
ةــيـــبـــعــشـــيــة الــراطـــة الديمـقريـــوريـة الجـزائـهـالجـم
REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

يــلـمــحث العم العالي والبــــليعالتـوزارة
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

–ان ــلمســت – دــيـاــــقــر بــلجامعة أبي بــكـ

Université Aboubakr Belkaïd – Tlemcen –

Faculté de TECHNOLOGIE

MEMOIRE

Présenté pour l’obtention du diplôme de MASTER

En : Télécommunications

Spécialité : Réseaux et Télécommunications

Par : MEKKIOUI Abdallah Salah Eddine & MIR Zakaria

Sujet

Performance study and evaluation
of the GNFS factorization algorithm

Etude et évaluation des performances de l'algorithme de factorisation GNFS

Soutenu publiquement, le / /2023 , devant le jury composé de :

Mr BOUSAHLA Miloud Maitre de Conférences Université de Tlemcen Président

Mme SLIMANE Zohra Maitre de Conférences Université de Tlemcen Examinateur

Mr ABDELMALEK Abdelhafid Maitre de Conférences Université de Tlemcen Encadreur

Année universitaire : 2222/2222

18 06

Acknowledgments

I want to dedicate this work to my mother for her

unconditioned help and support to my family and my

Siblings . To my Partner and friend which was a

pleasure working with and also to all my friends.

As i would like to thank my professor Mr.Abdelmalek

Abd el haffid for his great help and guidance that he

has provided all along our work on this thesis.

Mekkioui Abd Allah

1

Praise be to God who helped me complete this thesis and

helped me in my scientific path.

I dedicate this thesis to my parents for their endless love

and support throughout my pursuit for education To my

master’s promotion in Networks and Telecommunications

To our supervisor professor for his compassionate and To

my not only colleague at this work but a dear friend that

working with was an absolute pleasure To all those I have

not mentioned their names but I never forget their helpers

.

Mir Zakaria

2

Abstract

Numeric Security is the topic of the century ,To protect the secrecy of
sensitive numerical data during transmission and storage, it requires the use
of powerful encryption techniques. Strong authentication and access controls
also aid in preventing unauthorized parties from obtaining private numeri-
cal data. Numeric data integrity and security must be regularly monitored,
audited, and compliant with industry standards to safeguard people and busi-
nesses from potential financial loss, identity theft, and other cyberthreats.

This thesis study the integers factorization since Many public key cryp-
tosystems depend on the difficulty of factoring large integers,but first we will
be going through cryptography from the beginning and tracing it develop-
ment until arriving to the most efficient algorithm for factorization wish is the
GNFS algorithm

key words:Cryptography/security/Algorithms/Factorization /public key

�
	
jÊÓ

, 	áK

	Q
	
j
�
JË @ð É

�
®
	
JË @ Z A

	
J
�
K

@
�
é�A�mÌ'@

�
éK
XYªË@

�
HA

	
KAJ
J. Ë @

�
éK
Qå�

�
éK
AÒm

Ì'ð ,
	
àQ

�
®Ë@ ¨ñ

	
�ñÓ ñë ù

Ô
�
Q̄Ë @ 	áÓ

B@

©
	
JÓ ú

	
¯ A

�	
��

@ Èñ�ñË@ ¡�. @ñ

	
�ð ø

ñ
�
®Ë@

�
�
�
®j

�
JË @ Y«A�

�
� .

�
éK
ñ

�
®Ë@ Q�

	
®
�
�
�
�Ë @

�
HAJ

	
J
�
®
�
K Ð@Y

	
j
�
J�@ I. Ê¢

�
JK

�
HA

	
KAJ
J. Ë @

�
éÓC�

�
éJ.
�
¯ @QÓ I. m.

�'

 .

�
é�A

	
mÌ'@

�
éJ
Ô
�
P̄

�
HA

	
KAJ
J. Ë @ úÎ« Èñ�mÌ'@ 	áÓ AêË hQå�ÖÏ @ Q�

	
«

	
¬@Q£

B@

	áÓ ÈAÔ«

B@ð X@Q

	
¯

B@

�
éK
AÒm

Ì �
éJ
«A

	
J�Ë@ Q�
K
AªÒÊË ÈA

�
J
�
JÓB@ð ,

�
�J

�
¯Y

�
JË @ Z @Qk. @

ð , Ñ
	
¢
�
J
	
JÓ É¾

�
��. Aî

	
DÓ

@ð

�
éK
XYªË@

�
é�@PX

�
éËA�QË@ è

	
Yë ÈðA

	
J
�
�
�
K. øQ

	
k

B@ ú

	
G @Q�. J
�Ë@

	
àAÓ

B@

�
H@YK
Yî

�
Eð

�
éK
ñêË @

�
é
�
Q̄å�ð

�
éÊÒ

�
Jm×

�
éJ
ËAÓ Q

KA�

	
k

X@Y«

B@ ÉJ
�

	
®
�
K
�
éJ
ÊÔ

« �
éK. ñª� úÎ«

�
éJ
ÓñÒªË@

Q�

	
®
�
�
�
�Ë @ Ñ

	
¢
	
� 	áÓ YK
YªË@ YÒ

�
JªK

�
IJ
k ,ÉJ
�

	
®
�
JË @

�
éÓA«

úÍ@

Èñ�ñË@ ú

�
æk èPñ¢

�
� ©J.

�
�
�
Kð

�
éK
 @YJ. Ë @

	áÓ Q�

	
®
�
�
�
�Ë @ ÕÎ«

�
éªk. @QÖß. Ðñ

�
®
	
J�

�
Bð

@ 	áºËð ,

�
èQ�
J.ºË@

. ÐAªË @ X@Y«

B@ É

�
®k É

	
j
	
JÓ

�
éJ
Ó

	PP@ñ
	
k ù

ëð ÉJ
�

	
®
�
JË @

�
éJ
ÊÒªË

�
èZA

	
®» Q��»

B@

�
éJ
Ó

	PP@ñ
	
mÌ'@

Résumé

La sécurité numérique est le sujet du siècle ,Pour protéger le secret des données
numériques sensibles lors de leur transmission et de leur stockage, elle nécessite
l’utilisation d’un système de sécurité numérique.

L’intégrité et la sécurité des données numériques doivent être régulièrement
contrôlées, auditées, et conformes aux normes de l’industrie afin de protéger les
personnes et les entreprises des pertes financières potentielles, de l’usurpation
d’identité et d’autres cyber-menaces.

Ce memoire étudie la factorisation des nombres entiers car de nombreux
cryptosystèmes à clé publique dépendent de la difficulté de la factorisation des

Factorization algorithm GNFS 3

nombres entiers. mais nous allons tout d’abord étudier la cryptographie depuis
ses débuts. et retracer son développement jusqu’à l’algorithme de factorisation
le plus efficace, à savoir l’. Algorithme de factorisation GNFS

mot-clés: cryptographie /sécurite/Algorithms/Factorisation/clé public

Factorization algorithm GNFS 4

Contents

1 Cryptography and security 10
1.1 Introduction . 10

1.1.1 Cryptography . 11
1.1.2 Cryptography and modern cryptography 11

1.2 Symmetric cryptography . 11
1.2.1 Definition . 11
1.2.2 Functionality . 12
1.2.3 History of symmetric Algorithms 12
1.2.4 Uses of symmetric cryptography 13
1.2.5 Symmetric cryptography pros and cons 13
1.2.6 The application of symmetric encryption 14

1.3 Asymmetric cryptography . 15
1.3.1 The history of asymmetric cryptography 15
1.3.2 The mechanism of asymmetric cryptography 15
1.3.3 Uses of asymmetric cryptography 16
1.3.4 The difference between asymmetric vs. symmetric

cryptography . 17
1.3.5 The applications of asymmetrical encryption. 17
1.3.6 some examples about asymmetric encryption 17
1.3.7 Advantages and disadvantages of asymmetric encryp-

tion: . 21
1.4 Attacks on RSA . 22

1.4.1 cyber attacks . 22
1.4.2 The most known types of attacks on RSA: 22

1.5 Factorization algorithms attack 26
1.5.1 Factorization attack 26
1.5.2 big O notation and time complexity 26
1.5.3 The most encountered orders of Big-O’s 26
1.5.4 Factorization algorithms 27

1.6 Conclusion . 31

2 The GNFS algorithm 32
2.1 Introduction . 32

2.1.1 Number field sieve(NFS) 33
2.1.2 Complexity of the NFS Algorithm 34

2.2 The GNFS Algorithm . 34
2.2.1 Overview of the GNFS Algorithm 35
2.2.2 Implementing the GNFS Algorithm 36

2.3 An extended example . 45
2.3.1 Setting up factor bases 45
2.3.2 Sieving . 46
2.3.3 Linear Algebra . 47
2.3.4 Square roots . 50

2.4 Conclusion . 52

3 GFNS performances Evaluation 53
3.1 Introduction . 53

5

CONTENTS

3.2 GMP library installation : . 54
3.2.1 Before compiling . 54
3.2.2 MSYS installation . 54
3.2.3 Install GMP and compile : 54

3.3 GFNS performances Evaluation 55
3.3.1 Test 01 : . 55
3.3.2 Test 02 : . 55
3.3.3 Test 03 : . 56
3.3.4 Test 04 : . 57
3.3.5 Test 05 : . 57
3.3.6 Test 06 : . 58
3.3.7 Test 07 : . 59

3.4 Efficiency of RSA Key Factorization : 60
3.5 Conclusion . 60

4 General Conclusion and perspectives 61

Factorization algorithm GNFS 6

List of Figures

1 installation process . 54
2 Prime Generation 1 . 55
3 Factorization 1 . 55
4 Prime Generation 2 . 56
5 Factorization 2 . 56
6 Prime Generation 3 . 56
7 Factorization 3 . 57
8 Prime Generation 4 . 57
9 Factorization 4 . 57
10 Prime Generation 5 . 58
11 Factorization 5 . 58
12 Prime Generation 6 . 58
13 Factorization 6 . 59
14 Prime Generation 7 . 59
15 Factorization 7 . 59
16 GNFS time evolution . 60

7

glossaire

Acronym Signification

ϕ Euler totient
DES Data encryption standard
AES Advanced encryrtion standard
PII Personal identifying information
TLS Transport layer security
SSL Secure socket layer
GCHQ British government communication headquarter
RSA Encryption system by R.Rivest/A.shamir/L.Adelman
HTTPS Hypertext Transfer Protocol Secure
UTXO Unspent Transaction Output
DSA Digital signature algorithm
≡ congruent
SHA Secure Hash Algorithm access control
CCA Chosen cipher-text attack
O(n) Measure for algorithm complexity
GCD Greatest common divisor
QS Quadratic sieve algorithm
NFS Number field sieve
GNFS Generam number field sieve
SNFS Special number field sieve
AFB Algebraic factor base
RFB Rational factor base
QCB Quadratic character base

Factorization algorithm GNFS 8

preface

Introduction:

Internet and data usage and transmission is at it’s peak and it’s exponentially
increasing day after day along with hardware evolution and processing power and
so on the increasing necessity for data encryption Throughout the years so many
encryption algorithms have been developed and adopted , the most known and used
cryptosystem is RSA which is a public-key cryptosystem that is widely used to
secure data transmission , a cryptosystem reliability depends on it’s structure and
immunity against factorization algorithms .

GNFS or general number field sieve algorithm is the most efficient algorithm for
factoring big composite number which is what encryption cryptosystems is built on
, GNFS can factorize composites of a size up to 300 hundred digits.
The work presented falls within this framework, and aims to study the general
number field sieve in all it’s aspects .

This thesis consists of three chapters :
The first chapter addresses modern cryptography both symmetric and asymmetric
along with their functionality , uses and applications , also we have addressed attacks
on RSA and the most know factorization algorithms . The second chapter addresses
the General Number Field Sieve or “ GNFS “ and all the steps that construct it’s
functionality followed by an extended example .

The last chapter is an evaluation of GNFS performances preceded by all the
steps required for this evaluation This thesis ended with a general conclusion, bib-
liographical references are added at the end of this document.

Factorization algorithm GNFS 9

June 24, 2023

Chapter1:Cryptography and
security

1 Cryptography and security

1.1 Introduction

In this chapter , we present in the first place an Introduction of modern cryptog-
raphy in addition to it’s two main categories (the Symmetric and the Asymmetric
cryptography) including their functionality , application and their pros and cons
, further we will see attacks on RSA and factorization algorithms along with the
notion of complexity .

The main goal of this chapter is to define modern cryptography and to introduce
the problem of factorization .

10

1.2 Symmetric cryptography

1.1.1 Cryptography

1.1.2 Cryptography and modern cryptography

According to the Concise Oxford English Dictionary, cryptography is ”the art of
writing or cracking codes.” The primary goal of cryptography is to permit the secure
exchange of information between two entities via an insecure route that cannot be
spied on by an intruder.

The adoption of classical encryption (say, before the 1980s) and current cryptog-
raphy is a significant distinction.Historically, military and government institutions
were the primary users of cryptography.Cryptography is now everywhere! If you’ve
ever authenticated something, You have definitely utilized cryptography when you
have typed a password, purchased something with a credit card over the Inter-
net, or downloaded a confirmed update for your operating system. Furthermore,
programmers with limited experience are increasingly being requested to ”secure”
the programs they build by implementing cryptographic techniques. Cryptogra-
phy currently includes systems for assuring integrity, techniques for sharing secret
keys, protocols for authenticating users, electronic auctions and elections, digital
cash, and much more.Without attempting to provide a comprehensive definition,
we may say that modern cryptography is the study of mathematical strategies for
protecting digital information, systems, and distributed computations from adver-
sarial assaults.Cryptography is also described as an art form in the dictionary.The
term ”cyber-crime”; refers to the act of committing a crime.Creating good codes or
breaking current ones relied on ingenuity and a deep grasp of how codes work.There
was little theory to rely on, and there was no working definition of what constitutes a
good code for a long time.Beginning in the 1970s and 1980s, this perception of cryp-
tography began to shift dramatically.A rich theory emerged, allowing for the careful
study of cryptography as a science and a mathematical discipline.This viewpoint
has influenced how researchers view the broader field of computer security.

In short, cryptography has evolved from a heuristic set of techniques aimed at
securing secret communication for the military to a science that aids in the security
of systems for ordinary people all around the world. This also implies that cryp-
tography has grown in importance in computer science.Contemporary cryptography
is the foundation of computer security and communication.It is founded on various
mathematical principles such as: number theory, complexity theory, and probability
theory.

1.2 Symmetric cryptography

1.2.1 Definition

Symmetric cryptography, known also as secret key cryptography, is the use of a single
shared secret to share encrypted data between parties. Ciphers in this category are
called symmetric because you use the same key to encrypt and to decrypt the data.
In simple terms, the sender encrypts data using a password, and the recipient must
know that password to access the data.

Factorization algorithm GNFS 11

1.2 Symmetric cryptography

Symmetric encryption is a two-way process. With a block of plain-text and a
given key, symmetric ciphers will always produce the same cipher-text. Likewise,
using that same key on that block of cipher-text will always produce the original
plain-text. Symmetric encryption is useful for protecting data between parties with
an established shared key and is also frequently used to store confidential data.

1.2.2 Functionality

In symmetric cryptography, two entities, traditionally known as Alice and Bob, share
a key. When Alice wishes to encode a message to send to Bob, she uses a symmetric
algorithm, using the secret key and the message as parameters. When Bob receives
the message, he applies the corresponding decryption algorithm, using the same
key as a parameter. where E is the encryption function and E−1 the corresponding
decryption function. 3 Data Encryption Standard (DES) and Advanced Encryption
Standard (AES) are two of the best-known and most robust symmetric encryption
algorithms.

Despite the existence of robust algorithms and strong performances in terms of
calculations, symmetric cryptography presents two main limitations:

• the number of keys to manage: a different symmetric key is needed for each
pair of correspondents. Thus, the number of keys required increases in line
with the square of the number of individuals;

• the exchange of the secret key: we know that Alice and Bob share a key, but
the way in which this key is exchanged is not specified. Security at this stage
is a significant issue; asymmetric cryptography offers one possible solution.

1.2.3 History of symmetric Algorithms

The rapid increase of computing power beginning in the 1970s transformed the
cryptography landscape. Hundreds of algorithms have been developed and hundreds
have been broken. There are three algorithms which are notable for their resistance
to decryption and their wide-spread usage.

• The Data Encryption Standard (DES) algorithm was developed at IBM
and first published in 1977. It was one of the first N.A.S.A. approved stan-
dards for encryption. It was widely used from 1977 until 2000. It was also
widely studied and informs the design of later algorithms. However, it is now
considered insecure. Modern computers can decrypt a DES encrypted message
in less than a day. There is a successor to DES which is Triple DES (DES en-
cryption applied three times) which is still considered secure and is commonly
used.

• The Advanced Encryption Standard (AES) algorithm was selected by the
N.A.S.A. as the winner of an algorithm competition held in 2002. It is also
known as”Rijndael” (pronounced rain-dahl) because that was its name during
the competition. AES has not yet been broken is still considered strong enough
to encrypt U.S. classified data.

Factorization algorithm GNFS 12

1.2 Symmetric cryptography

• The Blow fish algorithm was designed in 1993. It has not yet been broken,
even though a few technical and theoretical weaknesses have been identified.
It is also widely used in many encryption software products. The feature that
make Blow fish interesting is that it is slow compared to other encryption
algorithms. This is a useful trait for password encryption.

1.2.4 Uses of symmetric cryptography

Due to the better performance and faster speed of symmetric encryption, symmetric
cryptography is typically used for bulk encryption of large amounts of data.

Banking Sector :
Applications of symmetric encryption in the banking sector include:

• Payment applications, such as card transactions where PII (Personal Identify-
ing Information) needs to be protected to prevent identity theft or fraudulent
charges without huge costs of resources. This helps lower the risk involved in
dealing with payment transactions on a daily basis.

• Validations to confirm that the sender of a message is who he claims to be.

Securing Data at Rest :
When a website or organization stores personal information regarding their users
or the company itself, it is protected using Symmetric encryption. This is done to
prevent all kinds of snooping from either outside hackers or disgruntled employees
inside the office, looking to steal crucial information.
SSL/TLS Handshake :
Symmetric encryption plays a significant role in verifying website server authenticity,
exchanging the necessary encryption keys required, and generating a session using
those keys to ensure maximum security, instead of the rather insecure HTTP website
format.

1.2.5 Symmetric cryptography pros and cons

Symmetric key algorithms are very fast and can encrypt large amounts of data and
is easy to implement with only a single key needed for both encryption and decryp-
tion of data, setting up symmetric infrastructure for an organization is relatively
easy compared to asymmetric encryption The primary drawback of symmetric key
algorithms is the ”key distribution problem”. Once data is encrypted it can be sent
publicly, however, the key or password must also be given to the recipient. If the
key is sent with the

data or sent in plain text through another visible channel, then it is easily in-
tercepted and the data will be easily decrypted. One common solution is to use
symmetric key algorithms to encrypt the data and then to use asymmetric key algo-
rithms (a.k.a. public key cryptography) to encrypt only the key which unlocks the
encrypted data.[1][2]

Factorization algorithm GNFS 13

1.2 Symmetric cryptography

1.2.6 The application of symmetric encryption

The most used and known symmetric encryption applications are DES , 3DES and
AES

• DES functionality DES is a block cipher–meaning it operates on plain-text
blocks of a given size (64-bits) and returns cipher-text blocks of the same size.
Thus DES results in a permutation among the 264 (read this as: ”2 to the 64th

power”) possible arrangements of 64 bits, each of which may be either 0 or 1.
Each block of 64 bits is divided into two blocks of 32 bits each, a left half block
L and a right half R. (This division is only used in certain operations.) DES
operates on the 64-bit blocks using key sizes of 56- bits. The keys are actually
stored as being 64 bits long, but every 8th bit in the key is not used (i.e. bits
numbered 8, 16, 24, 32, 40, 48, 56, and 64). However, we will nevertheless
number the bits from 1 to 64, going left to right, in the following calculations.
But the eight bits just mentioned get eliminated when we create sub-keys.[3]

Decryption
Decryption is simply the inverse of encryption, following the same steps as
above, but reversing the order in which the sub-keys are applied.

• Triple-DES is just DES with two 56-bit keys applied. Given a plain-text
message, the first key is used to DES- encrypt the message. The second key
is used to DES-decrypt the encrypted message. (Since the second key is not
the right key, this decryption just scrambles the data further.) The twice-
scrambled message is then encrypted again with the first key to yield the final
cipher-text. This three-step procedure is called triple-DES. Triple-DES is just
DES done three times with two keys used in a particular order. (Triple-DES
can also be done with three separate keys instead of only two. In either case
the resultant key space is about 2112.)

• AES functionality The number of rounds 10, is for an encryption key that
is 128 bits long. (As previously stated, the number of rounds is 12 for 192-bit
keys and 14 for 256-bit keys.)

The input state array is XORed with the first four words of the key schedule
before any round-based encryption processing can occur. During decryption,
the same thing happens, only we now XOR the cipher-text state array with
the last four words of the key schedule.

Each cycle of encryption consists of the four processes listed below:

1) Substitute bytes, 2) Shift rows, 3) Mix columns, and 4) Add round key.
The last step consists of XORing the output of the previous three steps with
four words from the key schedule.

For decryption, each round consists of the following four steps: 1) Inverse
shift rows, 2) Inverse substitute bytes, 3) Add 12 Computer and Network
Security by Avi Kak Lecture 8 round key, and 4) Inverse mix columns. The
third step is to XOR the results of the previous two processes with four words

Factorization algorithm GNFS 14

1.3 Asymmetric cryptography

from the key schedule.Take note of the variations between the order in which
substitution and shifting operations are performed in a decryption round and
the order in which equivalent operations are performed in an encryption round.
The last round for encryption does not involve the “Mix columns” step. The
last round for decryption does not involve the “Inverse mix columns” step.

1.3 Asymmetric cryptography

1.3.1 The history of asymmetric cryptography

Whitfield Diffie and Martin Hellman, researchers at Stanford University, first pub-
licly proposed asymmetric encryption in their 1977 paper, ”New Directions in Cryp-
tography.”

James Ellis independently and discreetly presented the idea several years prior,
while he was employed by the British government communication headquarters(GCHQ).
The asymmetric algorithm described in the Diffie-Hellman paper generates decryp-
tion keys by raising numbers to certain powers. The first time Diffie and Hellman
collaborated was in 1974 to address the issue of key distribution.

Ronald Rivest, Adi Shamir, and Leonard Adleman were the three men who
created the RSA algorithm, which was based on Diffie’s work. The RSA algorithm
was created in 1977, and it was first published in Communications of the ACM in
1978.[4]

1.3.2 The mechanism of asymmetric cryptography

Asymmetric cryptography, commonly referred to as public-key cryptography, is a
method for encrypting and decrypting messages and safeguarding them from un-
wanted access or use. It makes use of a pair of linked keys, a public key and a
private key.

A public key is a cryptographic key that anybody can use to encrypt messages
in such a way that only the intended recipient can decrypt them using their private
key. A private key, usually referred to as a secret key, is only disclosed to the key’s
creator.

A person can obtain the intended recipient’s public key from a public directory
and use it to encrypt the message before sending it when they want to send an
encrypted communication. With their respective private key, the message’s recipient
can then decrypt it.

If the sender encrypts the communication with their private key, only their public
key may be used to decrypt it, authenticating the sender. Users do not need to
physically lock and unlock the message in order for these encryption and decryption
processes to take place.

The transport layer security (TLS) and secure sockets layer (SSL) are protocols,
which enable HTTPS, are among the many technologies that depend on asymmetric
cryptography.

Factorization algorithm GNFS 15

1.3 Asymmetric cryptography

Software applications that need to validate a digital signature or create a secure
connection over an unsecured network, such browsers on the internet, also require
encryption.

The main advantage of asymmetric cryptography is increased data security. Be-
cause users are never compelled to divulge or exchange their private keys, there is
less possibility that a cybercriminal will intercept a user’s private key during trans-
mission, making it the most secure encryption procedure available.[5]

A public key and a private key, which are related mathematically, are used in
asymmetric encryption . The associated private key is used for decryption if the
public key is utilized for encryption. The associated public key is used for decryption
if the private key is employed for encryption.

The sender and the recipient are the two parties involved in the asymmetric en-
cryption process. Each has a unique set of public and private keys. The sender must
first have the recipient’s public key. The plain-text communication is then encrypted
by the sender using the public key of the recipient. Hence, cipher-text is produced.
The recipient receives the cipher-text, which they decrypt with their private key to
produce readable plain-text. Even though each sender has the receiver’s public key,
they cannot read each other’s communications because the encryption function is
one-way..

1.3.3 Uses of asymmetric cryptography

Data is often authenticated using digital signatures and asymmetric cryptography.
A communication, piece of software, or digital document can have its integrity and
validity verified using a digital signature, which is a mathematical process. It serves
as a digital substitute for a handwritten or stamped seal.

Digital signatures, which are based on asymmetric cryptography, can guarantee
evidence of the origin, identity, and status of an electronic document, transaction,
or message and acknowledge the signer’s informed permission.

Systems with multiple users who may need to encrypt and decode messages can
also employ asymmetric cryptography, such as:

Secure email. A message can be encrypted using a public key and decrypted using
a private key. SSL/TLS. Asymmetric encryption is used to create secure connections
between browsers and websites. Crypto-currencies, Asymmetric cryptography is
used by Bitcoin and other crypto-currencies. Users have private keys that are kept
private and public keys that are visible to everyone. Using a cryptographic method,
Bitcoin makes sure that only authorized users can access the money. Each unspent
transaction output (UTXO) on the Bitcoin ledger is often linked to a public key. To
pay money to user Y, for instance, user X, who has a UTXO linked to his public key,
signs a transaction using his private key to spend the existing UTXO and generate
a new UTXO linked to user Y’s public key.

Factorization algorithm GNFS 16

1.3 Asymmetric cryptography

1.3.3.1Asymmetric cryptography Pros and Cons:

Asymmetric cryptography has several advantages, including:
There is no need to exchange keys, hence the issue with key distribution is

solved. As the private keys never need to be communicated or made public, security
is increased. It is possible to use digital signatures so that a recipient may confirm
the identity of the sender of a message. It allows for non-repudiation so the sender
can’t deny sending a message. Disadvantages of asymmetric cryptography include:

Compared to symmetric cryptography, it is a slow procedure. Hence, decrypting
bulk messages is not a practical use for it. An individual cannot decrypt the com-
munications he receives if he misplaces his private key. Nobody can verify that a
public key belongs to the person supplied because public keys aren’t authenticated.
Users must therefore confirm that their public keys are theirs. A malicious actor
can read a person’s messages if they know that person’s private key.

1.3.4 The difference between asymmetric vs. symmetric cryptography

The primary distinction between asymmetric and symmetric cryptography is the
use of two distinct but linked keys in asymmetric encryption techniques. Data can
be encrypted with one key and decrypted with another. The same key is used in
symmetric encryption to carry out both encryption and decryption operations. The
size of the keys is another distinction between symmetric and asymmetric encryption.
The length of the keys, which are chosen at random in symmetric cryptography, is
commonly set at 128 bits or 256 bits, depending on the required level of security.
The public and private keys in asymmetric encryption must have a mathematical
relation. Asymmetric keys must be longer to provide the same level of security
since malicious actors may use this pattern to break the encryption. A 2048-bit
asymmetric key and a 128-bit symmetric key offer roughly the same level of security
due to the stark contrast in key lengths.

Compared to symmetric encryption, which executes more quickly, asymmetric
encryption is noticeably slower.[4]

1.3.5 The applications of asymmetrical encryption.

The asymmetrical encryption have a wide range of use such as: digital signatures to
maintain the authenticity of documents encrypted browsing for a better protection
against hackers managing crypto-currency for safe transactions and last but not least
sharing keys for symmetric key cryptography

1.3.6 some examples about asymmetric encryption

1.3.6.1 DSA algorithm (Digital signature Algorithm): Digital Signature Al-
gorithm (DSA) is a widely used public-key cryptography algorithm for digital signa-
tures. It was developed by the US National Institute of Standards and Technology
(NIST) and published as a federal standard in 1994. DSA is based on the discrete
logarithm problem in a finite field.

Here is how the DSA algorithm works:

Factorization algorithm GNFS 17

1.3 Asymmetric cryptography

Key generation: The first step is to generate a public key and a private key.
The public key consists of two large prime numbers, p and q, and a generator g,
where g is a primitive root modulo p. The private key is a random number, x, where
0 < x < q.

Signing a message: To sign a message, the sender needs to have their private key
and a hash of the message. The signature process involves the following steps:
a. Choose a random number k, where 0 < k < q. b. Calculate

r = (gk mod (p)) mod (q)

. c. Calculate
s = (k−1 ∗ (H(m) + x ∗ r)) mod (q)

, where H(m) is the hash of the message.
d. The signature is the pair (r, s).

Verifying a signature: To verify a signature, the recipient needs to have the
sender’s public key and the signature. The verification process involves the following
steps:
a. Verify that r and s are in the range 1 to (q-1).
b. Calculate :

w = (s−1) mod (q) (1)

c. Calculate:
u1 = (H(m) ∗ w) mod (q) (2)

u2 = (r ∗ w) mod (q) (3)

d. Calculate :
v = (((gu1 ∗ yu2)mod(p))mod(q)) (4)

where y is the sender’s public key
e. The signature is valid if and only if v = r.
DSA provides a relatively short signature compared to RSA, and it is also consid-

ered to be more secure than RSA for the same key size. However, one disadvantage
of DSA is that it can be slower than other signature algorithms. It is commonly
used in many security applications, including digital certificates, secure email, and
electronic voting systems.

1.3.6.2The Diffie-Hellman key exchange :
The Diffie-Hellman key exchange is a cryptographic algorithm that allows two

parties to establish a shared secret key over an insecure communication channel.
The algorithm was developed by Whitfield Diffie and Martin Hellman in 1976.

Here is how the Diffie-Hellman key exchange works:
Key generation: Both parties agree on a prime number, p, and a primitive root

modulo p, g. They each generate a private key, a and b, respectively, where 0 < a,b
< p-1.

Factorization algorithm GNFS 18

1.3 Asymmetric cryptography

Public key exchange: Both parties then publicly exchange their values of gamod(p)
and gbmod(p) , respectively. These values are often referred to as their ”public keys”.

Secret key derivation: Each party then computes a shared secret key by taking
the other party’s public key and raising it to the power of their private key. Specif-
ically, the shared secret key is calculated as follows:
a. Party A computes the shared secret key as

(gbmod(p))amod(p)

. b. Party B computes the shared secret key as

(gamod(p))bmod(p)

.
Because the discrete logarithm problem is difficult to solve, an attacker who

intercepts the public keys exchanged by the two parties would not be able to calculate
the shared secret key.

The Diffie-Hellman key exchange is vulnerable to a man-in-the-middle attack,
where an attacker intercepts the public keys exchanged by the two parties and
replaces them with their own public keys. To prevent this, the two parties must
authenticate each other’s public keys using a digital signature or a trusted third
party.

The Diffie-Hellman key exchange is widely used in many cryptographic protocols,
including SSL/TLS for secure web communication, SSH for secure shell communi-
cation, and PGP for email encryption. It is also used as a building block for other
cryptographic protocols such as the ElGamal encryption algorithm and the Digital
Signature Algorithm (DSA)

1.3.6.3 ElGamal Algorithm:
ElGamal is an asymmetric encryption algorithm that can be used for both encryp-

tion and digital signatures. It was named after its inventor Taher Elgamal and was
first described in 1985. ElGamal is based on the Diffie-Hellman key exchange and
uses modular arithmetic to encrypt and decrypt messages.

Here is how the ElGamal encryption algorithm works:
Key generation: To use the ElGamal encryption algorithm, you need to generate

a public key and a private key. The public key consists of two numbers, p and g,
where p is a large prime number and g is a primitive root modulo p. The private
key is a random number, x, where 0 < x < p-1.

Encryption: To encrypt a message, you need the recipient’s public key (p and g)
and a random number, k, where 0 < k < p-2. The encryption process involves the
following steps:
a. Convert the message into a number, M, where 0 < M < p.
b. Calculate two numbers:

C1 = gk(mod(p))

and
C2 = M ∗ (yk)(mod(p))

Factorization algorithm GNFS 19

1.3 Asymmetric cryptography

, where
y = gx(mod(p))

.
c. The encrypted message is the pair

(C1, C2)

.
Decryption: To decrypt a message, the recipient uses their private key (x) and

the encrypted message
(C1, C2)

to recover the original message. The decryption process involves the following steps:
a. Calculate the value ofy = Cx

1 (mod(p)) .
b. Calculate the modular inverse of y,

y−1(mod(p))

.
c. Recover the original message by computing

M = (C2 ∗ y−1)(mod(p))

. Note: A disadvantage of ElGamal encryption is that there is message expansion by
a factor of 2. That is, the cipher-text is twice as long as the corresponding plain-text.

ElGamal can also be used for digital signatures. To create a digital signature,
the sender generates a pair of keys (public and private), hashes the message using
a one-way hash function, and then encrypts the hash using their private key. The
recipient can verify the signature by decrypting the hash using the sender’s public
key and comparing it to the hash of the original message. If the hashes match, the
signature is valid.

1.3.6.4 RSA encryption:

A popular form of public-key cryptography used for data encryption of email
and other digital transactions via the Internet is RSA encryption, or Rivest-Shamir-
Adleman encryption. RSA was developed by Leonard M. Adleman, Adi Shamir,
and Ronald L. Rivest while they were professors at the Massachusetts Institute of
Technology.

Key Generation: a. Choose two large prime numbers, p and q, and compute

n = p ∗ q

. b. Compute
Φ(n) = (p− 1) ∗ (q − 1)

, where Φ is Euler’s totient function.
c. Choose an integer e such that 1 < e < φ(n) and gcd(e, Φ(n)) = 1.
d. Compute d such that

d ∗ e ≡ 1(modΦ(n))

Factorization algorithm GNFS 20

1.3 Asymmetric cryptography

. In other words, d is the modular multiplicative inverse of emodΦ(n). e. The public
key is (n, e), and the private key is (n, d).

Encryption: Given a plain-text message M, the sender computes the cipher-text
C as follows:

C = M e(mod(n))

Decryption: Given a cipher-text C, the recipient computes the plain-text message
M as follows:

M = Cd(modn)

It is more difficult to digitally sign a message and calls for a secure ”hashing”
mechanism. This function, which is widely known, reduces any message into a di-
gest, a smaller message in which each bit depends on every other bit in such a way
that changing even one bit in the message is likely to change half of the bits in
the digest in a cryptosecure manner. It is computationally impossible for anyone
to generate a message that will produce a preassigned digest, and it is as difficult
to find a message that produces the same digest as a known one. This is what is
meant by the term ”cryptosecure.” A encrypts the digest with the secret e, which
A appends to the message, to sign a message—which may not even need to be kept
secret. The digest can then be obtained by anyone using the public key d to decrypt
the message, which can be done separately from the message. If the two are in agree-
ment, it must be assumed that A invented the cipher because only A understood e
and could, thus, have encoded the message. The separation of the authentication or
signature channel from the privacy or secrecy channel comes at a very high cost in
all of the two-key cryptosystems that have been suggested so far. The channel ca-
pacity is severely reduced by the substantial increase in computation required by the
asymmetric encryption/decryption process (bits per second of message information
communicated). 20 years or so for comparable security systems, Single-key algo-
rithms have been able to attain through-puts that are 1,000–10,000 times greater
than those of two-key algorithms. As a result, hybrid systems are where two-key
cryptography is most commonly used. In such a system, the main communication
is conducted at fast speed using a single-key algorithm while a two-key method is
utilized for authentication and digital signatures. This key is discarded after the
session has ended.

1.3.7 Advantages and disadvantages of asymmetric encryption:

Advantages - Convenience: It addresses the issue of sharing the encryption key.
Everyone makes their public keys available while keeping their private keys a mys-
tery. - Facilitates message authentication The integration of digital signatures with
public key encryption enables the recipient of a message to confirm that the mes-
sage actually came from a certain sender. The use of digital signatures in public
key encryption enables the receiver to determine whether the communication was
tampered with while in transit. A message that has been digitally signed cannot be
changed without the signature becoming invalid. - Enable non-repudiation: Signing
a communication digitally is equivalent to physically signing a document. The com-
munication has been acknowledged, thus the sender cannot retract it. See More:
How to Correctly Encrypt Your Mail Disadvantages - Public keys should/have to

Factorization algorithm GNFS 21

1.4 Attacks on RSA

be verified: Everyone must confirm that their public keys belong to them because
no one can be certain that a public key belongs to the person it claims to represent.
Comparatively speaking to symmetric encryption, public key encryption is slow. Not
practical for use in mass message decryption. - Consumes more system resources:
Compared to single-key encryption, it takes a lot more computer hardware. - There
is a chance of widespread security compromise: An attacker can see a person’s whole
history of messages if they discover their private key. - A lost private key may be
beyond repair: The absence of a private key prevents the decryption of any received
communications. Diverging opinions exist on which of them is more secure. Some
experts believe that symmetric key encryption is more secure, while others favor the
use of public keys for encryption. In order to profit from their advantages, it is ideal
that they are both employed together. See More: How to Correctly Encrypt Your
Mail.[6]

1.4 Attacks on RSA

1.4.1 cyber attacks

Any attempt to obtain unauthorized access to a computer, computing system, or
computer network with the intention of causing harm is referred to as a cyber attack.
The goal of a cyber attack is to disable, disrupt, destroy, or take control of a computer
system, as well as to change, block, delete, modify, or steal the data stored on it.

A cyber attack can be launched by any person or group from any location using
one or more different attack tactics.

The majority of the time, those who commit cyber-attacks are referred to as
cyber-criminals. These include persons who act alone and use their computer abili-
ties to plan and carry out malicious assaults. They are also frequently referred to as
bad actors, threat actors, and hackers. They may also be a part of a gang and col-
laborate with other potential threat actors to discover vulnerabilities—weaknesses
or issues with the computer systems—that they might use to their advantage.

Cyber-attacks are also carried out by organizations of computer professionals
funded by the government. They have been accused of assaulting the information
technology (IT) infrastructure of other governments as well as non-governmental
organizations including companies, charities, and utilities. They have been classified
as nation-state attackers.[7]

1.4.2 The most known types of attacks on RSA:

• Brute force attack: the brute force attack also known as trial and error
hacking method has no spacial algorithms it just the act of trying every possi-
ble combination for a PIN or a password or in our case a privet key ,However,
the success of the attack depends on a number of variables, including the
length and password’s combination of letters, numbers, and special charac-
ters. Sites typically advise using strong passwords that are long and have a
variety of characters. Due to this, brute force attacks are challenging but not
impossible. By using brute force, getting the password will take longer. Thus,

Factorization algorithm GNFS 22

1.4 Attacks on RSA

organizations frequently utilize brute force password cracking to assess the se-
curity of weak passwords. Another technique to stop this attack is to limit
a user based on the number of failed login attempts. Due to this, web-based
services will either display captchas or restrict your IP address if you enter
incorrect passwords three times. there are several types of brute force attack
that will be cited below.

1 .Attack using reverse brute force: It is a reverse approach to password
cracking. Assume the attacker knows the password but is unaware of the
username. For this aim, the attacker will test the same password against any
username guess that might be made. Every website that is not blocked after
a predetermined number of unsuccessful tries is vulnerable to this strategy.[8]

2 .Simple brute force attack: When a hacker uses no software at all and
tries to guess a user’s login information manually, this is known as a simple
brute force assault. Usually, this is done using personal identification number
(PIN) codes or common password combinations.

These attacks are straightforward since a lot of individuals continue to use easy
passwords like ”password123” or ”1234” or bad password habits like using the
same password across different websites. Hackers can also guess passwords
by using simple reconnaissance techniques to decipher a person’s prospective
password, such as the name of their preferred sports team.

3 .Dictionary Attack :A dictionary attack is a fundamental type of brute force
hacking in which the attacker chooses a target and then compares potential
passwords to the user name of that person. Although the assault technique
itself is not technically a brute force attack, it can be a key step in a malicious
actor’s password cracking operation.

Dictionary attacks are so named because they involve hackers going through
dictionaries and replacing words with symbols and numbers. Compared to
more recent, more successful attack strategies, this form of attack is often
time-consuming and has a lower likelihood of success.

4 .hybrid brute force attack :A dictionary attack method combined with a
straightforward brute force attack is known as a hybrid brute force attack.
The hacker first needs to have access to a username before using a dictionary
attack and straightforward brute force techniques to find an account login
combination.

Starting with a list of probable words, the attacker tries various character,
letter, and number combinations before settling on the right one. Hackers
can use this method to find passwords like ”Salaheddine123” or ”zaki2020”
that combine well-known or often used nouns with numbers, years, or random
characters.[9]

• Side-channel attack: A side-channel attack is a kind of cryptographic sys-
tem attack that takes advantage of data leakage through a channel other than
the system’s typical inputs and outputs. For instance, side-channel attacks

Factorization algorithm GNFS 23

1.4 Attacks on RSA

may take advantage of electromagnetic radiation, power usage, or even sound
or vibration that a gadget emits while it is in use.

A side-channel attack’s fundamental premise is that the physical implemen-
tation of a cryptographic algorithm can provide details about the secret key
that was used to encrypt the algorithm. For instance, an attacker may be
able to determine the key by observing how much power a device uses when
performing cryptographic operations. Although there are many various kinds
of side-channel attacks, the following are some typical examples:

1 power analysis attacks : These attacks take advantage of the fact that a
device’s power consumption can vary depending on the tasks it is performing,
including cryptographic tasks.

2 Timing-Attacks: that take use of the fact that the length of time required
to carry out cryptographic operations can vary depending on the parameters
of the secret keys being utilized.
In the case of RSA, a timing attack takes advantage of the fact that the
value of the secret key affects how long it takes to conduct a private key
action, such as decryption or signature. Particularly, when the private key has
more 1-bits in its binary form, the multiplication operation utilized in RSA’s
private key operation takes longer. By performing a decryption or signing
operation on a large number of carefully selected cipher-texts, for instance, an
attacker can time the length of time needed to complete a sequence of private
key operations. The attacker can determine the value of the private key by
comparing the measured times.

When an RSA implementation is susceptible to other sorts of attacks, like
buffer overflow or format string flaws, which give an attacker access to the
memory of the RSA implementation, timing attacks can be very successful.
An attacker can make the RSA implementation leak timing data that reveals
the private key by carefully modifying the input data. There are two basic
categories of timing attacks: passive and active. An attacker who uses a passive
timing attack merely keeps track of how long cryptographic processes take to
complete. An active timing attack involves the attacker actively changing
the system’s timing behavior, such as via introducing pipeline stalls or cache
misses.

Not just private keys but also other types of information can be gleaned from
cryptography implementations through timing attacks. Timing data can be
used, for instance, to determine whether a specific plain-text is being encrypted
or to extract intermediate values from a cryptographic protocol, such as session
keys or nonce’s. Time attacks can be used against symmetric ciphers like AES
and hash functions like SHA-256 in addition to other cryptographic methods
outside RSA. The core idea is the same: an attacker can use this information
to determine the values of the keys being used because it depends on those
values how long it takes to complete cryptographic operations.

Timing attacks are not always simple to execute in practice, it should be noted.
They frequently call for exact measurement tools and meticulous statistical

Factorization algorithm GNFS 24

1.4 Attacks on RSA

examination of enormous data sets. Nonetheless, timing attacks are becoming
more practical as computational power and measurement methods advance,
therefore it’s critical for cryptographers and implementers to be aware of this
issue and take precautions to reduce it. It’s crucial to implement RSA in
a method that doesn’t reveal time information in order to fend off timing
attacks. This can be done by employing strategies like constant-time algorithm
implementation or adding random delays to operations. Also, by increasing
the unpredictability in the length of time required to carry out a private key
operation, using a higher key size might make timing attacks more challenging.

3 electromagnetic analysis Attacks : These attacks take use of the electro-
magnetic radiation that a device emits while it is in use, which can reveal
information about the calculations that are being done by the device.

4 Acoustic attacks : These attacks take use of the sound or vibration that a
device emits while it is in use, which can reveal details about the computa-
tions that are being carried out by the device. Because side-channel attacks
frequently take advantage of a cryptographic algorithm’s implementation’s
physical properties, which are challenging to regulate or quantify, they can
be challenging to protect against.

Nonetheless, there are methods to reduce the likelihood of side-channel as-
saults, including:

- employing constant-time algorithms to implement cryptographic algorithms in
a way that is resistant to side-channel attacks.

- using hardware or software countermeasures, such as increasing noise in power
usage or restricting the quantity of electromagnetic radiation a device emits,
to lessen the amount of information that is spilled through side-channels.

- Tamper-proof hardware and other physical security measures can aid in pre-
venting attackers from physically accessing a device and launching side-channel
assaults. All things considered, side-channel attacks pose a serious risk to the
security of cryptographic systems, hence it is crucial for those who develop
and implement cryptographic algorithms to be aware of this risk and take
precautions to lessen it.

• Chosen cipher-text attacks (CCA): In a chosen-ciphertext attack, the
attacker chooses the cipher-text, delivers it to the target, and receives the
associated plain-text, or a portion of it, back. If the attacker has the ability
to select the cipher-texts, the attack is said to as adaptive.

depending on how the attack has performed in the past. It is commonly
known that a chosen cipher-text attack can be used against ordinary RSA.
An attacker can select a random integer s and request the decryption of the
seemingly harmless message c0 = secmodn in order to learn the decryption of
a cipher-text m ≡ cd(modn). It is simple to deduce the original message from
the response m0 = (c0)d because m ≡ m0s

−1(modn). Another well-known

Factorization algorithm GNFS 25

1.5 Factorization algorithms attack

outcome of RSA encryption is that the least important bit is just as secure as
the entire message. In particular, if a second algorithm is capable of predicting
the least significant bit of a message using nothing more than the public key
and the matching cipher-text, then the first method can decrypt cipher-texts.
Recently, Hastad and Naslund extended this finding to demonstrate the se-
curity of every single RSA bit. As a result, in a chosen-ciphertext attack, it
may not be necessary for the attacker to know the entire decrypted message:
a single bit per selected cipher-text may be sufficient.[10][11][12]

1.5 Factorization algorithms attack

1.5.1 Factorization attack

The factorization attack or factorization algorithms ,are algorithms that target sys-
tems that base their security on large composite numbers as privet keys. these
attacks aim to exploit vulnerability or weakness in the implementation of the fac-
torization algorithm it is often used against RSA like systems .
if the attacker successfully factorize the modulus of the RSA key pair then he could
find the privet key hens break the security system.

1.5.2 big O notation and time complexity

Before going through the factorization algorithm we are going to introduce the no-
tion of big O notation or time complexity
Big-O notation is a mathematical notation used to express the upper bound of a
function’s growth rate.It is commonly used in computer science to describe an algo-
rithm’s time complexity, or how the time required to execute the algorithm grows
with the size of the input.The notation is O(f(n)), where f(n) is a mathematical
function that describes the algorithm’s growth rate as the size of the input n in-
creases.The notation O(f(n)) indicates that the time complexity of the algorithm
grows no faster than f(n) as n increases.
An algorithm with a time complexity of O(n), for example, means that its execution
time grows linearly with the size of the input.The execution time of an algorithm
with a time complexity of O(n2) grows quadratically with the size of the input.In
general, the lower the algorithm’s growth rate, the more efficient it is.As a result,
algorithms with lower Big-O notations are preferable to those with higher Big-O
notations.However, it is important to note that the actual performance of an algo-
rithm can be affected by a variety of factors, including the hardware and software
used to execute it.Complexity refers to how a program’s or algorithm’s resource re-
quirements scale; complexity affects performance but not the other way around.

1.5.3 The most encountered orders of Big-O’s

Here is a list of classes of functions that are commonly encountered when analyzing
algorithms. The functions that grow more slowly are listed first.c is an undefined
constant. notation names

Factorization algorithm GNFS 26

1.5 Factorization algorithms attack

Notation Name
O(1) constant

O(log(n)) Logarithmic
O((log(n))c) Polylogarithmic

O(n) Linear
O(n2) Quadratic
O(nc) Polynomial
O(cn) Exponential

Constant Time: O(1) - This means that the algorithm’s run-time does not change
as the size of the input increases.
Linear Time:O(n) - This means that the algorithm’s run time increases linearly with
the size of the input.
Quadratic Time:O(n2) - This means that the algorithm’s run-time increases quadratic-
ally with the size of the input.
Cubic Time:O(n3) - This means that the algorithm’s run-time increases cubically
with the size of the input.
Exponential Time:O(2n) - This means that the algorithm’s run-time doubles with
each additional input element, making it grow exponentially.
Logarithmic Time: O(logn)- This means that the algorithm’s run-time increases
logarithmically with the size of the input.
Linearithmic Time:O(nlogn) - This means that the algorithm’s run-time grows lin-
early with the input size while also taking into account the logarithmic increase in
its runtime complexity.
These are just a few examples of how algorithms can be expressed using big-O no-
tation. There are many other complexity classes, and the best way to understand
them is to study the algorithms that fall into them.

1.5.4 Factorization algorithms

1.5.4.1 Fermat Algorithm
Fermat’s algorithm : Fermat Factorization method is based on the evaluation of an
odd integer value as it differs from two squares. This was named after Pierre de
Fermat. Let’s consider an integer N considering a and b such as :

N = x2–y2 = (x+ y)(x− y)

where (a+b) and (a-b) are the factors and we try to find each using the following
formula :

x2 = n+ y2

Exp : Factor n=187 Want to find x =
√
n+ y2 W entry different y values from 1

up When x is an integer , we found y .
x =

√
187 + 12 ̸= int

x =
√
187 + 22 ̸= int

x =
√
187 + 32 = int

So , 142 = 187 + 32 then:x = 14andy = 3
Recall : N = (a+ b)(a− b)

Factorization algorithm GNFS 27

1.5 Factorization algorithms attack

N = (14 + 3)(14− 3)
N = (17)(11)
Hence we found the prime factors of n

1.5.4.2 Pollard ρ-1 algorithm:

The factorization procedure Pollard p-1 is used to identify the prime factors of a
given number. It was created by John Pollard in 1974 and is based on the notion that
there is a significant likelihood that p-1 shares a nontrivial factor with a randomly
chosen integer a if p-1 is the product of tiny primes.
This is how the algorithm works:

1 : we start by choosing a random integer ”a” and a bound B (The bound B is
a limit that we establish for m so that the algorithm ceases to operate once it
reaches it because the equation that follows can easily become massive, with
no need to compute such large numbers.)

2 :we then calculate the greatest common divisor (GCD) of a(m!) − 1(there are
other expression used other than this but we will be working with this formula)
and the integer to be factored N, where m = 2, 3, 5, 7, 11, 13, ..., and ! denotes
the factorial function.

3 :If the GCD is a nontrivial factor of the integer, then we have found a factor.
Otherwise,continue steps 2 and 3 with a bigger value of m until the bound B
is attained

4 :If no factor is found, increase the value of B and repeat steps 1-3.

The approach works well for determining factors of integers that are ”smooth,” or
have small prime factors. It may fail for some numbers and is not guaranteed to
find all prime factors.

One of the many factorization methods used in contemporary cryptography is
Pollard ρ-1, whose effectiveness in locating small factors can be exploited to break
RSA-based cryptography keys. The RSA keys are generated using big prime factors
to make RSA resistant to Pollard ρ-1.

here is a numerical application for ρ-1 algorithm: Consider that we wish
to factor the composite number N = 1729 and that we select a random base a = 2.
To maintain simplicity, let’s also fix the bound B = 10.
Next, we compute the greatest common divisor of N and a(m!) − 1 for various values
of m, starting with m = 2:

gcd(N, a(2!) − 1) = gcd(1729, 3) = 1

gcd(N, a(3!) − 1) = gcd(1729, 63) = 1

gcd(N, a(4!) − 1) = gcd(1729, 16777215) = 1

gcd(N, a(5!) − 1) = gcd(1729, 8997457107) = 13 (found a nontrivial factor!)

Factorization algorithm GNFS 28

1.5 Factorization algorithms attack

We can end here and print the factorization N = 13 x 67 because we discovered a
nontrivial N factor, namely 13.

Notably, we only needed to compute four GCDs in this scenario before identi-
fying a factor(we didn’t get to the limit that we set B=10). It is challenging to
anticipate how effective the method will be in general because the input values, the
chosen expression, and the bound can all have a significant impact on the number
of GCDs required.
1.5.4.3 Pollard rho algorithm:
Pollard’s rho algorithm is a general-purpose factoring algorithm since it may be used
to factor an arbitrary number N = p*q. The algorithm factors N with constant prob-
ability in O(N1/4) heuristically.this is still exponential, but is a vast improvement
over trial division.

To start the algorithm, we choose a random integer x0 and apply the function f(x0)
to get x1 = f(x0). We then apply the function f to x1 to get x2 = f(x1), and so on,
generating a sequence of integers x0, x1, x2, x3, The algorithm’s fundamental

concept is to create an integer series using a recurrence relation, and then to search
for nontrivial factors of the sequence’s numbers. The function f(x), which accepts
an integer x as input and returns another integer, creates the sequence. Despite
being simple to compute, the function f(x) has unpredictable and chaotic behavior.
here are the steps of the algorithm:

1 :Choose a random integer x0 and compute x1 = f(x0), where f(x) is a function
that maps an element in the cyclic group to another element.

2 :Compute x2 = f(f(x0)), x3 = f(f(x1)), x4 = f(f(x2)), and so on. In general,
we can compute xi = f(xi−1) for i = 1, 2, 3, ...

3 :At each step, compute the greatest common divisor (GCD) of the difference
between two elements in the sequence, say xi and xj, and the integer n we want
to factor. If the GCD is a non-trivial factor of n, then we have successfully
factored n and the algorithm terminates.

4 :If we do not find a factor in Step 3, then we continue generating the sequence
of elements. Eventually, the sequence will repeat itself (due to the pigeonhole
principle), and we will find a repeated element, say xi = xj, for some i and j.
We can then compute the GCD of the difference between xi and xj with n. If
this GCD is a non-trivial factor of n, then we have successfully factored n.

The selection of the function f(x) determines whether the algorithm is successful
. One typical option is f(x) = (x2 + c) mod (n), where c is a random constant.
Another popular option is f(x) = (x2 + c) mod (n), wherec is once more a random
constant. The algorithm’s speed and success rate can be affected by different f(x)
choices.
here is a numerical example about pollard rho factorization algorithm:

Factorization algorithm GNFS 29

1.5 Factorization algorithms attack

step 1 : choose a random function f(x) to generate a sequence of numbers ,let’s take
f(x) = x2 + 1

step 2 : Choose a random starting value x0. We can choose x0 = 2.

Step 3 :Use the beginning value x0 and the function f(x) to produce two sequences
of numbers. The sequences can be created as follows:
Sequence 1:x0, f(x0), f(f(x0)), f(f(f(x0))), ...
Sequence 2: f(x0), f(f(x0)), f(f(f(x0))), f(f(f(f(x0)))) ...
Both sequences are produced using the same initial value x0 and function f(x).

step4 :let’s try pairing up the first few numbers in each sequence and calculate their
gcd:
Pair 1: x0 = 2 and f(x0) = 5. gcd(2, 5) = 1.
Pair 2: f(x0) = 5 and f(f(x0)) = 26. gcd(5, 26) = 1.
Pair 3: f(f(x0)) = 26 and f(f(f(x0))) = 677. gcd(26, 677) = 1.
Pair 4: f(f(f(x0))) = 677and f(f(f(f(x0)))) = 45812. gcd(677, 45812) = 1.
we haven’t found a non-trivial number yet so wee continue:
Pair 5: f(f(f(f(x0))))) = 45812 and f(f(f(f(f(x0)))) = 2100661. gcd(45812, 2100661) =
1.
Pair 6:f(f(f(f(f(x0)))) = 2100661 and f(f(f(f(f(f(x0)))))) = 4416953706.
gcd(2100661, 4416953706) = 11.

We have found a factor of N! We can verify that 143/11 = 13, so the factors of N
are 11 and 13.
The Pollard rho technique is a probabilistic approach, therefore even if a factor exists,
there is a risk that it won’t be discovered. Yet, it is frequently highly effective in
practice for locating factors of huge composite numbers.

1.5.4.4 Quadratic sieve algorithm:

Trial division is inferior than Pollard’s rho technique, which still takes an ex-
ponential amount of time. Run-time for the quadratic sieve algorithm is sub-
exponential.was the fastest known factoring algorithm until the early 1990s and
remains the factoring algorithm of choice for numbers up to about 300 bits long.
Here’s a simplified explanation of how the quadratic sieve algorithm works:

1 Choose a number p such that p is slightly greater then N’s square root .

2 Find a set of integers x1, x2, ..., xk such that each x2
i mod p can be expressed

as a product of small prime factors.

3 Calculate the values ofyi = x2
i −N for each xi in the set.

4 Factorize the yi values using the factorization ofx2
i mod p obtained in step 2,

to find a subset of yivalues that have a product equal to a perfect square.

Factorization algorithm GNFS 30

1.6 Conclusion

5 Express the product of the selected yi values as a difference of two squares,
say a2 − b2.

6 If a is congruent to b mod N or gcd(a− b,N)is a non-trivial factor of N, then
we have found a factorization of N

Given enough iterations, the quadratic sieve approach has a high probability of
success even though it may not always find a factorization of N. For factoring in-
tegers made up of two big primes, the procedure is especially effective. here is a
numerical example about the quadratic sieve factorization algorithm[13]

1.6 Conclusion

In this chapter we have treated the two main categories of modern cryptogra-
phy along with their pros and downsides , we have introduced the problem of
modern cryptography factorization .
In the next chapter we will introduce and go in details with the General Num-
ber Field Sieve the most know algorithm for factoring big composite number
for it’s efficiency and wholeness .

Factorization algorithm GNFS 31

Chapter2:The GNFS algorithm

2 The GNFS algorithm

2.1 Introduction

In the past chapter we have talked about cryptography(symmetric and asymmet-
ric) the difference between them,We also talked about the different algorithms of
asymmetrical cryptography (RSA ,DSA ...) and the different attacks to break those
algorithms , and at last we have briefly talked about the different factorization al-
gorithms .
In this chapter we are going to understand the most efficient factorization algorithm
the general number field sieve we are going to have a general view of it then a step-
by-step walk through this algorithm and finally we will have an extended numerical
example

Factorization algorithm GNFS 32

2.1 Introduction

2.1.1 Number field sieve(NFS)

Before getting into the GNFS Algorithm we will have a quick view about the
Number field sieve (NFS) as it is the origin of it.
In 1988 John Pollard circulated the famous letter that presented the idea of the
number field sieve (NFS).
In this thesis when we say “number field sieve” we are actually talking about the
general number field sieve. The original number field sieve is denoted special number
field sieve (SNFS) today.
The number field sieve is the fastest general algorithm known today, but because
of its complexity and overhead it is only faster than the QS for number larger than
110- 120 digits. The number field sieve took the quadratic sieve to another level by
using algebraic number fields.
we will describe the fundamental idea behind the algorithm and try to convince you
that it works.
The next Chapter describes the algorithm in details. The number field sieve is a lot
like the quadratic sieve but it differs on one major point: the field it works in.
A number field is a common word for all sub-fields of C and one way to construct
a number field K is to take an irreducible polynomial f(x) of degree d with a root
α ∈ C and K = Q[α] is a degree d extension field.
A number ring is a sub-ring of a number field; the number field sieve uses the number
ring

Z[α] = Z[X]/f(Z[X])

A familiar example of a number ring is the sub-ring Z[i] of Gaussian integers which
is a sub-ring of the number field Q[i] derived from the polynomialf(x) = x2+1 with
α = i.
The number field Q[α] consists of elements on the form

∑d1
j=0 qjα

j with qj ∈ Q , the

number ring Z[α] = Z[X]/f(Z[X]) contains elements on the form
∑d1

j=0 sj αj , with sj
∈ Z. We need an embedding into Z for the number ring Z[α] before it is usable for
factoring, but fortunately we have the ring homo-morphism ϕ

Theorem : Given a polynomial f(x) ∈ Z[α]], a root α ∈ C and m ∈ Z/nZ such
that
f(m) ∼= 0(modn), there exists a unique mapping

ϕ : Z[α] → Z/nZ

satisfying

ϕ(1) ≡ 1 mod n

ϕ(α) ≡ m mod n

ϕ(ab) = ϕ(a) ∗ ϕ(b)

ϕ(a+ b) = ϕ(a) + ϕ(b)

For all a,b ∈ Z[α]
The ring homo-morphism ϕ leads to the desired congruent squares. If we can find a

Factorization algorithm GNFS 33

2.2 The GNFS Algorithm

non-empty set S with the following properties

y2 =
∏
a,b∈S

(a+ bm) : y2 ∈ Z

β2 =
∏
a,b∈S

(a+ bα) : y2 ∈ Z

we get the congruence

ϕ(β2) = ϕ(β) ∗ ϕ(β)

= ϕ(β2)

=
∏
a,b∈S

ϕ((a+ bα))

=
∏
a,b∈S

ϕ((a+ bα))

=
∏
a,b∈S

(a+ bm)

= y2

and one of the major question remaining is how to find the set S?

2.1.2 Complexity of the NFS Algorithm

Under some reasonable heuristic assumption the NFS Algorithm factors n in:

ln[
1

3
, C] = O(eC+O(1) 3√logn 3

√
(log logn)2)

2.2 The GNFS Algorithm

The reader is now familiar with the many types of factoring algorithms and is aware
that the fastest algorithms are based on sieving over a clearly defined domain; one
can even go so far as to state that the fastest algorithms calculate

congruence’s and resolve linear equation systems. The number field sieve vari-
ations have shown to be the most effective factoring algorithms for big composites
in practice and have the lowest time complexity when compared to other factoring
techniques.
The number field sieve variations have shown to be the best algorithms to utilize in
practice for big composites and have the lowest time complexity when compared to
other factoring techniques. The number field sieve and the quadratic sieve are quite
similar and can be viewed as a development of the QS to make use of polynomials
with degrees more than two.
The special number field sieve (SNFS) and the general number field sieve (GNFS)
are the two primary variations. The GNFS works on all forms of composites, but the
SNFS only works on a specific type of composites, namely integers of the form: r e s,

Factorization algorithm GNFS 34

2.2 The GNFS Algorithm

for tiny integers r, s, and integer e. The polynomial selection portion of the method
is where SNFS and GNFS differ from one another, since the special numbers that
SNFS can be applied to create a unique class of especially appealing polynomials,
and the work in the square root step is also more difficult for the GNFS.

2.2.1 Overview of the GNFS Algorithm

The algorithm is intricate, so it will be helpful to begin with a broad description
in order to fully comprehend it. I’ll give you an overview of the GNFS algorithm
in this Section, look at implementation issues in the following Section by building
algorithms for the various steps, and then describe the characteristics that make the
algorithm effective. The algorithm is very similar to other sieving-based algorithms
that were discussed in the previous chapter. The method consists of four basic steps
that cannot be completed in parallel due to mutual dependence, while some of the
steps can be completed in parallel internally. I’ve decided to break it down into 5
phases to create the integer factorization.

The algorithm’s flow is easier to understand, but each step involves numerous
calculations and multiple algorithms working together.

input: composite integer n. output: a nontrivial factor p of n.
Step 1: (Polynomial selection)
Find an irreducible polynomial f(x) with root m, i.e. f(m) ≡ 0 mod (n), f(x) ∈
Z[x].
Step 2: (Factor bases)
Choose the size for the factor bases and set up the rational factor base, algebraic
factor base
and the quadratic character base.
Step 3: (Sieving)
Find pairs of integers (a, b) with the following properties:
gcd(a, b) = 1
a+ bm is smooth over the rational factor base
bdeg(f)f(a/b) is smooth over the algebraic factor base
A pair (a, b) with these properties is called a relation. The purpose of the sieving
stage is to collect as many relations as possible (at least one larger than the elements
in all of the bases combined). The sieving step results in a set S of relations.
Step 4: (Linear algebra)
Filter the results from the sieving by removing duplicates and the relations contain-
ing a prime ideal not present in any of the other relations.
The relations are put into relation-sets and a very large sparse matrix over GF(2)
is constructed.
The matrix is reduced resulting in some dependencies, ie. elements which lead to a
square modulo n.
Step 5: (Square root)
Calculate the rational square root, i.e. y with

y2 =
∏

(a,b)∈S

(a− bm)

Factorization algorithm GNFS 35

2.2 The GNFS Algorithm

Calculate the algebraic square root, i.e. x with

x2 =
∏

(a,b)∈S

(a− bα)

where α is a root of f(x).
p can then be found by gcd(n, x− y) and gcd(n, x+ y).

The algorithm’s flow is depicted in the above flowchart. The stages listed above
do not even come close to describing the implementation-ready algorithm. The steps
must be revealed to various algorithms for implementation purposes, with no steps
hidden behind mathematical premises or presumptions. we will make reference to
the aforementioned stages throughout the remainder of this chapter.

2.2.2 Implementing the GNFS Algorithm

we will discuss the GNFS algorithm in this Section in sufficient detail to allow for
its practical implementation. we detailed the main theory underlying the algorithm
and explained how and why it operates mathematically.

2.2.2.1 Polynomial Selection[14]

Finding a good polynomial is difficult since the definition of ”a good polynomial”
is not well defined, yet choosing a usable polynomial is not difficult either. It is one
of the parts of the number field sieve that has received the least amount of research.
Murphy’s thesis is the greatest source on the topic.[1]
The quantity of smooth values that a polynomial f(x) generates in its sieve region
is referred to as its yield. The yield of a polynomial is primarily influenced by two
things. These are the attributes of size and root. If a polynomial f(x) has a good
yield, or a good mix of size and root qualities, it is said to be excellent.
Definition 1 If the values that a polynomial f(x) takes are tiny, the polynomial
has a good size property. You can accomplish this by choosing a polynomial with
few coefficients. The size attribute improves with decreasing size.
Definition 2 If a polynomial f(x) has numerous roots modulo tiny primes, it is said
to have good root characteristics.
There is no simple formula for selecting a decent polynomial. The best approach
is to guarantee a certain level of size and root characteristics before creating can-
didates. These candidates are then examined, and the candidate with the highest
yield is picked.
Finding quality polynomials among the employable candidates is the issue. In his
thesis, Brian Antony Murphy[1] extensively researched polynomial yield.
The following characteristics of the polynomial f(x) are required.

1 :is irreducible overZ[x]

2 : has a root m modulo n

Factorization algorithm GNFS 36

2.2 The GNFS Algorithm

By utilizing a base-m representation, it is simple to construct a polynomial in Z/Zn[x]
with any desired root m. In most circumstances, this will also produce an irreducible
polynomial; otherwise, we would have found n’s factorization

If we could have, f(x) = g(x)h(x) and f(m) = g(m)h(m) = n This should of
course be checked before proceeding.
The results from constructing a polynomial f(x) by using the base-m representation
of n can be modified freely as long as f(m) ≡ 0modn. That is why the polynomial
does not have to be a true base-m expansion but an expansion of kn for some integer
k.
The base-m representation of n is

d∑
i=0

aim
i

using0 < ai < m. d is predetermined and typically falls between 3-6. The ai’s can
be used as coefficients to build a degree d polynomial f(x). M will serve as the
polynomial’s root, i.e.

f(x) = adx
d + ad−1x

d−1 ++ a0

f(m) ≡ 0 mod (n)

By reducing the coefficients, for instance by increasing replacements, the size prop-
erty can be attained.

ai = ai −m

ai+1 = ai+1 + 1

which decreases a′is while maintaining f(m) ≡ 0modn. It is crucial to have ad and
ad−1 in particular small. Skewed polynomials appear to provide the highest levels
of polynomial yield, but because they are far more difficult to construct, we will
instead employ non-skewed polynomials.
which decreases a′is while maintaining f(m) ≡ 0modn. Ad and Ad1 should be made
as little as possible. Skewed polynomials appear to provide the highest levels of poly-
nomial yield, but because they are far more difficult to construct, we will instead
employ non-skewed polynomials. A practical heuristic for estimating polynomial
yield has been developed by Murphy.
He introduces the α(F) function, which provides a very accurate estimate and en-
ables the removal of polynomials that are plainly wrong before subjecting the re-
maining ones to a brief sieving test to determine which has the highest yield. the
definition of the α-function is

α(F) =
∑
P≤B

(1− qp
p

p+ 1
)
log p

p− 1

where B is some smoothness bound, and qp is the number of distinct roots of f
mod p. The polynomial selection consists of the following steps

1 identify a large set of usable polynomials.

Factorization algorithm GNFS 37

2.2 The GNFS Algorithm

2 using heuristics remove obviously bad polynomials from the set

3 do small sieving experiments on the remaining polynomials and choose the one
with the best yield.

this we think that we have provided enough information for creating polynomials
suitable for the general number field sieve

Algorithm: Polynomial Selection (non-skewed)

input: composite integer n, integer d.
output: polynomial f(x)

1 choose m0 in a way that ⌊n
1

d+1 ⌋ ≤ m0 ≤ ⌈n 1
d ⌉

2 choose an interval of convenient a′ds in a way that X1 < |ad|
m0

< X2, where
0 < X1 < X2 < 0.5

3 define the interval of m’s such that |ad−1| are smallest. This will be the interval
from m0 to where ad change, which is

mchange = ⌊ n
ad

1
d ⌋

4 for all usable combinations of ad andm ∈ [m0 : m′] with ad having a large
b-smooth co-factor do
(a) write n in base-m representation, such that

n = adm
d + ad−1m

d−1 ++ a0

(b) write the polynomial fm(x) = adx
d + ad−1x

d−1 ++ a0
(c)check yield, by calculating α(fm).
i. if yield is satisfying add fm(x) to the set F’
ii. else discard polynomial.

5 choose f(x) among the polynomials in F’ by doing small sieving experiments.

6 returnf(x)

end of the Algorithm

2.2.2.2 Factor bases
The factor bases are used to specify the domain that the algorithm will operate in.
Empirically determining the sizes of the factor bases is required, and these sizes are

Depending on the sieving code’s accuracy, it will determine whether all smooth
elements are located or if some are missed using special-q techniques.

Factorization algorithm GNFS 38

2.2 The GNFS Algorithm

The rational factor base, or RFB, is made up of pairs (p, p mod m)a, i.e., all the
primes pi up to some bound and pi mod m that we store.

RFB = (p0, p0 mod m), (p1, p1 mod m), ..

The algebraic factor base AFB consists of pairs (p, r) such that f(r) ≡ 0 mod p, ie.

AFB = (p0, r0), (p1, r1), ...

The algebraic factor base should be two to three times as large as the rational factor
base.
there is also The pairs (r, p) in the quadratic character base (QCB) that have the
same characteristics as those of the elements in the algebraic factor base, except the
p’s are greater than the largest in the latter, i.e.

QCB = (p0, r0), (p1, r1), ...

Comparatively speaking to RFB and AFB, the number of elements in QCB is typi-
cally quite low. The number is less than 100 in record breaking factorization

2.2.2.3 Sieving

Although the sieving step iterates over a large domain with some expensive cal-
culations like division and modulo, some of these can be avoided by using logarithms,
it is the most time-consuming step of the algorithm even though it is not the theo-
retically most complex.
The sieving step can generally be optimized to reduce the algorithm’s actual oper-
ating time the most.
In this step, it is simple to use a lot of memory, so one should be aware of this and
try to reuse arrays and use the smallest data types possible.
Millions of items can make up the factor bases for record factorization, hence it is
important to find the optimum on-disk/in-memory trade-off possible.
Finding useful relationships, i.e., elements (a, b) with the following characteristics,
is the goal of the sieving stage.

• gcd(a, b) = 1

• a+ bm is smooth over the rational factor base

• bdeg(f)f(a/b) is smooth over the algebraic factor base

Different sieving techniques, such as the traditional line sieving or the quicker lattice
sieving, can be used to find elements with these characteristics.
Line sieving is done by fixing b and sieving over a range of (a, b) for a ∈ [−C : C].
This means that the algebraic norm over the AFB is computed for all values of (a,
b), the rational norm is calculated for all values of (a, b), it is divided by elements
from the RFB, and the entries with a result of 1 are smooth over the RFB.
It is not essential to verify each element on a sieving line against each element from

Factorization algorithm GNFS 39

2.2 The GNFS Algorithm

the RFB and AFB to see if they all factor entirely over the factor bases. A straight-
forward pattern determines how the elements on the sieving line that contain a
specific element from the factor base as a factor are distributed along the sieving
line.
• The elements with a on the form a = bm+ kp for k ∈ Z are those with a rational
norm divisible by element (p, r) from RFB.
• The elements with a on the form a = br + kp for k ∈ Z are those with algebraic
norms divisible by elements (p, r) from AFB.
With these characteristics in mind, the goal behind the line sieving algorithm pre-
sented here is to take each element from the factor base and eliminate its contribution
from the elements that have it as a factor.

Algorithm: Line sieving

input: RFB,AFB,QCB,polynomial f(x), root m of f(x) mod n, integer C
output: list of pairs rels = (a0, b0), ..., (at, bt)
1.b = 0
2. rels = []
3. while rels < RFB + AFB +QCB + 1

(a) set b = b + 1

(b) set a[i] = i+ bm for i ∈ [−C;C]

(c) for each (p, r) ∈ RFB.
i. Divide out largest power of p from a[j] where j = −bm + kp for k ∈ Z so
that −C ≤ j ≤ C.

(d) set e[i] = bdeg(f)f(i/b) for i ∈ [-C; C]

(e) for each (p, r) ∈ AFB
i. Divide out largest power of p from e[j] where j = −br+kp for k ∈ Z so that
-C ≤ j ≤ C.

(f) for i ∈ [-C; C] i. if a[i] = e[i] = 1 and gcd(i, b) = 1 add (i, b) to rels

(g) b = b+ 1

4. return rels.

end of the Algorithm

2.2.2.4 Speeding up the sieve
Lattice sieving, which John Pollard proposed in, is another frequently used sieving
algorithm. It is comparable to the Quadratic sieve algorithm’s special-q approach.
The elements that are divisible by a big prime q are sieved after the factor bases are
divided into smaller sets. By speeding up the filter, some smooth components are

Factorization algorithm GNFS 40

2.2 The GNFS Algorithm

lost.
Use of logarithms to avoid divisions is an obvious optimization that can be made
for both the line- and lattice sieves.
This means that one should store the logarithm of the norms and then subtract
log(p) instead of dividing it, due to one of the laws of logarithms

log
n

p
= log(n)− log(p)

So we avoid the many divisions of large integers, but there are some issues one should
be aware of under this optimization.

1. There is no way of detecting powers of primes pj in the norms, so if 37is a
factor in the norm only log(3) will be subtracted.

2. Because of the floating point operations, correct elements can be bypassed and
wrong elements can be included in the result.

A fuzz factor can help the logarithms in various ways to solve the first issue. If
we subtract log(max(RFB)) from all the entries, we should capture more of the
elements that are divisible by prime powers without accepting additional incorrect
ones since if a norm is not RFB-smooth, it must have a factor that is bigger than
the largest prime in RFB.
Both of the aforementioned problems suggest that the components should be divided
into trials to ensure that they are all RFB- and AFB-smooth.

2.2.2.5 Linear Algebra
We have a list of (a, b)’s that are RFB- and AFB-smooth as a result of the sieving
stage, and we want to identify a subset of them that gives a square, i.e., a combina-
tion of relation set components whose product is a square.
We use this attribute to identify square elements. For a number to be a true square,
the elements in its unique factorization must have an even power.
To clarify we can simply say that we have a list of numbers:

34, 89, 46, 32, 56, 8, 51, 43, 69

We want to find a subset of these numbers which forms a product that is a square,
one solution is:

34, 46, 51, 69

With the product

34 ∗ 46 ∗ 51 ∗ 69 = 5503716 = 22 ∗ 32 ∗ 172 ∗ 232 = (2 ∗ 3 ∗ 17 ∗ 23)2

This is equivalent to solving a system of linear equations and can be done by building
a matrix and eliminate it. The bottleneck in this operation is the dimensions of the
linear system - which can result in a matrix with dimensions larger than 109109 ,
which can be hard to represent in memory on a modern computer.
The matrix consists of the factorization over the rational- and algebraic bases and
some information derived from the quadratic character base along with the sign of

Factorization algorithm GNFS 41

2.2 The GNFS Algorithm

the norm. Since we are only interested in the parity of the power of the elements
in the factorization (even/odd), we put a 1 if the element appears as an odd power
in the factorization and a 0 if its even or zero. This should be more clear from the
algorithm below and the extended example.
This results in a matrix M over GF (2) with dimensions (relations).(RFB+AFB+
QCB + 1).

Algorithm: Building the matrix

input: RFB,AFB,QCB,polynomial f(x), root m of f(x), list rels = (a0, b0), ..., (at, bt)
of smooth pairs
output: Binary matrix M of dimensions
(rels).(RFB + AFB +QCB + 1)
1. set all entries in M [i, j] = 0
2. foreach (ai, bi) ∈ rels

(a) if ai+ bim < 0 set M [i, 0] = 1

(b) for each (pk, rk) ∈ RFB i. let l be the biggest power of pk that divides ai+bim
ii. if l is odd set M [i, 1 + k] = 1

(c) for each (pk, rk) ∈ AFB
i. let l be the biggest power of pk that divides
(−bi)df(ai

bi
)

ii. if l is odd set M [i, 1 +RFB + k] = 1

(d) for each (pk, rk) ∈ QCB
i. if the Legendre symbol ai+bi∗pk

rk
̸= 1 set

M [i, 1 +RFB + AFB + k] = 1

3. return M.

end of the Algorithm

Then, by putting this matrix into reduced echelon form, we can
derive solutions which yield a square.

The process of solving linear systems by reducing a matrix of the system has been
thoroughly studied since the birth of algebra and the most commonly used method
is Gaussian Elimination. It is fast and easy to implement but has one drawback in
this case; as the matrix is quite large, memory-usage becomes a problem.
There exist variations of Gaussian Elimination which utilize block partitioning of the
matrix, but often a completely different method is used, namely the Block Lanczos
method specialized for the GF(2) case by Peter Montgomery . It is probabilistic but
in both theory and practice the algorithm is faster for large instances of the problem.
It utilizes an iterative approach by dividing the problem into orthogonal sub-spaces.

Factorization algorithm GNFS 42

2.2 The GNFS Algorithm

we will only describe Gaussian Elimination which will work even for large problems
if sufficient memory is available, but the interested reader should search for more
details on the Block Lanczos method.

Algorithm: Gaussian Elimination

input: n × m matrix M
output: M on reduced echelon form
1. set i = 1
2. while i ≤ n

(a) find first row j from row i to n where M[j, i] = 1, if none exists try with i = i
+ 1 until one is found.

(b) if j ̸= i swap row i with row j

(c) for i < j < n
i. if M[j, i] = 1 subtract row i from rwo j

(d) set i = i + 1

3. for each row 0 < j < n with a leading 1 (in column k)

(a) for 0 < i < j
i. if M[i, k] = 1 subtract row j from row i

4. return M.

end of the Algorithm

2.2.2.6 Square Root
From the linear algebra step we get one or more solutions, i.e. products which are
squares and thereby can lead to a trivial or non-trivial factor of n. We need the
square root of the solution, a rational square root Y and an algebraic square root X
. The rational square-root is trivial, although the product of the solution from the
linear algebra step is large, it is still an integer and a wide variety of methods for
deriving the square root is known.

!

Œ.4ptwidth
!
!

Algorithm: Rational square root

Factorization algorithm GNFS 43

2.2 The GNFS Algorithm

input: n,polynomial f(x), root m of f(x), list of smooth elements the product of
which is a square deps = (a0, b0), ..., (at, bt)
output: integer Y

1. compute the product S(x)inZ[x]/f(x) of the elements in deps

2. return Y =
√
S(m).f ′(m)2 mod n

end of the Algorithm

Finding the square root of an algebraic integer is far from trivial, and is the
most complex part of the GNFS algorithm but not the most time consuming one,
and optimization of this step is therefore not important. Finding the square root of
an algebraic integer is equivalent to finding the square root of a polynomial over an
extension field. There exist algorithms for factoring polynomials in various fields but
not many for factoring over a number field. Montgomery has once again developed a
method for this in [15] and further refined in [16], but it is complex and uses lattice
reduction which depends on a lot more theory than covered in this thesis. we will
instead describe a method based on[17] and used in [18]. It does an approximation
and uses a Newton iteration to find the true square root.

Algorithm: Algebraic square root

input: n,polynomial f(x), root m of f(x), list of smooth elements the product of
which is a squaredeps = (a0, b0), ..., (at, bt) output: integer X

1. compute the productS(x) in Z[x]/f(x) of the elements in deps

2. choose a large prime p (e.g. 2-5 times larger than n)

3. choose random r(x) ∈ Zp[x]/f(x) with deg(r) = deg(f)− 1

4. compute R0 +R1y = (r(x)− y)
pd−1

2 ∈ (Zp[x]/f(x))[y]/(y2 − S),

i.e. compute the pd−1
2

power of r(x) mod (y2 − S).

5. if SR2
1 ̸= 1 go-to 2 and choose other p and/or r(x)

6. set k = 0

7. setk = k + 1

8. compute R2k =
Rk(3−SR2

k)

2
mod p2k

9. if (RkS)
2 ̸= S go-to 7

10. computes(x) = ±SRk.

11. returnX = s(m)f ′(m) mod n

end of the Algorithm

Factorization algorithm GNFS 44

2.3 An extended example

2.3 An extended example

To clarify the different steps of the GNFS algorithm and to convince the reader,we
will now go through the algorithm by providing an extended example.[14]
we want to factor the number n = 3218147, which should be tested for primality
before proceeding with the factorization.

2.3.1 Setting up factor bases

The next step is to set up the factor bases. The sizes are chosen empirically and
the main measure is to find the size which gives the fastest sieving as well as being
small, because a smaller size in factor bases would give a smaller number of relations
to work within the linear algebra stage.
we have chosen the primes below 60, and as described in Section 2.2.2.1 we store
the prime mod m as well, so the rational factor base consists of the 16 elements.

RFB = (2, 1)(3, 0)(5, 2)(7, 5)

(11, 7)(13, 0)(17, 15)(19, 3)

(23, 2)(29, 1)(31, 24)(37, 6)

(41, 35)(43, 31)(47, 23)(53, 11)

Now we have to construct the algebraic factor base and we choose it to be approx-
imately 3 times the size of the RFB. The AFB consists of elements (p, r), where
f(r) ≡ 0modp, e.g. f(7) ≡ 0mod17 so (7, 17) is in the AFB, which consists of the
following 47 elements

AFB = (2,0) (2,1) (3,2) (3,1) (5,1) (5,3) (13,10) (17,2) (17,16) (17,7) (19,9) (29,10)
(31,0) (31,12) (31,3) (41,4) (41,8) (43,36) (43,23) (43,5) (53,40) (59,6) (61,12)

(61,38) (61,41) (71,66) (79,28) (83,44) (89,9) (101,65) (103,87) (109,64) (109,85)
(109,14) (127,95) (131,57) (131,108) (131,31) (149,49) (157,63) (163,155) (163,126)

(179,165) (193,105) (197,93) (197,11) (197,191)

Even though we do not need the quadratic character base for the sieving step,
we construct it here. It consists of the same type of elements as the AFB, but the
elements are larger than the largest in the AFB. we choose to have 6 elements in
the QCB

QCB = (233, 166)(233, 205)(233, 211)(281, 19)(281, 272)(281, 130)

After setting up the bases we have the following:

• n = 3218147

• m = 117

• f(x) = 2x3 + x2 + 10x+ 62

• Factor bases: RFB,AFB,QCB

Factorization algorithm GNFS 45

2.3 An extended example

2.3.2 Sieving

Now we want to find elements that are RFB-smooth and AFB-smooth. This is
done by sieving, as described in 2.2.2.2
we start by selecting a line-width for the sieving, we choose to sieve with a ∈ [-200;
200], then we follow the algorithm from 2.2.3, which gives me the number of smooth
elements wanted, e.g. the pair (13, 7) has rational norm

Nrational(a, b) = a+ bm

Nrational(13, 7) = 13 + 7117

= 832

= 2613

i.e. it is smooth over the RFB. It has algebraic norm

Nalgebraic(a, b) = (−b)df(−a

b
)

Nalgebraic(13, 7) = (−7)3f(−13

7
)

= −11685

= (−1)3.5.19.41

i.e. it is also smooth over the AFB, so (13, 7) is one of the desired elements.
In total we need at least 70 elements (RFB+AFB+QCB+1). we find the following72
elements

rels = (-186,1) (-155,1) (-127,1) (-126,1) (-123,1) (-101,1) (-93,1) (-68,1) (-66,1)
(-65,1) (-49,1) (-41,1) (-36,1) (-31,1) (-23,1) (-12,1) (-9,1) (-7,1) (-6,1) (-5,1) (-3,1)
(-2,1) (-1,1) (0,1) (2,1) (3,1) (4,1) (6,1) (7,1) (8,1) (13,1) (16,1) (19,1) (23,1) (24,1)
(37,1) (81,1) (100,1) (171,1) (-65,3) (-62,3) (-31,3) (-8,3) (-1,3) (17,3) (26,3) (86,3)
(181,3) (200,3) (-137,5) (-102,5) (-68,5) (-46,5) (-24,5) (-7,5) (7,5) (31,5) (39,5)

(-152,7) (-83,7) (-44,7) (9,7) (13,7) (17,7) (18,7) (26,7) (41,7) (-64,9) (-17,9) (5,9)
(11,9) (20,9)

After sieving we have the following:

• n = 3218147

• m = 117

• f(x) = 2x3 + x2 + 10x+ 62

• Factor bases: RFB,AFB,QCB

• List of smooth elements rels

Factorization algorithm GNFS 46

2.3 An extended example

2.3.3 Linear Algebra

After the sieving step, we have a list of 72 elements which are smooth over the factor
bases. Now we need to find one or more subset(s) of these which yield a product
that is a square. This is done by solving a system of linear equations. The matrix we
use is built as described in Section 2.2.2.3, e.g. the element (13, 7) is represented
in the following way ((13, 7) is the 63th element in rels). The first entry is the sign
ofNrational(13, 7) which is positive and therefore we have

M [63] = 0...

The next 16 entries are the factorization of Nrational(13, 7) over RFB, and we only
store the parity of the power, so we get

M[63] = 0000000010000000000 . . .

The next 47 entries are the factorization of Nalgebraic(13, 7) over AFB, and we store
only the parity of the power, so we get

M[63] =
000000001000000000000101000001000010000000000000000000000000000000...

The last 6 entries are for the QCB. For each element(pi, ri)in the QCB we store a 1
if the Legendre symbol 13+7pk

rk
̸= 1 else a 0, so we get

M[63] =
000000001000000000000101000001000010000000000000000000000000000000100100

Doing this for all the relations gives the 72 × 70 matrix M

Factorization algorithm GNFS 47

2.3 An extended example

M =

1010000001000000010001000100000000000000000100000000000000000000100101
1100000010000000000100001000110000000000000000000000000001000000100111
1101000000000000000010010000000110000000000010000000000000000000111101
1000000000000000010000000010100000000000000000000000000000100000110110
1110000000000000000000100001000000000000000000000010000000000000111100
0000000000000000000101010100000000000000000000000000000000000000100110
0110000000000000000000100000010000000100000000000000000000000100101111
0000000000000000010100100000100000000000000000000000000000000000011110
0010000100000000010001000001000000010000001000000000000000000000011110

.

.

.

.

.

.
0000001000000000000101000001000010000000000000000000000000000000100100
0000010010000000000010000000100000000010000000000000000000000000011111
0010000000010000010000000000000000000000010000000000000000000000001100
0001000000000000010010000000000001000000000001000000000000000000000111
0001000000000010000010000100000100000000000100000000000000000000010111
0000000001000010010001010000000000000000010010000000000000000000010100
0000100000001000000000100000000000000000000000000010001000000000100100
0100000000000000000000000010000010000010000000000000000000000000001111
0100100010000000000001000000000000000100000000000000100000000000000100
00

The matrix is then transposed, an additional column is appended and we apply the

Factorization algorithm GNFS 48

2.3 An extended example

Gauss-Jordan algorithm to it, giving the result on reduced echelon form

Me =

1000100000
0100100000
0010001000010100100100
0001001000101101110100
00001000111001010000
0000010001010010110000
0000001000
0000000100111000010100
000000001001111110000100
00000000010001111011101100
00000000001001110101000000

.

.

.

.

.

.
0001000001110101111000
00100001111101010000
00010000000111001000
000100111001011000
0011111011101100
0010
00
00
00
00
00
00
00
00
00
00
00

From this we get a vector of free variables, i.e. elements which lead to a solution by
setting one or more of them to 1.
Vfree = [001001111111111101]
After linear algebra we have the following:

• n = 3218147

• m = 117

• f(x) = 2x3 + x2 + 10x+ 62

• Factor bases: RFB,AFB,QCB

Factorization algorithm GNFS 49

2.3 An extended example

• List of smooth elements rels

• Matrix Me

• Vector of free relations Vfree

2.3.4 Square roots

we now have different solutions to choose from by selecting one or more of the free
variables fromVfree, i.e. we can choose to add one or more of the free variables to
the solution. we take the first free variable and get the solution
Vsol = [001100000000000100010101100000001111100110000011010110001000000000000000]
Which can easily be verified by MeVsol = 0. So the following 20 elements are to be
used

deps = (-127,1) (-126,1) (-12,1) (-5,1) (-2,1) (0,1) (2,1) (19,1) (23,1) (24,1) (37,1)
(81,1) (-65,3) (-62,3) (86,3) (181,3) (-137,5) (-68,5) (-46,5) (31,5)

Now we apply the algorithm from 6.2.5, Ind we take it step by step. we start by
computing the product S(x)inZ[x]

S(x) = (−127 + x)(−126 + x)...(−46 + 5x)(31 + 5x)

The rational square root Y is found by

√
S(m)f ′(m)2 =

√
2049969700679090380346180211204354578841600006786134884

=
√
1391137089692141371945604152740435826018211007037440000

= 1179464747117157958147891200

Y =
√

S(m)f ′(m)2

= 1179464747117157958147891200 mod 3218147

= 2860383

From now we need the product S(x) in Z[x]/f(x) instead of Z[x]

S(x) = (−127 + x)(−126 + x)...(−46 + 5x)(31 + 5x) mod f(x)

=
−17470514047986971961535165201539075

262144
.x2+

3221408885540911801419827086788375

131072
.x+

116440133729799845699831534810433975

131072

For computing the algebraic square root X we need to do some more work. we start
by choosing a random 128 bit prime p

Factorization algorithm GNFS 50

2.3 An extended example

p = 42.1042 + 43

we then choose a random r(x) ∈ Zp[x]/f(x)

r(x) = 33143395517908901720508889678332774413150964x2+

9935116049822899034547246528762346304828856x+

37523378477365408863809265257916410422084120

As described in 2.2.2.4 we then calculate R0 +R1y ∈ (Zp[x]/f(x))[y]/(y
2 − S)

and get

R1(x) = 40438443742646682162976058010107146767850928x2+

10975873976574477160776917631060091343250704x+

25602452817775159059194687644564881010593683

This is usable, i.e. SR2
1 = 1 so we compute R2 and get

R2(x) =1484280452534851932191188732252856860031306910058907052137946073002617221365360609425453x2 +

1012438783385021395408772861725005923451102945520342680286858174520561778089965352712171x +

33707643386048967064886978071322595680303104670451605589553615208517742239145583274137

So we get
Salg(x) = ±S(x)R2(x) mod p2

=

±(
−17805551987379270x2 + 460901612569132380 + 14073072352402140x

262144
)

And then we get the algebraic square root

X = Salg(m)f ′(m) mod n

= 484534

So now we have Y and X and we can find the divisors of n

ndivisor1 = gcd(n,X − Y)

= gcd(3218147, 484534− 2860383)

= 1777

ndivisor2 = gcd(n, Y +X)

= gcd(3218147, 2860383− 484534)

= 1811

So we have computed that n is the product of 1777 and 1811, and this is in
fact the prime factorization.

Factorization algorithm GNFS 51

2.4 Conclusion

2.4 Conclusion

In this chapter we had a close view about the GNFS algorithm and how it works we
have detailed it step-by-step we have seen it’s time complexity and most importantly
we have shown a working example of this algorithm.
In the next chapter we are going to take this algorithm to work by implementing
it in a c++ environment and testing how much time does this algorithm take for
different key lengths.

Factorization algorithm GNFS 52

chapter3

Chapter3: GFNS Performances
Evaluation

3 GFNS performances Evaluation

3.1 Introduction

This last chapter is an evaluation of GNFS performances under different parameters
preceded by all the necessary steps for this process .

Factorization algorithm GNFS 53

3.2 GMP library installation :

3.2 GMP library installation :

3.2.1 Before compiling

we want to make sure that MinGw is installed in our system which is going to be the
case if we have CodeBlocks or Dev-Cpp rename the file “mingw32-make.exe” found
in MinGW file to “make.exe” check that the path to the CodeBlocks or Dev-Cpp
folder does not contain spaces, which may cause problems later. So avoid paths like
”C:/Program Files/CodeBlocks” and prefer simple paths like ”C:/CodeBlocks”.

3.2.2 MSYS installation

MSYS allows the compilation of applications or programs typically designed for
UNIX systems. Can be downloaded using the link :

https://sourceforge.net/projects/mingw/files/MSYS/Base/msys-core/msys-1.0.11/MSYS-
1.0.11.exe/download
after installation we get a command prompt and ask you if you want to continue the
installation then if you installed MinGW. Answer with ”y” twice (see in figure 1)

Figure 1: installation process

3.2.3 Install GMP and compile :

Now, we need to download the GMP library (zip with the extension .tar.bz2) and
unzip it in an easily accessible folder (C:/gmp for example). Then, launch the
previously installed MSYS software and move to the GMP folder:
cd C:/gmp

Then run the following 4 commands one after the other:
./configure
make

make check

make install

Factorization algorithm GNFS 54

https://sourceforge.net/projects/mingw/files/MSYS/Base/msys-core/msys-1.0.11/MSYS-1.0.11.exe/download
https://sourceforge.net/projects/mingw/files/MSYS/Base/msys-core/msys-1.0.11/MSYS-1.0.11.exe/download

3.3 GFNS performances Evaluation

3.3 GFNS performances Evaluation

We have effected factorization tests from RSA-100 (a composite number of the
length of 100 digits) and up to RSA-155(as the factorization times ware exponen-
tially growing)

3.3.1 Test 01 :

Primes generation :

Figure 2: Prime Generation 1

Composite factorization :

Figure 3: Factorization 1

Resault:
The factorization was accomplished in under 1 min .

3.3.2 Test 02 :

Primes generation :

Factorization algorithm GNFS 55

3.3 GFNS performances Evaluation

Figure 4: Prime Generation 2

Composite factorization :

Figure 5: Factorization 2

Resault:
The factorization was accomplished in 15 min .

3.3.3 Test 03 :

Primes generation :

Figure 6: Prime Generation 3

Composite factorization :

Factorization algorithm GNFS 56

3.3 GFNS performances Evaluation

Figure 7: Factorization 3

Resault:
The factorization was accomplished in under 75 min .

3.3.4 Test 04 :

Primes generation :

Figure 8: Prime Generation 4

Composite factorization :

Figure 9: Factorization 4

Resault:
The factorization was accomplished in under 3h and 20 min .

3.3.5 Test 05 :

Primes generation :

Factorization algorithm GNFS 57

3.3 GFNS performances Evaluation

Figure 10: Prime Generation 5

Composite factorization :

Figure 11: Factorization 5

Resault:
The factorization was accomplished in under 10 h 6 min .

3.3.6 Test 06 :

Primes generation :

Figure 12: Prime Generation 6

Composite factorization :

Factorization algorithm GNFS 58

3.3 GFNS performances Evaluation

Figure 13: Factorization 6

Resault:
The factorization was accomplished in under 34 h and 25 min .

3.3.7 Test 07 :

Primes generation :

Figure 14: Prime Generation 7

Composite factorization :

Figure 15: Factorization 7

Resault:
The factorization was accomplished in under 56 h and 37 min.

Factorization algorithm GNFS 59

3.4 Efficiency of RSA Key Factorization :

3.4 Efficiency of RSA Key Factorization :

Figure 16: GNFS time evolution

the algorithm have shown very good performances considering the moderate com-
puting power of an average computer CPU and successfully factored composites that
are ably big .

Important notice: Important information: Using a computer with an Intel®
CoreTM i5-11thG7 @ Processor, the RSA number with 155 decimal digits or 512
bits can be factored in fewer than 60 hours. The fact that the key can be cracked in
three days shows how seriously hazardous the RSA-512 number is. We would require
more than 15000 years to factor an RSA-1024 number if we followed the exponential
curve and did the analysis. This RSA number has not yet been factorized by another
author, and it is unlikely that our computer cluster will be able to factorize it anytime
soon either.

3.5 Conclusion

GNFS is up to date the most efficient algorithm for composite factorization of big
numbers and the tests done in this evaluation confirms the exponential complex-
ity and both the efficiency and the inclusivity of the General Number Field Sieve
algorithm.

Factorization algorithm GNFS 60

4 General Conclusion and perspectives

The development of new factorization algorithms is vital for ensuring secure crypto-
graphic systems and the work carried out within the framework of this dissertation
was devoted to the General Number Field Sieve precedent by all notions related to
modern cryptography and factorization problems and concluded by an evaluation of
GNFS performances using GMP library and CodeBlocks and we have obtained it’s
results under deferent parameters.

In conclusion, the study and performance evaluation of the General Number
Field Sieve (GNFS) for verifying the validity of modern cryptography techniques
have provided valuable insights into the effectiveness and security of cryptographic
algorithms. The research has shed light on the practicality of GNFS as a factor-
ization method and its impact on the security of cryptographic systems that rely
on the hardness of factoring large numbers. Through comprehensive analysis and
experimentation, this thesis has contributed to the understanding of GNFS and its
implications for modern cryptography.

Perspectives: Further Optimization: Despite the efficiency of GNFS, there is still

room for improvement in terms of optimizing its algorithms and implementations.
Future research could explore techniques to reduce the computational complexity
and memory requirements of GNFS, making it more practical for larger numbers
and enhancing its overall performance. Alternative Factoring Algorithms: While
GNFS is currently the most efficient known algorithm for factoring large numbers,
ongoing research focuses on developing alternative algorithms that could potentially
challenge its dominance. Investigating these emerging algorithms, such as the Num-
ber Field Sieve (NFS) variant, may provide new perspectives on the security of
modern cryptographic techniques. Post-Quantum Cryptography: With the advent
of quantum computers, traditional cryptographic algorithms, including those relying
on the hardness of factoring, face potential vulnerabilities. Investigating the impact
of quantum computing on the GNFS and its implications for post-quantum cryp-
tography is a promising avenue for future research. This could involve analyzing
the resilience of modern cryptographic techniques against quantum attacks and ex-
ploring new post-quantum cryptographic algorithms. Real-World Application and
Deployment: The practical implications of GNFS research on real-world cryptogra-
phy applications are of utmost importance. Further studies can focus on evaluating
the performance and security of cryptographic systems in practical scenarios, con-
sidering factors such as implementation details, hardware constraints, and attack
models.

This research could contribute to the development of guidelines and best practices
for deploying secure cryptographic solutions.

Cryptanalysis and Vulnerability Assessment: In addition to studying GNFS as
a factorization method, further research could delve into cryptanalysis techniques
to analyze the security of modern cryptographic techniques comprehensively. This
includes exploring potential vulnerabilities, weaknesses, and attacks against cryp-
tographic systems, providing valuable insights into their resilience and guiding the
development of stronger cryptographic algorithms. By considering these perspec-

Factorization algorithm GNFS 61

tives, researchers can continue to advance the understanding, performance, and se-
curity of modern cryptographic techniques, ensuring the validity and effectiveness
of cryptography in the face of evolving threats and computational advancements.

Factorization algorithm GNFS 62

REFERENCES

References

[1] Chapman and Hall/J. Katz /yLindel. Cryptography and network security. in-
troduction to modern cryptography second edition.

[2] by by J. Orlin Grabbe. Symmetric key algorithms. guides. codepath. org ,
visited 26/05/2023.

[3] by by J. Orlin Grabbe. The des algorithm illustrated. page. math. tu-berlin.
de , visited 26/05/2023.

[4] Kate Brush/ Linda Rosencrance/ Michael Cobb. asymmetric cryp-
tography (public key cryptography. https: // www. techtarget. com/

searchsecurity/ definition/ asymmetric-cryptography , consulted : 18
February 2023.

[5] Aanchal kumari. What is asymmetric key cryptography?

[6] by Gustavus J. Simmons. Cryptography communication system and method,
rivest-shamir-adleman encryption.

[7] by marry K.pratt. cyber attacks.

[8] Prof. Ingole R.Y Marne Gauri. A review on maintaining web applications and
brute force attack by prof.

[9] fortinet.com. brute force attack definition. https: // www. fortinet. com/ ,
consulted : 19/05/2021.

[10] G. I. Davida. Chosen signature cryptanalysis of the rsa (mit) public key cryp-
tosystem. technical report tr-cs-82-2.

[11] S. Micali S. Goldwasser and P. Tong. Why and how to establish a private code on
a public network (pages 134-144). 23rd IEEE Symp. on Foundations of Comp,
1982.

[12] J. Hastad and M. N¨aslund. The security of individual rsa bits. 1988.

[13] J. Hastad and M. N¨aslund. The security of individual rsa bits. 1988.

[14] Daniel J. Bernstein and Arjen K. Lenstra. A general number field sieve imple-
mentation.

[15] Brian Antony Murphy. Polynomial selection for the number field sieve integer
factorisation algorithm. PhD - thesis (1999).

[16] Peter L. Montgomery. Square roots of products of algebraic numbers, mathe-
matics of computation 1943–1993: a half-century of computational. 1994, pp.
567–571.

[17] Phong Nguyen. A montgomery-like square root for the number field sieve,
lecture notes in computer science 1423. (1998),pages 151–??

Factorization algorithm GNFS 63

guides.codepath.org
page.math.tu-berlin.de
page.math.tu-berlin.de
https://www.techtarget.com/searchsecurity/definition/asymmetric-cryptography
https://www.techtarget.com/searchsecurity/definition/asymmetric-cryptography
https://www.fortinet.com/

Annex

[18] Jr. Hendrik W. Lenstra Joe P. Buhler and Carl Pomerance. Factoring integers.

Factorization algorithm GNFS 64

	Cryptography and security
	Introduction
	Cryptography
	Cryptography and modern cryptography

	Symmetric cryptography
	Definition
	Functionality
	History of symmetric Algorithms
	Uses of symmetric cryptography
	Symmetric cryptography pros and cons
	The application of symmetric encryption

	Asymmetric cryptography
	 The history of asymmetric cryptography
	The mechanism of asymmetric cryptography
	Uses of asymmetric cryptography
	 The difference between asymmetric vs. symmetric cryptography
	The applications of asymmetrical encryption.
	some examples about asymmetric encryption
	Advantages and disadvantages of asymmetric encryption:

	Attacks on RSA
	cyber attacks
	 The most known types of attacks on RSA:

	Factorization algorithms attack
	Factorization attack
	big O notation and time complexity
	The most encountered orders of Big-O's
	Factorization algorithms

	Conclusion

	The GNFS algorithm
	Introduction
	Number field sieve(NFS)
	Complexity of the NFS Algorithm

	The GNFS Algorithm
	Overview of the GNFS Algorithm
	Implementing the GNFS Algorithm

	An extended example
	Setting up factor bases
	Sieving
	Linear Algebra
	Square roots

	Conclusion

	GFNS performances Evaluation
	Introduction
	GMP library installation :
	Before compiling
	MSYS installation
	Install GMP and compile :

	GFNS performances Evaluation
	Test 01 :
	Test 02 :
	Test 03 :
	Test 04 :
	Test 05 :
	Test 06 :
	Test 07 :

	Efficiency of RSA Key Factorization :
	Conclusion

	General Conclusion and perspectives

