mass matrices.

c. Execution of boundary conditions

The INPUT subroutine is responsible for executing the two main tasks.
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e The first task involved generating a global list of nodes (real and fictitious). The first
list is dedicated to real vertex nodes. The second is reserved for fictitious nodes on
the sides, whereas the third contains all nodes within the p-element. In addition, the
node lists are designed based on the degree of interpolation polynomial p.

e The second task performed by the S/P INPUT is the assignment of the degrees of
freedom for the restrained nodes.

d. Numerical integration

Using the Gauss-Legendre quadrature, the integrals presented in the element stiffness and
mass matrices were numerically calculated because of the inability to compute these integrals
analytically. The GAUSS subroutine calculates the abscissas of the Gauss points and the

corresponding weights required for the numerical integration.

e. Lists of degrees of freedom

After ensuring node and side connectivity, assignments of degrees of freedom lists are
performed by the CONNECT subroutine to achieve a hierarchy of degrees of freedom. These
lists of degrees of freedom were identified earlier by S/P INPUT.

f. Formation of element matrices
Element stiffness and mass matrices were calculated using the S/P MATRIX subroutine.
g. Calculation of eigenvalues and eigenvectors by the jacobi method

Once the element matrices were formed, they were assembled into global matrices by
neglecting the rows and columns corresponding to the restrained nodes and sides that were
previously read from the data file. Thus, the equation of motion for global free vibration can be
expressed as

([K.] — w?MD{Q} =0 (1IV.29)

In the JACOBI subroutine, a system of equations is solved using the Jacobi algorithm to
obtain the corresponding eigenvalues and eigenvectors.

h. Shape functions and their derivatives

The hierarchical shape functions for the quadrilateral p-element are given in terms of shifted
Legendre orthogonal polynomials. In our calculation program, the shape functions and their
derivatives with respect to the local coordinates (&, 1) were computed using the GFUNCT

subroutine.
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IVV.5.3.3 Output file
All the parameters calculated by the developed program are stored in an output file, including
e NMH: Degree of p-element polynomial.
e NEQ: Number of equations in the system.
e NMODE: Specific mode number.
e OMLOC: Local frequency parameter.

e TE: Execution time (seconds).

IVV.6 Validation study

The validity of the results was confirmed through comparisons with existing literature. In
the first case, we compared the fundamental frequency parameters of isotropic rectangular and
square plates as functions of the thickness ratio (h/b), as presented in Table IV-3 and Table

IV-4, respectively.

Table 1V-3: Fundamental frequencies Q = (wa?/2m),/ph/D of an isotropic simply supported

rectangular plate (b = 2a)

hib Present TSDT [122] SSDT [123] DQM [121]
0.005  1.96305 1.96305 1.96305 1.96299
0.01 1.96171 1.96171 1.96171 1.96179
0.02 1.95639 1.95639 1.95640 1.95667

0.1 1.80970 1.80974 1.80993 1.81513

0.2 1.51803 1.51230 1.51294 1.53118

The present results using the p-version of the FEM are in excellent agreement obtained by
isotropic plates with those analytical [121] and semi-analytical solutions [122], [123].

Six types of simply supported FGM sandwich plates with homogenous ceramic cores were
considered, as listed in Table IV-5. The designation (1-0-1) indicates an absence of the core,
signifying that the plate solely consists of two equally thick face layers made of FGM sandwich;
(1-1-1) in this type, the plate comprises three layers of equal thickness; (1-2-1) here, the core
thickness equals twice the thickness of each face layer; (2-1-2), the core thickness equates to
half the thickness of each face layer; (2-1-1) is a non-symmetric sandwich plate where the core

thickness aligns with one face thickness and is half the thickness of the other; and (2-2-1) is a
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non-symmetric sandwich plate where the core thickness equals the thickness of one face and
twice the thickness of the other.

Table IV-4: Fundamental frequencies Q = (wa?/2m),/ph/D of an isotropic simply supported

square plate

hb  Present TSDT [122] SSDT [123] DQM [121]
0.1  3.03428 3.03433 3.03445 3.03828
7.23879 7.23897 7.23973 7.26053
11.10811 11.10688 11.10867 11.15740
13.53498 13.52929 13.53217 13.60580
02 277703 2.77669 277717 2.78935
6.07210 6.04919 6.05177 6.12471
8.77740 8.67383 8.67960 8.87880
10.36847 10.17716 10.18547 10.50360

Table IV-5: FGM sandwich model

Thickness 1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 2-1-1
ho -h/2 -h/2 -h/2 -h/2 -h/2 -h/2
h1 0 -h/6 -h/4 -h/10 -h/10 0
h2 0 h/6 h/4 h/10 3h/10 h/4
hs h/2 h/2 h/2 h/2 h/2 h/2

The properties of metal (Aluminum- Al) and ceramic (Alumina-Al,05) mixture are shown
as

e Alumina-Al,05:E. = 380Gpa,v, = 0.3,p, = 3800Kg m3.
e Aluminum- Al:E,, = 70Gpa, v, = 0.3, p,, = 2707Kg m~3.

For convenience, the following dimensionless variables are applied to graphically illustrate
some numerical results.
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The frequency parameters:

Q = (wa®/h)y/po/Eo (1V.30)

where Young’s modulus and material density, denoted as E, = 1 GPa and p, = 1 kg/m?3,

respectively.

Table 1VV-6 provides a comprehensive comparison of the fundamental frequency parameters
of square FGM sandwich plates with those predicted by alternative theories, exhibiting
convergence among these values, as noted in the studies by Zenkour [123] and Van Vinh and
Huy [33]. By incrementally increasing the polynomial order from two to eight, the desired level
of accuracy in the numerical results for simply supported configurations is attained. The
tabulated data clearly illustrate a pronounced trend of rapid convergence with an escalating
polynomial order. In particular, a significant convergence pattern becomes increasingly
conspicuous as the polynomial order surpasses and reaches p =6, underscoring the efficacy and
stability of the convergence process, and affirming its robustness in achieving precise solutions

with higher polynomial orders.

IVV.7 Parametric study

The contour plots of the linear frequency parameters of the symmetric FGM sandwich plates
are shown in Figure IV-5. This contour was plotted for the calculated values of the linear
frequency parameters as functions of the volume fraction exponents of layers 1 (n,) and 3 (n,).
The two volume fraction exponents varied from 0 to 10. As can be seen in the figure, the
increase in the volume fraction exponents in the direction of (n,) or (n,) produces a reduction
in the frequency parameters. Symmetric FGM plates produce plots for plates with geometrical

and physical symmetries.
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Table 1VV-6: The convergence and comparison of fundamental frequencies parameters of FGM

sandwich plate with other theories (h/a=0.1)

n  Methods p 101 212 211 111 221 121
00  Present 2 193283 1093283 193283 1.93283 1.93283 1.93283
4 1.82470 1.82470 1.82470 1.82470 1.82470 1.82470

6 182442 182442 182442 182442 182442 1.82442

8 182442 182442 182442 182442 182442 1.82442

TSDT [123] 1.82445 1.82445 182445 1.82445 1.82445 1.82445
SSDT [123] 1.82452 1.82452 1.82452 182452 1.82452 1.82452
HypSDT [33] 1.82563 1.82563 1.82563 1.82563 1.82563 1.82563

05  Present 2 152837 157066 160105 1.60809 1.64303 1.66709
4 144191 148182 151004 151719 154982 1.57298

6 144168 1.48159 150981 151695 1.54958 1.57274

8 144168 148159 150981 1.51695 154958 1.57274

TSDT [123] 144424 148408 151253 151922 155199 1.57451
SSDT [123] 1.44436 148418 151258 151927 155202 1.57450
HypSDT [33] 1.44513 1.48500 150735 1.52017 1.54813 1.57553

1.0  Present 2 131531 1.37575 1.42765 143234 149032 1.52388
4 1.24051 129749 1.34520 1.35093 1.40468 1.43745

6 124032 129729 1.34500 1.35072 1.40446 1.43722

8 124032 129729 1.34500 1.35072 1.40446 1.43722

TSDT [123] 124320 1.30011 1.34888 1.35333 1.40789 1.43934
SSDT [123] 124335 1.30023 1.34894 1.35339 1.40792 1.43931
HypSDT [33] 1.24393 1.30089 1.33421 1.35415 1.39652 1.44024

50  Present 2 0.99965 1.03836 1.13666 1.10538 1.21424 1.24286
4 094271 0097886 1.06771 1.04200 1.14135 1.17177

6 0.94256 0.97870 1.06755 1.04183 1.14118 1.17159

8 094256 0097870 1.06755 1.04183 1.14118 1.17159

TSDT [123] 0.94508 0.98184 1.07432 1.04466 1.14731 1.17397
SSDT [123] 0.94630 0.97207 1.07445 1.04481 1.14741 1.17399
HypSDT [33] 0.94650 0.98240 1.03120 1.04527 1.10963 1.17468
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1-0-1 1-1-1
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Figure 1V-5: Contour plot of frequency parameters for symmetric FGM sandwich plates

Figure IV-6 illustrate the contour plots of the frequency parameters for the non-symmetric
FGM sandwich plates. This contour was plotted as a function of the volume fraction exponent
for the calculated values of the linear frequency parameters. the increasing of the volume
fraction exponents (n,) and (n,) produces a reduction of frequency parameters. Non-symmetric
FGM plates produced non-symmetric plots. The greatest variation is in the direction of bottom
layers (n,), which reflects the influence of the mixture of the bottom layers on the frequency

parameters of the FGM sandwich plates.
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Figure IV-6: Contour plot of frequency parameter for FGM sandwich non-symmetric plates

1IV.8 Summary

In this chapter, we define the model, analyze, and integrate the p-version of the finite element
method and FSDT. We discuss the practical implementation of the solutions in the
computational code. The validity of the results was confirmed through comparisons with
existing literature, and the results obtained using the p-version of the FEM were in excellent
agreement with those obtained by isotropic and FGM sandwich plates with analytical and semi-
analytical solutions. For a degree of polynomials of order six, the convergence investigation
conducted in this study provides the stability of the results with a precision of six digits. To test
the quality and precision of the proposed p-element, a comparative study was conducted
between the present results and those obtained using other methods (TSDT, SSDT, DQM,
HypSDT, and HSDT). Excellent agreement was found between the two results, with an order
of precision of five digits. Finally, the non-symmetric FGM plates produced the greatest
variation in the direction of the bottom layers, reflecting the influence of the mixture of the

bottom layers on the frequency parameters of the FGM sandwich plates.
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Chapter V

Effect of Porosity Distribution on FGM Sandwich Plates

The distribution of porosity within FGM sandwich plates presents a notable challenge, as it
affects various mechanical properties, such as stiffness, strength, and durability, impacting the
structural integrity and overall performance of the plates. Understanding and managing this
porosity distribution is crucial for optimizing the design and manufacturing processes of FGM
sandwich structures.

In this final chapter, we aim to explore the effect of porosity distribution on FGM sandwich
plates using the p-version of the FEM and FSDT. Our study commences with the definition of
five porosity distribution models and model validation against the existing literature, ensuring
the reliability of our findings. Subsequently, we conducted a comprehensive parametric study
to investigate the influence of key factors, including the effect of the thickness ratio, boundary
conditions, volume fraction exponents, and porosity coefficients of the top and bottom layers

of the FGM sandwich plates on the natural frequency.
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V.1 Porosity distribution models

z[ b

- —_—

- s FGM

‘X/ b Homogenovus Core
| O —
Poruss FGM

k|

Figure V-1: FGM sandwich plate with porosity model

Researchers have presented several models of porosity distribution to calculate the useful
material properties of porous FGM plates [34]. Five even and uneven porosity models were
considered in the current work to account for the porosity in each FGM layer of the sandwich
plates:

V.1.1 FGM model with even porosities (Imperfect 1)

The porosities are evenly distributed across the FGM sandwich layers in this model, whereas
the core layer is nonporous (perfect). Having porosities equally distributed (imperfect 1), the
effective material properties P® of FGM layers [ (1 = 1, 2, 3) are expressed as [34]:

PY(2) = Py + (P. — PV (2) — 2(P, + By,
P3(2) = Py + (P = P)V P (2), (V.1)
P3(2) = Po + (B = BV (@) =2 (P + By,

P,, and P. are the equivalent characteristics of the metal and ceramic, respectively.
¢1, &, denote the porosity coefficients (&, ¢, "1).
The nonporous FGM sandwich plate is indicated by &; =&, = 0.

V.1.2 FGM model with uneven porosities (Imperfect 11)

The porosities of the FGM sandwich plate expanded along the thickness direction. by the

following formulae:
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(P1(2) = P + (B = PIVD (2) = L (B + By [1 - B
0
PZ(Z) =Py + (Pc - Pm)V(Z)(Z), (VZ)
P3(2) = Py + (P. — POV (2) _é’Z_Z(PC +P) [1 _ lzz;l(h3;h2)| ’
3712

V.1.3 FGM model with logarithmic-uneven porosities (Imperfect 111)

A logarithmic function is used in the third model of porosity distribution, and it is expressed

as:

(PL(2) = Pu + (B. = B IV (2) — log (1 +2) (B + B [1 - et ("0;’11)' ,

J P*(2) = Py + (R — Pm)V(Z)(z) (V.3)
lP3(z) = P+ (B = PV (@) — log (1+£) (B + By [1 - B0t

V.1.4 FGM model with linear-uneven porosities (Imperfect 1V)

In this model, the density of porosity changes linearly across the FGM layers and is low at
the sandwich's outer surfaces and high at its two interfaces.

(P1(2) = P+ (B = BV - 2R+ P |1 - 222,

P%(z) = By + (P. — Pm)v<2)(z) (V.4)
P2 (2) = By + (B = BV (@) =2 (R + B) [F22],

V.1.5 FGM model with sinusoidal-uneven porosities (Imperfect V)

The fifth porosity distribution model, which is based on a sinusoidal function, is written

as:

PY(2) = Py + (B = PV (2) = Lsin (3+Z) (B + Bo) |1 - M";’“)'
0

P%(z) =P, + (P. — B, )V P(2), (V.5)

h |2z—(h3+h,)|
P(2) = B + (P = PV ®(@) = Zsin (§+ %) (B + Bo) [1 - 2202

)

V.2 Convergence and Comparison

To verify the accuracy of the proposed model for FGM sandwich plates with porosity, a
Convergence and Comparison was performed for the linear free vibration of the results

available in the literature.
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Table V-1 provides a comprehensive comparison of the nondimensional frequencies of the

square FGM sandwich plates as a function of the porosity model (imperfect 1) with those

predicted by alternative theories, exhibiting convergence among these values, as highlighted in

studies by Daikh and Zankour [28] and Van Vinh and Huy [33]. By gradually increasing the

polynomial order from 2 to 8, the numerical results achieved the desired accuracy for the simply

supported configurations. The tabulated data distinctly reveal a rapid convergence trend with

increasing polynomial order, which is particularly evident beyond p = 6, emphasizing the

effectiveness and stability of the convergence process in yielding precise solutions.

Table V-1: The convergency and comparison of porosity on the non-dimensional frequencies
of FGM square sandwich plate (a/h=10, n=2)

1 p Methods 1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 2-1-1
0 2 Present 1.12263 1.25777 1.37901 1.18754 1.34199 1.26450
4 1.05862 1.18595 1.30045 1.11974 1.26338 1.18971
6 1.05855 1.18591 1.30040 1.11965 1.26310 1.18951
8 1.05855 1.18591 1.30040 1.11965 1.26310 1.18951
HSDT [28] 1.06155 1.18847 1.30244 1.12248 1.24391 1.16529
HypSDT [33] 1.05205 1.18913 1.30326 1.12305 1.24464  1.16595
0.1 2 Present 1.03963 1.18668 1.32321 1.10846 1.28682 1.20212
4 0.98015 1.11867 1.24760 1.04486 1.21031 1.12950
6 0.97007 1.11856 1.24758 1.04478 1.21010 1.12937
8 0.97007 1.11856 1.24758 1.04478 1.21010 1.12937
HSDT [28] 0.98258 1.12071 1.24933 1.04712 1.18195 1.09355
HypSDT [33] 0.98307 1.12134 1.25012 1.04766 1.18265 1.09417
0.2 2 Present 0.93047 1.10396 1.26253 1.01157 1.22558 1.12930
4 0.87685 1.04040 1.19015 0.95329 1.15118 1.05883
6 0.87684  1.04036  1.19014 0.95317 1.15094 1.05860
8 0.87684  1.04036  1.19014 0.95317 1.15094 1.05860
HSDT [28] 0.87867 1.04201 1.19156 0.95491 1.11054 1.00557
HypSDT [33] 0.87912 1.04260 1.19231 0.95542 1.11120 1.00616
The non-dimensional frequencies of the square FGM sandwich plates as a function of four
porosity models (imperfect 1, ...., IV) are considered with two values of porosity coefficients
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& =&, =& =0.1and 0.2, and the volume fraction exponents n, = n, = n = 2 are presented
in Table V-2, and compared with the dose of Daikh and Zankour [29]. We note that in the four

porosity models, these findings closely matched those of the analysis.

Table V-2: The comparison of the non-dimensional frequencies of square FGM sandwich

plate with porosity distribution (a/h=10)

Porosity & Methods 1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 2-1-1
Perfect 0 Present 1.05855 1.18591 1.30040 1.11965 1.26310 1.18951
HSDT [29] 1.06155 1.18847 1.30244 1.12248 1.24391 1.16529
Imperfect | 0.1 Present 0.98007 1.11856 1.24758 1.04478 1.21010 1.12937
HSDT [29] 0.98258 1.12071 1.24933 1.04712 1.18195 1.09355
0.2 Present 0.87684 1.04036 1.19014 0.95317 1.15094 1.05860
HSDT [29] 0.87867 1.04201 1.19156 0.95491 1.11054 1.00557
Imperfect I 0.1 Present 1.02932 1.15520 1.27528 1.08732 1.23895 1.16414
HSDT [29] 1.03235 1.15768 1.27723 1.09008 1.21572 1.13481
0.2 Present 0.99729 1.12290 1.24953 1.05262 1.21398 1.13740
HSDT [29] 1.00033 1.12524 1.25140 1.05528 1.18609 1.10199
Imperfect 1l 0.1 Present 1.03006 1.15597 1.27589 1.08813 1.23954 1.16477
HSDT [29] 1.03308 1.15844 1.27785 1.09089 1.21642 1.13558
0.2 Present 1.00044 1.12599 1.25198 1.05599 1.21637 1.13998
HSDT [29] 1.00347 1.12837 1.25386 1.05867 1.18894 1.10519
Imperfect IV 0.1 Present 1.02190 1.15354 1.27464 1.08408 1.24395 1.16975
HSDT [29] 1.05559 1.17079 1.28422 1.10840 1.22699 1.15122
0.2 Present 1.03187 1.11935 1.24820 1.04566 1.22430 1.14914
HSDT [29] 1.05213 1.15260 1.26581 1.09394 1.20966 1.13763

V.3 Parametric Study

After verifying the accuracy of the current formulation, a parametric investigation was

conducted. The influences of the thickness ratio, boundary conditions, two-volume fraction

exponents (nq,n,) and two porosity coefficients (;, ;) of the top and bottom layers of the

FGM sandwich plate on the natural frequencies were investigated.
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Table V-3 shows the non-dimensional frequencies of a square FGM sandwich plate with two

different face’s porosities. Five models are considered. The table illustrates that when §; = &, =

0 for different imperfect porosity models, the non-dimensional frequencies remain consistent,

indicating what is termed the "perfect model."” The 1-2-1 model shows higher non-dimensional

frequency values compared to the 1-0-1 model, which, in contrast, shows the smallest

frequencies. The higher the porosity coefficient, the lower non-dimensional frequencies are

observed.

Table V-3: non-dimensional frequencies of square FGM sandwich plate with two porosities

distribution (a/h = 10,n, = 2,n, = 0.5) for different Imperfect model

Porosity & &  1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 2-1-1
Imperfect] 0.0 0.0 127162 1.36589 144579 131866 1.39920 1.35396
0.1 125113 1.34233 1.42468 129523 1.37679 1.32836

0.2 123056 1.31894 1.40408 127177 1.35494  1.30305

01 00 125204 134431 142669 1.29692 1.38179 1.33931

0.1 1.22914 1.31883 1.40428 127123 1.35787 1.31181

02 120588 1.29338 1.38234 124529 1.33445 1.28450

02 00 123090 1.32236 140775 1.27432 136382 1.32348

0.1 1.20525 1.29480 1.38399 1.24613 1.33826 1.29388

02 1.17886 1.26709 1.36061 1.21740 1.31313 1.26434

Imperfect I 0.0 0.0 1.27162 136589 1.44579 131866 1.39920 1.35396
0.1 126413 1.35461 143530 1.30810 1.38795 1.34127

02 1.25698 1.34364 142514 129782 1.37704 1.32888

01 00 126478 1.35586 143654 1.30918 1.39173 1.34929

01 125692 1.34415 142574 129815 1.38015 1.33620

02 124940 1.33275 141528 128740 1.36889 1.32342

02 00 125795 134504 142748 1.29975 1.38436 1.34466

0.1 124970 1.33380 1.41637 128824 1.37242 1.33118

02 124179 1.32194 140560 1.27699 1.36082  1.31800

Imperfect Il 0.0 0.0 127162 1.36589 144579 131866 1.39920 1.35396
0. 1.26430 1.35488 143555 1.30835 1.38822 1.34157

02 1.25764 1.34466 1.42608 1.29877 1.37805 1.33003
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0.1 0.0 126495 135610 1.43676 1.30941 1.39191 1.34940
0.1 1.25728 1.34469 1.42623 1.29865 1.38061 1.33664
0.2 125027 1.33407 1.41648 1.28865 1.37013 1.32474

02 0.0 125859 134687 1.42832 1.30063 1.38505 1.34510
0.1 1.25057 1.33506 1.41751 1.28944 1.37343 1.33197
0.2 1.24323 1.32405 1.40749 127901 1.36265 1.31973

ImperfectV 0.0 0.0 1.27162 136589 144579 1.31866 1.39920 1.35396
0.1 124892 134784 143174 1.29816 1.38562 1.33731
0.2 1.22599 1.32994 141798 127766 1.37233 1.32089

0.1 0.0 127414 136114 143949 1.31637 1.39838 1.35790
0.1 125102 134266 1.42513 1.29540 1.38453 1.34098
02 122764 132432 141106 1.27441 1.37098 1.32429

0.2 0.0 127693 1.35658 1.43342 131426 139776 1.36213
0.1 125340 1.33767 1.41875 1.29282 1.38365 1.34494
0.2 122957 131888 140437 1.27133 1.36984 1.32797

Imperfect V 00 0.0 127162 136589 1.44579 131866 1.39920 1.35396
0.1 1.26627 1.35787 143832 131114 1.39119 1.34493
0.2 126110 135001 143103 1.30378 1.38337 1.33607

01 0.0 126679 1.35879 1.43924 1.31196 1.39392 1.35065
0.1 126126 1.35056 1.43162 130421 1.38574 1.34143
0.2 1.25590 1.34248 142417 129661 1.37774 1.33237

02 0.0 126198 135177 143279 1.30530 1.38869 1.34739
0.1 125626 1.34332 142502 1.29731 1.38035 1.33797
0.2 1.25071 1.33502 141741 128948 1.37217 1.32871

Table V-4 shows the non-dimensional frequencies of a square FGM sandwich plate with

diverse volume fraction exponents across various models of imperfect porosity. This

demonstrates that higher volume fraction exponents result in lower non-dimensional

frequencies across all imperfect porosity models.
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Table V-4: non-dimensional frequencies of square FGM sandwich plate with two different

face’s volume fraction exponents and different coefficients of porosity(a/h = 10,§; =

0.1,%, = 0.2)

Porosity n nz 101 1-1-1 1-2-1 2-1-2 2-2-1 2-1-1
Imperfect | 00 00 1.84368 1.80545 1.79465 1.81887 1.80077 1.81031
0.1 1.79069 1.76332 1.76037 1.77170 1.77177  1.77568

0.2 174662 1.72802 1.73162 1.73227 1.74744  1.74663

01 00 179001 1.76273 1.75987 1.77107 1.75400 1.75762

0.1 1.73407 1.71887 1.72449 1.72167 1.72371  1.72120

0.2 1.68740 1.68205 1.69477 1.68027 1.69826  1.69058

02 00 174541 172696 1.73070 1.73114 1.71496 1.71388

0.1 1.68687 1.68157 1.69435 1.67977 1.68354 1.67588

0.2 1.63788 1.64342 1.66379 1.63663 1.65711 1.64388

Imperfect I 0.0 0.0 1.83901 1.81652 1.81021 1.82428 1.81378 1.81966
0.1 1.78835 1.77581 1.77682 1.77892 1.78552  1.78615

0.2 174645 1.74182 1.74888 1.74117 1.76187 1.75812

01 00 178818 1.77562 1.77663 1.77873 1.76863 1.76911

0.1 1.73486 1.73330 1.74219 1.73133 1.73916 1.73394

0.2 1.69063 1.69792 1.71335 1.69179 1.71446 1.70446

02 00 174614 174146 1.74853 1.74082 1.73106 1.72731

0.1 1.69048 1.69775 1.71318 1.69162 1.70053  1.69068

0.2 1.64418 1.66114 1.68356 1.65051 1.67492  1.65993

Imperfect Il 0.0 0.0 1.83834 181678 1.81073 1.82422 1.81423 1.81994
0.1 1.78777 1.77613 1.77738 1.77894 1.78601  1.78648

0.2 174596 1.74220 1.74948 1.74126 1.76239  1.75849

01 00 178762 177595 1.77721 1.77877 1.76915 1.76948

0.1 173439 1.73371 1.74281 1.73144 1.73972 1.73435

0.2 1.69025 1.69839 1.71401 1.69198 1.71505  1.70492

02 00 174567 1.74187 1.74915 1.74093 1.73164 1.72775

0.1 1.69011 1.69822 1.71385 1.69182 1.70115 1.69117

0.2 1.64391 1.66168 1.68426 1.65079 1.67557  1.66048

Imperfect IV 0.0 0.0 1.82450 1.80987 1.80643 1.81482 1.81474 1.81935
0.1 177423 1.76966 1.77348 1.76995 1.78694  1.78638

94



Effect of porosity distribution on FGM sandwich plates

0.2 173255 1.73602 1.74586 1.73253 1.76364 1.75874
0.1 0.0 177289 1.76861 1.77264 1.76877 1.76950 1.76866
0.1 1.71993 1.72680 1.73865 1.72185 1.74051 1.73405
02 167590 169178 1.71013 1.68264 1.71617 1.70499
0.2 0.0 173016 1.73415 1.74435 1.73041 1.73185 1.72673
0.1 167484 1.69094 1.70946 1.68170 1.70181 1.69068
0.2 162872 165469 168016 1.64091 1.67657 1.66037
Imperfect V 00 00 183426 181860 1.81419 1.82402 1.81670 1.82080
0.1 1.78430 1.77838 1.78112 1.77925 1.78870 1.78765
0.2 1.74300 1.74482 1.75346 1.74201 1.76528  1.75993
01 00 178417 177824 1.78099 1.77911 1.77207 1.77090
0.1 173161 1.73645 1.74690 1.73235 1.74288 1.73612
0.2 1.68805 1.70153 1.71835 1.69337 1.71843 1.70699
0.2 00 174277 1.74455 175320 1.74175 1.73494 1.72965
0.1 168794 1.70139 1.71823 1.69325 1.70472 1.69346
0.2 1.64237 1.66528 1.68891 1.65274 1.67937 1.66309

The effect of the thickness ratio (h/a) on the nondimensional natural frequency parameters

is presented in Figs. V-2-V-3. Four porosity models (imperfect I ...., IV) were considered with

two values of the porosity coefficients {; = &, = & = 0.1 and 0.2. A six-layer FGM-sandwich

plate was used. It can be seen from the figures that for the model with imperfect porosity 1V,

the fundamental frequency parameters decrease with an increase in the thickness ratio. For the

first model ¢ = 0.1 and & = 0.2 for the second model of porosity. However, the frequency

parameters of the third model (imperfect I11) increased from h/a=0.05. A similar behavior is

observed for the first model with ¢ = 0.2, and the second model with & = 0.1.
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(a) Imperfect I, &=0.1

(b) Imperfect I, £&=0.2
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Figure V-2: Effect of thickness ratio index of fundamental frequency parameters for FGM

sandwich models with porosity (n=2; imperfect I and I1)
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(a) Imperfect 111, £=0.1 (b) Imperfect I, £=0.2
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Figure V-3: Effect of thickness ratio index of fundamental frequency parameters for FGM

sandwich models with porosity (n=2; imperfect Il and 1V)

The nondimensional frequencies as a function of the thickness ratio (h/a) for perfect and five
porosity distributions are presented in Figure V-4. When the thickness ratio increased from 0
to 0.2, and the porosity coefficient§ = &, = &, = 0.2, two behaviors were observed. In the first
case, the frequency parameters decrease as the models become perfect, imperfect I, and
imperfect IV. However, in the second case, they increased after decreasing in models imperfect
[1, imperfect 111, and imperfect V. A similar behavior was observed for the symmetric and non-

symmetric FGM sandwich plates.
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Figure V-4: effect of thickness ratio index of the linear frequency parameters for perfect and

porosity distribution of FGM sandwich plates (n=2; £&=0.2)

The influence of the boundary conditions is presented in Figure V-5, fully clamped (CCCC),

clamped at two opposite edges and simply supported at two opposite edges (CSCS), simply

supported at two continuous edges and clamped at next two edges (SSCC), and fully simply

supported (SSSS) are considered. It can be observed from the figure that the frequencies

decrease as the porosity coefficient increases. The highest values of the frequency parameters

were obtained under the CCCC boundary conditions. However, SSSS yields the smallest value.

Similar behavior was observed for the five porosity distributions. This is due to the increase in

edge constraints.
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Figure V-5: effect of the porosity coefficient on frequency parameters for different boundary

condition of square FGM sandwich plates (n=2; 1-2-1)
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Figure V-6 shows the influence of the volume fraction exponent (n =n; =n, =0,...,5)
on the frequency parameters of the SSSS square FGM sandwich plate with a porosity coefficient
of & = 0.2. It can be observed from this figure that imperfect | (even porosity model) is obtained
from the separated curve of the other models. The curves of the uneven models (imperfections
I, ...., V) are indistinguishable. Increasing the volume fraction exponent value causes a more

significant separation of the first model (even the porosity model).
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Figure V-6: the effect of the volume fraction exponent and porosity models on the frequency

parameters of SSSS square FGM sandwich plates (£=0.2)
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Figure V-7 plots the influence of the porosity coefficient on the vibration frequency

parameters of the square porous FGM sandwich plates for the five imperfect types. The types
of FGM sandwich plates considered in this example are (1-0-1, 1-2-1, 1-1-1, and 2-1-1), and

the values of the volume fraction exponent taken are (n=n,=n,=0.5). For the first two cases

where n=0.5 the variation curves are straight lines; that is, the variation is linear between the

frequency parameters and the porosity coefficient. For this volume fraction value, the dominant

physical properties of the FGM sandwich plate were the properties of the ceramic. However,

for the last two cases, the increase in the porosity coefficient values decreases with a non-linear

curve, which can result in the fact that in these two cases, the dominant physical properties of

the plate are the properties of the metal. Therefore, the influence of the porosity coefficient on

the vibration behavior of an FGM sandwich plate depends on the rate of mixing of the layers

of this plate.
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Figure V-7: the influence of the porosity coefficient models on the free vibration frequencies

of square FGM sandwich plates
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Figures V-8-V-9 illustrate the contour plot of the linear frequency parameters as a function
of the volume fraction exponent for the SSSS square FGM sandwich plate with porosity. This
contour was plotted for the calculated values of the frequency parameters as a function of the
two-volume fraction exponents, (n,) of the bottom, and (n,) of the top layers. An increase in
the volume fraction exponents n, and n, from 0 to 10 reduces the frequency parameters. The
maximum frequency is denoted by red and is associated with lower values of (n,) and (n,),
whereas the minimum frequency is indicated in purple. If we take the 1st case of Figure 5.8,
the red color represents the maximum values of the frequency parameters (2> 1.711), whereas
the purple color represents the smallest values of the frequency parameters in this contour (Q <
0.9344); for example, the green color represents the values of the frequency parameters (1.322
< Q <1.452). For the other colors (yellow, orange blue, and sky blue), each color represents a

range of frequency parameter values.
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Figure V-8: Contour plot of linear frequency parameter of the volume fraction exponent for
SSSS square FGM sandwich plate with porosity (&=0.1; Imperfect I)
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Figure VV-9: Contour plot of linear frequency parameter of the volume fraction exponent for
SSSS square FGM sandwich plate with porosity (§=0.2; Imperfect II)

The effect of the porosity coefficient on the frequency parameters of the SSSS square FGM
sandwich plates is plotted in Figures V-10, V-11.
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Figure V-10: Contour plot of linear frequency parameter of porosity coefficient for FGM

sandwich plates. (n=0.5; Imperfect II)

The frequency parameters decreased when the porosity coefficients &; and &, increased. This
can be observed from the figures. V-8, V-11 that the geometrical and physical symmetric plates
produced symmetric plots. The most significant variations are in the directions of (n;) and
(&1). This illustrates the effect of the bottom layer mixture on the frequency parameters of the
porous FGM sandwich plates. The maximum results of the frequency parameter values for the
symmetric plates were obtained for small values of (¢;,n,) or (¢,,n,) and for large values of
(&4, ny) or (&,,ny,). For the other types (non-symmetric), the maximum values of the frequency
parameters can only be obtained by increasing the values of the bottom layers and decreasing

those of the top layers.
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Figure V-11: Contour plot of linear frequency parameter of porosity coefficient for FGM

sandwich plates. (n=2; Imperfect I11)

Figure. V-12 shows a contour plot of the frequency parameters for simply supported FGM
sandwich plates as a function of the porosity coefficient and volume fraction exponent. It can
be observed that the frequency decreased as the porosity coefficient increased from 0 to 0.3,
and the volume fraction increased from 0 to 10. This type of graph is new in the literature,
which varies the porosity coefficient and exponent of the volume fraction at the same time. This
variation gives contour plots for the frequency parameters for four types of FGM sandwich
plates (1-0-1, 1-1-1, 2-2-1 and 2-1-1). The black curves indicate the same frequency parameter
values. Note that for the values of (0<n<l), where the mixture contains more ceramic, we
obtained straight curves from which the variation is linear of the frequency parameters as a
function of the porosity coefficient. On the other hand, in the zone where the mixture contains
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the most metal (1=<n<10), if £ is changed while n is fixed, the trajectory will cross several
contour curves. This provides a nonlinear variation in the frequency parameters as a function
of the porosity coefficient. According to these results, the porosity coefficient and mixing rate

of the layers influence the rigidity or flexibility of the porous FGM sandwich plate.
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Figure VV-12: Contour plot of linear frequency parameter of porosity and the volume fraction

exponent for FGM sandwich plates (Imperfect I)
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V.4 Summary

In this concluding chapter, the effect of porosity distribution on FGM sandwich plates was
investigated using the p-version of FEM and FSDT. The study demonstrated accuracy
compared to the literature results and explored the effects of various parameters on the natural
frequency. The stability of the results with a precision of six digits for polynomials of order six,
excellent agreement with other methods, nonlinear frequency parameter trends influenced by
plate thickness and porosity type, and significant impacts of volume fraction exponents and
porosity coefficients on frequency parameters lead to insights into vibrational behavior and
material properties. This work has opened the way to an in-depth discussion of the parameters
influencing the free vibration behavior of FGM sandwich plates with unequal layer porosities

for the first time.
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Chapter Vi

General Conclusion and Future
Directions
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Chapter VI

General Conclusion and Future Directions

This thesis presents the linear free vibrations of an FGM sandwich plate with a porosity. First-
order shear deformation theory has been applied to derive equations of motion describing the
free vibrations of plates. A p-version of the FEM model was developed to handle the above-
mentioned problems accurately and efficiently. Several parametric studies have been conducted
on the subject of linear free vibrations of FGM sandwich plates with porosity, and detailed
conclusions have been drawn at the end of each chapter. In the following sections, some
important conclusions are summarized with respect to the numerical model, its implementation
and results of parametric studies mentioned in previous chapters, and recommendations for

future work.
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V1.1 Conclusions

Our study successfully validated the combined use of first-order shear deformation theory and
the p-version of the FEM. When applied to plates, these theories have demonstrated accuracy
and reliability in capturing the mechanical behavior of the system.

For a degree of polynomials of order six, the convergence investigation conducted in this work
provides stability of the results with a precision of six digits. To test the quality and precision
of the proposed p-element, a comparative study was conducted between the present results and
those obtained by other methods (TSDT, SSDT, DQM, HypSDT, and HSDT).

Excellent agreement was found between the two results, with an order of precision of five
digits. The effect of the plate thickness on the frequency parameters is not governed by a linear
law; sometimes, there is a decrease followed by an increase in the values of the frequency
parameters. The FGM sandwich plates that exhibit this behavior are Imperfects I1, 111, and V.

This type of imperfect is a model of FGM sandwich plates with uneven porosities,
logarithmic-uneven porosities, and sinusoidal-uneven porosities. Thus, we conclude that there
is an interaction between the effect of the thickness and type of imperfection on the vibrational
behavior of the FGM sandwich plate with porosity.

An increase in the porosity coefficient led to a decrease in the frequency parameters for all
the five types of imperfections. The largest values were obtained for the clamped plate with a
sinusoidal-uneven type of porosity. This results in the fact that this plate is more rigid than other
plates. This influence is especially focused on the values of (0 < n;,n, < 2), and these values
represent a change in physical properties from ceramic to metal. This decrease in the frequency
parameter makes the sandwich plate more flexible. The influence of the porosity coefficients
on the frequency parameters decreases almost linearly when the values of (&, and &,) increase.
By increasing the values of (&;and &,) , the values of the physical properties of the plate and
its mass decrease, making the plate less rigid.

This work has opened the way to an in-depth discussion of the parameters influencing the

free vibration behavior of FGM sandwich plates with unequal layer porosities for the first time.

V1.2 Suggestions for potential future work

The work in this thesis is limited and future improvements should be considered:
e Extension to Include Nonlinear Effects: Investigate the effects of nonlinearities on the
free vibration behavior of FGM sandwich plates with porosity. This could involve

incorporating material nonlinearity, geometric nonlinearity, or both, to provide a more
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comprehensive understanding of the structural response under varying loading
conditions.

Consideration of temperature effects: The influence of temperature variations on the
free vibration characteristics of the FGM sandwich plates with porosity was explored.
Incorporating thermal effects into the analysis can help assess the structural stability and
performance of the FGM sandwich plates in real-world operating environments.
Optimization Studies for Performance Enhancement: Conduct optimization studies to
maximize the free vibration characteristics of the FGM sandwich plates with porosity.
This could involve optimizing the material distribution, porosity levels, or geometric
configurations to achieve the desired vibration modes or enhance the structural
performance while considering the manufacturing constraints.

Experimental validation and verification: Numerical models developed for the free
vibration analysis of porous FGM sandwich plates were experimentally validated and
verified. Experimental testing can provide crucial insights into the accuracy and
reliability of numerical predictions, thereby ensuring confidence in the analytical
results.

Exploration of Advanced Material Models: Explore advanced material models beyond
first-order shear deformation theory (FSDT) to capture more complex behaviors
exhibited by porous FGM sandwich plates. We consider higher-order theories and
models that account for material microstructures or nonlocal effects to improve the
accuracy of the analysis.

Dynamic stability and response: The dynamic stability and response of the FGM
sandwich plates with porosity subjected to external excitations or dynamic loading
conditions were investigated. Phenomena such as flutter, resonance, and dynamic
buckling were analyzed to assess the structural integrity and resilience of FGM
sandwich plates in dynamic environments.

The presented model can be further extended to nanostructures (e.g., shells, 3D solids...)
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