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Abstract- In this paper we design a brick that will form
the photonic crystals network. In particular, we focus or
the design of a 1x2 YShaped Splitter used for routing
light exhibiting high transmission in triangular and
square lattices. The Distritution of the magnetic field,
the transmission and the reflectionare investigated by
numerical simulations using the 2D-FDTD simulation.
The obtained spectral transmission result of the
optimized 1x2 Y-Shaped Splitter intriangular unit cell is
high in comparison with that of a square unit cell.
Photonic crystals are considered a good way for realizir
compact optical splitters.

Index Terms- Photonic crystals, integrated otics, 1x2
Y-Shaped Splitter, 2D-FDTD.

l. INTRODUCTION

Photonic crystals (PhCgpnsisting oftriangular
and square lattices of dielect holes have
potential applications gslatforms for integrate
optical circuits. Photonic crystal structures ¢
suitable for a lage number of optical desis,

thanks to their unique linear and nonlin
propertes as well as the possibility tt
technology offers to fabricate highly comp
devices [14]. The use of periodic structures o
nanometeric scale combines novel features

an integration platform for densely pact
photonic circuits, which is pacularly attractive
for optical communications. Photonic cryst
(PhCs) are structures whose dielectric in
varies periodically across the wavelength. Inc
photonics engineering such as fiber optics, filt
lasers, amplifiers, microresonators, pzers and
rotators, etc., follow this property to control 1
light propagation. In a simple vision, sim
introduce periodicity defects in selected ai
within the crystal to achieve the desired opt

components (guides, bends light ...), and
themto form a true photonic circuit. In particuli
the design and implementation of efficient opt
waveguides by inserting a linear defect it
triangular 2D periodic lattice where it is expec
the existence of localized modes along the lii
defect in a selected direction. The varic
components are produced from as linear de

In this paper we aim to develop a basic brick
integrated optics, i.e a 1x2-Shaped Splitter of
one omitted row in triangular and square |
cell. The devices studiecould be used in future
optical interconnects in microelectronics.
simulation was performed using the -
dimensionalfinite difference time domain2D-
FDTD) method.

Il. Y JUNCTIONDESIGN

The Yijunction is a basic building block
integrated optics, useak a power divider, mixe
bends,...etc [®]. The following proposed stud
consists of two branches over two rights si-
row waveguides for two types of structur
square and triangulakVe begin to study a -
junctionoriginal (not optimized), thenepending
on resultswe will make a suitable optimizatic
corresponding to a certain topology, which \
guide us to good results.

[ll. Y SHAPED SPLITTER IN SQUARE UNI
CELL
A.  Before optimization

Let us consider the 2D photonic crystal 1x-
shaped splitterliistrated in Fig. . We design the
PhC structure with a square lattice of air hc
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The dielectric material has a dielectric constant of
105 (that is, refractive index of 3,24, which
corresponds to the effective refractive index in an
InP/GalnAsP/InP structure). The lattice constant
is set 0,48 um. A fill factor of about 44% and a
radius of holes is fixed= 0,34& are chosen. In
this paper, this structure is excited with TE
polarization. A pulsed Gaussian source is used to
excite the fundamental waveguide mode at the
waveguide input. We have used in this paper a
two-dimensional FDTD code that captures the
simulation parameters (spatial discretization step,
simulation mode (TE/TM), number of iterations),
the injection conditions (injection of a guided
mode through a Huygens surface) and the
boundary conditions Type (Wall, symmetric or
anti-symmetric). Further details concerning the
FDTD method and the Mur absorbing conditions
are given in literature [7-9]. This paper presents
only the conditions of absorption-type wall that
simulate an infinite domain containing the entire
structure study by investigating the lowest digital
interfaces.

The different results available at the end of
simulation: the mapping of the magnetic field Hz
and the transmission and reflection spectrum. We
present the structure studied in Fig. 1. In our
simulations Ax=Ay=0,04 um and the total
number of time steps is 50000. The size of the
computing window is 10,4 umx10 pm. The
length of the channel is 0,8 um.
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Fig 1. Y-couplerterminated by two waveguides in

square lattice.
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Fig. 2 shows the spectral response in
transmission and reflection of the different ports.
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Fig 2. Spectral response in transmission and

reflection in different ports.

The 2D-FDTD simulation of this structure
presents a very low transmission power; this is
clearly visible in the distribution field Hz as
shown in Fig. 3.
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Fig 3. Distribution of the magnetic field Hz (a)
for 1500 iterations, (b) for 2000

iterations, (c) 5000 iterations.
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Notice well from fig. 3 which presents the
optimized Y Splitter that the input wave was
significantly altered at the intersection of two
corners formed by an angle of 90°.

B. After optimization

The characteristic key of the studied topology is
the addition of a large number of holes in the
center of the junction in order to cancel the
modal spread in the surface, and removing a hole
in each corner of the junction as shown in Fig. 4.
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Fig 4. The structure of the optimized Y shaped splitter

In Fig. 5 we represent the transmission and
reflection coefficients for each port. The total
transmission (port 2+ port 3) is also presented.
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Fig5. The spectral response in transmission and

reflection of the optimized divider in square
lattice obtained by 2D-FDTD simulation of
the structure shown in Fig. 4.
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The Fig. 5 demonstrates the effectiveness of the
optimized structure. The transmission is
enhanced by this topology. The -cartography
performed with this divider is given in Fig. 6.
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Fig 6. The distribution shape of the optimized magnetic
field Hz excited in TE mode. (a) for 1500
iterations, (b) for 2000 iterations, (c) 5000
iterations. The electromagnetic wave injected is

divided almost equally in the Y junction.

IV. Y SHAPED SPLITTER IN TRIANGULAR
UNIT CELL
A. Before optimization

The 2D photonic crystal is similar to those in
section Ill, etched through InP/GalnAsP/InP
heterostructures and a fill factor of about 44%,
radius of holesr= 0,34& were chosen for a

triangular lattice to obtain a photonic band gap
(PBG) around 1,55 um exist for the telecom
wavelengths. We construct a 1x2 Y optical
splitter on a 10,4 umx10 um PhC structure by
insertion of appropriate line defects, of which the
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Fig 10. Structure of the optimized Y junction.
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Fig. 11 presents the transmission and reflection
coefficient in each port. The total transmission
(port 2+ port 3) also presented.
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Fig 11. The spectral response in transmission and
reflection of the optimized splitter in
triangular lattice.

Notice from Fig. 11, a transmission that exceeds
28% for the port (2) and port (3), the total
transmission recorded at the wavelength 1.55 um
obtained for the two ports is approximately 50%.
The corresponding amount of reflection is almost
zero.

We note that adding holes at the center of the

the optical volume is then reduced, the mode

cannot expand and the excitation of higher order Fig. 13 illustrates the difference in terms of

modes is suppressed, resulting in clean and transmission of the Y junctions in triangular and
square unit cell optimized previously obtained by

efficient splitting. The propagation mode is not
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Fig 12. Distribution of the optimized magnetic field
in TE mode. (a) for 1500
iterations, (b) for 2000 iterations, (c) 5000

Hz excited

iterations.

V. COMPARISON BETWEEN THE TWO
OPTIMIZED Y JUNCTIONS FOR A
junction, the mode expansion is suppressed, also TRIANGULAR AND SQUARE UNIT CELL

affected by the accident posed by the corners, the 2D-EDTD simulation.

allowing the wave to follow the direction of

125

bends. The transmission properties are improved AAccording to the curves of the spectral response

with this configuration and the total transmission
at the output ports is improved in comparison
with the not optimized splitter, this is clearly seen
in fig. 12 (a), (b) and (c) schematically Hz field
distribution in the structure for TE polarisation at
different iterations.

of transmission which are obtained by 2D-FDTD,

we note that the transmission obtained in the

range [1,45-1,65] um for a triangular unit cell is
high in comparison with that of a square unit cell.
This performance is due to the location of air

holes in the structure. The square unit cell has

[JIMOT-2011-9-242 © 2012 ISRAMT
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many losses in the two branching region,
egecially at the corners.

S S
cT) | Transmission (Triangular lattice) [ | |
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o
gl
GNJ 0,50 - B
E 0,25
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Z 0,00

' 1,450 1,475 1,500 1,525 1,550 1,575 1,600
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Fig 13. The spectral response in transmission of the
optimized 1x2 Y-Shaped Splitter obtained by
2D FDTD simulation for both triangular and
square unit cell.

VI. CONCLUSION

In this paper we studied a two-dimensional
photonic crystal in the square and triangular unit
cell by entering proper optimization in order to

increase the transmission and obtain a wide
bandwidth at the two output ports. The two
dimensional finite-difference  time-domain

method was employed for the characterization of
photonic components. The evaluation of the
transmission and reflection spectra for the
different components designed has been

completed. To reduce the mode expansion at the

branching region, we have performed numerical
simulations on Y-shaped waveguide branches in
the splitter, and achieved an improvement of
transmission by placing the defects of extra rods
in the branching region and mirrors in the
corners. We found through this study that the
triangular unit cell offers better performance in
the amount of transmission than the square one.
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