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Abstract 

The Internet of Things (IoT) has revolutionized the healthcare industry and has the potential to 

connect physical and virtual objects through communication capabilities, providing data collection, 

management, and other services. Particularly, research has been conducted on the use of IoT in 

mHealth applications, with a focus on diabetes self-management. This thesis proposes a novel 

architecture for an IoMT health system for diabetes self-management, particularly an artificial 

pancreas. The system is composed of three different parts: a novel approach for continuous glucose 

monitoring based on ECG signal, an intelligent algorithm (model predictive controller) to predict the 

insulin rate required for maintaining the blood glucose in the normal range, and an IoMT-platform 

architecture based on a smartphone application to connect the different devices and permit remote 

monitoring. The proposed system is designed to ensure that the blood glucose level is always within 

the normal range, providing real-time BG monitoring using a non-invasive, affordable device, an 

insulin rate calculator coupled with an autonomous injection system, and alert and advisory services 

to prevent potentially life-threatening scenarios. The system is remotely monitored by healthcare 

administrators, making it an indispensable aspect of diabetes management. The proposed system is 

reliable, scalable, and user-friendly, and the intelligent algorithms used for ECG data analysis and 

insulin rate calculation are suitable for the specific requirements and characteristics of the IoT project. 

Remote health monitoring technologies are revolutionizing the healthcare business and enhancing 

people's lives, and this thesis contributes to that revolution by proposing a novel architecture for an 

IoMT health system for diabetes self-management. 
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Résumé  

L'industrie de la santé a été transformée par l'Internet des objets (IoT) en permettant la connectivité 

de divers objets physiques et virtuels grâce à des capacités de communication avancées, offrant des 

services de collecte, de gestion et de traitement de données utilisant l'apprentissage automatique. Les 

applications mobiles de santé (mHealth) ont été étudiées avec une attention particulière à l'autogestion 

du diabète. Une nouvelle architecture pour un système de santé IoMT dédié à l'autogestion du diabète, 

plus précisément un pancréas artificiel, est proposée dans cette thèse. Trois parties distinctes 

composent le système : une nouvelle méthode de surveillance continue de la glycémie basée sur le 

signal électrocardiographique (ECG), un algorithme intelligent (contrôleur prédictif de modèle) pour 

prédire le taux d'insuline nécessaire pour maintenir la glycémie, et une architecture de plateforme 

IoMT basée sur une application smartphone qui permet la connectivité de divers dispositifs et la 

surveillance à distance. En fournissant une surveillance en temps réel, un calculateur de taux 

d'insuline associé à un système d'injection autonome et des services d'alerte et de conseil pour 

prévenir les situations potentiellement mortelles, Le but du système proposé est de s'assurer que la 

glycémie reste dans une plage normale. La surveillance du système par les administrateurs de santé à 

distance est essentielle à la gestion du diabète. Les algorithmes d'apprentissage automatique utilisés 

pour l'analyse des données ECG et le calcul du taux d'insuline sont adaptés aux exigences et aux 

caractéristiques spécifiques du projet IoT, et le système proposé est fiable, évolutif et facile à utiliser. 

Cette thèse propose une nouvelle architecture pour un système de santé IoMT pour l'autogestion du 

diabète, contribuant ainsi à la révolution du secteur de la santé et de la qualité de vie des patients.
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ملخص

 

البيانات والإدارة والخدمات لدينا الآن القدرة على ربط الأشياء الفعلية والافتراضية من خلال قدرات الاتصال، مما يوفر جمع 

، مع التركيز  (mHealth) في تطبيقات الصحة المحمولة (IoT) الأخرى. تم إجراء البحوث حاليًا حول استخدام الإنترنت للأشياء

 لإدارة السكري الذاتية، ولا IoMT بشكل خاص على إدارة السكري الذاتية. تقترح هذه الأطروحة بنية معمارية جديدة لنظام صحة

، ECG سيما البنكرياس الصناعي. يتكون النظام من ثلاثة أجزاء مختلفة: نهج جديد لمراقبة الجلوكوز المستمر بناءً على إشارة

وخوارزمية ذكية )متحكم تنبؤي في النموذج( لتوقع معدل الأنسولين اللازم للحفاظ على مستوى الجلوكوز في النطاق الطبيعي، 

س تطبيق الهاتف الذكي لربط الأجهزة المختلفة مع بعضها البعض والسماح بالمراقبة عن بعد. يتم على أسا IoMT وهندسة معمارية

تصميم النظام المقترح لضمان أن مستوى الجلوكوز في الدم دائمًا في النطاق الطبيعي، وتوفير مراقبة في الوقت الحقيقي للجلوكوز 

حقن ذاتي. وبالإضافة إلى ذلك، يجب أن يوفر النظام خدمات التنبيه والاستشارة في الدم، وآلة حاسبة لمعدل الأنسولين مقترنة بنظام 

لمنع السيناريوهات التي يمكن أن تهدد الحياة. وعلاوة على ذلك، يتم مراقبة هذه الخدمات عن بعد من قبل المسؤولين الصحيين، مما 

النظام المقترح ليكون موثوقًا به وقابلاً للتوسع وسهل الاستخدام، يجعلها جانبًا لا يمكن الاستغناء عنه في إدارة السكري. يتم تصميم 

وحساب معدل الأنسولين لتلبية المتطلبات والخصائص الخاصة  ECG ويتم تكييف خوارزميات التعلم الآلي المستخدمة لتحليل بيانات

الصحية وتحسين حياة الناس، وتساهم هذه  المحدد. تقوم تقنيات المراقبة الصحية عن بعُد بثورة في صناعة الرعاية IoT لمشروع

 .لإدارة السكري الذاتية IoMT الأطروحة في هذه الثورة من خلال اقتراح بنية معمارية جديدة لنظام صحة
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General Introduction  

Recent advancements in smart sensor technology, including wearable sensors, smartwatches, and 

smartphones, have made it simpler and more practical to monitor a variety of physiological indicators 

and gather large amounts of data. By harnessing big data, researchers can obtain a more profound 

comprehension of the body's physiology and innovative healthcare solutions. Furthermore, the advent 

of IoT technologies like cloud and fog computing has enabled the instantaneous analysis of this data 

permitting advanced real-time monitoring. The widespread use of body sensor networks by diabetic 

care devices to provide clinical data and therapeutic strategies is a great example of this clinical 

significance. 

Diabetes mellitus is a long-term medical disorder characterized by elevated blood glucose (BG) 

concentration (hyperglycemia) due to the body's incapacity to manufacture or appropriately utilize 

insulin, a hormone that regulates glucose metabolism. There exist two major types of diabetes 

mellitus. Type 1 diabetes (T1DM) is an autoimmune disease in which the immune system attacks and 

destroys insulin-producing cells in the pancreas. Individuals with T1DM rely on external insulin 

administration to regulate their BG levels. Conversely, type 2 diabetes (T2DM) happens when the 

body manifests insulin resistance or fails to manufacture sufficient insulin. Obesity, sedentary 

activity, and inadequate eating habits are usually associated with this kind of diabetes [1]. 

As stated in the International Diabetes Federation's (IDF-2019) report, Diabetes Mellitus (DM) has 

grown into a pandemic pathologic that poses a serious threat to world health. Accordingly, the 

pervasiveness of this chronic disease has surged to 10.5% of the populace, with an estimated 537 

million diabetics in 2021. Projection models predict that by 2045, this number will have risen to 

around 783 million diabetes cases. Among these cases, 73.8 million adults (aged 20 to 79 years) are 

localized in the MENA Region, where Algeria has the second-highest prevalence [2]. 

The ongoing pandemic has emphasized the need for medicinal solutions that enable remote care, 

remote monitoring, and support for diabetic self-management technologies while embracing an 

environmentally sustainable approach. Successful self-management of diabetes is aimed at 

maintaining BG levels to normal to mitigate the progression of complications such as diabetic 

retinopathy, nephropathy, and neuropathy[3, 4]. For DM patients insulin therapy, generally, includes 

frequent blood glucose monitoring and the delivery of Multiple Daily Insulin Injections (MDII) or 
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Continuous Subcutaneous Insulin Infusion (CSII). Recently, The use of CGMs sensors with CSII 

pump devices in an open-loop combination has been proven to provide clinical advantages over the 

conventional MDII treatment [5]. 

If these last have been combined in a closed-loop system, it can be called it Artificial Pancreas (AP). 

With the advent of cutting-edge wireless technologies and smart sensors, the revolutionary concept 

of the Artificial Pancreas (AP) has emerged. This medical device is designed to automate the 

administration of insulin. It comprises a CGM system that measures the BG level, which is used then 

by an intelligent algorithm to control an insulin pump that administrates insulin into the body based 

on the immediate requirements. The device’s primary objective is to imitate the physiological role of 

a healthy pancreas, which controls blood sugar levels by releasing insulin in response to fluctuations 

in BG levels. 

 The employment of artificial pancreas systems (the closed-loop system), has shown immense 

potential in enhancing diabetes management and mitigating the risk of associated complications [6]. 

In recent years, the emergence of the Internet of Things (IoT) technology has presented a robust tool 

for augmenting the efficiency and efficacy of healthcare systems [7, 8]. Considering this, the present 

thesis proposes an innovative approach for diabetes self-management, practically, an AP system, 

forged through the utilization of Internet of Things (IoT) technologies. 

IoT devices have the potential to gather and exchange data with various devices and systems via the 

internet. In the context of the artificial pancreas, IoT technology can be used to improve the device's 

functionality and usability. For instance, IoT sensors can be utilized to monitor a patient's physical 

activity levels, which can impact glucose levels and insulin requirements. This information can be 

employed to make real-time adjustments to insulin delivery, thereby enhancing the accuracy and 

efficacy of the device. Additionally, IoT technology can be leveraged to remotely monitor the 

artificial pancreas, enabling healthcare providers to track a patient's glucose levels and insulin 

administration in real-time. This can facilitate early detection and intervention in urgent cases. In 

summary, the integration of IoT technology into the artificial pancreas system has the potential to 

revolutionize diabetes self-management, elevating the quality of life for diabetic patients[9–11]. 

One of the key trends in the development of IoT platforms for AP systems is the integration of 

CGM, physiological signals, electrophysiological signals, and insulin delivery systems. IoT platforms 

for AP systems are engineered to incorporate these devices, enabling seamless data exchange and 
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communication between them. Another trend in the development of IoT platforms for AP systems is 

the use of machine learning and predictive algorithms. These algorithms can be used to analyze data 

from CGMs, physiological and electrophysiological signals, and data from other connected devices, 

to make real-time predictions about future glucose states. This information can be utilized to optimize 

insulin administration, enhance glucose control, and prevent hypoglycemia and hyperglycemia 

episodes. 

All the AP system components, including the insulin pump, CGM sensor, and control algorithm, 

should be accessible to establish and improve an IoT platform for AP systems. The fact that we are 

unable to locate the market for such devices in Algeria is a significant difficulty for our investigation. 

As a consequence, we decided to develop the three components to propose a novel IoT architecture 

for an AP system based on a non-invasive CGM [9–11]. 

To ensure optimal diabetes self-management, continuous glucose monitoring is an essential 

component. Traditional methods of BG monitoring involve invasive finger prick tests at least four to 

five times a day, which is not only burdensome but also does not allow for continuous monitoring 

[12]. Fortunately, CGMs nowadays can determine BG concentration in real-time, every five minutes. 

This has significantly improved BG control for diabetic patients. Nonetheless, CGMs still have 

limitations such as the 7-14 day working time limit and the invasive nature of the device, which 

requires cannula insertion into the subcutaneous tissue. Additionally, they are cost-effective and 

require finger prick calibration every day [13–17]. 

Considering the limitations of CGMs, non-invasive approaches to BG monitoring, such as optical-

polarimetry [18], fluorescence technology [19], and Raman spectroscopy [20], have recently been 

proposed. The Internet of Medical Things (IoMT) and smart technologies such as wearable sensors, 

smartwatches, and smartphones have made medical solutions and services more accessible and 

affordable. These technologies can provide wireless, and smart monitoring in real-time, making 

continuous monitoring of individuals more prevalent in their daily lives [21]. In recent years, 

researchers have attempted to integrate biosignals [22] into the artificial pancreas to predict 

hyperglycemic and hypoglycemic events [23–25], As a result, Machine Learning has been used to 

construct early warning systems, specifically, the electrocardiogram signal (ECG). Various studies 

investigate the relationship between the changes in ECG signal and BG fluctuation, and it has been 

demonstrated that hypoglycemia and hyperglycemia episodes affect the electrophysiology of the 
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heart. However, they have not established a direct relationship between BGC and electrocardiogram 

(ECG) parameters to estimate directly the BG value [24–26]. Hence, in this work, we have confirmed 

the linear relationship between BGC and ECG features. Furthermore, we propose a novel approach 

using recurrent convolutional neural networks and machine learning for BG estimation based on ECG 

features.  

The second component of our AP system comprises an intelligent control algorithm that determines 

the optimum insulin dose to inject depending on the patient's current BG level. The objective of this 

control algorithm is to maintain the patient’s BG level within a predetermined range, minimizing by 

that the risk of both hypoglycemia and hyperglycemia. Various types of control algorithms have been 

developed for AP systems, including proportional-integral-derivative (PID) control [27] and model 

predictive control (MPC) [28]. The choice of the algorithm is determined by the AP system's specific 

needs as well as the patient's specific features we attend to integrate into the AP system.  Considering 

the preceding, we have developed a linear model predictive controller, which is a version of MPC 

that employs a simplified linear model of the patient's glucose-insulin dynamics. This approach is 

distinguished by its multivariable nature, computational efficiency, and suitability for real-time 

implementation. 

The primary objective of this thesis is to examine the potential of Internet of Things (IoT) 

technologies in augmenting the performance and usability of the artificial pancreas (AP) system. To 

this end, we have developed an intelligent, wearable infusion system that is based on a smartphone 

application, intending to showcase the transformative impact of mobile health on diabetes self-

management [29]. In addition, we provide a comprehensive review of cutting-edge IoT technologies 

that can be harnessed to construct an IoT platform for an AP system and evaluate their efficacy in 

enhancing diabetes self-management. Lastly, we propose a novel IoT architecture for an AP system 

that utilizes an electrocardiogram (ECG) signal for BG monitoring and incorporates the components 

that were previously developed 

This thesis is divided into five chapters, which are listed below. 

Chapter 1 Provides an insight into the Internet of Medical Things (IoMT) and her role in diabetes 

self-management at first. Then, a comprehensive and detailed exploration of diabetes mellitus disease 

is presented. Before this, the chapter expounds upon the impact of the physiology of glucose, 

Autonomic Regulation of Glucose Homeostasis, and their interrelation with the activity of the heart. 
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Additionally, the chapter delves into a thorough account of the latest technologies that aid in the 

support of diabetes self-management promoting the use of the biometric variables in the artificial 

pancreas AP. Finally, we will conclude our theoretical research with the main problematic of our 

thesis.   

Chapter 2 of this study comprises an extensive review of the existing research on non-invasive 

continuous glucose monitoring technologies. In addition to this, we advance innovative approaches 

for determining BG levels through ECG signals, leveraging advances in machine learning. Before 

that, the chapter provides a detailed description of the data used, also, the process chosen for data 

analysis (Filtering-segmentation-characterization), using recurrent convolutional neural. Finally, we 

discuses the implications of the findings for diabetes self-management by highlighting, the potential 

use of this approach in IoT platforms for more effective and efficient blood glucose monitoring 

technologies. 

In Chapter 3 of this work, we undertake a comprehensive comparative analysis of the control 

algorithms presently employed in closed-loop artificial pancreas (AP) systems. Particularly, we 

demonstrate the several advantages of employing a linear model predictive control (LMPC) technique 

in an IoT platform of AP system. The simulation setup and validation methods were then discussed 

in detail. Lastly, we offer the approach's findings along with a discussion emphasizing the need to 

use the control algorithm to assure the safety and efficacy of an AP system.  

In Chapter 4, at first, we provide a brief section of the advanced Syringe infusion pumps (SIPs) 

available, then we highlight the need for lightweight, microliter-precision, and wirelessly controlled 

syringe pumps. we detail the development of such a smart, wearable insulin infusion system, that 

operates based on a smartphone application (hardware-software). In addition, we present the results 

obtained and their discussion. Finally, the chapter emphasizes the use of mobile health technologies 

in an AP system to improve diabetic self-management. 

Chapter 5 provides a detailed and analytical overview of the most recent and sophisticated IoT 

technologies that can be seamlessly incorporated into artificial pancreas (AP) systems. Furthermore, 

in this chapter, we propose a highly innovative internet of things (IoT) architecture platform for an 

AP system, which is based on the electrocardiogram (ECG) signal. The chapter describes the 

architecture design and discusses its impact on the field of self-management technologies for diabetic 

patients. Furthermore, we present its limitations and future perspectives.  
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The concluding section of this thesis provides a summary of the key findings and contributions of 

the thesis, discusses the implications for diabetes management and healthcare, and suggests directions 

for future research. Overall, this thesis contributes to the emerging field of IoT-enabled healthcare by 

proposing novel approaches to an AP system that uses a wearable ECG device as a continuous glucose 

monitor. The findings of this thesis have important implications for improving the efficiency and 

effectiveness of diabetes management and reducing the risk of complications in a cost-effective 

manner. Finally, this thesis is a ground-breaking innovation with the potential to transform the whole 

field of diabetes management and healthcare.
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I. State of art  
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1. Introduction:  

The prevalence of Diabetes Mellitus (DM) has surged to 10.5% of the world's population, 

with approximately 537 million individuals diagnosed with diabetes in 2021. Predictive models 

indicate that this figure is expected to climb by approximately 783 million cases by 2045, 

making it a significant threat to global health [2]. Thus, the International Diabetes Federation 

(IDF) has recognized DM as a pandemic pathology problem, further highlighting the necessity 

for medical solutions that enable remote care, remote monitoring, and promoting diabetes self-

management technologies, all the while embracing an eco-friendly ethos. The prevalence of 

DM, accompanied by its specific complications and the involvement of other chronic conditions 

that frequently coexist with diabetes, highlights the fact that it is one of the most important 

social and public health issues of our day [30]. 

Providing an insight into the Internet of Medical Things (IoMT) and her role in diabetes 

management at first, the current chapter endeavors to provide a comprehensive and detailed 

exploration of the disease of diabetes, including its associated complications. Before this, the 

chapter expounds upon the impact of the physiology of glucose, Autonomic Regulation of 

Glucose Homeostasis, and their interrelation with the activity of the heart. Additionally, the 

chapter delves into a thorough account of the latest technologies that aid in the support of 

diabetes self-management promoting the use of the biometric variables in the artificial pancreas 

AP. Finally, we will conclude our theoretical research with the main problematic of our thesis.   

2. IoT in diabetes management: 

The Internet of Things (IoT) has been hailed as a technological revolution, representing a 

network of physical objects - popularly referred to as "things" - that are equipped with 

electronics, software, sensors, and connectivity, enabling them to intercommunicate and 

exchange data. The IoT is a new and rapidly expanding concept that is founded on a diverse 

range of objects - such as Radio Frequency Identification (RFID), Near Field Communication 

(NFC), sensors, and smartphones, among others - that can interact with each other through the 

employment of unique addresses. Moreover, AI is often integrated within IoT to enable efficient 

decision-making, action initiation, and problem management. These objects undergo a 

transformation from a "dumb" state to a "smart" one through the utilization of underlying 



State of art 

 

26 

 

technologies such as pervasive computing, embedded devices, communication technologies, 

sensor networks, protocols, and applications [31, 32].  

As shown in Figure I-1, the Internet of Medical Things (IoMT) is a network of linked medical 

sensors and specific medical devices and services. In response to the emergence of several 

healthcare challenges, including COVID-19, diabetes mellitus, cardiovascular issues, obesity, 

and an aging population, along with the rising expenses of healthcare, has spurred individuals 

to embrace the concept of self-management through intelligent IoMT [33, 34]. IoMT facilitates 

a personalized, cost-effective, and proactive approach to healthcare management [9]. Besides, 

it enables healthcare providers to extend their reach beyond the conventional clinical setting, 

and it furnishes researchers with an extensive corpus of data, thereby promoting continuous 

innovation [9]. 

 

Figure I- 1: An overview of a typical IoT-based healthcare system 

In another meaning, Recent advancements in smart sensor technology, including wearable 

sensors, smartwatches, and smartphones, have made it simpler and more practical to monitor a 

variety of physiological indicators and gather large amounts of data. By harnessing big data, 

researchers can obtain a more profound comprehension of the body's physiology and devise 

novel healthcare solutions [35]. Furthermore, the advent of IoT technologies like cloud and fog 

computing has enabled the instantaneous analysis of this data permitting real-time monitoring. 

The widespread use of body sensor networks by diabetic care devices to provide clinical data 

and therapeutic strategies is a great example of this clinical significance [36]. 

In this context, the emergence of the internet of things (IoT) has had a profound impact on 

several domains, most notably the artificial pancreas. The artificial pancreas, being an IoT 

system in itself, has revolutionized diabetes self-management and has gained immense 
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popularity [37]. The components of the Internet of Medical Things (IoMT) platform for an AP 

system may comprise but are not restricted to, wearable sensors that detect blood glucose 

concentration (BGC), wireless communication devices that transmit sensor data to the control 

algorithm, the control algorithm that processes the data and computes the appropriate insulin 

dose, the insulin pump that dispenses the insulin dose, and cloud-based data storage and analysis 

for large physiological information datasets. Furthermore, the platform may encompass mobile 

applications that offer real-time data to users and enable remote monitoring of patients by 

healthcare professionals [38]. The development of the IoMT platform for an AP system is an 

active research and innovation domain, and various companies and organizations are 

contributing to its progress. In chapter 5, the existing AP systems and   IoMT healthcare 

platforms for diabetes self-management are detailed.  

3. Physiology of Glucose Insulin System: 

Glucose serves as the main source of energy in the human body. The intracellular glucose 

molecules are catabolized to produce triphosphate (ATP) molecules, which are high-energy 

molecules that fuel numerous cellular processes, making glucose the primary metabolite 

necessary for proper bodily function. The transportation of glucose molecules to cells takes 

place through the bloodstream, where they can be utilized to generate ATP or stored as energy, 

contingent on the target tissue [1, 39]. The physiology of the glucose-insulin system is shown 

in Figure I-2. 

  

Figure I- 2: physiology of glucose 
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  As a result, it is essential to maintain a relatively constant glucose level in the circulation to 

guarantee an unchanging supply of glucose to the cells. In a healthy individual, BG is habitually 

sustained within a restrained range (70-110 mg/dl or 3.9-6.1 mmol/l). Complex negative 

feedback control mechanisms monitor changes in the body and initiate procedures to counteract 

such variations to re-establish a normal physiological state and maintain BG in the normal 

range. The negative feedback mechanisms play a pivotal role in glucose regulation, ensuring a 

balance between blood glucose and glucose being utilized by the body. The two primary 

hormones involved in glucose homeostasis are insulin and glucagon, produced by the endocrine 

cells (islets of Langerhans) [1, 39]. 

3.1. Pancreas: 

It is located in the upper left abdomen, behind. The pancreas is a mixed gland that performs 

both exocrine and endocrine functions. The exocrine pancreas discharges enzymes that 

participate in the degradation of lipids, carbohydrates, and proteins into the duodenum. The 

endocrine portion of the pancreas contains islet cells that manufacture and release vital 

hormones into the bloodstream. Insulin and glucagon, regarded as pivotal in glucose 

homeostasis, represent the primary hormones secreted by the endocrine cells located in the 

pancreatic exocrine tissue. Insulin and glucagon are secreted by Beta cells and alpha cells 

respectively, both of which are released in response to blood glucose levels, but in opposing 

directions. 

3.2. Insulin:  

Following a rise in blood sugar levels, typically post-meal, Beta cells initiate insulin secretion. 

The metabolic effects of insulin include:  

- Stimulation of bodily cells to heighten their glucose absorption rate from the 

circulation.  

- Promotion of cellular glucose consumption as a source of energy. 

- Increasing glycogenesis (transformation of glucose molecules into glycogen, which 

takes place primarily in the hepatic and skeletal muscular cells). 
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- Fat production from glucose catalyzed in liver cells and adipose tissue. The cumulative 

effects of insulin, ultimately, culminate in the restoration of blood sugar levels to 

normal levels. 

- Insulin secretion encompasses two stages: the first stage, known as the basal insulin 

level, is independent of blood glucose levels, while the second stage is triggered by an 

increase in blood sugar 

3.3. Glucagon:  

In instances where blood glucose levels dip below the standard range, such as on an empty 

stomach, as a result of exercise or starvation, insulin secretion is curtailed, and pancreatic cells 

initiate glucagon secretion. Glucagon elicits several effects, primarily on liver cells, including: 

- Stimulation of glycogen breakdown (glycogenolysis) into glucose, which is 

subsequently delivered into the circulation to prevent low blood glucose levels.  

- Increases fat breakdown to fatty acids and glycerol in adipose tissue, resulting in their 

liberation into the circulation. 

- Promoting glucose synthesis in the liver, utilizing absorbed glycerol from the 

bloodstream, and releasing it into the blood. The cumulative effect of these 

mechanisms is the restoration of blood glucose levels to their range.  

Insulin and glucagon feedback processes ensure that blood sugar levels remain within precise 

ranges, ensuring a steady supply of glucose to body tissues. 

4. Autonomic Regulation of Glucose Homeostasis: 

The Autonomic Nervous System (ANS) serves as an integrative mechanism for coordinating 

the involuntary functions of organs such as the heart, pancreas, and intestines. It functions as a 

regulatory system that ensures homeostasis in response to diverse physiological demands aimed 

at maintaining internal stability and equilibrium. The ANS is bifurcated into two subsystems, 

namely the Sympathetic Nervous System (SNS) and the Parasympathetic Nervous System 

(PNS). The SNS is primarily in charge of the “fight or flight” response, whereas the PNS is 

critical to the body's "rest and digest" state [40, 41]. The maintenance of glucose absorption, 

consumption, and storage is governed by a complex system of neural regulatory and hormonal 

components collectively referred to as the glucose homeostasis system. Among these 
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components, ANS has been identified as a key determinant of glucose homeostasis. The ANS 

exerts its influence on the pancreatic islet through its sympathetic and parasympathetic 

branches, as well as the sympathoadrenal system, which innervates pancreatic α and β-cells, 

controlling their hormone production and cell number. Notably, these autonomic inputs exhibit 

different thresholds of activation in response to BG levels. With BG levels between 85 and 75 

mg/dl (normoglycemia), the parasympathetic nervous system is engaged, while the 

sympathoadrenal system is activated when the BG decreases between 75 and 65 mg/dl. 

Furthermore, measurements of pancreatic norepinephrine spillover have demonstrated that the 

pancreatic sympathetic nerves become activated at around 35 mg/dl in the case of 

hypoglycemia. Consequently, by the time BG levels reach 50 mg/dl, when clinical 

hypoglycemia symptoms become apparent, a duo of the tripartite autonomic inputs has formerly 

been triggered. Insulin-induced hypoglycemia triggers the activation of the ANS, which 

promotes glucagon release from the alpha-cell. Similarly, in hyperglycemia, glucose uptake 

increases the activity of the sympathetic nervous system [42]. 

Figure I-3 illustrates the complex mechanisms engaged in blood glucose regulation. In 

healthy individuals, the ingestion of food leads to a rise in BG levels. This increase in blood 

glucose is interpreted by the body as a stress stimulus, thereby culminating in the elicitation of 

a sympathetic nervous system (SNS) response.  

The SNS triggers the release of adrenaline from the adrenal medulla, which, in turn, stimulates 

insulin release from the pancreatic Beta-islets. Insulin promotes glucose absorption into liver 

The blue arrows 

represent the regulation 

The light red arrows 

denote the regulation when 

Figure I- 3: A depiction of how vital organs interact in glucose homeostasis 



State of art 

 

31 

 

cells, muscle cells, adipocytes, and other tissues, thereby promoting the synthesis of fat and 

protein and decreasing blood glucose levels. Adrenaline also increases heart rate and breathing 

frequency. Once blood glucose levels return to normal, the parasympathetic nervous system 

(PNS) releases the hormone acetylcholine, which slows down the heart rate. In the event of 

hypoglycemia, as blood glucose levels continue to decrease, the ANS stimulates epinephrine 

secretion, leading to the release of glucagon from the islet alpha-cell. Glucagon release triggers 

a chain reaction of kinase activity, leading to the release of glucose from liver glycogen stores 

through glycogen lysis [42, 43]. 

An increase in sympathetic nervous system (SNS) activity is responsible for various 

physiological changes in the body, including an increase in heart rate, contractility of the cardiac 

muscle, blood pressure, epinephrine secretion, sweat production, and breathing frequency, all 

aimed at preparing the body for action. These changes in SNS activity can lead to alterations in 

the Electrocardiogram (ECG) morphology signal, as evidenced by previous research [44]. In 

contrast, the parasympathetic nervous system (PNS) produces opposite effects to the SNS, 

resulting in a slowing of heart rate, breathing frequency, and relaxation. It follows that changes 

in BG levels can stimulate the ANS, leading to alterations in ECG signals that reflect critical 

information about the structure and function of the cardiovascular system, as well as ANS 

changes. Nonetheless, the relationship between hypoglycemia and ANS is intricate and 

warrants further investigation. 

5. Heart: 

The heart, as the primary circulatory organ, plays a pivotal role in maintaining the vitality of 

the body. Composed, predominantly, of myocardial tissue, the only muscle that can contract 

regularly and persistently without tiring. The heart is composed of four chambers, namely two 

atria and two ventricles, separated by valves that ensure unidirectional blood flow. The 

rhythmic alternation of atrial and ventricular systolic and diastolic cycles facilitates efficient 

blood circulation throughout the body [45]. 

The heart rhythm, or pulse, is generated through an intricate interplay between the 

autonomous cardiac pacemaker system and various regulatory mechanisms. The autonomous 

cardiac pacemaker system functions as an intrinsic control mechanism, generating rhythmic 

contractions of the myocardium. However, the pulse rate is also modulated by the nervous 
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system and endocrine signaling pathways. Specifically, two hormones, adrenaline, and 

noradrenaline, released by the adrenal glands in response to emotional stimuli, augment the 

contractile rhythm of the heart. Additionally, noradrenaline is also released by sympathetic 

nerve fibers that innervate the myocardium. In contrast, acetylcholine, a neurotransmitter 

released by parasympathetic nerves, exerts an inhibitory effect on the heart, decelerating the 

pulse rate. Consequently, the pulse rate can vary widely, ranging from 70 beats per minute 

during rest to 180 or even 210 beats per minute during intense exertion [45]. 

5.1. Electrical heart activity (Electrocardiogram):  

The sinus node, also known as the Sino-Auricular (SA) node, is a specialized cluster of 

myocardial cells located at the superior aspect of the right atrium that constitutes the primary 

pacemaker of the heart. The SA node generates a periodic excitation wave, characterized by a 

few millivolts of electrical potential, at a frequency of approximately 0.8 seconds. This wave 

propagates rapidly, within 0.1 seconds, through the muscular tissue of the atria, causing their 

contraction in a coordinated manner that facilitates the expulsion of blood into the ventricles. 

The corresponding electrical activity of the atria is reflected in the P wave of the ECG. 

Subsequently, the excitation wave reaches the Atrioventricular (AV) node, situated at a lower 

level between the atria, which functions as a relay station for the wave, transmitting it to the 

walls of the ventricles via the atrioventricular bundle (or His bundle) and the Purkinje fibers. 

This results in the depolarization and contraction of the ventricular myocardium and is reflected 

as the QRS complex in the ECG signal. During this phase, the atria remain inactive while the 

ventricles contract rapidly, generating a heartbeat sound, caused by the sudden closure of the 

valves [46]. Figure I-4 demonstrates the mechanism of the electrical impulsion generation and 

propagation. 
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The Electrocardiogram (ECG) is a diagnostic tool that provides a visual representation of the 

electrical activity of the heart. This is achieved via the use of an electrocardiograph, which 

measures the potential difference between various points on the surface of the body. By utilizing 

this non-invasive technique, clinicians can obtain valuable information on the functional status 

of the heart. The ECG signal illustrated in Figure I-4 pertains to the initial ECG lead of a 

healthy heart. This waveform is comprised of distinct deflections. The various components of 

ECG waveform correspond to specific electrical phenomena that occur within the heart during 

the cardiac cycle. Specifically [46],  

- P-wave represents the electrical depolarization of the atria,  

- QRS complex signifies the depolarization of the ventricles.  

- QT segment of the ECG is indicative of the plateau phase of the ventricular action 

potentials.  

- T-wave, on the other hand, represents the electrical repolarization of the ventricles. 

- U-wave, which is not always present, can be attributed to a delayed repolarization of 

the M cells or a mechanical factor that corresponds to the relaxation of the 

myocardium. 

Figure I- 4: The mechanism of the electrical impulsion generation and propagation. 
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6. Diabetes Mellitus: 

The term diabetes has its origins in the Greek language, where it signifies “to run through.” 

This nomenclature was inspired by the observation that after consuming liquids, diabetic 

individuals would quickly expel the liquids, much as water would flow through a conduit. 

Furthermore, the term mellitus, also of Greek origin, means honey. Thus, diabetes mellitus 

refers to a chronic metabolic illness characterized by the inability to control blood glucose levels 

adequately, which leads to the development of persistent hyperglycemia, marked by deviations 

in carbohydrate, lipid, and protein metabolism. The etiological basis of diabetes mellitus is 

primarily attributed to either the inadequate secretion of insulin, which is due to the destruction 

of beta cells, or diminished cellular responsiveness to insulin action [47]. 

As a consequence of the inadequate control of blood glucose levels, the majority of cells in 

the body become incapable of utilizing or storing glucose as an energy source. These cells adopt 

an enhanced reliance on the catabolism of lipids and proteins for energy production, 

culminating in the liberation of free fatty acids, cholesterol, and phospholipids into the 

circulatory system. The cumulation of these compounds in the bloodstream can result in the 

impairment, dysfunction, and failure of many organs in the body. Chronic hyperglycemia is 

linked to the development of acute ketoacidosis, as well as micro- and macrovascular diseases. 

The former arises due to the accumulation of ketones, which are by-products of the breakdown 

of fats and proteins, in the bloodstream. If left untreated, ketoacidosis can be fatal. Diabetes 

mellitus can be classified into two primary types [47, 48]: 

6.1. Type 01 Diabetes Mellitus (T1DM): “insulin-dependent diabetes mellitus” or 

“juvenile diabetes”  

Type 1 diabetes mellitus (T1DM) is a chronic condition defined by the body’s inability to 

process glucose due to the deficiency of insulin, which results from the immune system’s 

destruction of pancreatic β-cells. Hyperglycemia occurs when only a small fraction of beta cells, 

approximately 10% to 20%, remain functional. 

Blood sugar levels in T1DM patients may range from 300 to 1200 mg/dl, which is 8 to 10 

times higher than those in healthy people. The factors that trigger the autoimmune reaction 

against the pancreas remain elusive. Yet, it is widely thought to be the result of a complex 
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interaction between various predisposing genes and other environmental factors, such as 

viruses, toxic substances, food, and physical inactivity, among others [2]. 

The symptoms of T1DM include polydipsia (intense thirst), polyphagia (abnormally increased 

appetite), polyuria (excessive urination), and massive weight loss [49]. Around 10% of patients 

with diabetes are affected by T1DM, and its prevalence is steadily increasing worldwide. T1DM 

can manifest at any age, but it is more commonly diagnosed during childhood, adolescence, or 

early adulthood [2]. 

6.2. Type 02 Diabetes Mellitus (T2DM): "non-insulin-dependent diabetes mellitus" 

Type 2 diabetes mellitus (T2DM) is the most prevalent form of diabetes, characterized by the 

pancreas producing insulin, but the body's cells not responding to it effectively due to unknown 

reasons, resulting in high blood sugar levels or hyperglycemia. Insulin secretion accumulates 

in the bloodstream over time, resulting in decreased insulin production in the body and, in some 

cases, long-term T1DM. Unlike T1DM, T2DM is, generally, asymptomatic. The underlying 

reasons for cells' inability to respond to insulin properly remain unidentified. T2DM is thought 

to be primarily influenced by a combination of genetic predisposition and several factors such 

as obesity, sedentary lifestyle, fetal malnutrition, and diet [2, 49]. 

6.3. Diabetes-related complications:  

If diabetes remains untreated or poorly controlled, it can lead to a variety of complications 

that affect many different sections of the body. Some common diabetes-related complications 

include: 

6.3.1. Short-term complications:  

- Hyperglycemia, a hallmark of diabetes, is typically characterized by symptoms such as 

polyuria, polydipsia, nausea, vomiting, and abdominal pain. In cases where there is a severe 

deficiency of insulin, the body may resort to increased fat metabolism to provide the cells with 

energy, culminating in a state of ketoacidosis that may lead to a coma. Another acute 

complication associated with hyperglycemia is Hyperosmolar Hyperglycemia Syndrome 

(HHS). HHS occurs when the body is unable to compensate for polyuria caused by high blood 

glucose levels with an equivalent intake of fluids, resulting in increased serum osmolarity. This 
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condition can cause damage to various organs, including the brain, and potentially result in a 

state of coma. Interestingly, HHS is more commonly observed in cases of type 2 diabetes 

compared to type 1 [47, 50]. 

- Hypoglycemia not only disrupts the body's metabolic and autonomic functions, but it also 

impairs neuronal function, which can manifest as symptoms such as fatigue, weakness, 

dizziness, and cognitive or behavioral changes. In severe cases, hypoglycemia can lead to 

seizures, coma, and even death [48, 51]. 

6.3.2. Long-term complications: 

- DM is known to exacerbate the pathogenesis of atherosclerosis, leading to arterial stiffening, 

and consequently increasing the incidence of occlusive vascular diseases including cerebral 

stroke, and peripheral gangrene, myocardial infarction. Notably, patients with type 2 diabetes 

have a higher risk of developing these complications [48]. 

- Diabetic Autonomic Neuropathy (DAN) is a neuropathic disorder that typically manifests 

within the first decade of T1DM and T2DM. The pathogenesis of DAN is primarily 

attributed to the compromised blood supply to the nerves, resulting in structural changes. 

DAN can significantly impact the mortality and morbidity of diabetic patients, as it can affect 

several body systems, including the cardiovascular, gastrointestinal, genitourinary, pupillary, 

sudomotor, and neuroendocrine systems[48, 51].  

- Nephropathy can occur resulting from vascular disorders. The kidney blood vessels can be 

affected which disturbs the kidneys and causes kidney failure and irreversible kidney 

disease[48, 51].  

- Diabetic patients are susceptible to retinopathy. It refers to eye vision problems involving 

the retina, which can lead to progressive loss of vision[48, 51]. 

- In diabetics, infections of the skin, respiratory tract, gums, bladder, and vagina are difficult 

to treat. Moreover, poor blood circulation slows the healing process after an injury[48, 51]. 

6.4. Diagnostic:  

Diabetes mellitus (DM) is diagnosed clinically based on established criteria that include 

several parameters [6, 52]. These include:  

- A fasting blood sugar level exceeding 126 mg/dL,  
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- A random blood sugar level greater than 200 mg/dL in the presence of symptoms such 

as thirst, polyuria, unexplained weight loss, and others.  

- An Oral Glucose Tolerance Test (OGTT) results in greater than 200 mg/dL, as 

measured two hours following an oral load of 75 g of glucose,  

A definitive diagnosis of DM requires confirmation of the results by repeating the diagnostic 

tests on at least two occasions. 

- Another diagnostic test, The HbA1c test determines how much glucose is attached to 

hemoglobin12. It is a good predictor of diabetes complications because it evaluates 

average BG level over the past 2-3 months. 

6.5. Treatment:  

Correcting hyperglycemia and preventing hypoglycemia are the primary goals of managing 

diabetes. The following points apply to both T1DM and T2DM. 

- hypoglycemia can be remedied with sugar donation (sugar cubes or sugary drinks) if 

the patient is conscious, or intravenous glucose injection if the patient is unconscious 

[52]. 

- A healthy lifestyle is critical for preventing diabetes and its complications. Diabetic 

patients are advised to follow a balanced and varied diet that includes a source of 

carbohydrates at each meal and to avoid excessive fat intake and alcohol consumption 

[52]. 

- Physical activity is essential in diabetic patients not only for blood sugar control, but 

also for lowering cardiovascular risk factors, controlling weight, and improving well-

being and mental health. It must be tailored to the patient's age and disability. In 

general, the World Health Organization (WHO) recommends 150 minutes of 

moderate-intensity physical activity per week or 75 minutes of vigorous physical 

activity per week [53]. 

People with T1DM and those with T2DM have different medical treatment options to correct 

hyperglycemia. 
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6.5.1. Type 1 diabetes Mellitus: 

In reality, transplantation of a pancreas or islets of Langerhans remains the only effective 

treatment for T1DM. However, this procedure is often hampered by immunological factors and 

carries a significant risk profile. The transplanted Langerhans islet cells are frequently targeted 

by the body's immune system, much like the original islet cells, rendering transplantation a 

viable option only for individuals with highly resistant diabetes [54]. The primary treatment 

method for T1DM is insulin-therapy, which is tailored to each patient's characteristics, 

including the type of insulin used, its onset, peak, and duration of effect, as well as the number, 

amount, and timing of insulin doses. Generally, T1DM therapy may be divided into two 

categories depending on insulin regimen and glucose monitoring: Intensive Therapy (IT) or 

Conventional Therapy (CT): 

- CT involves one or two self-monitoring of blood glucose levels, one or two daily 

insulin injections with no dose adjustment outside of medical visits, and no specific 

glucose goals beyond preventing hyperglycemia and hypoglycemia symptoms [55].  

- In contrast, intensive therapy (IT) utilizes the administration of multiple insulin 

injections, typically thrice a day, or an external insulin pump. The dosages are adjusted 

based on a minimum of four self-monitored glucose measurements per day, food 

consumption, and pre-planned physical activity. IT also encompasses a set of daily 

glucose targets, including blood glucose levels ranging between 70-120 mg/dL before 

meals and a postprandial glucose level that is below 180 mg/dL. [6, 55]. 

The Diabetes Control and Complications Trial (DCCT) investigated the efficacy of two 

therapeutic modalities in treating T1DM, ultimately establishing the benefits of intensive 

glycemic control [5]. This study found that intensive blood glucose control lowers the 

occurrence of microvascular problems associated with T1DM, such as neuropathy, 

nephropathy, and retinopathy.  Nevertheless, the risks associated with intensive glucose control, 

such as severe hypoglycemia, weight gain, and increased therapy costs, limit its clinical use. 

Considering these limitations, researchers are currently focusing on developing optimal 

treatment protocols and autonomous system architectures that ensure the appropriate feedback 

between changes in BG levels and continuous insulin administration. This research led to the 

appearance of an Artificial pancreas system or the closed-loop system that will be discussed in 

depth in the coming section.  
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6.5.2. Type 2 diabetes Mellitus:  

The treatment for T2DM primarily involves changes to the patient's diet and lifestyle. In cases 

where glycemic targets are not achieved, pharmacological intervention is necessary. This 

typically involves the administration of oral medications, such as metformin or a combination 

of metformin and sulfonylureas, if the targeted glucose levels are not achieved. If glucose levels 

continue to rise, a third type of drug, either an oral hypoglycemic or an injectable medication 

(such as insulin), is given with metformin and sulfonylureas [6]. 

7. Advanced technologies for intensive therapy diabetes: 

This section delves into the present state of diabetes technologies intending to offer a historical 

context and current insights for researchers working on the development of a closed-loop 

system (Artificial pancreas).  

7.1. Insulin Administration:  

The conventional therapy for insulin administration entails the delivery of one to two daily 

injections of insulin, without any adjustments to the dosages. This therapeutic approach can be 

executed through the utilization of either syringes or injection pens for the subcutaneous 

administration of insulin. Conversely, Insulin-o-therapy in intensive mode necessitates Multiple 

Daily Insulin Injections (MDII), which can be accomplished by employing syringes, refillable 

injection pens, or pre-filled injection pens. In this scenario, rapid-acting or short-acting insulin 

is administered before each meal following carbohydrate/insulin ratios, with fixed doses 

referred to as boluses, while long-acting insulin is administered once or twice per day, typically 

in the evening and morning [55]. 

Another effective instrument employed in intensive mode therapy is the insulin pump, which 

shown to significantly improve glycemic control. The Continuous Subcutaneous Insulin 

Infusion (CSII) system, which is formulated to emulate the physiological secretion of insulin, 

can be either implantable or external. This system delivers regular rapid-acting insulin, as 

needed, via a Teflon catheter to the subcutaneous tissue of the abdomen, thighs, or arms. 

Various insulin delivery scenarios can be programmed using the insulin pump over 24 hours. 

The basal rate is programmed in units per hour, while boluses are triggered by the patient via 

the pump or a remote-control during meals. This system offers several advantages, including 

the ability for patients to manage metabolic changes related to daily conditions, such as the 
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dawn phenomenon (a glycemic rise in the early morning due to the elevation of hyperglycemic 

hormones), unstable diabetes, or diabetic gastroparesis (which is responsible for early post-

prandial hypoglycemia). Patients can also set a temporary basal rate at any time (e.g., lower it 

during physical activity to avoid hypoglycemia) and administer boluses gradually (over 1 or 

even 2 hours in the case of gastroparesis) [56]. 

An insulin pump typically consists of two disposable components: an insulin reservoir and an 

infusion set connected to the reservoir via a thin, flexible tube. The infusion set is composed of 

a cannula, which is a small plastic tube inserted into the subcutaneous fat beneath the skin. A 

needle is contained within the cannula and is used to puncture the skin during set insertion. 

After insertion, the needle is removed, and the cannula remains in place [56]. 

7.2. Blood glucose monitoring:  

Measuring blood glucose levels can be done through several methods, including the 

enzymatic-amper-o-metric and hexokinase techniques, which are widely employed for this 

purpose. Nevertheless, these invasive procedures involve the application of a droplet of blood 

onto an electrochemical probe or a colored enzyme-treated strip, typically obtained through a 

finger prick. Such techniques are often uncomfortable, necessitating frequent and intrusive 

monitoring, particularly at night, and may pose a risk of infection, thereby placing diabetic 

individuals in a vulnerable position [13]. 

An alternative methodology has been implemented to ensure continuous monitoring of blood 

glucose levels - the Continuous Glucose Monitoring (CGM) approach. It can determine the 

Blood Glucose Concentration (BGC) value in real-time and continuous intervals every 5 

minutes. CGM devices consist of a sensor, a transmitter, and a receiver. The sensor is inserted 

under the patient's skin, usually in the abdomen, and measures glucose levels in the interstitial 

fluid. The transmitter sends the data from the sensor to a receiver, which displays the glucose 

levels in real-time. Some CGM devices can also send the data directly to a smartphone or other 

mobile device. The utilization of minimally invasive Continuous Glucose Monitoring (CGM) 

systems is prevalent, considering the global spread of diabetes, resulting in substantial 

expenses, not only for the device's acquisition but also for the disposable sensor needles. The 

augmented employment of lancets, microneedles, and lancing pens is responsible for a 

substantial buildup of household waste, which poses various public health and environmental 
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concerns. This condition has prompted domain specialists to proactively introduce innovative 

systems to alleviate these limitations [16, 17]. 

This technology has significantly improved the control of BG levels for diabetes patients. 

However, they have many limitations such as the maximum duration of use is two weeks. As 

the measurement of blood glucose levels is conducted at the Interstitial Fluid (ISF) level instead 

of the blood level, a time lag issue cannot be avoided. Additionally, the defined CGMs require 

calibration more than twice a day using the conventional technique [14, 15, 57].  

7.3. Closed loop system (Artificial pancreas): 

During the 1960s, researchers initiated an ambitious project to create a device that could 

automatically calculate and administer the requisite dosage of insulin to the human body. This 

pursuit ultimately gave rise to closed-loop control systems [58]. One such experiment yielded 

the Biostator, which became the first artificial pancreas device. The initial version of this device 

was confined to hospital settings due to its cumbersome size and reliance on intravenous 

glucose sensing [59]. Nevertheless, it demonstrated the plausibility of external glucose 

regulation and encouraged further technological progress. The subsequent developments in 

continuous glucose monitoring [60] facilitated the expansion of the device applications beyond 

intensive care units [61]. Their deployment as an open-loop system has exhibited superior 

clinical outcomes compared to MDII treatment [62]. The artificial pancreas consists of 03 main 

components [56] as shown in Figure I-5:  

 

- CGM sensors, report Blood Glucose Concentration (BGC) almost every 5 minutes 

allowing real-time continuous monitoring.  

Figure I- 5: Artificial Pancreas (closed loop system) 
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- A control algorithm that computes the appropriate insulin delivery rate using the 

sensor's data.  

- An Insulin pump that administers the calculated amount of insulin. 

Researchers have directed their efforts towards integrating CGM with self-controlled insulin 

pumps utilizing intelligent control algorithms, which are more intricate than those implemented 

in open-loop systems. As of now, the intelligent control algorithms developed for closed-loop 

systems can forecast the blood glucose level half an hour ahead, according to the present BG 

reading, the amount of insulin administered, and other crucial variables. For instance, Sensor-

Augmented Insulin Pumps (SAPs) enable continuous communication feedback between the 

CGM and insulin pump, facilitating basal rate adjustments based on real-time glucose 

measurements. The insulin pump can automatically decrease the basal rate to prevent a sugar 

level drop, thereby decreasing the probability of severe hypoglycemic episodes. Nevertheless, 

SAPs still require manual adjustments and inputs from the user, such as the quantity of 

carbohydrates to be consumed [63]. Given that this technology is still in its early developmental 

phase, further research is required to fully comprehend its advantages and disadvantages [64]. 

Integration of closed-loop systems also referred to as artificial pancreas, has exhibited 

significant potential in comparison to conventional insulin therapy approaches currently 

employed [48, 49]. 

- The artificial pancreas technology holds promise in alleviating the discomfort 

associated with the frequent finger pricks required for glucose level measurement and 

insulin administration. 

- Enhancing the efficacy, security, and overall management of blood glucose control 

during overnight, postprandial, and other settings represents a vital objective. 

- Improve the quality of life: BG level fluctuations have a negative effect on physical 

and mental health in patients, caregivers, and their families. These mental health 

problems can be caused by either high or low BG levels. The artificial pancreas allows 

DM patients to be more flexible in their daily lives without having to constantly think 

about their diabetes and reduces stress. 

- Reduced cost of treating complications relating to type 1 diabetes and reduced 

hospitalizations for diabetic ketoacidosis. 
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- The primary objective is to mitigate and avert the occurrence of immediate and 

enduring complications stemming from diabetes, while simultaneously alleviating the 

daily challenges associated with diabetes management. 

8. Biometric variables in the AP system:  

The utilization of an AP system has been demonstrated to be both a secure and efficacious 

practice in extensive clinical investigations as well as commercial settings. However, 

researchers are currently endeavoring to further augment AP systems by integrating additional 

sensing modalities. As previously expounded in Section II, in healthy individuals, glucose level 

control in the bloodstream is accomplished through a complex negative feedback control 

system. This system continuously monitors physiological shifts and triggers mechanisms that 

counteract those variations, returning physiological conditions to normal. While AP has 

exhibited improvements in postprandial glucose control and overnight management, achieving 

target blood glucose levels in everyday situations remains a significant challenge. This is mainly 

because blood glucose levels impact the autonomic nervous system (ANS), which governs 

bodily functions, and the underlying physiology that variations in blood glucose levels with 

other bodily functions have yet to be fully elucidated. Consequently, researchers have 

concentrated their efforts on developing an external closed-loop system (i.e., AP system) that 

can mimic the natural regulatory system. To achieve this, it is essential to furnish the intelligent 

control algorithm with all the pertinent data that may influence glucose or insulin metabolism 

in the body. 

In the case of stress or physical activity, a multitude of physiological or electrophysiological 

parameters should be identified and integrated into the control algorithm to achieve optimal 

outcomes of the glucose profile [65, 66]. Likewise, in the case of meal consumption, the smart 

AP system should be capable of automatically detecting the amount of ingested carbohydrates 

utilizing wearable devices [67]. Given this feedback, the system should be able to adapt to the 

variations that emanate from medical conditions, physical activity patterns, and nutritional 

practices. So far, the primary focus of studies has been centered on controlling blood glucose 

levels during and after exercise, as well as predicting episodes of hypoglycemia and 

hyperglycemia. 



State of art 

 

44 

 

8.1. Physiological signals: 

Maintaining regular physical activity is imperative for individuals with diabetes mellitus to 

ensure optimal BG levels and minimize the risk of complications, thereby improving insulin 

sensitivity. Consequently, managing patients with T1D during and after exercise is a 

challenging task for both patients and caregivers, regarding insulin management and 

hypoglycemia prevention and rescue. In light of the current breakthroughs in the Internet of 

Things, wearable sensors, and artificial intelligence, researchers have been directing their 

efforts toward assessing physical activity and leveraging it to improve closed-loop glucose 

control. 

Several biometric variables, including accelerometer signal/Heart Rate (HR) [68, 69], skin 

temperature, skin impedance [66, 70, 71] galvanic skin response, and energy expenditure [66, 

70–72], have been analyzed to most appropriate biometric indicators for predicting 

hypoglycemia during and after physical activity. They aimed to comprehend the impact of these 

biometric variables on the metabolic response to exercise. The findings suggest that all these 

biometric characteristics influence blood glucose control. Nevertheless, it is recommended that 

an exercise sensor should only be integrated into an artificial pancreas (AP) system if it 

minimizes the possibility of hypoglycemia [66]. 

8.2. Electrophysiological signals:  

A. Electroencephalogram signal:  

EEG measures the electrical activity of brain cells, which is categorized into four bandwidths: 

beta (16-31 Hz), alpha (8-15 Hz), theta (4-7 Hz), and delta (4 Hz). Because the brain is highly 

susceptible to hypoglycemia, Since 1990, changes in EEG signals have been studied to explain 

the symptoms associated with this event. Regan and Browne Mayers reported that there was a 

decrement in alpha frequencies and an increment in delta frequencies after insulin injection. 

These changes were observed to steadily amplify with the progression of hypoglycemia, which 

was attributed to the insufficiency of metabolic fuel [58]. In response to hypoglycemia, total 

EEG power increase and frequency slowing have been observed[73, 74], as shown in Figure 

I-6, leading to cognitive impairment, reduced response times, slurred speech, loss of 

consciousness, seizures, and even death. The threshold for hypoglycemia-induced EEG 

alterations varies between individuals, and the mechanism for this difference is not yet 

established, although cerebral glycogen levels, glucose transfer into brain cells, and cerebral 
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blood flow are potential factors. EEG changes have been found to occur 120 minutes before 

coma, at a time when patients are typically aware. Therefore, researchers are developing 

hypoglycemia warning systems (alarms) to predict episodes before they occur [23]. 

 

Figure I- 6: Examples of single-channel EEG recordings during normoglycemia and hypoglycemia in the same 

person (daytime) 

Clewett et al. conducted a study [75] to assess the practicality of EEG-based hypoglycemia 

warning in a single case. In a separate investigation, Blaabjerg et al. devised a subcutaneous 

EEG alarm device dubbed hyposafeTM SubQ [76] that leverages brain activity to forestall 

hypoglycemic episodes. Their inquiry elucidates on a diminutive EEG implant installed beneath 

the skin posterior to the ear, which records EEG signals. Several machine learning-based 

techniques have been proposed to detect reduced glucose levels by utilizing diverse 

amalgamations of EEG parameters [76–78]. 

The most prominent and early indicators of hypoglycemia were found to be changes in EEG 

frequencies. However, the limitations imposed by the power consumption and miniaturization 

requirements of electroencephalogram technologies prevent the development of embedded 

wearable circuits that measure and analyze EEG data. These obstacles could make it more 

difficult to integrate electroencephalogram data into an Internet of Things platform for an 

autonomous artificial pancreas system [22]. 



State of art 

 

46 

 

B. Electrocardiogram signal:  

Various changes in ECG signal are associated with the ANS response and variations in blood 

sugar levels. Studies have examined combinations of ECG features and BG in both healthy 

subjects and diabetic patients [79, 80]. Lipponen et al. [81] explicate the underlying 

mechanisms responsible for these transformations, which embrace hypokalemia and the 

debilitation of the neural regulatory system. Hypokalemia enhances the potassium conductivity 

in myocardial tissue, culminating in shorter action potentials, which may exert an impact on 

heart activity. A change in the ECG occurs simultaneously with the onset of lower blood 

glucose levels since both neuronal regulation and hypokalemia are rapid processes. 

Furthermore, it is well-established that blood glucose levels affect hormonal secretion, such as 

adrenalin and noradrenaline, which may lead to a postponement in the ECG in correlation to 

the onset of hypoglycemia [42]. 

Recent studies have corroborated that hypoglycemia can lead to QT interval prolongation in 

patients with T1DM, which can culminate in sudden death [81, 82]. Additionally, an increase 

in corrected QT (QTc) is strongly linked with an increase in adrenaline [26]. T-wave flattening 

is another characteristic feature of hypoglycemia that is employed in the identification of 

hypoglycemic and euglycemic episodes [26, 79]. However, Porumb et al. [24] assert that 

changes in T-wave amplitude can be subjective. Nguyen et al. [73] examined the impact of 

hypoglycemia on several other heart rate activity metrics, such as increased HR, PR interval, 

corrected TpTec interval (TpTec) (T-peak to T end) and corrected RT interval (RTc). Their 

findings suggest that reduced blood glucose levels are linked with prolonged RTc, QTc, and 

TpTec [83]. These metrics furnish valuable information that can be harnessed to detect 

hypoglycemia in individuals with diabetes. The primary goal of all the aforementioned studies 

was to develop an alarm system that can prognosticate episodes of hypoglycemia and 

hyperglycemia. 

- A preliminary investigation was conducted on utilizing deep learning for the 

identification of hypoglycemic episodes based on electrocardiography (ECG) data, as 

outlined in [24]. The researchers investigated four healthy participants, utilizing a non-

invasive wearable device to record raw ECG signals. In addition, they introduced a 

visualization method, allowing clinicians to discern which specific part of the ECG 

signal (such as the T-wave or ST-interval) exhibits a significant correlation with the 
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hypoglycemic occurrence in each subject. The outcomes indicate that the deep 

learning models achieve notable sensitivity, specificity, and accuracy of approximately 

84% in detecting hypoglycemic events among the study subjects. 

- The objective of the study conducted by Cordeiro et al. [25] was to develop a Deep-

learning model that could detect hyperglycemia using ECG parameters characterized 

through the fiducial feature technique. A large dataset comprising 51,518 samples from 

1,119 subjects was utilized to achieve this goal. The fiducial feature technique, a 

widely used method in ECG analysis, was employed to identify characteristic points 

on the ECG waveform such as the QRS complex, to retrieve relevant features. The 

Deep Learning model was designed to predict hyperglycemia in real time. The study 

determined that the proposed model displayed high accuracy in detecting 

hyperglycemia, with an area under the receiver operating characteristic curve (AUC-

ROC) of 0.93. 

- In 2019, a proof-of-concept study [84] was conducted to investigate the effectiveness 

of the wearable device known as the "VitalPatch" (VitalConnect) in monitoring heart 

rate and detecting hypoglycemic events in 23 outpatients with T1DM. The device was 

positioned on the chest for five days. Results from the study indicated that Heart Rate 

Variability (HRV) alone could detect 55% of both daytime and nocturnal 

hypoglycemic events, with 27% of these events presenting an atypical pattern. 

- In recent years, Nguyen et al. [85, 86] have proposed alternative approaches for 

detecting hypoglycemic episodes, which utilize extreme learning machines or neural 

networks. These methods incorporate corrected QT interval (QTc) and HRV as inputs 

and employ a learning strategy that does not account for inter-individual differences. 

The team achieved a promising result using a dataset of 15 children, demonstrating a 

sensitivity of 80% and specificity of 50% for identifying nocturnal hypoglycemia. 

9. Conclusion:  

Diabetic mellitus has a profound impact on both the individual and societal levels, with 

significant human and economic consequences. However, present treatment modalities remain 

less than optimal, as they fail to fully understand glucose hemostasis and its full impact on the 

different bodily functions to maintain the blood glucose in the normal target range. In this 

chapter, we were able to highlight the impact of blood glucose level fluctuation on the ANS 

system and the heart rate activity. Furthermore, the recent technologies that support diabetes 
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self-management have been revealed. The current standard of care for DM self-monitoring is 

based on the use of CGMs and involves multiple daily injections or continuous subcutaneous 

insulin infusion (CSII) through an insulin pump. While these methods have proven effective in 

controlling blood glucose levels, they are not without their limitations. Through a thorough 

examination of the possible benefits of IoMT technology in enhancing the efficacy and 

practicality of AP systems, the integration of this technology into the realm of diabetes self-

management represents a promising avenue for mitigating these challenges. Wearable and 

smart sensors, IoT technologies, and AI enable the integration of electrophysiological signals 

specifically ECG signals in the AP system as a non-invasive, wearable, smart, and affordable 

continuous blood glucose monitor.  

The motivation for this thesis stems from the pressing need for improved diabetes 

management solutions. The integration of IoMT technology and machine learning approaches 

in diabetes self-management presents an opportunity to integrate electrophysiological signals 

specifically ECG signals in the AP system as a non-invasive, wearable, smart, and affordable 

continuous blood glucose monitor. this thesis aims to contribute to the development of more 

effective and patient-centered diabetes management solutions   
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1. Introduction:  

The need for continuous and painless blood glucose monitoring that is reliable, non-invasive, and 

affordable is crucial for an AP system. In this context, numerous approaches have been suggested as 

non-invasive techniques for BG monitoring (without the need for skin puncturing). Including optical 

polarimetry[18], fluorescence technology[19], and Raman spectroscopy[20]. These methods are 

based on the changes in tissue properties induced by fluctuations in glucose levels. Nevertheless, 

these approaches have challenges such as sensitivity to external interference caused by biometric 

variables such as sweat, body temperature, skin moisture, variations in skin thickness, and body 

motion. Thus, the accuracy of non-invasive methods is not always guaranteed. Another significant 

disadvantage is the durability of the aforementioned technologies, as well as the high cost of the 

system components. 

Another Approach has been investigated these last years, consisting of the use of wearable devices 

of physiological signals as non-invasive blood glucose monitors. Among these methods, is an 

apparatus that utilizes multiple body signals. The estimation of the BG measurement is based on the 

change in glucose absorption according to BG level. Other physiological signals (ECG, PPG, SpO2, 

GSR, etc.) were then employed as an auxiliary input to adjust and improve the estimated blood 

glucose levels. This method necessitates a high number of physiological inputs, increasing the 

measurement error rate and making the gadget weighty and unpleasant for portable usage and 

continuous self-monitoring.  

Other researchers have focused on the use of photoplethysmography (PPG) as a low-cost, non-

invasive option for estimating blood glucose levels. PPG analyzes changes in blood volume within 

the arteries and determines glucose levels in the circulation using a smartphone-based technique. The 

approach comprises converting video of the fingertip acquired with a commercially available 

smartphone camera to a PPG signal and extracting features using signal processing and regression 

models. Following that, machine learning techniques are used to forecast blood glucose levels. 

Empirical data have shown that this pioneering approach has potential, while improvements are still 

needed. 
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It is widely acknowledged that electrocardiography (ECG) has primarily been employed in the 

cardiology domain for diagnosis aiding and monitoring of heart disease. However, it is noteworthy 

that blood glucose levels can have an impact on cardiac electrical activity. This finding has motivated 

further investigation into this relationship to obtain a deeper understanding of this relationship. Based 

on the state-of-the-art presented in Chapter 1, studies have been conducted to predict hyper-

hypoglycemic episodes, However, they do not enable the direct measurement of real-time glycemia 

values from the ECG signal. To the best of our knowledge, we are the first whom propose a direct 

method for estimating BGC utilizing ECG features. Furthermore, wearable ECG devices are widely 

accessible in the market nowadays as smartwatches, belts, and bracelets. These non-invasive, 

affordable [87] devices are easy to integrate into an artificial pancreas using advanced technologies 

on the Internet of Things.  

In this chapter, we propose two novel approaches for BG determination based on ECG signals. The 

first involves mathematical equations to calculate blood glucose concentration value, whereas the 

second applies to machine learning to estimate the BG value utilizing ECG features as input. Before 

that, the chapter describes the process of data collection and analysis (filtering- segmentation) using 

a convolutional neural network. Finally, we discuss the implications of the findings for diabetes 

management and healthcare. 

2. Materials: 

In our work, we utilized two databases described as follows:  

2.1. D1namo dataset:  

It is a multi-modal dataset designed to facilitate studies on non-invasive T1DM management. This 

dataset comprises recordings from a diverse sample of twenty healthy individuals and nine patients 

diagnosed with T1DM. Alongside ECG data and blood glucose measurements, the dataset also 

includes respiration, accelerometer data, and annotated meal photos. This dataset was collected in 

real-world settings, thereby incorporating significant amounts of noise and missing data [88]. These 

devices, as well as the protocols used to collect the data: 
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a. Zephyr-BioHarness 3 wearable device:  

The Zephyr BioHarness 3 is a wearable device designed to monitor a range of physiological signals, 

including electrocardiogram, respiration, and skin temperature. Its versatile design enables it to be 

used in various settings, including healthcare, sports performance, and research[88, 89]. The device 

is compact and lightweight, rendering it easy to wear, maneuverable, and can be worn for extended 

periods without causing irritation or discomfort. It is equipped with a wireless connection to a mobile 

device or computer, allowing real-time monitoring and data analysis [88, 89]. 

As depicted in Figure II-1, this device resembles a sports chest belt and is composed of three 

electronic detectors for the measurement of physiological signals. The first detector captures ECG 

signals using two electrodes, while the second detector measures respiration via chest expansion. 

The third detector is used for capturing three-dimensional accelerations. Additionally, Furthermore, 

the device can calculate supplemental measurements such as Heart Rate (HR), Breathing Rate (BR), 

and activity level.  

The Zephyr BioHarness 3 ECG is recorded using an I-lead sensor, which comprises a pair of silver-

coated nylon electrodes that operate while in contact with the skin. The electrocardiogram was 

produced at a frequency of 250 Hz and up to 54.89 mV. As part of the prescribed protocol, individuals 

(diabetic patients and healthy subjects) are instructed to put on the BioHarness at least one hour per 

day. This routine must be followed for four days consecutively [88, 89]. 

Figure II- 1: The Zephyr BioHarness 3 

b. Bayer Contour XT glucose meter: 

The glucose levels of healthy people were monitored using the cutting-edge Bayer Contour XT 

glucose meter in conjunction with Bayer Next strips. individuals used the Microlet 2 Lancing Device 

and its matching Microlet Colourful Lancets to retrieve a blood sample [90]. The full protocol 
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followed included six glucose readings per day, one before each meal, namely breakfast, lunch, and 

supper, and an extra reading two hours after consumption [88]. 

c. iPro2 Professional CGM sensor: 

To measure the glucose levels of diabetes patients continuously throughout the day and night, the 

iPro2 Professional CGM sensor was employed, allowing for a 5-minute interval between two 

successive readings. The iPro2 Professional CGM sensor measures the BG level from the interstitial 

fluid. The device utilizes a petite and pliable sensor that is comfortably inserted just below the skin 

as shown in Figure II-2, along with a separate transmitter that seamlessly transmits data wirelessly 

to a display device, including a receiver, smartphone, or insulin pump [91].  

 

Figure II- 2: iPro2 Professional CGM sensor 

In our study, a comprehensive examination of the entire dataset was conducted, tokenizing just ECG 

signals and BG readings from diabetes patients. Nonetheless, our target audience encompasses 

individuals beyond people suffering from type 1 diabetes. The reason behind utilizing this specific 

group is that it assists a greater range of blood glucose levels, notably hypoglycemia, hyperglycemia, 

and euglycemia. Healthy individuals' data, on the other hand, only includes 6 BG measures each day, 

and in some cases, even fewer, i.e., 4/5 [91].  

2.2. QT- Dataset:   

The QT-Database from Physionet comprises electrocardiograms that were rigorously chosen to 

highlight a broad range of QRS and ST-T morphologies. The recordings were typically obtained from 

pre-existing electrogram datasets. The database includes information gathered from Holter recordings 

of patients who died unexpectedly during the recordings, as well as age and gender [92, 93]. The data 

consists of extensive recorded collections of varied and meticulously characterized data, 
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supplemented by reference annotations that precisely provide ECG waveform boundary positions. In 

each recording, between 30 and 100 typical beats were carefully annotated by expert cardiologists. 

meticulously identifying critical points including the beginning and the end of the P-wave, the QRS-

complex, and the T-wave [92, 93]. 

The QT-Dataset contains 15 minutes of ECG signal records obtained from 105 people using 2-lead 

ECGs, which have been carefully chosen to reduce the influence of baseline wander or other artifacts. 

All records were made at a sampling rate of 250 hertz. [92, 93]. Notably, this database served as the 

pivotal training dataset for the segmentation model employed in the present study. 

2.3. Properties of a computing station: 

In the present work, we employed MATLAB R2019b software for the simulation. This last was 

executed on an advanced computing system that featured an AMD Ryzen Threadripper 1950X 16-

Core Processor, 16 GB RAM, and NVIDIA GeForce GTX 1080 GPU. It is a member of AMD’s 

Threadripper series of processors, which are designed to deliver unparalleled processing power and 

performance. The CPU has 16 cores and 32 threads, enabling it to multitask and run resource-

intensive tasks at the same time. Additionally, it has a base clock frequency of 3.4 GHz and a turbo 

frequency of 4.0 GHz.  

3. Methodology:  

Figure II-3 depicts the methodology followed to estimate the blood glucose monitoring using ECG 

data. It shows that ECG data will travel through several phases such as the preprocessing step, 

segmentation step, and characterization step. These serve to provide us with the required ECG 

features to estimate the BGC using the two approaches.  

 

 

 

Figure II- 3: ECG processing 

Data Preprocessing   

 

Signal 
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Features 
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3.1. ECG signal preprocessing:   

The preprocessing stage is critical in ensuring the precision and suitability of the signals for 

subsequent analyses, thereby improving the accuracy of the outcomes. The electrocardiogram signal 

is acquired as a series of amplitudes referenced to a baseline signal. Each wave of the ECG is specified 

by its frequency spectrum, whereas the QRS spectrum is typified by a central frequency range of 10-

25 Hz. Furthermore, the P-wave and T-wave have frequencies below 20 Hz. 

The waveform segmentation algorithm was trained using the highly precise filtered ECG signals 

available in Physionet’s QT dataset. Conversely, the D1namo database was gathered under real-

world. Given the existence of diverse sources of noise, including electrode displacement and motion 

artifacts induced by the participant, the ECG signals obtained encompass supplementary noise that 

can impair the precision of the segmentation phase, the retrieved ECG parameters, and the estimated 

BG values. As a result, extensive signal cleansing and conditioning are imperative to achieve accurate 

segmentation. The preprocessing stage adopted in our work consists of the following steps:  

- After applying the FFT (Fast Fourier Transform) to the ECG signal, a band-pass filter with 

a pass-band frequency range of [0.5 Hz, 40 Hz] was constructed. The primary aim of this 

filer was to effectively eliminate wandering lines and high frequencies. As illustrated in 

Figure II-4. 

- During our research, we intentionally chose only the signal segments that were considered 

clean and free of any distortions or interferences, with the ultimate aim of achieving 

exceptional levels of precision and accuracy during the segmentation process. Sections of 

the ECG signal that are distorted by noise caused by electrode movement and other motion-

related activities are systematically removed and disregarded. 

Figure II- 4: Filtered portion of ECG signal 
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3.2. ECG segmentation:  

Following the preliminary phase, the next stage comprises automated waveform segmentation, 

which is done to guarantee an accurate characterization of the ECG's temporal parameters. ECG 

segmentation is a crucial phase of signal processing that involves identifying and isolating different 

segments of the ECG waveforms, such as T-wave, P-wave, and QRS complex.  

The main difficulty associated with ECG segmentation is that ECG waves vary significantly. They 

can differ in terms of morphology, amplitude, duration, and frequency. These discrepancies result 

from differences in patients, surveillance devices, ECG lead location, etc. Therefore, an automated 

technique that can handle these changes is highly required to achieve high accuracy. In previous years, 

numerous studies have been conducted to develop accurate and reliable ECG segmentation 

algorithms. One of the most commonly used algorithms is the Pan-Tompkins algorithm [94], which 

is designed to detect the QRS complex. Unfortunately, it has difficulties in identifying the beginning 

and offset of the P-wave and T-wave. To overcome these limitations, researchers have proposed 

various methods 

Among the recent advances in segmentation algorithms, one particular algorithm utilizing the 

discrete wavelet transform [95] exhibited an impeccable sensitivity of 99.84% with a 99.92% positive 

prediction value in detecting the QRS complex’s onset and offset. A unique approach based on the 

Phasor transform [96] was revealed for T-wave segmentation. Peaks, onset, and offset of the T-wave 

have been detected with a sensitivity of 97.78%, 97.81%, and 95.43%. Furthermore, another 

technique based on Multi-scale Morphological Derivate [97] showed remarkable sensitivities of 

99.81%, 98.17%, and 99.56% during the detection of the P-wave's peak, start, and offset. Moreover, 

probabilistic approaches, such as Hidden Markov Models [98], have shown remarkable results since 

they are capable of assimilating factual data and adapting to particular conditions. Nevertheless, these 

approaches are frequently more sophisticated and need training [99].  

The previously mentioned studies have been able to segment the beginning and the end of at least 

two ECG waves and characterized with extensive computational time. Other approaches based on 

deep learning have been lately employed to identify the onset and offset of the different ECG waves 

and segments at the same time. For a specific application, the Long Short Term Memory (LSTM) 

based framework with filtering kernels has been employed to segment ECG waves [100]. The results 

of these algorithms were significantly above conventional rule-based and HMM-based techniques, 
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proving deep learning's efficacy. The suggested technique expands on  [100, 101], which proposes a 

ConvLSTM neural network architecture for segmenting ECG waveforms. 

The Deep Recurrent Convolutional Neural Networks (DRCNN) adopted in this work enable the 

automated annotation of various electrocardiogram waveforms. A Long/Short Term Memory 

(LSTM) network employed in the training of DRCNN can preserve lengthy temporal dependencies 

[102] and overcome the issue of vanishing or inflating gradients that a vanilla RNN has. This occurs 

when, over a relatively short period, the derivative component of the error concerning weights tends 

to be null or infinite [103]. The used DRCNN architecture is as follows:  

 set parameter sequence input layer of 40 input features to the number of frequencies. 

 define an L&STM layer with the "Sequence" output mode to provide a classification for each 

sample of the signal. Use 200 hidden nodes for optimal performance. 

 define the parameters of the connected layer with an output size of 4 corresponding to four-

wave classes (P wave, QRS wave, T wave, and indefinite wave (transition between waves)). 

 Add SoftMax layer and classification layer parameters to generate estimated labels. 

Our technique has been enhanced with a temporal frequency analysis, which is implemented using 

the Fourier Synchro-Squeezed Transform (FSST), to properly reflect the non-stationary aspect of 

ECG signals. This sophisticated function computes frequency spectra for each signal sample and then 

classifies the relevant data of the converting result. To enable full and precise analysis, the FSST's 

real and imaginary aspects are processed independently before being incorporated into neural. 

The accuracy metric has been assigned as the main performance indicator in our research for 

evaluating the efficacy of the CNN Algorithm. It is determined as follows: 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 𝑻𝑷 +
𝑻𝑵

𝑻𝑷
+ 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵 ………… (1) 

where TP is True Positive, TN is True Negative, FP is False Positive, and FN is False Negative. 

Combining CNN and LSTM (convLSTM) allows us to use the FSST approach, which effectively 

reduces noise while also creating additional characteristics given a superior outcome as shown in 

Figure II-5. This approach improved the algorithm’s accuracy rate to 94 %, as illustrated in Figure 
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II-6, outperforming the previous version of the method available in MATLAB Toolbox, which had 

an accuracy of 91%. 

 

Figure II- 5: results segmentation for 1000 samples with standardization 

 

Figure II- 6: training accuracy and loss. (a) using FSST. (b) without using FSST 

 

3.3. Characterization: 

According to chapter (1), an ECG signal is a diagnostic tool that monitors the electrical impulses of 

the heart. The ECG waveform is comprised of a diverse array of waves, each with its own shape and 

time interval. These nuances are critical in determining the complexities of heart function [46]. The 

fundamental ECG waves used in our approach are: 

(a) (b) 
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- The P-wave: symbolizes the depolarization process of the atria, which is synonymous with 

the top heart chambers' contraction. This wave manifests as a little upward deviation and 

serves as a warning indicator of atrial depolarization.  

- The QRS complex: is symbolic of the depolarization of the ventricles, which corresponds to 

the contraction of the lower heart chambers. This intricate event is characterized by three 

waves, namely Q, R, and S. The ventricular depolarization occurs around 160 ms after the 

onset of the P wave. 

- The T-wave: the T wave represents the repolarization of the ventricles, indicating the crucial 

recovery phase of the heart after contraction.  

In addition to the aforementioned waves, a plethora of other intervals can be discerned in an ECG 

signal. Such as the PR interval, which signifies the segment between the onset of the P-wave and the 

onset of the R-wave. Similarly, the ST segment denotes the temporal interval between the end of the 

QRS complex and the start of the T-wave. Another important integral component of an ECG signal 

is the QT interval, which indicates the time interval between the beginning and the end of the complex 

QRS [46]. 

 

Figure II- 7: Typical ECG graph containing the different features used in this work 

. 

To calculate the BGC, the models were fed a set of ECG characteristics, including the P wave, T 

wave, QRS durations, T amplitudes, Heart Rate (HR), and corrected QT interval. Figure II-7 depicts 

a comprehensive description of these characteristics. 

The process of characterizing and determining these features was conducted in an automated 

manner, and executed as follows: 
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Following the segmentation and classification of the ECG signal, the P-wave, T-wave, QT, QRS 

intervals, and QTc were retrieved in a fully automated manner. Further, the QTc was derived by 

utilizing the Bazett formula[104], as illustrated below: 

 

Figure II- 8: Recognizing: (a) RR peaks, (b) the amplitude of T-wave. 

(a) 

(b) 
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𝑄𝑇𝑐 =  
𝑄𝑇

√𝐻𝑅
 ………… (2) 

The identification of R peaks was accomplished through the utilization of the MATLAB® function 

known as find-peaks, the graphical output of which is illustrated in Figure II-8(a). After this step, 

the RR intervals were computed by determining the precise spatial distance between each R peak. 

The HR then, was determined by reversing the RR interval value as shown below: 

𝐻𝑅(𝑏𝑝𝑚) =  
60

𝑅𝑅(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙)
 ………… (3) 

Similar to heart rate assessment methods, we used MATLAB's find-peaks function to determine T-

wave amplitude. With a rigorous and well-defined approach focused on precision and accuracy, we 

were able to retrieve the T-wave amplitude data for each cardiac cycle, as illustrated in Figure II-

8(b). 

To reduce the error’s probability, a meticulous visual confirmation process was carried out, whereby 

the peaks of both the T-waves and R-waves were checked and validated for each window. 

3.4.  Blood glucose estimation:  

As far as our comprehension extends, a technique for computing the BG value through 

electrocardiogram characteristics remains non-existent.  To address this lacuna, two different 

methodologies were employed in our work. 

3.4.1. First approach:  

Within the context of patents published in 2006 and 2010, authored by Mark W. Kroll,[105, 106] 

original technique was introduced that leverages the use of intracardiac signal (iECG) remotely 

relayed from a pacemaker placed in a T1DM patient to monitor blood glucose levels. Diverse 

characteristics of the intracardiac signal (T-wave amplitude, corrected QT (QTc(delta))) were collected 

and then integrated into a mathematical formula, Eq 4, to determine the BGC.  

𝐵𝑙𝑜𝑜𝑑 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐴 − 𝐵 ∗ 𝑄𝑇𝑐(𝑑𝑒𝑙𝑡𝑎) − 𝐶 ∗ 𝑇𝑤𝑎𝑣𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ………… (4) 

Where:  
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- 𝑇𝑤𝑎𝑣𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is calculated by subtracting the baseline value from the 

𝑇𝑤𝑎𝑣𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒. 

- A, B, and C are predefined constants or coefficients of calibration for a specific individual. 

Mark W. Kroll's formula was originally validated utilizing a limited dataset consisting of five 

intracardiac signal samples collected from a single patient [106]. Based on this, our work advances 

the research by demonstrating the efficacy of utilizing surface ECG signal features to validate the 

previously established equation. Moreover, through the application of this equation, we further 

proposed an additional formulation, Eq 5, which serves to better understand the dynamic interplay 

between HR and BGC fluctuations, specifically in the context of hyper- and hypoglycemic episodes. 

𝐵𝑙𝑜𝑜𝑑 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐴 − 𝐵 ∗ 𝑄𝑇𝑐(𝑑𝑒𝑙𝑡𝑎) − 𝐶 ∗
𝑇𝑤𝑎𝑣𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝐻𝑅
 ………… (5) 

We will test the feasibility of the aforementioned equations using a thorough equation-solving 

procedure to compute the values of A, B, and C. After calculating these coefficients, we will use them 

to calculate the BGC of the remaining dataset samples. 

From the D1namo collection, we were able to treat the electrocardiogram signals of four diabetic 

patients (details present in Table II-1), over numerous days. The signals of the other individuals were 

removed since some of them acquired their ECGs at a separate time than they recorded their BGCs. 

Some did not correctly wear their electrocardiography belt. The two equations were validated by four 

patients, each of whom underwent many days of readings, for a total of 1600 samples. 

Table II- 1: The description of the dataset used in the first approach 

 AGE GENDER 
HEIGHT(C

M) 

WEIGHT 

(KG) 
BG RANGE 

PATIENT2 20-29 Man(male) 170-179 60-69 7-11.5 

PATIENT7 30-39 Women 160-169 70-79 5-15 

PATIENT8 60-69 women 150-159 50-59 2-5 

PATIENT6 30-39 Man 190-199 70-79 11-15 

The performance metrics employed to evaluate our findings and our system are:  
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- Mean Absolute Error (MAE) for calculating the disparity between the Real BG (RBG) and 

Calculated BG (CBG),  

- Mean Squared Error (MSE) for depicting the system’s behavior employed in estimating 

Blood Glucose Concentration. 

 

Figure II- 9: Distribution of BGC according to (a) T-wave amplitude, (b) QTc, and (c) Heart Rate. 

The method utilized in computing these metrics is delineated as follows: 

𝑀𝐴𝐸 = 
1

𝑁
 ∑ |𝑦𝑖 − �̂�𝑖|

𝑁
𝑡=1  ………… (6) 

(c) 

(b) (a) 
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𝑀𝑆𝐸 =  
1

𝑁
 ∑ (𝑦𝑖 − �̂�𝑖)

𝑁
𝑡=1  ………… (7) 

The real BGC of a specific sample i is represented by 𝑦𝑖, while the computed BGC is denoted as �̂�i, 

with N, indicates the total number of BGC samples employed in the analysis.  

Throughout our investigation, we calibrate the predefined coefficients A, B, and C for each patient. 

These parameters were updated whenever a significant change in blood glucose levels occurred. 

Figure II-9 depicts the distribution of blood glucose concentration concerning QTc, HR, and 

𝑇𝑤𝑎𝑣𝑒 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒. 

According to the findings, there is a relationship between changes in blood glucose concentration 

and variations in QTc, T-wave amplitude, and HR. Figure II-9 (b) demonstrates the existence of an 

inverse relationship between blood glucose concentration and QTc. These results have been supported 

by numerous other studies [26, 107].  

Figure II-9 (a) depicts the dispersion of RBG levels with T-wave amplitude. As mentioned earlier 

[24, 79, 85, 108], our findings demonstrate a proportional correlation between changes in blood 

glucose levels and T-wave amplitude during normoglycemia and hyperglycemia events. 

Nevertheless, during hypoglycemia (3.9 mmol/L), we observed an inverse correlation between blood 

glucose and T-wave amplitude (data from patient three). This suggests that patient 04 has a 

significantly higher average T-wave amplitude for heartbeats with low BG levels compared to those 

with normal BG levels. These results are consistent with those reported by Michal Porumb [24]. Our 

hypothesis implies that a variation in T-wave shape can be influenced by a variety of interpersonal 

factors. Firstly, it is important to note that the data was gathered from real-life settings in which 

hypoglycemia episodes occurred throughout diurnal hours. In contrast to nocturnal hypoglycemia, 

the diurnal variant may be subject to a plethora of hormonal counter-regulation components [109]. 

Additionally, various factors, including meals [110, 111], physical activity [110, 112], or drugs [111], 

have the potential to influence T-wave amplitude shape. Recent research has shown that a drop in T-

wave amplitude is typically detected within thirty minutes after eating [110, 111]. Similarly, 

consistent T-wave amplitude alterations were observed during exercise [112]. Additionally, low 

potassium levels have been linked to T-wave flattening. As a result, more research may be needed to 

determine any simultaneous drops in potassium levels with natural glucose declines [79], while 

considering meal consumption, physical activity, medications, and cardiovascular disease.  
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Moreover, in Figure II-9 (c), a substantial rise in heart rate was seen in parallel with an increase in 

BGC within the hyperglycemia range. Yet, the rate of increase was slower under the hypoglycemia 

clamp compared to the euglycemia clamp, which is consistent with previous research [81]. 

The results obtained for each patient utilizing the 02 formulas are displayed in Table II-2.  

Furthermore, Figure II-10 depicts a visual representation of each patient's various blood glucose 

profiles, which include both the RBG and the CBG using the two mathematical formulas. Notably, 

the American Diabetes Association (ADA) and the European Association for the Study of Diabetes 

(EASD) recommended a specific threshold to differentiate between the various blood glucose ranges, 

including hypoglycemia, hyperglycemia, and euglycemia [113]. 

- Hypoglycemia: glycemic below 3.9 mmol/l (below 70 mg/dl) 

- Hyperglycemia: glycemic above 10 mmol/l (above 180 mg/dl) 

- Euglycemia: glycemic ranging between 3.9-10 mmol/l (70-180 mg/dl). 

Table II- 2: MAE and MSE according to the different glycemic 

 

 

 

 

The obtained mean absolute error (MAE) varies between patients. We observe that equation 1 

yielded the greatest MAE of 0.3502. Utilizing the same formula, the lowest MAE (0.0788) was also 

obtained. These variations might be due to inaccurate retrieval of ECG components or inherent patient 

factors. 

The introduction of heart rate to the calculation has some influence on the findings. It lowers the 

MAE to a desired 0.0063 in hypoglycemia. Conversely, it has a negative influence on hyperglycemia, 

lowering the MAE value by 0.0262. Among the fourth group of patients, patient 04, whose glucose 

profile comprises normoglycemia and hyperglycemia, has the best results with MAE values of 0.0788 

and 0.0797 and MSE values of 0.0110 and 0.0112, respectively using Eq (1) and Eq (2). 

 

 

Patient 1 Patient 2 Patent 3 Patient 4 

Eq. (1) Eq. (2) Eq. (1) Eq. (2) Eq. (1) Eq. (2) Eq. (1) Eq. (2) 

MAE 0.2522 0.2784 0.3502 0.2608 0.1486 0.1423 0.0788 0.0797 

MSE 0.1066 0.1358 0.2409 0.1085 0.0447 0.0397 0.0110 0.0112 
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Figure II- 10: The evolution of real blood glucose and calculated blood glucose utilizing three equations for:  a) patient 

(1), b) patient (2), c) patient (3), and d) patient (4). 

 

(d) 

(a) 

(c) 

(b) 
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To present the results more clearly, Figure II-11 depicts the BG profiles of all patients in 

comparison to the estimated BG values using the two mathematical equations. Equation 1 provides 

an MAE of 0.0539 and an MSE of 0.1604 when all data is used. The MAE for Equation 2 was 0.0602, 

while the MSE was 0.1657.  

 

Figure II- 11: The evolution of RBG and CBG using Eq.1 and Eq.2 of all patients' BG profiles. 

 

The Equations 1 and 2 results are used to demonstrate the linear correlation between BGC and ECG 

parameters. To demonstrate this, we show the distribution of real blood glucose versus calculated 

blood glucose using the aforementioned formulae. Figure II-12 illustrates the curve fitting, which 

demonstrates a strong linearity between RBG and CBG. Equations 1 and 2 were used to fit the CBG 

to the RBG, yielding RMSEs of 0.23 and 0.24, respectively. 

We demonstrated and confirmed the feasibility of Eq.1, which is based on ECG characteristics rather 

than iECG, for calculating BGC. Equation 2 was designed to help us better understand the relationship 

between changes in BGC and heart rate (HR). To sum up, our work proposes the prospective 

utilization of ECG features to determine blood glucose concentration. Furthermore, we validated the 

linear correlation between blood glucose concentration and ECG parameters which may introduce 

novel avenues for physiological modeling. Additionally, the findings indicate the possibility of 

deploying electrocardiography as a non-invasive wearable device for continuous blood glucose 

monitoring. 
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Figure II- 12: RBG Vs CBG. 

 

3.4.2. Second approach:  

Through the first method, we successfully obtained the BG value for 04 patients over numerous 

days of measurements, utilizing ECG parameters with minimal error. Nevertheless, it should be noted 

that this method necessitates calibration each time there is a remarkable change in the BGC range. 

Despite this limitation, the results achieved are quite satisfactory, making the method very promising. 

In the second method, we aim to leverage the advancements in ML to estimate Blood Glucose 

Concentration values based on ECG parameters utilizing, specifically an artificial neural network. By 

doing so, we hope to overcome the calibration issues noted with the use of mathematical equations 

in the first approach. 

A variety of regression and classifier techniques have been used by several researchers to forecast 

hypoglycemia and hyperglycemia episodes. In this work, however, regression models are applied to 

directly estimate the BGC value. The regression models used as input for the regression models the 
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sixth features collected from the characterization stage, which are T-wave amplitude, corrected QT, 

heart rate, and T-wave, QRS, and P-wave durations. The present study explored a variety of 

regression models, including Nonlinear Regression, Linear Regression, Ensemble, tree, and Gaussian 

Process Regression (Exponential GPR),  

We trained and tested data regression models utilizing data of 03 T1DM patients from the D1namo 

dataset, for an overall duration of eight days: one patient across two days, and the other two patients 

over three days. There were 3394 samples in all. The allocation of the data for training and testing is 

presented in Table II-3. A split of two-thirds of the data was designated for training purposes, while 

the remaining one-third was aside for testing 

Table II- 3: training and testing data. 

 

performance metrics were applied to evaluate the regression models, which were included in the 

first experiment: 

- Root Mean Squared Error (RMSE): This metric measures the square root of the variance of 

residuals and reflects the proximity of the estimated BG values to the real values. 

- R-Squared (R2): This statistical metric, also known as the coefficient of determination, 

evaluates how close the EBG values are to the fitted regression line. 

The difference between estimated and real BGC values was indicated using Mean Absolute Error 

(MAE) in the second experiment. The formulations for these widely used performance metrics are: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − �̂�𝑖)

𝑁
𝑖=1  ………… (8) 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
 ………………… (9) 

With:  

𝑅𝑆𝑆 =  ∑ (𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1  ………… (10) 

 PATIENT 1 PATIENT 2 PATIENT 3 

TRAINING/TEST 1006/503 309/154 948/474 
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𝑇𝑆𝑆 = ∑ (𝑦𝑖 − �̅�𝑖)
2𝑛

𝑖=1  ………..… (11) 

𝑀𝐴𝐸 = 
1

𝑁
∑ |𝑦𝑖 − �̂�𝑖|

𝑁
𝑖=1  ……… (12) 

The RBG value of sample i is denoted by 𝑦𝑖 , while the corresponding EBG value is represented by 

𝑦�̂� . The total number of test samples used in the regression models is denoted by N. 

We trained and tested the data collected from each patient separately across all days. Table II-4 

summarizes the results of the first experiment. 

Table II- 4: Model performances (Experiment 1) 

Model Patient 1 Patient 2 Patient 3 

 RMSE R2(%) RMSE R2(%) RMSE R2(%) 

Linear regression 0.96 88.57 0.56 63.85 0.68 69.9 

Exponential GPR 0.32 98.14 0.41 80.01 0.67 70.22 

Ensemble (Bagged trees) 0.78 92.53 0.55 62.52 0.75 63.39 

Tree (Medium tree)/ 0.79 92.29 0.63 54.33 0.71 67.01 

Nonlinear regression 0.85 5.78 0.77 32 1.14 13.86 

Upon comparison of the results obtained from the various regression models, it was found that the 

nonlinear regression model exhibited the worst performance. On the other hand, the Exponential GPR 

model outperformed all other simulated models, with RMSE values of 0.32, 0.41, and 0.67, and R-

squared values of 98%, 80%, and 70% for patients 01, 02, and 03, respectively. 

In the second experiment, a mixed dataset was used as input to our regression models. It comprises 

samples from all patients and was utilized to gain a better comprehension of the nature of the 

relationship between the blood glucose concentration changes and ECG signal. The same data 

division method was employed, to validate the suggested methodology, with 2263/1131 samples used 

for training/testing. The difference between estimated and real BGC values was evaluated via Mean 

Absolute Error (MAE). Table II-5 summarizes the acquired results 
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Table II- 5: Model performances (Experiment 2) 

Models Linear 

regression 

Exponentia

l GPR 

Ensemble 

(Bagged 

trees) 

Tree 

(Medium 

tree)/ 

Non-linear 

regression 

RMSE 0.65 0.62 0.78 0.68 4 

R2(%) 97.44 97.73 96.38 97.23 4.88 

MAE 0.52 0.46 0.61 0.55 3.61 

According to the findings of the second experiment, we can conclude that increasing the amount of 

data utilized for training leads to improved performance. Table II-5 shows that all models yield high 

R-squared values, except for the nonlinear regression model which has a near-zero R-squared value. 

Particularly, with an RMSE of 0.62, an R-squared value of 98%, and an MAE of 0.46, Exponential 

GPR yields the best results. This implies that nearly 98% of the variance in blood glucose 

concentration can be explicated by the electrocardiogram features employed as inputs in the used 

model. We may also see that the linear regression closely approximates the outcomes of the 

exponential GPR. 

Consequently, we can deduce that intra-individual variations do not impact the relationship between 

the BG level and ECG features. Furthermore, in both studies, the nature of this relation can be 

described as linear, where the non-linear regression model consistently produces suboptimal results. 

To facilitate the visualization of the findings, we provide a comparison between the real and the 

estimated BGC obtained using linear regression and Exponential GPR. Figure II-13 illustrates that 

The BG value has been estimated with minimal error in the euglycemia clamp. Conversely, some 

errors are noticeable in the hypoglycemia and hyperglycemia clamps. These errors could potentially 

contribute to the high sensitivity observed between changes in blood glucose values and alterations 

in the morphology of ECG signals. 



Blood glucose determination Based on ECG signal 

 

72 

 

 

Figure II- 13: The evolution of RBG and EBG using linear regression and Exponential GPR 

 

Numerous studies have attempted and succeeded in the prediction of hypoglycemia and 

hyperglycemia occurrences using ECG features. Despite this, they were unable to determine blood 

glucose values directly using ECG features. In the second experiment, we presented an innovative 

approach that leverages the power of AI to make this estimation, thereby paving the way for the 

invention of a novel non-invasive method for blood glucose monitoring. While there exist alternative 

methods, they are fraught with limitations. For instance, electrochemical non-invasive (NI) sensors 

such as saliva analysis[114], ocular fluid (tear) analysis[115], and exhaled breath analysis[116], all 

of which are readily accessible, contain numerous proteins (in the case of saliva and tears) or breath 

biomarkers (in the case of exhaled breath), making accurate monitoring a challenge[117]. Similarly, 

continuous glucose monitoring (CGM) techniques exhibit a time lag from the actual blood glucose 

levels. Additionally, these techniques necessitate the use of biomaterials, which can provoke allergies. 

Furthermore, electromagnetic non-invasive monitoring techniques are typically applied over the skin, 

necessitating the use of a minimally invasive device [117]. 
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Lastly, our pilot study must be viewed considering its limitations, which also constitute crucial 

recommendations for new research areas. 

- The success of our approach to ECG-based blood glucose level estimation depends highly 

on the accuracy of the data preprocessing and feature extraction steps. This is because even 

minor errors in the ECG feature values can significantly affect the accuracy of BG value 

estimation. The D1namo dataset, which we have utilized in our approach, was recorded 

under real-life conditions that are subject to various factors that may affect the ECG signal 

recording. For instance, the electrode contact may become loose due to sweat or sensor 

displacement, while body movements can introduce extra noise into the ECG recording. 

Given the impact of these factors on the accuracy of ECG parameter extraction, it is crucial 

to implement an advanced preprocessing algorithm that can effectively filter out the noise 

and artifacts from the ECG signals. This is particularly important when utilizing 

convolutional neural networks (CNNs) for ECG segmentation, as the accuracy of the 

network's predictions is highly sensitive to the input data quality. Therefore, precise and 

careful preprocessing and feature extraction steps are necessary to ensure the high accuracy 

of ECG-based BGC estimation. 

- ECG features’ identification is extremely sensitive to ECG anomalies like significant 

changes in T-wave morphology. Since there is a link between the severity of electrolyte 

imbalance and changes in the ECG wave shape. Because of this, it is essential to undertake 

additional investigation must be conducted to determine whether other clinical problems that 

cause electrolyte imbalance should be considered in the proposed approach. Further tests 

should be completed on a wider population, comprising healthy subsets, and diabetic 

patients who may have additional clinical problems.  

- To enhance the accuracy of ECG-based blood glucose level estimation, a multivariable trial 

could be conducted to explore the correlation between BG value and other electrocardiogram 

parameters, such as Tp-Te interval, PR interval, and ST segment. By increasing the input 

number of the regression systems, the impact of other clinical conditions on individual ECG 

features could be minimized, thereby providing a more comprehensive and robust set of 

data. As a result, the accuracy and reliability of the BGL estimation would be improved, and 

the possibility of misdiagnosis due to the influence of other clinical conditions would be 

minimized. 
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4. Conclusion:  

The widespread availability of user wearable devices equipped with electrocardiogram (ECG) 

acquisition capabilities has made them increasingly accessible to the general public. These devices 

are cost-effective, non-intrusive, user-friendly, and durable, thereby rendering them ideal for 

integration into the artificial pancreas as wearable sensors for continual glucose monitoring. 

Considering this, numerous machine learning-based approaches and ECG feature extraction 

techniques have been employed to predict hypoglycemia and hyperglycemia events using diverse 

classifiers. However, none of these studies have attempted to estimate blood glucose concentration 

utilizing ECG features. In this work, we suggested a new approach for estimating blood glucose levels 

based on ECG features. Our regression models have yielded highly accurate blood glucose 

concentration estimations, with a precision of 98%. Our primary objective is to demonstrate the 

potential use of ECG wearable devices as a non-invasive device for continuous blood glucose 

monitoring. 

The implementation of this method heralds a new epoch in the realm of real-time, wireless, and non-

invasive blood glucose monitors. With the continuous advancements in the Internet of Medical 

Things (IoMT) technologies and intelligent processes, it is feasible to develop an affordable trend for 

an artificial pancreas using ECG devices.  
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1. Introduction: 

The achievement of closed-loop glycemic control, and hence the automation of insulin 

administration, is highly required in the implementation of an AP system. The algorithm control 

is a set of decision rules depending mainly on the controlled blood glucose levels.  Various 

control theory approaches have been employed in numerous attempts to design an appropriate 

control algorithm. This research began in the 1960s [118]. One such study resulted in the 

development of the Biostator [58, 119]. The first commercial artificial pancreas device, was 

initially designed for hospital usage and relied on intravenous glucose sensing [59]. These bulky 

devices proved the feasibility of external glucose controllers, laying the foundation for future 

technological advancements that ultimately expanded beyond the confines of intensive care 

units [8, 61, 120, 121]. This expansion was only made possible through the development of 

continuous glucose monitoring [60, 122]. 

After the aforementioned advances, a plethora of control algorithms have been suggested, 

ranging from traditional techniques such as Proportional-Integral-Derivative (PID) [27, 123, 

124] to more sophisticated algorithms such as Model Predictive Control (MPC) [28, 125, 126]  

and adaptive control. Other control algorithms have also been applied, including the MD/Fuzzy 

logic algorithm [127, 128]  and neural network algorithms [129]. Among them, the Model 

Predictive Controller has proven to be a very effective technique for improving postprandial 

glucose management. Yet, appropriate management algorithms are still required to maintain 

BGC within the prescribed range in a variety of scenarios. 

This chapter aims to provide a comprehensive analysis of the control algorithms employed in 

the AP system, specifically the PID and MPC models. The study begins with a detailed 

descriptive comparison between these algorithms, highlighting their respective strengths and 

limitations. Subsequently, the implementation of the proposed approach control algorithm 

(Linear MPC) is described. Finally, the different results are presented, along with a discussion 

of the observed limitations. The chapter concludes with a concise summary of the findings. 
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2. Comparative study (MPC vs PID): 

2.1. Proportional–integral–derivative control (PID):  

The PID approach has been used to imitate B-cell insulin production (physiologic insulin 

delivery) [130]. It's a closed-loop algorithm control that reacts to fluctuations in glucose 

concentration after they happen. The controller continually regulates the Insulin Infusion Rate 

(IIR) based on three distinct components: the proportional component, which directly 

corresponds to the error term, the integral component, which aggregates the error, and the 

derivative component, which regulates the error's rate of change [130]. 

𝑰𝑰𝑹 = 𝑲𝒑 (𝑮 − 𝑮𝒓) + 𝑲𝒊 ∫(𝑮 − 𝑮𝒓) + 𝑲𝒅
𝒅𝑮

𝒅𝒕
 ………… (13) 

 

In other term:                          𝑷𝑰𝑫(𝒏) = 𝑷(𝒏) + 𝑫(𝒏) + 𝑰(𝒏)………… (14) 

With:  

𝑫(𝒏) = 𝑲𝒑. 𝑻𝟎.
𝒅𝑺𝑪(𝒏)

𝒅𝒕(𝒏)
 ……………… (15) 

𝑰(𝒏) = 𝑰(𝒏−𝟏) +
𝑲𝒑

𝑻
[𝑺𝑪(𝒏) − 𝑻𝒂𝒓𝒈𝒆𝒕] …………. (16) 

𝑷(𝒏) = 𝑲𝒑[𝑺𝑪(𝒏) − 𝑻𝒂𝒓𝒈𝒆𝒕] …………… (17) 

- Component P plays a crucial role in enhancing insulin delivery when blood sugar levels 

exceed the target threshold while reducing insulin delivery when glycemic levels fall 

below the target threshold. However, when glucose levels are at the desired target range, 

this component remains ineffective and does not contribute to the basal threshold 

required to keep fasting BG levels at the target level. 

- In contrast, Component I serves to regulate blood sugar levels when they are above or 

below the target range while maintaining a steady level of insulin delivery when BG 

levels are within the range. It is the only component that performs a similar function to 

basal insulin production. 
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- Lastly, Component D functions to promote insulin administration when BG levels 

increase and decrease insulin infusion when glucose levels decline, thereby stabilizing 

the system and mitigating glycemic fluctuations via an appropriate variation in insulin 

administration [123, 124, 130]. 

The utilization of the PID controller in subcutaneous systems poses a significant challenge 

due to the delays in insulin uptake, action, and BG sensing. These limitations make the 

postprandial BG control more challenging [8, 124, 131]. Despite these limitations, there have 

been numerous clinical and randomized investigations that have demonstrated the efficacy of 

the PID controller for the nocturnal management of hypoglycemic episodes [132]. Furthermore, 

considerable efforts have been made to enhance the robustness and effectiveness of the PID 

controller through various studies. The Minimized Hybrid Closed Loop (HCL) system has 

adopted this controller commercially, demonstrating its potential for widespread use in the 

future [133]. 

2.2. Model Predictive Controller:  

Insulin delivery is often characterized by delayed insulin action peaks resulting from 

subcutaneous absorption. This has posed a significant challenge. To address this limitation, a 

novel approach known as the Model Predictive Controller has been developed. The MPC 

utilizes a sophisticated mathematical model, which utilizes the fundamental gluco-regulatory 

processes, to predict glucose dynamics [134, 135]. This enables it to effectively mitigate the 

time lags that are commonly associated with subcutaneous glucose sensing and insulin delivery. 

Thus, the MPC is an advanced technique to control plasma glucose concentrations, particularly 

postprandial glucose levels [27, 136]. It can easily incorporate meal information and insulin 

delivery constraints that reflect physical limitations and required performance. Additionally, its 

utilization allows for patient-specific parameters to be integrated, which is particularly effective 

for managing BG under different situations such as stress or physical activity [27, 134–136]. 

Generally, MPC does real-time dynamic optimization on a finite horizon. At each time step, 

a model is invoked to forecast the impact of both present and future input adjustments (insulin 

rate) on a desired output (BG level) [27]. To achieve this, the optimization process must 

minimize a cost function, using a plant evolution model (mathematical model). This 
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optimization process guarantees the tracking of a target glucose level, either as a setpoint or 

within a given zone [137]. Furthermore, the system's various parameters, including prediction 

horizon, control horizon, and weights, must be introduced and accurately calibrated [138, 139]. 

Several randomization studies have demonstrated that personalized MPC outperforms the PID 

control technique, achieving nearly 75% of the time within the target range, even in the case of 

an unannounced meal [140]. Furthermore, the personalized MPC algorithm integrated into 

Omnipod has shown remarkable performance enhancements [141]. Moreover, the multivariable 

structure of MPC allows for the incorporation of additional relevant signals[142]. 

3. Materials and methods: 

3.1. Linear Model Predictive Controller (an overview):  

Multiple MPC algorithm implementations exist, according to the objective function and model 

selected [125, 126, 137, 143, 144]. We utilized a linear model predictive controller (LMPC) 

law in our project. As described by Soru et al [145], LMPC employs a discrete linear model 

(plant) of insulin-glucose dynamics around equilibrium points (basal values). Consider the 

discrete-time linear model given below. 

{
X (k+1) =Ax(k) + Bu(k) + Ed(k) 

y(k) = Cx(k)
 ………… 18 

Where x(k)∈ Rn represents the state vector, u(k)∈ Rm represents the difference between 

administered insulin and its basal value, d(k) ∈ RI represents the meal vector, y(k) ∈ R is the 

difference between the subcutaneous glucose and its basal value, 

A (n*n), B(m*n), E(I*n), and C(1*n) denote matrices characterizing the process dynamics 

derived from the glucoregulatory system that will be detailed in the next section. N denotes the 

prediction horizon. 

Considering the disturbances sequence: 

𝐷(𝑘) =  [𝑑𝑇(𝑘), 𝑑𝑇(𝑘 + 1),……… . , 𝑑𝑇(𝑘 + 𝑁 − 1)]𝑇………… (19) 

And an input sequence prediction: 
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𝑈(𝑘) =  [𝑢𝑇(𝑘|𝑘), 𝑢𝑇(𝑘 + 1|𝑘),……… . , 𝑢𝑇(𝑘 + 𝑁 − 1|𝑘)]𝑇……… (20) 

Beginning with the initial condition x(k|k) = x(k), the temporal progression of the state is 

generated by simulating the model (18) in a forward direction over N sampling time intervals. 

Consequently, the evolution of the state is produced as below: 

𝑋(𝑘 + 1) =  [𝑥𝑇(𝑘 + 1|𝑘), 𝑥𝑇(𝑘 + 2|𝑘), ……… . , 𝑥𝑇(𝑘 + 𝑁|𝑘)]𝑇……… (21) 

Given u(k+i|k) and x (k+i|k), i∈N, the input and state at time k+i predicted at time k. An 

optimization problem is used to determine the control input to be applied to the plant. This 

optimization is led by a predefined cost function to be minimized, for instance, 

J(X (k), U (.), k) =∑ ‖𝑥(𝑘 + 𝑖|𝑘) − 𝑥𝑟𝑒𝑓(𝑘 + 𝑖)‖
𝑄

2
+ ‖𝑢(𝑘 + 𝑖|𝑘) − 𝑢𝑟𝑒𝑓(𝑘 + 𝑖)‖

𝑅

2𝑁−1
𝑖=0 ……… 

(22) 

Xref (k) and uref (k ) represent the states and inputs references at time k, respectively. 

𝑈𝑟𝑒𝑓(𝑘) = [𝑢𝑟𝑒𝑓
𝑇 (𝑘), 𝑢𝑟𝑒𝑓

𝑇 (𝑘 + 1), ……… , 𝑢𝑟𝑒𝑓
𝑇 (𝑘 + 𝑁 − 1)]

𝑇
……… (23) 

𝑋𝑟𝑒𝑓(𝑘) = [𝑥𝑟𝑒𝑓
𝑇 (𝑘), 𝑥𝑟𝑒𝑓

𝑇 (𝑘 + 1), ……… ,𝑥𝑟𝑒𝑓
𝑇 (𝑘 + 𝑁 − 1)]

𝑇
……… (24) 

Note that Q and R are positive symmetric definite matrices. 

The primary goal is to pick the optimum control sequence U* (k) that achieves the following: 

𝑈∗(𝑘) = arg𝑚𝑖𝑛⏟
𝑈

 𝐽(X(k), U(. ), k) ……… (25) 

S.t {
𝑋𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 +  𝐸𝑑𝑘 ………… .𝑁 − 1

𝑦𝑘 = 𝐶𝑋𝑘 ………… . .𝑁  

Finally, upon the determination of the control input and following the receding horizon 

approach, only the initial item of the optimal control sequence is applied to the plant. It is 
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presented as u0(k)= u*(k|k). The optimization process is then repeated at each sampling time k 

as presented in Figure III-1.  

 

 

 

 

 

 

 

 

Figure III- 1: Fundamental concept of LMPC. 

 

In the optimization problem, it is feasible to incorporate inequality constraints on input and 

state variables. The cost function given by (eq. 22) can be improved by associating a weight 

with the state prediction at the horizon N. Consider the quadratic cost function to accomplish 

this modification. 

J(X(k),U(.),k) = ∑ ‖𝑥(𝑘 + 𝑖|𝑘) − 𝑥𝑟𝑒𝑓(𝑘 + 𝑖)‖
𝑄

2
+ ‖𝑢(𝑘 + 𝑖|𝑘) − 𝑢𝑟𝑒𝑓(𝑘 + 𝑖)‖

𝑅 

2
+𝑁−1

𝑖=0

‖𝑥(𝑘 + 𝑁|𝑘)‖𝑃
2……… (26) 

S.t   {
𝑋𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 +  𝐸𝑑𝑘

𝑧𝑘 = 𝐶𝑋𝑘
 

Where P is the unique nonnegative solution of the discrete-time Riccati equation: 

𝑃(𝑘) = 𝑄 + 𝐴𝑇𝑃(𝑘 + 1)𝐴 − 𝐴𝑇 𝑃(𝑘 + 1)𝐵 ∗ ((𝑅 + 𝐵𝑇𝑃(𝑘 + 1)𝐵)−1𝐵𝑇 𝑃(𝑘 + 1)𝐴        

……… (27) 
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  The matrix P ∈ Rn*n is the weight associated with the term x(k+N|k), representing the 

predicted state at the horizon N. P takes the cost over an infinite horizon. By considering the 

horizon N, the predicted state path of the system dynamics can be expressed as: 

𝑋(𝑘 + 1) = 𝐴𝑋(𝑘) + 𝐵𝑈(𝑘) + 𝐸𝐷(𝑘) ……… (28) 

The matrices A ∈ RnN*n, B ∈ RnN*mN, and E ∈ RnN*IN are derived via algebraic calculations. 

according to the specific control application, D (k) may be known, estimated, or unknown. In 

the case of unknown disturbance, If the disturbance input is unknown, the MPC algorithm must 

be tuned in a robust way using the Q and R parameters of equation (26) to ensure that the control 

performance is suboptimal yet safe. Thus, the cost (26) can be expressed as: 

𝐽(𝑋(𝑘), 𝑈(. ), 𝑘) =  ‖𝑈(𝑘)‖𝐻
2 + 2(𝑋𝑇(𝑘)𝐹𝑥

𝑇 + 𝐷𝑇(𝑘)𝐹𝐷
𝑇 − 𝑈𝑟𝑒𝑓

𝑇 (𝑘)𝑅 −

 𝑋𝑟𝑒𝑓
𝑇 (𝑘)𝐹𝑥𝑟𝑒𝑓

𝑇 )𝑈(𝑘) ……… (29) 

Only the terms reliant on U(k) have been maintained with:  

𝐻 = 𝐵𝑇𝑄𝐵 + 𝑅, 𝐹𝑥 = 𝐵𝑇𝑄𝐴, 𝐹𝐷 = 𝐵𝑇𝑄𝐸, and 𝐹𝑥𝑟𝑒𝑓
= 𝐵𝑇𝑄……… (30) 

Q = diag(Q,…..Q) ∈ RnN*nN, and R = diag(R,….,R) ∈ RmN*mN……… (31) 

Under the assumption of non-singularity of the matrix H, if the optimization problem does not 

include input and state constraints, the solution exists, is unique, and can be explicitly expressed 

as: 

𝑈0(𝑘) =  𝐻−1(−𝐹𝑥𝑋(𝑘) − 𝐹𝐷𝐷(𝑘) + 𝑅𝑈𝑟𝑒𝑓(𝑘) + 𝐹𝑥𝑟𝑒𝑓
𝑋𝑟𝑒𝑓(𝑘)) ……… (32) 

In contrast, when constraints are applied to the input or state variables, must be solved online 

using a quadratic programming optimizer, which is the case of our utilized approach.  

3.2. LMPC approach :  

Absorption of glucose from a meal is known to be faster than the effect of infused insulin, 

which can lead to hyperglycemic events [146]. However, the Model Predictive Controller 

allows us to integrate meal consumption (size, number of carbohydrates) into the model and 
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consider it as an external disturbance. By adopting this strategy, better postprandial glucose 

control is ensured [136, 141, 145]. Furthermore, constraints are imposed on the input and the 

input rate of movement to ensure that insulin infusion volume and speed are controlled [145].  

 

Figure III- 2: MPC basic structure 

 

R, U, z, and D represent the reference value (desired glucose level), predicted amount of 

insulin (input control), measured interstitial glucose, and ingested meal, respectively. The 

utilized LMPC approach integrates both feedforward and feedback mechanisms as represented 

in Figure III-2.  

Both of them are essential components that allow it to adapt to process variations, improving 

the system’s reaction speed and robustness. Feedback is conventionally employed for tuning 

the dynamic behavior of the system, where the measured output (y) is utilized to enable the 

controller to respond to potential disturbances. On the other hand, feedforward is a system loop 

that transmits a known disturbance to the controller (ingested meal), enabling it to react rapidly 

while sustaining a more resilient measured output. Furthermore, the MPC model integrates 

Kalman Filters to forecast future glucose behavior according to prior insulin inputs. The 
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measured blood glucose level serves as feedback to correct the prediction, thereby enhancing 

the controller's performance [147, 148]. 

3.3. Glucoregulatory system (process) : 

The glucoregulatory system is typically represented mathematically as a dynamic system. It 

is made up of four interconnected subsystems [149]. The first subsystem is concerned with the 

kinetics of insulin absorption, which involves the subcutaneous administration of insulin, 

followed by its assimilation into the bloodstream. The secondary subsystem is responsible for 

meal absorption, in which glucose is absorbed from the intestines and transported to the 

circulation. Both insulin uptake and meal-glucose assimilation from ingested carbohydrates 

have a significant impact on BG levels, representing plasma glucose kinetics. Furthermore, the 

interstitial glucose concentration represents delayed and noisy information in comparison to the 

plasma glucose concentration. This characteristic is observed in the interstitial glucose kinetics, 

and it's critical to take into account when analyzing glucose regulation in the body [149]. 

Various mathematical models that describe these four subsystems are proposed to be used in 

an AP system [150–154]. The most used ones are UVA/Pavoda and the Bergman minimal 

model. UVA/Pavoda is designed to simulate insulin secretion in response to changes in glucose 

levels within the body. It serves as a substitute for pre-clinical trials in the development of 

artificial pancreas systems because the UVA/Pavoda simulator can emulate meal challenges 

and includes a population of 300 in-silico subjects [155]. The UVA/Padova model has been 

updated to include the most recent advancements in glucose measurement devices, insulin 

analogs, and administration routes, as well as time-varying parameters that characterize 

intraday SI variability and the dawn phenomenon [156]. In addition, recent studies have 

provided new insights into the nonlinearities of insulin action, which have been incorporated 

into the UVA/PADOVA mode [157]. 

The Bergman minimal model, on the other hand, is another widely used mathematical model 

that describes glucose and insulin dynamics in the body [158]. Both of these models are 

effective in simulating the behavior of the human glucose-insulin system and have been utilized 

in the development and optimization of various AP systems. 
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The UVA/Pavoda model's complexity may make it difficult to implement, calibrate, and 

validate. Furthermore, the model's complexity requires more computers, making it difficult to 

execute and operate in real-time, especially in an AP system where speed and efficiency are 

crucial. The Bergman minimum model simplifies the glucose-insulin interaction, making it 

easier to understand. In our study, we employed a modified version of Bergman's minimal 

model. 

  Bergman Minimal Model: 

The Bergman minimal model is a complex mathematical model that mimics glucose-insulin 

dynamics in the human body. It was developed by Dr. Richard I. Bergman in 1983 and has 

since become a benchmark model in the design of an AP system [159]. The Bergman minimal 

model is distinguished by a small number of parameters, which will be explored in the next 

section [159, 160]. 

Following an oral glucose perturbation, the Bergman minimal model offers an extensive 

model of the glucoregulatory system, which comprises two basic components. The first is 

responsible for variations in glucose levels, whereas the second explains the dynamics of 

pancreatic insulin production in response to glucose stimulation[160]. The relation between 

plasma insulin and plasma glucose is modeled by this model. Moreover, the subcutaneous 

glucose sensors, which measure the interstitial fluid glucose, are modeled by the interaction of 

two compartments [158]. The first compartment denotes the plasma glucose concentration, 

while the second depicts the concentration of glucose in the interstitial fluid. By combining 

these intricacies, the Bergman minimal model provides a sophisticated depiction of the 

numerous interactions within the glucoregulatory system as depicted in Figure III-3, making 

it a valuable tool for understanding glucose metabolism and developing diabetic treatment 

strategies. 

The Bergman Minimal model utilized in this study comprises a set of five differential 

equations: 

𝑑𝐺

𝑑𝑡
= −𝑃1 (𝐺 + 𝐺𝑏) − 𝑋𝑟𝐺 + 𝐷𝑚(𝑡) ……… (23) 
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𝑑𝑋𝑟

𝑑𝑡
= −𝑃2𝑋𝑟 + 𝑃3 (𝐼 − 𝐼𝑏) ……… (33) 

𝑑𝐼

𝑑𝑡
= −𝑛𝐼 + 𝑈𝑉(𝐼𝑡) ……… (34) 

𝑑𝐺𝑠𝑐

𝑑𝑡
= 

(𝐺−𝐺𝑠𝑐)

5
− 𝑅𝑢𝑡𝑙𝑛……… (35) 

𝑑𝐷𝑚

𝑑𝑡
= −𝛼𝐷𝑚(𝑡) ……… (36) 

With: A (n*n), B(1*n), E(1*n) and C(1*n) matrix system   

X ∈ Rn 

U ∈ R 

D ∈ R 

G (mg/dL) represents BGC in plasma. Xr (mU/L) signifies insulin concentration in the remote 

compartment, while I (mU/L) denotes insulin concentration in the plasma. Gsc (mg/dL), on the 

other hand, corresponds to glucose concentration on the subcutaneous layer. It is noteworthy 

that this state is the one that is measurable, approximates G and is affected by Dm (mg/dL/min), 

which represents the meal glucose disturbance. 

Moreover, Ib (µU/ml) represents the basal insulin level, whereas Gb (mg/dl) is the basal BG 

level. p1 (min-1) represents the insulin-independent rate constant of glucose absorption in 

muscles and liver, while p2 (min-1) indicates the rate of decrease in tissue glucose uptake ability. 

Figure III- 3: Bergman’s Minimal Model’ describing the 

glucose and insulin kinetics in an IVGTT study. 
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Additionally, p3 [(µU/ml) min-2] reflects the insulin-dependent increase in tissue glucose 

uptake ability per unit of insulin concentration above the basal level. Finally, n (min-1) 

represents the first-order degradation rate for insulin in the bloodstream. The time interval 

preceding the glucose infusion is t (min). 

3.4. Linear MPC implementation : 

Multiple MPC algorithm implementations exist, based on the model and objective function 

chosen[125, 126, 137, 143]. In our work, we used a Constrained Linear Model Predictive 

Controller (LMPC) law. Using the formulation of a Finite Horizon Optimal Control Problem 

(FHOCP) with specified control boundaries, this method accomplishes the definition of a 

control law able to consider multiple objectives. As described by Soru et al [145], LMPC 

employs a discrete linear model (plant) of insulin-glucose dynamics derived by discretization 

and linearizing the Bergman Minimal model (system of differential equations) around 

equilibrium points (basal values). The model's system equation, represented by x, is as follows:                 

𝑥 =  

[
 
 
 
 
𝐺
𝑋𝑟

𝐼
𝐺𝑠𝑐

𝐷 ]
 
 
 
 

�̇� =  

[
 
 
 
 
 
𝐺
𝑋𝑟

𝐼
𝐺𝑠𝑐

𝐷�̇�

̇
̇

̇
̇

]
 
 
 
 
 

 

 u and d are the inputs U(t) and D(t), respectively, with the steady state point: 

𝑥𝑠 = 

[
 
 
 
 
𝐺𝑏

𝑋𝑏𝑟

𝐼𝑏
𝐺𝑏𝑠𝑐

𝐷𝑏𝑚]
 
 
 
 

, 𝑢𝑠 = 𝑛𝐼𝑏𝑉𝐼,𝑑𝑠 = 0 

The model may be expressed as follows, after linearization: 

�̇� =  �̅�𝑋 + �̅�𝑈 + �̅�𝐷……… (36) 

Where X represents the state vector.  U represents the insulin injection input variable.  D 

represents the meal consumption input variable. 
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And they are deviation variables: 𝑋 = 𝑥 − 𝑥𝑠 , 𝑈 = 𝑢 − 𝑢𝑠, 𝐷 = 𝑑 − 𝑑𝑠 

The partial derivatives of the model are represented by the matrices �̅�, �̅�, �̅�.  

�̅� =  
𝜕𝑓

𝜕𝑥
|
(𝑥𝑠,𝑢𝑠,𝑑𝑠)

 ,  �̅� =  
𝜕𝑓

𝜕𝑢
|
(𝑥𝑠,𝑢𝑠,𝑑𝑠)

, �̅� =  
𝜕𝑓

𝜕𝑑
|
(𝑥𝑠,𝑢𝑠,𝑑𝑠)

 

Our system gives:  

�̅� =  [0 0
1

𝑉𝐼
     0     0]

𝑇

 

�̅� =  [1 0 0     0    − 𝛼]𝑇 

�̅� =

[
 
 
 
 
−𝑃1−𝑋𝑏

0
0

0.2
0

   

−𝐺𝑏

−𝑃2

0
0
0

   

0
𝑃3
−𝑛
0
0

   

0
0
0

−0.2
0

   

1
0
0
0

−𝛼

   

]
 
 
 
 

 

To facilitate the application of the previous model (Bergman minimal model) in the LMPC, it 

will be transformed into a linear state space model with discrete time representation. Following 

the discretization steps, the resulting linear discrete state space model can be formulated as 

follows: 

{
𝑋𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 +  𝐸𝑑𝑘

𝑧𝑘 = 𝐶𝑋𝑘
……… (37) 

With:  

𝐶 =  [0  0  0  1  0] 

In the Bergman minimal model used: n= 12, these parameters are presented in Table III-1. 
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Table III- 1:  Bergman Minimal model parameters values 

Name Value 

𝑷𝟏 0.028735 min-1 

𝑷𝟐 0.028355 min-1 

𝑷𝟑 5.035. 10-5mU/L 

n 5/54 min-1 

𝑽𝟏 12 L 

𝑹𝒖𝒕𝒍𝒏 0.7400 mg/dL/min 

α 0.05 

𝑮𝒃 81.3 mg/dL 

𝑿𝒃𝒓 0 

𝑰𝒃 15 mU/L 

𝑮𝒃𝒔𝒄 Gb -5Rutln 

𝑫𝒃𝒎 0 

 

Now, the linear model predictive controller will be presented. Figure III-4 depicts the 

fundamental concept of LMPC.  

 

Figure III- 4: Fundamental concept of LMPC 

 

Here, Z denotes the actual output, while y represents the measured output. The primary 

function of the controller is to manipulate the input, u, to achieve an output that is as close as 

possible to the specified setpoint, r. This fundamental control mechanism will be progressively 

expanded in this section, by incorporating various types of constraints, feedback, and 

feedforward. To that purpose, and to get the ideal profile of future insulin administration, the 

LMPC Process (X) 
Zr

u 
z 

y 
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difference between Z(k) and Zref (set-point) must be minimized as described in (eq. 22). This 

gives the following control problem, which is based on the use of least squares problem (the 

weighted 2-norm is used):  

Minimize    𝐽 =  
1

2
∑ ‖𝑧(𝑘) − 𝑧𝑟𝑒𝑓(𝑘)‖

𝑄

2𝑁
𝑘=1 ……… (38) 

U 

S.t:{
            𝑋𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 +  𝐸𝑑𝑘                      

                                  𝑧𝑘 = 𝐶𝑋𝑘                                                  
 

With:  N: prediction Horizon  

           Q: output weight (diagonal matrice) 

Zref : set-point (1,n) 

U: input vector (1,n) 

 Regularization:  

the term ∆𝑈𝑘 = 𝑈𝑘 − 𝑈𝑘−1 is introduced to the optimization problem to reduce the variance 

between two successive steps in u, resulting in more smoother supply.  

 Constraints design: 

The design of constraints in the LMPC algorithm necessitates an understanding of physical 

limitations and boundaries about both the input (insulin injected) and output (measured glucose 

level). These constraints must be carefully factored in to ensure the efficacy of the algorithm 

[161]. 

a. The input constraints : 

Physical restrictions are a major concern in the field of subcutaneous insulin pump technology. 

Specifically, the insulin infusion rate is subject to a non-negativity constraint, thereby 

establishing a lower bound on insulin levels. This limitation serves to limit the minimum 

amount of insulin that the controller may suggest. It is important to highlight that the 

aforementioned constraints apply to the minimum and maximum volumes of insulin that can 

be safely and effectively injected. 

𝑈𝑚𝑖𝑛  ≤ 𝑈𝑘 ≤𝑈𝑚𝑎𝑥 



Model Predictive Contoller 

 

91 

 

b. Constraints on input rate of movement:  

To provide a more seamless control law, a particular constraint has been included to restrict 

the rate at which input constraints may fluctuate, the input movement rate 𝑢𝑘. 

∆𝑈𝑚𝑖𝑛 ≤ ∆𝑈𝑘 ≤∆𝑈𝑚𝑎𝑥 

c. Output constraints: 

The presence of output constraints ensures the output remains within the targeted range, 

thereby limiting the output. This means, that to prevent hyperglycemia or hypoglycemia 

occurrences, it was essential to establish boundaries, otherwise referred to as output limitations, 

on blood sugar levels. It should be noted that for all constraints, it is assumed that the boundaries 

remain constant at each time step k. 

𝑍𝑚𝑖𝑛≤ Z ≤ 𝑍𝑚𝑎𝑥 

In some cases, obtaining a solution to a quadratic function while adhering to pre-existing 

restrictions may be impossible. To address this, soft constraints are implemented to allow for 

boundary violations as necessary. In this scenario, the most straightforward method for 

loosening output limits is to introduce a new slack variable 𝛹𝑘. 

-∞< Z - 𝛹𝑘 ≤ 𝑍𝑚𝑎𝑥 

𝑍𝑚𝑖𝑛≤ Z - 𝛹𝑘< +∞ 

𝛹𝑘 is chosen equal to zero if there is no necessity to violate the output constraints, 

otherwise,𝛹𝑘 is set to be as small as feasible so that the output constraints are violated by the 

smallest amount possible. 

 The final cost function is written as follows:  

J (x(k), u(.), k) = 
1

2
 ∑ ‖𝑧 − 𝑧𝑟𝑒𝑓‖

𝑁
𝑘=1

2

q
 + 

1

2
‖𝛹𝑘‖

2

S
𝛹  +S

T

𝛹.𝛹𝑘  + 
1

2
 ∑ ‖∆𝑢𝑘‖𝑁−1

𝑘=0
S

2  

…….(39) 
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S.t:        {
𝑋𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 +  𝐸𝑑𝑘

𝑍𝑘 = 𝐶𝑋𝑘
 

𝑈𝑚𝑖𝑛   ≤ 𝑈𝑘 ≤𝑈𝑚𝑎𝑥 

∆𝑈𝑚𝑖𝑛 ≤ ∆𝑈𝑘 ≤∆𝑈𝑚𝑎𝑥 

0 ≤  𝛹𝑘<∞ 

-∞< Z - 𝛹𝑘 ≤ 𝑍𝑚𝑎𝑥 

𝑍𝑚𝑖𝑛≤ Z - 𝛹𝑘< +∞ 

With: ∆𝑈𝑘 = 𝑈𝑘 − 𝑈𝑘−1  

s > 0: input weight 

q > 0: output weight  

S𝛹 :  weight of soft constraint 

𝛹 : vector to soft the constraints 

As we have a constrained model, The problem must be expressed as a quadratic programming 

problem to be easily solved using the quadprog function in MATLAB.  

After control input generation and following the receding horizon method, only the U0 is 

applied to the plant where: U0 (k) = U* (k/k). At each sampling time, the optimization process 

is then repeated.  

3.5. Kalman filter : 

The Kalman Filter is a Bayes filter variation that operates as a Recursive Bayesian Estimator, 

employed in the realm of minimizing the effects of noise in a given problem. The design of the 

Kalman Filter involves the introduction of Gaussian noise into the process and output of the 

linear system, as illustrated in Figure III-5. 
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Figure III- 5: The structure of the Kalman filter estimator 

 

Where: w (µ, R) with w ~ N(0,R)      and v (µ , R)   with  v ~ N (0,Q)  

{
𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)𝐸𝑑(𝑘) + 𝑤

𝑦(𝑘 + 1) = 𝐶𝑥(𝑘) + 𝑣
……… (40) 

As a general rule, the state of the model, x(k), remains inaccessible, necessitating its 

estimation through the utilization of a Kalman filter. By leveraging the model's knowledge and 

prior insulin administration, the Kalman filter serves to augment the quality of information 

supplied to the LMPC algorithm. Particularly, the Kalman filter plays a pivotal role in updating 

the predicted glucose-insulin state, drawing from previous information about glucose, insulin, 

and carbohydrate intake. 
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With: A(n,n), B (n,1)and C(1,n), system matrices (A square matrix) 

tx: the current state  

�̇̂�t: The estimation of the state at time t  

∑t: the covariance of the state estimated. 

Ut: control input at time t  

Zt: sensor reading (CGM). The Measurement  

K: Kalman gain  

 et = Zt - Ct µ̅t 

4. Results:  

The different parameters that have been initialized are:  

- Input constraints that restrict the rate of the insulin injected:  

60 mg/dL ≤ z ≤ 180 mg/dL  

0 mU/min ≤ u ≤ 100mU/min  

-16,7 mU/min ≤ ∆u≤16,7 mU/min 

- An appropriate sampling time and horizon should be selected: N= 25, Ts = 8 min [3].  

The evaluation of LMPC performance will be conducted through two scenarios. At first, the 

virtual patient is subjected to three distinct meals. In this case, an exploration of the impact of 

feedforward, measurement noise, and process noise will be undertaken, while also allowing for 

meal size variation across occasions. During this scenario, the controller's primary goal is to 

maintain the blood glucose level in the target range.  

Using a feedforward technique, the controller may predict an increase in blood sugar levels 

caused by consuming a meal and administering insulin before it is eaten. This leads to a lower 

glucose level compared to not using feedforward. The strategy increases the likelihood that the 

patient will maintain a good control of postprandial glucose. As a result, feedforward will be 

used in all next simulations. Table III-2 presents the temporal distribution of meal ingestion 

events and their amount. 
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Table III- 2: The temporal distribution of meal ingestion events. 

Time (hours) D(t) (mg/min) 

8 3 

12 5 

18 7 

As the first experiment, and to highlight the necessity of constraint incorporation in the 

artificial pancreas, we simulate our system without constraints. Figure III-6 and Figure III-7 

depict the evolution of the system with constraints and without it.  

 

 

 

 

 

 

 

  

(a) 

(b) 

Figure III- 6: The evolution of the system without constraints of: a) the 

evolution of the state b) the evolution of insulin input and output. 
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The findings reveal the necessity of incorporating the constraints into an LMPC. In particular, 

shows instances of negative insulin delivery values (U(t)), which are incompatible with the 

physical reality of insulin infusion rates. Consequently, the implementation of input constraints 

within the model becomes a mandatory measure to ensure the controller operates within the 

insulin pump capabilities.  

(b) 

(a) 

Figure III- 7: The evolution of the system with constraints: a) the evolution of the 

state b) the evolution of insulin input and output 
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In the second experiment, we will evaluate the controller's capability to handle potential 

system disturbances coming from a variety of sources, such as the glucose concentration 

measurement sensor and unexplained physiological components in the Bergman minimum 

model. The system can be exposed to simulated disturbances, such as measurement noise (y) 

and process noise (x), to accomplish this goal. The controller's overall robustness and flexibility 

may be determined by studying how it reacts to various interruptions. Figure III-8 (a) shows 

the progression of the model's states, and Figure III-8 (b) shows a visual depiction of the 

scenario's inputs and outputs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

Figure III- 8: The evolution of the system with process and measurement noises, a) the 

state, b) insulin input and output 
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Comparing Figures III-8 (a) and 8 (b) to Figures III-7 (a) and 7 (b), there is a noticeable 

rise in oscillations, indicating a more difficult management situation. However, the controller's 

effectiveness is still present as shown by the regular maintenance of blood glucose levels within 

the desired range. Noise could replicate physiological features that the model ignores. 

In the third experiment, As shown in the following figure (Figure III-9), we added an insulin 

basal rate to the system to achieve a consistent insulin pump infusion rate. The results show that 

the controller performs better when both basal and bolus rates are used, as seen by the constant 

management of blood glucose levels within the established limits. 

 

Figure III- 9: The evolution of states with process and measurement noise with basal and bolus injection. 

In the fourth experiment, the simulation will be done with both measurement and process 

noise. However, using another scenario. Where the patient eats 6 random meals. Figure III-10 

(a), and (b), illustrate the evolution of the state and the input/output respectively. 
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Figure III- 10: The evolution of the system, a) the states, b) insulin input and output 

 

(a) 

(b) 
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As shown, even with different numbers and sizes of meals, the controller developed manages 

to keep the blood sugar at the target range.   

5. Conclusion: 

The simulations conducted have demonstrated that the Constrained LMPC algorithm utilizing 

Bergman's minimum model performs exceptionally well in maintaining acceptable blood 

glucose levels for patients across different scenarios. It effectively manages measurement and 

process noise, which is crucial for the practical implementation of the system. Moreover, the 

incorporation of feedforward capability in the controller has shown significant benefits, 

enabling proactive planning for future meals and optimizing blood glucose levels. However, 

the real-world application of feedforward may be limited by the patient's ability to provide 

accurate information about their mealtimes and sizes 

Despite this, an Artificial Pancreas system's control algorithm's effectiveness depends on a 

variety of factors, including the accuracy of the glucose measurement device, the patient's 

specific characteristics, and insulin sensitivity, and the algorithm's ability to adapt to changing 

circumstances and disturbances. By incorporating patient-specific data and considering 

individual preferences and requirements, the combination of machine learning and artificial 

intelligence approaches has recently produced amazing success in improving the performance 

of AP control algorithms. According to that, an adaptative predictive controller using machine 

learning is under development to create a sophisticated controller for better postprandial 

glucose. 
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IV. Wireless Syringe Infusion Pump 
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1. Introduction: 

The development of the Internet of Things (IoT) has created new possibilities for healthcare 

applications, including the ability to remotely monitor and control medical devices. One such 

application is the Intelligent, Wearable Infusion System based on Smartphone Application, 

which represents a significant advancement in the field of biomedical engineering and a crucial 

component in an AP system. This system utilizes IoT technology to enable microliter-precision 

insulin delivery, remote monitoring of patients' actions (insulin delivery and meal uptake), and 

real-time data analysis, all through a lightweight, wirelessly controlled syringe pump managed 

by a mobile application. Such a system can improve patient safety by providing real-time data 

to healthcare providers and alerting them to any potential issues. 

This chapter focuses on the design and implementation of novel solutions for diabetes self-

management. By leveraging the power of the IoT and mobile health technology, this system 

can significantly improve diabetes outcomes and enhance the overall quality of care. Following 

a brief overview of the existing SIPs and a discussion of the suggested solution. This chapter 

describes the methodology followed to develop a smart, wearable insulin infusion system, that 

operates based on a smartphone application. Hardware and software have both been considered. 

Then, we present the results obtained with their discussions. Finally, a conclusion was made 

about the impact of the Internet of medical things on diabetes self-management technologies.  

2. Background : 

Syringe infusion pumps (SIPs) are critically important medical devices that are utilized to 

deliver precise amounts of fluids, medicines, or nutrients intravenously to patients over 

prolonged periods. These electrical devices function by providing a steady rate of medication 

infusion, thereby mitigating the risk of errors during the administration of various medications, 

which is particularly crucial in the context of critical care patients [162, 163]. SIPs are employed 

to administer a wide range of medications, including chemotherapy for cancer patients, 

parenteral nutrition for patients with gastrointestinal disorders, insulin delivery for diabetic 

patients, analgesics for pain relief, and antibiotics for the treatment of infections. Moreover, 

SIPs are often used in ambulatory settings such as ambulator automobiles or helicopter 
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emergency medical services (HEMS), thus highlighting the importance of developing precise, 

lightweight, wireless, and wearable syringe pumps [164]. 

The need for such a device led to the development of several lightweight SIPs with high 

accuracy. One of these is the MicropumpTM (Micrel, Greece), which is a low-weight model 

(0.22 Kg), 10 times lighter than conventional SIP models. As presented in Figure IV-1 (b), this 

SIP model comprises both mechanical and electronic components [165, 166]. Another group 

has also introduced its SIP model, the Medfusion 4000, which is smart and wireless (Figure 

IV-1 (a)). However,  despite its wireless and smart characteristics, this SIP model still contains 

a significant number of electronic and mechanical elements, making it relatively cumbersome 

[167]. Furthermore, both of these models are operated manually [166, 167]. 

 

Figure IV- 1: (a) Medfusion® 4000 Wireless Syringe Infusion Pump, (b) Micropump (Micrel Medical Device). 

 

Advancements in technologies in the field of smart, wearable sensors and IoMT like mobile 

health have paved the way for the creation of new medical solutions. In this work, we aim to 

investigate the potential use of these advancements to create a lightweight, wearable, and smart 

SIP that supports diabetic self-management. The presence innovation consists of eliminating 

most electronic components of SIP and replacing them with mobile health applications. Doing 

that, the infusion syringe pump became lightweight weighted, wirelessly controlled using a 

smartphone application. Furthermore, to support diabetes self-management, the application 

comprises an intelligent operation, which can determine the appropriate insulin amount needed 

to be injected before meal consumption.  Practically, we focus on enhancing connectivity and 

applying Mobile health technology to address the challenges of remote control, big data 

(a) (b) 
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management, and achieving autonomy, robustness, and an intuitive, user-friendly interface for 

the miniaturization of the SIP.  

3. Materials and methods: 

The syringe infusion pump developed consists of a lightweight insulin injection system 

controlled via Bluetooth using a smartphone application. The wireless network provides better 

access for health providers by storing personal data such as the infusion history and BGL in the 

cloud. Furthermore, a calculator provides the smartphone application to determine the 

appropriate insulin rate needed to be injected for better postprandial glucose. The whole 

architecture of our system is presented in the synoptic diagram in Figure IV-2. 

 

Figure IV- 2: Architecture of Intelligent IoT (I2oT) Biomedical Wearable System based on Smartphone 

Application 

 Syringe Infusion Pump:  

A syringe pump is a programmable pump that allows the injection of drugs into a patient, 

given the synoptic diagram, our design will be based on the main levels: 

- Mechanical part: consists of pushing the piston using the rotary motion of a motor and 

a set of mechanical devices that transform this rotation into translational mechanical 

energy (gears, supports, nuts), and a body that carries the syringe (the case). 

- Electrical part (prevention): this part includes a computer platform (microcontroller 

system) which makes it possible to manage the entire mechanism.  
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 IoT system:  

The IoT system is responsible for the wireless communication between the syringe pump and 

the external environment (smartphone app - cloud). It consists of three main parts:  

- Electric part: where we can find the communication module (Bluetooth in our case) 

responsible for transmission and the reception of the data wirelessly, and the 

microcontroller (Arduino) to read the transmitted data and encrypt it to control the 

syringe accordingly.   

- The smartphone application: responsible for various tasks such as remotely 

controlling pulse rate with micro-liter accuracy, by calculating the insulin dose 

appropriate. 

- Firebase platform (Cloud service) where all the information including the BGC, 

and the insulin dose calculated will be stored. Such a system can improve patient 

safety by providing real-time data to healthcare providers and alerting them to any 

potential issues. 

3.1. Hardware of the system:  

- Endless screw: it is a cylinder comprising a helical groove (sometimes several), 

making it look like a threaded rod. Associated with a pinion, it constitutes a left gear 

(the two axes are not in the same plane), in which it behaves like a wheel with one 

tooth (or more, depending on the number of splines). This system is also sometimes 

called a worm and wheel. 

Following the synoptic diagram, each part is a key element of our design, first, we will see 

the global definitions of each body. 

3.1.1. Engine (motor): 

One of the main components that make up the mechanics of the syringe pump is the motor. It 

allows linear movement of the piston of a syringe via a worm that rotates through a series of 

gears, allowing the correct movement of the piston to transfer the contained solution to the 

circulation of a patient. By definition, a motor is a component that converts electrical energy 
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into mechanical energy. In electronics, generally, there are three types of motors: direct current 

(DC) motor, servo motor, and stepper motor. 

i) Direct current motor:  

It is also called a Direct Current Machine (Figure IV-3). The DC motor is made up of two 

main parts: the rotor (part that rotates) and the stator (part that does not rotate or static). In 

electrical engineering, the stator is also called the inductor, and the rotor is called the 

armature[168].  

 

Figure IV- 3: Direct current motor 

ii) Servomotor:  

This is, somewhat, a special motor (Figure IV-4), since it includes control electronics. The 

name comes from the Latin word servus, which means slave. Similar to DC motors, servo 

motors have an axis of rotation that sits in the center of the wheel. This axis of rotation is 

however hindered by a clamping system. Servomotors therefore have the advantage of being 

servo-controlled in an angular position. This means that the output axis of the servomotor will 

respect an orientation instruction that you send to it at its input[169].  
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Figure IV- 4: Servomotor 

iii) Stepper motor:  

Stepper motors are widely used in various industries for their precise control over rotational 

movements, by converting electrical pulses into mechanical rotation. These pulses determine 

the number of steps the motor will take and the direction of rotation. The presented moto in 

Figure IV-5 combines the technology of both [169]. They are designed to provide accurate 

positioning and control, making them a popular choice in applications that require precise 

motion control, such as robotics, CNC machines, 3D printers, and automated systems. 

 

Figure IV- 5: Stepper Motor 

To justify our choice of engine, we had to make a comparison table (Table IV-1) [169]:  

Note: the servomotor is not mandatory because the latter is limited in its movement, it is 

designed to work between 0° and 180° (without modification). 
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Table IV- 1: a comparison between the stepper motor and DC motor 

 Advantages Disadvantages 

Stepper Motor • Open loop operation (no regulation 

required) 

• No need for an incremental 

encoder 

• Precision of high steps 

• Existing linear stepper motors. 

 More complex control 

electronics  

 Lower power for equal-size 

DC Motor • Easy speed adjustment 

• Simple electric control 

• High power for a small footprint 

 Necessary regulation 

 Incremental encoder required 

 Linear rotary transformation 

required (belt, etc.) 

 

For our application, the stepper motor is therefore advantageous compared to the DC motor 

and the Servomotor. Indeed, the precision of the steps as well as the fact that the regulation is 

not compulsory, are advantages for the realization of our system. The minimum angle of 

rotation for the stepper motor between two changes in electrical impulses is called a step. A 

motor is characterized by the number of steps per revolution (i.e., for 360°). Common values 

are 48, 100, or 200 steps per revolution. The principle of operation of stepper motors is based 

on the successive switching of the stator (or phase) windings. To do this, an electrical pulse is 

translated by a sequencer acting on switching electronics (drivers or power transistors) which 

distribute the polarities in the windings. A single switching causes a single step regardless of 

the duration of the pulse (greater than a minimum value).  

The technical characteristics of the stepper motor:  

The electronics driving a stepper motor can be divided into 3 functions: 

- The motor power supply with its voltage, current, and power constraints to be dissipated. 

It's power electronics. 

- The sequencer manages the chronology of the impulses. 

- The oscillator. 
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Within our application context, the pm55l-048-hp69 stepper motor has been established as the 

most suitable option, given its potential to facilitate meticulous regulation of motor speed 

through precise calibration. The remarkable features of this stepper motor from the datasheet 

are presented in Table IV-2. 

Table IV- 2: The motor datasheet. 

Motor Size PM55L-048 

Number of Steps per Rotation 48(7.5°/Step) 

Drive Method 2-2 PHASE 

Drive Circuit UNIPOLAR CONST. VOLT. BIPOLAR CHOPPER 

Drive Voltage 24[V] 24[V] 

Current/Phase  800[mA] 

Coil Resistance/Phase 30[Ω] 5.5[Ω] 

Drive IC 2SC3346 UDN2916B-V 

Magnet Material Ferrite plastic magnet (MSPL) 

Polar anisotropy ferrite sintered magnet (MS50) 

Nd-Fe-B bonded magnet (MS70) 

Insulation Resistance 100M[Ω] MIN 

Dielectric Strength AC 500[V] 1[min] 

Class of Insulation CLASS E 

Operating Temp -10[°C] ~ 50[°C] 

Storage Temp -30[°C] ~ 80[°C] 

Operating Hum. 20[%] RH ~ 90[%] RH 

3.1.2. Control card:  

In order to be able to control our stepper motor, the use of a control card is essential. It must 

be at the same time simple (in programming), intuitive (understanding of operation), and above 

all small to occupy the least space possible. That's why we opt for the use of an Arduino MEGA 

card. It is a board based on the ATmega2560 microcontroller. There are several types of 

Arduino boards, all different from each other, among these boards, we can find those that are 

the most used according to their characteristics, which are: the Mega, Uno, Duemilanove, 

Leonardo, Mega Adk, and Nano. For our project, as we mentioned earlier, our choice was the 
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Arduino MEGA board because of its simplicity of operation and especially the number of pins 

available. As with any control card, the Arduino Mega consists of two main part hardware and 

software, described as follow:  

i) Hardware:  

ATmega2560 microcontroller (Figure IV-6) is an electronic card in the form of a flat, flexible, 

or rigid support, generally made of epoxy or fiberglass. It has electronic tracks arranged on one, 

two, or more layers (on the surface and/or internally). Each track connects one component to 

another, to create an electronic system that works and performs the required operations. This 

card is based on an ATMega microcontroller from the manufacturer Atmel and is characterized 

by the following main features [170]. 

- Power supply: via USB port or 5 Vdc regulated or 6 to 20 V unregulated 

- Microprocessor: ATMega2560 

- Flash memory: 256KB including 8KB for the bootloader 

- SRAM memory: 8KB 

- EEPROM memory: 4KB 

- 54 I/O pins including 14 PWM 

- Current per I/O: 40 mA 

- 16 analog inputs 

- Clock: 16 MHz 

- Serial bus, I2C, and SPI 

- Management of interruptions 

- USB plug: mini-USB B 

- Dimensions: 18.54 x 43.18mm 
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Figure IV- 6: Arduino MEGA 2560 board (front view). 

 

i) Software:  

The Arduino module programming software, depicted in Figure IV-7, is a Java-based 

application that is freely available and compatible with multiple operating systems. It functions 

as a code editor and compiler, and it can transfer the firmware and the program through the 

serial link (RS-232, Bluetooth, or USB depending on the module). This versatile software 

enables the transfer of firmware and programs via various serial communication interfaces, 

including RS-232, Bluetooth, or USB, depending on the specific module being used. 

The programming language used is C++, compiled with avr-g++, and linked to the Arduino 

development library, allowing the use of the board and its inputs/outputs. The implementation 

of this standard language makes it easy to develop programs on Arduino platforms, for anyone 

familiar with C or C++. 
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Figure IV- 7: Arduino software. 

3.1.3. Power Control card (Arduino shield):  

Now that we have specified the platform for driving the system as an Arduino board, it has 

become evident that the board does not possess the necessary electrical performance to operate 

a motor efficiently. When the motor begins to rotate, it generates significant interference that 

can produce voltage spikes far beyond the supply voltage. Additionally, the motor draws current 

far greater than what a digital output of an Arduino board can handle, capable of providing 

approximately 40 mA. To address these issues and regulate the direction and speed of the 

motors, an Arduino shield Rev3, depicted in Figure IV-8, is employed. This shield allows for 

the motor to be powered separately by a dedicated power source, which can reach up to 12v. 

The motor shield can control two DC motors or a stepper motor, with two separate channels 

provided for each. [171]. 

When connected to an external power supply, the motor shield can safely deliver up to 12V 

and 2A per motor channel (or 4A if channeled individually). Is worth noting that certain 

Arduino pins are perpetually utilized by the shield. By directing these pins, one can opt for a 

motor channel to activate, identify the motor polarity, set the motor speed (via PWM), stop and 

start motor operation, as well as monitor the current consumption of each channel [171].  
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Figure IV- 8: Arduino shield Rev3. 

3.1.4. Le module Bluetooth:   

It is a hardware device that enables wireless communication between devices using a short-

range wireless technology that uses radio waves to transmit data over short distances, typically 

up to 10 meters (30 feet) or so. Bluetooth modules come in various shapes and sizes and can be 

used for a wide range of applications.  

After considering the availability of Bluetooth modules in the local market, we opted for the 

HC-05 module (Figure IV-9 (a)), which is a Bluetooth SPP (Serial Port Protocol) module. It 

can be paired with a smartphone, tablet, or other Bluetooth-enabled device to exchange data or 

control devices remotely. This module boasts extremely low energy consumption, limited range 

(within ten meters), low speed, economical pricing, and a compact form factor. Particularly, the 

HC-05 module has six pins and may be driven by either 5V or 3.3V [33]. Moreover, the module 

can be activated or deactivated, and its status (visible or non-visible) can be obtained from two 

additional pins [172, 173]. 

It is critical to add a voltage divider between the Arduino's Transmit Pin (which outputs 5 

volts) and the Bluetooth module's Receive Pin (which only supports 3.3 volts) to avoid module 

damage, as shown in Figure IV-9 (b). In contrast, the line between the Bluetooth module's 

Transmit Pin and the Arduino's Receive Pin may be linked directly. This is because the 3.3V 

signal from the Bluetooth module is strong enough for the Arduino Board to interpret as high 

logic [172, 173]. 
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Figure IV- 9: Module Bluetooth HC-05, b) Bluetooth connection with Arduino. 

 

3.1.5. Feed (Alimentation): 

To be able to make a good power supply for our device, we will need different elements that 

can simultaneously power our Arduino board, the stepper motor. The syringe pump is a device 

used in a hospital environment and whose operation must be permanent, even in the event of a 

power cut, 

To do this, we will install a battery that will take over from the mains power supply as soon 

as a power cut occurs to this product. In order to be able to choose the type of battery used, we 

will need to do some tests on the device and know the different parameters such as the current, 

the supply voltage, and above all the most important, the duration of which the device must 

remain in operation.  

3.1.6. Other components:  

The diverse mechanical components used for the development of the syringe infusion system 

presented in Table IV-3 were designed using COMSOL Multiphysics and have been fabricated 

using a 3D printer.  

Table IV- 3: The 3D printer design 

Designed parts Specification 

(a) (b) 
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The base 

 

The mobile part 

 

The fixed border 1 

 

The fixed border 2 

 

The final expected syringe 

driver 

 Conversely, the metallic components of the mechanical assembly comprise various 

fundamental elements Table IV-4.  
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Table IV- 4: The metallic components of the mechanical assembly. 

 

Trapezoidal screw 

 

Trapezoidal nut 

 

Linear shafts 

 

Bearings 

 The motor shaft is linked with the screw and the nut to enable linear displacement. The 

selection of the Trapezoidal screw and its length has been meticulously scrutinized, with the 

distance between the teeth being equivalent to the interval between two volume markings on 

the syringe. 
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3.2. Software :  

3.2.1. Calibration of the syringe-driver: 

The critical issue of calibrating the syringe driver necessitates particular attention to many key 

elements, such as the rotation of the stepper motor, the length of the Trapezoidal screw, and the 

size of the syringe. Firstly, we determine the distance relative to one rotation:   

48 steps by rotation   8mm 

1 step  0.16667 mm 

Then, because the calibration is produced by the Arduino code, we can add this equation to it 

and get an accurate motion relative to the syringe volume calibration. 

3.2.2. Arduino code:  

Incorporating the calibration equation into the Arduino program will result in precise motion 

concerning syringe volume calibration. 

 

 

START 

Include required libraries 

Define pins for Bluetooth module 

Define Stepper motor 

Define calibration value in steps/mm and maximum dose in mm 

      SETUP 

            Set up communication with Bluetooth module  

            Set Motor Speed 

      END SETUP 

      LOOP  

            Wait for incoming commands from Bluetooth module 

             Read incoming command and convert to integer value  

            Check that dose is within range 

            Calculate the number of steps required to move the motor the specified dose 

            Move the motor forward the required number steps 

     END LOOP 

END 
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3.2.3. Smartphone application:  

a. Calculator:  

Before building the automatic infusion system, we investigate the impact of some specific 

parameters including carbohydrate consumption on the glucose level. As is known, the amount 

of insulin required before consuming calories is determined by several factors, including the 

subject's insulin sensitivity, the amount and kind of food ingested, and current blood glucose 

levels. For that reason, to precisely administer the appropriate insulin dosage, it is critical to 

work with a healthcare expert who can assist with a personalized insulin regimen.  

A variety of formulae and algorithms are utilized to determine the best insulin dosage, taking 

into account different parameters.  The carbohydrate counting method is one commonly 

employed technique, wherein the insulin dose is determined by the amount of carbs consumed 

during a meal or snack, as encapsulated in the insulin-to-carbohydrate ratio (ICR) formula.  

 ICR = Total grams of carbohydrates per meal / Units of insulin needed to cover the 

carbohydrates. 

The Insulin to insulin-carbohydrate ratio (ICR) is mathematically derived by dividing the 

aggregate amount of carbohydrates present in a given meal or snack by the corresponding 

insulin units required to cover those carbohydrates. For example, if an individual's ICR is 1:10 

and they intend to consume a meal comprising 50 grams of carbohydrates, they would need:  5 

Units of insulin needed to cover the carbohydrates [174]. This operation has been implemented 

in the smartphone application to provide the user with the appropriate insulin amount needed 

when taking a known meal or snack [175].  

b. MIT application:  

Apps Inventor, an advanced Artificial Intelligence software developed by MIT, represents 

Google's second iteration of its original App Inventor. This innovative software offers a web 

browser-based developmental environment that simplifies the challenging process of creating 

Android applications [173]. Programming is executed online, through a Mac, Linux, or 

Windows computer web browser. It is worth noting that a Gmail account is mandatory to access 
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the Internet, and data is stored on external servers. The App Inventor framework entails three 

fundamental stages as shown in Figure IV-10; firstly, the design of the User Interface (UI); 

second, the creation of programming algorithms that assemble blocks to construct the 

application's behavior; and lastly, the utilization of an emulator to test the program's 

functionality instead of a physical device 

 

Figure IV- 10: The App Inventor framework. 

The application's architecture consists of four distinct activities as shown in Figure IV-11, 

each of which is prioritized sequentially as follows: 

1. Authentication via login to ensure optimal safety. 

2. Integration with the Firebase platform to furnish a comprehensive interface for 

recording patient information. 

3. An interface that facilitates the precise calculation of insulin dosage and its subsequent 

injection. 

4. Authorization for Bluetooth connectivity and an autonomic injection interface. 
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Figure IV- 11: The structure of the App smartphone interface. 

 Firebase platform: 

When the Send button is pressed, all patient-related data will be transferred to the Firebase 

platform, Figure IV-12, including, the amount of insulin calculated, the amount of carbs, and 

the time of the operation. Firebase platform is a subset of Google Cloud Platform projects that 

utilize the Firebase service, which is characterized by shared payment and project 

authorizations across all consoles, as well as the visibility of Firebase projects within the API 

Google and Google Cloud Platform consoles [173]. 

 

Figure IV- 12: Google Cloud Platform. 
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4. Results and discussion:  

The flow rate must be determined using a digital microscope (PARALUX) in combination 

with a MATLAB application. We used the optical mounting approach to measure the flow rate. 

The data variables that will be taken into consideration include: 

- The segment of the tube labeled "S,"  

- The time interval between two successive motor steps "T1" (manipulated via the 

Arduino code),  

- The distance traveled by the fluid or "D," and its corresponding travel time "T." 

Certain parameters such as the distance D and the tube cross-sectional area denoted as "S" are 

held constant, while time T1 is allowed to vary. The resultant measurement is presented in 

Table IV-5. 

Table IV- 5: The experimental measurements 

Motor speed [mm/s] Flow-rate [uL/min] 

0.8 377.824 

0.6 127.226 

0.5 118.745 

0.47 100.55 

0.37 90.3492 

0.33 83.1213 

0.3 79.4153 

0.28 76.492 

0.25 45.3389 

0.23 31.3271 

Examining the Flow-rate measurement function concerning the motor speed curve reveals the 

presence of several linear fits as shown in Figure IV-13. We will select a specific interval that 

best serves our purpose. Following that, we will modify the Arduino code to replace the motor 

speed variable with the flow-rate variable. This will allow us to directly change the flow rate 

using a smartphone application. 
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The fluid flow rate validation range is set between 130 and 400 microliters per minute 

(uL/min). We then use App Inventor to compute the required insulin dose and send it to the 

SIP. A comparative assessment of the insulin dosage computed by the application and the actual 

amount measured at the SIP's output after the prescribed injection duration indicates a high 

degree of proximity between the two values, with a negligible margin of error not exceeding 

5%. 

 

Figure IV- 13: The linear fit flow rate/motor speed. 

 

Our experimental results indicate that the syringe infusion pump exhibits exceptional 

precision in micro-injection delivery. Furthermore, the incorporation of a smartphone 

application confers the necessary autonomy for efficient control. This seamless integration 

eliminates the need for cumbersome electronic components, such as a keyboard and screen, 

resulting in a significantly lighter SIP than models like the Medfusion 4000 or Micropump™. 

Additionally, unlike these models, our system enables wireless control through a simple 

interface, making it an intelligent Internet of Things (IoT) system. The integration of a glucose 

sensor (CGM) will further augment the intelligence of the entire biomedical system. 



Wireless Syringe Infusion Pump 

 

123 

 

To sum up, through the employment of Bluetooth technology, a wireless network is 

established between a syringe pump and a smartphone application, thereby enabling 

comprehensive remote-control functionality. This technological solution not only facilitates 

enhanced access to healthcare, but also facilitates the recording of history, and its direct 

transmission to the Cloud. Consequently, the issue of inadequate physician supervision is 

effectively addressed. Furthermore, the incorporation of an intelligent calculator or algorithm 

plays a pivotal role in accurately determining the medication's flow rate and injection quantity. 

Our current research focus involves enhancing the miniaturization of the syringe pump by 

implementing MEMS Nanofabrication technology. Specifically, we have integrated small 

piezoelectric membranes that consume minimal energy [176] within a biocompatible PDMS-

based chamber. These membranes, easily fashioned using soft lithography as demonstrated in 

Figure IV-14, effectively contain and dispense drugs. 

 

Figure IV- 14: Schematic of a micropump for drug delivery (a) optical photo of piezoelectric membrane 

fabricated by MEMS technology, and (b) optical photo of PDMS microfluidic circuit for insulin delivery 

fabricated by MEMS technology 

5. Conclusion:  

Our study presents a ground-breaking solution for a lightweight precise syringe infusion 

pump. By utilizing a smartphone application App Inventor, we have eliminated certain 
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electronic components, resulting in a lighter device that can be closely monitored by physicians. 

This innovation is particularly crucial for patients who require syringe infusion pumps in home 

or ambulatory settings or for the development of an AP system. The integration of smartphone 

technology has enormous potential to revolutionize healthcare delivery systems by enabling 

remote control, big data management, and leveraging diverse network communications 

protocols and modalities. The ubiquitous availability of mobile-based solutions further 

strengthens their potential to address outstanding healthcare challenges. 

Looking ahead, we are actively developing a state-of-the-art biomedical patch that will utilize 

MEMS Nanofabrication technology methodologies and a monolithic integrated circuit.



 

 

 

 

 

 

 

 

 

Chapter  

V. IoMT architecture for Artificial Pancreas 

using wearable ECG device 
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1. Introduction:  

The practice of self-management is a critical component of diabetes management, and it has 

recently undergone a paradigm shift. In addition to enhancing treatment efficacy, self-

management has become an essential driver of cost-effectiveness. According to a 2015 report 

by Goldman Sachs [3], the incorporation of the IoT in digital health has the potential to generate 

substantial savings, estimated to reach up to $305 billion. Notably, $200 billion of the total 

savings is attributed to the improved prevention and management of chronic diseases, with a 

particular focus on heart disease, asthma, and diabetes. 

The emergence of self-management technologies owes much to the IoT concept. IoT 

platforms utilize wearable sensors to facilitate diabetes management by continually monitoring 

physiological signals such as glucose levels, calorie intake, and physical activity that can 

influence blood glucose levels. Systems that provide patients with real-time feedback and give 

doctors and patients decision-making tools have produced better results than traditional blood 

glucose self-monitoring [177]. 

 It is pertinent to note that the artificial pancreas qualifies as an IoT system, given its 

incorporation of wearable sensors, wireless connectivity, and data processing that is contingent 

on the control algorithm [178, 179]. As research efforts continue to focus on integrating 

additional physiological signals into the AP system, progress toward a completely functional 

AP system is warranted. The significance of data format standardization and the interoperability 

of mobile devices with current clinical infrastructure is highlighted by the exponential rise of 

data collection, analysis, and transmission that involves both patients and healthcare 

practitioners. 

In this chapter, we will examine cutting-edge IoT technologies that enable significant progress 

toward total diabetes self-management. We will additionally present an innovative IoT platform 

design for a diabetes self-management system that uses a wearable ECG device to continuously 

monitor blood sugar. 
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2. Background:  

2.1. Commercial Artificial Pancreas systems provided by IoT platform:  

The current landscape regarding Internet of Things (IoT) platforms dedicated to diabetes self-

management technologies is quickly increasing and progressing [180]. Several corporations 

and institutions are actively developing IoT platforms tailored [180, 181], while others are 

focused on producing more generalized IoT platforms with the potential to be customized for 

use in AP systems [182, 183]. In terms of commercial-specific IoT platforms for AP systems, 

some examples include Medtronic's MiniMed 630G system, Tandem's t: slim X2 insulin pump 

with Basal-IQ technology, and Dexcom System [178].  As the example presented in Figure V-

1, The system uses a CGM to monitor BG and an insulin pump to autonomously regulate BG 

levels in DM patients. The system is controlled by a mobile app that communicates with the 

CGM and insulin pump via Bluetooth. The appropriate amount of insulin for a patient is 

determined by the app via the use of a control algorithm, and based on the patient's current BGC 

and other features [178]. 

 

Figure V- 1: Artificial pancreas system with Mobile Device: Diabetes Advisory System (DiAs) 
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Several additional hybrid closed-loop (HCL) systems are currently being put through clinical 

trials and are anticipated to be released for commercial use within the coming years. 

Furthermore, the diabetes community “Do-It-Yourself (DIY)” has created a closed-loop code, 

which is utilized by numerous diabetes patients to construct custom closed-loop devices. These 

DIY closed-loop systems leverage publicly accessible CGMs and insulin pumps, along with an 

open-source algorithm that is executed via a mobile application to automate the administration 

of insulin [184, 185]. 

2.2. The impact of AI on the artificial pancreas and diabetes self-

management system:  

Artificial intelligence has a significant impact on the development and improvement of the 

artificial pancreas, providing new and innovative approaches to improve glucose control for 

individuals with diabetes. Machine learning algorithms can be trained on large datasets of 

glucose levels acquired from CGMs, insulin dose histories, and other physiological data to 

identify patterns and predict future glucose levels. This information can be used to help the 

artificial pancreas make more informed decisions about insulin dosing, improving glucose 

control, and reducing the risk of hypoglycemia. 

Furthermore, AI can be used to optimize the performance of the artificial pancreas using 

advanced control algorithms. These algorithms can dynamically adjust insulin delivery in real 

time according to the current BG, ensuring that insulin dosing is tailored to the individual's 

needs [186, 187]. 

2.3. Revolutionizing Diabetes Care: The Emergence of IoT-Based M-Health 

Systems: 

Recent advancements in information and Communication Technologies (ICT) and inventive 

biosensors permit a real-time, and full-scale diagnosis of a patient's condition. This set of 

technologies enabled the introduction of things to the internet. On the other hand, new emergent 

technologies such as Big Data, Cloud Computing, offer a new perspective in DM management 

by enabling the incorporation of Machine Learning (ML) and AI into such IoT systems. IoT-

based M-health technologies let patients self-manage their chronic diseases, decreasing 

healthcare system traffic and expense. 
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Successful execution of such a platform’s structure necessitates a comprehensive of the unique 

characteristics and specifications of the IoT project, as well as the ability to leverage advanced 

technologies and methodologies to deliver optimal outcomes [181]. This section explains how 

this is accomplished by enumerating the various IoT-based M-health solutions for diabetic self-

management, providing illustrations followed by a comparative analysis. 

A. Web-Based Services and Sensors: 

This new approach supports the remote management of diabetes and involves the utilization 

of a web-based service that establishes cost-effective, and global communication between the 

patient's device and their web portal. This service facilitates a real-time updating of the patient's 

personal information, medication reminders, and blood glucose levels [188]. Whenever there is 

an increase in blood sugar levels, a phone call or SMS message is automatically sent to the 

patient's physician. It provides them with access to timely and effective care, regardless of their 

geographic location, while also reducing the burden on healthcare providers and improving 

overall patient outcomes. The diagram in Figure V-2. Describe an example of Web Based 

Services and Sensors process [188].  

 

Figure V- 2: Diagram for Web Based Service and sensor process 
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There exist many universal Web-Based Services and Sensor platforms, such as Glooko, 

Tidepool, Carelink, and Diasend. Their capability to download data from multiple medical 

devices has significantly enhanced the operational efficiency of clinics. While most devices 

require manual downloading, certain devices can already be accessed by mobile applications, 

such as Dexcom, Freestyle Libre, and T-slim. These last have the added advantage of 

establishing an automated and continuous link with the hospital account, thereby eliminating 

the need for a computer [189, 190]. 

B. Robot Assistant in Management of Diabetes Based on the Internet of Things:  

The present framework introduces an e-health platform that employs humanoid robotics to 

facilitate a multidimensional strategy of care for diabetes management. It applies IoT to a web-

centric paradigm by leveraging operative web-based protocols for accessing, managing, and 

controlling physical layer objects. The foundation of the technological platform is policy-aware 

Internet of Things objects with the essential design characteristics [191]: 

 Awareness: It is fundamental to the system, as it enables an in-depth understanding of 

the degree to which patients' activities conform to their unique treatment strategies. In 

turn, this comprehension enables the system to effectively monitor and manage the 

medical data of patients, ensuring optimal outcomes. 

 Representation employs an ensemble of rules to analyze the data and extracts helpful 

summary information. It includes BG patterns, insulin dose estimation, and patient 

categorization based on the characteristics of their health conditions. 

 Interaction, which exploits the patient's accumulated electronic health record data. 

This e-health infrastructure consists of two elements: capillary networks and a web-based 

Disease Management Hub (DMH). Bluetooth is utilized to connect biosensors and humanoid 

robots that are part of the networks. The robot functions as a link between the patient's sensors 

and the DMH via a wireless local area network (Wi-Fi) that is connected to the current network 

structure (internet)  [191, 192].  

A DMH dashboard reveals a one-page summary of the patient’s medical profile and links to 

all the platform's most important applications, including the treatment plan, dialogue wizard, 
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diabetes diaries, and BG patterns, among others. Specialist physicians write the conversations, 

which are stored in a DMH dialogue library and accessible to caregivers. This collection's 

dialogues may be tailored to each patient's requirements and sickness treatment. During the 

discourse, the automaton may communicate with the DMH server to transmit information 

between both local and remote databases. Figure V-3 shows the system architecture [191]. 

 

 

Figure V- 3: Abstract view of Robot Assistant in the Management of Diabetes Based on the Internet of Things. 

C. Smartphone-Based m-Health System: 

Mobile health (mHealth) is a type of e-health that involves the utilization of mobile devices 

to support public health and medical practices. The deployment of healthcare delivery systems 

through IoT and smartphone technology has the potential to impact healthcare significantly 

[153]. Numerous mobile applications exist to promote self-management, lifestyle changes, and 
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adherence to medications. These applications provide tele-management and consulting services 

for diabetes, allowing healthcare professionals to monitor their patients remotely and provide 

advisory services [193]. The platform as described in Figure V-4 comprises [181]: 

biomaterial: The patient layer produces data and triggers the system outputs (via medical 

decisions). Variables include motion, epidermis, blood, and other physiological alterations. 

Sensors: The input data for the whole system is provided by various IoT-connected sensors. 

The ability to remotely configure and control these sensors via the Internet has enabled the 

development of numerous monitoring applications and technical frameworks. 

 

Figure V- 4: IoT-Architecture for Smartphone-Based m-Health System. 

Communications: permit data penetration (transmission) across different layers. All sensors 

must provide different communication channels for a seamless connection. There are two kinds 

of networks, the first is a Local Area Network (LAN). consist of the communication between 

sensors and smart gateway devices such as smartphones/tablets. This kind can be done using 

Wi-Fi, 5G, ZigBee (or 6LowPAN), and BLE, which serve for short-range communication. The 
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second type of network is the Wide Area Network (WAN), which enables data transmission 

over longer distances. This network typically utilizes the internet. 

Middleware: it is necessary to manage heterogeneous sources of data and seamlessly integrate 

devices and networks within the sensors and communication layer. The middleware enables the 

conversion of data from diverse sources into a standard language. This standardization of data 

is critical for ensuring that all data can be effectively processed and analyzed by the system 

Management and computing: This layer performs data analysis, BG prediction, and treatment 

strategy selection. This is the location where the data processing algorithms are situated. 

Ubiquitous smartphones and pervasive Cloud computing are required to avoid problems caused 

by Internet disruptions and battery failure. 

Interface layer: Browser-based system access, Android app, and Appel app allow a 

smartphone or computer to remotely modify the patient's or healthcare professionals’ settings. 

The previous layer must have forecast BG levels as well as optimal insulin input, and other data 

which can be presented to the patient in this layer for approval or modification. 

As an example, Dario (Appel-iOS, Android) [194]: developed by Tyto Innovation Ltd, is a 

self-management application designed for individuals with both T1DM and T2DM. The app 

allows users to track various aspects of their condition, and it analyzes the data to offer 

personalized recommendations for insulin dosing, meal planning, and physical activity to 

improve diabetes management. The Dario Blood Glucose Monitoring System is designed to 

work in conjunction with the app, allowing patients to measure their BG levels utilizing a 

smartphone-connected glucose meter. The system has been used in a multi-center setting and 

has shown a better outcome[195]. 

D. An IoT-Based Personal Device for Diabetes Therapy Management in Ambient 

Assisted Living (AAL): 

The blood sugar levels of a patient are affected by a variety of factors; therefore, managing 

diabetes medication in AAL settings, such as nursing homes for the elderly or for diabetic 

patients, can be a difficult task. Several circumstances, such as disease, therapy, stress, exercise, 

medications, and dietary adjustments, can cause sometimes hazardous fluctuations in BG levels 
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making it unpredictable. Consequently, a personal care device will require accurate insulin 

calculation capabilities. Therefore, a personal device has been designed to assist with insulin 

treatment dose calculation and to take into account a greater number of variables [182, 196]. 

This system demonstrates an IoT-based personal diabetes management device. This approach 

aims to develop cutting-edge mobile assistance services that take into account more insulin 

therapy-related factors. Aiming to minimize hyperglycemia and hypoglycemia incidences, as 

well as the associated risks. The device supports 6LoWPAN communication to link the personal 

device with a home gateway [193]. The RFID identification is used to load the patient’s profile 

from the personal health card, and a color touch screen to interact with the patient. In addition, 

this personal device is augmented by a glycemic index information system that consists of over 

2,600 indexed products and is expanding, a desktop application that enables nurses and 

physicians to set up and review a patient's health card, and an application layer based on AI to 

define an adaptive insulin therapy for the patients. Figure V-5 depicts the system's entire 

architecture. 

 

Figure V- 5: Architecture diagram for AAL system 
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E. Context-Aware-m-Health system: 

The system facilitates two-way communication between patients and healthcare professionals. 

Patients are empowered to update their measured blood glucose values in the system database, 

with inconsistencies in the recorded readings being monitored by healthcare professionals. 

Figure V-6 shows that the Context-Aware-m-Health system comprises several components, 

including a General Packet Radio Service (GPRS) glucometer, a Blood-Glucose Monitor 

(BGM) that collects patient data, and which consist of a telecare android and iOS application. 

This item facilitates communication between patients and healthcare professionals, physicians, 

and caregivers. Cloud server utilized to track updated values. The system also incorporates an 

Abnormal Blood Glucose Detection (ABLD) module and a Proactive Notification Module 

(PNE). In general, the GPRS BGM device collects BG values at various intervals (before/after 

meals, morning, etc.), which are subsequently uploaded to the Cloud server using the GPRS 

protocol and XML format[197]. 

 

Figure V- 6: IoT architecture for Context-Aware m-Health system 
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Comparative study between cases A-B-C-D-E:  

To select the most suitable IoT architecture for our proposed system, which is based on the 

real-time detection of BG level using a wearable ECG device, a detailed comparison of 

previously cited approaches [198] has been compiled in Table V-1.    

Table V- 1: Comparison of different diabetes management IoT systems 

System 

 

Web 

Based 

Service 

Robot-

Assisted 

Smartphone 

assisted 

Personal 

Device In 

AAL 

Interactive 

M-health 

Service 

Cost Low High Medium Medium Medium 

Security Insecure Secure Secure Secure Secure 

Complexity Low High Medium High Medium 

Protocols 

used 

GPRS 

 

GPRS, 

Bluetooth 

GPRS/LTE, 

Bluetooth- 

Wi-Fi 

6LoWPAN, 

GPRS 

 

GPRS, 

XML, 

MQTT 

User 

control Over 

the System 

No No yes No yes 

Flexible No yes yes yes yes 

User 

interaction 

with the 

system 

No yes yes yes yes 

3. The proposed IoMT framework for artificial pancreas:  

We have decided, based on the current state of the art, to develop a Smartphone-Based m-

health System that employs a ubiquitous ECG device for continuous monitoring of blood 

glucose value. In recent years, the ECG has been predominantly utilized in cardiology to aid in 

the diagnosis and monitoring of cardiac disease. Smartwatches, bracelets, and bracelets are 

currently available as ECG wearable devices. Apple Watch Series 4 generates a single-lead 

electrocardiogram using electrodes and it is approved by the Food and Drug Administration 
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(FDA) to detect atrial flutter [199]. Other devices authorized by the FDA are used to detect 

ECG and HR. Zephyr-BioHarness 3, Kardiac Mobile from AliveCorCompany, and 

CompletTM (Omron+Alive Cor) are not the only devices on the list [87]. People must utilize 

the technologies they have already employed to monitor their blood glucose levels. By 

incorporating the previous methods adopted in Chapter 2 for BG measurement based on ECG 

signals, and the LMPC developed in Chapter 2 to determine the insulin amount needed, a new 

IoT architecture for artificial pancreas technologies that support diabetes self-management can 

be established. 

 

Figure V- 7: IoMT architecture for our artificial pancreas system 

 

The development of an intelligent diabetes self-management system which is in our work an 

artificial pancreas system (closed loop system) that utilizes the electrocardiogram (ECG) signal 

to monitor blood glucose concentration necessitates the integration of diverse hardware, 

software, and cloud components within an IoT infrastructure. It is imperative to design a robust 

and comprehensive architecture that prioritizes data security, reliability, and scalability while 

ensuring seamless interoperability between the various components [200].  Figure V-7 The 

proposed IoT system is represented as an abstract view. The exhibited IoT-based platform seeks 

to facilitate diabetes self-management via remote monitoring and individualized mobile 
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feedback. The platform encompasses a physical objects layer, a network layer, and a health 

portal layer that performs remote data collection, processing, and monitoring based on 

individual patient treatment plans. 

3.1.Physical-Objects Layer: 

This layer enables communication among humans and device objects, and between objects 

themselves. It entails a Wireless Body Area Network (WBAN), which is comprised of multiple 

medical sensors (wearable ECG monitor, insulin pump) and a mobile device. All the above 

gadgets communicate using Bluetooth. The smartphone (gateway) serves as the master 

Bluetooth node for a piconet of medical sensors and as a link between this layer and the health 

portal applications. Moreover, it functions as the patient's entry point to the platform. The 

latency required for data transmission varies based on the type of data being transmitted. In the 

context of our study, we are utilizing an ECG signal for real-time blood glucose monitoring. 

Extensive literature reviews suggest that a latency of up to 2 to 4 seconds is deemed acceptable. 

 Comparatively, BLE is a more energy-efficient option than 6LoWPAN. This is attributed to 

the reduction in advertising channels from 16 to 3, which simplifies scanning and necessitates 

a standby period before data transfer [201]. Furthermore, the connection time is faster and 

automatic during scanning, enabling connection and transmission within 3 milliseconds. The 

BLE top current is below 17.5 mA. This low power requirement of the BLE technology makes 

it possible to use small coin cell batteries as a power source, which is critical for designing a 

compact system. 

The WBAN in our application can consist of two or more devices: a wearable ECG device 

and an insulin pump are presented as indispensable components in this project and they are 

defined as different kinds of objects: the insulin pump is an actuator, whereas the wearable ECG 

device is a sensor.  

The actuators (insulin pump): It can be activated to release the amount of insulin calculated 

by the MPC model according to the BG estimated using ECG features. On the other hand, it 

can be deactivated in low BGC cases. The insulin pump must be connected to the gateway 

(smartphone). It is imperative to ensure that the actuator is equipped with the necessary 

functionality and features to enable precise and accurate regulation while adhering to the 
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highest standards of safety and reliability. As mentioned in Chapter 4, a member of our team 

“Slami Ahmed” is working on a patch pump using MEMS technologies.  

3.2.Network Layer : 

Long-distance connectivity between the physical layer and the Web health portal is 

representative of the network layer. It uses GPRS or LTE wireless protocols. A fundamental 

component of the platform is the Internet, which is regarded as an existing global networking 

infrastructure for communication and data exchange. 

3.3.The application layer : 

The application layer (Cloud Layer), which situated on top of the Internet. It allows interaction 

between physical layer objects and other entities, such as healthcare professionals, hospitals, 

and other systems. By leveraging an IoT Cloud, computational tasks that require significant 

processing power such as ML and AI algorithms can be carried out on powerful servers, thereby 

lightening the load on smart devices [20]. The Cloud computing service layer is of paramount 

importance in the IoMT healthcare system wherein all data is meticulously processed, stored, 

and analyzed. Figure V-8 depicts the operations that can be carried out in the Cloud layer for 

our application. This platform can be conveniently hosted on a public Cloud, such as Amazon 

Web Services (AWS), Microsoft Azure, or Google Cloud Platform (GCP) [202], which offers 

a broad spectrum of services and features suitable for developing IoT solutions. Alternatively, 

to ensure enhanced security, the Cloud platform can also be hosted on a private Cloud, which 

can be an optimal choice for organizations that need to comply with stringent data privacy and 

security regulations. The subsequent section elaborates on some Cloud service specifics 

 

 

 

 



IoMT architecture for artificial pancreas using wearable ECG device 

 

140 

 

 

Figure V- 8: Diagram for the operations carried out in the Cloud 
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a. Data Storage: 

In the context of the IoT, data storage is a critical component of the Cloud platform. The 

platform is required to store vast amounts of data collected from sensors, which can be achieved 

through the utilization of a database management system, such as MySQL or MongoDB [203]. 

The database can be hosted on the Cloud platform itself or a separate server, depending on the 

specific requirements and constraints of the IoT project. Continuous monitoring of ECG signals 

is characterized by a big volume, so, it is imperative to ensure that the chosen database 

management system is capable of handling the volume, velocity, and variety of data generated 

by the IoT devices in a reliable, scalable, and secure manner. 

b. Data processing: 

 This is required to extract vital insights and meaningful information from the data collected 

by the sensors. This is achieved through the application of sophisticated ML algorithms, 

specifically, artificial neural networks, which are adopted in Chapter 2 for ECG segmentation. 

The algorithms can be trained on annotated ECG data to enable accurate extraction of the 

different ECG features needed for accurate BGC. It is important to ensure that the selected ML 

algorithms are suitable for the specific requirements and characteristics of the IoT project, and 

can deliver reliable, accurate outputs. 

c. Data analysis:  

This step also includes sophisticated algorithms based on ML. The algorithm is utilized to 

determine the BGC based on the previous ECG features extracted as described in chapter 2. 

Another algorithm is utilized to determine the severity of the estimated BG level (normal or 

abnormal) to provide a real-time warning message defining the case (hypoglycemia or 

hyperglycemia). This will make the patient act quickly and prevent a critical situation.  On the 

other hand, the developed MPC algorithm in Chapter 3, must be included in this step, to 

determine the appropriate infusion insulin rate needed according to the actual BG estimated. 

another algorithm can be added to perform other tasks such as the suggestion of 

carbohydrate/snack intake (if BG is too low) and other regimen propositions.  
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3.4.User interface (Data visualization) : 

 In the context of the IoT ecosystem, the user interface enables users (patient/family members, 

doctors, nurses) to visualize and interact with the data collected by the sensors and analyzed by 

the Cloud. This critical component can be implemented through the development of a mobile 

and/or web application that provides a comprehensive display of the blood glucose 

concentration in real time, along with the provision of real-time alerts (warnings) in the event 

of abnormal readings. It is essential to ensure that the user interface is intuitive, user-friendly, 

and capable of delivering a seamless experience to the end-users. Additionally, the user 

interface should be designed in a manner that is compatible with the specific requirements and 

limitations of the IoT project. 

4. Issues and challenges:  

The Internet of Things has the potential to provide medical professionals access to important 

data that may lead to better patient outcomes; nevertheless, several obstacles are preventing its 

widespread use in the healthcare industry. 

Security Concerns/Privacy Issues/ Legal Regulatory and Rights issues: With a growing 

number of interconnected devices in the market and more to come, it's important to prioritize 

security policies. Poorly secured IoT devices can be exploited by cyber attackers and used as 

entry points to harm other devices in the network, resulting in the loss of personal data and 

decreased trust in internet-connected devices. To prevent such scenarios, it's essential to 

prioritize the security, resilience, and reliability of internet applications. Furthermore, the wide 

variety of devices that are linked to one another presents a multitude of security concerns, yet 

there are no legislative rules in place that address such vulnerabilities. In addition, the constant 

connection of IoT devices to the internet increases the possibility of tracking and surveillance 

by government and private agencies. Leading to a privacy issue [204].  

Inter-operability standard issues: In the most optimal setting, all the networked Internet of 

Things devices should communicate with one another and share information. The reality of the 

situation, on the other hand, is intrinsically more complicated and is dependent on several tiers 

of communication protocol stacks connecting the relevant equipment [204]. 
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5. Conclusion:  

In recent years, the medical sector has been revolutionized by IoT technologies, which have 

facilitated real-time and remote monitoring by connecting various objects. Moreover, the 

integration of AI and ML has endowed these objects with intelligent capabilities, enabling them 

to provide accurate diagnoses regarding the patient's health status. In this chapter, we have 

proposed an intelligent IoMT platform that utilizes a smartphone application for an artificial 

pancreas. This platform employs a wearable ECG device as a continuous glucose monitor, 

instead of the commercially available CGMs. Additionally, it utilizes a model predictive 

controller to determine the appropriate insulin rate required for each patient, based on their 

calculated BGC. The proposed architecture has been carefully designed to meet the 

requirements of our application. Bluetooth Low Energy has been selected as the primary mode 

of connectivity between the objects (insulin pump, wearable ECG device, and smartphone) in 

WBAN. GPRS and/or LTE have been dedicated to the transmission and reception of data (ECG 

signals, insulin rates, alarms, and recommended treatments) between the smartphone and the 

internet, where the Cloud is located. The Cloud is responsible for processing, analyzing, and 

storing the data using AI and ML. It enables seamless interaction between the different 

components and other entities, such as healthcare professionals, hospitals, and other systems, 

while also automating the entire system. 

This novel intelligent IoMT architecture for the artificial pancreas, based on the use of the 

ECG signal, represents a significant achievement, as we have successfully presented all the 

necessary components of this architecture. 
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The Internet of Things (IoT) has the potential to connect physical and virtual objects through 

communication capabilities, providing data collection, management, and other services. 

Research is currently being conducted on the use of IoT in mHealth applications, with a 

particular focus on ubiquitous personal diabetes self-management. In the current digital era, 

with the availability of Cloud computing, AI, and ML technologies, a new accurate autonomous 

concept of medical applications has emerged. This thesis adopts these various technologies to 

build a novel diabetes self-management system. 

Diabetes is a widespread disease that poses a significant threat to global health, highlighting 

the urgent need for medical solutions to alleviate the strain on healthcare services. By 

leveraging the aforementioned technologies, there has been a significant paradigm shift in 

diabetes self-care management. Nowadays, it is regarded as an indispensable aspect of diabetes 

management, not only for its potential to enhance treatment efficacy but also as a pivotal factor 

driving cost-effectiveness. 

A successful diabetes self-management system must ensure that the blood glucose level is 

always within the normal range. For that, the system must provide a real-time BG monitoring 

service, an insulin rate calculator coupled with an autonomous injection system. Additionally, 

the system must provide alert and advisory services to prevent potentially life-threatening 

scenarios. Furthermore, to reduce the burden, these previously mentioned services need to be 

remotely monitored by healthcare administrators. In this context, we can find the artificial 

pancreas. 

This thesis proposes a novel architecture for an intelligent IoMT health system for diabetes 

self-management, particularly an artificial pancreas. The system is composed of three different 

parts: 

1. A novel approach for continuous glucose monitoring based on ECG signal: 

In this part, we validated two different methods for BGC estimation based on ECG features. 

The first method utilized linear mathematical equations that employed 3 ECG features. It has 

been applied to 4 patients over numerous days, demonstrating a strong linearity between Real 

BG and Calculated BG, yielding RMSEs of 0.23 and 0.24, respectively, for equation 1 and 
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equation 2. The finding may introduce novel avenues for physiological modeling. Nevertheless, 

it should be noted that this method necessitates calibration each time there is a remarkable 

change in the BGC range. Despite this limitation, the results achieved are quite satisfactory, 

making the method very promising. 

To overcome the calibration issue noted in the first method, we utilized ML to estimate the 

blood glucose concentration in the second method, specifically an artificial neural network. Our 

Algorithm models enabled us to estimate blood glucose concentration with an accuracy of 98%. 

In the second method, seven ECG features have been employed. Furthermore, the two methods 

have employed a convolutional neural network to accurately segment the different features 

needed in the studies. The features have been segmented with an accuracy of 94%. 

The widespread availability of portable devices equipped with electrocardiogram (ECG) 

acquisition capabilities has made them accessible to a broad spectrum of individuals. These 

devices are affordable, non-invasive, simple to use, and durable, making them ideal for 

integration into an artificial pancreas as a wearable sensor for continuous glucose monitoring. 

This feature and the findings of our work render the device highly attractive to individuals living 

with diabetes or pre-diabetics. 

2. An intelligent algorithm (model predictive controller) to predict the insulin rate 

required for maintaining the blood glucose in the normal range: 

The MPC algorithm has been adopted in this part to estimate and predict the insulin rate 

needed to maintain the blood glucose in the normal range, avoiding hyper- and hypoglycemia 

episodes. After a deep comparative study, the MPC model has been confirmed to be suitable to 

be implemented in an AP architecture because it can incorporate different constraints (input-

output). Additionally, it can support various numbers of inputs, such as the actual BGC, meal 

consumption, and other physiological signals that can impact the BGC. The adopted model 

(MPC) has been confirmed in simulation studies and has given promising results in handling 

different scenarios. According to the findings, the proposed algorithm gives better postprandial 

glucose control by delivering a continuous basal insulin rate and bolus rate in the case of meal 

consumption. 
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3. An IoMT-platform architecture based on a Smartphone application connects the 

different devices and permits remote monitoring: 

In this part, we proposed a novel IoMT architecture for an AP system that contains the two 

previously cited parts. An IoT-based platform designed to facilitate diabetes self-management 

through remote monitoring and personalized mobile feedback. The platform consists of a 

physical objects layer, a network layer, and a health portal layer, which performs data 

collection, processing using ML and AI, and monitoring based on ECG signal. The physical 

objects layer involves wireless communication between medical sensors and mobile devices 

(BLE), while the network layer connects the physical layer to the web health portal through 

GPRS or LTE. The health portal layer interfaces the various objects of the physical layer to 

other objects, including healthcare professionals and hospitals, through a Cloud computing 

service layer. The platform also includes data storage and a user interface for data visualization. 

We emphasize the importance of ensuring that the platform is reliable, scalable, and user-

friendly and that the machine learning algorithms used for ECG data analysis and insulin rate 

calculation are suitable for the specific requirements and characteristics of the IoT project. 

Remote health monitoring technologies are revolutionizing the healthcare business and 

enhancing people's lives. They also raise new questions concerning the privacy and security of 

users' medical data. For that, a deep study in this context must be conducted to finalize or 

propose an IoT platform, followed by the realization of the entire system. 

In future work, the wearable device with the proposed algorithm will be evaluated in actual 

clinical trials to further investigate the performance of software and hardware in real-world 

settings and modify the functions and GUIs according to user feedback. Considering 

miniaturization, it is possible to deploy the prediction algorithm in other IoMT wearable devices 

with the collaboration of manufacturers, such as CGM and insulin pumps, to provide on-device 

decision support.
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