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Introduction

The topic of this thesis falls within the field of nonlinear analysis on manifolds.

It principally deals with the study of a quasilinear elliptic equation containing a

Hardy term and a critical Sobolev exponent.

Let (M, g) be a Riemannian manifold of dimension n ≥ 3, with Scalg its scalar

curvature. One of the well-known equations in the field of partial differential

equations, and which has roots in Riemannian geometry, is the Yamabe equation

which explicitly is given by:

∆gu+
(n− 2)Scalg
4(n− 1)

u = λu2
∗−1

with u ∈ C∞(M), u > 0,∆gu is the Laplacian on (M, g), 2∗ = 2n
n−2

and λ ∈ R∗.

The origin of this equation traces back to the famous Yamabe problem posed in

1960 by Yamabe [51] and is stated as follows: find a conformal metric g′ to g (i.e.

g′ = fg, f ∈ C∞(M), f > 0 ), such that the scalar curvature of g′ is constant.

In 1968, Trudinger [49] showed that there is a significant difficulty in proving this

statement and giving rise to one of the major problems in nonlinear analysis on

manifolds. It has been shown, see for example the book [25], that the search for

this metric is equivalent to the search of a positive and regular solution u of the

above equation. The searched conformal metric is then given by g′ = u
4

n−2 g with

scalar curvature is the constant λ. This problem is now completely resolved by

the works of [51], [49], [4], [41] and [31]. For a compendium on this problem and

related topics, we suggest to read the books [4] and [25].

The Yamabe problem extends naturally to the problem of the prescribed scalar
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Introduction

curvature problem stated as follows: for a given positive and smooth function f ,

is there a conformal metric g′ to g with scalar curvature the function f? This, in

turn, is equivalent to the search of a positive and regular solution of the equation

∆gu+
(n− 2)Scalg
4(n− 1)

u = fu2
∗−1.

This equation has been extensively studied, we cite as example [3], [6], [12], [16],

[19], [24], [27], [29], [32] and [41].

The prescribed scalar curvature equation has been generalized to the so called

generalized prescribed scalar curvature where the p-Laplacian operator is involved,

by O.Druet [17]. The same equation has been studied on complete non-compact

Riemannian manifold by M.Benalili and Y.Maliki in [7, 8, 9].

Now, let Injg denote the injectivity radius of (M, g) and let xo be a fixed point in

M . Define a distance function on M as follows

ρxo(x) =

 distg(xo, x), x ∈ B(xo, Injg),

Injg, x ∈M \B(xo, injg).
(0.0.1)

Let s ∈ (0, 1) and consider metrics on M of the form

gs = (1 + (ρxo(x))
2−s)mg, m ∈ N∗.

It is not difficult to see that scalar curvature of the metrics gs are of the form
h(x)

(ρxo (x))
s , where h is a smooth function (see [34], page 60). As it is aforesaid for the

prescribed scalar curvature problem, finding a conformal metric to gs with scalar

curvature a function f amounts to finding a positive and regular solution of the

following equation

∆gu−
h(x)

(ρxo(x))
s
u = fu2

∗−1, u ∈ H2
1 (M). (0.0.2)

This equation, which issues from a singular Yamabe problem, has been studied by

F.Madani [33].

As a remark, when dealing with the problem of existence of solutions of this
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Introduction

equation, since s ∈ (0, 2) , by compacity of the inclusion Hp
1 (M) ⊂ Lp(M, (ρxo)

s),

the singular term adds no further difficulty more than those faced in studying the

prescribed scalar curvature above. In contrast, when s = 2, some more serious

technical difficulties appear. This case has been already dealt with in F.Z. Terki

and Y. Maliki [46].

Now, for a real p, 1 < p < n, let us consider the p−Laplacian operator defined by:

∆g,pu = −div(|∇gu|p−2∇gu), u ∈ Hp
1 (M).

Let h and f be two regular functions on M . For 0 < s ≤ p, we consider the

following singular quasi-linear elliptic equation.

∆g,pu−
h(x)

(ρxo(x))
s
|u|p−2 u = f(x) |u|p

∗−2 u, (Es)

with p∗ = np
n−p

. We notice immediately that when varying s ∈ (0, p] and p ∈ (1, n),

equation (Es) covers all equations that we have mentioned so far. In fact, when

s = 0 and p = 2, we fall on the prescribed scalar curvature equation. When,

s ∈ (0.2] and p = 2, we meet the equation considered in F.Madani [34] and F.Z.

Terki and Y. Maliki [46]. Finally, when s = 0 and p ∈ (1, n), we meet the gener-

alized prescribed scalar curvature equation studied in O.Druet [17].

In this thesis, we consider equations (Es) with s ∈ (0, p]. We first establish a

decomposition result of Struwe type. Then, in a second part, we prove some exis-

tence results relying on the decomposition result.

We conclude this introduction by giving a general overview of the content of the

thesis. The first chapter is devoted to some reminders of some basics of Riemannian

geometry and some results from nonlinear analysis that will be used throughout

the thesis.

In the second chapter, we establish a decomposition result. We show that Palais-

Smale sequences are submitted to the well-known Struwe decomposition formulas.

In fact, in the subcritical case, we prove that Palais-Smale sequences of our equa-

tion can be splitted (up to a subsequence) to a sum of a weak solution of (Es), a
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Introduction

term that tends to zero, and a sum of re-scaled non-trivial weak solutions of the

Euclidean equation

∆ξ,pu = |u|p∗−2u, u ∈ D1,p(Rn) (0.0.3)

Where D1,p(Rn) is the Sobolev space defined as the completion of the space

C∞
0 (Rn), and ξ is the Euclidean metric on IRn.

Note that the existence and classification of positive solutions of (2.0.7) are studied

in [11], [50] and [42].

In the critical case s = p, another term enters in the decomposition which is the

sum of a non trivial weak solution of the Euclidean equation

∆ξ,pu−
h(xo)

|x|p
|u|p−2u = f(xo)|u|p

∗−2u, u ∈ D1,p(Rn), (0.0.4)

for which the existence of solutions is studied in [1].

In a precise way, we prove the following two theorems.

Denote by η a smooth cut-off function on Rn such that
η(x) = 1, x ∈ B(1

4
)

0 ≤ η(x) ≤ 1, x ∈ B(3
4
) \B(1

4
)

η(x) = 0, x ∈ Rn \B(3
4
).

(0.0.5)

For y ∈M with 0 ≤ δ ≤ Ig
2
, we introduce the cut-off function ηδ,y as follows:

ηδ,y(x) = ηδ(exp
−1
y (x)) = η(δ−1(exp−1

y (x))), (0.0.6)

where expy : B(δ) ⊂ Rn → B(y, δ) ⊂ M is the exponential map at the point

y ∈M , which defines a diffeomorphism from B(δ) ⊂ Rn to B(y, δ) ⊂M .

Theorem 0.1. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3.

Let f and h be two regular functions on M . Let xo be a point of M as defined in

(0.0.1). Assuming that f(x) > 0, x ∈M .

Let um be a Palais-Smale sequence of the functional Jf,h,s at level βs, 0 < s < p.

Then, there exist k ∈ N, sequences Ri
m ≥ 0, Ri

m →
m→∞

0, convergent sequences
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of points in M , xim →
m→∞

xio, a weak solution u ∈ Hp
1 (M) of (Es), 0 < s < p,

non-trivial weak solutions vi ∈ D1,p(Rn) of (0.0.3) such that, up to a subsequence,

for 0 < s < p, we have

um = u+
k∑

i=0

(Ri
m)

p−n
n f(xjo)

p−n

p2 ηδ(exp
−1
xi
m
(x))vi((R

i
m)

−1 exp−1
xi
m
(x)) +Wm,

with Wm → 0 in Hp
1 (M),

and

Jf,h,s(um) = Jf,h,s(u) +
k∑

i=1

f(xio)
p−n
p E(vi) + o(1).

Where

Jf,h,s(u) =
1

p

(∫
M

(
|∇gu|p −

h

(ρxo)
s
|u|p
)
dvg

)
− 1

p∗

∫
M

f |u|p
∗
dvg

is the energy functional of (Es), s < p, and

E(u) =
1

p

∫
IRn

|∇u|pdx− 1

p∗

∫
IRn

|u|p∗dx

is the energy functional of (0.0.3).

Theorem 0.2. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3.

Let f and h be two smooth functions on M . Let xo be a point of M as defined in

(0.0.1). Assuming f and h satisfy the following conditions

1. f(x) > 0, x ∈M ,

2. h(xo) = supM h(x) and 0 < h(xo) < (n−p
p
)p.

Let um be a Palais-Smale sequence of the Jf,h,s functional at level β. Then, there

exist k ∈ N sequences T i
m ≥ 0, T i

m →
m→∞

0 , l ∈ N sequences τ jm ≥ 0, τ jm →
m→∞

0

, l ∈ N, sequences of converging points in M , yjm →
m→∞

yjo ̸= xo, a weak solution

u ∈ Hp
1 (M) of (Es), s = p, non-trivial weak solutions νj ∈ D1,p(Rn) of (0.0.3)
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and weak solutions vi ∈ D1,p(Rn) of (0.0.4) such that, up to a subsequence, we

have

um = u +
k∑

i=1

(T i
m)

p−n
n ηδ(exp

−1
xo
(x))vi((T i

m)
−1 exp−1

xo
(x))

+
l∑

j=1

(τ jm)
p−n
n f(yjo)

p−n

p2 ηδ(exp
−1

yjm
(x))νj((τ

j
m)

−1 exp−1

yjm
(x)) +Wm

with Wm → 0 in Hp
1 (M)

and

Jf,h,p(um) = Jf,h,p(u) +
k∑

i=0

Ef,h(vi) +
l∑

j=1

f(yjo)
p−n
p E(νj) + o(1).

Where

Ef,h(u) =
1

p

∫
IRn

|∇u|pdx− h(xo)

p

∫
IRn

|u|p

|x|p
dx− f(xo)

p∗

∫
IRn

|u|p∗dx.

is the energy functional of (0.0.4), and Jf,h,p is the energy functional of (Es),

s = p.

In chapter three, we show some existence results. We exhibit some geomet-

rical conditions that ensure existence of a solution. More precisely we prove the

following theorems

Theorem 0.3. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3.

Let p and s be real numbers such that 0 < s < p, 1 < p < n and n > p2 − sp + s.

Let f and h be two regular functions on M . Let xo be a point of M as defined in

(0.0.1). We assume that h is such that the operator

Lh,s(u) =

∫
M

(
|∇gu|p −

h

(ρxo)
s
|u|p
)
dvg

is coercive. Assume that f and h satisfy the following conditions

1. f(xo) = supM f(x), f(x) > 0, x ∈M ,

2. 0 < h(xo) < (n−p
p
)p.

6
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Suppose we are in one of the following cases:

1. 0 < p < s+ 2 and h(xo) > 0

2. p = s+ 2 and(
p− 1

n− p

)p
p

n(p− 1)

Γ(n− n+2
p

+ 3− p) Γ(n)

Γ(n− p)
h(xo)

>
Γ(n− n

p
− 2

p
+ 2)

2n2

(
(n+ 2− 3p)

∆gf (xo)

f (xo)
− p Scal(g) (xo)

)
3. p > s+ 2 and (

n+ 2− 3p

p

)
∆gf(xo)

f(xo)
< Scal(g)(xo)

Then equation (Es), 0 < s < p, has a positive weak solution u ∈ Hp
1 (M).

Theorem 0.4. Let (M, g) be a compact Riemannian manifold of dimension n.

Let p be a real number such that 1 < p < n and n > p2. Let f and h be two regular

functions on M such that f is positive everywhere on M . Let xo be a point on

M as defined in (0.0.1). Assume that h is such that the operator Lh,s is coercive.

Suppose there exists a point x1 ̸= xo such that f(x1) = supM f(x) and

f(x1) = sup
M

f(x) ≥ f(xo)(
1− h(xo)(

p
n−p)

p
) n

n−p

.

Suppose we are in one of the following cases:

1. 1 < p < 2 and h(x1) > 0,

2. p = 2 and

8(n− 1)

(n− 2)(n− 4)
h(x1) > distg(xo, x1)

s

(
∆gf(x1)

f(x1)
− 2Scalg(x1)

n− 4

)
, 0 < s ≤ p.

(0.0.7)

3. p > 2 and (
n+ 2− 3p

p

)
∆gf(x1)

f(x1)
< Scal(g)(x1), (0.0.8)

Then, the equation (Es), 0 < s ≤ p, has a positive weak solution u ∈ Hp
1 (M).
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Introduction (French version)

Le sujet de cette thèse s’inscrit dans le domaine de l’analyse non linéaire sur les

variétés. Nous nous intéressons principalement à l’étude d’une équation elliptique

quasi-linéaire contenant un terme de Hardy et un exposant critique de Sobolev.

Soit (M, g) une variété riemannienne de dimension n ≥ 3, avec Scalg sa courbure

scalaire. Parmi les équations bien connues dans le domaine des équations aux

dérivées partielles, on trouve l’équation de Yamabe, qui est donnée par :

∆gu+
(n− 2)Scalg
4(n− 1)

u = λu2
∗−1

avec u ∈ C∞(M), u > 0,∆gu est le Laplacien sur (M, g), 2∗ = 2n
n−2

et λ ∈ R∗.

L’origine de cette équation remonte au célèbre problème de Yamabe posé en 1960

par Yamabe [51] et qui s’énonce comme suit : trouver une métrique conforme g′

à g (i.e g′ = fg, f dans C∞(M), f > 0 ), telle que la courbure scalaire de g′ soit

constante. En 1968, Trudinger [49] montrait qu’il était très difficile de prouver

cette affirmation, et donnait ainsi lieu à l’un des problèmes majeurs de l’analyse

non linéaire sur les variétés. Il a été démontré que la recherche de cette métrique

est équivalente à la recherche d’une solution positive et régulière u de l’équation

ci-dessus. La métrique conforme recherchée est alors donnée par g′ = u
4

n−2 g avec

la courbure scalaire est la constante λ. Ce problème est maintenant complètement

résolu par les travaux de [51], [49], [4], [41] and [31]. Pour un recueil sur ce problème

et les sujets connexes, nous suggérons de lire les livres [4], [25].

Le problème de Yamabe se généralise naturellement au problème de la courbure

8



Introduction (French version)

scalaire prescrite, énoncé comme suit : pour une fonction positive et régulière

donnée f , existe-t-il une métrique conforme g′ à g dont la courbure scalaire est la

fonction f ? Ceci, à son tour, est équivalent à la recherche d’une solution positive

et régulière de l’équation

∆gu+
(n− 2)Scalg
4(n− 1)

u = fu2
∗−1.

Cette équation a été largement étudiée, nous citons à titre d’exemple [3], [6], [12],

[16], [19], [24], [27], [29], [32] and [41].

L’équation de la courbure scalaire prescrite a été généralisée à ce qu’on appelle la

courbure scalaire prescrite généralisée où on trouve l’opérateur p-Laplacien, par

O.Druet [17]. La même équation a été étudiée sur une variété Riemannienne non

compacte complète par M.Benalili et Y.Maliki dans [7], [8], [9].

Maintenant, notons par Injg le rayon d’injectivité de (M, g). Soit xo un point de

M . On définit une fonction sur M par

ρxo(x) =

 distg(xo, x), x ∈ B(xo, Injg),

Injg, x ∈M \B(xo, injg).
(0.0.9)

Soit s ∈ (0, 1) et considérons des métriques sur M de la forme

gs = (1 + (ρxo(x))
2−s)mg, m ∈ N∗.

Il n’est pas difficile de voir que la courbure scalaire des métriques gs est de la forme
h(x)

(ρxo (x))
s , où h est une fonction régulière. Comme mentionné plus haut, trouver une

métrique conforme à gs avec une courbure scalaire une fonction f revient à trouver

une solution positive et régulière de l’équation suivante

∆gu−
h(x)

(ρxo(x))
s
u = fu2

∗−1, u ∈ H2
1 (M). (0.0.10)

Ce problème, qui est un problème de Yamabe singulier, a été étudié par F.Madani

[33].

En traitant le problème de l’existence de solutions de cette équation, puisque

9
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s ∈ (0, 2) , par compacité de l’inclusion Hp
1 (M) ⊂ Lp(M, (ρxo)

s), on constate que

le terme singulier n’ajoute pas d’autres difficultés autre que celles rencontrées dans

l’étude de la courbure scalaire prescrite plus haut. Par contre, lorsque s = 2, des

difficultés techniques plus sérieuses apparaissent. Ce cas a déjà été traité dans F.Z.

Terki and Y. Maliki [46].

Maintenant, pour un reél p, 1 < p < n, on considère l’opérateur p−Laplacien ∆g,p

défini par :

∆g,pu = −div(|∇gu|p−2∇gu), u ∈ Hp
1 (M).

Soit h et f deux fonctions régulières sur M . Pour 0 < s ≤ p, on considère

l’équation elliptique quasi-linéaire suivante.

∆g,pu−
h(x)

(ρxo(x))
s
|u|p−2 u = f(x) |u|p

∗−2 u, (Es)

avec p∗ = np
n−p

. Nous constatons immédiatement que lorsqu’on fait varier s ∈ (0, p]

et p ∈ (1, n), l’équation (Es) couvre toutes les équations que nous avons mentionné

jusqu’à présent. En fait, lorsque s = 0 et p = 2, nous rencontrons l’équation de

la courbure scalaire prescrite. Lorsque, s ∈ (0.2] et p = 2, on rencontre l’équation

considérée dans F.Madani [34] et F.Z.Terki et Y.Maliki [46]. Enfin, lorsque s = 0

et p ∈ (1, n), on rencontre l’équation de la courbure scalaire prescrite général-

isée étudiée dans O.Druet [17]. Dans cette thèse, nous considérons les équations

(Es) avec s ∈ (0, p]. Nous établissons d’abord un résultat de décomposition de

type Struwe. Puis, dans une seconde partie, nous prouvons quelques résultats

d’existence on s’appuyant sur le résultat de décomposition.

Nous concluons cette introduction en donnant un aperçu général du contenu de la

thèse.

Le premier chapitre est consacré à quelques rappels de géométrie riemannienne

et à certains résultats de l’analyse non linéaire et de la théorie du point critique,

que nous utiliserons tout au long de la thèse. Dans le deuxième chapitre, nous

établissons une décomposition des suites de Palais-Smale selon que s ∈ (0, p) ou

s = p. En fait, dans le cas sous-critique, nous prouvons que les séquences de

10
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Palais-Smale de notre équation peuvent être décomposées ( a une sous- suite près)

en une somme d’une solution faible de (Es), un terme qui tend vers zéro, et une

somme de solutions faibles non triviales ré-échelonnées de l’équation Euclidienne

∆ξ,pu = |u|p∗−2u, u ∈ D1,p(Rn) (0.0.11)

Où D1,p(Rn) est l’espace de Sobolev défini par la fermeture de l’espace C∞
0 (Rn),

et ξ est la métrique Euclidienne de Rn. Noté que l’existence et la classification des

solutions positive de (0.0.11) sont étudiés dans [11], [50] and [42].

Dans le cas critique s = p, un autre terme entre dans la décomposition qui est la

somme de solutions faibles non triviales de l’équation Euclidienne

∆ξ,pu−
h(xo)

|x|p
|u|p−2u = f(xo)|u|p

∗−2u, u ∈ D1,p(Rn), (0.0.12)

dont l’existence de solution est étudie dans [1].

Plus explicitement, dans ce chapitre, nous prouvons les deux théorèmes suivants.

Théorème 0.1. Soit (M, g) une variété Riemannienne compacte de dimension

n ≥ 3. Soient f et h deux fonctions régulières sur M . Soit xo le point de M ainsi

défini dans (0.0.1). On suppose que f(x) > 0, x ∈M .

Soit um une suite Palais-Smale de la fonctionnelle Jf,h,s à niveau βs, 0 < s < p.

Alors, il existe k ∈ N, suites Ri
m ≥ 0, Ri

m →
m→∞

0, suites de points convergentes en

M , xim →
m→∞

xio, une solution faibe u ∈ Hp
1 (M) de (Es), 0 < s < p, des solutions

faibles non triviales vi ∈ D1,p(Rn) de (0.0.11) telles que, à une sous-suite près,

pour 0 < s < p, on ait

um = u+
k∑

i=0

(Ri
m)

p−n
n f(xjo)

p−n

p2 ηδ(exp
−1
xi
m
(x))vi((R

i
m)

−1 exp−1
xi
m
(x)) +Wm,

avec Wm → 0 in Hp
1 (M),

et

Jf,h,s(um) = Jf,h,s(u) +
k∑

i=1

f(xio)
p−n
p E(vi) + o(1).

11
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Avec

Jf,h,s(u) =
1

p

(∫
M

(
|∇gu|p −

h

(ρxo)
s
|u|p
)
dvg

)
− 1

p∗

∫
M

f |u|p
∗
dvg

est la fonctionnelle d’énergie de (Es), s < p, et

E(u) =
1

p

∫
IRn

|∇u|pdx− 1

p∗

∫
IRn

|u|p∗dx

est la fonctionnelle d’énergie de (0.0.11). et ηδ est la fonction défini dans (0.0.6).

Théorème 0.2. Soit (M, g) une variété Riemannienne compacte de dimension

n ≥ 3. Soient f et h deux fonctions régulières sur M . Soit xo le point de M ainsi

défini dans (0.0.1).On suppose que f et h satisfont les conditions suivantes

1. f(x) > 0, x ∈M ,

2. h(xo) = supM h(x) and 0 < h(xo) < (n−p
p
)p.

Soit um une suite Palais-Smale de la fonctionnelle Jf,h,s à niveau β. Alors, il existe

k ∈ N suites T i
m ≥ 0, T i

m →
m→∞

0, l ∈ N suites τ jm ≥ 0, τ jm →
m→∞

0, l ∈ N, suites

de point convergentes dans M , yjm →
m→∞

yjo ̸= xo, une solution faible u ∈ Hp
1 (M)

of (Es), s = p, des solutions faibles non triviale νj ∈ D1,p(Rn) de (0.0.11) et des

solutions faibles vi ∈ D1,p(Rn) de (0.0.12) telles que, à une sous-suite près, on ait

um = u+
k∑

i=1

(T i
m)

p−n
n ηδ(exp

−1
xo
(x))vi((T i

m)
−1 exp−1

xo
(x))

+
l∑

j=1

(τ jm)
p−n
n f(yjo)

p−n

p2 ηδ(exp
−1

yjm
(x))νj((τ

j
m)

−1 exp−1

yjm
(x)) +Wm

avec Wm → 0 in Hp
1 (M)

et

Jf,h,p(um) = Jf,h,p(u) +
k∑

i=0

Ef,h(vi) +
l∑

j=1

f(yjo)
p−n
p E(νj) + o(1).

Avec

Ef,h(u) =
1

p

∫
IRn

|∇u|pdx− h(xo)

p

∫
IRn

|u|p

|x|p
dx− f(xo)

p∗

∫
IRn

|u|p∗dx

12
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est la fonctionnelle d’énergie de (0.0.12), et Jf,h,p(u) est la fonctionnelle d’énergie

de (Es), s = p.

Dans le troisième chapitre, nous montrons quelques résultats d’existence. Nous

donnons des conditions géométriques qui assurent l’existence d’une solution. Plus

précisément, nous prouvons les théorèmes suivants

Théorème 0.3. Soit (M, g) une variété Riemannienne compacte de dimension n.

Soient p et s des nombres réels tels que 0 < s < p, 1 < p < n et n > p2 − sp + s.

Soient f et h deux fonctions régulières sur M . Soit xo un point de M tel que défini

dans (Es). Nous supposons que h est tel que la fonctionnelle

Lh,s(u) =

∫
M

(
|∇gu|p −

h

(ρxo)
s
|u|p
)
dvg

est coercive. Supposons que f et h vérifient les conditions suivantes

1. f(xo) = supM f(x), f(x) > 0, x ∈M ,

2. 0 < h(xo) < (n−p
p
)p.

Supposons que l’une des conditions suivantes soit satisfaite :

1. 0 < p < s+ 2 et h(xo) > 0

2. p = s+ 2 et(
p− 1

n− p

)p
p

n(p− 1)

Γ(n− n+2
p

+ 3− p) Γ(n)

Γ(n− p)
h(xo)

>
Γ(n− n

p
− 2

p
+ 2)

2n2

(
(n+ 2− 3p)

∆gf (xo)

f (xo)
− p Scal(g) (xo)

)
3. p > s+ 2 et (

n+ 2− 3p

p

)
∆gf(xo)

f(xo)
< Scal(g)(xo)

Alors, l’équation (Es), 0 < s < p, possède une solution faible positive u ∈ Hp
1 (M).

13
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Théorème 0.4. Soit (M, g) une variété Riemannienne compacte de dimension n.

Soit p un nombre réel tel que 1 < p < n et n > p2. Soient f et h deux fonctions

régulières sur M telles que f est positive partout sur M . Soit xo un point de M

tel que défini dans (Es). On suppose que h est tel que l’opérateur Lh,s est coercif.

Supposons qu’il existe un point x1 ̸= xo tel que f(x1) = supM f(x) et

f(x1) = sup
M

f(x) ≥ f(xo)(
1− h(xo)(

p
n−p

)p
) n

n−p

.

Supposons que l’une des conditions suivantes soit satisfaite :

1. 1 < p < 2 et h(x1) > 0,

2. p = 2 et

8(n− 1)

(n− 2)(n− 4)
h(x1) > distg(xo, x1)

s

(
∆gf(x1)

f(x1)
− 2Scalg(x1)

n− 4

)
, 0 < s ≤ p.

(0.0.13)

3. p > 2 et (
n+ 2− 3p

p

)
∆gf(x1)

f(x1)
< Scal(g)(x1), (0.0.14)

Alors, l’équation (Es), 0 < s ≤ p, possède une solution faible positive u ∈ Hp
1 (M).

14



Chapter 1

Background materials

In this chapter, for reader convenience, we introduce some basics of Riemannian

geometry and nonlinear analysis. Certainly, we will be brief and partial in that we

select only those that we need throughout the thesis. For more details, we suggest

to consult the books [25] and [30]

1.1 Basics in Riemannian geometry

1.1.1 Manifolds

Topological manifolds

Definition 1.1. Let M be a separated topological space , we say that M is an

n−dimensional topological Manifold if every point x of M , possesses an open neigh-

borhood Ω, homoeomorphic to an open set V of Rn.

The pair (Ω, ϕ) is called a local chart of M around the point x.

For every point y in Ω, the coordinates of ϕ(y) in Rn, are known as coordinate of

y in the chart (Ω, ϕ).

15
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Differentiable Manifold

An atlas of M , denoted by A, is a collection of locale charts (Ωi, ϕi)i∈I , such that

M =
⋃

i∈I Ωi.

Let A be an atlas on M such that Ωi ∪ Ωj ̸= ∅. The functions Φijdefined by

Φij = ϕj ◦ ϕ−1
i : ϕi (Ωi ∩ Ωj) → ϕj (Ωi ∩ Ωj) ,

are known as transition functions.

If the transition functions define a diffeomorphism of class Ck from ϕi (Ωi ∩ Ωj) to

ϕj (Ωi ∩ Ωj) , we say that the atlas is of class Ck.

In a topological manifold M , if A1 and A2 are two atlases of class Ck, such that

A1∪A2 is also an atlas of class Ck, then we say that A1 et A2 are Ck-compatibles.

The relation of Ck-compatibility defines an equivalence relation in the set of class

of Ck atlases. A complete Ck-atlas, is the union of all atlases that are in the same

class of equivalence, note that every atlas of class Ck is contained in a complete

Ck-atlas.

Definition 1.2. A topological manifold equipped with a complete Ck-atlas is said

to be of class Ck.

Differentiable maps

The following definition introduces the concept of differentiability for mapping

between manifolds.

Definition 1.3. Let M et N be two manifold of class Ck, and f : M 7→ N a

continuous map. If for every charts (Ω, ϕ) and (Ω̄, ϕ̄) such that f(Ω) ⊂ Ω̄ the map

ϕ̄ ◦ f ◦ ϕ−1 : ϕ(Ω) → ϕ̄(Ω̄)

is of class Ck, then f is said to be of class Ck.

16
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Tangent space , Tangent bundle, Cotangent space, Cotangent bundle

Let M be a manifold of class Ck and x a point of M . Let Fx be the vector space

of all functions defined on M with value in R which are differentiable at x, an

Fx-function is said to be flat at x, if for any local map (Ω,ϕ) at the point x, we

have D (f ◦ ϕ−1)ϕ(x) = 0. Let Lx be the sub-vector space of Fx formed of flat

functions at x.

Definition 1.4. A tangent vector of M at point x is any linear form X : Fx → R

whose value on Lx equals to zero .

The tangent space of M at point x, denoted by Tx(M), is the vector space of all

tangent vectors.

Let (Ω,ϕ) be a local chart at the point x with coordinates (x1, ..., xn), Let the

n linear forms defined on Fx by

(
∂

∂xi

)
x

· (f) = Di

(
f ◦ φ−1

)
φ(x)

,

where Di is the i-th partial derivative.

The linear forms
(

∂
∂xi

)
x

are tangent vectors that form a basis of Tx(M). The dual

of Tx(M), denoted by T ∗
x (M), is said to be the cotangent space to M at x. The

basis of this space is the family {dxix}i=1,...,n, with

dxix.

(
∂

∂xj

)
x

= ςji ,

where ςji = 1 if i = j, et 0 if i ̸= j.

Definition 1.5. The tangent bundle T (M), is the disjoint union of all tangent

spaces (Tx(M))x∈M .

It is proved (see [25], Theorem (1.5.2)), that if M is of dimension n, then T (M)

has a natural structure of a manifold of dimension 2n. If (Ω, ϕ) is a local chart of

M then (
⋃

x∈Ω TxM,Φ) is a local chart of T (M), for X ∈ Tx(M) and x ∈ M , the

17
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homeomorphism Φ is defined as follows

Φ(X) = (ϕ1(x), ..., ϕn(x), X(ϕ1), ..., X(ϕn)).

The space defined by the disjoint union of T ∗
x (M), x ∈ M , is said to be the

cotangent bundle of M , which we denote T ∗(M). It has the natural structure of a

2n-dimensional variety (see [25], theorem (1.6.1)).

Linear tangent application

Definition 1.6. Let M , N be two manifolds of class Ck and f : M → N a

differentiable application. Define the linear tangent application of f at a point

x, denoted f⋆, as the application from Tx(M) to Tf(x)(N), which assigns to every

X ∈ Tx(M), the vector f⋆(x).X ∈ Tf(x)(N) which is defined for a differentiable

map g : N → R by:

(f⋆(x).X)(g) = X(g ◦ f)

the linear application takes on the role previously played by the differential in

euclidean spaces.

Vector field, differentiable form.

Definition 1.7. 1. A vector field on M is any application X : M → T (M) of

class Ck, such that for any x ∈M , X(x) ∈ Tx(M).

2. A differentiable form on M , is any application ω :M → T ∗(M) of class Ck,

such that for every x ∈M , w(x) ∈ T ∗
x (M).

Tensors, Tensors fields, the pullback

Now we introduce the concept of tensor on a differentiable manifold.

Definition 1.8. Let F be a finite-dimensional real vector space and F ∗ its dual. A

p-times covariant and q-times contravariant tensor on F , denoted by (p, q)-tensor,

is a (p+ q)-linear form on F ∗ × F ∗ × ...× F ∗︸ ︷︷ ︸
p times

× F × F × ...× F︸ ︷︷ ︸
q times

.

18
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Let T q
p (Tx(M)) be the space of (p, q)-tensors on Tx(M). Let let T q

p (M) be

the space defined by the disjoint union of T q
p (Tx(M)), x ∈ M , this space has the

natural structure of a Ck− manifold of dimension n(1 + np+q−1).

Definition 1.9. A (p, q)-tensor field on M is an application T : M → T q
p (M),

which to any x ∈ M , assigns T (x) ∈ T q
p (Tx(M)). It is said to be of class Ck, if it

is of class Ck from M to T q
p (M).

Definition 1.10. Let M and N be two manifolds, f an application of class Ck+1

from M to N and a (p, 0)-tensor field T on N . The pull-back of T by f , de-

noted f ⋆T , is a (p, 0)-tensor field of class Ck on M , defined for x ∈ M , and

X1, X2, ......, Xp ∈ Tx(M) by

f ⋆T (x).(X1, X2, ..., Xp) = T (f(x)).(f⋆(x)X1, f⋆(x).X2, ..., f⋆(x).Xp)

Linear connection

Let us denote the space of differentiable vector fields on M by Γ(M).

Definition 1.11. A linear connection D is an application from T (M)× Γ(M) to

T (M), which satisfies the following properties:

1. For all X ∈ Tx(M), D(X, Y ) ∈ Tx(M).

2. D is bilinear on Tx(M)× Γ(M)

3. For a differentiable function f , X ∈ Tx(M), and Y ∈ Γ(M) we have :

D(X, fY ) = X(f)Y (x) + f(x)D(X, Y )

4. if X, Y ∈ Γ(M), are respectively of class Ck and Ck+1, the D(X, Y ) is of

class Ck.
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Given a linear connection D, a chart (Ω, ϕ). There are n3 functions, denoted

by Γk
ij, from Ω into R, called the Christoffel symbols of the connection D in (Ω, ϕ),

such that for any x ∈ Ω, Y ∈ Γ(M) and X ∈ Tx(M)

D(X, Y ) = DX(Y ) = X i(∇iY )(x) = X i

((
∂Y j

∂xi

)
x

+ Γj
iα(x)Y

α

)(
∂

∂xj

)
x

where X i,Y i are the components of X and Y in (Ω, ϕ). Besides, for f : M → R

differentiable in x, (
∂f

∂xi

)
x

= Di

(
f ◦ φ−1

)
φ(x)

,

and

∇i(Y ) = D( ∂
∂xi

)(Y ).

It should be noted that the Christofell Symbols are not the components of a tensor.

The covariant derivative

Definition 1.12. The covariant derivative is applied to the tensors as follows:

1. If f is a function, then DX(f) = X(f).

2. DX doesn’t change the type of tensor.

3. DX(T ⊗ T̃ ) = (DX(T ))⊗ T̃ + T ⊗ (DX(T̃ ))

4. if T is a (p, q)-tensor, then for all 1 ≤ k1 ≤ p and 1 ≤ k1 ≤ q,

DX(C
k2
k1
T ) = Ck2

k1
DX(T ),

where Ck2
k1
T is the (k1, k2) contraction of T , which is a (p− 1, q − 1)-tensor.

Torsion and curvature

Definition 1.13 (Torsion). The application T of Γ(M)× Γ(M) in Γ(M) defined

by

(X, Y ) −→ T (X, Y ) = D(X, Y )−D(Y,X)− [X, Y ]
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is called a torsion of D, where [X, Y ] is the vector field defined by:

[X, Y ] (f) = X(Y (f))− Y (X(f)), f ∈ C2(M)

If T ≡ 0, we say that the connection is torsion-free or without torsion.

Definition 1.14. The application R from Γ(M) × Γ(M) to the homomorphism

group of Γ(M) defined by

R(X, Y ) = DX(DY )−DY (DX)−D[X,Y ], ∀X, Y ∈ Γ(M)

is called the curvature of D.

1.1.2 Riemannian manifold

Riemannian Metric

Definition 1.15. A Riemannian metric g on a smooth manifold M , is a (2, 0)-C∞

tensor field, such that for all x ∈M , gx define a scalar product on Tx(M), namely

we have:
gx(X, Y ) = gx(Y,X), for allX, Y ∈ Tx(M)

gx(X,X) > 0, for X ∈ Tx(M) \ {0} .

Definition 1.16. A Reimannian manifold of dimension n of class C∞, is the

pair (M, g), with M is a differentiable manifold of class C∞, and g a Riemannian

metric.

Levi-Civita connection, associated curvature

Definition 1.17. Let (M, g) be a Riemannian manifold. The Levis-Civita con-

nection is the only torsion-free connection for which the covariant derivative of g

is zero.

Given a chart (Ω, ϕ), with xi its associated coordinates. Then, for all x in Ω,

the Christoffel symbols of the Levi-Civita connection are given by :

Γk
ij =

1

2

(
∂gmj

∂xi
+
∂gmi

∂xj
− ∂gij
∂xm

)
gmk,
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where gij are the components of g in (Ω, ϕ) and gij are the components of the

inverse matrix of g. In the next definition we introduce four type of curvature

associated to this connection.

Definition 1.18. Let R be the curvature associated with the Levis-Civita connec-

tion. There are several types of curvature associated with this connection, and we

will introduce four types:

1. Riemann curvature: The Riemann curvature is the (4, 0)-C∞ tensor field,

denoted by Rmg, defined for all X, Y, Z, T ∈ Γ(T (M)) by:

Rmg(X, Y, Z, T ) = g(DX(D(Y, Z))−DY (D(X,Z)), T ),

in a local chart (Ω, ϕ), the components of Rmg are given by:

Rijkl = gimR
m
jkl

2. Ricci curvature: The Ricci curvature is the (2, 0)-C∞ tensor field, denoted

by Riccg, defined as :

Riccg(X, Y ) =
n∑

i=1

Rmg(x)(ei, X, ei, Y ),

where {ei}1≤i≤n is a basis of Tx(M), the components of this curvature are

given as:

(Riccg)ij = Rmikjg
mk

3. Scalar curvature : The scalar curvature is the function of class C∞ from

M to R, denoted by Scalg defined as:

Scalg(x) =
n∑

i,j=1

Rmg(x)(ei, ej, ei, ej).

In a local chart we have:

Scalg(x) = Rijg
ij
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4. Sectional curvature: For any x ∈ M and for any linearly independent

X, Y ∈ Tx(M), the sectional curvature K(X, Y ), is defined as:

K(X, Y ) =
Rmg(x)(X, Y,X, Y )

g(x)(X,X)g(x)(Y, Y )− g(x)(X, Y )2
.

This curvature does not depend on the choice of (X, Y ), and defines the

Riemann curvature.

Riemannian distance

Let ζ : [a, b] → M be a curve of class C1. Denote by dζ
dt

the tangent vector of

Tζ(t)(M), defined for any function f : M → R differentiable at ζ(t), by (dζ
dt
)t.f =

(f ◦ ζ)′(t). The length of ζ is defined by:

L(ζ) =

∫ b

a

√
g(ζ(t)).

((
dζ

dt

)
t

,

(
dζ

dt

)
t

)
dt.

For x, y ∈M , we define a set Ly
x, by:

Ly
x =

{
ζ ∈ C1([a, b] ; ζ({a}), ζ({b}) ⊂ {x, y}

}
Definition 1.19. The distance on M between two points x, y, is defined by:

dg(x, y) = inf
ζ∈Ly

x

L(ζ)

.

The exponential application

Definition 1.20. Let (M, g) be a Riemannian manifold, ∇ the connection of

Levis−Civita. A geodesic is a curve ζ : [a, b] →M , such that for every t ∈ [a, b]

∇ dζ
dt

(
dζ

dt

)
= 0.

This translates into the fact that in any chart (Ω, ϕ), and for any integer k, and

for any t ∈ [a, b] such that ζ(t) ∈ Ω

(ζk) ”(t) + Γk
ij(ζ(t))(ζi)

′(t)(ζj)
′(t) = 0
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For any X ∈ Tx(M), there is a single geodesic, ζ : [0, b] 7→M such that,

ζ(0) = x et
dζ(t)

dt

∣∣∣
t=0

= X

Let ζx,X be this geodesic, for all real λ > 0, this curve satisfies ζx,λX(t) = ζx,X(λt),

then, for X ∈ Tx(M) such that g(X,X) is small, ζx,X is defined on every point of

the interval [0, 1]. The exponential application is defined as follows:

Definition 1.21. Let x be a point of M and V a neighborhood of 0 in Tx(M).

The exponential application in x, denoted by expx, is the application from V to M

that assigns to any X of V , expx(X) = ζx,X(1).

Since Tx(X) is a vector space of dimension n, it can be identified with Rn, then

the pair (Ω, exp−1
x ) is a local chart of M , called the normal chart. For every y ∈ Ω,

the local coordinates of y in this chart (exp−1
x (y) ∈ Rn), are called normal geodesic

coordinates. The components of g in this chart satisfy gij = δji , and the Christofell

symbols of the Levi-Civita connection, is this chart are null.

The injectivity radius

Let (M, g) be a Riemannian manifold, the injectivity radius ig(x) at a point x of

M , is the largest real r, for which any geodesic ζ starting from x of length r is

minimizing. This means that for any y ∈ M , we have dg(x, y) = L(ζ), where ζ is

a geodesic joining x and y. The radius of injectivity of M is defined by

Injg = infx∈M ig(x).

If (M, g) is compact, Injg is strictly positive, but if it is just complete, ig can be

zero.

Cut-locus

The set Cx of M of measure zero, such that

ig(x) = dg(x,Cx)

is said to be the cut-locus of M in x.
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1.1.3 Integration on Riemannian manifolds

Partition of the unity

Let (M, g) be a Riemannian manifold and A = (Ωi, ϕi)i∈I an atlas of M . The

family (Ωj, ϕj, ςj)j∈J , is said to be a partition of unity subordinate to A if :

1. (ςj)j is a smooth unit partition of the unity subordinate to the covering (Ωi)i,

2. (Ωj, φj)J is also an atlas of M ,

3. For all j ∈ J , suppςj ⊂ Ωj.

For every atlas A of M , there exists a partition of the unity l subordinate to A.

Let f be a function on M , continuous and of a compact support, and (Ωi, ϕi)i∈I an

atlas of M . Let (Ωj, φj, ηj)j∈J be a partition of the unity subordinate to (Ωi, ϕi)i∈I .

We set ∫
M

fdvg =
∑
j∈J

∫
φj(Ωj)

(ςj
√

|detg|f)oφ−1
j dx

The application that for f assigns
∫
M
fdvg, defines a Radon measure that does not

depend on the atlas and the partition of the unity chosen. This integral is called

a Riemannian integral or Riemannian measure.

Laplacian

Let f be a function of class C2 on M , the Laplacian denoted ∆g is defined as

follows.

∆gf = −gij( ∂2f

∂xi∂xj
− Γk

ij

∂f

∂xk
).

1.2 Basics of nonlinear analysis

In this section, we introduce some basic notions of nonlinear analysis that will be

used throughout the thesis.
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1.2.1 Functional Spaces

• We define the Lebesgue space Lp(M), p ≥ 1 as the space of function u :

M 7→ R, such that |u|p is intergrable on M . This space equipped with the

norm

||u||pLp(M) =

∫
M

|u|p dvg,

is a Banach space.

• We define the weighted Lebesgue space Lp(M, (ρxo)
s), p > 1, 0 < s ≤ p, as

the space of function u : M 7→ R, such that |u|p
(ρxo )

s is integrable on M . This

space equipped with the norm

||u||pLp(M,(ρxo )
s) =

∫
M

|u|p

(ρxo)
s
dvg,

is a Banach space.

• We define the Sobolev space Hp
1 (M), p > 1 as the completion of the space

C∞(M) with respect to the norm

||u||p
Hp

1 (M)
=

∫
M

(|∇gu|p + |u|p)dvg

• The sobolev space D1,p(Rn), p > 1 is defined as the completion of the space

C∞
0 (Rn), with respect to the norm

||u||pD1,p(Rn) =

∫
Rn

(|∇u|p)dx

The following theorem is proved in ([26], page 215):

Theorem 1.22 (Rellich-Kondrakov). Let (M, g) be a compact Riemannian man-

ifold of dimension n. Then

1. the inclusion Hp
1 (M) ⊂ Lq(M) is compact for 1 ≤ q < p∗ = pn

n−p
.

2. the inclusion Hp
1 (M) ⊂ Lp∗(M) is continuous.

3. the inclusion Hp
1 (M) ⊂ Cα(M) is compact for α < 1− n

p
and 0 ≤ α < 1.
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1.2.2 Sobolev inequality

In Rn , for 1 ≤ p < n and p∗ = np
n−p

, the Sobolev inequality asserts that for all

u ∈ D1,p(Rn). ∫
Rn

|u|p∗dx ≤ K(n, p)p
∗
(∫

Rn

|∇u|pdx
) p∗

p

,

with K(n, p) is the best constant in the Sobolev’s inequality. The value of K(n, p)

is calculated by Aubin [2] and Talenti [45] and is given by:

p− 1

n− p

(
n− p

n(p− 1)

) 1
p

(
Γ(n+ 1)

Γ(n
p
)Γ(n+ 1− n

p
)wn−1

) 1
n

(1.2.1)

On a compact Riemannian manifold (M, g), in [2], the following Sobolev inequality

is proved: for all ε > 0, there exists a positive constant Aε > 0 such that for all

u ∈ Hp
1 (M),∫

M

|u|p∗dvg ≤ (K(n, p)p
∗
+ ε)

(∫
M

|∇gu|pdvg
) p∗

p

+ Aε

(∫
M

|u|pdvg
) p∗

p

. (1.2.2)

1.2.3 Hardy inequality

For u ∈ D1,p(Rn), the Hardy inequality writes∫
Rn

|u|p

|x|p
dx ≤

(
p

n− p

)p ∫
Rn

|∇u|pdx. (1.2.3)

This inequality has been extended to compact Riemannian manifold in [33] as

follows: For all ε > 0 there exists a constant Bε > 0 such that for all u ∈ Hp
1 (M),∫

M

|u|p

(ρxo)
p
dvg ≤

((
p

n− p

)p

+ ε

)∫
M

|∇gu|pdvg +Bε

∫
M

|u|pdvg. (1.2.4)

For a u ∈ Hp
1 (M) with support included in B(xo, δ), with δ < Injg, we have∫

M

|u|p

(ρxo)
p
dvg ≤ (Kδ(n, p,−p))p

∫
M

|∇gu|pdvg, (1.2.5)

with Kδ(n, p,−p) → p
n−p

as δ → 0.

Note that in [33], its proven that the inclusion Hp
1 (M) ⊂ Lp(M, (ρxo)

p) is contin-

uous and the inclusion Hp
1 (M) ⊂ Lp(M, (ρxo)

s), with 0 < s < p, is compact.
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1.2.4 Convergence theorems

Now we introduce two convergence theorems.

Egorov theorem

Egorov’s theorem, which we now recall, establishes a relationship between almost

everywhere and uniform convergence.

Theorem 1.23 (Egorov). Let M be a compact Riemannian manifold, if (wm)m

converges to w almost everywhere, then

∀d > 0, ∃Ed ⊂M,

∫
M\Ed

dvg < d

and (wm)m converges uniformly to w in Ed.

Brezis-Lieb lemma

Lemma 1.24. Let (wm)n be a sequence of functions bounded in Lp(M)1≤p<+∞,

converging almost everywhere to w, then w ∈ Lp(M) and:

∥w∥pp = lim
m→∞

(
∥wm∥pp − ∥wm − w∥pp

)
We can find the proof of this lemma in ([28], page 10, lemma 4.6).

Other results

The next lemma is mentioned in ([28], page 11, lemma 4.8).

Lemma 1.25. If (wm)n is a sequence of bounded functions in Lp(M)1<p<+∞, con-

verging almost everywhere to w, then wn converges weakly to w in Lp(M).

The following lemma is due to N. Saintier ([40], page 20)

Lemma 1.26. Let (Xm)m ⊂ Rn, and X ∈ Rn, such that(
|Xm|p−2Xm − |X|p−2X

)
(Xm −X) → 0.

then Xm → X
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1.2.5 Inequalities

Now we introduce some inequalities that we will use further. Recall the following

inequality (see [40, page 56]): for all x and y in a normed vector space and p > 1

∥∥x+ y∥p−2(x+ y)− ∥x∥p−2x− ∥y∥p−2y∥ ≤ C(||x||p−1−θ||y||θ + ||y||p−1−θ||x||θ),
(1.2.6)

where θ is a small constant that depends on p.

The next inequalities are due to lemma A.4 in [5]

1. If 1 < p < 2, for a given γ ∈ (1, p), there exists a constant such that

(1 + t2 + 2t cosα)
p
2 ≤ 1 + tp + pt cosα + Ctγ, (1.2.7)

for t ≥ 0 uniformly in α.

2. If 2 ≤ p ≤ 3, for a given γ ∈ [p− 1, 2], there exists a constant such that

(1 + t2 + 2t cosα)
p
2 ≤ 1 + tp + pt cosα + Ctγ, (1.2.8)

for t ≥ 0 uniformly in α.

3. If p ≥ 3, there exists a constant such that

(1 + t2 + 2t cosα)
p
2 ≤ 1 + tp + pt cosα + C(t2 + tp−1), (1.2.9)

for t ≥ 0 uniformly in α.

1.2.6 Ekeland variational principle

One of the powerful tools of variational methods is the Ekeland lemma and its

applications. It is used to minimize lower semicontinous and bounded from below

functionals.

Definition 1.27. Let B be a Banach space, and F be a C1 functional. We say

that wm is a Palais-Smale sequence of the functional F at level c, if we have

F (wm) → c in R, and F ′(um) → 0 in B′.
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Where B′ is the dual of B.

We say that the functional F satisfies the Palais-Smale condition, if every

Palais-Smale sequence of F posses a strongly convergent subsequence.

Now, we introduce the variational principle of Ekeland in the following lemma, see

The proof of the previous lemma is in ([28], page 162, lemme 6.8).

Lemma 1.28. Given a complete metric space (B, d), and a lower semi-continuous

functional F . We assume that F is bounded from bellow on B. Then for all ε > 0,

there exist a κε ∈ B such that infB F ≤ F (κε) ≤ infB F + ε

∀x ∈ B, x ̸= κε, J(x) + εd(x, κε) > J(κε)

An important application of this lemma is the following corollary.

Corollary 1.29. Given a Banach space B, and a C1-functional F , we assume

that F , is bounded from below on B, then there exist a Palais-Smale sequence um,

at level infB F , that is a minimizing Palais-Smale sequence. Furthermore, if F

satisfies the Palais-smale condition, then F reaches its minimum.

This corollary is obtained from the proof of corollary 6.9 in ([28], page 163).
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Decomposition of Palais-Smale

sequences

In this chapter, we show a Sruwe-type decomposition [44] (or, as known in the

literature, Hp
1 decomposition), for Palais-Smale sequences associated to the energy

functional defined below. In the paper [44], M. Struwe proved a decomposition

result for the well-known boundary value problem studied by Brezis and Nirenberg.

Namely, let O be a bounded domain of Rn, and ς ∈ R. We introduce the following

boundary value problem ∆u− ςu = |u|2∗−2u, dans O

u = 0 sur ∂O.
(2.0.1)

The energy functional associated to this problem is defined on D1,2(O), by

Eς(u) =
1

2

∫
O

|∇u|2dx− ς

2

∫
O

|u|2dx− 1

2∗

∫
O

|u|2∗dx.

Consider also the functional defined on D1,2(IRn) by

E0(u) =
1

2

∫
IRn

|∇u|2dx− 1

2∗

∫
IRn

|u|2∗dx.

M. Struwe [44] has shown that any Palais-Smale sequence ωm of Eς can be written

as follows: there exists a weak solution ωo of (2.0.1), there exists k ∈ N solutions

31



Chapter 2. Decomposition of Palais-Smale sequences

ω1, ..., ωk of the equation

∆u = |u|2∗−2u, In Rn,

sequences of point z1m, ..., zkm in Rn, real sequences ϱ1m, ..., ϱkm, such that, up to a

subsequence we have

ωo
m ≡ ωm → ωo weakly in D1,2(O),

ωj
m ≡ (ϱjm)

n−2
2 (ωj−1

m − ωj−1)(ϱjm(x− zjm)) → ωj weakly in D1,2(Rn),

Eς(ωm) = Eς(ω
o) +

k∑
j=1

E0(ω
j) + o(1).

This type of decomposition is extended to the case of compact Riemannian man-

ifolds by several authors. We begin with the interesting work done by O. Druet,

et al.[18], where a decomposition result has been proven for the equation :

∆gu− h(x)u = f(x)u2
⋆−1, u ∈ H2

1 (M).

Afterwards, N. Saintier [39] generalized this decomposition result to the following

equation:

∆g,pu− h(x)up−1 = f(x)up
⋆−1, u ∈ Hp

1 (M).

Subsequently, the authors in [35] have proved a similar decomposition result for

the equation:

∆gu−
h(x)

(ρxo(x))
2
u = fu2

∗−1, u ∈ H2
1 (M). (2.0.2)

where ρxo is defined by (0.0.1).

It is worth mentioning that the singular term adds a new contribution as it leads to

a new term to be added in the decomposition formulas. For reasons of relevance,

it seems useful to cite this decomposition result. Let δ be a positive real, and

consider a smooth cut-off function ιδ on Rn defined by

ιδ(x) =

 1, x ∈ B(δ),

0, x ∈ Rn \B(2δ).
(2.0.3)
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Where B(δ) is the ball of center zero and radius δ. Let us also consider the equation

∆ξu−
h(xo)

|x|2
u = f(xo)|u|2

∗−2u, u ∈ D1,2(Rn). (2.0.4)

By I0, we denote the energy functional of (2.0.4)

I0 =
1

2

∫
IRn

|∇u|2dx− h(xo)

2

∫
IRn

|u|2

|x|2
dx− f(xo)

2∗

∫
IRn

|u|2∗dx

For x ∈M , and δ < Injg
2

, we consider the function ηδ,x on M defined by:

ιδ,x(y) = ιδ(exp
−1
x (y)).

In [35], the authors show that any Palais-Smale sequence of the energy functional

Ih,f =
1

2

(∫
M

(
|∇gu|2 −

h

(ρxo)
2
|u|2
)
dvg

)
− 1

2∗

∫
M

f |u|2
∗
dvg,

can be splitted (up to a sub sequence) to a sum of a weak solution of the equation

(2.0.2), non-trivial solutions of (2.0.4), and non-trivial solutions of the equation

∆ξu = |u|2∗−2u, u ∈ D1,p(Rn). (2.0.5)

Precisely, they show that a sequence of Palais-Smale um, can be written in the

following form:

um = u+
k∑

i=1

(Ri
m)

2−n
n ιδ(exp

−1
xo
(x))vi((R

i
m)

−1 exp−1
xo
(x))

+
l∑

j=1

(τ jm)
2−n
n

(
f(xjo)

) 2−n
4 ιδ(exp

−1

xj
m
(x))νj((τ

j
m)

−1 exp−1

xj
m
(x)) +Wm,

with Wm → 0 in H2
1 (M),

and the energy functional satisfies the following

Ih,f (um) = Ih,f (u) +
k∑

i=1

I0(vi) +
l∑

j=1

E0(νj) + o(1).

With (Ri
m)i=1,k and (τ j)j=1,l are positive real sequences that converge to 0 when

m tends to infinity, (xjm)j=1,l, are point sequences in M , such that xjm → xjo ̸= xo,
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u is a weak solution of (2.0.2), vi and νj are weak solutions of (2.0.4) and (2.0.5)

respectively.

In this chapter we will generalize the results obtained in [35] and [39] to the equa-

tions (Es) by establishing two decomposition results, one for the subcritical case

s < p, and the second for the Hardy critical case s = p.

We begin with introducing some definitions that will be used hereafter. We con-

sider the energy functional associated to (Es) defined on Hp
1 (M) by:

Jf,h,s(u) =
1

p

(∫
M

(
|∇gu|p −

h

(ρxo)
s
|u|p
)
dvg

)
− 1

p∗

∫
M

f |u|p
∗
dvg. (2.0.6)

This functional is of class C2 in Hp
1 (M), and its Fréchet derivative at a point

v ∈ Hp
1 (M) is given by:

(DJf,h,su) .v =

∫
M

(
|∇gu|p−2 g(∇gu,∇gv)−

h

(ρxo)
s
|u|p−2 u.v

)
dvg

−
∫
M

f |u|p
∗−2 u.vdvg

A Palais-Smale (P.S. for short) sequence of the functional Jf,h,s at a level βs ∈ IR,

0 < s ≤ p, is defined as the sequence um ∈ Hp
1 (M) that satisfies

Jf,h,s(um) → βs and (DJf,h,sum) .v → 0,∀v ∈ Hp
1 (M) as m→ ∞.

To abbreviate, βp is denoted by β. We say that Jf,h,s, satisfies the Palais-smale

condition, if every P.S. sequence, admits a convergent subsequence in Hp
1 (M). A

weak solution of (Es), 0 < s ≤ p, is a function u ∈ Hp
1 (M) such that

(DJf,h,su) .v = 0, ∀v ∈ Hp
1 (M).

We recall the following equations and their associated energy functionals :

∆ξ,pu = |u|p∗−2u, (2.0.7)

∆ξ,pu−
h(xo)

|x|p
|u|p−2u = f(xo)|u|p

∗−2u, (2.0.8)
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where ξ is the Euclidean metric on IRn.

E(u) =
1

p

∫
IRn

|∇u|pdx− 1

p∗

∫
IRn

|u|p∗dx,

Ef,h(u) =
1

p

∫
IRn

|∇u|pdx− h(xo)

p

∫
IRn

|u|p

|x|p
dx− f(xo)

p∗

∫
IRn

|u|p∗dx.

Now we state the theorems that we are going to prove.

Theorem 2.1. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3.

Let f and h be two regular functions on M . Let xo be a point of M as defined in

(0.0.1). Assume that f(x) > 0, x ∈M .

Let um be a Palais-Smale sequence of the functional Jf,h,s at level βs, 0 < s < p.

Then, there exist k ∈ N, sequences Ri
m ≥ 0, Ri

m →
m→∞

0, convergent sequences

of points in M , xim →
m→∞

xio, a weak solution u ∈ Hp
1 (M) of (Es), 0 < s < p,

non-trivial weak solutions vi ∈ D1,p(Rn) of (2.0.7) such that, up to a subsequence,

for 0 < s < p, we have

um = u+
k∑

i=1

(Ri
m)

p−n
n f(xjo)

p−n

p2 ηδ(exp
−1
xi
m
(x))vi((R

i
m)

−1 exp−1
xi
m
(x)) +Wm, (2.0.9)

with Wm → 0 in Hp
1 (M),

and

Jf,h,s(um) = Jf,h,s(u) +
k∑

i=1

f(xio)
p−n
p E(vi) + o(1). (2.0.10)

Theorem 2.2. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3.

Let f and h be two smooth functions on M . Let xo be a point of M as defined in

(0.0.1). Assume that f and h satisfy the following conditions

1. f(x) > 0, x ∈M ,

2. h(xo) = supM h(x) and 0 < h(xo) < (n−p
p
)p.

Let um be a Palais-Smale sequence of the Jf,h,s functional at level β. Then, there

exist k ∈ N sequences T i
m ≥ 0, T i

m →
m→∞

0 , l ∈ N sequences τ jm ≥ 0, τ jm →
m→∞

0,
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l ∈ N, sequences of converging points in M , yjm →
m→∞

yjo ̸= xo, a weak solution

u ∈ Hp
1 (M) of (Es), s = p, non-trivial weak solutions νj ∈ D1,p(Rn) of (2.0.7)

and weak solutions vi ∈ D1,p(Rn) of (2.0.8) such that, up to a subsequence, we

have

um = u+
k∑

i=1

(T i
m)

p−n
n ηδ(exp

−1
xo
(x))vi((T i

m)
−1 exp−1

xo
(x)) (2.0.11)

+
l∑

j=1

(τ jm)
p−n
n f(yjo)

p−n

p2 ηδ(exp
−1

yjm
(x))νj((τ

j
m)

−1 exp−1

yjm
(x)) +Wm

with Wm → 0 in Hp
1 (M)

and

Jf,h,p(um) = Jf,h,p(u) +
k∑

i=0

Ef,h(vi) +
l∑

j=1

f(yjo)
p−n
p E(νj) + o(1). (2.0.12)

The proofs of these two theorems go through several steps that we formulate

in lemmas.

Lemma 2.3. Let um be a Palais-Smale sequence of Jf,h,s, 0 < s ≤ p, at level βs.

We assume that f is positive and 1−h(xo)( p
n−p

)p > 0. If the sequence um converges

weakly to a function u in Hp
1 (M) and Lp(M,ρpxo

), strongly in Lq(M), 1 ≤ q < p∗

and almost everywhere in M , then, the function u is a weak solution of (Es) and

vm = um − u is a Palais-Smale sequence of Jf,h,s such that Jf,h,s(vm) = βs −
Jf,h,s(u) + o(1).

Proof. Let um be a P.S. sequence of Jf,h,s at level βs. As a first step in proving

this lemma, we show that the sequence um is bounded in Hp
1 (M).

Firstly, on the one hand, since um is P.S. sequence of Jf,h,s, we have

Jf,h,s(um)−
1

p∗
DJs,f,h(um)um = βs + o(1) + o(||um||Hp

1 (M)).

On the other hand we have

Jf,h,s(um)−
1

p∗
DJf,h,s(um)um =

1

n

∫
M

(|∇gum|p −
h

(ρxo)
s
|um|p)dvg

=
p

n

(
Jf,h,s(um) +

1

p∗

∫
M

f |um|p
∗
dvg

)
,
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then
p

np∗

∫
M

f |um|p
∗
dvg =

(
1− p

n

)
βs + o(1) + o(||um||Hp

1 (M)).

since f is strictly positive on (M, g), we deduce that um is bounded in Lp∗(M) and

therefore in Lp(M). In addition we have∫
M

|∇gum|p dvg = nJf,h,s(um) +

∫
M

h

(ρxo)
s
|um|p dvg + o(∥um∥Hp

1 (M))

= nβs +

∫
M

h

(ρxo)
s
|um|p dvg + o(1) + o(∥um∥Hp

1 (M)).

Let δ > 0 be a constant close to zero. then we have,∫
M

|∇gum|p dvg = nβs +

∫
B(xo,δ)

(ρxo)
p−s h

(ρxo)
p
|um|p dvg

+

∫
M\B(xo,δ)

h(x)

(ρxo)
s
|um|p dvg + o(1) + o(∥um∥Hp

1 (M)),

since p ≥ s, we have∫
M

|∇gum|p dvg ≤ nβs + δp−s max
x∈B(xo,δ)

|h(x)|
∫
B(xo,δ)

|um|p

(ρxo)
p
dvg

+ δ−s max
x∈M

|h(x)|
∫
M\B(xo,δ)

|um|p dvg + o(1) + o(∥um∥Hp
1 (M)).

By Hardy inequality (1.2.5), since um is bounded in Lp(M) we obtain that there

exists a positive constant C such that(
1− δp−s max

x∈B(xo,δ)
|h(x)|Kδ(n, p,−p)p

)∫
M

|∇gum|p dvg ≤ nβs+C+o(1)+o(∥um∥Hp
1 (M)).

Now, for p > s, we can choose δ small enough so that we have

1− δp−s max
x∈B(xo,δ)

|h(x)|Kδ(n, p,−p)p > 0,

we obtain that
∫
M
|∇gum|p dvg is bounded.

For p = s, since maxB(xo,δ) |h(x)|Kδ(n, p,−p) goes to h(xo)( p
n−p

)p when δ → 0

and since by assumption 1−h(xo)(
p

n−p
)p > 0, there exists δo > 0 such that for any

δ < δo we have

1− max
x∈B(xo,δ)

|h(x)|Kδ(n, p,−p)p > 0,
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then
∫
M
|∇gum|p dvg is bounded, which completes the proof that um is bounded in

Hp
1 (M).

Now, we assume that the sequence um converges weakly to a function u in

Hp
1 (M). We show that for φ ∈ Hp

1 (M), (DJf,h,s(um)).φ converges to (DJf,h,s(u).φ).

In other words, u is a weak solution of (Es). First, since the sequence um con-

verges almost everywhere to u in M , by lemma 1.25 , we can conclude that the

sequence f |um|p
∗−2um converges to f |u|p∗−2u weakly in L p∗

p∗−1
(M) and the sequence

h|um|p−2um converges weakly to h|um|p−2um in L p
p−1

(M,ρsxo
). It remains to show

that∫
M

|∇gum|p−2g(∇gum,∇gφ)dvg =

∫
M

|∇gu|p−2g(∇gu,∇gφ)dvg + o(1) (2.0.13)

We proceed by the same method used in [39]. To lighten the notation, we

denote |∇gum|p−2∇gum by Dm, and |∇gu|p−2∇gu by D̄. The fact that ∇gum is

bounded in Lp(M), gives that Dm is bounded in L p
p−1

(M), which implies that Dm

converges weakly in L p
p−1

(M) to a vector field D in L p
p−1

(M).

Now, fixing d > 0 and using Egorov’s theorem, we get that there exists Ed ⊂ M

such that ∫
M\Ed

dvg < d

(um)m converges uniformly to u in Ed. For positive ε, we can take an m large

enough so that |um − u| < ε
2

on Ed. Let βε be the truncation function defined by

βε(x) =

 x if |x| < ε

εx
|x| if |x| ≥ ε

(2.0.14)

It is easy to verify that

g((Dm − D̄),∇g (βε ◦ (um − u))) ≥ 0
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almost everywhere in M . Now for m large enough,∫
Ed

g((Dm − D̄),∇g (um − u))dvg =

∫
Ed

g((Dm − D̄),∇g (βε ◦ (um − u)))dvg

≤
∫
M

g((Dm − D̄),∇g (βε ◦ (um − u)))dvg.

Observing that βε ◦ (um − u) converges weakly to 0 in Hp
1 (M), we deduce that,∫

M

g(D̄,∇ (βε ◦ (um − u)))dvg → 0

On the other hand, for m sufficiently large, since βε ◦ (um − u) is bounded in

Hp
1 (M), and um a Palais-Smale sequence of Jf,h,s,

DJf,h,s(um)(βε ◦ (um − u)) = o(1).

Then ∫
M

g(Dm,∇g (βε ◦ (um − u)))dvg = o(1) + l1 + l2

with

|l1| =
∣∣∣∣∫

M

h

(ρxo)
s
|um|p−2 um.βε ◦ (um − u)dvg

∣∣∣∣ ≤ ε

2

∫
M

h

(ρxo)
s
|um|p−1 dvg,

|l2| =
∣∣∣∣∫

M

f |u|p
∗−2 u.βε ◦ (um − u)dvg

∣∣∣∣ ≤ ε

2

∫
M

f |u|p
∗−1 dvg,

then we find that ∫
M

g(Dm,∇g (βε ◦ (um − u)))dvg ≤ Cε.

Finally, we get that

lim sup
m→+∞

∫
Ed

g((Dm − D̄),∇g (um − u))dvg ≤ Cε.

Since ε is arbitrary, we deduce that g((Dm − D̄),∇g (um − u)) converges to 0 in

L1(Ed), it follows that g((Dm−D̄),∇g (um − u)) has a subsequence that converges

almost everywhere to 0 in Ed. By lemma 1.26, we find that ∇gum converges

almost everywhere to ∇gu in Ed. Since d is arbitrary, we have convergence almost
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everywhere of ∇gum to ∇gu inM . Consequently, |∇gum|p−2∇gum converges almost

everywhere to D̄, since |∇gum|p−2∇gum is bounded in L p
p−1

(M), and converges

almost everywhere to D̄, so by lemma 1.25, we conclude that |∇gum|p−2∇gum

converges weakly to D̄ in L p
p−1

(M), therefore, D = D̄, which proves (2.0.13), and

consequently that u is a weak solution of (Es).

Now we show that the sequence vm = um − u is a P.S. sequence for Jf,h,s at level

βs − Jf,h,s(u). For φ ∈ Hp
1 (M), we write

D(Js,f,h(vm)).φ = D(Js,f,h(um)).φ−D(Js,f,h(u)).φ (2.0.15)

+

∫
M

g(|∇gvm|p−2∇gvm − |∇gvm +∇gu|p−2(∇gvm +∇gu) +∇gu|p−2∇gu,∇gφ)dvg

−
∫
M

h

ρso
(|vm|p−2vm − |vm + u|p−2(vm + u) + |u|p−2u)φdvg

−
∫
M

f(|vm|p
∗−2vm − |vm + u|p∗−2(vm + u) + |u|p∗−2u)φdvg

The inequality (1.2.6) implies that∫
M

g(|∇gvm|p−2∇gvm − |∇gvm +∇gu|p−2(∇gvm +∇gu) +∇u|p−2∇gu,∇gφ)dvg

≤ C

∫
M

(
|∇gvm|p−1−θ|∇gu|θ + |∇gvm|θ|∇gu|p−1−θ

)
|∇gφ|dvg

≤ C∥∇gφ∥Lp(M)

[(∫
M

|∇gvm|
p(p−1−θ)

p−1 |∇gu|
pθ
p−1dvg

) p−1
p

+

(∫
M

|∇gvm|
pθ
p−1 |∇gu|

p(p−1−θ)
p−1 dvg

) p−1
p

]
.

Now, the sequence |∇gvm|p
p−1−θ
p−1 is bounded in L p−1

p−1−θ
(M) and converge almost

everywhere to 0 in M . Then, it converges weakly to 0 in L p−1
p−1−θ

(M), which implies

that
∫
M
|∇gvm|p

p−1−θ
p−1 φdvg → 0,∀φ ∈ L p−1

θ
(M). Since |∇gu|p

θ
p−1 ∈ L p−1

θ
(M), we

have ∫
M

|∇gvm|
p(p−1−θ)

p−1 |∇gu|
pθ
p−1dvg → 0.

By the same method, we also obtain∫
M

|∇gvm|
pθ
p−1 |∇gu|

p(p−1−θ)
p−1 dvg → 0.
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Similarly, the second and third integrals of (2.0.15) tend to zero. Then (DJf,h,s(vm)).φ→
0,∀φ ∈ Hp

1 (M).

Finally, to show that Jf,h,s(vm) goes to βs − Jf,h,s(u), we apply the Brezis-Lieb

lemma (1.24) for the sequences um and ∇gum. Since um and ∇gum converge al-

most everywhere to u and ∇gu in M , and since ∇gum is bounded in Lp(M), um
is bounded in Lp∗(M), by the Brezis-Lieb lemma we have∫

M

|∇gu|pdvg = lim
m→∞

(∫
M

|∇gum|pdvg −
∫
M

|g(um − u)|pdvg
)
,

and ∫
M

f |u|p∗dvg = lim
m→∞

(∫
M

f |um|p
∗
dvg −

∫
M

f |um − u|p∗dvg
)

In addition, by Hardy’s inequality (1.2.4) we have∫
M

|um|p

(ρxo)
s
dvg ≤ Diam(M)p−s

∫
M

|um|p

(ρxo)
p
dvg ≤ C∥um∥Hp

1 (M),

which means that the sequence um is also bounded in Lp(M,ρsxo
) and then we

obtain by Brezis-Lieb’s lemma that∫
M

h

(ρxo)
s
|u|pdvg = lim

m→∞

(∫
M

h

(ρxo)
s
|um|pdvg −

∫
M

h

(ρxo)
s
|um − u|pdvg

)
which implies that

Jf,h,s(vm) = βs − Jf,h,s(u) + o(1),

and by this, the proof is done.

The next lemma gives us a level, under which every Palais-Smale sequence

converging to 0, converges strongly.

Lemma 2.4. We assume that supM f > 0 and 1 − h(xo)(
p

n−p
)p > 0. Let vm be a

P.S. sequence of Jf,h,s at level βs, 0 < s ≤ p, that converges weakly to 0 in Hp
1 (M).

if

βs < β∗ =


1

n(supM f)
n−p
p K(n, p)n

, if s < p

(1− h(xo)(
p

n−p
)p)

n
p

n(supM f)
n−p
p K(n, p)n

, if s = p,

then βs = 0, and vm converge strongly to 0 in Hp
1 (M).
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Proof. First, we have

DJf,h,s(vm).vm = o(∥vm∥Hp
1 (M))

=

∫
M

(|∇gvm|p −
h

(ρxo)
s
|vm|p)dvg −

∫
M

f |vm|p
∗
dvg,

then

βs =
1

n

∫
M

(|∇gvm|p −
h

(ρxo)
s
|vm|p)dvg + o(1) =

1

n

∫
M

f |vm|p
∗
dvg + o(1) (2.0.16)

which implies that βs ≥ 0. In addition, for δ > 0 a small constant, we have∫
M

(|∇gvm|p −
h

(ρxo)
s
|vm|p)dvg =

∫
M

|∇gvm|p dvg −
∫
B(xo,δ)

h

(ρxo)
s
|vm|p dvg

−
∫
M\B(xo,δ)

h

(ρxo)
s
|vm|p dvg

≥
∫
M

|∇gvm|p dvg − max
x∈B(xo,δ)

|h(xo)|δp−s

∫
B(xo,δ)

|vm|p

(ρxo)
p
dvg

− δ−s|max
x∈M

|h(xo)|
∫
M\B(xo,δ)

|vm|p dvg

Now, since the sequence vm is bounded in Lp(M) and Lp(M, (ρxo)
p), we have:

For 0 < s < p, by letting δ go to 0, we obtain from (2.0.16)∫
M

|∇gvm|p dvg ≤ nβs + o(1). (2.0.17)

For s = p, by letting δ go to 0, we obtain from (2.0.16) and Hardy’s inequality

(1.2.5) ∫
M

|∇gvm|p dvg ≤
nβs

1− h(xo)(
p

n−p
)p

+ o(1), (2.0.18)

On the other hand, by Sobolev’s inequality and (2.0.16), we also obtain by that

for 0 < s ≤ p,∫
M

|∇gvm|p dvg ≥
( nβs
(supM f) (K(n, p) + ε)p∗

) p
p∗

+ o(1) (2.0.19)

Now, suppose by contradiction that βs > 0. Then, after passing m to ∞, the

inequalities (2.0.17), (2.0.18) and (2.0.19) gives

βs ≥
1

n (supM f)
n−p
p (K(n, p) + ε)n

, for 0 < s < p,
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and

βs ≥
(1− (h(xo)K

p(n, p,−p))
n
p

n(supM f)
n−p
p (K(n, p))n

, for s = p.

Both cases present a clear contradiction with the hypothesis of the lemma. There-

fore, under the assumption of the lemma, βs = 0 and hence vm → 0 in Hp
1 (M).

Now we divide the proof of the main theorems into two parts depending on

whether 0 < s < p or s = p, starting with the case 0 < s < p.

2.1 The subcritical Hardy potential

Lemma 2.5. Let vm be a P.S. of Jf,h,s, with 0 < s < p, at level βs that converges

weakly and not strongly to 0 in Hp
1 (M). Then, there exists a convergent sequence

of points xm → xo dans M , a sequence of positive reals Rm → 0 as m→ ∞ and a

non trivial weak solution v ∈ D1,p(IRn) of

∆ξ,pv = f(xo)|v|p∗−2v, (2.1.1)

such that the sequence,

wm(x) = vm(x)−R
p−n
p

m ηδ(exp
−1
xm

(x))v(R−1
m exp−1

xm
(x)),

where 0 < δ < Injg
2

, possesses a subsequence wm, that is a P.S. sequence of Jf,h,s,

with 0 < s < p, at level Jf,h,s(wm) = βs − (f(xo))
p−n
p E(u) + o(1), with u is a non

trivial weak solution of (2.0.7), and converges weakly to 0 in Hp
1 (M).

Proof. Let vm be a P.S. sequence of Jf,h,s at level βs that converges to 0 weakly

and not strongly in Hp
1 (M). Then, up to a subsequence, we can assume that vm

converges strongly to 0 in Lp(M). For t > 0, we assume that

Fm(t) = max
x∈M

∫
B(x,t)

|∇gvm|dvg.

For to small, by the (2.0.19), there exists zo in M and γo > 0 such that∫
B(zo,to)

|∇gvm|dvg ≥ γo.
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Since Fm is continuous in t, we obtain that for each γ ∈ (0, γo) and for each m > 0,

we can find a point xm and a constant rm ∈ (0, to) such that∫
B(xm,rm)

|∇gvm|p dvg = γ (2.1.2)

Let 0 < ro <
Injg
2

such that there exists a positive constant Co ∈ [1, 2], so that for

all x ∈M and y, z ∈ B(ro) ⊂ IRn, the following inequality holds true

distg(expx(y), expx(z)) ≤ C0|y − z|. (2.1.3)

Let 0 < Rm < 1 and x ∈ B(R−1
m Injg). We define

v̂m(x) = R
n−p
p

m vm(expxm
(Rmx)), x ∈ IRn

ĝm(x) = exp∗
xm
g(Rmx)

Then we have

|∇ĝm v̂m|
p
ĝm
(x) = Rn

m|∇gvm|pg(expxm
(Rmx)) (2.1.4)

Thus, it follows that if z ∈ IRn is such that |z|+ r < InjgR
−1
m , then we have∫

B(z,r)

|∇ĝm v̂m|
p
ĝm
dvĝm =

∫
expxm (RmB(z,r))

|∇gvm|pgdvg. (2.1.5)

Furthermore, for |z|+ r < roR
−1
m , using (2.1.3) we have

expxm
(RmB(z, r)) ⊂ Bexpxm (Rmz)(rCoRm) (2.1.6)

Since for y ∈ B(rCoRm) ⊂ B(Injg), we have distg(xm, expxm
(Rmy)) = Rm|y|,

which gives us

expxm
(B(rCoRm)) = B(xm, rCoRm). (2.1.7)

Now, for r ∈ (0, ro), we consider that Rm = rm
rCo

, where rm is as defined above. By

(2.1.4), (2.1.5) and (2.1.6), we obtain∫
B(z,r)

|∇ĝm v̂m|
p
ĝm
dvĝm ≤ γ, (2.1.8)
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and ∫
B(rCo)

|∇ĝm v̂|
p
ĝm
dvĝm = γ, (2.1.9)

Let δ ∈ (0, Injg) and u ∈ D1,2(IRn) with support included in B(δR−1), where 0 <

R ≤ 1 is a constant. There exists a constant C1 such that if ĝ(x) = exp∗
p(g(Rx)),

then
1

C1

∫
Rn

|∇u|p dx ≤
∫
Rn

|∇ĝu|p dvĝ ≤ C1

∫
Rn

|∇u|p dx. (2.1.10)

Without loss of generality, we can also assume that for any u ∈ L1(IR
n) with

support in B(δR−1), we have

1

C1

∫
Rn

|u|p dx ≤
∫
Rn

|u|p dvĝ ≤ C1

∫
Rn

|u|p dx. (2.1.11)

Now, we consider a cut-off function η ∈ Co(IR
n) such that

0 ≤ η ≤ 1, η(x) = 1, x ∈ B(
1

4
) and η(x) = 0, x ∈ B(

3

4
). (2.1.12)

We put η̂m(x) = η(δ−1Rmx), where δ ∈ (0, Injg). We obtain that there exists a

positive constant C such that∫
IRn

|∇ĝm(η̂mv̂m)|
p dvĝm =

∫
B(

3δR−1
m

4
)

|∇ĝm(η̂mv̂m)|
p dvĝm

≤ 2p−1

∫
B(

3δR−1
m

4
))

(
|η(δ−1Rmx)|p |∇ĝm v̂m|

p + δ−pRp
m|(∇ĝmη)(δ

−1Rmx)|p |v̂m|p
)
dvĝm

= 2p−1

∫
B(xm, 3δ

4
)

(
|η(δ−1 exp−1

xm
(x))|p |∇gvm|p + |(∇gη)(δ

−1 exp−1
xm

(x))|p |vm|p
)
dvg

≤ C

∫
B(xm, 3δ

4
)

(|∇gvm|p + |vm|p) dvg.

Since the sequence is bounded in Hp
1 (M), this implies by (2.1.10) that the sequence

η̂mv̂m is bounded in D1,p(IRn) and therefore converges weakly in D1,p(IRn) and

almost everywhere in Rn to some function v ∈ D1,p(IRn).

Now, we divide the rest of the proof of the lemma into steps.
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step 1

For γ small and s ∈ (0, p), the sequence η̂mv̂m converges strongly to v inHp
1 (B(Cor)).

Proof of step 1. Let a ∈ IRn and µ ∈ [r, 2r]. We define A = B(a, 3r) \ B(a, µ). In

[39]( see also [18]), it was proved that there exists a sequence zm ∈ Hp
1 (A) that

converges strongly to 0 in Hp
1 (A) and that zm is a solution of ∆ξ,pzm = 0 in A,
zm − φm − φo

m ∈ D1,p(A),
(2.1.13)

where φm = η̂mv̂m − v in B(a, µ+ ε), φm = 0 in IRn \B(a, 3µ− ε) and φo
m is such

that ∥φm + φo
m∥Hp

1 (A) ≤ C∥φm∥Hp
p−1
p

(∂A). We let ψ̂m ∈ D1,p(IRn) be the sequence

ψ̂m =


η̂mv̂m − v in B(a, µ),

zm in B(a, 3r) \B(a, µ),

0 in IRn \B(a, 3r).

For r < δ
24

, we consider the rescaling sequence ψm de ψ̂m ψm(x) = R
p−n
p

m ψ̂m(R
−1
m exp−1

xm
(x)), if x < dg(xm, 6r),

ψm(x) = 0, otherwise.

Let η be the cut-off function considered above. Then , η(δ−1 exp−1
xm

(x)) = 1

For x such that dg(xm, x) < 6r. We put η̂m(x) = η(δ−1 exp−1
xm

(x)), in addition if

we have |a| < 3r, then we get

DJf,h,s(vm).ψm = DJf,h,s(η(δ
−1 exp−1

xm
(x))vm).ψm

=

∫
B(a,3r)

|∇ĝm(η̂mv̂m)|p−2ĝ
(
∇ĝm(η̂mv̂m),∇ĝmψ̂m

)
dvĝm

− Rp−s
m

∫
B(a,3r)

h(expxm
(Rm(x))

|x|sξ
|η̂mv̂m|p−2(η̂mv̂m)ψ̂mdvĝm

−
∫
B(a,3r)

f(expxm
(Rm(x))|η̂mv̂m|p

∗−2(η̂mv̂m)ψ̂mdvĝm .
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It is clear that the sequence ψ̂m is bounded inD1,p(IRn) and we have that ||ψm||Hp
1 (M) ≤

C||ψ̂m||D1,p(IRn). Then the sequence ψm is bounded in Hp
1 (M) and since vm is a

P.S. sequence of Jf,h,s, we have

o(1) =

∫
B(a,3r)

|∇ĝm(η̂mv̂m)|p−2ĝ
(
∇ĝm(η̂mv̂m),∇ĝmψ̂m

)
dvĝm (2.1.14)

− Rp−s
m

∫
B(a,3r)

h(expxm
(Rm(x))

|x|sξ
|η̂mv̂m|p−2(η̂mv̂m)ψ̂mdvĝm

−
∫
B(a,3r)

f(expxm
(Rm(x))|η̂mv̂m|p

∗−2(η̂mv̂m)ψ̂mdvĝm .

With the same arguments as those used in [39], we can have∫
B(a,3r)

|∇ĝm(η̂mv̂m)|p−2ĝ
(
∇ĝm(η̂mv̂m),∇ĝmψ̂m

)
dvĝm =

∫
IRn

|∇ĝmψ̂m|pdvĝm + o(1),

and ∫
B(a,3r)

f(expxm
(Rmx))|η̂mv̂m|p

∗−2(η̂mv̂m)ψ̂mdvĝm

=

∫
IRn

f(expxm
(Rmx))|ψ̂m|p

∗
dvĝm + o(1).

Instead, we prove that∫
B(a,3r)

h(expxm
(Rm(x)))

|x|sξ
|η̂mv̂m|p−2(η̂mv̂m)ψ̂mdvĝm (2.1.15)

=

∫
IRn

h(expxm
(Rm(x)))

|x|sξ
|ψ̂m|pdvĝm + o(1)

We distinguish between two cases : 0 ∈ B(a, µ) and 0 /∈ B(a, µ).

Si 0 /∈ B(a, µ), then there exists ϱ > such that, B(ϱ) ∩ B(a, µ) = ∅. Then, by
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using convexity, the Hölder inequality (1.2.6) inequality, we find∣∣∣∣∣
∫
B(a,µ)

h(expxm
(Rm(x)))

|x|sξ

[
|ψ̂m + v|p−2(ψ̂m + v)− |ψ̂m|p−2ψ̂m − |v|p−2v

]
ψ̂mdvĝm

∣∣∣∣∣
≤ Cϱ−s sup |h|∥ψ̂m∥Lp(IRn)

(∫
B(a,µ)

[
| |ψ̂m + v|p−2(ψ̂m + v)− |ψ̂m|p−2ψ̂m − |v|p−2v |

] p
p−1

dx

) p−1
p

≤ C ′∥ψ̂m∥Lp(IRn)

(∫
B(a,µ)

[
| |ψ̂m|p−1−θ|v|θ − ψ̂m|θ|v|p−1−θ |

] p
p−1

dx

) p−1
p

≤ C ′′∥ψ̂m∥Lp(IRn)

[(∫
B(a,µ)

|ψ̂m|
p(p−1−θ)

p−1 |v|
pθ
p−1dx

) p−1
p

+

(∫
B(a,µ)

|ψ̂m|
pθ
p−1 |v|

p(p−1−θ)
p−1 dx

) p−1
p

]
.

Since ψ̂m converges to 0 almost everywhere and is bounded in Lp(IR
n), we get

that |ψ̂m|
p(p−θ−1)

p−1 and |ψ̂m|
pθ
p−1 converge almost everywhere to 0 and are bounded

respectively in L p−1
p−1−θ

(IRn) and L p−1
θ
(IRn). We get then

(∫
B(a,µ)

|ψ̂m|
p(p−1−θ)

p−1 |v|
pθ
p−1dx

) p−1
p

+

(∫
B(a,µ)

|ψ̂m|
pθ
p−1 |v|

p(p−1−θ)
p−1 dx

) p−1
p

= o(1).

Hence, we get ∫
B(a,µ)

h(expxm
(Rmx))

|x|sξ
|η̂mv̂m|p−2(η̂mv̂m)ψ̂mdvĝm

=

∫
B(a,µ)

h(expxm
(Rm(x)))

|x|sξ

[
|ψ̂m|p + |v|p−2vψ̂m

]
dvĝm + o(1).

Now, if 0 ∈ B(a, µ), let ϱ′ > 0 be such that B(ϱ′) ⊂ B(a, µ). Then, as above we

have ∫
B(a,µ)\B(ϱ′)

h(expxm
(Rmx))

|x|sξ
|η̂mv̂m|p−2(η̂mv̂m)ψ̂mdvĝm

=

∫
B(a,µ)\B(ϱ′)

h(expxm
(Rm(x)))

|x|sξ

[
|ψ̂m|p + |v|p−2vψ̂m

]
dvĝm + o(1).
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Moreover, by Hölder inequality we have∫
B(ϱ′)

h(expxm
(Rmx))

|x|sξ
|η̂mv̂m|p−2(η̂mv̂m)ψ̂mdvĝm

≤ C sup |h|

(∫
B(ϱ′)

|η̂mv̂m|p

|x|sξ
dx

) 1
p
(∫

B(ϱ′)

|ψ̂m|p

|x|sξ
dx

)1− 1
p

≤ C sup |h|ϱ′
p−s
p

(∫
B(ϱ′)

|η̂mv̂m|p

|x|pξ
dx

) 1
p
(∫

B(ϱ′)

|ψ̂m|p

|x|sξ
dx

)1− 1
p

.

Now, by Hardy inequality (1.2.3),
(∫

B(ϱ′)
|η̂mv̂m|p

|x|pξ
dx
) 1

p is bounded. Since ψ̂m con-

verges to 0 strongly in Lp(B(ϱ′), |x|s), 0 < s < p, then∫
B(ϱ′)

h(expxm
(Rmx))

|x|sξ
|η̂mv̂m|p−2(η̂mv̂m)ψ̂mdvĝm = o(1).

Thus, in both cases we have∫
B(a,µ)

h(expxm
(Rmx))

|x|sξ
|η̂mv̂m|p−2(η̂mv̂m)ψ̂mdvĝm

=

∫
B(a,µ)

h(expxm
(Rm(x)))

|x|sξ

[
|ψ̂m|p + |v|p−2vψ̂m

]
dvĝm + o(1).

Now, using the fact that ψ̂m converges to 0 strongly in D1,p(A) and weakly to 0

in D1,p(IRn), we get∫
B(a,3r)

h(expxm
(Rmx))

|x|sξ
|η̂mv̂m|p−2(η̂mv̂m)ψ̂mdvĝm

=

∫
B(a,µ)

h(expxm
(Rmx))

|x|sξ
|η̂mv̂m|p−2(η̂mv̂m)ψ̂mdvĝm

=

∫
B(a,µ)

h(expxm
(Rmx))

|x|sξ

[
|ψ̂m|p + |v|p−2vψ̂m

]
dvĝm + o(1)

=

∫
IRn

h(expxm
(Rmx))

|x|sξ
|ψ̂m|pdvĝm + o(1).

We deduce that∫
IRn

|∇ĝmψ̂m|pdvĝm −Rp−s
m

∫
IRn

h(expxm
(Rmx))

|x|sξ
|ψ̂m|pdvĝm

=

∫
IRn

f(expxm
(Rmx))|ψ̂m|p

∗
dvĝm + o(1).
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Since the sequence ψ̂m converges strongly to 0 in Lp(B(a, 3µ), |x|s), s < p and

since Rm ≤ 1, we get that

Rp−s
m

∣∣∣∣∣
∫
IRn

h(expxm
(Rm(x)))

|x|sξ
|ψ̂m|pdvĝm

∣∣∣∣∣ ≤ suphC

∫
IRn

|ψ̂m|p

|x|sξ
dx = o(1).

We get then∫
IRn

|∇ĝmψ̂m|pdvĝm =

∫
IRn

f(expxm
(Rmx))|ψ̂m|p

∗
dvĝm + o(1). (2.1.16)

By the same way as in [39], we can prove that for |a|+ 3r < ro∫
IRn

|∇ĝmψ̂m|pdvĝm ≤ Nγ + o(1), (2.1.17)

where N ∈ N is such that B(a, µ) ⊂ B(a, 2r) ⊂
⋃

1≤i≤N

B(xi, r), with xi ∈ B(a, 2r).

We get then by the Sobolev inequality, that∫
IRn

f(expxm
(Rmx))|ψ̂m|p

∗
dvĝm ≤ sup

M
fC1

∫
IRn

|ψ̂m|p
∗
dx

≤ sup
M

fC
p∗
p
+1

1 K(n, p)p
∗
(∫

IRn

|∇ĝmψ̂m|pdvĝm
) p∗

p

.

Then, by (2.1.16) and (2.1.17), we get∫
IRn

|∇ĝmψ̂m|pdvĝm ≤ sup
M

fC1

∫
IRn

|ψ̂m|p
∗
dx

≤ sup
M

fC
p∗
p
+1

1 K(n, p)p
∗
(Nγ + o(1))

p∗
p
−1

∫
IRn

|∇ĝmψ̂m|pdvĝm .

By taking γ such that

sup
M

fC
p∗
p
+1

1 K(n, p)p
∗
(Nγ)

p∗
p
−1 < 1, (2.1.18)

we get ∫
IRn

|∇ĝmψ̂m|pdvĝm = o(1),

which means that ψ̂m converges strongly in D1,p(IRn). Thus, since r ≤ µ, we get

that η̂mv̂m converges strongly to v in Hp
1 (B(a, r)). This strong convergence holds

as soon as µ and r are small enough, |a| < 3r and |a|+ 3r < min(ro, δ). Then, let

µ be small enough such that condition (2.1.18), then η̂mv̂m converges strongly to

v in Hp
1 (B(a, r)) for all |a| < 2r. Since Co ≤ 2, B(Cor) can be covered by N balls

B(a, r), with a ∈ B(2r) and thus η̂mv̂m converges strongly to v in Hp
1 (B(Cor)).
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Step 2

For any R > 0 and s ∈ (0, p) the sequence v̂m converges strongly to v in Hp
1 (B(R))

and v is a nontrivial solution of (2.1.1).

Proof. First, to prove that v ̸= 0, we use step 1 above. Take r small enough so

that η̂m = 1 on B(Cor), we then obtain

γ =

∫
B(Cor)

|∇ĝm(η̂mv̂m)|pdvĝm

≤
∫
B(Cor)

|∇v|pdx+ o(1).

Hence v ̸= 0. As consequence, we get that Rm → 0.

In fact, if Rm → R > 0. Since vm converges weakly to 0, we get that v̂m converges

weakly to 0 in Hp
1 (B(Cor)). Since v ̸= 0 and (η̂mv̂m) converges strongly to v in

Hp
1 (B(Cor)), we get a contradiction. Thus Rm → 0.

Now, let R > 1. For m large, R < R−1
m and (2.1.8) and (2.1.9) are satisfied for

z+r < Rro. Thus, as one can easily check from the proof of Step 1, η̂mv̂m converges

strongly to v in Hp
1 (B(a, r)) for |a|+3r < rR and |a| ≤ 3r(2R− 1). In particular,

η̂mv̂m converges strongly to v in Hp
1 (B(a, r)) for |a| < 2rR. Hence η̂mv̂m converges

strongly to v in Hp
1 (B(2rR)). Since for m large, η̂m = 1 and R is arbitrary chosen,

we get that v̂m converges strongly to v in Hp
1 (B(R)).

Now, let φ ∈ C∞
0 (Rn) with compact support included in a ball B(R), R > 0. For

m large, define on M the sequence φm as

φm(x) = R
p−n
p

m φ(R−1
m (exp−1

xm
(x))).

Then, we have∫
M

|∇gvm|p−2g(∇gvm,∇gφm)dvg =

∫
IRn

|∇ĝm(η̂mv̂m)|p−2ĝ(∇ĝm(η̂mv̂m),∇ĝmφ)dvĝm .

(2.1.19)

Knowing that dg(y, expy(Rmx)) = Rm|x|, we have

dg(xo, xm)−Rm|x| ≤ dg(xo, expxm
(Rmx)) ≤ dg(xo, xm) +Rm|x|. (2.1.20)
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Suppose that xm → xo as m → ∞. Then, either Rm

dg(xo,xm)
→ 0 as m → ∞, then

dg(xo,expxm (Rmx))

dg(xo,xm)
→ 1 as m→ ∞ and consequently

Rm

dg
(
xo, expxm

(Rmx)
) → 0 as m→ ∞,

or Rm

dg(xo,xm)
→ A > 0 as m→ ∞. Then, always by (2.1.20), we get

1
1
A
+ |x|

≤ lim
m→∞

Rm

dg
(
xo, expxm

(Rmx)
) ≤ 1

1
A
− |x|

.

Hence, by writing∫
M

h

ρsxo

|vm|p−2vmφmdvg

= Rp−s
m

∫
Rn

Rs
m

dg(xo, expxm
(Rmx))s

h(expxo
(Rmx))|(η̂mv̂m)|p−2(η̂mv̂m)φdvĝm ,

and∫
M

f |vm|p
∗−2vmφmdvg =

∫
Rn

f(expxm
(Rmx))|(η̂mv̂m)|p

∗−2(η̂mv̂m)φdvĝm . (2.1.21)

Since ĝm → ξ in C1(B(R)) for any R > 0, the sequence φm is bounded in Hp
1 (M),

the sequence vm is a P-S sequence of Jf,h,s and the sequence η̂mv̂m converges

strongly to v ̸= 0 in D1,p(IRn), by passing to the limit we get that v is a weak

solution of

∆ξ,pv = f(xo)|v|p∗−2v.

Step 3

Let wm = vm − Bm, with

Bm(x) = R
p−n
p

m ηδ,xm(x)v(R
−1
m exp−1

xm
(x)), (2.1.22)

where ηδ,xm(x) = ηδ(exp
−1
xm

(x)). Then, the following statements hold

Bm converges weakly to 0 in Hp
1 (M), (2.1.23)
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DJf,h,s(Bm) → 0, DJf,h,s(wm) → 0 strongly, (2.1.24)

and

Jf,h,s(wm) = Jf,h,s(vm)− (f(xo))
p−n
p E(u), (2.1.25)

with u = (f(xo))
n−p

p2 v is a nontrivial weak solution of (2.0.7).

Proof. The proof of (2.1.23) is identical to that of statement (14) of Step 2.4 in

[39] and thus we omit it. We prove (2.1.24). Let φ ∈ Hp
1 (M). For x ∈ B(δR−1

m )

put φm(x) = R
n−p
p

m φ(expxm
(Rmx)) and φ̄m = ηδ(Rmx)φm(x). Let R > 0 be a

constant, we have∫
M

|∇gBm|p−2g(∇gBm,∇gφ)dvg =

∫
B(xm,RmR)

|∇gBm|p−2g(∇gBm,∇gφ)dvg

+

∫
B(xm,2δ)\B(xm,RmR)

|∇gBm|p−2g(∇gBm,∇gφ)dvg.

Direct computations give∫
B(xm,2δ)\B(xm,RmR)

|∇gBm|p−2g(∇gBm,∇gφ)dvg = O(||φ||Hp
1 (M))ε(R),

where ε(R) → 0 as R → ∞.

For m large, we have∫
B(xm,RmR)

|∇gBm|p−2g(∇gBm,∇gφ)dvg =

∫
B(R)

|∇ĝmv|p−2ĝ(∇ĝmv,∇ĝmφm)dvĝm

knowing that ∫
B(xm,RmR)

|∇gφ|pdvg =
∫
B(R)

|∇ĝmφm|pdvĝm ,

and that the sequence of metrics ĝm converges in C1(B(R′)), R′ > R, we get that∫
B(xm,RmR)

|∇gBm|p−2g(∇gBm,∇gφ)dvg

=

∫
B(R)

|∇ĝmv|p−2ĝ(∇ĝmv,∇ĝmφm)dx+ o(||φ||Hp
1 (M)).

=

∫
IRn

|∇v|p−2
ξ ∇v.∇φmdx+ o(||φ||Hp

1 (M)) +O(||φ||Hp
1 (M))ε(R),
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where ε(R) → 0 as R → ∞.Thus∫
M

|∇gBm|p−2g(∇gBm,∇gφ)dvg (2.1.26)

=

∫
IRn

|∇v|p−2
ξ ∇v.∇φmdx+ o(||φ||Hp

1 (M)) +O(||φ||Hp
1 (M))ε(R),

By the same way, we get that∫
M

f(x)|Bm|p
∗−2Bmφdvg (2.1.27)

= f(xo)

∫
IRn

|v|p∗−2vφmdx+ o(||φ||Hp
1 (M)) +O(||φ||Hp

1 (M))ε(R).

Since the sequence Bm converges to 0 weakly inHp
1 (M) and the inclusionHp

1 (M) ⊂
Lp(M, (ρxo)

s) is compact for s ∈ (0, p), we can assume that Bm → 0 in Lp(M, (ρxo)
s).

Then, using the fact that v is a weak solution of ∆ξ,pv = f(xo)|v|p∗−2v, we get

DJf,h,s(Bm).φ = o(||φ||Hp
1 (M)) +O(||φ||Hp

1 (M))ε(R).

Since R arbitrary, we get that DJf,h,s(Bm) → 0. This proves the first part of

(2.1.24). For the proof of the second part of (2.1.24), we write

DJf,h,s(wm) = DJf,h,s(vm)−DJf,h,s(Bm) +Am.φ+ Cmφ+Dmφ,

where

Am.φ =

∫
M

g(|∇gwm|p−2∇gwm − |∇gvm|p−2∇gvm + |∇gBm|p−2∇gBm,∇gφ)dvg,

Cmφ =

∫
M

h

(ρxo)
s

(
|wm|p−2wm + |vm|p−2vm − |Bm|p−2Bm

)
.φdvg,

and

Dmφ =

∫
M

f
(
|wm|p

∗−2wm + |vm|p
∗−2vm − |Bm|p

∗−2Bm

)
.φdvg.

We repeat the same arguments as in (2.0.15), we get that Am.φ → 0, Cm.φ → 0

and Dm.φ → 0 which ends the proof of (2.1.24). Now, we prove (2.1.25). First,

we repeat the same calculation in [39], we get∫
M

|∇gwm|pgdvg =
∫
M

|∇gvm|pdvg −
∫
Rn

|∇v|pdx+Bm(R) + o(1), (2.1.28)
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and∫
M

f |wm|p
∗
dvg =

∫
M

f |vm|p
∗
dvg − f(xo)

∫
Rn

|v|p∗dx+Bm(R) + o(1), (2.1.29)

with lim
R→∞

lim sup
m→∞

Bm(R) = 0.

Since wm → 0 weakly in Hp
1 (M) which is compactly embedded in Lp(M, (ρxo)

s)

for s ∈ (0, p), we may assume that wm → 0 strongly in Lp(M, (ρxo)
s). Therefore,

since R is arbitrarily chosen, by combining (2.1.28), (2.1.29), we get

Jf,h,s(wm) = Jf,h,s(vm)− (f(xo))
p−n
p E(u) + o(1),

with u is a weak solution of (2.0.7).

2.2 The critical Hardy potential.

Lemma 2.6. Let vm be a P.S sequence of Jf,h,p at a level β that converges weakly

and not strongly to 0 in Hp
1 (M). Then, there exists a sequence of positive reals

Tm → 0 as m→ ∞ such that the sequence η̃mṽm with

ṽm(x) = T
n−p
p

m vm(expxo
(Tmx)),

and η̃m(x) = η(δ−1Tmx), 0 < δ ≤ Injg
2

and η is defined by (2.1.12), converges up

to subsequence to a weak solution v ∈ D1,p(IRn) of

∆ξ,pv +
h(xo)

|x|p
|v|p−2v = f(xo)|v|p

∗−2v,

Moreover, the sequence

wm(x) = vm(x)− T
p−n
p

m ηδ(exp
−1
xo
(x))v(T −1

m exp−1
xo
(x)),

where 0 < δ < Ig
2
, admits a subsequence wm that is a P-S sequence of Jf,h,p, at

level β − Ef,h(v) that converges to 0 weakly in Hp
1 (M).
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Proof. Let vm be a P.S sequence of Jf,h,p at level β that converges to 0 weakly

and not strongly in Hp
1 (M). Then,up to a subsequence, we can assume that vm

converges strongly to 0 in Lp(M) and that, by (2.0.19) there exists a small positive

constant γ̃, such that

lim sup
m→∞

∫
M

|∇gvm|p dvg > γ̃ > 0.

Up to a subsequence, for each m > 0, there exists a constant r̃m > 0 such that∫
B(xo,r̃m)

|∇gvm|p dvg = γ̃ (2.2.1)

For 0 < ro <
Injg
2

and Co as in (2.1.3). For 0 < r < ro, put Tm = r̃m
rCo

and for

x ∈ B(T −1
m δg) and define

ṽm(x) = T
n−p
p

m vm(expxo
(Tmx)), x ∈ IRn

g̃m(x) = exp∗
xo
g(Tmx)

We let the sequence η̃mṽm such that η̃m = η(δ−1Tmx), δ ∈ (0, Injg
2
) and η ∈ Co(IR

n)

is the cut-off function such that 0 ≤ η ≤ 1, η(x) = 1, x ∈ B(1
4
) and η(x) = 0, x ∈

Rn \ B(3
4
). Going through the same way in the proof of Lemma 3.3, we get then

that the sequence η̃mṽm is bounded in D1,p(IRn) and then it converges weakly in

D1,p(IRn) to a function v ∈ D1,p(IRn).

Suppose that v ̸= 0, we get then that Tm → 0. To prove that v solves (2.0.8),

we let φ ∈ C∞
0 (Rn) with compact support included in a ball B(R), R > 0. For m

large, define on M the sequence φm as

φm(x) = T
p−n
p

m φ(T −1
m (exp−1

xo
(x)))

Identities (2.1.19) and (2.1.21) still hold and we have∫
M

h

ρpxo

|vm|p−2vmφmdvg =

∫
Rn

h(expxo
(Tmx))

|x|p
|(η̃mṽm)|p−2(η̃mṽm)φdvg̃m .

Since Tm → 0, g̃m → ξ in C1(B(R)) and thus we can write dvg̃m = εmdx, with

ε→ 1 uniformly in B(R). In addition, we can prove, as in [39] (proof of step 2.1),
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that ∇(η̃mṽm) → ∇v a.e. Since we have also η̃mṽm → v a.e, and the sequence

η̃mṽm is bounded in Lp(Rn, |x|p) we get by basic integration theory together with

the fact that the sequence φm is bounded in Hp
1 (M) and the sequence vm is a P-S

sequence of Jf,h,p, that v is a weak solution of

∆ξ,pv −
h(xo)

|x|p
|v|p−2v = f(xo)|v|p

∗−2v,

Now, that the sequence wn converges weakly to 0 in Hp
1 (M) follows in the same

manner as in the proof of Step 3 above. To prove that DJf,h,p(wm) → 0, we con-

sider the sequence Bm defined by (2.1.22). Let φ ∈ Hp
1 (M). For x ∈ B(δT −1

m ) put

φm(x) = T
n−p
p

m φ(expxo
(Tmx)) and φ̄m = ηδ(Tmx)φm(x). Then, identities (2.1.26)

and (2.1.27) still hold. Let R > 0 be a constant, we have

∫
M

h

(ρxo)
p
|Bm|p−2Bmφdvg =

∫
B(xo,TmR)

h

(ρxo)
p
|Bm|p−2Bmφdvg

+

∫
B(xo,δ)\B(xo,TmR)

h

(ρxo)
p
|Bm|p−2Bmφdvg.

By Hölder and Hardy inequalities we have∫
B(xo,δ)\B(xo,TmR)

h

(ρxo)
p
|Bm|p−2Bmφdvg ≤ sup

M
|h|∥φ∥Hp

1 (M)

∫
B(xo,δ)\B(xo,TmR)

|∇gBm|pdvg + o(1)

= sup
M

|h|∥φ∥Hp
1 (M)

∫
B(δT −1

m ))\B(R)

|∇v|pdx+ o(1)

= O(∥φ∥Hp
1 (M))ε(R) + o(1),

with ε→ 0 as R → ∞.

Put

φ(x) = T
n−p
p

m φ(expxo
(Tmx)).

Then, for m large∫
B(xo,TmR)

h

(ρxo)
p
|Bm|p−2Bmφdvg =

∫
B(R)

h(expxo
(Tmx))

|x|p
|v|p−2vφmdvg̃m
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Since g̃ → ξ in C1(B(R′), R′ > R, we get∫
B(R)

h(expxo
(Tmx))

|x|p
|v|p−2vφmdvg̃m = h(xo)

∫
B(R)

1

|x|p
|v|p−2vφmdx+ o(∥φ∥Hp

1 (M))

= h(xo)

∫
Rn

1

|x|p
|v|p−2vφmdx+ o(∥φ∥Hp

1 (M))

+ O(∥φ∥Hp
1 (M))ε(R).

Therefore∫
M

h

(ρxo)
p
|Bm|p−2Bmφdvg = h(xo)

∫
Rn

1

|x|p
|v|p−2vφmdx+o(∥φ∥Hp

1 (M))+O(∥φ∥Hp
1 (M))ε(R)+o(1).

(2.2.2)

Since v is a weak solution of (2.0.8), we get by (2.1.26), (2.1.27) and (2.2.2)

that DJf,h,p(Bm) → 0. This implies, as in the proof of (2.1.24) of Step 3, that

DJf,h,p(wm) → 0.

Now, we prove the last statement of the lemma. Put

ŵm(x) = T
n−p
p

m wm(expxo
(Tmx)) = ṽm − ηδ(Tmx)v(x)

By convexity, we have∫
Rn

|∇(v(ηδ(Tmx)− 1))|pdx

=

∫
Rn\B(δT −1

m )

|∇v|pdx+
∫
B(2δT −1

m )\B(δT −1
m )

|∇(v(ηδ(Tmx)− 1))|pdx

≤ 2p−1

(∫
B(2δT −1

m )\B(δT −1
m )

|ηδ(Tmx)− 1)|p|∇v|pdx+ T p
m

∫
B(2δT −1

m )\B(δT −1
m )

|v|p|(∇ηδ)(Tmx)|pdx
)

+

∫
Rn\B(δT −1

m )

|∇v|pdx

≤ 2p−1

(∫
B(2δT −1

m )\B(δT −1
m )

|∇v|pdx+ CT p
m

∫
B(2δT −1

m )\B(δT −1
m )

|v|pdx
)
+

∫
Rn\B(δT −1

m )

|∇v|pdx

= o(1).

Similarly, we get that η̃mv = v + o(1). Thus, we obtain

η̃mŵm = η̃mṽm − v + o(1).
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Since η̃mṽm → v a.e in Rn and ∇(η̃mṽm) → ∇v a.e in Rn, we get, as in the proof

of lemma 2.1, that

Ef,h(η̃mŵm) = Ef,h(η̃mṽm)− Eh,f (v) + o(1).

By using re-scaling invariance and the fact that g̃m → ξ in C1(B(R)) for any

R > 0, we get that

Jf,h,p(wm) = Jf,h,p(vm)− Eh,f (v) + o(1).

Lemma 2.7. Suppose that the weak limit v in D1,p(Rn) of the sequence η̃mṽm of

the above lemma is null. Then, there exists a sequence of positive numbers τm → 0

and a sequence of points yi ∈M \{xo}, yi → yo ̸= xo such that up to a subsequence,

the sequence η̌mν̌m with

ν̌m = τ
n−p
p

m vm(expyi
(τmx)),

and η̌m(x) = η(δ−1τmx), converges weakly to a nontrivial weak solution ν of the

Euclidean equation

∆ξ,pν = f(yo)|ν|p
⋆−2ν

and the sequence

Wm = vm − τ
p−n
p

m ηδ(exp
−1
yi
(x))ν(τ−1

m exp−1
yi
(x))

is a Palais-Smale sequence for Jf,h,p that converges weakly to 0 in Hp
1 (M) and

Jf,h,p(Wm) = Jf,h,p(vm)− f(yo)
p−n
p E(u),

with u is a solution of (2.0.7).

Proof. Take a function φ ∈ C∞
0 (B(Cor)) and put φm(x) = φ(T −1

m exp−1
xo
(x)). we

have ∫
Rn

|∇g̃m ṽm|p−2g̃(∇g̃m ṽm,∇g̃m(ṽm|φ|p))dvg̃m =

∫
Rn

|φ|p|∇g̃m ṽm|pdvg̃m

+

∫
Rn

p|φ|p−1|ṽm||∇g̃m ṽm|p−2g̃(∇g̃m ṽm,∇g̃m|φ|)dvg̃m .
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Since the sequence η̃mṽm is bounded in D1,p(IRn) and it converges strongly to 0 in

Lp,loc(IR
n), we have∣∣∣∣∫

Rn

p|φ|p−1|ṽm||∇g̃m ṽm|p−2g̃(∇g̃m ṽm,∇g̃m|φ|)dvg̃m
∣∣∣∣

≤ C

∫
B(Cor)

|ṽm||∇g̃m ṽm|p−1dvg̃m

≤ C

(∫
B(Cor)

|ṽm|pdvg̃m
) 1

p
(∫

B(Cor)

|∇g̃m ṽm|
p
g̃m
dvg̃m

)1− 1
p

= o(1).

Then∫
Rn

|∇g̃m ṽm|p−2g̃(∇g̃m ṽm,∇g̃m(ṽm|φ|p))dvg̃m =

∫
Rn

|φ|p|∇g̃m ṽm|pdvg̃m + o(1).

Using the inequalities (1.2.7), (1.2.8), and (1.2.8), together with Hölder inequality

and the strong convergence of η̃mṽm in Lp,loc(IR
n), we get∫

Rn

|∇g̃m(ṽmφ)|pdvg̃m ≤
∫
Rn

|φ|p|∇g̃m ṽm|pdvg̃m + o(1),

in such way that ∫
Rn

|∇g̃m(ṽmφ)|pdvg̃m

≤
∫
Rn

|∇g̃m ṽm|p−2g̃(∇g̃m ṽm,∇g̃m(ṽm|φ|p))dvg̃m + o(1),

=

∫
M

|∇vm|p−2 g(∇gvm,∇g(vm|φm|p))dvg + o(1)

Moving to and from re-scaling, using Hölder, Hardy and Sobolev inequalities and
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the fact that vm is P-S sequence and that vm|φm|p is bounded in Hp
1 (M), we get∫

Rn

|∇g̃m(ṽmφ)|pdvg̃m

≤
∫
M

|∇gvm|p−2 g(∇gvm,∇g(vm|φm|p))dvg + o(1)

= (DJf,h,p(vm)).(vm|φm|p) +
∫
M

h

ρpxo

|vmφm|p |dvg

+

∫
M

f |vm|p
∗−p |vmφm|p dvg + o(1)

≤ (h(xo) + ε)

((
p

n− p

)p

+ ε

)∫
Rn

|∇g̃m(ṽmφ)|
p dvg̃m

+ (Kp⋆(n, p) + ε) sup f
(∫

B(Cor)

|∇g̃m(ṽm)|
p dvg̃m

) p
n−p

∫
Rn

|∇g̃m(ṽmφ)|
p dvg̃m

+ o(1).

Thus, since 1− h(xo)(
p

n−p
)p > 0, for γ̃ in (2.2.1) chosen small enough, we get that

for each t, 0 < t < Cor∫
B(xo,tTm)

|∇gvm|p dvg =
∫
B(t)

|∇g̃m ṽm|
p dvg̃m → 0,m→ ∞ (2.2.3)

Now, the sequence vm is a P.S sequence that converges to 0 weakly and not strongly

in Hp
1 (M), we get as in lemma 2.2 that∫

M

|∇gvm|p dvg ≥
(

nβ∗

supM f(K(n, p) + ε)p∗

) p
p∗

+ o(1). (2.2.4)

Consider for t > 0 the function

t 7→ Fm(t) = max
y∈M

∫
B(y,t)

|∇gvm|p dvg

Given to small, it follows from (2.2.4) that there exists y ∈ M and λo > 0 such

that up to a subsequence ∫
B(y,to)

|∇gvm|p dvg ≥ λo (2.2.5)

Since Fm is continuous, it follows that for any λ ∈ (0, λo), there exist tm ∈ (0, to)

and ym ∈M such that

Fm(tm) =

∫
B(ym,tm)

|∇gvm|p dvg = λ. (2.2.6)
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Since M is compact, up to a subsequence, we may assume that ym converges to

some point yo ∈M .

Note first that for all m ≥ 0, tm < r̃m = CorTm , otherwise if there exists mo ≥ 0

such that tmo ≥ r̃mo , we get

λ =

∫
B(ymo ,tmo )

|∇gvmo|
p dvg ≥

∫
B(xo,tmo )

|∇gvmo |
p dvg ≥

∫
B(xo,r̃mo )

|∇vmo|
p dvg = γ.

Hence, if we choose λ small enough such that 0 < λ < γ, we get a contradiction.

Now, suppose that for all ε > 0, there exists mε > 0 such that for all m ≥ mε

distg(ym, xo) ≤ ε. Choose r′m such that, tm < r′m < r̃m and take ε′ = r′m − tm, we

get that for some mε′ > 0 and m ≥ mε′

B(ym, tm) ⊂ B(xo, r
′
m)

which gives, by virtue of (2.2.3) and (2.2.6), a contradiction. We deduce then that

yo ̸= xo.

Now, take 0 < τm < 1 such that Corτm = tm, where r ∈ (0, ro) and Co and ro are

as in (2.1.3). Then, for x ∈ B(τ−1
m δg) ⊂ Rn consider the sequences

ν̌m(x) = τ
n−p
p

m vm(expym(τmx)),

ǧm(x) = exp∗
ym g(τmx)

Put η̌m(x) = η(δ−1τmx), where δ ∈ (0, Injg) and x ∈ IRn. As in the proof of lemma

2.3, we can easily check that there is a subsequence of η̃mν̃m that converges weakly

in D1,p(Rn) to some function ν. We prove that actually the strong convergence

holds in Hp
1 (B(R)), R > 0. In fact, we go through the same proof of Step 1 above

by just replacing xm by ym and Rm by τm. We let then a ∈ IRn and µ ∈ [r, 2r] and

consider the sequence
ψ̌m = η̌mν̌m − ν in B(a, µ),

ψ̌m = zm in B(a, 3r) \B(a, µ),

ψ̌m = 0 in IRn \B(a, 3r).
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where zm are solutions of (2.1.13). For r < δ
24

, consider the re-scaling sequence

ψm of ψ̌m  ψm(x) = τ
p−n
p

m ψ̌m(τ
−1
m exp−1

ym(x)), if x < dg(ym, 6r),

ψm(x) = 0, otherwise.

As in (2.1.14), we have

o(1) =

∫
B(a,3r)

|∇ǧm(η̌mν̌m)|p−2ǧ
(
∇ǧm(η̌mν̌m),∇ǧmψ̌m

)
dvǧm (2.2.7)

− τ pm

∫
B(a,3r)

h(expym(τmx))(
ρxo(expym(τmx))

)p |η̌mν̌m|p−2(η̌mν̌m)ψ̌mdvǧm

−
∫
B(a,3r)

f(expym(τmx))|η̌mν̌m|
p∗−2(η̌mν̌m)ψ̌mdvǧm .

As above, we have∫
B(a,3r)

|∇ǧm(η̌mν̌m)|p−2ǧ
(
∇ǧm(η̌mν̌m),∇ǧmψ̌m

)
dvǧm =

∫
IRn

|∇ǧmψ̌m|pdvǧm + o(1),

and ∫
B(a,3r)

f(expym(τmx))|η̌mν̌m|
p∗−2(η̌mν̌m)ψ̌mdvǧm

=

∫
IRn

f(expym(τmx))|ψ̌m|p
∗
dvǧm + o(1).

Since τm → 0 we get that for all ε > 0 there exists mo such that for all m ≥ mo

have

ρxo(expym(τmx)) = distg(xo, expym(τmx)) ≥ distg(xo, yo)− ε = ϱ > 0.

Then, as in the proof of step 1, we get∫
B(a,3r)

h(expym(τmx))(
ρxo(expym(τmx))

)p |η̌mν̌m|p−2(η̌mν̌m)ψ̌mdvǧm (2.2.8)

=

∫
IRn

h(expym(τmx))(
ρxo(expym(τmx))

)p |ψ̌m|pdvǧm + o(1).
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Since the sequence ψ̌m converges strongly to 0 in Lp,loc(IR
n), we get∫

IRn

h(expym(τmx))(
ρxo(expym(τmx))

)p |ψ̌m|pdvǧm ≤ C

∫
IRn

|ψ̌m|pdvǧm = o(1).

We deduce that∫
IRn

|∇ǧmψ̌m|pdvǧm =

∫
IRn

f(expym(τmx))|ψ̌m|p
∗
dvǧm + o(1).

The remaining of the proof goes in the same way as in the proof of step 1 and step

2. Thus we get that ν ̸= 0 and ν is a weak solution of

∆p,ξν = f(yo)|ν|p
∗−2ν.

Now, we are in position to prove the theorem 2.1 and 2.2

Proof of theorem 2.1. Let us first note that if u ∈ D1,p(Rn) is a nontrivial weak

solution of (2.0.8), then

Ef,h(u) ≥
(1− h(xo)(

p
n−p

)p)
n
p

(supM f)
n−p
p Kn(n, p))

. (2.2.9)

In fact, by Hardy and Sobolev inequalities, we have(
1− h(xo)

(
p

n− p

)p)∫
Rn

|∇u|pdx ≤
∫
Rn

|∇u|pdx− h(xo)

∫
Rn

|u|p

|x|p
dx = f(xo)

∫
Rn

|u|p∗dx

≤ f(xo)K
p∗(n, p)

(∫
Rn

|∇u|pdx
) p∗

p

Since u cannot be a constant, we get∫
Rn

|∇u|pdx ≥
(1− h(xo)(

p
n−p

)p)
n−p
p

(f(xo))
n−p
p Kn(n, p))

.

Hence

Ef,h(u) =
1

n

(∫
Rn

|∇u|pdx− h(xo)

∫
Rn

|u|p

|x|p
dx

)
≥

(1− h(xo)(
p

n−p
)p)(1− h(xo)(

p
n−p

)p)
n−p
p

n(f(xo))
n−p
p Kn(n, p))

≥
(1− h(xo)(

p
n−p

)p)
n
p

n(supM f)
n−p
p Kn(n, p))

.
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By the same way, we can also have that for a nontrivial solution u ∈ D1,p(Rn) of

(2.0.7),

E(u) ≥ 1

nKn(n, p))
. (2.2.10)

Now, let um be a P-S sequence for Jf,h,s at level βu
s , 0 < s < p. Then, um is

bounded in Hp
1 (M) and it converges, up to a subsequence, to a function u weakly

in Hp
1 (M) and almost everywhere to u in M . Thus, by Lemma 2.3, the function

u is a weak solution of (Es), 0 < s < p and the sequence vm = um − u is a Palais-

Smale sequence for Jf,h,s at level βs = βu
s − Jf,h,s(u).

If vm converges strongly to 0 in Hp
1 (M), then the theorem is proved with k =

0. If not, by lemma 2.4, βs ≥ β∗ = 1

n(supM f)
n−p
p Kn(n,p))

. Then, by Lemma 2.5

and its proof, there exists a nontrivial weak solution v1 ∈ D1,p(Rn) of ∆p,ξv =

f(xo1)|v|p
∗−2v, a converging sequence of points x1m → xo1 and a sequence of reals

R1
m → 0 such that, the sequence

wm(x) = vm − (R1
m)

p−n
p ηδ(exp

−1
x1
m
(x))v1((R

1
m)

−1 exp−1
x1
m
(x)), x ∈M

admits a subsequence that is P-S sequence of Jf,h,s, 0 < s < p, at level β1 =

βs− (f(xo1))
p−n
p E(u1), with u1 is a nontrivial weak solution of (2.0.7). By (2.2.10),

β1 ≤ βs − β∗. Then, if βs < 2β∗, we get β1 < β∗ and the sequence wm converges

strongly to 0 in Hp
1 (M). Hence, the theorem is proved with k = 1. If not we

repeat the procedure until we obtain a P-S sequence at level βk ≤ βs − kβ∗ < β∗

and theorem 2.1 is proved.

Proof of theorem 2.2. In the same way as above, we prove theorem 2.2. We let um
be a P-S sequence for Jf,h,p at a level βu. Then, um is bounded in Hp

1 (M) and

it converges, up to a subsequence, to a function u weakly in Hp
1 (M) and almost

everywhere to u in M . Thus, by Lemma 2.3, the function u is a weak solution of

(Es), s = p, and the sequence vm = um − u is a Palais-Smale sequence for Jf,h,p at

level β = βu − Jf,h,p(u).

65



Chapter 2. Decomposition of Palais-Smale sequences

If vm converges strongly to 0 in Hp
1 (M), then the theorem is proved with k = 0,

l = 0. If not, by lemma 2.4, β ≥ β∗ =
(1−h(xo)(

n−p
p

)p)
n
p

n(supM f)
n−p
p Kn(n,p)

. By lemma 2.6, there

exist a sequence of positive reals T 1
m → 0 such that the sequence η̃1mṽ1m with

ṽ1m(x) =
(
T 1
m

)n−p
p vm(expxo

(T 1
mx)),

and η̃1m(x) = η(δ−1T 1
mx), 0 < δ ≤ Injg

2
and η is defined by (2.1.12), converges, up

to subsequence, weakly to some function v1 ∈ D1,p(IRn) such that if v1 ̸= 0, then

v1 is solution of

∆ξ,pv +
h(xo)

|x|p
|v|p−2v = f(xo)|v|p

∗−2v,

and the sequence

w1
m(x) = vm(x)− (T 1

m)
p−n
p ηδ(exp

−1
xo
(x))v1((T 1

m)
−1 exp−1

xo
(x)),

where 0 < δ < Injg
2

, admits a subsequence wm that is a P-S sequence of Jf,h,p,

at level β1 = β − Ef,h(v1) that converges to 0 weakly in Hp
1 (M). By (2.2.9),

β1 ≤ β − β∗. Then, if β < 2β∗, we get β1 < β∗ and the sequence wm converges

strongly to 0 in Hp
1 (M). If not, we repeat the procedure until we obtain a palais-

Smale sequence at level βk ≤ β − kβ∗ < β∗.

Now, if the weak limit v1 of the sequence ṽ1m is the zero function by lemma 2.7,

there exists a nontrivial weak solution ν1 of ∆p,ξν = f(yo)|ν|p
∗−2ν, a sequence of

positive reals τ 1m → 0 and a sequence y1m → y1o ̸= xo such that the sequence

w̌m(x) = vm − (τ 1m)
p−n
p ηδ(exp

−1
y1m
(x))ν1((τ

1
m)

−1 exp−1
y1m
(x)), x ∈M

admits a subsequence which is a P-S sequence of Jf,h,p at level β−(f(y1o))
p−n
p E(u1) ≤

β1 = β − β∗
s , with u1 is a nontrivial weak solution of (2.0.7). If β < 2β∗, then

β1 < β∗ and the sequence w̌m converges strongly to 0 in Hp
1 (M). The theorem is

then proved with k = 0 and l = 1. If not, we repeat the procedure until we obtain

a P-S sequence at level βl ≤ β − lβ∗ < β∗.
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Chapter 3

Existence results for a

Hardy-Sobolev equation containing

p-Laplacian operator.

In this chapter, we will establish some existence results for the equation (Es),

0 < s ≤ p. Our results generalize (partially) those obtained in [17], [25] and [46].

3.1 Regularity of solutions

As to the regularity of the weak solution of our equation, using the approach used

in [1], we can see that the weak solutions of (Es) are in C1,α(M \ xo) for α > 0.

Let u ∈ Hp
1 (M) be a weak solution of (Es). Let R > 0, ε > 0 be positive constants

such that ε < R. Let N = B(xo, R) \B(xo, ε). Consider the problem
∆g,pv − h(x)

(ρxo (x))
s |v|p−2 v = f(x) |v|p

∗−2 v, 0 < s ≤ p, x ∈ N ;

v|∂B(xo,R) = u|∂B(xo,R);

v|∂B(xo,ε) = u|∂B(xo,ε);

v ∈ Hp
1 (N).
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Since u is a weak solution of the problem above, so by the regularity result-C1,α

[17, theorem 2.3], there exists α > 0 such that u ∈ C1,α(N). Since R and ε are

arbitrary, we find that u ∈ C1,α(M \ {xo}).
Now, we define on Hp

1 (M) the functional

Lh,s(u) =

∫
M

(
|∇gu|p −

h

(ρxo)
s
|u|p
)
dvg, 0 < s ≤ p. (3.1.1)

We say that Lh,s(u), 0 < s ≤ p is coercive if there exists a positive constant λ,

such that for any ∈ Hp
1 (M)

Lh,s(u) ≥ λ∥u∥2Hp
1 (M).

In this chapter we prove the following two existence theorems.

Theorem 3.1. Let (M, g) be a compact Riemannian manifold of dimension n.

Let p be a real number such that 1 < p < n and n > p2. Let f and h be two

regular functions on M such that f is positive everywhere on M . Let ρxo be the

function on M as defined in (0.0.1). Assume that h is such that the operator Lh,s

is coercive. Suppose there exists a point x1 ̸= xo such that f(x1) = supM f(x) and

f(x1) = sup
M

f(x) ≥ f(xo)(
1− h(xo)(

p
n−p

)p
) n

n−p

. (3.1.2)

Suppose we are in one of the following cases:

1. 1 < p < 2 and h(x1) > 0,

2. p = 2 and

8(n− 1)

(n− 2)(n− 4)
h(x1) > distg(xo, x1)

s

(
∆gf(x1)

f(x1)
− 2Scalg(x1)

n− 4

)
, 0 < s ≤ p.

(3.1.3)

3. p > 2 and (
n+ 2− 3p

p

)
∆gf(x1)

f(x1)
< Scal(g)(x1), (3.1.4)

68



Chapter 3. Existence results for a Hardy-Sobolev equation containing
p-Laplacian operator.

Then, the equation (Es), 0 < s ≤ p, has a positive weak solution u ∈ Hp
1 (M).

Theorem 3.2. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3.

Let p and s be real numbers such that 0 < s < p, 1 < p < n and n > p2 − sp + s.

Let f and h be two regular functions on M . Let ρxo be the function of M as defined

in (0.0.1). We assume that h is such that the operator Lh,s is coersive. Assume

that f and h satisfy the following conditions

1. f(xo) = supM f(x), f(x) > 0, x ∈M ,

2. 0 < h(xo) < (n−p
p
)p.

Suppose we are in one of the following cases:

1. 0 < p < s+ 2 and h(xo) > 0

2. p = s+ 2 and(
p− 1

n− p

)p
p

n(p− 1)

Γ(n− n+2
p

+ 3− p) Γ(n)

Γ(n− p)
h(xo)

>
Γ(n− n

p
− 2

p
+ 2)

2n2

(
(n+ 2− 3p)

∆gf (xo)

f (xo)
− p Scal(g) (xo)

)
3. p > s+ 2 and (

n+ 2− 3p

p

)
∆gf(xo)

f(xo)
< Scal(g)(xo)

Then, equation (Es), 0 < s < p, has a positive weak solution u ∈ Hp
1 (M).

In seeking weak solutions to (Es), we use the variational method in which weak

solutions are obtained as limits of P.S. sequences. As our equation contains the

critical Sobolev exponent, the P.S. sequences do not converge at all levels. The

following proposition gives us the level under which P.S. sequences converge (to a

subsequence).

Proposition 3.3. Suppose that the function f is positive, h(xo) > 0, 1−h(xo)( p
n−p

)p >

0 and Lh,s(u) =
∫
M
(|∇gu|p − h |u|p

(ρxo (x)))
s )dvg ≥ 0, 0 < s ≤ p, ∀u ∈ Hp

1 (M).
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Let um be a P-S sequence of Jf,h,s, 0 < s ≤ p, at level β. Then, the sequence um
converges, up to a subsequence, to a non zero function u ∈ Hp

1 (M) \ {0} in the

following cases

1. 0 < s < p and

0 < β <
1

n(supM f)
n−p
p K(n, p)n

, (3.1.5)

2. s = p and

0 < β < min

(
(sup

M
f)−

n−p
p , (f(xo))

−n−p
p

[
1− h(xo)(

p

n− p
)p
]n

p

)
1

nK(n, p)n
.

(3.1.6)

Proof. Let um be a Palais-Smale sequence of Jf,h,s, 0 < s ≤ p at level β. In the

case s < p we have by theorem 2.1 that identities (2.0.9) and (2.0.10) hold. Since

vi are solutions of (2.0.7), by (2.2.10) we have that(
f(xio)

) p−n
p E(vi) ≥

1

n(supM f)
n−p
p K(n, p)n

. i = 1, k

Then (3.1.5), implies that all the functions vi are equal to zero, and the expression

(2.0.9) implies that um converge strongly up to a subsequence to a non zero weak

solution of (Es), s < p.

Similarly, in the case s = p, we have by theorem 2.2 that identities (2.0.11) and

(2.0.12) hold, Since νj and vi are non trivial weak solutions of (2.0.7) and (2.0.8)

respectively, the inequalities (2.2.9) and (2.2.10) will gives us that(
f(yjo)

) p−n
p E(νj) ≥

1

n(supM f)
n−p
p K(n, p)n

, j = 1, l.

and

Ef,h(vi) ≥

(
1− h(xo)(

p
n−p

)p
)n

p

n(f(xo))
n−p
p K(n, p)n

, i = 1, k.

Then (3.1.6), implies that all the functions vi and the functions νj are equal to

zero, and the expression (2.0.11) implies that um converge strongly up to a subse-

quence to a non zero weak solution of (Es), s = p.
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Let us introduce the Nehari manifold for the functional Jf,s,h.

Nh,f,s = {u ∈ Hp
1 (M)\{0}, (DJh,f,s(u)).u = 0}

We can easily check that for u ∈ Hp
1 (M)\{0}, the function defined by

Φ(u) =


∫
M

(
|∇u|p − h

|u|p

(ρxo)
s

)
dvg∫

M

f |u|p∗dvg


n−p

p2

u, (3.1.7)

belongs to Nh,f,s, and Jh,f,s(Φ(u)) = maxt>0 Jh,f,s(tu).

Let Gh,f,s(u) = DJh,f,s(u)u, u ∈ Hp
1 (M)\{0} and

∇Nh,f,s
Jh,f,s(u) = ∇ · Jh,f,s(u)−

∇Jh,f,s(u) · ∇Gh,f,s(u)

∥∇Gh,f,s(u)∥p
∇Gh,f,s(u), u ∈ Nh,f,s

∇Nh,f,s
Jh,f,s(u) is the projection of ∇Jh,f,s on the tangent space TuNh,f,s.

We define a constraint P.S. sequence of Jh,f,s on Nh,f,s at level β as a sequence um
such that ∇Nh,f,s

Jh,f,s (um) → 0 and Jh,f,s (um) → β.

The next lemma follows immediately from the expression of ∇Nh,f,s
Jh,f,s(u)

Lemma 3.4. If um is a constrained Palais-Smale sequence of Jh,f,s on Nh,f,s, then

um is a Palais-Smale sequence of Jh,f,s on Hp
1 (M),.

Now, we set

µ = inf
u∈Hp

1 (M)\{0}

∫
M

(
|∇u|p − h

|u|p

(ρxo)
s

)
dvg(∫

M

f |u|p∗dvg
) p

p∗
. (3.1.8)

The following proposition is the first step towards proving theorems 3.1 and 3.2.

This proposition gives generic condition for the existence of a weak solution of

equation (Es).
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Proposition 3.5. Assume that the function f is positive on the manifold M , that

h(xo) > 0, 1− h(xo)(
p

n−p
)p > 0 and that the operator Lh,s is coercive, and

µ <
1

(supM f)
n−p
n K(n, p)p

,

then the equation (Es) with 0 < s < p, possesses a positive weak solution. In

addition, if

sup
x∈M

(f(x)) ≥ f(xo)(
1− h(xo)(

p
n−p

)p
) n

n−p

, (3.1.9)

and

µ <
1

(supM f)
n−p
n K(n, p)p

,

equation (Es) with s = p, possesses a positive weak solution.

Proof. First of all, the functional Jh,f,s is bounded from bellow on Nh,f,s. Then the

Ekeland variational principle ( see corollary 1.29) gives a Palais-Smale sequence

um ∈ Nh,f,s at level β = infu∈Nh,f,s
Jh,f,s(u) and by the coercivity of Lh,s(u), we get

that β is positive. Now, let u ∈ Hp
1 (M)\{0}, since Φ(u) ∈ Nh,f,s, then

Jh,f,s(Φ(u)) =
1

n

∫
M

f |Φ(u)|p∗dvg =
1

n


∫
M

(
|∇gu|p − h

|u|p

(ρxo(x))
s

)
dvg(∫

M

f |u|p∗dvg
) p

p∗


n
p

.

(3.1.10)

Since β = infu∈Nh,f,s
Jh,f,s(u), then

Jh,f,s(Φ(u)) =
1

n


∫
M

(
|∇gu|p − h

|u|p

(ρxo(x))
s

)
dvg(∫

M

f |u|p∗dvg
) p

p∗


n
p

≥ β

Given that u is arbitrary in Hp
1 (M)\{0}, we obtain by definition of µ that

µ ≥ nβ
p
n .
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However, under the assumptions on µ, we obtain by (3.1.9), that

β <



1

n(supM f)
n−p
p K(n, p)n

, for 0 < s < p;

min

(
1

(supM f)
n−p
p

,
(1− h(xo)(

p
n−p

)p)
n
p

(f(xo))
n−p
p

)
1

nK(n, p)n
, for s = p.

(3.1.11)

Therefore, by Proposition 3.3, we conclude that the sequence um converges, to

a subsequence, to a weak solution u0 of (Es), 0 < s ≤ p, which verifies that

β = Jh,f,s(u0) = infu∈Nh,f,s
Jh,f,s(u). Finally, to prove that u0 is positive, from

(3.1.10), we see that :

Jh,f,s(Φ(|u0|)) = Jh,f,s(Φ(u0)) = Jh,f,s(u0),

and since, Φ(|u0|) = |u0| ∈ Nh,f,s. Then u0 = |u0| which implies that u0 is

positive.

3.2 Proof of theorem 3.1

Let x1 ∈M , such that x1 ̸= xo, and δ > 0 be chosen so that B(x1, δ)∩B(xo, δ) = ∅.
Let φ be a regular cut-off function defined on R such that 0 ≤ φ ≤ 1, φ = 1 for

|r| < δ
2

and φ = 0 for |r| ≥ δ.

The distance from x1 to x is denoted by r = dg(x1, x). For ε ∈ (0, 1) let

uε(x) = φ(r)
(
ε+ r

p
p−1

) p−n
p
.

We assume that f(x1) = supx∈M f(x) and

f(x1) ≥
f(xo)(

1− h(xo)(
p

n−p
)p
) n

n−p

.
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Then by proposition 3.5, theorem 3.1 is proved if

E(uε) =

∫
M

(
|∇uε|p − h

|uε|p

(ρxo)
s

)
dvg(∫

M

f |uε|p
∗
dvg

) p
p∗

<
1

(f(x1))
n−p
n K(n, p)p

, 0 < s ≤ p. (3.2.1)

Let b(x) = h(x)
ρsxo (x)

, 0 < s ≤ p. Then, for δ small enough, the function b(x)φ is

regular on M , so by using Theorem 1.5, and formula (5.5) in [17], we have

E(uε(x)) ≤ 1

K(n, p)pf(x1)
p
p∗

[ 1 + ε
n

p−1

(
A1 − A2

h(x1)

ρsxo
(x1)

ε
p2−n

p + A3ε
3p−2−n

p

)
+ o(ε

p−n2

p ) + o(ε2
p−1
p

+1−n
p ) ] ,

where A1,A2 and A3 are positive constants. Now, we distinguish three cases:

1. 1 < p < 2 et h(x1) > 0. Then,

p2 − n

p
< min(0,

3p− 2− n

p
),

and the term ε
p−n2

p is dominant. Therefore, we can find ε small enough so

that the inequality (3.2.1) is satisfied.

2. p = 2, then p2−n
p

= 3p−2−n
p

< 0 and by [17, page 787], we have

A3−A2
h(x1)

ρsxo
(x1)

=
1

2n

(
∆gf(x1)

f(x1)
− 2

n− 4
Scalg(x1)−

8(n− 1)

(n− 2)(n− 4)

h(x1)

ρsxo
(x1)

)
Thus, the condition (3.1.3) of theorem 3.1 is sufficient to find ε small so that

(3.2.1) is satisfied.

3. p > 2. Then, 3p − 2 − n < p2 − n < 0 and the term ε
3p−2−n

p is dominant.

Since we have by [17]

A3 = C(n, p)((n+ 2− 3p)
∆gf(x1)

f(x1)
− pScalg(x1)),

the condition (3.1.4) of theorem 3.1 is sufficient for (3.2.1) hold.
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3.3 Proof of theorem 3.2

Let δ be a small positive constant. Let ψ denote a smooth cut-off function on R

such that 0 ≤ ψ ≤ 1, φ = 1 for |r| < δ and ψ = 0 for |r| ≥ 2δ, for ε ∈ (0, 1),

consider the functions

Uε(x) = ψ(ρxo(x))
(
ε+ (ρxo(x))

p
p−1

) p−n
p (3.3.1)

As in the proof of theorem 3.1, by proposition 3.5, theorem 3.2 will be proved if

E(Uε) =

∫
M

(
|∇Uε|p − h

|Uε|p

(ρxo)
s

)
dvg(∫

M

f |Uε|p
∗
dvg

) p
p∗

<
1

(f(xo))
n−p
n K(n, p)p

. (3.3.2)

Consider geodesic normal coordinates around the point xo. In these coordinates

we have

dv(g) =
(
1 + r1+ηO(1)

)
dx, 0 < η < 1.

Besides, we have

h(x)ψ(r)p = h (xo) + ∂ih(xo)x
i + r1+ηO(1).

Then, ∫
M

h(x)

(ρxo)
s
Up
ε dvg = h(xo)

∫
B(0,δ)

1

|x|s
(
ε+ |x|

p
p−1

)p−n

dx

+ ∂ih(xo)

∫
B(0,δ)

1

|x|s
(
ε+ |x|

p
p−1

)p−n

xidx

+

∫
B(0,δ)

1

|x|s
(
ε+ |x|

p
p−1

)p−n

|x|1+ηO(1)dx.

We remark that ∫
B(0,δ)

1

|x|s
(
ε+ |x|

p
p−1

)p−n

xidx = 0

for all i. Which implies∫
M

h(x)

(ρxo)
s
Up
ε dvg = h(xo)ωn−1

∫ δ

0

1

rs

(
ε+ r

p
p−1

)p−n

rn−1dr

+

∫
Sn−1

∫ δ

0

1

rs

(
ε+ r

p
p−1

)p−n

rn+ηO(1)drdσ.
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By setting r = ε
p−1
p t, we get∫

M

h(x)

(ρxo)
s
Up
ε dvg = ε

p2−ps−n+s
p h(xo)ωn−1

∫ +∞

0

(1 + t
p

p−1 )p−ntn−s−1dt+ o(ε
p2−ps−n+s

p )

(3.3.3)

Note here that the integral

I4 =

∫ +∞

0

(1 + t
p

p−1 )p−ntn−s−1dt

exists as soon as n > p2 − s(p− 1).

Now, the following relations are established in [17, Proof of theorem 1.5]∫
M

f(x)Up⋆

ε dv(g) =

(
f(xo)ωn−1

∫ ∞

0

(
1 + t

p
p−1

)−n

tn−1dt

)
ε−

n
p

−
[
ωn−1

2n

(
∆gf (xo) +

Scal(g) (xo) f (xo)

3

)
×
∫ ∞

0

(
1 + t

p
p−1

)−n

tn+1dt

]
ε

−n+2p−2
p

+o
(
ε

−n+2(p−1)
p

)
,

(3.3.4)

and∫
M

|∇gUε|p dv(g) ≤ C +K(n, p)−p

(
ωn−1

∫ ∞

0

(
1 + t

p
p−1

)−n

tn−1dt

) p
p∗

ε
p−n
p

−
[(

n− p

p− 1

)p

ωn−1
Scal(g) (xo)

6n

∫ ∞

0

(
1 + t

p
p−1

)−n

t
p

p−1
+n+1dt

]
× ε

3p−2−n
p

+ o
(
ε

3p−2−n
p

)
,

(3.3.5)

with C a positive constant independent of ε. Knowing that the function

ψ(x) =
(
1 + |x|

p
p−1

) p−n
p
, x ∈ IRn

achieves the best constant for the inclusion Hp
1 (Rn) ⊂ Lp∗ (Rn), we have(

ωn−1

∫ ∞

0

(
1 + t

p
p−1

)−n

tn−1dt

) p
p∗

=

K(n, p)p
(
n− p

p− 1

)p

ωn−1

∫ ∞

0

(
1 + t

p
p−1

)−n

t
p

p−1
+n−1dt.
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So we obtain

E(Uε) ≤ 1

K(n, p)pf(xo)
p
p∗

[ 1 + ε
n
p
−1 ( B1 −B2ε

p2−ps+s−n
p +B3ε

3p−2−n
p (3.3.6)

+ o(ε
p2−ps−n+s

p ) + o
(
ε

3p−2−n
p

)
) ]

with

B1 = CK(n, p)p(ωn−1I5)
− p

p∗ ,

B2 = ω
1− p

p∗
n−1 K(n, p)ph(xo)

I4

(I5)
p
p∗
,

B3 =
p

2np∗

(
∆gf(xo)

f(xo)
+

Scal(g)(xo)

3

)
I1
I5

− Scal(g)(xo)

6n

I3
I2
,

and

I1 =

∫ ∞

0

(
1 + t

p
p−1

)−n

tn+1dt

I2 =

∫ ∞

0

(
1 + t

p
p−1

)−n

t
p

p−1
+n−1dt

I3 =

∫ ∞

0

(
1 + t

p
p−1

)−n

t
p

p−1
+n+1dt

I4 =

∫ +∞

0

(1 + t
p

p−1 )p−ntn−s−1dt

I5 =

∫ ∞

0

(
1 + t

p
p−1

)−n

tn−1dt.

All the above integrals exist if n > p2.

From [17, Proof of theorem 1.5] and [15, Lemma 7], we have

I1 =
p− 1

p

Γ( (n+2)(p−1)
p

) Γ(n−2(p−1)
p

)

Γ(n)
,

I2 =
p− 1

p

Γ(n− n
p
+ 1)Γ(n

p
− 1)

Γ(n)
,

I3 =
p− 1

p

Γ(n− n+2
p

+ 3)Γ(n+2
p

− 3)

Γ(n)
,

I4 =
p− 1

p

Γ( (n−s)(p−1)
p

) Γ(n−p2+s(p−1)
p

)

Γ(n− p)
,

I5 =
p− 1

p

Γ(n(p−1)
p

) Γ(n
p
)

Γ(n)
.
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We deduce that

B3 = C(n, p)

(
(n+ 2− 3p)

∆gf (xo)

f (xo)
− p Scal(g) (xo)

)
,

with

C(n, p) =
Γ(n− n

p
− 2

p
+ 2)Γ(n− n

p
− 2

p
− 3)

2n2Γ(n− n
p
)Γ(n

p
− 1)

.

For p > 1 we distinguish three different cases:

1- When 1 < p < s+ 2, we have
p2 − ps+ s− n

p
< min

(
0,

3p− 2− n

p

)
.

According to (3.3.6), and for ε sufficiently small, since h(xo) > 0, we obtain

that E(Uε) <
1

K(n,p)pf(xo)
p
p∗

.

2- When p = s+ 2, we will have
p2 − ps+ s− n

p
=

3p− 2− n

p
< 0.

By relation (1.2.1), after making the necessary calculations, we find that

B2 =

(
p− 1

n− p

)p

h(xo)
Γ(n− n+2

p
+ 3− p) Γ(n+2

p
− 3) Γ(n)

Γ(n− n
p
+ 1)Γ(n

p
− 1) Γ(n− p)

.

By a simple calculation, we obtain that

B3 −B2 =
Γ(n+2

p
− 3)

Γ(n− n
p
+ 1)Γ(n

p
− 1)[

Γ(n− n
p
− 2

p
+ 2)

2n2

(
(n+ 2− 3p)

∆gf (xo)

f (xo)
− p Scal(g) (xo)

)
−

(
p− 1

n− p

)p
p

n(p− 1)

Γ(n− n+2
p

+ 3− p) Γ(n)

Γ(n− p)
h(xo)

]
According to (3.3.6), and for ε sufficiently small, we have that E(Uε) <

1

K(n,p)pf(xo)
p
p∗

if(
p− 1

n− p

)p
p

n(p− 1)

Γ(n− n+2
p

+ 3− p) Γ(n)

Γ(n− p)
h(xo) >

Γ(n− n
p
− 2

p
+ 2)

2n2

(
(n+ 2− 3p)

∆gf (xo)

f (xo)
− pScal(g)(xo)

)
.
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3- When p > s+ 2, we will have

3p− 2− n

p
<
p2 − ps− n+ s

p
< 0.

Once more, according to (3.3.6), we obtain that for ε small enough,

E(Uε) <
1

K(n,p)pf(xo)
p
p∗

if

(n+ 2− 3p)
∆gf (xo)

f (xo)
− p Scal(g) (xo) < 0.

This proves theorem 3.2.
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Conclusion

In this thesis we studied a singular quasilinear equation that contains a criti-

cal Sobolev exponent. The goal was to prove some results on compactness of

Palais-Smale sequences and on the existence of solutions. Some of these goals are

successfully reached, but, unfortunately, not all of them. In fact, existence result

could not been proved is case of reverse inequality (3.1.2) in theorem 3.1. This

was because of lack of a classification of solutions for equation (2.0.8) in the form

of that obtained in [48] for the case p = 2. Anyway, this classification result is

still not available and we hope that it will be tackled in the future. We hope also

to generalize this work for more general class of equations like those that contains

the fractional p-Laplacian.
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Abstract

In this thesis we study, on compact Riemannian manifolds, a quasi-linear elliptic
equation in p-Laplacian operator containing a Hardy term and a critical Sobolev
exponent. We first show that Palais-Smale sequences of our equation are
submitted to the well known Struwe decomposition formulas. In a second part,
we prove some existence results relying on the decomposition results.

Keywords : Riemannian manifolds, Yamabe equation, p-Laplacian, Sobolev exponent,
Hardy potential, blow up analysis, bubbles.

Résumé

Dans cette thèse, nous étudions, sur des variétés Riemanniennes compactes, une
équation elliptique quasi-linéaire en p-laplacien contenant un terme de Hardy et
un exposant critique de Sobolev. Dans une première partie nous démontrons des
résultats de décomposition de type Struwe pour les suites de Palais-Smale
associées a notre équation. Dans une deuxième partie, nous utilisons les résultats
de décomposition obtenus dans la premier partie pour démontrer des résultats
d’existence pour notre équation.

Mots clés : Variétés Riemanniennes, équation de Yamabe, p-Laplacien, l’exposant
critique de Sobolev, le potentiel de Hardy, analyse de blow up, bulles.
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