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Abstract
A general formalism is presented to calculate the triple-differential cross section for the
ionization of neutral atoms and simple molecules with the chemical form XHn in the frame of
the second Born approximation using the closure approximation. The first Born term and a
part of the second term are calculated analytically and the remainder is calculated
semi-analytically. A new method is given to eliminate analytically the singularities occurring
in the second Born term. The post-collision interaction between the scattered and ejected
electrons is considered approximately using the Gamow factor. To check the accuracy of the
present formalism, the ionization of the atomic hydrogen by electron impact is considered. The
present formalism is developed to investigate the single ionization of the water molecule by
electron impact. The comparison of our results with the experiments and previous theoretical
findings shows good agreement and contrary to the previous theoretical calculations, our
results predict two peaks in the recoil region.

(Some figures may appear in colour only in the online journal)

1. Introduction

Many theoretical models and experimental methods have been
developed to study the ionization of atomic and molecular
targets by electron impact. Understanding this process is of
great importance to many areas, such as plasma physics,
astrophysics and radiobiology. Moreover, the investigation of
atomic or molecular targets with more than two electrons is
a problem. Then it is necessary to find the approximation
that allows us to extract precise data without complicated
calculations. The chosen approximation must be constructed
to give accurate results and an identification of mechanisms
occurring during the collision process. The Born method is
one of these approximations. This model is flexible in the
analytical and numerical calculations and remains a preferable
model to investigate the collision processes when the incident
particle energy is large. Some mechanisms can be identified
by the Born method as, for example, the multiple collision
process in the single ionization and the shake-off (SO), the
two-step 1 (TS1) and two-step 2 (TS2) mechanisms in the
double ionization [1–4].

Water constitutes the major component of the biological
material, which makes the water molecule very interesting
to investigate the particle track structure processes. Several
numerical simulations of these processes need accurate sets
of ionization cross sections for the water molecule [5–9].
For this reason, several theoretical and experimental activities
are focused on the evaluation of the cross sections for the
ionization of the water molecule by charged particles. In
this work, we investigate the single ionization of the water
molecule by electron impact. A general formalism is given,
in the frame of the second Born approximation, to calculate
the triple-differential cross section (TDCS) for the ionization
of this molecule. This formalism can also be used in neutral
atoms and molecules with the chemical form XHn, with X
a heavy atom compared to the hydrogen atom H. In the
present formalism, the first term of the Born approximation
is calculated analytically [10, 11] and the second Born term is
divided into two parts, one calculated analytically and the other
calculated semi-analytically using the closure approximation.
The singularities in the second Born term are eliminated
analytically and only continued two- and three-dimensional
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integrals are calculated numerically. To treat the post-collision
interaction (PCI) between the scattered and ejected electrons,
the Gamow factor is introduced in the TDCS. This PCI has
been achieved in the so-called three Coulomb wave (3C)
model given by Brauner et al [12], where the final state
is described asymptotically by a product of three Coulomb
functions. However, the use of the 3C functions complicates
the analytical and numerical calculations. The Gamow factor
is the normalization factor of the third Coulomb wave which
describes the PCI between the scattered and ejected electrons.
Kheifets et al [13] have shown that the largest effect of the
PCI is contained in this factor alone. This factor has been used
by Dal Cappello et al [4, 14] to describe the PCI between the
ejected electrons in the double ionization of the helium atom
and the water molecule by electrons and positrons, where good
correction to the cross sections has been observed and the big
shift of the binary peak found experimentally by Lahmam-
Bennani et al [1] has well been reproduced showing that the
second Born approximation is needed to describe the TS2
mechanism. The PCI between the ejected electrons is always
considered because the energies are comparable. However, this
interaction is often neglected between the scattered and ejected
electrons in the Born approximation because the scattered
particle is considered faster than the ejected one. So we show
in this paper that this interaction must always be considered.

To check the accuracy of our formalism and to analyse the
correction given by the Gamow factor to the first and second
Born approximations, the ionization of the atomic hydrogen
by electron impact is first considered. Significant improvement
has been observed in the first Born approximation and good
agreement of the second Born approximation with the 3C
model and the experiment is found. The same remarks are
observed when we analyse the results of the water molecule
where good agreement is found with the experimental data of
Milne-Brownlie et al [15] and with the previous theoretical
results of Champion et al [16] extracted in the frame of the
3C model and the so-called dynamic screening of the three-
body Coulomb interaction (DS3C) model [17]. Furthermore,
contrary to the previous calculations, our formalism predicts
two peaks in the recoil region.

The paper is organized as follows. In section 2, the electron
impact ionization TDCS of neutral atomic and molecular
targets are presented. In section 3, the results of ionization
of the atomic hydrogen and water molecule are discussed.
We conclude in section 3.2. Atomic units are used throughout
unless otherwise stated.

2. Theory

In the ionization of the atomic target by electron impact, the
non-relativistic TDCS is given by

d3σ

dEe dk̂e dk̂s

= 1

(2π)2

keks

ki
|T |2 , (1)

where k̂s ≡ (θs, ϕs) and k̂e ≡ (θe, ϕe) are the solid angles
of the scattering and ejection directions, respectively, and Ee

is the energy of the ejected electron. T is a matrix element

describing the transition of the system projectile–target from
the initial state |�i〉 to the final state |� f 〉, defined as

T = 〈� f |(V + V G+
0 V )|�i〉, (2)

where G+
0 is the Green operator and V is the interaction energy

between the incident particle and the atomic target

V = − Z

r0
+

N∑
i=1

1

|r0 − ri| , (3)

where r0 is the position vector of the incident electron, ri is
the position vector of the ith electron of the target, Z is the
atomic number and N is the number of electrons of the target.
The initial state which corresponds to an incident particle and
N bound electrons is described as the product

|�i〉 = ϕki (r0) �i (r1, r2, . . . , rN ) , (4)

where ki is the kinetic momentum of the incident particle. The
final state is characterized by

|� f 〉 = ϕks (r0) � f (r1, r2, . . . , rN ) , (5)

where ks is the momentum of the scattered particle.
We work in the second Born approximation, where the

functions |ϕk〉 are plane waves, exp (ik · r). The problem of
N electrons can be reduced to one active electron problem
using the so-called frozen-core approximation. So the matrix
element T can be reduced to the sum of the following two
terms:

T B1 = 〈ϕksψke |V | ϕkiφAO〉 (6)

T B2 = − 1

4π3

∑
n

∫
dk

k2 − k2
n − iη

×〈ϕksψke |V |ϕkφn〉〈ϕkφn|V | ϕkiφAO〉, (7)

where η → 0+, |�AO〉 is the ionized atomic orbital (AO) and
V is reduced now to

V = − 1

r0
+ 1

|r0 − r1| , (8)

where r1 is the position vector of the active electron which is
ejected after the collision with the momentum ke. We note
that a spectral resolution to the Green operator has been
used in equation (7), where the sum is over all bound and
continuum states |φn〉 of the atomic target and kn is defined by
k2

n = k2
i − 2 (En − EAO), with En being the eigenvalue of the

atomic Hamiltonian corresponding to the eigenfunction |φn〉.
Using now the so-called Bethe’s integral [18]∫

eiq·r0

|r0 − r1|dr0 = 4π

q2
eiq·r1 , (9)

and the closure approximation where the difference En − EAO

is replaced by the averaged excitation energy w̄ to make use
of the closure relation

∑
n |φn〉〈φn| = 1, we obtain

T B1 = 4π

q2
[F (q) − P] (10)

T B2 = − 4

π

∫
dk

F (q) + P − H (qs, qi)

q2
s q2

i (k
2 − k̄2 − iη)

, (11)
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where F (q) = 〈ψke |exp (q · r1)| φAO〉, H (qs, qi) = F (qs)−
F (qi) and P = 〈ψke | φAO〉.q = ki − ks is the momentum
transfer, qi = ki − k and qs = k − ks.

To perform analytically the triple-dimensional integrals
in F (q), H (qs, qi) and P, the continuum state of the ejected
electron is described here by the Coulomb wavefunction which
satisfies the outgoing boundary condition

ψ
(−)
ke

(r1) = eike·r1

(2π)3/2
D(−)

ξe
Cξe

ke
(r1) , (12)

with D(−)
ξe

= e− πξe
2 � (1 − iξe), ξe = −Zeff/ke is the

Sommerfeld parameter where Zeff is the effective ionic charge
and

Cξe
ke

(r1) = 1F1 [iξe; 1;−i (ker1 + ke·r1)] . (13)

The radial part of the bound-state wavefunction is
expanded on Slater-type basis functions which have the
following analytical form:

Rα
n (r1) = (2α)n+1/2

√
(2n)!

rn−1
1 e−αr1 , (14)

where α is a variational parameter and n is a positive integer.
The analytical form of the initial and final wavefunctions
chosen here to describe the active electron allows us to perform
analytically the three-dimensional integral in F (q), H (qs, qi)

and P [10].
The term T B2 = T B2

1 + T B2
2 contains a singular three-

dimensional integral often difficult to resolve numerically. This
term, in the form given in equation (11), can be performed
numerically using the method of Marchalant et al [19] where
the singularities arising at k = ki and k = ks can be overcome
using prolate spheroidal coordinates. However, the term

T B2
1 = − 4

π

∫
dk

F(q) + P

q2
s q2

i (k
2 − k̄2 − iη)

(15)

can be performed analytically where we have the same
integrals F (q) and P as in equation (10). The singular three-
dimensional integral in equation (15) can be deduced following
Byron et al [20]. Moreover, the method of Marchalant et al
[19] is very time consuming before reaching the good accuracy
of the numerical calculation. To calculate the second term

T B2
2 = 4

π

∫
dk

H (qs, qi)

q2
s q2

i (k
2 − k̄2 − iη)

, (16)

a new semi-analytical method, given in the appendix, is used in
this work, where the singularities are eliminated analytically.

We need now to include in the TDCS the PCI between
the scattered and ejected particles. This interaction has
been achieved within the so-called 3C model given by
Brauner et al [12] where the final state has been described
asymptotically by a product of three Coulomb wavefunctions,
two describing the scattered and ejected electrons and
one describing the PCI between these electrons. Therefore,
choosing the 3C wavefunctions complicates the analytical and
numerical calculations. However, Kheifets et al [13] have
demonstrated that the largest effect of the PCI is contained
in the normalization factor of the Coulomb wavefunction, the
so-called Gamow factor∣∣D(−)

ξse

∣∣2 = 2πξse

e
πξse

2 − 1
, (17)

where ξse = 1/qse and qse = ks − ke. So to include in the
TDCS the PCI, approximately, between the outgoing electrons,
equation (1) must be multiplied by the Gamow factor

d3σ

dEe dk̂e dk̂s

= 1

(2π)2

keks

ki

∣∣D(−)
ξse

T
∣∣2

. (18)

Until now a formalism to calculate the TDCS of atomic
targets is given. However, this formalism can also be used to
study the ionization of molecular targets with the chemical
form XHn where X is a heavy atom compared to the hydrogen
atom H. In these types of molecules, the centre of the system is
very close to the heaviest nucleus. Then each molecular orbital
(MO) can be expanded on a set of basis

{
φ

αν

nν lνmν
(r1)

}
centred

on the heavy atom [21–23]

�MO (r1) =
NMO∑
ν=1

wνφ
αν

nν lνmν
(r1), (19)

where wν are the coefficients indicating the magnitude of
contribution of each element of the basis φ

αν

nν lνmν
(r1) and NMO is

the number of basis elements. The general form of an element
of this basis set is

φ
αν

nν lνmν
(r1) = Rαν

nν
(r1)Y mν

lν
(r̂1) , (20)

where Rαν
nν

(r1) is the radial part defined in equation (14) and
Y mν

lν
(r̂1) is the normalized spherical harmonic.
In the experiment, the molecular target is considered

randomly oriented in the space. Therefore, the theoretical
TDCS must be averaged over all the molecular orientations,

d3σ

dEe dk̂e dk̂s

= 1

(2π)2

keks

ki

∫
dω

8π2

∣∣D(−)
ξse

T
∣∣2

, (21)

where the molecular orientation in the laboratory frame is
defined by dω = sin βdβdαdγ with (α, β, γ ) the Euler
angles. To perform analytically the integral over dω in equation
(21), we use the following transformation of the molecular
orientation from the molecular frame to the laboratory frame:

Y m
l (r̂) =

l∑
μ=−l

D(l)
mμ (α, β, γ )Y μ

l (r̂), (22)

where D(l)
mμ (α, β, γ ) is a rotation matrix element. So the

following orthonormalization property∫
D(l1 )

m1μ1
D(l2)

m2μ2
dω = 8π2

2l1 + 1
δl1l2δm1m2δμ1μ2 (23)

can used to perform the integral in equation (21), to find the
result

d3σ

dEe dk̂e dk̂s

= 1

(2π)2

keks

ki

NMO∑
ν=1

lν∑
μ=−lν

∣∣wνD(−)
ξse

Tν

∣∣2

2lν + 1
, (24)

where Tν = T B1
ν + T B2

ν , with

T B1
ν = 4π

q2
[Fν (q) − Pν] (25)

T B2
ν = − 4

π

∫
dk

Fν (q) + Pν − Hν (qs, qi)

q2
s q2

i

(
k2 − k̄2 − iη

) , (26)

where Fν (q) = 〈ψke |exp (q · r1)| φαν

nν lνμ
〉 and Pν =

〈ψke | φαν

nν lνμ
〉.
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Figure 1. TDCS for the electron impact ionization of the atomic
hydrogen. Our results: the open circles for the first Born
approximation without the Gamow factor, the solid circles for the
first Born approximation corrected by the Gamow factor, the dashed
line for the second Born approximation without the Gamow factor
and the solid line for the second Born approximation corrected by
the Gamow factor. The solid triangles for the 3C model [12]. The
solid squares for the experiment [26, 27].

3. Results and discussion

3.1. Ionization of the atomic hydrogen

Recently, Dal Cappello et al [4] have investigated in detail the
application of the second Born approximation to the single
and double ionization processes. To check the accuracy of this
approximation, simple atomic systems, namely the hydrogen
and helium atoms, have been considered. For the hydrogen
atom, 100 exact discrete intermediate states corresponding to
the principal quantum numbers n = 1–10 have been used,
and the authors find that the convergence is reached at the
intermediate state n = 6. The results of Byron et al [20] have
also been confirmed, where they find that the contribution
of the intermediate state n = 2 is the most important. The
contribution of the continuum states has been checked using
the closure approximation and the pseudo-states of Callaway
[24, 25], and from the comparisons of the theoretical results
with the experimental data of Ehrhardt et al [26, 27], they
conclude that the contribution of discrete states is insufficient
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Figure 2. The same as in figure 1, but the 3C model results are from
[4] and the experience from [28].

to describe the ionization process and the continuum states
must be added. They also find that the closure approximation
works very well for small ejection energies but completely
fails to describe the experiment for large ejection energies.

In this subsection, we check the accuracy of our formalism
on the atomic hydrogen and analyse the correction given
by the Gamow factor. This factor is always included in the
cross section when the outgoing particles acquire comparable
energies, but often neglected when the energies are very
different. To analyse the correction given by the Gamow factor,
we present in figures 1 and 2 the TDCS obtained with and
without correction. The calculations have been performed for
an averaged excitation energy w̄ = 0.5 au corresponding to the
ionization energy. We note that the accuracy of our numerical
calculations has been checked by the calculation of the singular
integral in equation (15), which has an analytical solution, and
by the comparison of our results with the theoretical results
given by Dal Cappello et al [4], where identical curves have
been obtained.

Figure 1 shows the corrected and non-corrected cross
sections given in the first and second Born approximation
compared to the results of Brauner et al [12] extracted
in the frame of the 3C model and to the experimental
data of Ehrhardt et al [26, 27]. The experiment has been
performed in the coplanar asymmetry with an incident energy
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Figure 3. TDCS without the Gamow factor for the orbitals 2a1, 1b1 and 1b2 to analyse the dependence of the second Born approximation on
w̄. Experiment [15]: black squares. The parameter w̄ equals w̄1, the ionization energy by the solid line; w̄2, the average between the
ionization and the excitation to the continuum energies by the solid circles; w̄3, the average between the ionization energies by the dashed
line; and w̄4, the average between the ionization energies and the excitation to the continuum energy by the small solid squares.

Ei = 250 eV and ejection energy Ee = 5 eV for the scattering
angles θs = 3◦ and θs = 8◦. We point out that the final state of
the three-particle reaction is described in the 3C model by an
exact solution of the Schrödinger equation in the asymptotic
region (far from the centre of reaction) and the PCI between
the two outgoing electrons is considered asymptotically of
infinite order. For this reason, the 3C model gives a good
description of the process of single ionization by electron
impact. The experimental data and the 3C model results have
been normalized in θe = 64◦ for θs = 3◦ and in θe = 78◦ for
θs = 8◦ to our corrected results (with the Gamow factor) given
in the second Born approximation.

When we analyse the results given in figure 1, we can
clearly observe the improvement given by the Gamow factor
to the first Born approximation, and we see that the second
Born approximation becomes very close to the 3C model and
the experiment. The improvement is small in the recoil region
(θe > 180◦) but significant in the binary region (θe < 180◦)
where the interaction between the two outgoing electrons is
important. This confirms the results of Kheifets et al [13] that
the largest effect of the PCI is contained in the Gamow factor.
The results in figure 1 also show an angular shift of the forward
and backward lobes, with respect to the momentum transfer

direction, in both the first and second Born approximations
given by the introduction of the Gamow factor.

In figure 2, we compare our results with those of the
3C model taken from [4] and with the experimental data of
Weigold et al [28] extracted in the coplanar asymmetry for
an incident energy Ei = 250 eV and ejection energy Ee=
50 eV for the scattering angles θs = 15◦ and θs = 25◦. The
experimental data and the results obtained in the 3C model
are normalized, in θe = 85◦ for θs = 15◦ and in θe = 90◦

for θs = 25◦, to our corrected results obtained in the second
Born approximation. Pathak and Srivastava [29], Byron et al
[30] and Dal Cappello et al [4] have concluded that for higher
ejection energies, the second Born approximation with the
closure approximation fails to describe the experiment, and this
is clearly shown in figure 2. However, the 3C model where the
PCI between the ejected and scattered electrons is considered
of infinite order is very close to describe the experiment. We
note that the exchange effect has been verified by the 3C model
[4] and has been found small and can be safely neglected.
Considerable improvement is given by the Gamow factor to
the first and second Born approximations and the TDCS have
been shifted towards the experiment. However, contrary to
the results given in figure 2 for small ejected energy, the

5
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Figure 4. TDCS without the Gamow factor for the electron impact ionization of the molecular orbitals 2b1, 1b1, 1b2, and the sum 1b1 + 3b1

of the water molecule. Experiment [15]: black squares. Our results: the solid line for the second Born approximation and the solid circles for
the first Born approximation. Results of Champion et al [16]: the dashed line for the DS3C model and the solid triangles for the 3C model.

second Born approximation still overestimates the experiment
for higher ejection energies. This means that the larger the
ejection energy, the more significant is the PCI between the
outgoing particles, and the reaction in this case necessitates
more rigorous theoretical description.

3.2. Ionization of the water molecule

Now we investigate the single ionization of the water molecule
by electron impact. Our theoretical results extracted in
the first and second Born approximations are compared to
the experimental data of Milne-Brownlie et al [15] and to the
previous theoretical results of Champion et al [16] extracted
in the frame of the 3C model [12] and to the so-called
dynamic screening of the three-body Coulomb interaction
(DS3C) model [17]. The experimental data of the four outer
molecular orbitals of the H2O molecule have been measured in
the coplanar asymmetric geometry where the conditions of the
experiments are fixed to an incident energy Ei = 250 eV, an
ejection energy Ee = 10 eV and the scattering angle θs = 15◦.
In these kinematic conditions, the ejection energy is not large
and the closure approximation can be safely used. This is
confirmed by the comparison of our results, corrected by the

Gamow factor, with the 3C model results in the binary region.
The ionization energies of the four outer molecular orbitals
are 32.2 eV for the atomic-like orbital 2a1, and 18.55, 14.73
and 12.63 eV for the molecular orbitals 3a1, 1b2 and 1b1,
respectively.

To describe the ground state of the water molecule, we
have chosen the representation of Moccia [23] where each
molecular orbital is described by means of the single-centre
wavefunction expanded on the Slater-type basis as given in
equation (19). The formalism given in section 2 is for an
angular part of the initial state described by the normalized
spherical harmonic. However, in the representation given by
Moccia [23], the angular part of each basis element is described
by the real spherical harmonic

Slνmν
(r̂) =

√
sgn (mν )

2
{sgn (mν )Ylν |mν | (r̂)

+ (−1)mν Ylν−|mν | (r̂)}, (27)

where Slν0 (r̂) = Ylν0 (r̂) and sgn (x) = x/|x| is the sign
function, with sgn (0) = 0. This representation of the angular
part does not change the result in equation (24) because when
we carry out the spherical average given by the integral given
in equation (21), we find the same expression.
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Figure 5. The same as in figure 4, but with the Gamow factor.

Dal Cappello et al [4] find in the case of the ionization
of the atomic hydrogen that the change of the value of the
parameter w̄, the averaged excitation energy, changes the
results given by the second Born approximation. However, they
find only small differences between the results in the case of the
ionization of the helium atom. To make a good physical choice
of the parameter w̄ in the ionization reaction is a problem, and
as indicated by Walters [31] a reasonable choice of w̄ in this
case is the ionization energy of the ionized orbital. To analyse
the dependence of the second Born approximation on the value
of the parameter w̄ in the case of the water molecule, different
values have been used to obtain the results given in figure 3.
Four values of w̄ have been used: the ionization energy w̄1, an
average between the ionization and excitation to the continuum
energies w̄2 where the continuum state of the ejected electron
is considered as an intermediate state, an average between the
ionization energies of the higher states of the ground state from
the ionized orbital w̄3 and an average between the latter and
the excitation to the continuum energy w̄4. Figure 3 shows
that practically no difference exists between the curves for
each orbital, and we can say that the ionization energies can
be safely used as a value for the parameter w̄.

In figure 4, our results extracted without the Gamow factor
are compared to the experimental data of Milne-Brownlie et al
[15] and to the theoretical results of Champion et al [16]

given by the 3C and DS3C models. The experimental and
theoretical results are normalized to our findings, given in
the second Born approximation, in the second binary peak.
In figure 4, we observe from the results of the molecular
orbitals 1b2, 1b1 and the sum 1b1 + 3a1 that the second Born
approximation, the 3C model and the DS3C model are in
good agreement with the experiment in the second binary
peak. However, our results underestimate the experimental
data in the recoil region. Nevertheless, the present formalism
describes the experimental data of the atomic-like orbital 2a1

better than the 3C and DS3C models given by Champion et al
[16]. We can also see that contrary to the other models, our
calculations predict two peaks in the recoil region. From the
analysis of the binary region, we can observe that the first
Born approximation is not sufficient to describe the dynamic of
ionization of the water molecule for the kinematic conditions
Ei = 250 eV and Ee = 10 eV. So higher order effects
are important especially for the molecular orbitals 1b2, 1b1

and 3a1.
Figure 5 is similar to figure 4 but now the Gamow factor

is introduced in the TDCS. In general, we have the same
comments given previously in figure 4 when we compare
the theoretical and experimental results. Nevertheless,
we observe a significant improvement given by the Gamow
factor to both the first and second Born approximations in

7
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both the binary and recoil regions and an angular shift of the
forward and backward lobes with respect to the momentum
transfer direction. The second Born approximation became
very close to the 3C model in the binary region, except for
the atomic-like orbital 2a1. These remarks have been observed
in the investigation of the hydrogen atom and confirm that
the closure approximation is safely used here. Although our
calculations with the Gamow factor give a good description of
the binary region, they still underestimate the experiment in
the recoil region of the molecular orbitals 1b2, 1b1 and the sum
1b1 + 3a1.

4. Conclusion

A new formalism is presented to calculate the triple-
differential cross section for the single ionization of atomic
and molecular targets with the chemical form XHn. In this
formalism, the calculation of the transition amplitude has been
performed in the second Born approximation using the closure
approximation. The first Born term and a part of the second
Born term are determined analytically and the obtained results
have been used to calculate semi-analytically the other part
of the second Born term. The singularities that appear in the
second Born term have been eliminated analytically. The post-
collision interaction (PCI) between the scattered and ejected
electrons was considered approximately using the Gamow
factor. The present formalism was developed to study the
single ionization of the water molecule by electron impact. The
accuracy of the formalism was checked first by considering the
ionization of the hydrogen atom.

From the good agreement of our results with the
experiments and with the previous theoretical findings, we
found that the present formalism is well adapted to study the
single ionization process for neutral atomic and molecular
targets with the chemical form XHn when the ejection energies
are not large. Our results show that the PCI must be considered
even when the outgoing particles are of very different energies,
because the interaction between two electrons is a strong
long-range force. The present approach can be extended to
describe the ionization of atoms and molecules by other
charged particles such as protons, positrons and bare ions.

From the investigation of the water molecule, we find
that the first-order approximation is not sufficient to describe
the dynamic of ionization for the kinematic conditions Ei =
250 eV and Ee = 10 eV, and the second-order perturbation
needs some corrections to give improved results as it describes
the ejected particle by a distorted wavefunction and describes
the scattered particle by a more precise wavefunction than the
plane wave.

Appendix

In this section, a new semi-analytical method is given to treat
the following singular integral:

I = lim
η→0+

∫
dk

H (qs, qi)

(k2 − k̄2 − iη)q2
s q2

i

, (A.1)

where H (qs, qi) = F (qs)+F (qi). Using the Cauchy identity

lim
η→0+

1

k2 − k̄2 − iη
= P

(
1

k2 − k̄2

)
+ i πδ(k2 − k̄2), (A.2)

where P stands for the principal value, the integral in
equation (A.1) can be written in the form

I = P
∫

d k
H (qs, qi)

(k2 − k̄2)q2
s q2

i

+ i π k̄

2

∫ 4π

0
d k̂

H (q̄s, q̄i)

q̄2
s q̄2

i

, (A.3)

where q̄i = ki − k̄k̂ and q̄s = k̄k̂ − ks. The first term of this
integral contains two three-dimensional singularities at k = ki

and k = ks and one uni-dimensional singularity at k = k̄.
This term can be split into two integrals J1 and J2 by using the
following identity:

1

ab
= 1

(a + b)

(
1

a
+ 1

b

)
, (A.4)

with

J1 = P
∫

dk
H (qs, qi)

(k2 − k̄2)
(
q2

i + q2
s

)
q2

s

(A.5)

J2 = P
∫

dk
H (qs, qi)

(k2 − k̄2)
(
q2

i + q2
s

)
q2

i

. (A.6)

The singularity at k = k̄ in the integrals J1 and J2 can
be transferred to an other integral of a simple form using
a subtraction procedure like that used in the method of
Marchalant et al [19]. In this case, these integrals take the
forms J1 = I1 + K1 and J2 = I2 + K2, where

I1 =
∫

dk

q2
s (k

2 − k̄2)

[
H (qs, qi)(
q2

i + q2
s

)
−q2

s H (q̄s, q̄i)

q̄2
s

(
q̄2

i + q̄2
s

) exp(−γ (k − k̄)2)

]
(A.7)

K1 = P
∫

dk
H(q̄s, q̄i) exp(−γ (k − k̄)2)

(k2 − k̄2)q̄2
s

(
q̄2

i + q̄2
s

) (A.8)

and

I2 =
∫

dk

q2
i (k

2 − k̄2)

[
H (qs, qi)(
q2

i + q2
s

)
−q2

i H (q̄s, q̄i)

q̄2
i

(
q̄2

i + q̄2
s

) exp(−γ (k − k̄)2)

]
(A.9)

K2 = P
∫

dk
H (q̄s, q̄i) exp(−γ (k − k̄)2)

q̄2
i

(
q̄2

i + q̄2
s

)
(k2 − k̄2)

, (A.10)

which allows us to rewrite the integral I in the form

I = I1 + I2 +
∫ 4π

0
dk̂

H (q̄s, q̄i)

q̄2
s q̄2

i

×
(

P
∫ ∞

0
dk

k2 exp(−γ (k − k̄)2)

(k2 − k̄2)
+ i π k̄

2

)
. (A.11)

The third term in this equation can be easily calculated
numerically. In both the integrals I1 and I2, we have only

8



J. Phys. B: At. Mol. Opt. Phys. 45 (2012) 085201 M Sahlaoui and M Bouamoud

one three-dimensional singularity that can be eliminated by
the following variable change:

I1 =
∫

dqs

q2
s

(
K2

s − k̄2
)

[
H (qs, q − qs)(
q2

s + |q − qs|2
)

− q2
s H (q̄s, q̄i) exp(−γ (Ks − k̄)2)

q̄2
s

(
q̄2

i + q̄2
s

)
]

, (A.12)

where q̄s = k̄K̂s − ks, q̄i = ki − k̄K̂s and Ks = qs + ks, and

I2 =
∫

dqi

q2
i

(
K2

i − k̄2
)

[
H (q − qi, qi)(
q2

i + |q − qi|2
)

−q2
i H (q̄s, q̄i) exp(−γ (Ki − k̄)2)

q̄2
i

(
q̄2

i + q̄2
s

)
]

, (A.13)

where q̄s = k̄K̂i − ks, q̄i = ki − k̄K̂i and Ki = ki − qi.
The following singular integral

K = P
∫ ∞

0
dk

k2 exp(−γ (k − k̄)2)

(k2 − k̄2)
(A.14)

can be easily performed numerically. However, the singularity
in this integral can be eliminated analytically. Let the following
variable change z = k − k̄; then we obtain

K = P
∫ ∞

−k̄
dz

(z + k̄)2 exp(−γ z2)

z(z + 2k̄)
(A.15)

which can be written as

K =
∫ ∞

−k̄
dz exp(−γ z2) + k̄2P

∫ ∞

−k̄
dz

exp(−γ z2)

z(z + 2k̄)
. (A.16)

In this last equation, the first integral is not singular and can
be easily evaluated analytically to find the following result:∫ ∞

−k̄
dz exp(−γ z2) =

√
π

4γ
[1 + erf(

√
γ k̄)]. (A.17)

The second integral in equation (A.16) contains the singularity.
However, this singularity can be eliminated by splitting this
integral into two terms as follows:

P
∫ ∞

−k̄
dz

exp(−γ z2)

z(z + 2k̄)
= 1

2k̄
P

∫ ∞

−k̄
dz

exp(−γ z2)

z

− 1

2k̄

∫ ∞

−k̄
dz

exp(−γ z2)

(z + 2k̄)
. (A.18)

Writing the first term in the form

P
∫ ∞

−k̄
dz

exp(−γ z2)

z
= P

∫ +k̄

−k̄
dz

exp(−γ z2)

z

+
∫ ∞

k̄
dz

exp(−γ z2)

z
, (A.19)

we note that the first integral in this equation is equal to zero
and by a succession of variables changes, the second integral
can be identified as the exponential integral function∫ ∞

k̄
dz

exp(−γ z2)

z
= 1

2
E1(γ k̄2). (A.20)

These analytical calculations enabled us to write the integral
K given in equation (A.14) in the analytical form

K =
√

π

4γ
[1 + erf(

√
γ k̄)] + k̄

4
E1(γ k̄2)

− k̄

2

∫ ∞

−k̄
dz

exp(−γ z2)

(z + 2k̄)
. (A.21)

The function in the integral of the last term is continuous over
the domain of integration and decreases very quickly and can
be easily performed numerically.
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