

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Université Abou Bekr Belkaid-Tlemcen
Faculté des Sciences de la Nature de La Vie et des Sciences de la Terre
Et de l'Univers
Département des Sciences de le Terre et de l'Univers

MEMOIRE

Présenté à :

Faculté des Sciences de la Nature de

La Vie et des Sciences de la Terre Et de l'Univers.

Pour l'obtention du diplôme de : MASTER EN GEOLOGIE.

Interprétation d'une campagne de prospection géochimique Région Cherchell

Spécialité : GEOLOGIE DES BASSINS SEDEMENTAIRES

Par:

Kedir romaissa

Aguid chahinenz

Soutenu le 11 juin 2024 devant les membres du jury :

Mr. ADACI Mohamed P.R Univ .Tlemcen Président
Mr. BELMOUHOUB.A M.C.B Univ .Tlemcen Encadreur
Mr. HEBIB Hakim M.C.B Univ .Tlemcen Examinateur

Année universitaire 2023 -2024

Remerciements

Un grand merci à Dieu qui nous a guidé vers le bon chemin de la lumière et de la connaissance.

Nous adressons également nos sincères remerciements à notre superviseur

M. Belmohoub Abdelkader, Professeur à l'Université de Tlemcen, pour la qualité de son encadrement et de ses encouragements, nécessaires pour garder le moral dans les moments les plus complexes, pour sa merveilleuse intuition et l'optimisme qu'il a su transmettre.

Nous tenons également à remercier les membres du jury qui ont souhaité consacrer une partie de leur temps à étudier avec nous.

Nous tenons à exprimer notre gratitude à tous les membres du jury qui ont accepté de lire ce manuscrit et d'apporter les critiques nécessaires à la mise en forme finale de ce travail.

Enfin, nous adressons également nos remerciements à tous nos collègues du Master Géologie des Bassins Sédimentaires,

Nous remercions également toutes les personnes qui nous ont aidés, directement ou indirectement, à mener à bien ce travail

<u>Dédicace</u>

Je dédie ce succès tout d'abord à moi-même. Grâce à Dieu, avec amour, gratitude et reconnaissance, je contemple aujourd'hui un rêve qui a longtemps attendu et qui est devenu une réalité dont je suis fière.

À celui qui m'a appris que la vie est une lutte et que son arme est la science et la connaissance, à celui qui ne m'a rien refusé, à celui qui a œuvré pour mon confort et ma réussite, au plus grand et cher homme de l'univers, mon père Bouhdjer.

À celle qui m'a scutenue dans ses prières et ses invocations, à celle qui a veillé les nuits pour éclairer mon chemin, à celle qui partage mes joies et mes peines, à la source de tendresse et d'affection, au plus beau sourire de ma vie, à la meilleure mère du monde, ma mère Nawal.

A un câlin chaleureux et une source de tendresse, à celle qui m'entoure de ses prières chaque fois qu'elle me voit, à la plus grande, douce et gentille, ma grand-mère Arbiya.

À celle qui m'a soutenue avec amour dans mes moments de faiblesse et qui a dégagé les obstacles de mon chemin, ma sœur Fatna.

À celui que Dieu m'a donné comme soutien, mon frère Abdelhak.

Aux anges que Dieu m'a donnés, à mes filles que je n'ai pas mises au monde : Mariam, Shahd, Jannah, Hiba Rahman.

À celui qui est venu au bon moment et qui m'a honorée de son amour, reconnaissant ainsi sa bienveillance et son soutien, mon mari Zakaria.

À mon grand frère et soutien constant, Bouceif.

Á celle qui m'a toujours tendu la main, ma bien-aimée tante Sarah.

Et je n'oublie pas les compagnons de l'âme qui m'ont accompagné sur ce chemin, à ceux qui m'ont encouragée à persévérer et à continuer, Amina et Nojoud.

À mon collègue qui a partagé avec moi les moments de fatigue et de joie, qui m'a soutenue et encouragée dans ce travail, chahinez.

A toutes mes amies: Fayrouz, Rahmouna, Zineb, Ikram, Dounia, Asma.

Romaissa

<u>Dédicace</u>

Louange à Dieu qui, sans Sa grâce, aucun chemin ne se termine, aucun effort ne se conclut, aucune quête ne se complète. Me voici aujourd'hui sur le point de clore un parcours d'études qui a duré des années. Je me félicite de ce succès qui n'est pas venu facilement; ce fut un chemin semé d'embûches, mais avec la bénédiction de Dieu, la force et la volonté, j'ai réussi.

Je dédie ce succès tout d'abord à l'âme de mon père, que Dieu ait son âme en Sa sainte miséricorde, qui s'est tant donné et qui est parti avant de pouvoir en récolter les fruits. À l'âme de mon père Belkheir.

À celle sous les pieds de qui se trouve le paradis, celle qui a partagé avec moi mes premiers pas dans cette vie, celle qui m'a soutenue par ses prières et sa satisfaction, ma mère Fatna.

À mon grand frère Ahmed, tu es la forte épaule et le sourire radieux.

À ma seconde mère et mon soutien éternel, Warda, je remercie Dieu pour ta présence.

 $\hat{\mathcal{R}}$ mon frère $\hat{\mathcal{M}}$ ostafa, qui a été mon épaule inébranlable, que $\hat{\mathcal{D}}$ ieu te protège et te garde.

À ma sœur Oum Elkhir, qui a toujours été ma force motrice.

À mon frère Hamza, ma seconde épaule.

À mon petit frère Farcuk, sa vie ne devient douce qu'avec toi, et ma joie ne se compsète qu'en ta présence.

À sa femme de mon frère, Aïcha, qui est comme une sœur pour moi

. À mes noveux et nièces : Younes, Rabia, Sondos, Habib, Seif, Laith, Arij, Loujain.

À ma meilleure amie Habiba, ma sœur de cœur qui n'est pas née de ma mère, celle qui a été mon soutien et qui a cru en moi. Je remercie Dieu pour ta présence.

À mon amie dans ce travail, Romaissa, celle qui a partagé avec moi les difficultés du chemin et les bancs de l'école. Merci du fond du cœur

. À mos amies : Imane, Houda, Dounia, Sara, Kenza, Ikram, Sakha, Hayat, Afaf.

<u> Chahinez</u>

م*لخص :*

القطاع الواقع في الجزائر شرشال ، يُظهر اهتمامًا جيولوجيًا مهمًا بسبب إمكاناته في الموارد المعدنية والهيدروكربونات. تهدف التفسير الجيوكيميائية في الصخور والتربة لتحديد المناطق الغنية بالمعادن أو الهيدروكربونات.

الهدف الرئيسي المخصص لعملنا هو معالجة إحصائية للبيانات التحليلية الناتجة عن المسوحات الجيوكيميائية التي أجرتهافي القطاعات المعنية.

قامت هذه الدراسة بتحديد أن موقع لعامري ، من بين القطاعات الثلاثة المدروسة، يُظهر انحرافات معقدة. تشير هذه الملاحظة إلى أنلعامريقد تكون هدفًا أساسيًا للتحقيقات التفصيلية في إطار استكشاف مستقبلي.

الكلمات المفتاحية: الانحرافات المعقدة ،المنظمة الوطنية للبحوث الجيولوجية والمعادن،الهيدروكربونات ،البيانات التحليلية التفسير الجيوكيميائي.

Résumé :

La région de Cherchell, situé en Algérie NE, présente un intérêt géologique significatif en raison de son potentiel en ressources minérales et en hydrocarbures. L'interprétation géochimique dans cette région vise à comprendre la distribution spatiale des éléments chimiques dans les roches et les sols afin d'identifier les zones potentiellement riches en minéraux ou en hydrocarbures

L'objectif assigné à notre travail est un traitement statistique des données analytiques des levés géochimiques réalisés par l'ORGM dans les secteurs en question.

Notre objectif principal est d'effectuer une analyse statistique des données géochimiques issues des levés réalisés par l'ORGM dans les zones concernées. Les résultats de cette étude ont permis de conclure que le site de Lemri, parmi les trois secteurs étudiés, présente des anomalies complexes. Cette constatation suggère que Lemri pourrait être une cible prioritaire pour des investigations approfondies dans le cadre d'une prospection future.

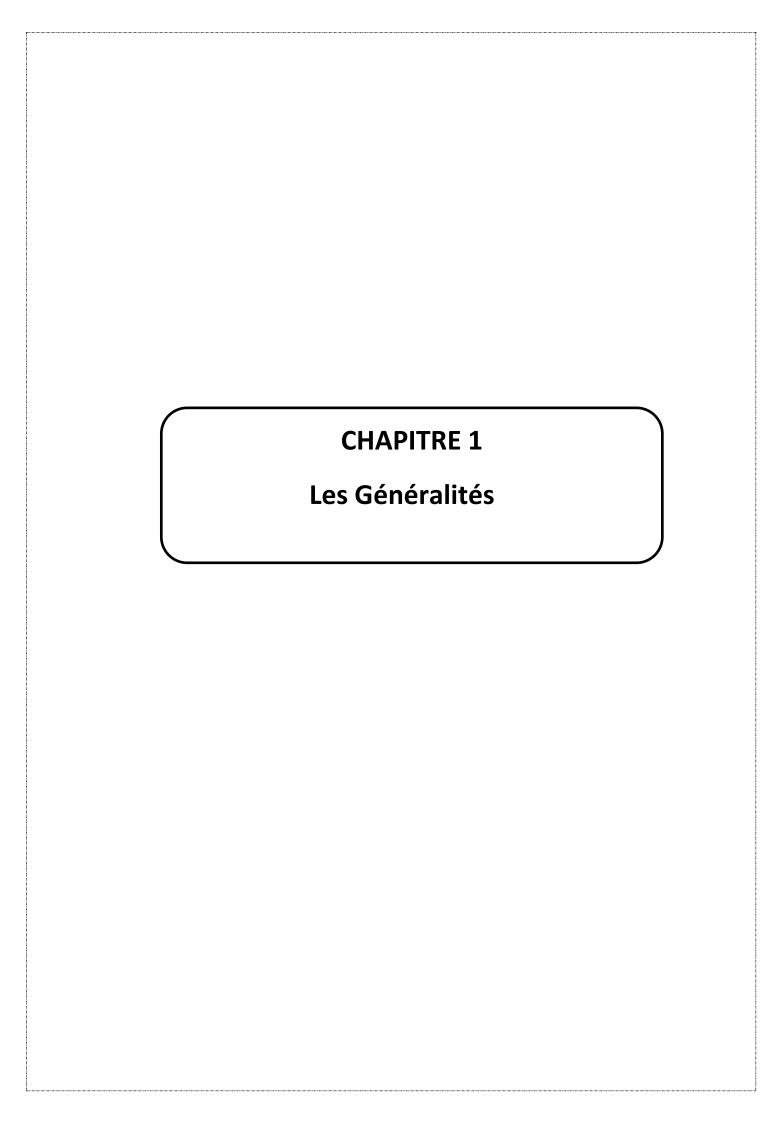
Mots-Clés : Anomalies complexes, ORGM, Hydrocarbures, Données analytiques, Interprétation géochimique.

Abstract:

The Cherchell region, located in northeastern Algeria, holds significant geological interest due to its potential for mineral resources and hydrocarbons. Geochemical interpretation in this region aims to understand the spatial distribution of chemical elements in rocks and soils to identify areas potentially rich in minerals or hydrocarbons.

The objective of our work is to perform a statistical analysis of the analytical data from geochemical surveys conducted by the ORGM in the concerned sectors. Our primary goal is to conduct a statistical analysis of the geochemical data from the surveys carried out by the ORGM in these areas. The results of this study concluded that the Lemri site, among the three sectors studied, exhibits complex anomalies. This finding suggests that Lemri could be a priority target for further investigations in future prospecting efforts.

Keywords: Complexe anomalies, ORGM Hydrocarbons, Analytical data, Geochemical interpretation.


Liste des Abréviations

- Ag:Argent.
- As :Arsenic.
- Au :Or.
- Ba:Baryum.
- Be :Béryllium.
- Bi :Bismuth.
- Cd :Cadmium.
- Co :Cobalt.
- Cr : Chrome.
- Cu : Cuivre.
- ORGM : Office des recherches géologiques et minières.
- F: Fluor.
- Hg : Mercure.
- Mn : Manganèse.
- Mo: Molybdène.
- Ni :Nickel.
- Pb :Plomb.
- Sb:Antimoine.
- Sn :Etain.
- Sr:Strontium.
- Ti:Titane.
- V:Vanadium.
- W:Tungstène.
- Zn : Zinc.
- Zr:Zirconium

TABLE DES MATIERES

Dédicaces	. II
ملخص	. IV
Résumé	. V
Abstract	. VI
Liste des abréviations	.VII
CHAPITRE 1	
1-Généralités	1
2-Introduction	2
3-Problématique	3
4-Méthodologie	3
4.1-Objets	
4.2-Méthode	3
CHAPITRE 2	
1-Cadre géographique et géologique	5
2-Tectonique	
3-Magmatisme	
CHAPITRE 3	
1-Traitements statistiques des données analytiques	12
I. Secteur Gouraya	
I.1-Géochimie au sol	12
I.1.1-Analyse mono élémentaire	
I.1.2-Analyse bi variée	13
I.1.3-Traitements multi variables	13
- Analyse factorielle	14
- Analyse en composantes principales	16
I.2-Géochimie en roches	.17
I.2.1-Traitements statistiques	17
-Analyse mono élémentaires	17
-Analyse bivariée	19
I.2.2 -Etude géostatistiques	19
-Variable Cuivre	19
-Variable argent	21
II. Secteur Quatre mamelons	22
II.1-Géochimie au sol	
II.1.1-Analyse mono élémentaire	22
II.1.2-Analyse bi variée	22
II.1.3Traitements multi variables	23
- Analyse factorielle	23
-Analyse en composantes principales	24
II.2-Géochimie en roches	25
II.2.1-Traitements statistiques	25
-Analyse mono élémentaires	25
-Analyse bivariée	27
II.2.2 -Etude géostatistique	
-Variable Cuivre	28
-Variable argent	30
III. Secteur lemri	32
III.1Géochimie au sol	32
III.1.1-Analyse mono élémentaire	32

III.1.2-Analyse bi variée	32
III.1.3-Traitements multi variables	
-Analyse factorielle	
-Analyse en composantes principales	34
III.2-Géochimie en roches	37
III.2.1-Traitements statistiques	37
-Analyse mono élémentaires	37
- Analyse bivariée	39
III.2.2 -Etude géostatistique	39
-Variable Cuivre	39
-Variable argent	42
CHAPITRE 4	
1.Analyse discriminante	45
-Introduction	45
-Conclusion	47
Conclusion finale	49
Références Bibliographiques	50
Liste des tableaux	
Liste des figures	52

1-Généralités

Le Nord de l'Algérie se caractérise par l'existence de manifestations minérales se présentant sous forme de gisements, d'indices ou d'occurrences de sulfures polymétalliques à cuivre, plomb, zinc, argent et baryum essentiellement. Ces expressions sont associées à divers types de formations géologiques, sédimentaires, magmatiques et/ou métamorphiques.

Certaines minéralisations épigénétiques sont localisées au niveau des nœuds d'intersections de failles longitudinales et transversales, d'autres paraissant antétectoniques visibles au niveau des flancs de plis issues de remobilisation à partir du socle (baryte de Boucaid). Rarement, des concentrations observées dans des cavités karstiques sont qualifiées d'épigénétiques non tectoniques.

L'étude pétrographique des formations hôtes de ces minéralisations montre que celles-ci sont intimement liées à des zones d'activité hydrothermale. Ces formations sont intensément altérées.

La mise en valeur de ces minéralisations pour une éventuelle exploitation nécessite une mise en œuvre sur le terrain de diverses méthodes pour leur prospection. Des méthodes de surface pour la cartographie des anomalies telles que la géophysique, la géochimie pour la définition de la nature des minéralisations et enfin la cartographie géologique à différentes échelles) et des forages doivent être réalisés pour la caractérisation de leur environnement superficiel et l'étude des corps minéralisés en profondeur.

La compréhension de la genèse met en évidence la source minéralisatrice, l'estimation des ressources et la connaissance de la morphologie des corps minéralisés sont un préalable pour la définition d'une méthode pour leur exploitation.

La circonscription des minéralisations en profondeur nécessite une compréhension de leur environnement géochimique de surface et une connaissance de leurs enveloppes externes.

Pour réaliser cette tâche, des levés géochimiques au sol et en roches ont été effectués dans la région d'étude (Cherchell).

Les prélèvements au sol ont été effectués suivant la maille 100*20m. Au total 11151échantillons sont répartis entre 7170 Gouraya, 3722 4 Mamelons et 259Lemri,

Les prélèvements ont été analysés par la méthode spectrale au laboratoire central de l'Office National de Recherche Géologique et Minière (ORGM) à Boumerdès.

Les traitements statistiques des données analytiques obtenues de l'analyse spectrale des échantillons s'effectuent, au laboratoire de l'Université Abou Bekr Belkaid ; Département des Sciences de la Terre et de l'Univers, Tlemcen.

Deux logiciels ont été utilisés à cette fin ; Statistica 8 et Rockworks 15.

Les résultats des traitements, par secteur, sont consignés dans les tableaux indiqués en référence.

2-Introduction

Le présent travail a pour but l'obtention d'un diplôme de Master II en géologie option « géologie des bassins sédimentaires ». Il s'inscrit dans le cadre de l'interprétation d'une campagne de prospection géochimique effectuée la fin du siècle passé par l'Office National de Recherche Géologique et minière (ORGM) dans la région Cherchell. Trois secteurs, d'Ouest en Est Gouraya, Quatre Mamelons et en fin le secteur Lemri localisé au Sud de ce dernier ont fait objet de ces travaux de prospection.

La région Cherchell constitue une portion du secteur central de la ceinture volcanométallogénique de la chaine des Maghrébides. Elle se caractérise par ses anciennes activités minières intenses durant la période coloniale. De nombreux indices et points minéralisés ont été répertoriés dans cette région.

La fin du siècle passé, l'ORGM a entrepris une compagne de prospection comprenant divers travaux de surface et par forages en vue d'une appréciation des minéralisations observées dans cette région. A l'issue de ces travaux, de résultats épars et confus faisant état d'un potentiel ne présentant pas un enjeu économique et qualifie la région de pauvre en matière de substances minérales.

L'orientation de ces travaux a, à notre sens, été effectuée sur la base de données historiques, bibliographiques ne prenant pas en compte les avancées que connaissent les récentes prospections et par conséquent et au vu de ce qui est cité comme potentiel que renferme cette région, les résultats obtenus n'ont pas mis au jour la capacité prévue envisagée.

Divers traitements statistiques des données analytiques obtenues sur des prélèvements de sol et de roches peuvent éventuellement améliorer le signal géochimique (nature et anomalies) de l'environnement des minéralisations cachées dans cette région potentielle. Seront précisées la nature de la minéralisation, sa genèse ainsi que l'emplacement des anomalies guidant l'implantation des points de forages pour recouper les corps riches en profondeur.

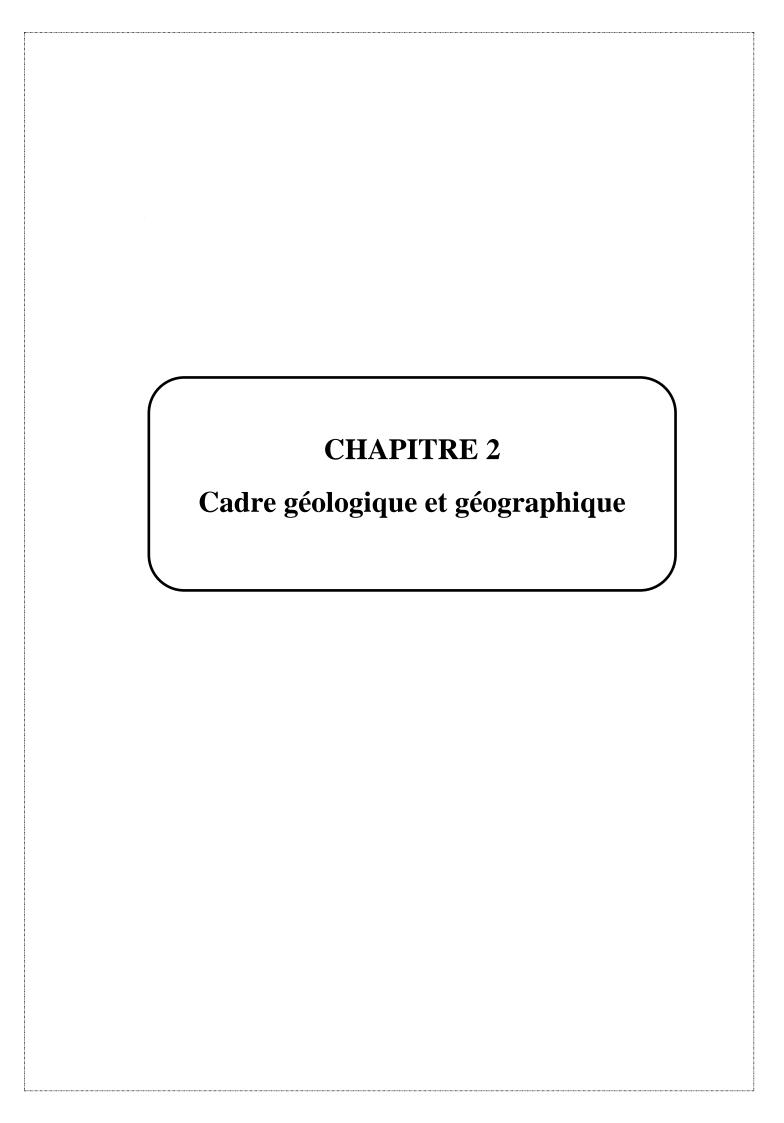
Ainsi, ce travail constitue une contribution à l'étude de ces minéralisations. Il s'agit d'une ébauche intégrant les données géochimiques pouvant nous renseigner par divers traitements statistiques sur les distributions des éléments chimiques à travers les trois secteurs en question. Il vise à fournir une orientation des futurs travaux de recherches dans ce domaine particulier.

2

Chapitre 1 Les généralités

Problématique:

La problématique posée consiste en la définition de la nature des minéralisations et la cartographie, dans les trois secteurs prospectés en question, les niveaux de teneurs en certains éléments chimiques en vue de déceler éventuellement des anomalies géochimiques de quelques éléments pouvant trahir la présence, dans les couches profondes de la terre, de concentrations de minerais utiles pour l'industrie et formant des associations géochimiques guidant l'orientation des travaux postérieurs de forages. Un essai de la définition de la source minéralisatrice sera tenté. Pour aboutir à cet objectif une connaissance de la distribution des éléments chimiques en auréoles autour des concentrations cachées en profondeur est un préalable à toute supposition. Les éléments de réponse peuvent être fournis à l'issue des traitements statistiques des données analytiques des échantillons de sol et roches effectués dans les trois secteurs concernés.


Par ailleurs, une concentration des travaux de forage peut être localisée sur différents secteurs en fonction de leur caractéristique géochimique à l'issue d'un traitement par une analyse discriminante. Celle-ci permet de monter les différents degrés de fertilité par secteur et par conséquent augmenter les chances de rentabilité des forages.

Pour répondre à ce but, une méthodologie a été définie et appliquée

3-Méthodologie:

Elle s'échelonne sur cinq chapitres hiérarchisés de la manière suivante :

- -Le chapitre 1 évoque des généralités, une introduction sur la région d'étude et les minéralisations qui y sont observées. Une problématique est posée et une méthodologie définie pour aboutir à la circonscription et l'appréciation des minéralisations observées dans la région d'étude.
- -Le chapitre 2 fait état du cadre géographique et des caractéristiques géologiques. Un aperçu sur la tectonique et le magmatisme sera également évoqué.
- -Le chapitre 3 sera consacré à des traitements statistiques et une étude géostatistique. Chaque secteur sera caractérisé par ses paramètres géochimiques
- -L'analyse discriminante constitue l'objet du quatrième chapitre
- -Enfin une conclusion générale sanctionne le présent travail et constitue le dernier chapitre

1-Cadre géographique

La région Cherchell se localise à 60 kilomètres environ à l'Ouest d'Alger (fig.1). La méditerranée la délimite au Nord.

Cette région présente un relief accidenté. Les altitudes passent de 90m (O. Arbaa) à (900m) au niveau du secteur Lemri. Le réseau hydrographique imprimé dans cette région est marqué par la présence de nombreux cours d'eau profonds engendrant des falaises. Parmi ceux-ci figurent Oued Arbaa, Oued Azib et Oued Messelmoun. La région se caractérise par la présence de forets à végétation luxuriante, ce qui rend difficile les travaux de terrain.

Outre cela, le réseau routier reliant les différentes communes entre elles est marqué par la RN 11 reliant les ceux villes Cherchell à l'Est et Ténès à l'Ouest.

Le climat est de type méditerranéen avec un hiver doux et pluvieux et un été chaud et sec.

Administrativement, les secteurs Lemri et Quatre mamelons sont reliés à la daïra de Cherchell et l'autre secteur à la daïra de Gouraya.

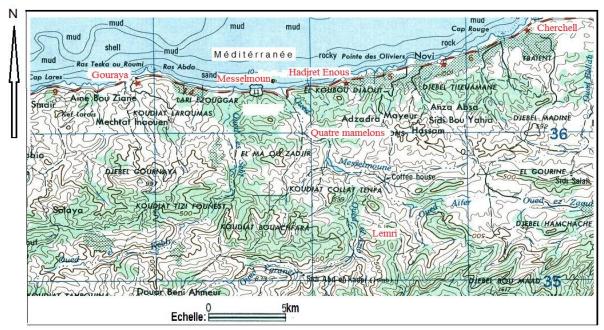


Fig. .1. Situation géographique des secteurs d'étude

2-Cadre géologique

La région Cherchell fait partie de la zone externe des Maghrébides. « Chaine côtière édifiée par la tectogénèse alpine. Elle se caractérise par la présence de terrains sédimentaires en positions autochtones et allochtones ; recoupés en certains endroits par des formations magmatiques. Dans cette contrée s'observent cinq unités géologiques. La coupe montre de la base au sommet les unités suivantes :

- Complexe para autochtone : Il est représenté par un flysch (flysch massylien) d'âge (Valanginien-Albien). Il se présente sous la forme d'une alternance irrégulière d'argilite, d'aleurolites, des grès et parfois des grès quartzitoîdes.
- Unités allochtones : Trois nappes de charriage sont observées dans cette région.
 - Un complexe visible dans la portion méridionale représenté par la nappe de Djebel Bou Mâad constituée de Flysch d'âge Crétacé inferieur.

Deux autres complexes superposés éocènes (Yprésien) visibles dans la portion septentrionale de la région.

- ❖ La nappe Inférieure est constituée de blocs hétérométriques hérités des formations crétacées des faciès telliens ainsi que de l'assise olistostrome éocène formée par la désintégration de ceux-ci.
- ❖ La nappe supérieure est d'affinité flysch (alternance irrégulière d'argilites et des grès avec des lentilles et blocs de grès du flysch Guerrouche)
- Complexe néo-autochtone formé de conglomérats, grès aleurolites, et argiles miocènes ; marnes et des argiles bleuâtres à nodules de calcaires jaune Langhière-Serravalieu.

Une coupe schématique synthétise le cadre géologique de cette région

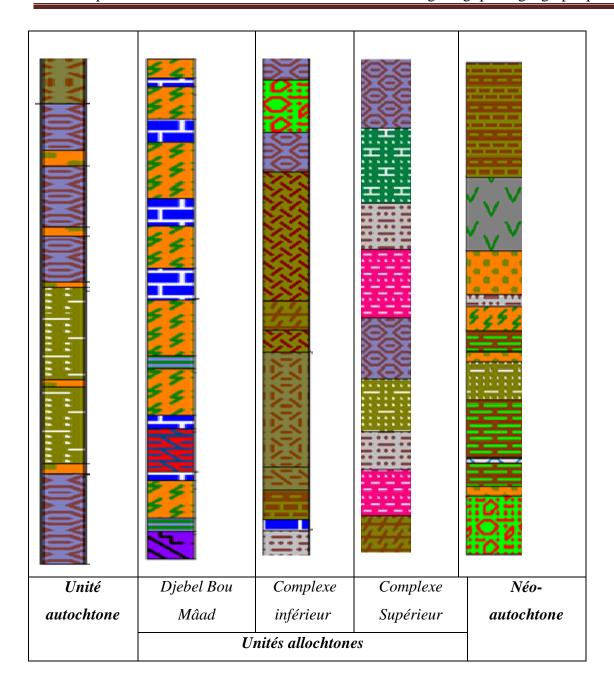


Fig.2. Colonnes lithostatigraphiques des unités géologique

Tectonique

La région d'étude qui se trouve dans le domaine des nappes telliennes, présente des nappes de charriages; Des plis et plissements ; Une tectonique cassante représentée par deux familles de failles, la première de direction NE – SW, Et la deuxième de direction NW – SE.

Au cours du Miocène, la région d'étude a subi des mouvements tectoniques ayant conduit à leur mise en place. Les structures plicatives d'orientation sublatudinale sont le résultat des effets de compression d'orientation NE – SW.

Magmatisme:

Dans la région Ténès –Cherchell; les produits du magmatisme miocène sont assez répandus et s'observent concentrés dans une bande côtière étroite surtout dans la partie nord de cette région. Ils sont développés sur les deux complexes autochtones et allochtones. Le seul développement à l'intérieur de cette région du pays est celui de Menaceur.

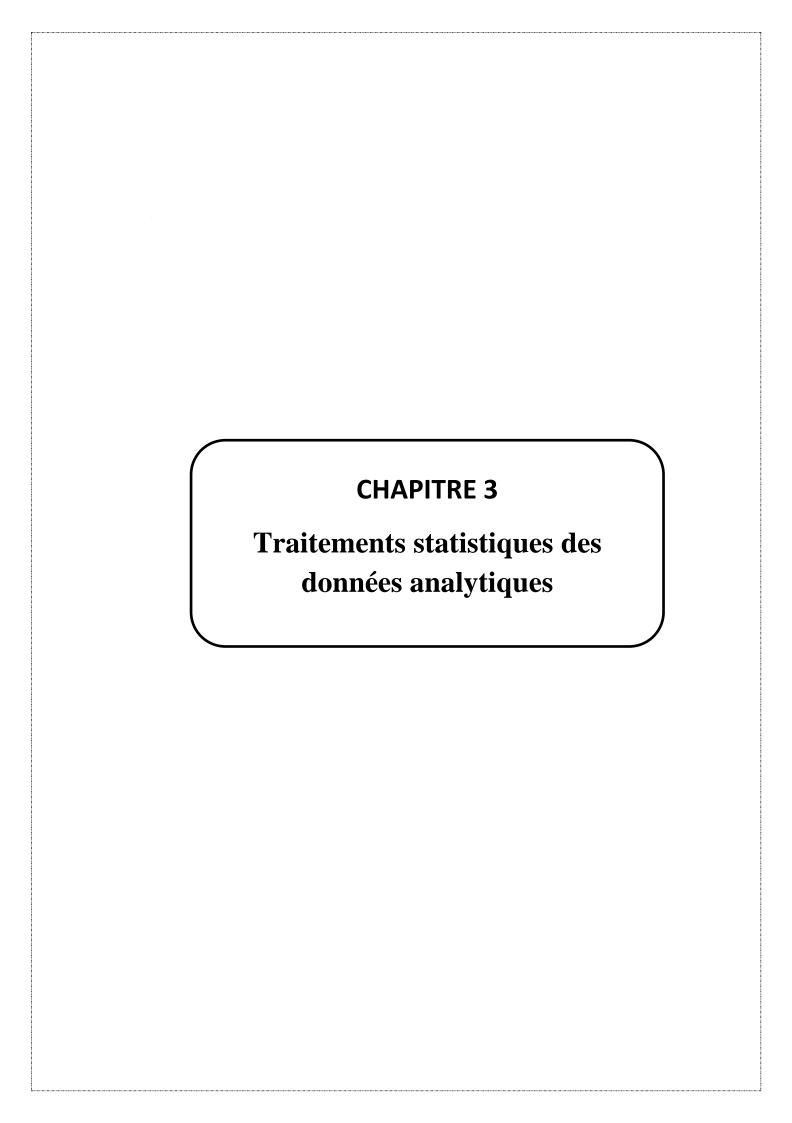
La répartition de ces dépôts magmatiques montre un caractère linéaire. Les données des levés aéromagnétiques laissent supposer un large développement des formations magmatiques miocènes dans la marge continentale.

Ces roches se trouvent en relation stratigraphique normale avec les roches sous et sus jacentes à savoir les formations allochtones de l'Eocène, et le Miocène sédimentaire.

Au cour du Miocène, la région en question, a subi des mouvements tectoniques ayant conduit à la mise en place des formations magmatiques représentées par des faciès effusifs et intrusifs.

Les formations effusives : Les formations effusives montrent une série différenciée formée de coulées de laves de nature andésitique, des extrusions de rhyolite, des rhyodacites, des andésito- basalte et des basaltes avec un horizon volcano - sédimentaire d'épaisseur variable et discontinue formé de clasto-laves, de tufs et de tuffites qui renferment parfois des roches sédimentaires.

Elles constituent une tranche de la coupe du complexe néo autochtone (Burdigalien), observables sur une bande presque ininterrompue le long de la cote à Cap Samada, Bouchekif, Souhalia (entre Beni-haoua et Damous) et elles ceinturent la dépression de Menaceur et Cap Sirat (Messelmoun - Oued sebt).


On note qu'il existe une certaine régularité dans la répartition des produits du volcanisme qui se traduit par la localisation des coulées de laves à proximité immédiate des centres d'émission, et plus on s'éloigne elles cèdent la place aux formations pyroclastiques.

B. Les formations intrusives : Relativement peu abondantes dans la région en question. Elles forment des massifs de dimensions restreintes et ayant la forme de laccolites et de dykes peu puissants.

Des lamprophyres et des kersantites de 20 à 40m de longueur NE de 1 à 6m d'épaisseur sont observables dans l'entourage immédiat des roches intrusives et dans certains autres endroits.

Ces formations sont observables dans les régions suivantes :

- -a korb ou djaout (Hadjret ennous) un laccolite qui montre un corps subhorizontal d'allongement ne qui montre des granites et granosyenite porphyrique d'epaisseur 100m avec 700m de longueur.
- -a Mechta Hanane (Gouraya): sept corps subconcordants devenant parfois secants se rejoignent et forment une petite intrusion de diorite quartzeuse de (50-70 a 500-700m) de dimension. Dans la région de Gouraya, on note également la présence de kersantite et de sills de granite.
- -a l'Oued Harbil (Damous): une intrusion de granodiorite a amphybole massive, d'une epaisseur de 70 a 180m avec une allongement de 300-400m.

1-Traitements statistiques des données analytiques

- **-Traitements statistiques :** Ces traitements vont porter sur les résultats obtenus des analyses des échantillons de sol et de roches. Pour premiers, il s'agit de traitements mono-élémentaire, bivarié et multi-élémentaire et pour les seconds seuls le traitements mono-élémentaire et bivarié seront effectués compte tenu du nombre d'éléments analysés.
- -Etude géostatistique : Cette étude va concerner les données des échantillons en roches.

I. Secteur Gouraya

I.1 -Géochimie au sol

I.1.1 Analyse mono élémentaire : Cette analyse est effectuée pour cerner les paramètres statistiques (de tendance centrale et de dispersion) des éléments chimiques analysés. Les résultats sont consignés dans le tableau (Tab.1.)

Eléments	N	Mean	Median	Mode	Frequency - of Mode	Min	Max	Std.Dev.	Coef.Var.
Mn	4135	1326,97	300,0000	30,00000	651	0,00	650000	16708,8	1259,167
Ni	7260	14,75	8,0000	10,00000	1197	0,00	1050	26,0	176,041
Co	7256	50,06	5,0000	5,000000	2021	0,00	100000	2032,9	4061,258
Ti	7240	7695,41	400,0000	200,0000	798	0,00	40000000	470959,9	6120,013
V	7270	902,70	40,0000	40,00000	1045	0,00	40500	2996,4	331,932
Cr	7258	21208,16	60,0000	60,00000	1073	0,00	20000000	469283,5	2212,750
Mo	7270	5 ,72	4,0000	50 ,00000	1326	0,00	250	9,5	166,427
W	7260	4,41	0,0000	0,000000	6745	0,00	10000	119,0	2695,783
Zr	7257	74,82	0,0000	0,000000	3737	0,00	30000	732,9	979,639
Cu	7256	24,77	6,0000	10,00000	963	0,00	8000	184,5	744,651
Pb	7260	28,22	5,0000	5,000000	4363	0,00	20500	478,1	1694,389
Ag	7237	0,09	0,0500	,0500000	2824	0,00	100	1,7	1826,365
Sb	7259	0,27	0,0000	0,000000	7161	0,00	1000	11,9	4481,972
Bi	6864	0,34	0,5000	,5000000	4098	0,00	40	0,6	172,746
As	7260	2,85	0,0000	0,000000	7229	0,00	10000	137,9	4835,019
Zn	7254	200,29	50,0000	50,00000	3712	0,00	1000000	11741,3	5862,095
Cd	7258	0,07	0,0000	0,000000	7214	0,00	150	1,9	2889,100
Sn	7138	0,98	0,5000	0,000000	3026	0,00	25	1,9	191,306
Sr	3882	1061,93	0,0000	0,000000	3539	0,00	1000000	32087,6	3021,621
Ba	7170	2576,58	0,0000	0,000000	4194	0,00	1000000	44194,5	1715,240
Au	6979	0,09	0,0000	0,000000	6966	0,00	100	2,9	3127,702
Hg	5555	575,89	0,0000	0,000000	5355	0,00	600000	11001,8	1910,407
F	4825	1089,99	500,0000	25,00000	1389	0,00	1000000	20368,3	1868,662

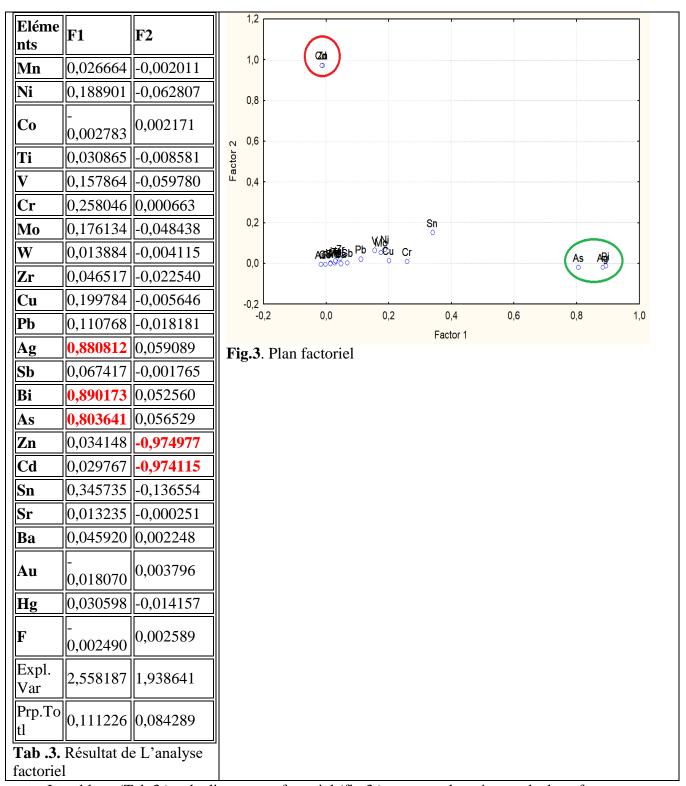
Tab .1. Paramètres statistiques des éléments chimiques.

Le traitement mono élémentaire montre que, hormis Mo, Ag, Bi et Sn qui présentent une valeur moyenne proche de la médiane, la quasi-totalité des autres éléments montre une distribution hétérogène, non normale. Cette hétérogénéité est confirmée en outre, par les intervalles de variation (min-max) des teneurs des éléments et par les coefficients de variation qui mettent en relief de fortes dispersions.

En conclusion, mis à part Mo, Ag, Bi et Sn, les autres éléments ont une distribution log normal.

I.1.2 Analyse bivariée

Eléments	Mn	Ni	Co	Ti	V	Cr	Mo	W	Zr	Cu	Pb	Ag	Bi	As	Zn	Cd	Sn	Sr	Ba	Au	Hg	F
Mn	1,00	0,21	0,06	-0,06	-0,08	0,03	0,18	-0,01	0,01	0,06	-0,00	-0,01	-0,05	-0,01	-0,04	-0,03	0,03	0,05	0,14	0,11	-0,03	-0,07
Ni		1,00	0,59	0,29	0,26	0,43	0,32	0,01	0,12	0,03	0,10	0,01	0,01	-0,00	0,13	-0,02	0,48	-0,02	-0,02	-0,00	-0,02	0,16
Co			1,00	0,32	0,22	0,20	0,18	-0,00	0,12	0,01	-0,01	0,01	0,03	-0,01	0,20	-0,00	0,37	-0,03	-0,05	-0,01	-0,01	0,19
Ti				1,00	0,29	0,13	0,10	-0,00	0,47	0,00	0,12	0,01	0,01	-0,00	0,06	-0,01	0,43	-0,01	-0,04	-0,02	0,01	0,20
V					1,00	0,06	0,02	-0,01	0,04	-0,00	0,17	0,01	0,01	-0,00	0,04	-0,01	0,36	-0,02	-0,03	-0,01	-0,02	0,14
Cr						1,00	0,17	0,01	0,06	-0,00	0,01	0,01	-0,00	-0,00	0,07	-0,00	0,22	-0,01	-0,01	-0,00	-0,00	0,06
Mo							1,00	0,03	0,14	0,03	0,02	0,00	-0,02	0,00	0,05	-0,02	0,16	-0,02	0,01	-0,00	-0,02	-0,05
W								1,00	0,00	-0,00	-0,00	-0,00	-0,00	-0,00	0,00	-0,00	-0,01	-0,00	0,01	-0,00	0,00	-0,01
Zr									1,00	-0,01	0,00	-0,00	-0,01	-0,00	0,02	-0,01	0,08	-0,01	-0,00	-0,01	0,00	0,08
Cu										1,00	-0,00	0,01	0,00	0,08	0,04	-0,00	-0,01	0,12	0,17	-0,00	-0,00	0,01
Pb											1,00	0,01	-0,01	-0,00	0,02	-0,00	0,17	0,05	-0,00	-0,00	-0,00	0,08
Ag												1,00	0,95	1,00	0,16	-0,00	0,20	-0,00	0,01	-0,00	-0,00	0,04
Bi													1,00	0,95	0,18	-0,01	0,21	-0,01	-0,01	-0,01	-0,01	0,04
As														1,00	0,15	-0,00	0,17	0,01	0,02	-0,00	-0,00	0,03
Zn															1,00	-0,02	0,18	0,00	0,03	-0,02	0,02	0,05
Cd																1,00	-0,02	-0,01	-0,02	-0,00	-0,01	0,02
Sn																	1,00	0,01	-0,02	-0,02	-0,02	0,24
Sr																		1,00	0,64	-0,01	-0,01	-0,03
Ba																			1,00	0,01	-0,02	-0,06
Au																				1,00	-0,00	-0,03
Hg																					1,00	-0,04
F																						1,00


Tab .2. Matrice des coefficients de corrélation

La matrice des coefficients de corrélation (Tab.2.) permet d'observer de moyennes corrélations positives entre (Ni-Co, Sr- Ba) et de fortes corrélations positives entre (Ag-Bi-As).

I.1.3 Traitements multivariable:

Ce traitement consiste en une Analyse en Composantes Principales (ACP) et analyses factorielle (AF) et a comme objectif l'étude des tendances entre les éléments d'une part et ceux-ci avec les massifs en question d'autre part.

-Analyse factorielle

Le tableau (Tab.3.) et le diagramme factoriel (fig.3.) montrent la présence de deux facteurs corrélés aux variables (éléments chimiques). Le facteur (F1) est corrélé aux éléments Ag, Bi et As indiquent la présence de sulfures. Le facteur (F2) est fortement corrélé aux éléments Zn et Cd, indique la présence de minéralisations zincifères, avec du zinc cadmifère

-Analyse en composantes principales

Eléments	F1	F 2
Mn	0,025420	0,000881
Ni	0,222653	0,047492
Co	-0,003306	-0,001948
Ti	0,023973	0,007461
V	0,183654	0,047296
Cr	0,270559	-0,008729
Mo	0,206766	0,034452
\mathbf{W}	0,017252	0,002559
Zr	0,049421	0,014496
Cu	0,229627	-0,003153
Pb	0,130392	0,012282
Ag	0,803361	-0,065173
Sb	0,080129	-0,001705
Bi	0,811806	-0,058866
As	0,823995	-0,070263
Zn	0,046779	0,976156
Cd	0,042129	0,975492
Sn	0,378962	0,120104
Sr	0,007533	-0,001125
Ba	0,048099	-0,004375
Au	-0,019490	-0,003021
Hg	0,029469	0,006391
F	-0,002634	-0,002287
Tab. 4 . Ré	sultat de l'A	ACP

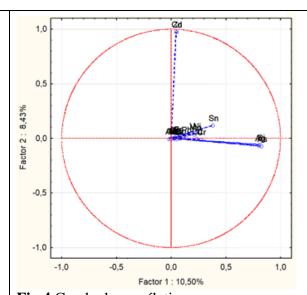


Fig.4.Cercle de corrélation

Le même résultat est obtenu que pour l'analyse factorielle. Le facteur (F1) indique la présence de sulfures (Ag, Bi et As) et le facteur (F2) le zinc cadmifère.

Conclusion: Les traitements statistiques effectués ont permis de préciser la nature sulfurée des minéralisations dans le secteur Gouraya. Celle-ci représentée par l'argent et le zinc cadmifère est probablement associée à des formations magmatiques. Des données géologiques complémentaires préciseront cette interprétation. Une forte hétérogénéité y est ainsi mise en évidence par les paramètres statistiques obtenus.

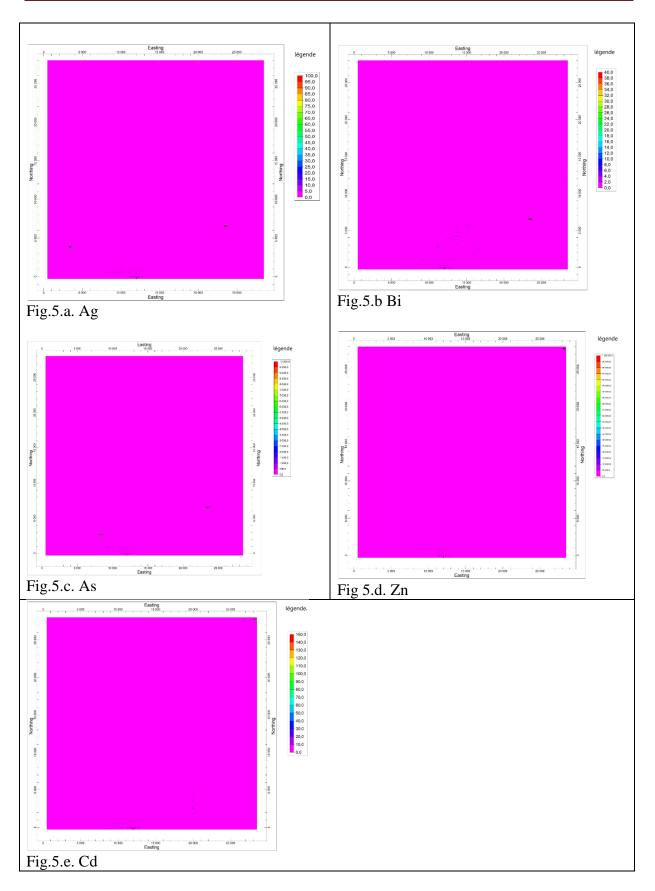


Fig.5. Carte de courbes isoteneurs en éléments chimiques

I.2 Géochimie en roches

Des prélèvements en roches ont été effectués pour la cartographie des anomalies géochimiques primaires utiles pour l'implantation des forages.

Ces échantillons ont été analysés par la méthode d'absorption atomique pour deux éléments en l'occurrence Cu et Ag.

Au total 82 échantillons ont été réalisés dans cette région 46 spécimens pour Lemri, 16 Gouraya et 20 pour le secteur quatre mamelons. Des traitements statistiques et une étude géostatistique sont tentés pour l'étude de la distribution de ces deux éléments à travers les trois secteurs en question. Les logiciels utilisés sont Statistica 12 pour les traitements statistiques et Rochworks15 pour l'étude géostatistique

I.2.1Traitement statistique:

-Analyse mono élémentaire: Le tableau (Tab.5.) résume les paramètres statistiques. Celuici montre une distribution proche de la loi normale pour la variable Cu et non normale (log normal) pour Ag, attestée par les observations consignées dans le tableau des paramètres statistiques: (moyenne-médiane, intervalle de variation (min-max), coefficient de variation et le skewness.

	N	Mean	Médian	Mode	Frequency - of Mode	Min	Max	Std.Dev.	Coef.Var.	Skewness
Cu%	16	0,66750	0,57500	1,000000	6	0,250000	1,0000	0,28278	42,3646	0,164126
Ag g/t	9	22,12778	10,00000	10,00000	3	0,150000	100,0000	32,65401	147,5702	2,147589

Tab.5. Statistiques descriptives

Les histogrammes de la figure (fig.6.) confirment les constatations déduites des résultats précédents. Ceux-ci montrent une distribution multimodale pour la variable Cu. La présence des valeurs aberrantes (extrêmes) qui semblent liées à la présence des minéralisations et le faible nombre d'échantillons pour la variable Ag analysés n'autorisent pas un traitement statistique débouchant sur des résultats fiables.

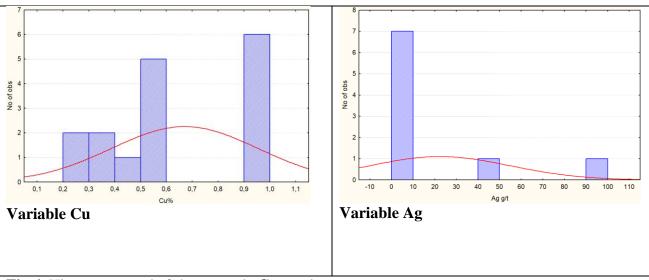


Fig.6. Histogrammes de fréquences de Cu et Ag

La transformation en logarithme des valeurs montre une distribution proche de la loi normale.

Les paramètres statistiques obtenus pour les deux variables permettent les constatations suivantes (Tab.6.):

- -Moyenne \approx médiane
- -Une faible dispersion et un skewness proche de zéro.

N	Mean	Median	Mode	Frequency - of Mode	Min	Max	Std.Dev.	Coef.Var.	Skewness
ln Cu 16	-0,498012	-0,554331	0,000000	6	-1,38629	0,000000	0,462061	-92,7810	-0,36299
ln Ag 9	2,087258	2,302585	2,302585	3	-1,89712	4,605170	1,825567	87,4624	-1,11342

Tab.6. Statistiques descriptives

Les histogrammes de la figure (fig.7.) montrent une distribution multivariable pour Cu et bivariée pour Ag. La présence de valeurs extrêmes semble perturber la structure statistique et qu'il devient nécessaire de supprimer ces valeurs extrêmes. Notons que le faible nombre d'échantillons analysés empêche un traitement statistique fiable.

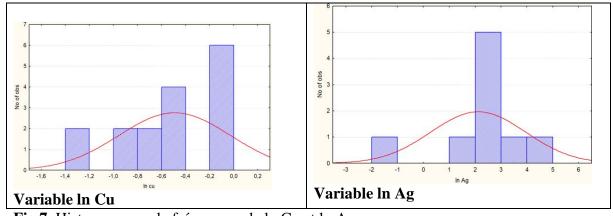


Fig.7. Histogrammes de fréquences de ln Cu et ln Ag

Les diagrammes des probabilités selon la loi normale (fig. 8. et Tab.7.) montrent pour les deux variables, que les valeurs (observées et estimées) des teneurs ne sont pas alignées sur la

droite de corrélation. Ce test confirme le résultat obtenu plus haut pour la présence de plusieurs populations (3 populations pour Cu et 2 populations pour Ag).

Notons la présence de valeurs extrêmes (fig.6.) qu'il convient de supprimer des traitements et le faible nombre d'échantillons analysés pour un traitement statistique adéquat.

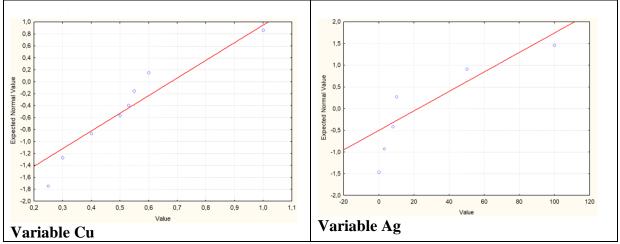
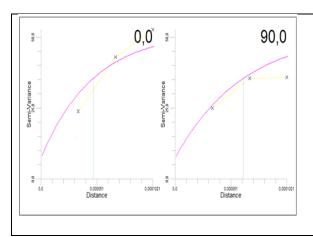


Fig.8. Test de probabilité selon la loi normale Cu et Ag.

-Traitement bivarié

	Cu%	Ag g/t
Cu%	1,00	0,38
Ag g/t	0,38	1,00

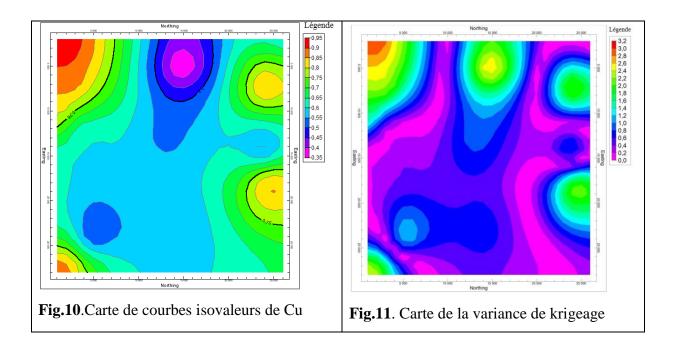

Tab.7. Matrice de corrélations

Une faible corrélation est observée entre les deux variables (0,38) Les deux variables évoluent probablement indépendamment l'une de l'autre.

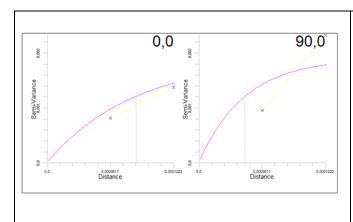
Conclusion: Le traitement des données des deux variables (Cu-Ag) obtenues sur roches montre une distribution non-normale (log normal) mise en évidence dans le cas des échantillons au sol.

I.2.2Etude géostatistique

-Variable Cuivre : La figure (fig.9.) montre pour la variable cuivre une structure exponentielle avec effet pépite. Les paramètres statistiques du variogramme sont résumés dans le tableau (Tab.8.).

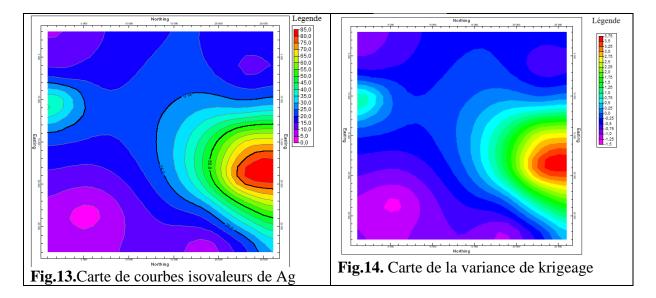


Tab.8. Paramètres du variogramme									
Corrélation	0,94								
Nugget	0,003								
Relative Sill	0,016								
Major Axis Direction	97,7								
Minor Axis Direction	7,7								
Major Axis Range	6026,278								
Minor Axis Range	4556,391								


Fig.9. Variogramme de la variable cuivre

La cartographie des teneurs en cuivre estimées par krigeage figure sur la carte (fig.10.) et les erreurs de l'estimation sur la carte de variance de krigeage (fig.11.). Deux anomalies intenses de cuivre caractérisent les portions NW et NE du secteur d'étude. La portion orientale du secteur est marquée par des anomalies du cuivre à des niveaux de teneur moindres. Le centre du secteur est relativement pauvre en minéralisation.

La carte de variance de krigeage (fig.11.) précise l'erreur de l'estimation. Celle-ci est plus importante dans la portion occidentale qu'à l'Est et au NE. Un échantillonnage optimal pourra éclaircir sue cette variabilité.


-Variable Argent:

Tab.9. Parameters du variogramme Exponential With Nugget Correlation 0.88 Nugget 3.269 Relative Sill 349,605 Major Axis Direction 2,2 Minor Axis Direction 92,2 5758,857 Major Axis Range Minor Axis Range 2973,19

Fig.12. Variogramme de la variable argent

La figure (fig.12.) montre pour la variable argent une structure exponentielle avec effet pépite. Le tableau (Tab.9.) résume la variabilité de cet élément.

La cartographie des teneurs en argent estimées par krigeage figure sur la carte (fig.13.) et les erreurs de l'estimation sur la carte de variance de krigeage (fig.14.).

Celle-ci montre une anomalie extrême caractérise la portion orientale du secteur, ouverte suivant cette direction. A l'opposé, l'Ouest du secteur est caractérisé par une autre anomalie moins importante et qui est ouverte sur la direction ouest. Les autres portions du secteur d'étude sont matérialisées par des erreurs d'éstimation faibles dues au faible nombre d'échantillons analysés.

II. Secteur Quatre mamelons II.1 -Géochimie au sol

II.1.1 Analyse mono élémentaire: Dans le cadre de ce secteur 3722 échantillons au sol ont été analysés pour 12 éléments chimiques (Tab.10.). Le traitement statistique mono-élémentaire montre également pour la majorité des éléments une distribution hétérogène. Une analyse semi quantitative ou quantitative peut pallier à ce problème statistique. Les éléments (Ni-Co-T) de la lithologie et les éléments (Cu et Zn) caractéristiques de la minéralisation montrent toutefois des paramètres de tendance centrale (Mean-Median) rapprochés mais une forte dispersion indiquant probablement, à l'échelle du secteur un caractère irrégulier de la minéralisation.

Eléments	N	Mean	Median	Mode	Frequency - of Mode	Min	Max	Std.Dev.	Coef.Var.
Mn	3722	10,83163	1,500000	,1000000	1000	0,100000	10000,00	177,1624	1635,602
Ni	3722	1,31424	0,800000	1,000000	510	0,100000	20,00	1,7389	132,313
Co	3721	0,72489	0,400000	,1000000	1281	0,100000	64,00	1,5647	215,855
Ti	3722	1,50548	0,500000	,1000000	544	0,100000	1000,00	23,2083	1541,586
V	3722	9,71706	6,000000	3,000000	431	0,100000	100,00	11,6380	119,769
Cr	3722	13,41771	6,000000	3,000000	425	0,100000	500,00	23,2012	172,915
Mo	3711	5,06704	1,000000	,1000000	1808	0,100000	250,00	13,4315	265,075
Cu	3720	2,88732	1,500000	1,000000	630	0,100000	1000,00	23,4120	810,857
Pb	3712	0,97218	0,100000	,1000000	3070	0,100000	1000,00	19,4120	1996,754
Ag	3702	0,64355	0,100000	,1000000	2813	0,100000	300,00	5,6454	877,229
Zn	3716	0,27460	0,100000	,1000000	3299	0,100000	20,00	0,7499	273,078
Ba	2248	3,94106	0,100000	,1000000	1795	0,100000	1000,00	47,4123	1203,034

Tab .10. Paramètres statistiques des éléments chimiques

II .1.2 Analyse bi variée :

Eléments	Mn	Ni	Co	Ti	V	Cr	Mo	Cu	Pb	Ag	Zn	Ba
Mn	1,00	0,04	0,01	-0,00	-0,01	0,01	0,02	-0,00	-0,00	-0,00	-0,01	0,00
Ni		1,00	0,28	0,09	0,63	0,41	0,41	0,03	0,09	0,01	0,11	0,02
Co			1,00	0,04	0,25	0,13	0,17	0,01	0,05	0,01	0,02	0,01
Ti				1,00	0,17	0,03	0,00	0,01	0,03	0,00	-0,01	0,00
V					1,00	0,41	0,31	0,04	0,16	0,01	0,08	0,03
Cr						1,00	0,76	0,03	0,07	0,02	0,04	0,05
Mo							1,00	0,02	0,02	0,01	0,04	0,06
Cu								1,00	0,02	0,89	0,35	0,00
Pb									1,00	0,03	0,16	0,01
Ag										1,00	0,49	-0,00
Zn											1,00	0,07
Ba												1,00

Tab .11. Matrice des coefficients de corrélation

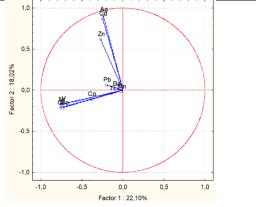
La matrice des coefficients de corrélation (Tab.11.) permet d'observer de moyennes corrélations positives entre (Ni-V), (Cr-Mo) et de fortes corrélations positives entre (Cu-Ag). Ces corrélations peuvent refléter la présence d'un facteur lithologique ; (Ni-V) liée à la présence d'une série magmatique) et d'un facteur minéralisation sulfurée (Cu-Ag).

II .1.3 Traitements multi variables : Ils sont représentés par une analyse factorielle et une analyse en composantes principales.

-Analyse factorielle

Eléme nts	F- 1	F- 2
Mn	-0,027237	-0,017242
Ni	-0,758970	-0,175942
Co	-0,386178	-0,108166
Ti	-0,146169	-0,039609
V	-0,734852	-0,168034
Cr	-0,763954	-0,213447
Mo	-0,731689	-0,214761
Cu	-0,247298	0,871168
Pb	-0,204791	0,064889
Ag	-0,243966	0,921121
Zn	-0,274257	0,621835
Ba	-0,086401	0,014533
Expl.V ar	2,651574	2,162938
Prp.Tot	0,220965	0,180245




Fig.15. Plan factoriel.

Tab .12. Résultat de L'analyse factorielle

Le même résultat est obtenu par l'analyse factorielle. Le tableau (Tab.12.) et le diagramme factoriel (fig.15.) montrent la présence de deux facteurs corrélés aux variables (éléments chimiques). Le facteur (F1) est corrélé aux éléments Ni, V, Cr et Mo indiquent la présence de formation magmatique. Le facteur (F2) est fortement corrélé aux éléments Cu, Ag et Zn indique la présence de minéralisations.

-Analyse en composantes principales

Eléments	F 1	F2
Mn	-0,027237	-0,017242
Ni	-0,758970	-0,175942
Co	-0,386178	-0,108166
Ti	-0,146169	-0,039609
V	-0,734852	-0,168034
Cr	-0,763954	-0,213447
Mo	-0,731689	-0,214761
Cu	-0,247298	0,871168
Pb	-0,204791	0,064889
Ag	-0,243966	0,921121
Zn	-0,274257	0,621835
Ba	-0,086401	0,014533
Tab .13. Résultat de l'ACP		

Fig.16. Cercle de corrélation entre les variables et les composantes principales

Tab .13. Resultat de l'ACF

Le tableau (Tab.13.) et le Cercle de corrélation (fig.16.) montrent la présence de deux facteurs corrélés aux variables (éléments chimiques). Le facteur (F1) est corrélé aux éléments Ni, V, Cr et Mo indiquent la présence de de formations magmatiques. Le facteur (F2) est fortement corrélé aux éléments Cu, Ag et Zn indiquant la présence de minéralisations polymétallique à Cu, Ag et Zn.

Conclusion: Les traitements statistiques effectués sur les données obtenues de l'analyse des échantillons au sol ont permis de préciser la nature de la minéralisation recherchée dans le secteur en question et de préciser ses paramètres statistiques.

Le traitement mono élémentaire a permis de mettre en évidence, pour la majorité des éléments une forte hétérogénéité.

Les traitements bivariés et multi-élémentaire montrent une nature sulfurée d'une minéralisation polymétallique à Cu, Ag et Zn associée à des formations magmatiques.

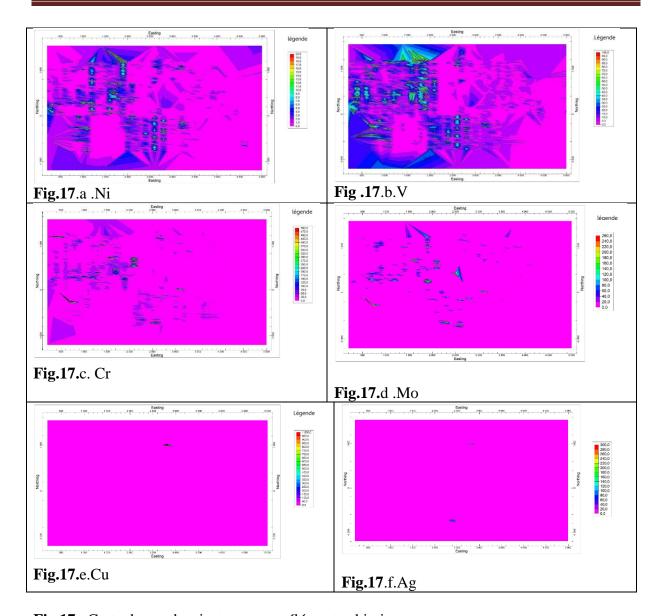


Fig.17. Carte de courbes isoteneurs en éléments chimiques

II.2.Géochimie en roche

Dans ce secteur, 20 échantillons ont été prélevés et analysés pour les éléments cuivre et argent II.2.1*Traitement statistique*

- -Analyse mono élémentaire : Les résultats de l'analyse monoélémentaire sont resumés dans le tableau (Tab.14). Celui-ci montre une distribution non-normale attestée par les observations suivantes :
- -Moyenne \neq médiane ; un large intervalle de variation (min-max), Une forte dispersion mise en évidence par un fort coefficient de variation et un skewness \neq 0

	N	Mean	Median	Mode	Frequency - of Mode	Min	Max	Std.Dev	Coef.Var	Skewnes s
Cu%	2 0	4,8010	1,56500	Multipl e	2	0,05000 0	30,0000	8,8455	184,2429	2,632547
			50,0000 0	Multipl e	4	0,50000 0	450,000 0	132,783 9	130,6928	1,950773

Tab.14. Statistiques descriptives

Les histogrammes de la figure (fig.18.) confirment les résultats précédents. Ceux-ci montrent pour les deux variables (Cu-Ag) une distribution lognormal avec en plus la présence des valeurs aberrantes (extrêmes) qui semblent liées à la présence des minéralisations. Pour la variable Ag on constate en outre une distribution multimodale.

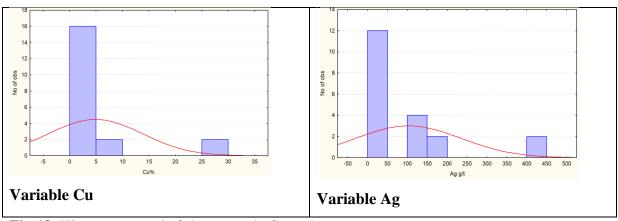


Fig.18. Histogrammes de fréquences de Cu et Ag

La transformation en logarithme des valeurs montre une distribution proche de la loi normale. Les paramètres statistiques obtenus pour les deux variables permettent les constatations suivantes (Tab.15.) : Moyenne \approx médiane, une faible dispersion et un skewness proche de zéro.

	N	Mean	Median	Mode	Frequency - of Mode	Min	Max	Std.Dev.	Coef.Var.	Skewness
LN Cu%	20	0,223045	0,341548	Multiple	2	-2,99573	3,401197	1,884368	844,8381	-0,273258
L'Ag g/t	20	3,294176	3,912023	Multiple	4	-0,69315	6,109248	2,290086	69,5192	-0,885648

Tab.15. Statistiques descriptives

Les histogrammes de la figure (fig.19.) montrent pour les deux variables Cu-Ag des distributions multivariées indiquant la présence de plusieurs populations. La présence de valeurs extrêmes semble perturber la structure statistique et qu'il devient nécessaire de les supprimer. Notons que le faible nombre d'échantillons analysés n'autorise pas un traitement statistique.

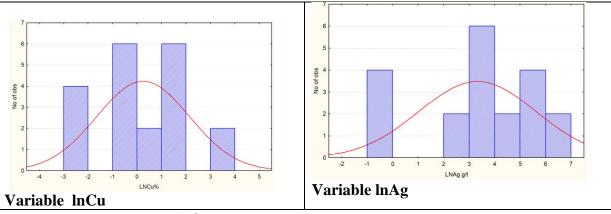


Fig.19. Histogrammes de fréquences de ln Cu et ln Ag

Les diagrammes des probabilités selon la loi normale (fig.20. Et Tab .16.) montrent pour les deux variables que les valeurs (observées et estimées) des teneurs ne sont pas alignées sur la droite de corrélation. Ce test selon la loi normale confirme le résultat obtenu plus haut pour la présence de deux populations pour Cu et trois pour Ag dont une est probablement liée à Cu. Notons la présence de valeurs extrêmes qu'il convient de les supprimer des traitements et le faible nombre d'échantillons analysés pour un traitement statistique adéquat.

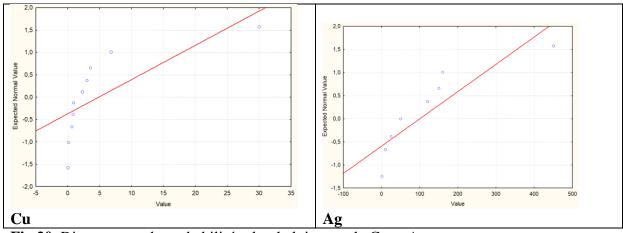


Fig.20. Diagrammes de probabilité selon la loi normale Cu et Ag

-Analyse bivariée : La matrice de corrélation entre les deux variables Cu et Ag montre que celles-ci évoluent probablement indépendamment l'une de l'autre. Le coefficient de corrélation est de niveau 0.35. (Tab.16.).

	Cu%	Ag g/t
Cu%	1,00	0,35
Ag g/t	0,35	1,00

Tab.16. Matrices de correlations

Conclusion : Le traitement des données des deux variables (Cu-Ag) obtenues sur roches confirme la distribution non-normal mise en évidence dans le cas des échantillons au sol. Plusieurs populations pour les deux variables sont constatées sur les histogrammes des

fréquences. L'existence des valeurs extrêmes, la qualité des analyses et les faible nombre d'échantillons peuvent être à l'origine de ce résultat.

II.2.2 Etude géostatistique

Pour la spatialisation des données, l'estimation, la prédiction et la cartographie des contenus dans des endroits non échantillonnés une étude géostatistique est tentée dans le cadre de ce travail. Les outils utilisés sont le variogramme et l'interpolation par krigeage.

-Variable Cuivre La figure (fig.21.) montre pour la variable cuivre une structure exponentielle avec effet pépite. Le tableau (Tab.17.) résume la variabilité de cet élément. Les paramètres statistiques du variogamme sont résumés dans le tableau (Tab.17.).

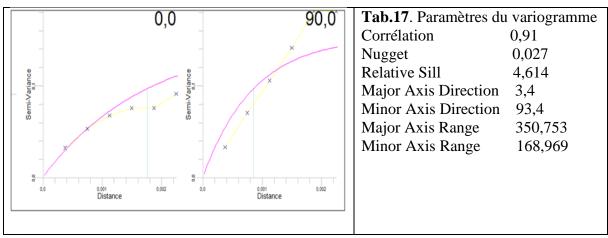
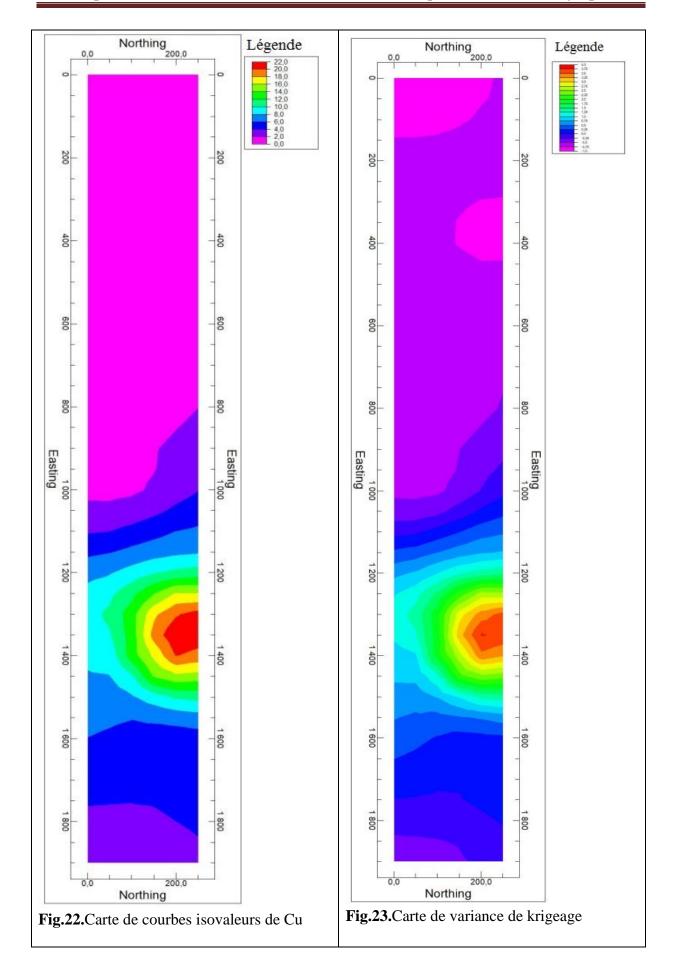
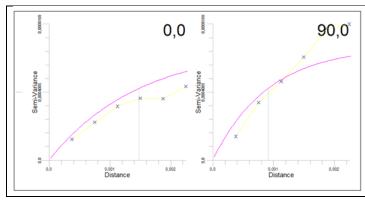
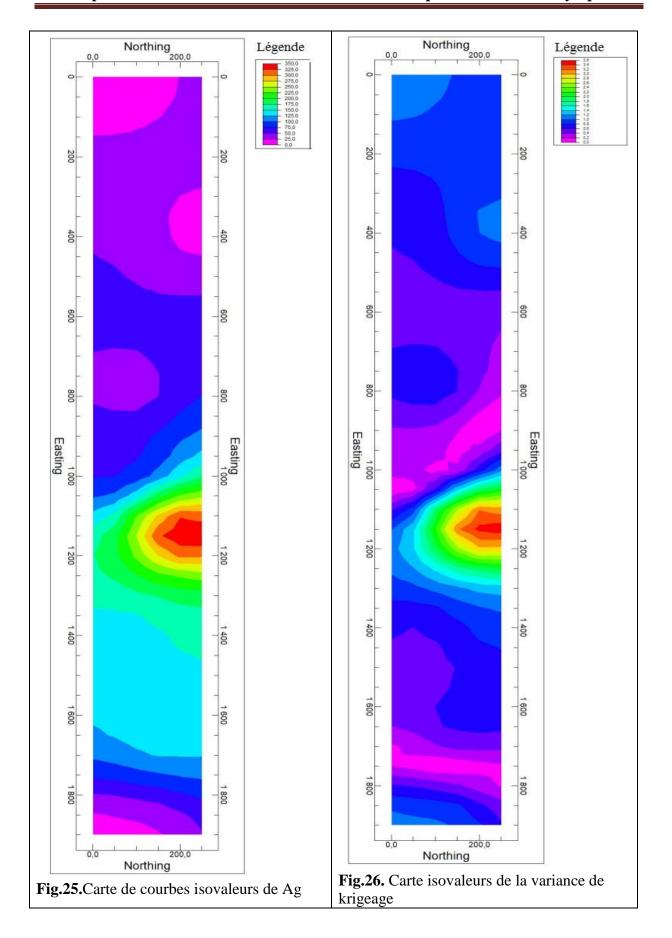



Fig.21. Variogramme de la variable cuivre


La cartographie des teneurs en cuivre estimées par krigeage figure sur la carte (fig.22.) et les erreurs de l'estimation sur la carte de variance de krigeage (fig.23.).

Celles-ci montrent respectivement une anomalie intense ouverte vers l'Est orientée sur la direction sublatudinale liée probablement à la famille de failles qui recoupe cette région. La carte de variance de krigeage (fig.23.) montre dans cette zone anomale à fort contenu en cuivre une importante erreur d'estimation. Un échantillonnage optimal pourra nous éclaircir sur cette variabilité.

-Variable Argent:


La figure (fig.24.) montre pour la variable argent une structure exponentielle avec effet pépite. Le tableau (Tab.18.) résume la variabilité de cet élément. Les paramètres statistiques du variogramme sont résumés dans le tableau (Tab.18.).

Tab.18. Parametres du	Tab.18. Parametres du							
variogramme								
Correlation	0,91							
Anisotropy Ratio	0,61							
Nugget	3,559							
Relative Sill	1015,378							
Major Axis Direction	2,4							
Minor Axis Direction	92,4							
Major Axis Range	293,432							
Minor Axis Range	179,985							

Fig.24 Variogramme de la variable Argent

La cartographie des teneurs en argent estimées par krigeage figure sur la carte (fig.25.) et les erreurs de l'estimation sur la carte de variance de krigeage (fig.26.). Celles-ci montrent respectivement une anomalie intense ouverte vers l'Est orientée sur la direction sublatudinale liée probablement à la famille de failles qui recoupe cette région.

III. Secteur Lemri III.1- Géochimie au sol

III.1.1 Analyse mono élémentaire : Dans le secteur Lemri, 259 échantillons en sol ont été prélevés et analysé par spectrométrie pour 11 éléments chimiques (Tab.19.). Les traitements statistiques ont été effectués par le programme Sattistica12 et les résultats figurent dans le tableau ci-dessous.

Eléments	N	Mean	Median	Mode	Frequency - of Mode	Min	Max	Std.Dev.	Coef.Var.
Mn	259	3,19884	1,000000	,1000000	90	0,100000	100,000	7,84835	245,3496
Ni	259	0,78726	0,600000	,4000000	40	0,100000	5,000	0,63590	80,7743
Co	259	1,19112	0,600000	Multiple	40	0,100000	30,000	2,24561	188,5291
Ti	259	0,86873	0,600000	1,000000	34	0,100000	6,000	0,85774	98,7358
V	259	7,48764	6,000000	10,00000	43	0,100000	50,000	6,63566	88,6214
Cr	259	6,96293	5,000000	6,000000	48	0,100000	80,000	7,93288	113,9301
Cu	259	15,40857	2,000000	2,000000	33	0,100000	1000,000	74,62975	484,3392
Pb	258	2,61279	0,100000	,1000000	181	0,100000	200,000	16,06892	615,0099
Ag	258	1,02016	0,100000	,1000000	172	0,100000	20,000	2,59842	254,7088
Zn	258	0,61279	0,100000	,1000000	186	0,100000	15,000	1,55724	254,1234
Ba	258	1,12791	0,100000	,1000000	240	0,100000	50,000	5,44773	482,9944

Tab .19. Paramètres statistiques des éléments chimiques

Le traitement mono élémentaire montre que hormis Ni, Ti, V et Cr qui présentent une valeur moyenne proche de la médiane, la quasi-totalité des autres éléments montre une distribution hétérogène non normale. Cette hétérogénéité est confirmée en outre, par les intervalles de variation (min-max) des teneurs des éléments et par les coefficients de variation qui mettent en relief de fortes dispersions

III.1.2 Analyse bi variée :

La matrice des coefficients de corrélation (Tab.20.) permet d'observer une moyenne corrélation positive entre les variables Ti et V, (0,68).

Eléments	Mn	Ni	Co	Ti	V	Cr	Cu	Pb	Ag	Zn	Ba
Mn	1,00	0,10	0,27	0,14	-0,01	-0,08	0,03	0,09	0,39	0,12	0,42
Ni		1,00	0,49	0,50	0,46	0,26	0,26	0,01	0,16	0,27	-0,08
Co			1,00	0,24	0,10	-0,00	0,10	-0,00	0,30	0,27	0,09
Ti				1,00	0,68	0,22	0,06	0,05	0,04	0,18	-0,12
V					1,00	0,40	0,17	0,14	0,04	0,11	-0,10
Cr						1,00	-0,00	0,02	-0,01	-0,07	-0,06
Cu							1,00	0,03	0,31	0,08	-0,02
Pb								1,00	0,22	0,38	0,08
Ag									1,00	0,42	0,31
Zn										1,00	-0,03
Ba											1,00

Tab .20. Matrice des coefficients de corrélation.

III .1.3 Traitements multi variable

-Analyse factorielle : L'analyse factorielle montre deux facteurs (F 1 et F 2) corrélés aux variables (éléments chimiques), (Tab.21. et fig.27.). Le facteur (F1) corrélé aux éléments Ni, Ti et V indique la présence de formations magmatiques. La présence d'une formation ultrabasique est fort probable dans ce secteur indiquée par la forte saturation de Ni.

Le facteur (F2) corrélé aux éléments Ba, Ag lié probablement à la présence de la baryte.

Elément s	F 1	F 2
Mn	0,350019	0,574301
Ni	0,763495	-0,235340
Co	0,582484	0,224526
Ti	0,693299	-0,406505
V	0,656567	-0,515507
Cr	0,306998	-0,464869
Cu	0,354265	0,075852
Pb	0,278295	0,249095
Ag	0,502160	0,619684
Zn	0,515581	0,309649
Ba	0,072404	0,605852
Expl.Va	2,776899	1,997465
Prp.Tot	0,252445	0,181588

Tab .21. Résultat de l'analyse factorielle

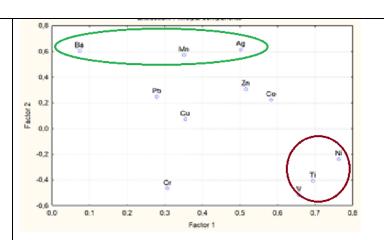
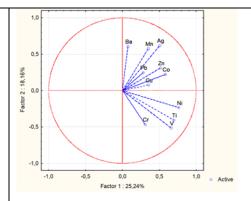



Fig.27. Plan factoriel

-Analyse en composantes principales

Eléments	F 1	F 2
Mn	0,350019	0,574301
Ni	0,763495	-0,235340
Co	0,582484	0,224526
Ti	0,693299	-0,406505
V	0,656567	-0,515507
Cr	0,306998	-0,464869
Cu	0,354265	0,075852
Pb	0,278295	0,249095
Ag	0,502160	0,619684
Zn	0,515581	0,309649
Ba	0,072404	0,605852
Tab .22. R	Lésultat de	e l'ACP

Fig.28. Cercle de corrélation entres les variables et les composantes principales

Le même résultat est obtenu que pour l'analyse factorielle (Tab.22 et fig.28).

Conclusion:

Les traitements effectués sur les données obtenues de l'analyse des échantillons au sol ont permis de préciser la nature de la minéralisation recherchée dans le secteur en question et de préciser leurs paramètres statistiques.

Le traitement mono élémentaire a permis de mettre en évidence, pour la majorité des éléments une forte hétérogénéité caractérisée par une distribution non normale.

Le traitement bivarié montre La présence de formations magmatiques.

Les traitement multiélémentaires évoquent la présence de formations magmatiques. De la barytine, de l'argent natif ainsi que des formations magmatiques ultrabasiques peuvent figurer parmi les constituants du secteur en question.

Carte des courbes isovaleurs en éléments chimiques.

Les cartes (fig.29.) représentent le facteur lithologique. Les formations magmatiques apparaissent dans les portions méridionale et centrale du secteur. Les anomalies de Ni-Ti et V y sont superposables. Elles paraissent orientées sur la direction des failles NS, contrôlées par celles-ci.

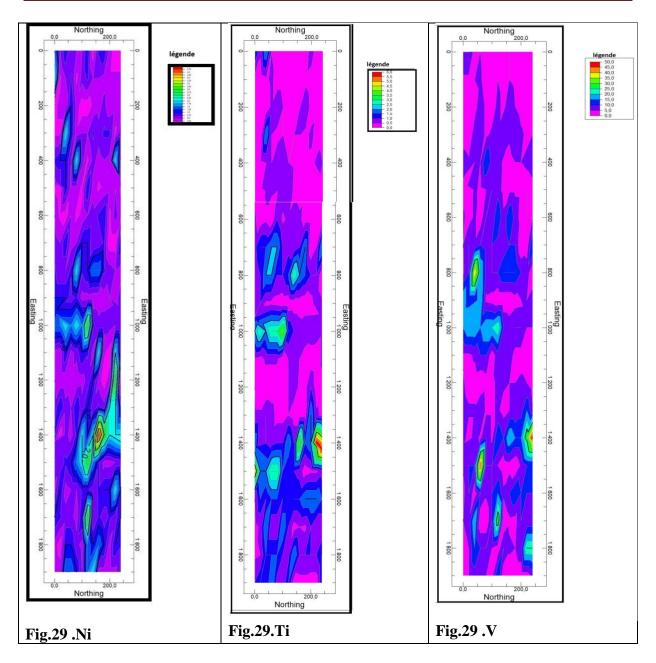


Fig.29. A- Facteur lithologie

Le facteur minéralisation figure sur les cartes ci-dessous (fig.29.). Les anomalies de Ba et Ag sont orientées sur la direction NS et paraissent contrôlées par cette famille de failles.

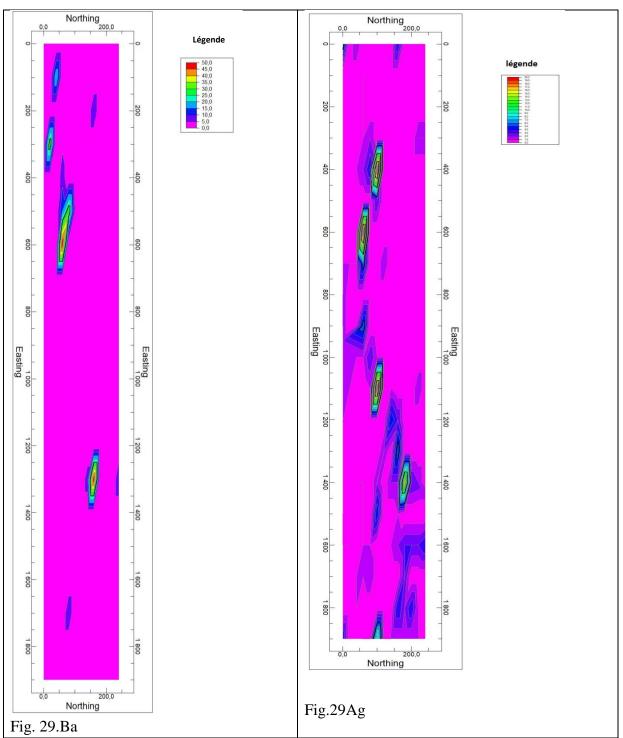
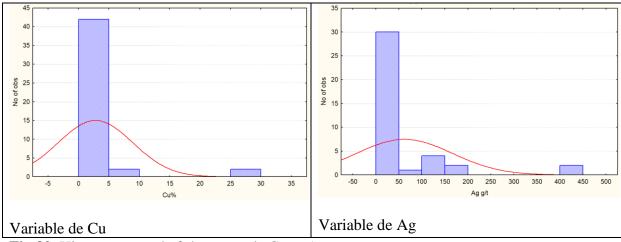


Fig. .29.B- Facteur minéralisation

III .2 Géochimie en roche

III .2.1 Traitement statistique

-Analyse mono élémentaire


L'analyse mono élémentaire montre une distribution non-normale. Le tableau (Tab.23.) résume les paramètres statistiques.

- -Moyenne ≠ médiane
- -un large intervalle de variation (min-max) et une forte dispersion mise en évidence par un fort coefficient de variation
- -Un skewness $\neq 0$

	N	Mean	Median	Mode	Frequency of Mode	Min	Max	Std.Dev.	Coef.Var.	Skewness
Cu%	4 6	2,72283	0,88000	1,000000	7	0,05000	30,0000	6,1100	224,40	4,114179
Ag g/t		61,4141 0	12,5000 0	Multiple	5	0,15000	450,0000	104,0638	169,45	2,894338

Tab.23. Statistiques descriptives

Les histogrammes de la figure (fig.30.) confirment les constatations déduites des résultats précédents. Ceux-ci montrent une distribution log normal pour Cu et bimodale pour Ag. La présence des valeurs aberrantes (extrêmes) semblant liées à la présence des minéralisations ou à des altérations hydrothermales semblent à l'origine de ces distributions.

Fig.30. Histogrammes de fréquences de Cu et Ag

La transformation en logarithme des valeurs montre une distribution proche de la loi normale. Les paramètres statistiques obtenus pour les deux variables permettent les constatations suivantes (Tab24):

- -Moyenne ≈ médiane
- -un intervalle de variation (min-max) et une faible dispersion.
- un skewness proche de zéro.

	N	Mean	Median	Mode	Frequency of Mode	Min	Max	Std.Dev.	Coef.Var.	Skewness
Ln Cu	46	-0,12341	-0,12783	0,000000	7	-2,99573	3,4012	1,4790	-1198,49	0,142925
Ln Ag	39	2,74543	2,52573	Multiple	5	-1,89712	6,1092	2,0365	74,18	-0,564371

Tab.24. Statistiques descriptives

Les histogrammes de la figure (fig.31.) montrent respectivement pour Cu-Ag une distribution bivariée et multivariable. La présence de valeurs extrêmes semble perturber la structure statistique et qu'il devient nécessaire de les supprimer. Notons que le faible nombre d'échantillons analysés empêche un traitement statistique fiable.

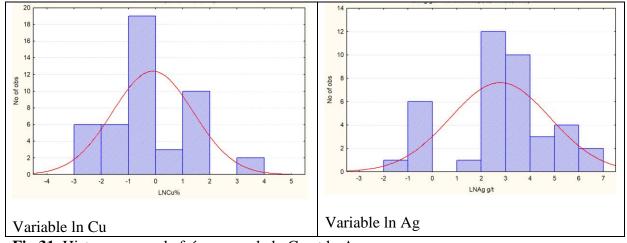
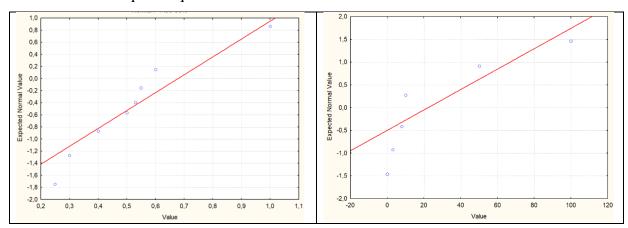



Fig.31. Histogrammes de fréquences de ln Cu et ln Ag

Les diagrammes des probabilités selon la loi normale (fig.32. et Tab .25.) montrent pour les deux variables, que les valeurs (observées et estimées) des teneurs ne sont pas alignées sur la droite de corrélation. Ce test confirme le résultat obtenu plus haut pour la présence de deux populations pour Cu et trois pour Ag dont une est probablement liée à Cu.

Notons la présence de valeurs extrêmes et le faible nombre d'échantillons analysés pour un traitement statistique adéquat.

Variable Cu	Variable Ag

Fig.32. Test de probabilité selon la loi normale Cu et Ag

Traitement bivarié

	Cu%	Ag g/t
Cu%	1,000000	0,423931
Ag g/t	0,423931	1,000000

Tab.25. Matrices de correlations

La corrélation observée entre les deux variables est de degré (0,423931). Les deux variables évoluent probablement indépendamment l'une de l'autre. Elles ne reflètent pas le même processus métallogénique.

Conclusion : Le traitement des données des deux variables (Cu-Ag) obtenues sur roches confirme la distribution non-normale mise en évidence dans le cas des échantillons au sol. Deux populations pour Cu et trois pour Ag sont déduites à l'issue de ce traitement.

III .2 .2Etude géostatistique

Pour l'estimation, la prédiction et la cartographie des contenus dans des endroits non échantillonnés une étude géostatistique est tentée dans le cadre de ce travail. Les outils utilisés sont le variogramme et l'interpolation par krigeage.

-Variable Cuivre : La figure (fig.33.) montre pour la variable cuivre une structure exponentielle avec effet pépite. Le tableau (Tab.26.) résume la variabilité de cet élément. Les paramètres statistiques du variogramme sont résumés dans le tableau (Tab.26.).

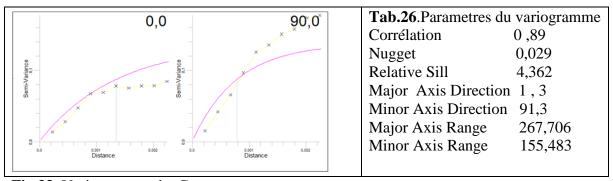
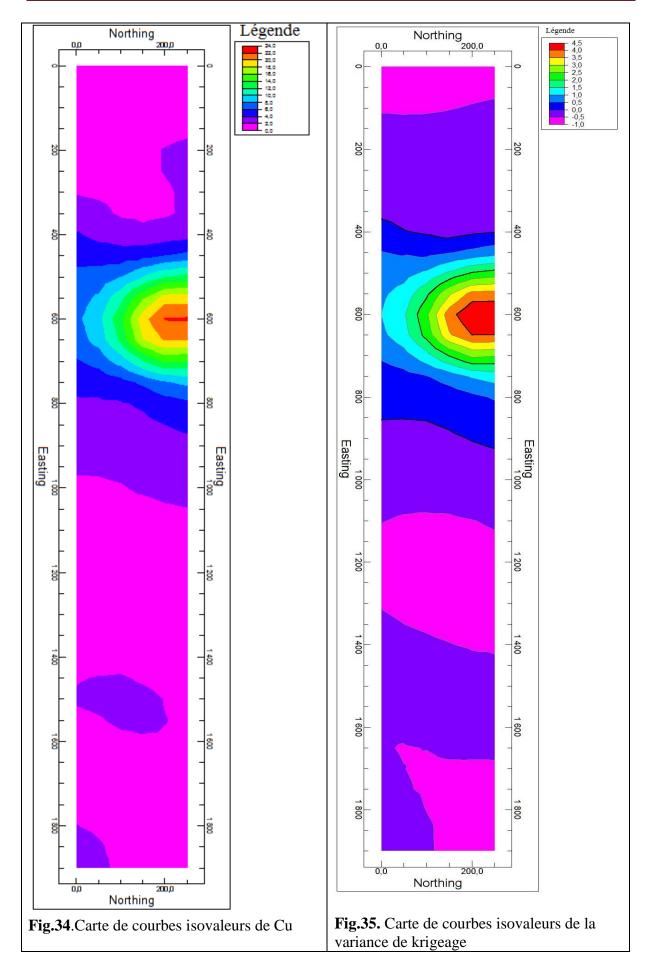


Fig.33. Variogramme de Cu


La cartographie des teneurs en cuivre estimées par krigeage figure sur la carte (fig.34.) et les erreurs de l'estimation sur la carte de variance de krigeage (fig.35.).

Chapitre 3

Traitements statistique des données analytiques

Celles-ci montrent respectivement une anomalie intense ouverte vers l'Est orientée sur la direction sublatudinale liée probablement à la famille de failles qui recoupe cette région.

La carte de variance de krigeage (fig.35.) montre dans cette zone, une forte erreur d'estimation. Un échantillonnage optimal pourra éclaircir cette variabilité. Les autres portions du secteur sont à faible contenu en ces deux métaux.

Variable Argent:

La figure (fig.36.) montre pour la variable argent une structure exponentielle avec effet pépite.

Le tableau (Tab.27.) résume la variabilité de cet élément. Les paramètres statistiques du variogramme sont résumés dans le tableau (Tab.27.).

La cartographie des teneurs en argent estimées par krigeage figure sur la carte (fig.37.) et les erreurs de l'estimation sur la carte de variance de krigeage (fig.38.).

Celles-ci montrent respectivement une anomalie intense ouverte vers l'Ouest orientée sur la direction sublatudinale liée probablement à la famille de failles qui recoupe cette région. Ag

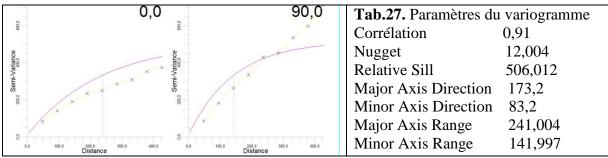
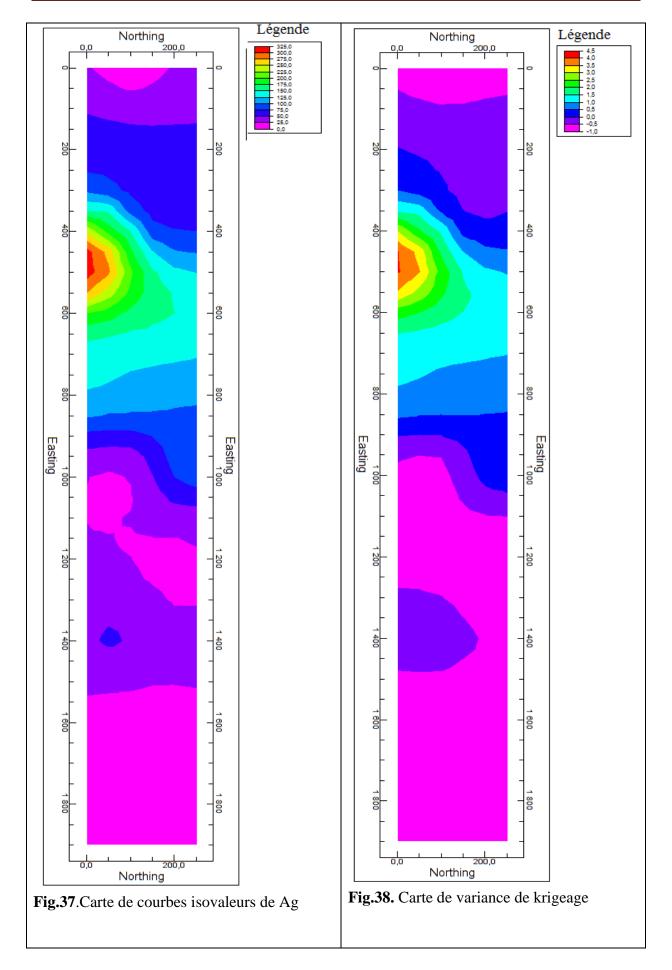
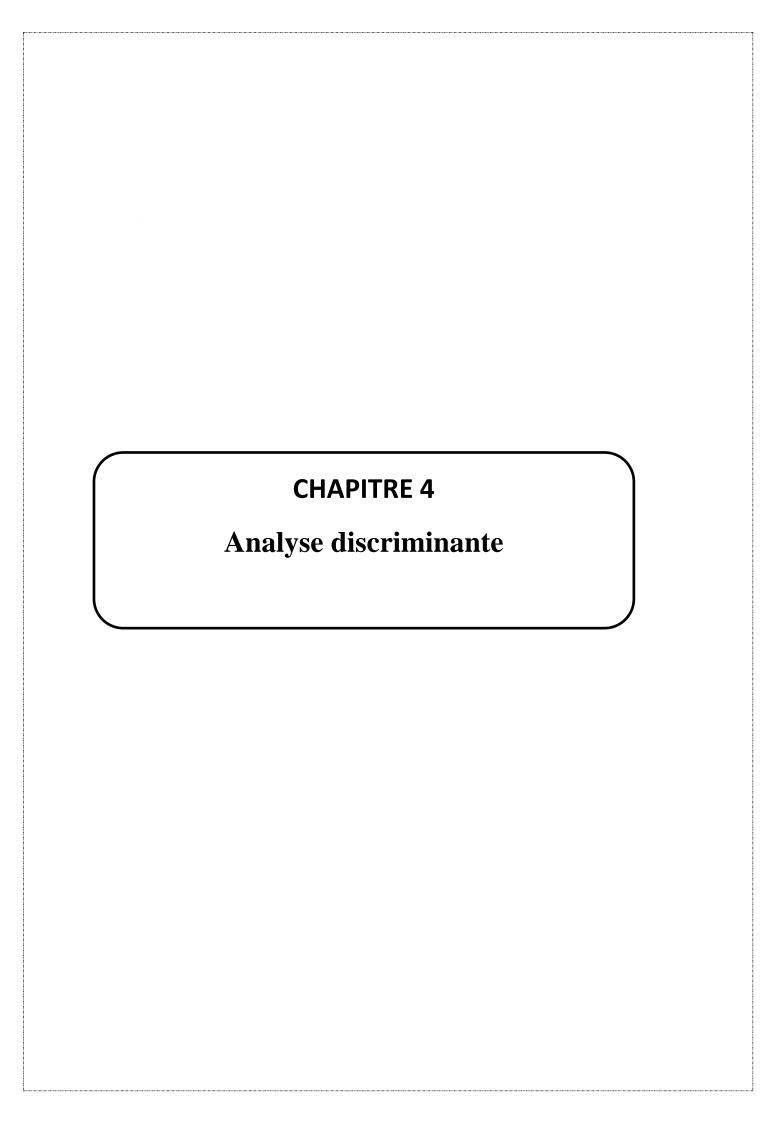




Fig.36. variogramme de Ag

1-Analyse discriminante

-Introduction

La méthode de traitement statistique par analyse discriminante est employée dans ce cadre pour identifier les éléments chimiques les plus discriminants entre les trois secteurs en question afin de contribuer à optimiser des recommandations futures.

Elle repose sur l'évaluation statistique de la différence significative entre les moyennes des concentrations en éléments chimiques dans les trois secteurs.

Neuf (09) éléments chimiques sur (11) paraissant les plus discriminants ont été retenus par le modèle du logiciel et pour lesquels des paramètres sont définis (Tab.28.).

Celui-ci montre que l'élément Ag est la variable qui contribue le plus à la discrimination suivie par Zn en deuxième lieu, Ni en troisième lieu etc....

Le paramètre Wilks' Partial – Lambda rend compte de cet ordre sur le degré de la discrimination.

Eléments	Wilks' - Lambda	Partial - Lambda	F-remove - (2,533)	p-level	Toler.	1-Toler (R-Sqr.)
Ni	0,652598	0,973592	7,22856	0,000799	0,403057	0,596943
Ag	0,665362	<mark>0,954915</mark>	12,58238	0,000005	0,883905	0,116095
Zn	0,658475	<mark>0,964903</mark>	9,69370	0,000073	0,442966	0,557034
Mn	0,647613	0,981087	5,13747	0,006167	0,745216	0,254784
Pb	0,645146	0,984838	4,10297	0,017048	0,893327	0,106673
V	0,642060	0,989572	2,80844	0,061192	0,874918	0,125082
Ba	0,639812	0,993048	1,86562	0,155810	0,876592	0,123408
Co	0,638535	0,995035	1,32986	0,265390	0,314692	0,685308
Cu	0,637858	0,996090	1,04597	0,352070	0,827939	0,172061

Tab .28. Paramètres de l'analyse de la fonction discriminante

Les deux éléments (Ag –Zn) parmi les métaux de base prospectés paraissent discriminer les différents secteurs et offrent de ce fait une nouvelle vision sur les types de minéralisation à prospecter. Pour aboutir à cet objectif, deux (02) fonctions discriminantes sont calculées (Tab.29.)

Eigen value	Canonicl - R	Wilks' - Lambda	Chi-Sqr.	df	p-level
0 Lemri	10,0441	15,9735	12,0512	18	0
1 Lemri	0,2844	2,1426	0,0718	8	0,13639924

Tab.29. Tests du Chi carré ; deux fonctions calculées

Les corrélations éléments - fonctions discriminantes (**Root 1- Root 2**) figurent sur les tableaux (Tab.30. et .31.). Les valeurs des corrélations des variables (Ni- Ag- Zn) avec les fonctions discriminantes sont différentes par rapport à celles des autres éléments et confirment le résultat obtenu ci-dessus. Les variables (Ni- Ag- Zn) sont des variables discriminantes.

Par ailleurs, pour la variabilité des éléments chimiques, la fonction (**Root 1**) explique plus de 95% de cette variabilité (Tab.31.), par conséquent cette fonction est la plus importante pour la discrimination entre les variables.

Eléments	Root 1	Root 2		Eléments	Root 1	Root 2
Ni	-0,425097	-0,317887		Ni	-0,042126	-0,031502
Ag	0,345815	0,635085		Ag	0,191226	0,351185
Zn	-0,475318	-0,091548		Zn	-0,005293	-0,001019
Mn	-0,269100	0,044144		Mn	-0,000888	0,000146
Pb	-0,205195	0,314081		Pb	-0,012765	0,019538
V	-0,183705	0,070318		\mathbf{V}	-0,000104	0,000040
Ba	-0,148702	0,092438		Ba	-0,001605	0,000997
Co	0,190083	0,371534		Co	0,015240	0,029788
Cu	-0,041928	0,425072		Cu	-0,000763	0,007740
Eigenval	0,538126	0,023258		Constant	0,431926	-0,429159
Cum.Prop	0,958570	1,000000		Eigenval	0,538126	0,023258
Tab.30. Coefficients standardisés Pour			Pour	Cum.Prop	0,958570	1,000000
les variables canoniques				Tab.31. Coe	efficients bi	uts pour le

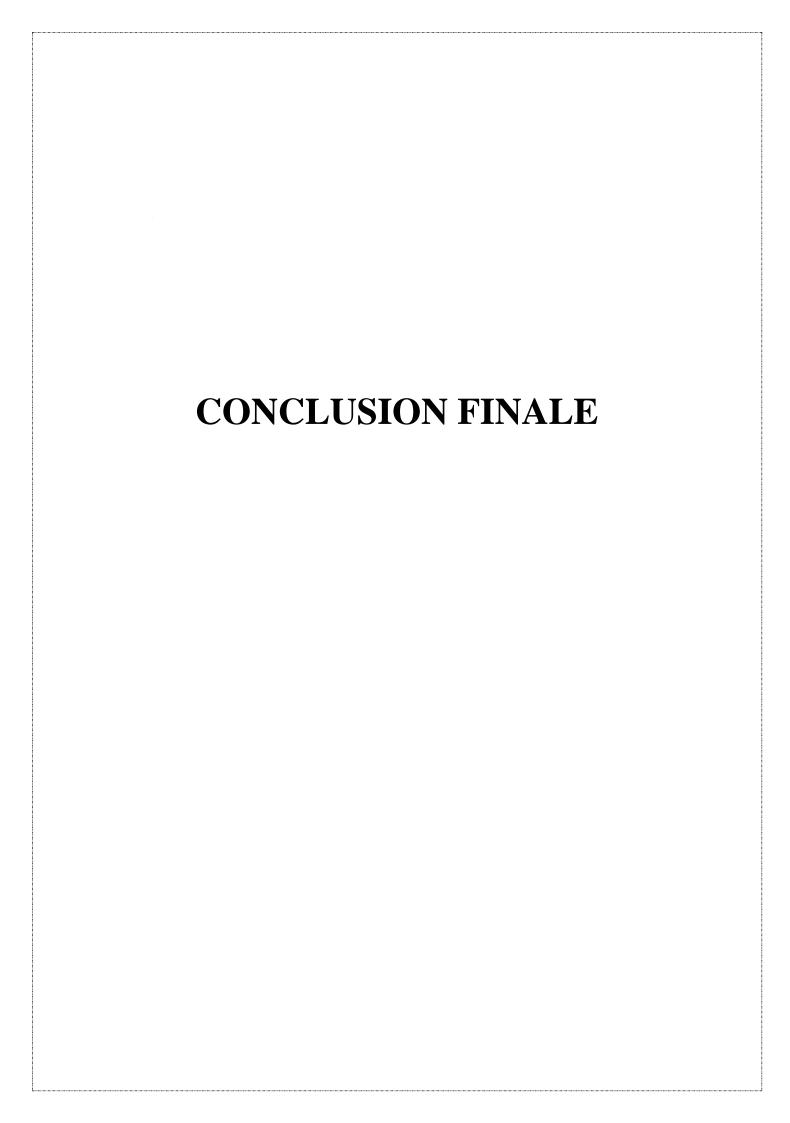
Un autre type de corrélation obtenu sur la matrice de la structure factorielle (Tab.32.) qui montre que (Zn- Cu et Ag) constituent les trois métaux de base à prospecter dans cette région.

canoniques

Eléments	Root 1	Root 2	Ta
Ni	-0,785265	0,164093	
Ag	0,296078	0,820618	
Zn	-0,600403	0,159819	
Mn	-0,623423	0,151247	
Pb	-0,380805	0,440227	
V	-0,425205	0,104904	
Ba	-0,374979	0,112420	
Co	-0,569265	0,294313	
Cu	-0,163358	0,643591	

Tab.32. Matrice de structure factorielle

Les corrélations secteurs - fonctions discriminantes (**Root 1- Root 2**) figurent sur le tableau (Tab.33.). Lemri suivi par 4Mamelons sont les secteurs corrélés à la fonction discriminante (**Root 1**) la plus importante dans la discrimination (explique plus de 95% de la variabilité). Le secteur Gouraya est corrélé négativement avec cette même fonction discriminante (fig.39.)


Fig.39.Structure de fonction discriminante

Secteurs	Root 1	Root 2		14		Root 1 vs.	Root 2		Légende
Lemri	0,55816	0,112054		12				٥	Gouraya Mamelon
Gouraya	-1,00941	0,010897		8			0	0	
4 Mamelons	0,45419	-0,304195		Root 2		0	0	٥	
Г аb.33. Moyer	ines des vai	riables canonic	lues	2	0			8	
				-2 -4 -12	-10 -8	-6 -4	-2 0	2 4	6

-Conclusion:

La fonction (Root1) est corrélée aux variables Ag, Zn et aux secteurs, positivement à Lemri - 4 Mamelons et négativement à Gouraya. La fonction (Root2) est corrélée aux variables Ag, Cu et aux 2 secteurs, Lemri et 4 Mamelons. La corrélation avec Gouraya est très faible.

Ainsi, un tel résultat laisse supposer la présence de perspectives en cuivre, zinc et argent qui restent à promouvoir dans les deux secteurs, Lemri et 4 Mamelons, toutefois des études complémentaires et des analyses quantitatives pour évaluer le potentiel minier de cette région

Conclusion finale

Conclusion finale

L'étude géochimique menée sur les trois secteurs de Cherchell (Gouraya, 4 Mamelons, Lemri) a permis de dégager les résultats suivants :

L'analyse des données de surface montre un enrichissement relatif des éléments Cu, Pb, Ag, Zn, Cr, Mo, Ba, F, Zr, Co, Sr, Ti et Mn par apport à la totalité des éléments du spectre Parmi les différentes zones étudiées

Les traitements statistiques effectués ont permis de clarifier la nature sulfurée des minéralisations dans le secteur de Gouraya, principalement représentée par l'argent et le zinc cadmifère, probablement associés à des formations magmatiques. Cependant, une forte hétérogénéité a été mise en évidence par les paramètres statistiques obtenus, ce qui suggère la nécessité de données géologiques complémentaires pour affiner cette interprétation.

De plus, l'analyse des données des variables Cu-Ag sur les roches a confirmé une distribution non normale, avec plusieurs populations observées pour les deux variables. Cela pourrait être attribué à l'existence de valeurs extrêmes, à la qualité des analyses et au faible nombre d'échantillons.

Les corrélations des fonctions (Root1) et (Root2) avec les variables Ag, Zn, Cu et les secteurs géographiques indiquent des perspectives prometteuses en cuivre, zinc et argent dans les secteurs de Lemri et 4 Mamelons. Cependant, des études complémentaires et des analyses quantitatives sont nécessaires pour évaluer pleinement le potentiel minier de cette région.

Références Bibliographiques

Références Bibliographiques

Belhai Dj. (1996). Evolution tectonique de la zone ouest – algéroise (Ténès – Chenoua) : Approche stratigraphique et structurale. Doctorat es sciences. U.S.T.H.B Alger. Algérie.

Ficheur F. (1903): Carte géologique de marengo, feuille n°62 au 1/50000 serv géol. Algérie. **Glangeaud L.** (1927). Carte au 1/50 000, Cherchell (n°39), Gouraya (n°38) avec notice explicative.

Glangeaud L. (1937) Carte au 1/50 000 de Marceau (61) avec notice explicative.

Lepervier C. et. Velde D (1976). A propos des intrusions tertiaires de la marge nordafricaine entre Cherchell et Ténès (algérie). Bull.soc.géol.france. (7) xviii n°4.991.998.

Perrodon A. (1957) Etude géologique des bassins néogenessub littoraux de l'Algérie nord occidental. Pub ;ser. Carte géol. Algérie. Nelle série, 12.p. 343.

Poimeur C. et lemasne D (1985). Chronique de .recherche minière n° 480. Nouvelle méthode d'interprétation de mesures électriques forage/ surface à l'étude de modélisations tridimensionnelles.

Lepervier C. et. Velde D (1976). A propos des intrusions tertiaires de la marge nord-africaine entre Cherchell et Ténès (algérie). Bull.soc.géol.france. (7) xviii n°4.991.998.

Roudianov I. et al (1991). Rapport final sur les résultats des travaux de recherches systématiques au 1/50 000 effectués sur le territoire de Ténès - Cherchell, feuilles nn° 38 (Gouraya), 39 (Cherchell), 59 (Ténès), 60 (Oued Damous) et 61 (Menaceur).

Strzelecki R (1989). Rapport sur les résultats des travaux de prospection des polymétaux associés aux formations volcano – sédimentaires situées à l'Ouest d'Alger (région Menaceur) E.RE.M

Vydrine V. (1972). Géologie et répartition des gites non ferreux de l'Algérie du Nord. Ti et ii. SONAREM

SITE INTERNET:

https://geoscience.com/geology-branches/mining-geology/sedimentary-exhalative-sedex-deposit/?amp: Minéralisation de type SEDEX.

 $\frac{https://www.techniques-ingenieur.fr/base-documentaire/materiaux-th11/elaboration-et-recyclage-des-metaux-de-transition-42649210/cuivre-ressources-procedes-et-produits-m2240/minerais-m2240v2niv10002.html : Gisement de Cuivre.$

Liste des figures et des Tableaux

Liste des tableaux

Tab .1. Paramètres statistiques des éléments chimiques	12
Tab .2. Matrice des coefficients de corrélation	13
Tab .3. Résultat de L'analyse factoriel	14
Tab 4 Résultat de l'ACP	
Tab.5. Statistiques descriptives	17
Tab.6. Statistiques descriptives	
Tab.7. Matrice de corrélations	19
Tab.8. Paramètres du variogramme	20
Tab.9. Paramètres du variogramme	21
Tab .10. Paramètres statistiques des éléments chimiques	22
Tab .11. Matrice des coefficients de corrélation	22
Tab .12 . Résultat de L'analyse factorielle	23
Tab .13.Résultat de l'ACP	
Tab.14. Statistiques descriptives	26
Tab.15. Statistiques descriptives	
Tab.16. Matrice de corrélations	
Tab.17. Paramètres du variogramme	28
Tab.18. Paramètres du variogramme	
Tab .19.Paramètres statistiques des éléments chimiques	32
Tab .20. Matrice des coefficients de corrélation.	32
Tab .21.Résultat de L'analyse factorielle	33
Tab .22.Résultat de l'ACP	34
Tab.23. Statistiques descriptives	37
Tab.24. Statistiques descriptives	38
Tab.25. Matrice de corrélations	39
Tab.26. Paramètres du variogramme	40
Tab.27. Paramètres du variogramme	
Tab .28.Paramètres de l'analyse de la fonction discriminante	45
Tab.29. Tests du Chi carré ; deux fonctions calculées	45
Tab.30. Coefficients standardisés Pour les variables canoniques	
Tab.31. Coefficients bruts pour les variables canoniques	
Tab.32. Matrice de structure factorielle	
Tab.33. Moyennes des variables canoniques	47

Liste des figures

Fig.1. Situation géographique des secteurs d'étude.	.01
Fig.2. Colonnes lithostatigraphique des unités géologique	.08
Fig.3. Plan factoriel	.15
Fig.4. Cercle de corrélation.	
Fig.5. Carte de courbes isoteneurs en éléments chimique	.16
Fig.6. Histogrammes de fréquences de Cu et Ag.	.18
Fig.7. Histogrammes de fréquences de ln Cu et ln Ag	.18
Fig.8. Test de probabilité selon la loi normale Cu et Ag	.19
Fig.9. Variogramme de la variable cuivre.	.20
Fig.10.Carte de courbes isovaleurs de Cu.	.20
Fig.11.Carte la variance de krigeage.	.20
Fig.12. Variogramme de la variable argent.	.21
Fig.13.Carte de courbes isovaleurs d'Ag.	.21
Fig.14. Carte de la variance de krigeage.	.21
Fig.15. Plan factoriel.	.23
Fig.16.Cercle de corrélation entre les variables et les composantes principales	.24
Fig.17.Carte de courbes isoteneurs en éléments chimiques.	.25
Fig.18. Histogramme de fréquences de Cu et Ag	.26
Fig.19. Histogramme de fréquences de ln Cu et ln Ag.	.27
Fig.20. Test de probabilité selon la loi normale Cu et Ag	.27.
Fig.21. Varigramme de la variable cuivre.	.28
Fig.22. Carte de courbes isovaleurs de Cu.	.29
Fig.23. Carte de la variance de krigeage.	.29
Fig.24. Varigramme de la variable Argent.	.30
Fig.25.Carte de courbes isovaleurs d'Ag.	.31
Fig.26. Carte de la variance de krigeage.	.31
Fig.27. plan factoriel.	.33
Fig.28 .Cercle de corrélation entres les variables et les composantes principales	.34
Fig.29. Facteur	
A -lithologie.	.35
B- Minéralisation	.36
Fig.30.Histogramm de Fréquence de Cu et Ag.	.37
Fig.31.Histogramm de Fréquence de Ln Cu et Ln Ag	.38.
Fig.32. Test de probabilité selon la loi normale Cu et Ag.	.39
Fig.33. Varigramme de Cu.	.40
Fig.34.Carte de courbes isovaleurs de Cu.	.41
Fig.35. Carte de la variance de krigeage.	.41
Fig.36.Varigramme d'Ag.	
Fig.37.Carte de courbes isovaleurs d'Ag.	.43
Fig.38. Carte de courbes isovaleurs de la variance de krigeage	.43
Fig.39.Structure de fonction discriminante.	