
ةـــــيـــبــــعــشـــة الـــيــــراطـــــقـــــــــــــــــــــــــــة الديمـــريـــــــزائــة الجـــــــــــــــوريــــــهـــــمــالج

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

يـــــــــــــــمـــلــــــــــــــــــــحث العــالي و البــــــــــــــــــــــــــــــم العــــــــــليـــــــعــوزارة التـ

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

–ان ـــلمســـــــت – دــيــاـــــــــــــــــامعة أبي بــكــــــــــــر بــــلــــقــــــــــــــــــــــــــــــــــــجـــــــــــــــــــــ

Université Aboubakr Belkaïd – Tlemcen –

Faculté de TECHNOLOGIE

MASTER’S THESIS

Presented for the obtention of the MASTER degree

In: Telecommunications

Speciality: Networks and Telecommunications

By: Krim Sidi Mohammed & Yahlali Amira

Subject

Anomaly- Intrusion Detection Systems based on
CSE-CIC-IDS2018 Dataset using Deep Learning Model

Publicly defended, on 05/06/2023, before the jury composed of:

M. BENDIMERAD Yacine MCA University of Tlemcen President

M. MOUSSAOUI Djilali MCA University of Tlemcen Reviewer

M. HADJILA Mourad MCA University of Tlemcen Supervisor

Ms. FERHI Wafaa PhD student University of Tlemcen Co-Supervisor

College year: 2022/2023

Dedication

I dedicate this master’s thesis to the people who have been a constant
source of inspiration, support, and encouragement throughout my

academic journey.

To my parents, who instilled in me a love for learning and taught me
the value of hard work. Your unwavering support and belief in my

abilities have been the driving force behind my success. I am forever
grateful for everything you have done for me and will always strive to

make you proud.

To my professors, who have challenged and inspired me to push
beyond my limits and pursue excellence. Your guidance, knowledge,
and mentorship have been instrumental in shaping my academic and

professional growth. I am honored to have learned from you.

To my friends and colleagues, for their constant encouragement,
support, and camaraderie. Your presence has made this journey more

enjoyable and memorable. I am grateful for the memories we have
shared and the connections we have made.

Finally, I dedicate this thesis to myself, for my perseverance,
determination, and resilience. This accomplishment is a testament to
the hard work, sacrifice, and dedication I have put into my academic

and personal growth. I am proud of myself and grateful for the
opportunity to pursue my passion.

Sidi Mohammed
I

Dedication

This master’s thesis is dedicated to the individuals who have impacted
my academic journey in ways beyond measure.

To my parents, thank you for instilling in me the values of hard work,
perseverance, and resilience, and for teaching me to never give up on

my dreams.

To My brothers, thank you for being my best friends, and my source
of laughter. I would not be where I am today without your love and
encouragement. I hope to be a role model and an example to you.

To my colleague and dear friend Oussama, thank you for being a
constant source of support and encouragement. Your dedication to our

success and your willingness to help in any way possible have been
truly invaluable. I am grateful for the memories we shared and the

academic challenges we faced together. Thank you for your friendship
and support.

To my dear friends Hanane, Ahlem, and Ghizlen with whom I
have shared the best and most pleasant moments throughout my

university journey and all my colleagues.

And finally, to myself, for the long hours, dedication, and hard work
put into completing this journey. This accomplishment is a reminder
of my capabilities, and I am proud of what I have achieved. With love

and gratitude.

Amira

Acknowledgements

After giving thanks to God the Almighty and the Benevolent, we would
like to express our heartfelt gratitude to everyone who participated in

the realization of this thesis.

We would also like to thank our supervisor, Mr. M. Hadjila, for his
unwavering support and guidance throughout this research. His

expertise and insights have been invaluable in shaping the direction of
this thesis.

We are also grateful to Miss Ferhi Wafaa, our co-supervisor, for her
contributions to this work. Her input and feedback have been
instrumental in helping us to refine and improve our research.

Finally, we would like to extend our thanks to the members of the jury
for their interest in our research.

III

Abstract

An Intrusion Detection System (IDS) is a rapidly growing field that deals with
detecting and responding to malicious network traffic and computer misuse. Ar-
tificial Intelligence (AI) plays a significant role in IDSs by providing an effective
way to adapt and construct these systems. This thesis proposes an intelligent and
efficient network intrusion detection system based on deep learning for attack de-
tection and classification. The model is trained and tested using the realistic cyber
defense dataset (CSE-CIC-IDS2018), which required several pre-processing tasks
such as eliminating duplicate observations, clearing missing values, converting cat-
egorical data to numerical data, and performing feature scaling. Two approaches
are proposed: the first maintains all attacks present in the dataset, along with the
normal traffic. However, after analyzing the results, it was discovered that certain
attacks were susceptible to misdetection. As a result, in the second approach, these
misdetection-prone attacks were removed, which led to a significant improvement
in accuracy, precision, recall, and F1-score. L2 regularization was implemented to
avoid overfitting. The proposed deep learning model achieved impressive results,
with an accuracy score of 99.97%, a precision score of 99.66%, a recall of 99.96%,
and an F1-score of 99.81%. The findings demonstrate the effectiveness of deep learn-
ing in intrusion detection and emphasize the significance of meticulous data analysis
and pre-processing.

Keywords: Intrusion Detection System (IDS), Artificial Intelligence (AI), deep
learning, attack detection, classification, CSE-CIC-IDS20218 dataset, pre-processing,
feature scaling, L2 regularization, evaluation metrics.

IV

Résumé

Un système de détection d’intrusion (IDS) est un domaine en constante évolu-
tion qui se concentre sur la détection et la réponse au trafic réseau malveillant et
à l’abus d’ordinateurs. L’intelligence artificielle (IA) joue un rôle important dans
les IDS en offrant un moyen efficace d’adapter et de construire ces systèmes. Ce
mémoire propose un système de détection d’intrusion réseau intelligent et efficace
basé sur l’apprentissage en profondeur pour la détection et la classification des at-
taques. Le modèle est entraîné et testé à l’aide du jeu de données réaliste de défense
cybernétique (CSE-CIC-IDS2018), qui a nécessité plusieurs tâches de prétraitement
telles que l’élimination des observations en double, la suppression des valeurs man-
quantes, la conversion des données catégorielles en données numériques et la mise
à l’échelle des caractéristiques. Deux approches sont proposées : la première main-
tient toutes les attaques présentes dans le jeu de données, ainsi que le trafic normal.
Cependant, après analyse des résultats, il a été découvert que certaines attaques
étaient susceptibles de ne pas être détectées. Par conséquent, dans la deuxième
approche, ces attaques sujettes à une mauvaise détection ont été supprimées, ce
qui a conduit à une amélioration significative de l’exactitude, de la précision, du
rappel et du score F1. Une régularisation L2 a été mise en place pour éviter le
surajustement. Le modèle d’apprentissage en profondeur proposé a obtenu des ré-
sultats impressionnants, avec un score de précision de 99,97%, un score de précision
de 99,66%, un rappel de 99,96% et un score F1 de 99,81%. Les résultats démontrent
l’efficacité de l’apprentissage en profondeur dans la détection d’intrusions et soulig-
nent l’importance d’une analyse et d’un prétraitement de données minutieux.

Mots clés: Système de détection d’intrusion (IDS), Intelligence artificielle (IA),
apprentissage en profondeur, détection d’attaques, classification,CSE-CIC-IDS20218
dataset, prétraitement, mise à l’échelle des caractéristiques, régularisation L2, mesures
d’évaluation.

V

Table of contents

Dedication I

Acknowledgements III

Abstract IV

Résumé V

List of Figures X

List of Tables XI

General introduction 1

Chapter 1 Network Security & Intrusion Detection System 3
1.1 Introduction . 4
1.2 Key Pillars of Network Security . 4

1.2.1 Confidentiality . 5
1.2.2 Integrity . 5
1.2.3 Availability . 5

1.3 Threats to Network Security . 5
1.3.1 Denial-of-Service (DoS) . 6
1.3.2 Distributed denial-of-service (DDoS) 7
1.3.3 Brute force . 8
1.3.4 SQL injection . 9
1.3.5 Infiltration . 9
1.3.6 Botnet . 10

1.4 Network Security Measures . 10
1.4.1 Firewalls . 10
1.4.2 Virtual Private Networks (VPNs) 12
1.4.3 Encryption . 13
1.4.4 Access Control . 13
1.4.5 Security Information and Event Management (SIEM) Systems 14
1.4.6 Intrusion Detection and Prevention Systems (IDPS) 15

VI

TABLE OF CONTENTS

1.5 Intrusion Detection System . 15
1.6 Types of Intrusion Detection System 16

1.6.1 Network-based IDS (NIDS) 16
1.6.2 Host-based IDS (HIDS) . 17
1.6.3 Hybrid IDS (HIDS + NIDS) 18

1.7 IDS Detection Methods . 19
1.7.1 Signature-based detection . 19
1.7.2 Anomaly-based detection . 20

1.8 IDS Architecture . 20
1.8.1 Data collection . 20
1.8.2 Data pre-processor . 20
1.8.3 Intrusion recognition . 21

1.9 IDS Deployment Scenarios . 21
1.9.1 Perimeter-based IDS . 21
1.9.2 Internal-based IDS . 22
1.9.3 Distributed IDS . 22

1.10 Conclusion . 23

Chapter 2 Deep Learning 24
2.1 Introduction . 25
2.2 Fundamentals of Machine Learning 26
2.3 Supervised learning . 26

2.3.1 Dataset . 27
2.3.2 Model and its parameters . 27
2.3.3 Cost function . 28
2.3.4 Learning algorithm . 28

2.4 Advantages of Deep Learning over Traditional Machine Learning Al-
gorithms . 28

2.5 Introduction to Deep Learning . 29
2.6 Artificial Neural Networks . 30

2.6.1 Components of Artificial Neural Networks 30
2.6.2 Feedforward Neural Networks (FFNNs) 31
2.6.3 Convolutional Neural Networks (CNNs) 35
2.6.4 Reccurent Neural Networks (RNNs) 36
2.6.5 Activation Functions . 38
2.6.6 Loss function . 41

2.7 Metrics for Evaluating the Performance of Deep Learning Models . . 45
2.7.1 Confusion Matrix . 45
2.7.2 Accuracy . 47

VII

TABLE OF CONTENTS

2.7.3 Precision . 47
2.7.4 Recall . 47
2.7.5 Specificity . 48
2.7.6 F1 score . 48

2.8 Conclusion . 48

Chapter 3 Building and Evaluation a Deep Learning Model 49
3.1 Introduction . 50
3.2 Execution environment . 50
3.3 Descriptions of CSE-CIC-IDS2018 dataset 52
3.4 Implementation . 56
3.5 Data pre-processing . 57

3.5.1 Merging files . 57
3.5.2 Data cleaning . 57
3.5.3 Label encoding . 58
3.5.4 Normalization . 60
3.5.5 Splitting Data . 60

3.6 Model creation . 61
3.7 Results and analysis . 62
3.8 Improved Approach . 66
3.9 Conclusion . 69

General Conclusion 70

Bibliography 75

VIII

List of Figures

1.1 CIA triad. 4
1.2 DoS attack. 6
1.3 DDoS attack. 7
1.4 Brute force. 8
1.5 SQL Injection. 9
1.6 Firewall. 11
1.7 VPN. 12
1.8 Intrusion Detection System. 16
1.9 Network-based IDS. 17
1.10 Host-based IDS. 18
1.11 Hybrid IDS. 19
1.12 Framework of Intrusion Detection System. 21

2.1 Representation of the relationships between AI, ML, and DL. 25
2.2 Supervised Machine Learning. 27
2.3 Representation of the cost function. 28
2.4 The Impact of Data Availability on Algorithm Performance. 29
2.5 Biological neuron structure. 30
2.6 A Neural Networks representation with two-input. 31
2.7 Representation of a 2D input neural network with one hidden layer. . 32
2.8 Representation of a 2D input with a two hidden layers neural network. 32
2.9 Forward and Backward Propagation. 33
2.10 Backward Propagation. 34
2.11 CNN Layers. 35
2.12 Forward and Backward Propagation. 37
2.13 Sigmoid function. 39
2.14 ReLU function. 40
2.15 Softmax function. 41
2.16 Log loss when true label=1. 43
2.17 Confusion matrix. 45
2.18 Confusion matrix multiclass classification. 46

3.1 Component architecture of the proposed work. 56

IX

LIST OF FIGURES

3.2 Distribution of labels in the Cleaned Dataset. 58
3.3 Label encoding/One-hot encoding 59
3.4 Splitting the CIC-IDS2018 dataset into three parts. 61
3.5 Visualizing Model Performance. 63
3.6 Confusion matrix multiclass classification. 65
3.7 Visualizing improved Model Performance. 67
3.8 Confusion matrix multiclass classification for the improved model. . . 68
3.9 Confusion matrix of each label. 69

X

List of Tables

3.1 List of python libraries. 52
3.2 Description of files containing CIC-IDS2018 dataset. 53
3.3 Overall characteristics of CIC-IDS2018 dataset. 54
3.4 Class wise instance occurrence of CIC-IDS2018 dataset. 54
3.5 features present in the CIC-IDS2018 dataset. 55
3.6 Evaluation Metrics. 64
3.7 Evaluation Metrics Performance for the improved model. 67
3.8 Evaluation Metrics for each label. 68

XI

General introduction

The rapid evolution towards a fully connected lifestyle for all economic and social
actors has led to significant advantages in terms of communication, online shopping,
and information exchange. However, this interconnectivity has also exposed critical
vulnerabilities and challenges for cybersecurity, with cyber threats evolving rapidly
and attackers exploiting weaknesses in computer systems.

The scale of the problem is significant, with around 2328 cyber crimes occur-
ring each day and an estimated loss of nearly $6 trillion each year [1]. To address
these challenges, cybersecurity experts have developed Intrusion Detection Systems
(IDSs) to monitor network traffic for any signs of abnormal behavior or misuse. IDSs
have emerged as a valuable tool in the fight against cyber-attacks, providing early
warning of potential threats.

IDSs can be broadly classified into two categories: network-based IDS (NIDS)
and host-based IDS (HIDS). NIDS analyze network traffic to detect any attempt to
subvert the normal behavior of the system, while HIDS detect intrusions by analyz-
ing events on the local system where the IDS is installed.

In recent years, Deep Learning (DL) has emerged as a powerful tool in the field
of intrusion detection. DL models, such as Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs), are capable of learning complex patterns
from large amounts of data and identifying potential threats automatically, with-
out the need for explicit rules or signatures. DL-based IDSs have shown promising
results in detecting network attacks, including denial of service attacks, malware
infections, and network intrusions. DL models can detect previously unknown or
evolving attacks by learning from the historical network traffic data. This ability to
detect unknown threats is particularly valuable in the context of emerging threats,
where traditional signature-based methods may fail to detect new attack patterns.

1

GENERAL INTRODUCTION

Overall, while the benefits of a fully connected lifestyle are clear, it is important
to be aware of the risks posed by cyber threats. By using IDSs and DL-based mod-
els, we can better protect ourselves and our networks against these evolving threats.

Our thesis is structured as an investigation of Deep Learning methods and their
effectiveness in the field of intrusion detection. Specifically, we will examine ap-
proaches that have demonstrated their reliability. The outline of our thesis is as
follows:

• Chapter one provides a comprehensive overview of network security and its
different forms, including the various types of anomalies that can occur. In
addition, we examine a variety of security measures and delve into the subject
of intrusion detection systems. This includes an in-depth look at the different
types of IDSs, detection methods, achitecture, and deployment scenarios.

• In the second chapter, we provided an introduction to machine learning, deep
learning, and artificial intelligence. We then proceeded to discuss the funda-
mentals of machine learning, followed by a discussion on supervised learning.
We compared and contrasted deep learning with machine learning, highlight-
ing the advantages of deep learning. We then delved deeper into deep learning,
presenting various neural network architectures and evaluation metrics.

• The third chapter is dedicated to constructing and assessing our model, with
a focus on explaining the methodology employed and the various parameters
considered.

Finally, we crown this manuscript with a general conclusion and perspectives.

2

Chapter 1

Network Security & Intrusion
Detection System

CHAPTER 1. NETWORK SECURITY & INTRUSION DETECTION SYSTEM

1.1 Introduction

Network security is the process of developing and implementing a defensive strat-
egy to safeguard the underlying networking infrastructure from unauthorized access,
malicious activity, potential threats, or intrusion attempts. It is a critical aspect of
any organization’s operations, as it ensures the confidentiality, integrity, and avail-
ability of data and systems. Intrusion Detection Systems (IDS) are monitoring
systems that listen to network traffic in a stealthy manner to detect potential se-
curity breaches. They are considered essential components of network security, as
they help identify and respond to potential threats in real-time, mitigating the risk
of security breaches. IDS can detect both known and unknown threats, making
them an indispensable tool for protecting against emerging cyber-attacks.

1.2 Key Pillars of Network Security

The CIA triad, which stands for Confidentiality, Integrity, and Availability, is a
fundamental concept in network security [2]. It serves as a set of guiding principles
and goals for organizations and individuals to protect information from unauthorized
access, modification, or loss. To achieve true network security, all three elements of
the CIA triad must be present simultaneously. Therefore, the CIA triad is considered
an essential foundation for effective information security practices (see Figure 1.1).

Figure 1.1: CIA triad.

4

CHAPTER 1. NETWORK SECURITY & INTRUSION DETECTION SYSTEM

1.2.1 Confidentiality

Confidentiality ensures that access to data is restricted to only authorized in-
dividuals or entities. The more sensitive the information, the more stringent the
security measures should be. Some measures to ensure confidentiality include en-
cryption, passwords, two-factor authentication, biometric identification, and secu-
rity tokens. These measures help protect sensitive information from unauthorized
access and prevent data breaches. It is important to implement the appropriate
confidentiality measures based on the level of sensitivity of the information being
protected.

1.2.2 Integrity

Integrity involves maintaining the accuracy and completeness of data. This is
done by protecting data from unauthorized modification, accidental changes, or non-
human-caused events such as server crashes. To maintain data integrity, various
measures can be implemented, such as encryption, hashing, user access controls,
checksums, version control, and backups. These measures help prevent unauthorized
changes and ensure the accuracy of the data. It is important to implement the
appropriate measures based on the sensitivity of the information being protected.

1.2.3 Availability

Availability ensures authorized users have access to data when needed. It involves
implementing measures such as redundancy, load balancing, disaster recovery plan-
ning, regular maintenance, and monitoring to prevent any disruptions or downtime.
By ensuring the availability of network services, organizations and individuals can
prevent productivity loss, revenue loss, and other negative consequences that can
arise from network downtime.

Apart from the CIA triad, there is another set of measures that should be put in
place to ensure the security of information. These measures are known as authenti-
cation, authorization, and accounting.

1.3 Threats to Network Security

Networks face various types of security threats that can compromise the security
and integrity of our data such as viruses, malware, and hacking. These threats can
cause serious damage to the network, resulting in data loss, system downtime, and
financial losses. We cite the most common network attacks below.

5

CHAPTER 1. NETWORK SECURITY & INTRUSION DETECTION SYSTEM

1.3.1 Denial-of-Service (DoS)

DoS is a type of cyber attack that seeks to disrupt the normal functioning of a
computer or other device by overwhelming it with traffic, rendering it unavailable to
its intended users [3]. Such attacks can be carried out using a single computer, and
typically involve flooding the targeted machine with requests until normal traffic is
unable to be processed. The main goal of a DoS attack is to exhaust the resources
of the targeted device, leading to denial-of-service to legitimate requests. These
attacks can cause significant disruption to businesses and organizations, and various
measures can be taken to prevent and mitigate their impact. Figure 1.2 shows the
DoS attack.

Unoverwhelming traffic

Attacker Targeted victim

Figure 1.2: DoS attack.

1.3.1.1 Hulk

Hulk is a DoS attack tool that sends a large number of HTTP requests to a
web server in order to overwhelm it and cause it to become unresponsive [4]. This
attack is named after the Marvel Comics character, as the tool is designed to smash
through web server defenses.

1.3.1.2 GoldenEye

GoldenEye is another DoS attack tool that sends a large number of HTTP re-
quests to a web server, but it also uses encryption and obfuscation techniques to
evade detection by security systems [5]. This attack is named after the fictional
James Bond villain, as it is designed to be sophisticated and difficult to stop. Gold-
enEyeSlowloris Slowloris is a DoS attack tool that works by opening multiple con-
nections to a web server and sending partial HTTP requests, but never completing
them [6]. This ties up server resources and causes the server to become unresponsive
to legitimate requests. This attack is named after the slow loris, a type of primate
that moves very slowly, as the attack is designed to slowly drain resources from the
targeted server.

6

CHAPTER 1. NETWORK SECURITY & INTRUSION DETECTION SYSTEM

1.3.2 Distributed denial-of-service (DDoS)

DDoS attack is a malicious attempt to disrupt the normal traffic of a targeted
server, service, or network by overwhelming it with a flood of Internet traffic [7].
DDoS attacks are carried out with networks of infected computers and other devices,
known as botnets, which are controlled remotely by the attacker. The attacker sends
remote instructions to each bot to direct the attack, causing each bot to send requests
to the target’s IP address (see Figure 1.3). This can potentially cause the server or
network to become overwhelmed, resulting in a denial-of-service to normal traffic.
We list two of the most commonly used types of DDoS attacks.

Unoverwhelming traffic

Attacker

bot

bot

bot

Targeted victim

Figure 1.3: DDoS attack.

1.3.2.1 HOIC

HOIC stands for High Orbit Ion Cannon. It is a DDoS attack tool that uses
a large number of HTTP GET or POST requests to overwhelm a target server or
network [8]. HOIC is known for its ability to conduct highly coordinated and con-
centrated attacks, which can generate large amounts of traffic and make it difficult
to detect the source of the attack.

1.3.2.2 LOIC

LOIC stands for Low Orbit Ion Cannon. It is also a DDoS attack tool that sends
a flood of traffic to a target server or network [9]. Unlike HOIC, LOIC can use both
HTTP and UDP flood attacks. HTTP flood attacks are similar to those used by
HOIC, while UDP flood attacks send a large number of UDP packets to the target,

7

CHAPTER 1. NETWORK SECURITY & INTRUSION DETECTION SYSTEM

consuming network resources and causing the target to become unresponsive.
The difference between these two attacks, is their level of sophistication. HOIC
is known for its ability to conduct more advanced and coordinated attacks, while
LOIC is considered to be a more basic and straightforward tool.

1.3.3 Brute force

A brute force attack is a trial-and-error method used to gain unauthorized access
to a system or application by repeatedly guessing possible usernames and passwords
until the correct combination is found [10]. The attacker may use automated soft-
ware to generate a large number of consecutive guesses in a short amount of time
(see Figure 1.4).

Attacker Automated software
Multiple login attemps

Server

Figure 1.4: Brute force.

Four different types of brute force attacks are listed below:

1.3.3.1 FTP Brute Force

File Transfer Protocol is a network protocol used to transfer files. It uses a
client-server model in which users can connect to a server using an FTP client [11].
Authentication takes place with a username and password, typically transmitted in
plain text, but can also support anonymous logins if available.

1.3.3.2 SSH Brute Force

This type of attack targets the Secure Shell (SSH) protocol, which is used to
remotely access and manage servers [12]. The attacker tries different username and
password combinations until they are able to successfully log in to the SSH server.
Once they have access, they can perform various malicious activities such as stealing
data or installing malware.

1.3.3.3 Web Brute Force

This type of attack targets web-based login systems, such as those used for on-
line banking or email accounts. The attacker uses automated tools to try different

8

CHAPTER 1. NETWORK SECURITY & INTRUSION DETECTION SYSTEM

combinations of usernames and passwords until they are able to log in to the sys-
tem. Once they have access, they can steal sensitive information or perform other
malicious activities [13].

1.3.3.4 XSS Brute Force

This type of attack targets web applications that have cross-site scripting (XSS)
vulnerabilities [14]. The attacker injects malicious code into the web application,
which is then executed when a user visits the infected page. The malicious code can
steal the user’s session ID, login credentials, or other sensitive information.

1.3.4 SQL injection

Structured Query Language (SQL) is a type of code injection attack that targets
SQL databases by inserting malicious SQL statements into entry fields (see Figure
1.5). The attacker can use these statements to retrieve sensitive data from the
database, modify existing data, or even destroy the entire database. SQL injection
attacks commonly occur over the internet by sending malicious SQL queries to an
API endpoint provided by a website or service [15].

Attacker

HTTP request + SQL injection

processes Request
Generates Malicious Query

SQL server
Web server

Malicious SQL Query

Reply to Malicious QueryHTTP Response + hidden data

Figure 1.5: SQL Injection.

1.3.5 Infiltration

Infiltration is the act of gaining unauthorized access to a system or network,
typically for malicious purposes. Attackers can use a variety of methods to infiltrate
a network, including exploiting software or hardware vulnerabilities, using social en-
gineering techniques to trick users into disclosing sensitive information or executing
malicious code, or physically breaching security controls.

One form of infiltration involves exploiting vulnerabilities from within the net-
work itself. In this scenario, attackers can use techniques such as sending a malicious
file via email to a victim and exploiting an application vulnerability. Once the at-
tack is successful, a backdoor is executed on the victim’s computer, allowing the

9

CHAPTER 1. NETWORK SECURITY & INTRUSION DETECTION SYSTEM

attacker to scan the internal network for other vulnerable systems and exploit them
if possible [16].

1.3.6 Botnet

Botnet is a network of compromised devices, which are controlled by a single
entity or attacker, and used to carry out malicious activities. The compromised
devices are infected with malware that allows the botmaster to remotely control
them and use them for various nefarious purposes, such as DDoS attacks, spam-
ming, phishing, credential stuffing, and more.

One commonly used botnet malware is Zeus, which is a Trojan horse that runs
on Microsoft Windows operating systems. It can be used for various criminal ac-
tivities, including stealing banking information and installing ransomware. Zeus is
often spread through drive-by downloads and phishing schemes. Another botnet
commonly used is the Ares botnet, which is an open-source botnet that allows the
botmaster to remotely execute shell commands, perform persistence, upload/down-
load files, take screenshots, and log keystrokes [17].

In summary, security threats can cause significant harm to a network, result-
ing in data breaches, downtime, lost productivity, and financial losses. Protecting
against these threats requires a comprehensive approach to network security that
includes regular security updates to software and hardware, implementing strong
passwords, and user education and awareness training to prevent social engineering
tactics. Firewalls, antivirus software, intrusion detection systems, and other security
measures should also be put in place to prevent attacks and mitigate their impact.

1.4 Network Security Measures

Securing a network can be achieved through several methods, the most common
of which are covered below.

1.4.1 Firewalls

Firewalls are an essential tool for securing networks against unauthorized access
and malware attacks [18]. They monitor incoming and outgoing traffic and can
block traffic from sources that don’t meet certain criteria, such as IP address or port
number. Although firewalls are easy to deploy and manage, they have limitations
in detecting and blocking advanced attacks and internal threats. Figure 1.6 shows
firewall.

10

CHAPTER 1. NETWORK SECURITY & INTRUSION DETECTION SYSTEM

Internet
firewall Private network

Unwanted traffic

Permitted traffic

Figure 1.6: Firewall.

There are several types of firewalls [19] commonly used in computer networks,
including:

1.4.1.1 Packet filtering firewall

This firewall examines packets at the network layer and filters incoming and
outgoing traffic based on pre-defined rules, such as source and destination addresses,
port numbers, and protocol type. They are easy to implement and have minimal
impact on network performance, making them a popular choice for basic network
security. However, they are less secure than other types of firewalls and can be
vulnerable to certain types of attacks, such as IP spoofing and Denial-of-Service
(DoS) attacks. Packet filtering firewalls provide a simple and cost-effective way to
provide basic network security, but they may not provide adequate protection against
modern threats and should be used in conjunction with other security measures.

1.4.1.2 Stateful inspection firewall

This firewall keeps track of the state of network connections and uses this infor-
mation to allow or block traffic based on factors such as state, port, and protocol.
The firewall monitors all activity from the opening of a connection until it is closed,
and filtering decisions are made based on both administrator-defined rules and con-
text, which refers to using information from previous connections and packets be-
longing to the same connection. In addition, stateful inspection firewalls can detect
and block certain types of attacks, such as SYN floods. By maintaining information
about the state of network connections, the firewall can identify and prevent these
types of attacks by only allowing packets that belong to a known connection.

1.4.1.3 Next-generation firewall (NGFW)

NGFW is an advanced type of firewall that combines traditional firewall capabil-
ities with additional features such as Intrusion Prevention System (IPS), application
visibility and control, SSL inspection, and advanced malware protection. NGFWs
use deep packet inspection to identify and block traffic based on the application,
user, content, and behavior, providing better security for modern, complex network

11

CHAPTER 1. NETWORK SECURITY & INTRUSION DETECTION SYSTEM

environments. They can also detect and block sophisticated attacks, such as zero-
day exploits and advanced persistent threats, by analyzing traffic in real-time and
using threat intelligence feeds. NGFWs offer a higher level of security and gran-
ular control over network traffic compared to traditional firewalls, making them a
popular choice for securing network infrastructures against modern threats.

1.4.2 Virtual Private Networks (VPNs)

VPNs provide secure remote access to a network by creating an encrypted tunnel
over the internet (see Figure 1.7). They are commonly used by remote workers who
need to access company resources from outside the office.

Private network
Internet Encrypted tunnel

Figure 1.7: VPN.

There are several types of VPNs [20], including:

1.4.2.1 Remote access

A remote access VPN securely connects a device outside the corporate office to a
private network over the internet. This type of VPN is commonly used by employees
who need to access company resources from outside the office, such as from home
or while traveling. The VPN technology has advanced to allow security checks
to be conducted on endpoints to ensure they meet certain security requirements
before being granted access to the private network. Remote access VPNs provide
a secure way for employees to access company resources while also ensuring the
confidentiality, integrity, and availability of sensitive data on the private network.

1.4.2.2 Site-to-site

A site-to-site VPN is a type of VPN that connects the corporate office to branch
offices over the Internet, creating a secure connection between two or more networks.
This type of VPN is commonly used for branch office connectivity, cloud migration,
and disaster recovery. Dedicated equipment is used to establish and maintain the
connection, making it impractical to have direct network connections between these
offices. Site-to-site VPNs are used when distance makes it difficult to have direct
network connections between the offices. It is often referred to as network to net-
work access. Site-to-site VPNs provide a secure way for organizations to connect

12

CHAPTER 1. NETWORK SECURITY & INTRUSION DETECTION SYSTEM

multiple networks, including two corporate networks or a corporate network and a
cloud service provider, while ensuring the confidentiality, integrity, and availability
of sensitive data.

1.4.3 Encryption

Encryption is an effective technique to protect the confidentiality and integrity
of data by converting plain text into a coded form, making it difficult for unau-
thorized parties to access the information. This security method can be used in
various scenarios such as secure email communication and storage of sensitive data.
However, implementing encryption can have an impact on the performance of sys-
tems and may require advanced management skills due to the complexity involved.
Nonetheless, the benefits of encryption make it a powerful tool in securing sensitive
information. There are several types of encryption, including:

1.4.3.1 Symmetric and asymmetric encryption

Symmetric encryption, also known as shared-secret encryption, uses a single key
for both encryption and decryption of data. This makes it fast and efficient, making
it ideal for large amounts of data. However, the security of encrypted data relies on
keeping the key secret. Asymmetric encryption, also known as public-key encryp-
tion, uses two different keys: one for encryption and one for decryption. The public
key is widely distributed, while the private key is kept secret. While asymmetric
encryption is slower than symmetric encryption, it provides better security because
the private key is kept secret, making it difficult for attackers to access the encrypted
data [21].

1.4.3.2 Hashing

Hashing is a one-way encryption process that takes plain text and produces a
fixed-length string of characters, called a hash. The same plain text will always
produce the same hash, but it is practically impossible to reverse the process and
recover the plain text from the hash, there are some common methods of hashing
such as MD5, SHA, bcrypt and scrypt [22].

1.4.4 Access Control

Access control is a network design strategy that allows only compliant, authenti-
cated, and trusted endpoint devices to access network resources and infrastructure,
while denying unauthorized access and potential threats. This is achieved through

13

CHAPTER 1. NETWORK SECURITY & INTRUSION DETECTION SYSTEM

the deployment of a password, unique user ID, and authentication process to ac-
cess the network. By restricting access to data and resources to only authorized
individuals, access control can prevent unauthorized access and data breaches. It is
commonly used to enforce password policies and control user permissions. However,
implementing access control can be complex and may lead to a false sense of security
if not implemented properly.

1.4.5 Security Information and Event Management (SIEM)

Systems

SIEM is a type of software that provides real-time analysis of security alerts
generated by network hardware and applications. SIEM systems combine Security
Information Management (SIM) and Security Event Management (SEM) technolo-
gies to provide a comprehensive view of an organization’s security posture [23].

SIEM systems collect security data from various sources, such as firewalls, intru-
sion detection systems, servers, and other network devices. They then use sophisti-
cated analytics and machine learning algorithms to identify patterns and anomalies
that could indicate a security breach or threat. Once a potential security issue is
detected, the SIEM system generates an alert that is sent to security analysts or
administrators for further investigation. SIEM systems can also automate security
response actions, such as blocking an IP address or shutting down a compromised
system.

Some of the key features of SIEM systems include:

• Log collection and management: Collecting and storing logs from various
sources in a central location for analysis and retention purposes.

• Real-time event correlation: Correlating security events from multiple
sources to provide a comprehensive view of security threats.

• User activity monitoring: Monitoring user activity to detect unauthorized
access or suspicious behavior.

• Threat intelligence: Integrating with external threat intelligence feeds to
enhance threat detection and response capabilities.

• Reporting and compliance: Generating reports for compliance purposes
and to provide visibility into security posture.

Some of the popular SIEM systems in use today include IBM QRadar, Splunk
Enterprise Security, LogRhythm, and McAfee Enterprise Security Manager.

14

CHAPTER 1. NETWORK SECURITY & INTRUSION DETECTION SYSTEM

1.4.6 Intrusion Detection and Prevention Systems (IDPS)

IDPS are security technologies designed to detect and prevent unauthorized ac-
cess, misuse, and other security threats to computer systems and networks. IDPS
systems operate by monitoring network and system events, analyzing them for signs
of malicious activity, and taking action to prevent or mitigate threats.

IDPS systems can be classified into two main categories: network-based IDPS
and host-based IDPS. Network-based IDPS systems monitor network traffic for sus-
picious activity, such as known attack patterns or abnormal behavior, and can take
action to block or prevent such activity. Host-based IDPS systems, on the other
hand, monitor activity on individual computer systems or hosts, and can detect and
prevent malicious activity that may not be visible on the network. Some of the key
features of IDPS systems include:

1. Real-time monitoring of network and system events.

2. Analysis of network traffic for signs of malicious activity.

3. Automatic response and prevention mechanisms to stop threats in real-time.

4. Alerting and reporting capabilities to notify security teams of potential threats
and breaches.

In conclusion, there are several methods available to secure a network, each
with its own strengths and weaknesses. However, the most important method for
securing a network is an IDPS, which can detect and respond to threats in real-
time. By using a combination of these methods and following best practices such as
regularly updating software and using strong passwords, businesses and individuals
can significantly reduce their risk of a security breach.

1.5 Intrusion Detection System

An Intrusion Detection System (IDS) is a critical component of any compre-
hensive network security strategy. Its main purpose is to detect and alert security
administrators of potential security breaches or unauthorized access attempts to a
network or system. IDS operates by monitoring network traffic, system logs, and
other sources for suspicious activities, and it can identify a range of security threats,
such as malware infections, attempts to exploit vulnerabilities, and other unautho-
rized activities [24].

IDS plays a critical role in network security because it allows organizations to
detect and respond to security threats before they can cause significant damage.

15

CHAPTER 1. NETWORK SECURITY & INTRUSION DETECTION SYSTEM

Without IDS, attackers can potentially gain access to sensitive data, cause system
disruptions, and damage an organization’s reputation. With IDS in place, secu-
rity administrators can quickly identify and respond to security incidents, minimize
the impact of an attack, and prevent future attacks. Figure 1.8 shows Intrusion
Detection System.

Firewall
IDS

RouterInternet

Hosts

Figure 1.8: Intrusion Detection System.

1.6 Types of Intrusion Detection System

There are different types of IDS systems available, each with its unique strengths
and capabilities. The three primary types of IDS are listed below.

1.6.1 Network-based IDS (NIDS)

Network-based Intrusion Detection Systems (NIDS) are a type of IDS that are
strategically placed within networks to passively monitor network traffic [25]. They
can be either hardware or software-based and can connect to various network medi-
ums, such as Ethernet or FDDI. Typically, NIDS have two network interfaces: one
for listening to network traffic in promiscuous mode and another for control and
reporting. This allows the NIDS to continuously analyze network traffic and iden-
tify potential security threats, such as malware infections or unauthorized access
attempts. NIDS can also block attacks and generate reports to help security admin-
istrators respond to security incidents. Figure 1.9 shows Network-based IDS.

16

CHAPTER 1. NETWORK SECURITY & INTRUSION DETECTION SYSTEM

Firewall

NIDS

Internet

Hosts

Figure 1.9: Network-based IDS.

1.6.2 Host-based IDS (HIDS)

Host-based Intrusion Detection System (HIDS) is an application that runs on a
single machine and monitors a computer or network for suspicious activities, includ-
ing intrusions created by external actors and misuse of resources or data internally
[26]. HIDS software logs suspicious activity and reports it to administrators, allow-
ing them to quickly identify any anomalies and signs of intrusion that may have
occurred. HIDS tools monitor log files generated by applications and create a his-
torical record of activities and functions. Most HIDS systems use a combination
of signature-based and anomaly-based detection methods, relying on a database of
known cyber threats and machine learning techniques to flag malicious behavior.
The key function that makes HIDS a must-have is the detection feature, which
saves administrators from having to sort through log files for unusual behavior.
HIDS software uses rules and policies to search log files and flag those with events
or activity that could be indicative of potentially malicious behavior. Figure 1.10
shows Host-based IDS.

17

CHAPTER 1. NETWORK SECURITY & INTRUSION DETECTION SYSTEM

Firewall

Master HIDS

Internet

Hosts

HIDS

HIDS

HIDS

Figure 1.10: Host-based IDS.

HIDS focuses on endpoint behaviors, while NIDS monitors network traffic for
abnormalities. NIDS can detect attacks before they happen, and HIDS responds
after a breach. Both systems are needed for complete security, and SIEM combines
them for real-time analysis. Choosing the best IDS depends on an organization’s
specific security needs.

1.6.3 Hybrid IDS (HIDS + NIDS)

Hybrid IDS refers to the integration of both Host-based Intrusion Detection Sys-
tem (HIDS) and Network-based Intrusion Detection System (NIDS) to create a more
robust and comprehensive security solution [27].

Hybrid IDS can be particularly useful in environments where there are multiple
entry points for attackers or where traditional perimeter defenses may not be enough
to secure the network. It is also helpful for detecting advanced persistent threats
(APTs) that can evade traditional security measures. Some popular Hybrid IDS
solutions include Snort, OSSEC, and Suricata. These tools provide a combination
of signature-based and anomaly-based detection methods, relying on a database of
known cyber threats and machine learning techniques to flag malicious behavior.
Figure 1.11 shows Hybrid IDS.

18

CHAPTER 1. NETWORK SECURITY & INTRUSION DETECTION SYSTEM

Firewall

NIDS

Internet

Hosts

HIDS

HIDS

HIDS

Figure 1.11: Hybrid IDS.

1.7 IDS Detection Methods

Intrusion detection systems primarily employ two techniques for detecting threats
and alerting network administrators: signature-based and anomaly-based [28].

1.7.1 Signature-based detection

Signature-based detection is a common and widely used method of intrusion
detection. It operates by comparing incoming network traffic with a database of
known attack patterns, or signatures, to identify malicious behavior. This method is
particularly effective at detecting well-known and frequent attacks, such as malware,
phishing, and denial-of-service. It is also relatively easy to deploy and maintain, as
signature databases can be regularly updated by vendors or security experts.

However, signature-based detection has some limitations. It cannot detect new
or unknown attacks, or variations of known attacks that do not match any signa-
ture in the database. False positives can also be a problem, with legitimate traffic
sometimes being identified as malicious. Additionally, signature-based detection can
be resource-intensive, as it has to scan each data packet against a large number of
signatures, which can slow down network performance.

19

CHAPTER 1. NETWORK SECURITY & INTRUSION DETECTION SYSTEM

1.7.2 Anomaly-based detection

Anomaly-based detection is a modern and sophisticated approach to IDPS. It in-
volves creating a standard for normal network behavior through statistical analysis,
machine learning, or artificial intelligence. This standard is then used to monitor
network traffic for any unusual or anomalous activity that could signify a potential
attack. If an anomaly is detected, the IDPS alerts or blocks the attack. Anomaly-
based detection is particularly effective against new or unknown attacks or varia-
tions of existing attacks that have no signature. Additionally, it is adaptable and
dynamic, meaning that it can learn from network behavior and modify the standard
as necessary.

However, there are some drawbacks to anomaly-based detection. For example,
establishing and maintaining a reliable baseline for normal behavior can be challeng-
ing, particularly in complex and diverse networks. Additionally, false negatives, or
missed attacks, can occur when malicious traffic is disguised as legitimate traffic or
mimics normal behavior. Finally, implementing and operating anomaly-based de-
tection can be expensive and complex, requiring advanced technology and expertise.

1.8 IDS Architecture

The architecture of an IDS can vary depending on the specific implementation
and requirements of the system [29], but the main three components of an IDS
architecture are:

1.8.1 Data collection

These sensors are responsible for gathering data from various sources, such as
network traffic, system logs, and other sources, that can be used to identify potential
security threats. IDS typically use sensors to collect data from these sources, such
as Network Intrusion Detection Systems (NIDS), Host-based Intrusion Detection
Systems (HIDS), and Application-based Intrusion Detection Systems (AIDS). Some
common sensor technologies used for IDS include Snort, Suricata, Zeek, and OSSEC.

1.8.2 Data pre-processor

data pre-processing involves filtering, normalizing, and extracting features from
collected data to create activity records that are relevant for security analysis. The
pre-processed data may include information such as source and destination IP ad-
dresses, port numbers, protocol types, timestamps, and packet payloads. The goal
of data pre-processing is to reduce the volume of data that needs to be analyzed,

20

CHAPTER 1. NETWORK SECURITY & INTRUSION DETECTION SYSTEM

improve the quality of the remaining data, and make it more amenable to further
analysis.

1.8.3 Intrusion recognition

Intrusion recognition is the process of identifying and classifying security threats
detected by an IDS, using various techniques such as signature-based detection,
anomaly-based detection, or Machine Learning-based detection to identify and clas-
sify security threats.

The goal of IDS architecture is to quickly and accurately detect security threats
and minimize their impact on the system or network. The interplay between the
data collection, data pre-processing, and intrusion recognition components of IDS
architecture is visually represented in Figure 1.12.

Data
collection

Data
pre-processing

Intrusion
recognition

Alarm
report

Intrusion
models

Monitored System

Reponse to intrusion

Reponse to intrusion

Figure 1.12: Framework of Intrusion Detection System.

1.9 IDS Deployment Scenarios

The deployment scenarios of IDS [30] refer to the various ways in which intrusion
detection systems are positioned and configured within a network. These scenarios
can be broadly categorized into three types:

1.9.1 Perimeter-based IDS

Perimeter-based IDS is deployed at the edge of the network, typically between
the internal network and the internet. Its primary function is to monitor and filter

21

CHAPTER 1. NETWORK SECURITY & INTRUSION DETECTION SYSTEM

incoming traffic from the outside and detect external attacks, such as port scan-
ning, vulnerability probing, or malware infections. Perimeter-based IDS is usually
implemented as a network-based IDS (NIDS), using sensors or probes that capture
and analyze network traffic. It is a common first line of defense against external
threats and can complement other security measures, such as firewalls and Intrusion
Prevention Systems (IPS).

1.9.2 Internal-based IDS

Internal-based IDS is deployed inside the internal network, typically at critical
points or segments where sensitive data or systems are located. Its primary func-
tion is to detect and respond to internal threats, such as insider attacks, lateral
movement, or unauthorized access. Internal-based IDS can be implemented as a
host-based IDS (HIDS), using agents or software that monitor and analyze the be-
havior of individual hosts or endpoints, or as a NIDS, using sensors or probes that
monitor and analyze network traffic. Internal-based IDS can be a valuable com-
plement to access controls, identity management, and Data Loss Prevention (DLP)
systems.

1.9.3 Distributed IDS

Distributed IDS is a hybrid deployment scenario that combines both perimeter-
based and internal-based IDS. It involves deploying multiple sensors or probes at
strategic points throughout the network, both at the edge and inside, to provide
comprehensive coverage and visibility. Distributed IDS can be a flexible and scal-
able solution that adapts to different network architectures, topologies, and security
requirements. It can also provide redundancy, load balancing, and failover capabil-
ities, in case of sensor or probe failures or network outages.

Selecting the appropriate IDS deployment scenario is an essential step as each
scenario has its own set of advantages and challenges, that depend on the network
environment, threat landscape, and security objectives. Therefore, it is important
to carefully evaluate and select the appropriate IDS deployment scenario that meets
the unique requirements and limitations of the organization.

22

CHAPTER 1. NETWORK SECURITY & INTRUSION DETECTION SYSTEM

1.10 Conclusion

In conclusion, network security is a critical aspect of any organization’s IT in-
frastructure, and the threat landscape is constantly evolving. As outlined in this
chapter, there are various threats to network security, including DoS, DDoS, brute
force attacks, SQL injection, infiltration, and botnets. To protect against these
threats, there are several security measures that organizations can implement, such
as firewalls, VPNs, encryption, access control, SIEM systems, and IDPS. Intru-
sion detection systems are an essential component of network security, and there
are different types of IDS, including NIDS, HIDS, and hybrid IDS. The choice of
IDS deployment scenario, whether perimeter-based, internal-based, or distributed,
depends on the specific needs and constraints of the organization. Overall, organi-
zations must stay vigilant and proactive in their approach to network security to
mitigate risks and prevent potential cyber attacks. In the following chapter, we will
introduce the concept of both Deep Learning and machine learning.

23

Chapter 2

Deep Learning

CHAPTER 2. DEEP LEARNING

2.1 Introduction

The primary objective of artificial intelligence (AI) is to equip computers with
the capability to comprehend and interact with the world intelligently. Deep Learn-
ing (DL) has emerged as a highly promising method to achieve this goal. Deep
Learning utilizes deep hierarchical neural networks to learn high-level concepts from
data and represent them in a significant manner. It is a type of Machine Learning,
which is why having a fundamental understanding of Machine Learning is essential
before diving into Deep Learning. Several concepts used in neural networks have
their roots in Machine Learning, and revising them can help in comprehending the
techniques of Deep Learning.

Machine Learning and Deep Learning are used in a wide range of industries and
domains. Some of the common applications include healthcare, finance, e-commerce,
transportation, natural language processing, image and video recognition. In health-
care, Machine Learning and Deep Learning can assist with medical diagnosis and
personalized medicine. In finance, they can be used for fraud detection and port-
folio optimization. In e-commerce, they can personalize product recommendations
and improve customer engagement. In transportation, they can optimize traffic pre-
diction and autonomous driving. In natural language processing, they can develop
chatbots and virtual assistants. In image and video recognition, they can detect
objects and recognize faces. These are just a few examples of the many applications
of Machine Learning and Deep Learning.

Deep Learning is a type of Machine Learning, which in turn is a branch of
Artificial Intelligence (as shown in Figure 2.1).

Artificial intelligence

Machine learning

Deep learning

Figure 2.1: Representation of the relationships between AI, ML, and DL.

25

CHAPTER 2. DEEP LEARNING

2.2 Fundamentals of Machine Learning

Machine Learning refers to the ability of computers to automatically learn pat-
terns and relationships in data, without being explicitly programmed to do so. It
involves the use of statistical models and techniques that enable the computer to
learn patterns from data, and then apply that learning to make predictions or take
actions without being explicitly programmed to do so, by using large amounts of
data to learn and adapt. Machine Learning is a diverse and rapidly evolving field
that employs a variety of different methods to achieve its goals. Among the most
common methods are reinforcement learning, supervised learning, and unsupervised
learning [31].

• Reinforcement learning: The computer learns through trial and error by
interacting with an environment and receiving feedback in the form of rewards
or penalties. The goal of reinforcement learning is to find an optimal policy,
or set of actions, that maximizes the gradual reward over time.

• Unsupervised learning: The computer is given an unlabeled dataset, mean-
ing that there are no predefined output or target variables. The goal of unsu-
pervised learning is to discover patterns and relationships in the data, such as
clustering similar examples or identifying outliers.

• Supervised learning : The computer is trained on a labeled dataset, mean-
ing that each example in the dataset is accompanied by the correct output or
target variable. This approach is used when the goal is to learn a mapping
from inputs to outputs, so that the computer can make accurate predictions
on new, unseen data.

Out of the three methods, supervised learning is often considered the most in-
teresting because it closely resembles the way humans learn.

2.3 Supervised learning

Supervised learning is a powerful tool for solving a wide range of problems,
including image recognition, natural language processing, and recommendation sys-
tems. One of the advantages of supervised learning is that it allows for the creation
of complex models that can capture non-linear relationships between the inputs and
outputs (see Figure 2.2).

26

CHAPTER 2. DEEP LEARNING

Figure 2.2: Supervised Machine Learning.

To master supervised learning, it is essential to understand and know the follow-
ing four concepts:

- Dataset.

- Model and its parameters.

- Cost function.

- Learning algorithm.

2.3.1 Dataset

Dataset is a collection of input/output pairs that is used to train and evaluate a
supervised learning model. The input data represents the features or attributes of
the problem, while the output data represents the target or label that the model is
trying to predict.

2.3.2 Model and its parameters

The Model is the mathematical representation of the relationship between the
input data and the output data. It is defined by a set of parameters that are adjusted
during the training process to minimize the difference between the predicted outputs
and the true outputs. The choice of the model and its associated parameters can
have a significant impact on the performance of the model.

27

CHAPTER 2. DEEP LEARNING

2.3.3 Cost function

The cost function, also known as the loss function, is a mathematical function
that measures the difference between the predicted outputs and the true outputs for
a given set of model parameters (see Figure 2.3). The goal of learning algorithm is
to find the values of the model parameters that minimize the cost function [32].

Figure 2.3: Representation of the cost function.

2.3.4 Learning algorithm

A learning algorithm is a set of rules and procedures that are used to update the
model parameters based on the difference between the predicted and true outputs.
The choice of learning algorithm can have a significant impact on the performance
of the model, and there are many different algorithms available for different types
of problems.

2.4 Advantages of Deep Learning over Traditional

Machine Learning Algorithms

Deep Learning algorithms automatically learn to extract high-level features from
raw data by using multiple layers of artificial neural networks. This allows Deep
Learning models to learn from vast amounts of data and perform tasks such as
image recognition and natural language processing with high accuracy.

28

CHAPTER 2. DEEP LEARNING

On the other hand, traditional Machine Learning algorithms rely on handcrafted
features and statistical methods to analyze data and make predictions. They typi-
cally require a human expert to engineer the relevant features that are fed into the
model. Machine Learning algorithms can perform tasks such as classification and
regression, but they may not be as effective as Deep Learning algorithms in handling
complex and unstructured data (see Figure 2.4) [33].

Figure 2.4: The Impact of Data Availability on Algorithm Performance.

2.5 Introduction to Deep Learning

Deep learning is an advanced branch of machine learning that uses neural net-
works with multiple layers to facilitate the learning process. It can handle large-scale
data, and its models are designed to automatically learn hierarchical representations
of data from raw input such as images, text, or sound, without the need for explicit
feature engineering. Deep learning is based on artificial neural networks, which are
modeled after the structure and function of the human brain [34].

29

CHAPTER 2. DEEP LEARNING

2.6 Artificial Neural Networks

Artificial neural networks simulate the mechanism of learning in biological organ-
isms. The human nervous system contains cells, which are referred to as neurons.
The neurons are connected to one another with the use of axons and dendrites,
and the connecting regions between axons and dendrites are referred to as synapses.
These connections are illustrated in Figure 2.5.

Figure 2.5: Biological neuron structure.

Dendrites receive input signals from other neurons via synapses. These signals
are then integrated in the cell body, and if the sum of the signals exceeds a certain
threshold, the neuron fires an action potential down its axon. This electrical signal
travels down the axon to the endings, where it is transmitted to other neurons in
the nervous system.

2.6.1 Components of Artificial Neural Networks

Artificial Neural Networks (ANNs) consist of various components that work to-
gether to process information and make decisions. These components include neu-
rons (also known as perceptrons), weights, activation functions, and layers. Neurons
are the basic processing units of ANNs, while weights represent the strength of the
connections between neurons. Activation functions determine whether a neuron
should "fire" based on its inputs, and layers can be used to perform intermediate
calculations. By understanding these components and how they interact, we can
better understand how ANNs operate and how they can be used to solve complex
problems.

30

CHAPTER 2. DEEP LEARNING

Figure 2.6: A Neural Networks representation with two-input.

In deep learning models, the parameters are referred to as weights (w) and bi-
ases (b). These parameters are used to compute the sum of weighted inputs by
multiplying the inputs with respective weights and adding a bias term to the result,
this can be seen in the calculation above the node in the preceding image. The
inputs are X1 and X2, the weights are W1 and W2, and the bias is b. The sum
of the weighted inputs and bias is then fed into a nonlinear function, known as the
activation function (𝜎) as shown in Figure 2.6. The output of the neuron is referred
to as the activation of that neuron, which is computed using the activation function
and bias [33].

2.6.2 Feedforward Neural Networks (FFNNs)

Feedforward neural network (FFNN) is a type of artificial neural network that
processes information in a unidirectional manner, from input to output. It consists
of an input layer, one or more hidden layers, and an output layer. During training,
weights and biases are adjusted to minimize the difference between the predicted
output and the actual output.

2.6.2.1 FFNNs architecture

To build a single-layer neural network, neurons are stacked on top of each other
in a layer as shown in Figure 2.7. In this architecture, every input value at the input
layer is passed to all neurons in the hidden layer. The computation of the sum of
weighted inputs and bias, as well as the activation function, is applied independently
for each neuron in the hidden layer.

31

CHAPTER 2. DEEP LEARNING

Figure 2.7: Representation of a 2D input neural network with one hidden layer.

Multi-layer neural networks can also be built by stacking multiple layers of pro-
cessing nodes in a row. Figure 2.8 shows a two-layer neural network with a two-
dimensional input.

Figure 2.8: Representation of a 2D input with a two hidden layers neural network.

Figures 2.7 and 2.8 show the most common representations of neural networks.
Every neural network consists of an input layer, an output layer, and one or more
hidden layers. When there is only one hidden layer, the network is called a shallow
neural network. On the other hand, a neural network with many hidden layers is
called a deep neural network.

32

CHAPTER 2. DEEP LEARNING

The input layers are generally on the left. In the case of Figure 2.8, these are the
features X1 and X2, which are input to the first hidden layer with three neurons.
Arrows indicate weight values applied to the input. In the second hidden layer,
the result of the first hidden layer becomes the input of the second hidden layer.
The arrow between the first hidden layer and the second hidden layer represents the
weight, which level the output is generally in on the far right, represented by the
plane labeled Y in the case of Figure 2.8.

In deep learning the number of neurons in the input layer is equal to the number
of features of the input data, and the number of neurons in the output layer is equal
to the dimensions of the output data. However, you need to select the number of
neurons in the hidden layers or the size of the hidden layers. If you choose a larger
size layer, the model becomes more flexible and will be able to model more complex
functions. This increase in flexibility comes at the cost of the need for more training
data and more computations to train the model on.

The parameters that are required to be selected by the developer are called hy-
perparameters and include parameters such as the number of layers and the number
of neurons in each layer. Common hyperparameters to be chosen include the num-
ber of epochs to train for and the loss function to use.

Feedforward neural networks (FFNNs) can encounter difficulties in accurately
predicting the output for a given input, especially when dealing with complex prob-
lems. In such cases, the weights and biases of the network need to be adjusted to
reduce the difference between the predicted output and the actual output. This is
where backpropagation comes, as it allows the network to adjust its weights and
biases (see Figure 2.9).

Figure 2.9: Forward and Backward Propagation.

33

CHAPTER 2. DEEP LEARNING

2.6.2.2 Back Propagation

Back propagation is a popular learning algorithm that allows the network to
adjust its weights and biases during training, by propagating the error from the
output layer back to the input layer (see Figure 2.10). This is done by computing
the partial derivatives of the error with respect to the weights and biases of each
neuron in the network, using the chain rule of calculus.

Back propagation is used repeatedly during the training phase, where the network
is presented with a set of input-output pairs. The weights and biases of the network
are adjusted based on the computed partial derivatives, with the goal of minimizing
the error between the predicted output and the actual output.

Figure 2.10: Backward Propagation.

In this way, back propagation allows the network to learn and improve its ability
to accurately predict the output for a given input.

2.6.2.3 FFNNs applications

Feedforward neural networks (FFNNs) have a wide range of applications in var-
ious fields due to their ability to learn complex patterns and make accurate predic-
tions. Here are some common applications of FFNNs:

• Image and speech recognition: FFNNs are commonly used in image and
speech recognition systems to recognize patterns and make accurate predic-
tions. For example, in image recognition, a FFNN can learn to identify objects
in an image by processing the pixel values of the image.

• Natural language processing: FFNNs are used in natural language pro-
cessing to analyze and process human language. For instance, they can be
used to classify texts, extract relevant information, and generate responses.

34

CHAPTER 2. DEEP LEARNING

• Financial forecasting: FFNNs can be used in financial forecasting to pre-
dict market trends and make investment decisions. They can be trained on
historical financial data to learn patterns and make predictions about future
trends.

• Medical diagnosis: FFNNs are used in medical diagnosis to analyze medical
images and make accurate diagnoses. For example, a FFNN can be trained
on a dataset of medical images to learn to identify signs of disease.

• Robotics: FFNNs can be used in robotics to control robotic systems and
make accurate predictions about the environment. For example, a FFNN can
be used to control a robotic arm to perform a task, such as picking up an
object.

Overall, FFNNs are a versatile and powerful tool for solving a wide range of
problems in various fields.

2.6.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks or CNNs, are deep neural networks designed for
image recognition and computer vision tasks. They extract hierarchical features
from input data, similar to the human visual system, and have shown high effective-
ness in various image recognition tasks such as object detection, facial recognition,
and image classification [35].

2.6.3.1 CNNs architecture

Convolutional Neural Network consists of multiple layers like the input layer,
Convolutional layer, Pooling layer, and fully connected layers (see Figure 2.11).

Image

Input

Convolutional
layer

Pooling
 layer

Fully connected
layer

Output
 layer

Figure 2.11: CNN Layers.

35

CHAPTER 2. DEEP LEARNING

• Convolutional Layer: This layer applies a set of filters to the input image or
feature map to extract features that are important for classification. The filters
slide over the input data in a process known as convolution, which generates
a feature map that highlights the presence of particular features in the input.

• Pooling Layer: This layer downsamples the feature maps generated by the
convolutional layer, reducing its spatial dimensions while preserving its im-
portant features. The most common pooling operation is max pooling, which
selects the maximum value within a particular region of the feature map and
discards the rest.

• Fully Connected Layer: This layer performs the classification task, by tak-
ing the high-level features extracted by the convolutional and pooling layers
and using them to classify the input image. It is typically implemented as
a multi-layer perceptron, or MLP, and is trained using backpropagation and
gradient descent.

In addition, CNNs may also include layers such as normalization layers, dropout
layers, and activation layers, which can improve their performance and durability.

CNNs are a powerful and flexible tool with a wide range of applications in image
recognition and computer vision tasks across various fields. Their ability to learn
hierarchical features from raw data makes them ideal for complex tasks. As comput-
ing power and data availability increase, CNNs are expected to become even more
important in the future.

2.6.4 Reccurent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are a type of neural network that can an-
alyze sequential data, such as time series or natural language. Unlike traditional
feedforward neural networks, which process inputs in a single direction and have
fixed-sized inputs and outputs, RNNs can take variable-length inputs and produce
variable-length outputs. This makes them particularly useful for tasks such as speech
recognition, machine translation, and sentiment analysis.

2.6.4.1 RNNs architecture

Recurrent Neural Networks (RNNs) are a type of neural network architecture
that builds upon the structure of the traditional Feedforward Neural Networks
(FFNNs). Like FFNNs, RNNs have an input layer, an output layer, and one or
more hidden layers [36].

36

CHAPTER 2. DEEP LEARNING

Figure 2.12: Forward and Backward Propagation.

In a Recurrent Neural Network (RNN), the input layer ’x’ processes input data
and passes it onto the middle layer ’h’, which can consist of multiple hidden layers
with their own activation functions (see Figure 2.12), weights, and biases. Unlike
traditional neural networks that lack memory, RNN uses a recurrent connection
between hidden layers to maintain a memory of previous inputs. This enables the
RNN to process sequential data such as time-series or natural language. At each
time step, the current input is a combination of the input at that time and the pre-
vious input. The output at each time step is fed back into the network to improve
subsequent outputs. Instead of creating multiple hidden layers, the RNN creates one
and loops over it as many times as needed, standardizing the activation functions,
weights, and biases across each loop.

Overall, RNNs have proven to be a powerful tool for analyzing sequential data
and have shown impressive results in a wide range of applications.

• Language Modeling and Generating Text: RNNs are widely used in
natural language processing (NLP) tasks, such as language modeling, text
generation, and sentiment analysis.

• Machine Translation: RNNs are used in machine translation applications,
such as translating text from one language to another.

• Speech Recognition: RNNs are used in speech recognition (ASR) and voice
recognition systems.

• Image Recognition: RNNs are used in face detection, object recognition,
and optical character recognition (OCR).

37

CHAPTER 2. DEEP LEARNING

2.6.5 Activation Functions

The activation function is used to add non-linearity to each neuron’s output.
The network would only be a linear function of the input data without an activa-
tion function, which would have little ability to simulate complicated interactions
between the inputs and outputs. There are several kinds of activation functions
that are often applied in neural networks, each having special qualities and advan-
tages. Let’s examine some of these activation functions in more detail and how deep
learning models employ them.

2.6.5.1 Sigmoid function

The sigmoid function was first introduced in the context of neural networks by
McCulloch and Pitts in 1943, and later popularized by Rosenblatt in his perceptron
algorithm in 1958. The sigmoid function is a mathematical function commonly used
in neural networks and deep learning. It is an activation function that maps any
input value to a value between 0 and 1, which can be interpreted as a probability
[37].

The sigmoid function is defined as:

𝜎(𝑥) = 1

1 + 𝑒−𝑥 (2.1)

where x is the input value and exp is the exponential function. The sigmoid
function has a characteristic S-shaped curve (see Figure 2.13), and its output values
are always between 0 and 1. When the input is large and positive, the sigmoid
function outputs a value close to 1, and when the input is large and negative, the
sigmoid function outputs a value close to 0. When the input is zero, the sigmoid
function outputs 0.5.

Today, the sigmoid function is one of the most commonly used activation func-
tions in neural networks, although its usage has declined in favor of other activation
functions such as ReLU due to its tendency to saturate for large inputs .

38

CHAPTER 2. DEEP LEARNING

Figure 2.13: Sigmoid function.

2.6.5.2 ReLU function

The ReLU (Rectified Linear Unit) function has become one of the most widely
used activation functions in Deep Learning, and has been shown to perform well in
a variety of tasks. It was first introduced by Hahnloser et al. in 2000, and later
popularized by Krizhevsky et al.

The ReLU function is an activation function used in neural networks. It is a
simple yet powerful function that has gained popularity due to its effectiveness and
ease of implementation [38].

The ReLU function is defined as:

𝑓 (𝑥) = max(0, 𝑥) (2.2)

where x is the input value.

The ReLU function returns the input value if it is positive, and 0 otherwise. The
function has a simple and fast computation, and is non-linear, which allows for the
representation of complex non-linear relationships in data (see Figure 2.14).

39

CHAPTER 2. DEEP LEARNING

Figure 2.14: ReLU function.

2.6.5.3 Softmax function

The softmax function was introduced in the context of neural networks by Bridle
in 1990, and later popularized by the work of Rumelhart, Hinton, and Williams in
their seminal book "Parallel Distributed Processing" in 1986. The softmax function
is often used as the output activation function in neural networks for multi-class clas-
sification problems. It is also commonly used in the calculation of the cross-entropy
loss function, which is used as the objective function in many neural network train-
ing algorithms [39].

The softmax function is defined as follows:

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑥) 𝑗 =
𝑒𝑥 𝑗∑𝐾
𝑘=1 𝑒

𝑥𝑘
(2.3)

where 𝑥 is a vector of real numbers, 𝐾 is the number of classes, and 𝑗 indexes
the 𝑗-th class.

40

CHAPTER 2. DEEP LEARNING

The softmax function takes as input a vector of 𝐾 real numbers and outputs a
vector of 𝐾 probabilities, where each element of the output vector corresponds to
the probability of the input vector belonging to a particular class, Figure 2.15 shows
softmax function.

Figure 2.15: Softmax function.

2.6.6 Loss function

The loss function is a mathematical function that is used to evaluate how well
a neural network model is performing on a given task. The loss function measures
the difference between the predicted output of the model and the actual output,
which is known as the ground truth. The objective of training a neural network is
to minimize the value of the loss function.

41

CHAPTER 2. DEEP LEARNING

There are various types of loss functions used in deep learning, some of them
are:

• Mean Squared Error (MSE) Loss

• Mean Absolute Error (MAE) Loss

• Binary Cross-Entropy Loss

• Categorical Cross-Entropy Loss

• Sparse Categorical Cross-Entropy Loss

• Hinge Loss

• Kullback-Leibler Divergence Loss

• Cosine Similarity Loss

• Triplet Loss

The choice of loss function can have a significant impact on the performance of a
neural network model, and selecting an appropriate loss function is an important
part of designing a neural network architecture. For example in regression problems,
the mean squared error (MSE) loss function is commonly used, while in binary
classification problems, the binary cross-entropy loss function is commonly used.
In multi-class classification problems, the categorical cross-entropy loss function is
often used [40].

2.6.6.1 Binary Classification Loss Functions

Binary Classification Loss Functions are used in deep learning for problems where
the output variable is binary, i.e. it can take only two values 0 or 1. Some of the
commonly used Binary Classification Loss Functions are binary cross-entropy LOSS
and hinge loss.

a. Binary Cross-Entropy Loss/LOG LOSS

This is the most common loss function used in classification problems. The
cross-entropy loss decreases as the predicted probability converges to the actual
label. It measures the performance of a classification model whose predicted
output is a probability value between 0 and 1 as shown in Figure 2.16.

When the number of classes is 2, it’s binary classification.

𝐿 = − 1

𝑚

𝑚∑︁
𝑖=1

(𝑦𝑖 log (𝑦𝑖) + (1 − 𝑦𝑖) log (1 − 𝑦𝑖)) (2.4)

42

CHAPTER 2. DEEP LEARNING

When the number of classes is more than 2, it’s multi-class classification.

𝐿 = − 1

𝑚

𝑚∑︁
𝑖=1

(𝑦𝑖 log(𝑦𝑖)) (2.5)

where 𝑦 is the true binary label (0 or 1) and 𝑦 is the predicted probability of
the positive class.

Figure 2.16: Log loss when true label=1.

b. HINGE LOSS

Hinge loss can be used as an alternative to cross-entropy, which was initially
developed to use with a support vector machine algorithm. Hinge loss works
best with the classification problem because target values are in the set of
{−1, 1}. It allows to assign more error when there is a difference in sign between
actual and predicted values. Hence resulting in better performance than cross-
entropy.

𝐿 = max(0, 1 − 𝑦 𝑓 (𝑥)) (2.6)

where 𝑦 is the true binary label (either -1 or 1) and 𝑓 (𝑥) is the predicted
score of the positive class for input 𝑥. The Hinge Loss function only penalizes
misclassifications when the predicted score is on the wrong side of the decision
boundary (i.e. 𝑦 𝑓 (𝑥) < 1), and is zero when the predicted score is correct (i.e.
𝑦 𝑓 (𝑥) ≥ 1).

43

CHAPTER 2. DEEP LEARNING

The objective of the Hinge Loss is to maximize the margin between the deci-
sion boundary and the training examples, while still correctly classifying the
training examples.

2.6.6.2 Multi-class Classification Loss Functions

Multi-class classification is the predictive models in which the data points are
assigned to multiple possible classes. Here are some commonly used multi-class
classification loss functions in deep learning.

a. Categorical Cross-Entropy Loss

Categorical Cross-Entropy Loss is commonly used for multi-class classification
problems. It measures the difference between the predicted class probabilities
and the actual one-hot encoded class labels. The formula for Categorical
Cross-Entropy Loss is:

𝐶𝐶𝐸 = −
𝐾∑︁
𝑖=1

𝑦𝑖𝑙𝑜𝑔(𝑦𝑖) (2.7)

where 𝑦 is the one-hot encoded true label vector, 𝑦 is the predicted probability
vector, and 𝐾 is the number of classes.

b. Multi-class Cross-Entropy

One hot encoding process makes multi-class cross-entropy difficult to handle a
large number of data. Sparse cross-entropy solves this problem by performing
the calculation of error without using one-hot encoding.

𝑆𝐶𝐶𝐸 = −
𝑁∑︁
𝑖=1

𝑙𝑜𝑔(𝑦𝑦𝑖) (2.8)

where 𝑦 is the vector of true class labels and 𝑦 is the predicted probability
matrix.

c. Kullback Leibler Divergence Loss

KL divergence loss calculates the divergence between probability distribution
and baseline distribution and finds out how much information is lost in terms
of bits. It is used as a loss function to minimize the difference between the
predicted class probabilities and the true class probabilities. The formula for
KL divergence loss is:

𝐾𝐿 = −
𝐾∑︁
𝑖=1

𝑦𝑖𝑙𝑜𝑔(
𝑦𝑖

𝑦𝑖
) (2.9)

44

CHAPTER 2. DEEP LEARNING

Where 𝐾 is the number of classes, 𝑦𝑖 is the true probability of class 𝑖, and 𝑦𝑖

is the predicted probability of class 𝑖. The KL divergence loss measures the
difference between the true distribution and the predicted distribution, and is
commonly used in probabilistic models.

2.7 Metrics for Evaluating the Performance of Deep

Learning Models

2.7.1 Confusion Matrix

The confusion matrix is a tabular representation that assesses the classification
model’s performance for a given problem. It compares the model’s predicted class
labels with the true class labels from the test dataset, summarizing the results in a
matrix format.

For binary classification problems, the confusion matrix consists of two rows
and two columns that represent the predicted and actual classes (see Figure 2.17).
The rows indicate the true class labels, while the columns show the predicted class
labels. Every cell in the matrix represents the number of instances that belong to a
particular combination of predicted and actual class labels.

True Positive
(TP)

False Positive
(FP)

 False Negative
(FN)

True Negative
(TN)

Actually
Positive (1)

Actually
Negative (0)

Predicted
 Positive (1)

Predicted
Negative (0)

Figure 2.17: Confusion matrix.

• True Positive (TP): The number of instances that are correctly classified
as positive. This means that the model predicted the instance to be positive,
and the instance is actually positive.

45

CHAPTER 2. DEEP LEARNING

• True Negative (TN): The number of instances that are correctly classified
as negative. This means that the model predicted the instance to be negative,
and the instance is actually negative.

• False Positive (FP): The number of instances that are incorrectly classified
as positive. This means that the model predicted the instance to be positive,
but the instance is actually negative.

• False Negative (FN): The number of instances that are incorrectly clas-
sified as negative. This means that the model predicted the instance to be
negative, but the instance is actually positive.

2.7.1.1 Confusion Matrix for Multi-Class Classification

The confusion matrix for multiclass classification is an extension of the binary
confusion matrix to handle problems with more than two classes. It provides a way
to evaluate the performance of a multi-class classification model by summarizing the
predictions and true class labels in a matrix format.

In multiclass classification, the confusion matrix has n rows and n columns, where
n is the number of classes. Each row represents the instances of a true class label,
while each column corresponds to the instances of a predicted class label (see Figure
2.18).

TNTN

TN

FN FNTP

FP

FP

Predicted

A
ct

ua
lly

True Positive

True Negative

Flase Negative

False Positive

Ck

Ck

C0 Ck-1

C0
. . . .
Ck-1

 Ck+1 cn

 Ck+1

 cn

TN

Figure 2.18: Confusion matrix multiclass classification.

46

CHAPTER 2. DEEP LEARNING

2.7.2 Accuracy

Accuracy is one of the most commonly used metrics for classification problems.
It measures the percentage of correct predictions made by the model. It is calculated
by dividing the sum of true positive and true negative predictions by the total num-
ber of predictions made. This widely used metric provides an easy-to-understand
measure of a model’s overall performance, which can be readily communicated to
both technical and non-technical stakeholders. For example, an accuracy of 80%
means that a model correctly classified 80 out of 100 instances, providing a simple
and clear assessment of its performance.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.10)

2.7.3 Precision

Precision measures the percentage of true positives out of all predicted posi-
tives. It is calculated as the number of true positives divided by the sum of true
positives and false positives. Precision is a good metric when the goal is to reduce
false positives, i.e. when we want to be sure that positive predictions are actually
correct. Precision is often used in information retrieval where the goal is to retrieve
as many relevant documents as possible while minimizing the number of irrelevant
documents.

Precision =
TP

TP + FP
(2.11)

2.7.4 Recall

Recall, also known as sensitivity or true positive rate, is a performance metric
used to evaluate a model’s ability to correctly identify positive instances. It measures
the proportion of actual positive instances that the model successfully classifies as
positive, and it is calculated as the number of true positive predictions divided by
the sum of true positive and false negative predictions. Recall is especially useful
in scenarios where the cost of false negatives is high, such as medical diagnosis.
However, recall has limitations, as it does not consider false positives, which may be
essential in some applications.

Recall =
TP

TP + FN
(2.12)

47

CHAPTER 2. DEEP LEARNING

2.7.5 Specificity

Specificity is a metric that measures a model’s ability to correctly identify neg-
ative instances. It’s useful in applications where the cost of false positives is high,
such as in fraud detection or spam filtering. High specificity indicates that the model
is effective at reducing false positives, but it may come at the cost of lower recall.

Specificity =
TN

TN + FP
(2.13)

2.7.6 F1 score

The F1 score is the harmonic mean of precision and recall, calculated as:

F1 score = 2 × Precision × Recall
Precision + Recall

(2.14)

The F1 score is a suitable metric when both precision and recall are equally
important. It balances the two metrics and provides a single measure of performance.
The F1 score is commonly used in information retrieval tasks.

2.8 Conclusion

In this second chapter, we explored the fundamentals of machine learning and
its subset, deep learning. We saw how deep learning has become a powerful tool in
various domains, thanks to the availability of large datasets and advanced computing
resources. With this knowledge, we are now well-equipped to apply these techniques
in practice. In the next chapter, we will create a model that utilizes Deep Learning
algorithms to identify and classify different types of attacks.

48

Chapter 3

Building and Evaluation a Deep
Learning Model

CHAPTER 3. BUILDING AND EVALUATION A DEEP LEARNING MODEL

3.1 Introduction

Achieving the best results in Deep Learning requires considering several factors,
with choosing the right dataset being the most crucial. While a larger dataset typi-
cally leads to better model performance, what matters most is the number of records
for each target. To address this, we utilized the CSE-CIC-IDS2018 dataset, a
collaborative project between the Communication Security Establishment (CSE)
and the Canadian Institute for Cybersecurity. This dataset enables the detection
and classification of a wide range of attacks, including Bot, DDoS attacks, DoS at-
tacks, and FTP Brute force. Initially, we took a first approach, but after evaluating
our model with various methods such as accuracy, precision, recall, and F1 score,
we were dissatisfied with the results. Therefore, we decided to improve the model
by adopting a better approach.

3.2 Execution environment

Deep Learning relies heavily on hardware to execute tasks effectively. There are
a few fundamental minimum hardware requirements that must be fulfilled before
Deep Learning can begin [41], the basic minimum hardware requirements to start
are:

1. Graphics processing unit (GPU): NVIDIA GTX1060, GTX1070 and above

2. RAM: 8GB and above.

3. HDD/SSD: 1TB HDD and good to have 256GB SSD(faster prepossessing).

4. CPU: i5 8th Gen and above.

Even with all the basic hardware requirements being met, dealing with large
datasets can be a time-consuming task. However there are numerous cloud comput-
ing resources available that offer more RAM, CPUs, and GPUs either for free or for
a limited time period. This can make data processing more efficient and significantly
reduce the occurrence of errors. This has led us to use Kaggle Kernels as both a
hardware and software alternative for our work.

50

CHAPTER 3. BUILDING AND EVALUATION A DEEP LEARNING MODEL

Kaggle [42] is an online community platform that provides a range of tools and
resources for data scientists, Machine Learning practitioners, and researchers. It of-
fers a variety of services, including cloud-based Jupyter notebooks, GPU and TPU
resources, data visualization tools, and more, all aimed at helping users work with
data more efficiently.

In terms of software, Kaggle offers a broad range of tools and packages commonly
used in data science and Deep Learning. This includes Jupyter Notebook along with
popular programming language Python [43], alongside its widely-used libraries such
as NumPy, Pandas, Scikit-learn, Tensor-Flow, and Keras.

Jupyter Notebook is a web-based interactive computing environment provided
by Kaggle that allows users to create and share codes, visualizations, and texts in
a single document. It is a popular tool among data scientists and Deep Learning
practitioners, as it supports multiple programming languages such as Python.

Python is a widely used, high-level, interpreted programming language that is
open source and offers an excellent approach to object-oriented programming. It is a
popular deep learning language used by data scientists for a variety of Deep Learning
projects and applications. With its well-defined syntax and dynamic typing, Python
is a powerful tool for manipulating complex data structures and algorithms, making
it an ideal language for developing Deep Learning models.

51

CHAPTER 3. BUILDING AND EVALUATION A DEEP LEARNING MODEL

Library Description Version

Pandas [44]

Pandas is a Python library that provides data
manipulation and analysis tools. It is widely used for
data cleaning, data transformation, data exploration

and data visualization.

1.3.5

TensorFlow [45]

TensorFlow is an open source library focused on deep
neural network training, providing options to deploy
deep learning models locally to a database, or to the

cloud. It is an indispensable tool for the modern
data scientist due to its advanced features and
support for building and training deep learning

models using the latest technologies.

2.11.0

NumPy [46]

NumPy is a Python library that provides support for
large multidimensional arrays and matrices. It is

commonly used in scientific computing and
numerical analysis.

1.21.6

Scikit-learn [47]

Scikit-learn is a Python library that provides
machine learning algorithms for classification,

regression, clustering, and dimensionality reduction.
It is commonly used in data analysis and predictive

modeling.

1.0.2

Matplotlib [48]

Matplotlib is a Python library that provides data
visualization tools. It is commonly used to create

charts, histograms, scatterplots, and other
visualizations to aid in understanding and

communicating data.

3.5.3

Table 3.1: List of python libraries.

3.3 Descriptions of CSE-CIC-IDS2018 dataset

The CSE-CIC-IDS2018 dataset on AWS is a network attack detection dataset
containing large-scale real network environments with millions of network packets.
The dataset contains various types of attacks and normal activities, and provides
a wide range of features such as timestamps, packet and flow level details, and
network behavior patterns. The CSE-CIC-IDS2018 dataset is used to develop and
evaluate new intrusion detection algorithms, test and validate cybersecurity tools,
and provide valuable insights into the latest cyberattack trends and patterns. Due
to its large size and quality, this collaborative project between the Communications
Security Establishment (CSE) & the Canadian Institute for Cybersecurity (CIC)
was the perfect choice for our work.

52

CHAPTER 3. BUILDING AND EVALUATION A DEEP LEARNING MODEL

The CSE-CIC-IDS2018 [16] dataset was collected over a period of 10 days,
starting Wednesday, February 14th, 2018 at 10:32 am and ending Friday, March
2nd, 2018 at 3:55 pm, the dataset is distributed across ten different files (see Table
3.2) :

Files DayActivity Size(MB) Attacks found

02-14-2018.csv Wednesday 358.22 MB
Benign 64 %

FTP-BruteForce 18 %
Other (187589) 18 %

02-15-2018.csv Tuesday 375.95 MB
Benign 95 %

DoS attacks-GoldenEye4 %
Other(10990) 1 %

02-16-2018.csv Friday 333.72 MB

DoS attacks-Hulk 44 %
Benign 43 %

Other (139891) 13 %

02-20-2018.csv Tuesday 4.05 GB
Benign 93%

DDoS attacks-LOIC-HTTP 7%

02-21-2018.csv Wednesday 328.89 MB
DDOS attack-HOIC 65%

Benign 34%
Other (1730) 1%

02-22-2018.csv Thursday 382.64 MB
Benign 100%

Brute Force -Web 0 %
Other(113) 0%

02-23-2018.csv Friday 382.84 MB
Benign 100 %

Brute Force -Web0 %0
Other(204) 0%

02-28-2018.csv Wednesday 209.25 MB
Benign 89%

Infilteration 11%
Other(33) 0%

03-01-2018.csv Thursday 107.84 MB
Benign 72%

Infilteration 28%
Other(25) 0%

03-02-2018.csv Friday 209.25 MB Benign 73%
Bot27 27%

Table 3.2: Description of files containing CIC-IDS2018 dataset.

53

CHAPTER 3. BUILDING AND EVALUATION A DEEP LEARNING MODEL

The dataset consists of 16,093,053 instances with 84 features, and includes 14
different class labels, 1 normal label and 13 attack labels. The Tables 3.3 and 3.4
provides a comprehensive breakdown of the characteristics of the combined dataset,
as well as a detailed account of the occurrence of each class label.

Dataset Name CIC-IDS2018

Dataset Type Multi class

Year of release 2018

Total number of instances 16093053

Number of features 84

Number of distinct classes 14

Table 3.3: Overall characteristics of CIC-IDS2018 dataset.

Class Labels Number of
instances

BENIGN 13484708

DDOS attack-HOIC 686012

DDoS attacks-LOIC-HTTP 576191

DoS attacks-Hulk 461912

Bot 286191

FTP-BruteForce 193360

SSH-Bruteforce 187589

Infilteration 161934

DoS attacks-GoldenEye 41508

DoS attacks-Slowloris 10990

DDOS attack-LOIC-UDP 1730

Brute Force -Web 611

Brute Force -XSS 230

SQL Injection 87

Table 3.4: Class wise instance occurrence of CIC-IDS2018 dataset.

54

CHAPTER 3. BUILDING AND EVALUATION A DEEP LEARNING MODEL

Features Dtype Features Dtype
Flow ID object Bwd Pkts/s float64
Src IP object Pkt Len Min float64
Src Port int64 Pkt Len Max float64
Dst IP object Pkt Len Mean float64
Dst Port int64 Pkt Len Std float64
Protocol int64 Pkt Len Var float64
Timestamp object FIN Flag Cnt int64
Flow Duration int64 SYN Flag Cnt int64
Tot Fwd Pkts int64 RST Flag Cnt int64
Tot Bwd Pkts float64 PSH Flag Cnt int64
TotLen Fwd Pkts float64 ACK Flag Cnt int64
TotLen Bwd Pkts float64 URG Flag Cnt int64
Fwd Pkt Len Max float64 CWE Flag Count int64
Fwd Pkt Len Min float64 ECE Flag Cnt int64
Fwd Pkt Len Mean float64 Down/Up Ratio float64
Fwd Pkt Len Std float64 Pkt Size Avg float64
Bwd Pkt Len Max float64 Fwd Seg Size Avg float64
Bwd Pkt Len Min float64 Bwd Seg Size Avg float64
Bwd Pkt Len Mean float64 Fwd Byts/b Avg int64
Bwd Pkt Len Std float64 Fwd Pkts/b Avg int64
Flow Byts/s float64 Fwd Blk Rate Avg int64
Flow Pkts/s float64 Bwd Byts/b Avg int64
Flow IAT Mean float64 Bwd Pkts/b Avg int64
Flow IAT Std float64 Bwd Blk Rate Avg int64
Flow IAT Max float64 Subflow Fwd Pkts int64
Flow IAT Min float64 Subflow Fwd Byts int64
Fwd IAT Tot float64 Subflow Bwd Pkts int64
Fwd IAT Mean float64 Subflow Bwd Byts int64
Fwd IAT Std float64 Init Fwd Win Byts int64
Fwd IAT Max float64 Init Bwd Win Byts int64
Fwd IAT Min float64 Fwd Act Data Pkts int64
Bwd IAT Tot float64 Fwd Seg Size Min int64
Bwd IAT Mean float64 Active Mean float64
Bwd IAT Std float64 Active Std float64
Bwd IAT Max float64 Active Max float64
Bwd IAT Min float64 Active Min float64
Fwd PSH Flags int64 Idle Mean float64
Bwd PSH Flags int64 Idle Std float64
Fwd URG Flags int64 Idle Max float64
Bwd URG Flags int64 Idle Min float64
Bwd Header Len int64 Fwd Pkts/s float64
Fwd Header Len int64 Label object

Table 3.5: features present in the CIC-IDS2018 dataset.

55

CHAPTER 3. BUILDING AND EVALUATION A DEEP LEARNING MODEL

3.4 Implementation

The proposed intrusion detection system (IDS) is illustrated in Figure 3.1.

CSE-CIC-IDS2018

Training-set

Divide the dataset into three parts
(Test-set ,Training-set , Validation-set)

Validation-setTest -set

Deep learning algorithm

Traninig and
evaluation

Final performance
estimate and decision

Data preprocessing
(Data cleaning, encoding,

normalization)

Prepare labels with 13 attacks (all) and 1 benign

Prepare labels with n attacks and 1 benign

Figure 3.1: Component architecture of the proposed work.

56

CHAPTER 3. BUILDING AND EVALUATION A DEEP LEARNING MODEL

3.5 Data pre-processing

Data preprocessing is the process of cleaning, transforming, and organizing raw
data to make it ready for use in Deep Learning algorithms. It involves several
techniques, such as data cleaning, handling missing data, and normalization. The
aim of data preprocessing is to ensure that the data is consistent, accurate, and
free from errors or inconsistencies that may impact the quality of the results. By
performing proper data preprocessing, the performance of Deep Learning models
and achieve more accurate and reliable predictions.

In Table 3.2, it is shown that the CIC-IDS2018 dataset is split into 10 separate
files. Since processing each file individually would be a laborious task, the decision
was made to simplify the data processing by merging all 10 files into a single file.

3.5.1 Merging files

Before starting the preprocessing phase, it is necessary for efficiency reasons to
combine all files into a single file. However, two problems were encountered during
this process. First, there was a type mismatch between the files, where some features
were a combination of integers and floats in one file, but in the other all features
were objects. To solve this, all features in each file have been converted to the same
data type. Secondly, a file with a size of 4.05GB could not be merged due to its
large size. As a solution, the benign instances were removed from this file, but the
attack instances were kept since they were more relevant for the analysis. Despite
the removal of some instances, there were still enough benign instances remaining
for analysis.

3.5.2 Data cleaning

After reviewing our dataset, we removed missing values such as NaN (Not a
Number) and INF (Infinity) values, as well as duplicates rows that could negatively
impact our model’s performance. We also identified and removed features that were
not relevant to attacks (Timestamp, Protocol, Flow ID , Src IP, Src Port,
Dst IP), additionally we removed features that contained null values (Bwd PSH
Flags, Bwd URG Flags, Fwd Byts/b Avg, Fwd Pkts/b Avg, Fwd Blk
Rate Avg, Bwd Byts/b Avg, Bwd Pkts/b Avg, Bwd Blk Rate Avg), since
including irrelevant features can add errors and reduce the accuracy of our model.

57

CHAPTER 3. BUILDING AND EVALUATION A DEEP LEARNING MODEL

3.5.2.1 Cleaned data

We have successfully completed the process of cleaning and processing the raw
data, resulting in a refined dataset that is now suitable for analysis. By eliminating
missing or inconsistent values, correcting errors, and fixing outliers, we have created
a more accurate and reliable dataset. Visualizing the cleaned data provides a clearer
understanding of correlations and patterns between variables, which are critical
for building models. With this improved dataset, we can confidently continue our
analysis and modeling work. A part of the after cleaning process is represented in
the Figure 3.2.

Figure 3.2: Distribution of labels in the Cleaned Dataset.

3.5.3 Label encoding

To fit models to the data, it must be represented in numerical format since the
mathematics used in all Machine Learning and Deep Learning algorithms only work
on matrices of numbers. Categorical variables such as labels can’t be used directly
as inputs to the models. Therefore, they need to be converted into numerical form
before they can be used.

For example, in our case, we have labels for different types of network traffic,
such as "benign", "DDOS-attack-HOIC", and so on. We assign a numerical value

58

CHAPTER 3. BUILDING AND EVALUATION A DEEP LEARNING MODEL

to each label, such as 0 for "benign", 1 for "DDOS-attack-HOIC", and so on. This
process is called label encoding. An alternative approach is to use one-hot encoding
[49], where each label is represented as a binary vector with a 1 in the position corre-
sponding to the label and 0s elsewhere, for example, "bening" would be represented
as [1, 0, 0, ...], "DDOS-attack-HOIC" would be represented as [0, 1, 0, ...], and so
on (see Figure 3.3). One-hot encoding ensures that there is no artificial hierarchy
among the labels.

Label

BENIGN

DDOS attack-HOIC

DDoS attacks-LOIC-HTTP

DoS attacks-Hulk

Bot

FTP-BruteForce

SSH-Bruteforce

Infilteration

DoS attacks-GoldenEye

DoS attacks-Slowloris

DDOS attack-LOIC-UDP

Brute Force -Web

Brute Force -XSS

SQL Injection

Encoded

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Convert to one-hot encoded

[1,0,0,0,0,0,0,0,0,0,0,0,0,0]

[0,1,0,0,0,0,0,0,0,0,0,0,0,0]

[0,0,1,0,0,0,0,0,0,0,0,0,0,0]

[0,0,0,1,0,0,0,0,0,0,0,0,0,0]

[0,0,0,0,1,0,0,0,0,0,0,0,0,0]

[0,0,0,0,0,1,0,0,0,0,0,0,0,0]

[0,0,0,0,0,0,1,0,0,0,0,0,0,0]

[0,0,0,0,0,0,0,1,0,0,0,0,0,0]

[0,0,0,0,0,0,0,0,1,0,0,0,0,0]

[0,0,0,0,0,0,0,0,0,1,0,0,0,0]

[0,0,0,0,0,0,0,0,0,0,1,0,0,0]

[0,0,0,0,0,0,0,0,0,0,0,1,0,0]

[0,0,0,0,0,0,0,0,0,0,0,0,1,0]

[0,0,0,0,0,0,0,0,0,0,0,0,0,1]

Figure 3.3: Label encoding/One-hot encoding

Once the labels have been encoded, we can isolate the column containing the
encoded labels (also known as the target variable) from the original dataset.

59

CHAPTER 3. BUILDING AND EVALUATION A DEEP LEARNING MODEL

3.5.4 Normalization

Normalizing data is an essential step in data preprocessing for statistical analysis
and Machine Learning. The purpose of normalization is to transform the data to
a standard scale that facilitates comparison and analysis of different variables on
an equalized scale. Normalization can help identify patterns, outliers, and relation-
ships within the data that may not be apparent otherwise. Additionally, normalizing
the data can improve the performance and interpretability of statistical models by
reducing the impact of variables with large scales and preventing bias towards par-
ticular features. We relied on min-max normalization as a key step in preprocessing
the data.

Min-max normalization is a common and effective method for scaling data to
a specific range [50]. This technique transforms the data so that it falls within a
specified range (usually between 0 and 1) by subtracting the minimum value and
dividing by the range of the data. Min-max normalization is useful for preserving
the original distribution of the data while rescaling it to a specific range. Overall,
normalization is a fundamental step in our work.

3.5.5 Splitting Data

In deep learning, splitting data into training, validation, and testing sets is a
crucial step in model development. The purpose of splitting the data is to assess
the model’s performance on new, unseen data and to prevent overfitting.

To split the data, the dataset is typically divided into three subsets: training,
validation, and testing. In our case, the training dataset comprises 90% of the orig-
inal data, and the testing dataset comprises 10% of the original data, (see Figure
3.4).
Additionally, 10% of the training dataset is further partitioned into a validation
dataset. The purpose of the validation dataset is to assess the model’s performance
during training and to optimize the model’s hyperparameters.
During training, the model is trained on the training dataset and its performance
is evaluated on the validation dataset. The testing dataset is held out until the
end of the training process, and the model is evaluated on this dataset to assess its
performance on unseen data.
By splitting the data into training, validation, and testing sets, it helps us confirm
that the model can perform effectively on unfamiliar data and prevent the issue
of overfitting, which occurs when the model becomes too closely aligned with the
training data.

60

CHAPTER 3. BUILDING AND EVALUATION A DEEP LEARNING MODEL

CSE-CIC-IDS2018

Training Set Test Set

Training Set Validation Set Test Set

Figure 3.4: Splitting the CIC-IDS2018 dataset into three parts.

3.6 Model creation

Before creating the model, we carried out several essential steps to prepare for
Deep Learning. We started by merging multiple files into a single more comprehen-
sive file to create a complete representation of the data. We then performed data
cleaning by removing duplicates and irrelevant data points, and addressing outliers
or errors to ensure that the model could understand the categorical variables, we
then performed one-hot encoding to convert them into numerical values. We also
normalized the data to ensure that each feature had a similar scale, which can im-
prove the performance of Deep Learning algorithms. Finally, we split the data into
training and testing sets to assess the performance of the model on new unseen data.

For our Deep Learning model, we chose the Sequential model provided by the
Keras library [51]. This framework is widely used for building Deep Learning models
due to its flexibility and ease of use. The Sequential model is a linear stack of layers,
where each layer is added one after the other. The Sequential model is easy to use
and is suitable for building models that involve a single input and output.

Designing and training a neural network involves several key steps. The first
step is to choose an appropriate type of neural network architecture that best suits
the problem at hand. We relied on the feedforward neural network (FFNN). Once
the architecture of a neural network model is selected, the next step is to specify its
hyperparameters. We created a model with six layers: an input layer, four hidden
layers and one output layer. The input layer has 69 nodes corresponding to the
number of features in the input data.

61

CHAPTER 3. BUILDING AND EVALUATION A DEEP LEARNING MODEL

The first hidden layer has 47 neurons, the second has 32, the third has 27, and the
fourth has 17. The output layer has 14 neurons, which corresponds to the number
of output classes. The Rectified Linear Unit (ReLU) activation function is used for
all the hidden layers, which is a commonly used activation function for feedforward
neural networks due to its ability to efficiently model nonlinear relationships. The
Softmax activation function is used for the output layer, which produces a probabil-
ity distribution over the different classes and is often used for multiclass classification
problems. The optimizer used is Adam, which is a popular optimization algorithm
for neural networks due to its ability to efficiently handle large amounts of data
and converge to a good solution. The loss function used is Categorical Crossen-
tropy, which is commonly used for multiclass classification problems to measure the
difference between the predicted probabilities and the actual class labels.
Finally, the model is trained on the training data, and the weights of the neurons
are adjusted to minimize the loss function. This iterative process continues until
the model converges to a set of weights that provide the best performance on the
training data.

3.7 Results and analysis

After training the neural network model using a 32 batch size for 14 epochs, it is
worth noting that during the training process, the dataset was divided into batches,
with each batch containing 32 training examples. The batch size determines how
many examples are used in each batch and is an important hyperparameter to
consider when training neural networks. In this case, we also used a validation
split of 0.1 and set the shuffle parameter to True, which means that the dataset
was randomly shuffled at the beginning of each epoch to prevent the model from
learning the order of the training examples and potentially overfitting to the order
of the data. Shuffling the data ensures that the model sees a random sample of the
training examples in each batch and allows it to learn more robust representations.
The results obtained are shown in the Figure 3.5.

62

CHAPTER 3. BUILDING AND EVALUATION A DEEP LEARNING MODEL

(a) Training and Validation Accuracy.

(b) Training and Validation Loss.

Figure 3.5: Visualizing Model Performance.

63

CHAPTER 3. BUILDING AND EVALUATION A DEEP LEARNING MODEL

Based on the results we achieved, it appears that our model has reached an
impressive level of accuracy. During the first epoch of training, the model achieved
an accuracy of 98%, indicating its ability to correctly classify data. We were also
pleased to see that the model stabilized by the fourth epoch, which suggests that it
has likely converged on a reliable set of parameters, which shows no sign of neither
overfitting nor underfitting.

Moreover, we observed that our model’s loss decreased sharply in the first epoch
and then stabilized as the training progressed, implying that it has learned to make
more accurate predictions. We believe that this stabilization after a few epochs is
a sign that our model has reached an acceptable level of training and is unlikely
to improve significantly further. This demonstrates that our model is capable of
learning and fitting well to the training data.

Accuracy, Precision, Recall and F1 score were effective metrics for evaluating the
performance of our model. They provided us with a more comprehensive evaluation
of our model’s performance and helped us to make informed decisions about its
development. We were able to identify areas where our model could be improved,
such as optimizing the decision threshold for classification or balancing the class
distribution in the dataset. The results are shown in the Table 3.6 below.

Accuracy Precision Recall F1-score

98.03% 91.52% 80.17% 81.51%

Table 3.6: Evaluation Metrics.

Upon examining the previous table, it’s apparent that the recall and F1 score
values are notably lower than the accuracy and precision metrics. This suggests that
the model may encounter difficulty in identifying true positives and has a higher
rate of false negatives. To better understand the drop in percentage, we can utilize
the confusion matrix. The confusion matrix provides a detailed breakdown of the
model’s performance by displaying the number of true positives, true negatives, false
positives, and false negatives. By analyzing the confusion matrix (see Figure 3.6),
we can pinpoint areas that require improvement and adjust our training approach
accordingly to enhance the model’s performance.

64

CHAPTER 3. BUILDING AND EVALUATION A DEEP LEARNING MODEL

Figure 3.6: Confusion matrix multiclass classification.

After examining the confusion matrix to gain insights into our model’s perfor-
mance, we have identified three attacks that were mostly detected as false negatives:
SQL injection, Brute Force-XSS, and Brute Force-Web. Additionally one
particular attack "DDOS attack-LOIC-UDP" that may initially appear to be
well detected, but actually has 80 samples that make up 30% of the total samples,
which were wrongly classified as false positives, which could be due to insufficient
training examples of these attacks (see table 3.4). Insufficient examples can hinder
the model’s ability to learn the patterns of attacks [52] leading to miss-identification.

Moreover, the "Infiltration" attack was miss-classified as a non-attack, despite
having a good amount of training examples. This could be attributed to the nature
of the attack [53], which involves mimicking normal human behavior to evade de-
tection and gain access to a system or network.

To address these issues we may need to consider an alternative approach, such
as deleting these attacks and considering a model with only 8 attacks.

65

CHAPTER 3. BUILDING AND EVALUATION A DEEP LEARNING MODEL

3.8 Improved Approach

In order to enhance our model’s performance, we decided to remove the prob-
lematic attacks, based on the results of our initial approach. This decision was made
particularly because obtaining additional data to improve the model was challeng-
ing, and we believe that eliminating these attacks will give our model a better chance
to succeed.

We followed the same path as our initial approach, with the exception of remov-
ing the five attacks from our target. This change led to a significant improvement
in our results, including higher accuracy, precision, recall, and F1 score. Addition-
ally, our model exhibited better detection capabilities. To provide a comprehensive
understanding of our findings, we included an in-depth analysis of each attack’s
confusion matrix, accuracy, F1 score, precision, and recall. The results of our work
are presented in the figures below.

(a) Training and Validation Accuracy.

66

CHAPTER 3. BUILDING AND EVALUATION A DEEP LEARNING MODEL

(b) Training and Validation Loss.

Figure 3.7: Visualizing improved Model Performance.

Figure 3.7 visualizes improved model performance in terms of accuracy and loss.

Accuracy Precision Recall F1-score

99.97% 99.66% 99.96% 99.81%

Table 3.7: Evaluation Metrics Performance for the improved model.

Table 3.7 shows evaluation metrics for the improved model while Table 3.8 shows
evaluation metrics for each label.

67

CHAPTER 3. BUILDING AND EVALUATION A DEEP LEARNING MODEL

Types attacks Accuracy Precision Recall F1-score
Benign 99.97% 99.99% 99.97% 99.98%

DDOS attack-HOIC 100% 100% 100% 100%
DDoS attacks-LOIC-HTTP 99.95% 99.80% 99.96% 99.88%

DoS attacks-Hulk 99.99% 99.98% 99.99% 99.99%
Bot 99.98% 99.98% 99.98% 99.98%

FTP-BruteForce 99.97% 99.92% 99.98% 99.95%
SSH-Bruteforce 99.84% 99.72% 99.85% 99.79%

DoS attacks-GoldenEye 99.99% 99.97% 99.99% 99.99%
DoS attacks-Slowloris 99.90% 97.64% 99.91% 98.77%

Table 3.8: Evaluation Metrics for each label.

Figures 3.8 and 3.9 illustrate the model’s confusion matrix and confusion matrix
for each label respectively.

Figure 3.8: Confusion matrix multiclass classification for the improved model.

68

CHAPTER 3. BUILDING AND EVALUATION A DEEP LEARNING MODEL

Figure 3.9: Confusion matrix of each label.

3.9 Conclusion

The goal of the final chapter was to present a solution that effectively addresses
the various limitations of intrusion detection systems. The proposed solution en-
hances the overall performance of IDS by increasing the accuracy of detecting and
categorizing a wide range of attacks while minimizing false alarms. To ensure that
IDS can recognize patterns and identify new and previously unknown attacks, it is
important to have a wide range of samples for each type of attack. The experiments
conducted validate the effectiveness of the proposed approach, producing highly
satisfactory results.

69

General Conclusion

The field of network security is of utmost importance due to the increasing con-
cern for preventing security breaches that could result in catastrophic consequences
such as data theft, network downtime, or financial loss. Network security admin-
istrators are always searching for solutions to guarantee a highly secure network
environment. One of these solutions is the implementation of deep learning-based
IDS.

In this master thesis, we aimed to develop a model for the detection and classifica-
tion of network anomalies using DL techniques. We selected the CSE-CIC-IDS2018
dataset for training, as the performance of our models depends entirely on the qual-
ity of this data. We applied several data pre-processing techniques, including data
cleaning, handling missing data, and normalization, to prepare our data for the train-
ing phase. After training and testing, we discovered that 5 attacks were misdetected
using the approach of taking all attacks and normal traffic. Thus, we adopted a
second approach, deleting the misdetected attacks, which yielded promising results.
We consider the reliability and efficiency of our approach to be satisfactory.

One limitation we encountered during the experiments was a lack of data, which
affected the learning process and test results, highlighting the need for more diverse
and representative datasets.

To enhance network security, ongoing training and education on the latest de-
velopments and emerging threats in the field of network security are crucial. Future
research can explore the use of more sophisticated DL techniques, such as adversarial
training or ensemble models, and investigate the integration of IDS with other secu-
rity mechanisms, such as firewalls, honeypots, and IPS/IDPS. Additionally, future
research can focus on developing hybrid models that combine machine learning tech-
niques with traditional rule-based systems and use explainable AI to improve the
interpretability of DL-based IDS. By advancing our understanding of deep learning-
based IDS, we can better protect against emerging cyber threats and further enhance
network security.

Bibliography

[1] “30 important cybersecurity statistics [2023]: Data, trends and more,” Zippia.
Section: Research. (Feb. 27, 2023), [Online]. Available: https://www.zippia.
com/advice/cybersecurity-statistics/ (visited on 04/12/2023).

[2] J. F. Kurose and K. W. Ross, Computer networking: a top-down approach,
Seventh edition. Boston: Pearson, 2017, 824 pp., isbn: 978-0-13-359414-0.

[3] “What is a denial-of-service (DoS) attack?” Cloudflare. (), [Online]. Available:
https://www.cloudflare.com/learning/ddos/glossary/denial-of-

service/ (visited on 04/28/2023).

[4] S. Behal and K. Kumar, “Characterization and comparison of ddos attack tools
and traffic generators: A review,” International Journal of Network Security,
vol. 19, no. 3, pp. 383–393, 2017.

[5] “Goldeneye DDos tool in kali linux,” GeeksforGeeks. Section: Linux-Unix.
(Jun. 21, 2021), [Online]. Available: https://www.geeksforgeeks.org/

goldeneye-ddos-tool-in-kali-linux/ (visited on 04/28/2023).

[6] “Slowloris DDOS attack tool in kali linux - GeeksforGeeks.” (), [Online]. Avail-
able: https://www.geeksforgeeks.org/slowloris-ddos-attack-tool-
in-kali-linux/ (visited on 04/28/2023).

[7] S. Chatterjee, HULK, original-date: 2022-05-25T15:52:26Z, Apr. 20, 2023. [On-
line]. Available: https://github.com/R3DHULK/HULK (visited on 04/28/2023).

[8] “HTTP flood DDoS attack,” Cloudflare. (), [Online]. Available: https://www.
cloudflare.com/learning/ddos/http-flood-ddos-attack/ (visited on
04/28/2023).

[9] “UDP flood DDoS attack,” Cloudflare. (), [Online]. Available: https://www.
cloudflare.com/learning/ddos/udp- flood- ddos- attack/ (visited on
04/28/2023).

[10] “Brute force attack,” Techopedia. (Jul. 1, 2020), [Online]. Available: https:
//www.techopedia.com/definition/18091/brute-force-attack (visited
on 04/28/2023).

71

https://www.zippia.com/advice/cybersecurity-statistics/
https://www.zippia.com/advice/cybersecurity-statistics/
https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/
https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/
https://www.geeksforgeeks.org/goldeneye-ddos-tool-in-kali-linux/
https://www.geeksforgeeks.org/goldeneye-ddos-tool-in-kali-linux/
https://www.geeksforgeeks.org/slowloris-ddos-attack-tool-in-kali-linux/
https://www.geeksforgeeks.org/slowloris-ddos-attack-tool-in-kali-linux/
https://github.com/R3DHULK/HULK
https://www.cloudflare.com/learning/ddos/http-flood-ddos-attack/
https://www.cloudflare.com/learning/ddos/http-flood-ddos-attack/
https://www.cloudflare.com/learning/ddos/udp-flood-ddos-attack/
https://www.cloudflare.com/learning/ddos/udp-flood-ddos-attack/
https://www.techopedia.com/definition/18091/brute-force-attack
https://www.techopedia.com/definition/18091/brute-force-attack

BIBLIOGRAPHY

[11] “How to brute-force FTP credentials & get server access,” WonderHowTo.
(Mar. 11, 2020), [Online]. Available: https://null-byte.wonderhowto.com/
how-to/brute-force-ftp-credentials-get-server-access-0208763/

(visited on 04/28/2023).

[12] R. Ashraf. “How to brute-force SSH in linux,” Root Install. (Nov. 9, 2021),
[Online]. Available: https://rootinstall.com/tutorial/bruteforce-ssh-
in-linux/ (visited on 04/28/2023).

[13] “Brute force attack | OWASP foundation.” (), [Online]. Available: https :

//owasp.org/www-community/attacks/Brute_force_attack (visited on
04/28/2023).

[14] “What is cross-site scripting and how can you fix it?” Acunetix. (), [Online].
Available: https://www.acunetix.com/websitesecurity/cross-site-
scripting/ (visited on 04/28/2023).

[15] “What is SQL injection? | cloudflare.” (), [Online]. Available: https://www.
cloudflare.com/learning/security/threats/sql-injection/ (visited
on 04/29/2023).

[16] “IDS 2018 | datasets | research | canadian institute for cybersecurity | UNB.”
(), [Online]. Available: https://www.unb.ca/cic/datasets/ids-2018.html
(visited on 03/27/2023).

[17] “What is a botnet?” Palo Alto Networks. (), [Online]. Available: https :

//www.paloaltonetworks.com/cyberpedia/what-is-botnet (visited on
04/29/2023).

[18] W. Stallings and L. Brown, Computer security: principles and practice (The
William Stallings books on computer and data communications technology),
Third edition. Boston: Pearson, 2015, 820 pp., isbn: 978-0-13-377392-7.

[19] “What is a firewall? - cisco.” (), [Online]. Available: https://www.cisco.
com/c/en/us/products/security/firewalls/what-is-a-firewall.html

(visited on 04/29/2023).

[20] “What is a VPN? - virtual private network - cisco.” (), [Online]. Available:
https://www.cisco.com/c/en/us/products/security/vpn-endpoint-

security-clients/what-is-vpn.html?dtid=osscdc000283#~types-of-

vpns (visited on 04/29/2023).

[21] “What is asymmetric encryption? | asymmetric vs. symmetric encryption,”
Cloudflare. (), [Online]. Available: https://www.cloudflare.com/learning/
ssl/what-is-asymmetric-encryption/ (visited on 04/29/2023).

72

https://null-byte.wonderhowto.com/how-to/brute-force-ftp-credentials-get-server-access-0208763/
https://null-byte.wonderhowto.com/how-to/brute-force-ftp-credentials-get-server-access-0208763/
https://rootinstall.com/tutorial/bruteforce-ssh-in-linux/
https://rootinstall.com/tutorial/bruteforce-ssh-in-linux/
https://owasp.org/www-community/attacks/Brute_force_attack
https://owasp.org/www-community/attacks/Brute_force_attack
https://www.acunetix.com/websitesecurity/cross-site-scripting/
https://www.acunetix.com/websitesecurity/cross-site-scripting/
https://www.cloudflare.com/learning/security/threats/sql-injection/
https://www.cloudflare.com/learning/security/threats/sql-injection/
https://www.unb.ca/cic/datasets/ids-2018.html
https://www.paloaltonetworks.com/cyberpedia/what-is-botnet
https://www.paloaltonetworks.com/cyberpedia/what-is-botnet
https://www.cisco.com/c/en/us/products/security/firewalls/what-is-a-firewall.html
https://www.cisco.com/c/en/us/products/security/firewalls/what-is-a-firewall.html
https://www.cisco.com/c/en/us/products/security/vpn-endpoint-security-clients/what-is-vpn.html?dtid=osscdc000283#~types-of-vpns
https://www.cisco.com/c/en/us/products/security/vpn-endpoint-security-clients/what-is-vpn.html?dtid=osscdc000283#~types-of-vpns
https://www.cisco.com/c/en/us/products/security/vpn-endpoint-security-clients/what-is-vpn.html?dtid=osscdc000283#~types-of-vpns
https://www.cloudflare.com/learning/ssl/what-is-asymmetric-encryption/
https://www.cloudflare.com/learning/ssl/what-is-asymmetric-encryption/

BIBLIOGRAPHY

[22] Q. H. Dang, “Secure hash standard,” National Institute of Standards and Tech-
nology, NIST FIPS 180-4, Jul. 2015, NIST FIPS 180–4. doi: 10.6028/NIST.
FIPS.180-4. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.180-4.pdf (visited on 04/29/2023).

[23] “What is security information and event management (SIEM)? | IBM.” (), [On-
line]. Available: https://www.ibm.com/topics/siem (visited on 04/29/2023).

[24] “Intrusion detection system (IDS) - GeeksforGeeks.” (), [Online]. Available:
https://www.geeksforgeeks.org/intrusion-detection-system-ids/

(visited on 04/29/2023).

[25] “Network based intrusion detection system - an overview | ScienceDirect top-
ics.” (), [Online]. Available: https://www.sciencedirect.com/topics/

computer-science/network-based-intrusion-detection-system (visited
on 04/30/2023).

[26] “Host intrusion detection system (HIDS). what is it and how it works.” (),
[Online]. Available: https://heimdalsecurity.com/blog/host-intrusion-
detection-system-hids/ (visited on 04/30/2023).

[27] “A systematic review on hybrid intrusion detection system.” (), [Online]. Avail-
able: https://www.hindawi.com/journals/scn/2022/9663052/ (visited on
04/30/2023).

[28] “What are the pros and cons of signature-based vs. anomaly-based detection?”
(), [Online]. Available: https://www.linkedin.com/advice/0/what-pros-
cons-signature-based-vs-anomaly-based (visited on 04/30/2023).

[29] A. A. Ramaki and R. E. Atani, “A survey of it early warning systems: Archi-
tectures, challenges, and solutions,” Security and Communication Networks,
vol. 9, no. 17, pp. 4751–4776, 2016.

[30] K. A. Scarfone and P. M. Mell, “Guide to intrusion detection and prevention
systems (IDPS),” National Institute of Standards and Technology, Gaithers-
burg, MD, NIST SP 800-94, 2007, Edition: 0, NIST SP 800–94. doi: 10.

6028/NIST.SP.800-94. [Online]. Available: https://nvlpubs.nist.gov/
nistpubs / Legacy / SP / nistspecialpublication800 - 94 . pdf (visited on
05/01/2023).

[31] E. Alpaydin, Introduction to Machine Learning. Cambridge, MA: MIT Press,
2010.

[32] “Loss functions in machine learning | working | different types,” EDUCBA.
(Sep. 9, 2019), [Online]. Available: https://www.educba.com/loss-functions-
in-machine-learning/ (visited on 04/08/2023).

73

https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://www.ibm.com/topics/siem
https://www.geeksforgeeks.org/intrusion-detection-system-ids/
https://www.sciencedirect.com/topics/computer-science/network-based-intrusion-detection-system
https://www.sciencedirect.com/topics/computer-science/network-based-intrusion-detection-system
https://heimdalsecurity.com/blog/host-intrusion-detection-system-hids/
https://heimdalsecurity.com/blog/host-intrusion-detection-system-hids/
https://www.hindawi.com/journals/scn/2022/9663052/
https://www.linkedin.com/advice/0/what-pros-cons-signature-based-vs-anomaly-based
https://www.linkedin.com/advice/0/what-pros-cons-signature-based-vs-anomaly-based
https://doi.org/10.6028/NIST.SP.800-94
https://doi.org/10.6028/NIST.SP.800-94
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-94.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-94.pdf
https://www.educba.com/loss-functions-in-machine-learning/
https://www.educba.com/loss-functions-in-machine-learning/

BIBLIOGRAPHY

[33] M. Moocarme, M. Abdolahnejad, and R. Bhagwat, The Deep Learning with
Keras Workshop: Learn how to Define and Train Neural Network Models with
Just a Few Lines of Code. Packt Publishing, 2020, isbn: 978-1-80056-296-7.
[Online]. Available: https://books.google.dz/books?id=jEu6zQEACAAJ.

[34] A. Aldweesh, A. Derhab, and A. Z. Emam, “Deep learning approaches for
anomaly-based intrusion detection systems: A survey, taxonomy, and open
issues,” Knowledge-Based Systems, vol. 189, p. 105 124, 2020, issn: 0950-
7051. doi: https://doi.org/10.1016/j.knosys.2019.105124. [On-
line]. Available: https://www.sciencedirect.com/science/article/pii/
S0950705119304897.

[35] “Introduction to convolution neural network,” GeeksforGeeks. Section: Misc.
(Aug. 21, 2017), [Online]. Available: https://www.geeksforgeeks.org/

introduction-convolution-neural-network/ (visited on 04/14/2023).

[36] “Recurrent neural network (RNN) tutorial: Types and examples [updated] |
simplilearn,” Simplilearn.com. (), [Online]. Available: https://www.simplilearn.
com/tutorials/deep-learning-tutorial/rnn (visited on 04/14/2023).

[37] “Sigmoid function? all you need to know in 5 simple points | UNext.” (), [On-
line]. Available: https://u-next.com/blogs/artificial-intelligence/
sigmoid-function/ (visited on 04/08/2023).

[38] “ReLU activation function explained | built in.” (), [Online]. Available: https:
//builtin.com/machine-learning/relu-activation-function (visited
on 04/08/2023).

[39] “SoftMax activation function: Everything you need to know,” InsideAIML. (),
[Online]. Available: https://insideaiml.com/blog/SoftMaxActivation-
Function-1034 (visited on 04/09/2023).

[40] “Common loss functions in machine learning | built in.” (), [Online]. Avail-
able: https://builtin.com/machine-learning/common-loss-functions
(visited on 04/09/2023).

[41] P. Huilgol. “Getting into deep learning? here are 5 things you should absolutely
know,” Analytics Vidhya. (Mar. 10, 2020), [Online]. Available: https://www.
analyticsvidhya.com/blog/2020/03/deep- learning- 5- things- to-

know/ (visited on 03/27/2023).

[42] “Kaggle: Your home for data science.” (), [Online]. Available: https://www.
kaggle.com/ (visited on 03/27/2023).

[43] “Python release python 3.7.6,” Python.org. (), [Online]. Available: https://
www.python.org/downloads/release/python-376/ (visited on 03/27/2023).

74

https://books.google.dz/books?id=jEu6zQEACAAJ
https://doi.org/https://doi.org/10.1016/j.knosys.2019.105124
https://www.sciencedirect.com/science/article/pii/S0950705119304897
https://www.sciencedirect.com/science/article/pii/S0950705119304897
https://www.geeksforgeeks.org/introduction-convolution-neural-network/
https://www.geeksforgeeks.org/introduction-convolution-neural-network/
https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn
https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn
https://u-next.com/blogs/artificial-intelligence/sigmoid-function/
https://u-next.com/blogs/artificial-intelligence/sigmoid-function/
https://builtin.com/machine-learning/relu-activation-function
https://builtin.com/machine-learning/relu-activation-function
https://insideaiml.com/blog/SoftMaxActivation-Function-1034
https://insideaiml.com/blog/SoftMaxActivation-Function-1034
https://builtin.com/machine-learning/common-loss-functions
https://www.analyticsvidhya.com/blog/2020/03/deep-learning-5-things-to-know/
https://www.analyticsvidhya.com/blog/2020/03/deep-learning-5-things-to-know/
https://www.analyticsvidhya.com/blog/2020/03/deep-learning-5-things-to-know/
https://www.kaggle.com/
https://www.kaggle.com/
https://www.python.org/downloads/release/python-376/
https://www.python.org/downloads/release/python-376/

BIBLIOGRAPHY

[44] “Pandas documentation — pandas 1.5.3 documentation.” (), [Online]. Avail-
able: https://pandas.pydata.org/docs/ (visited on 03/27/2023).

[45] “API documentation | TensorFlow,” TensorFlow. (), [Online]. Available: https:
//www.tensorflow.org/api_docs (visited on 03/27/2023).

[46] “NumPy 1.21.6 release notes — NumPy v1.24 manual.” (), [Online]. Available:
https://numpy.org/doc/stable/release/1.21.6-notes.html (visited on
03/27/2023).

[47] “Scikit-learn: Machine learning in python — scikit-learn 1.2.2 documentation.”
(), [Online]. Available: https://scikit- learn.org/stable/ (visited on
03/27/2023).

[48] “Matplotlib.pyplot — matplotlib 3.5.3 documentation.” (), [Online]. Available:
https://matplotlib.org/3.5.3/api/_as_gen/matplotlib.pyplot.html

(visited on 03/27/2023).

[49] “Sklearn.preprocessing.OneHotEncoder,” scikit-learn. (), [Online]. Available:
https://scikit-learn/stable/modules/generated/sklearn.preprocessing.

OneHotEncoder.html (visited on 04/02/2023).

[50] “Sklearn.preprocessing.MinMaxScaler,” scikit-learn. (), [Online]. Available: https:
//scikit-learn/stable/modules/generated/sklearn.preprocessing.

MinMaxScaler.html (visited on 04/02/2023).

[51] K. Team. “Keras documentation: The sequential model.” (), [Online]. Avail-
able: https://keras.io/guides/sequential_model/ (visited on 04/03/2023).

[52] Y. Bengio, A. Courville, and P. Vincent, Representation learning: A review and
new perspectives, Apr. 23, 2014. arXiv: 1206.5538[cs]. [Online]. Available:
http://arxiv.org/abs/1206.5538 (visited on 04/06/2023).

[53] “How a hacker can infiltrate your network and what can be done about it?”
SecureReading. (Oct. 9, 2016), [Online]. Available: https://securereading.
com/hacking-hacker-infiltrate-networks/ (visited on 04/07/2023).

75

https://pandas.pydata.org/docs/
https://www.tensorflow.org/api_docs
https://www.tensorflow.org/api_docs
https://numpy.org/doc/stable/release/1.21.6-notes.html
https://scikit-learn.org/stable/
https://matplotlib.org/3.5.3/api/_as_gen/matplotlib.pyplot.html
https://scikit-learn/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://keras.io/guides/sequential_model/
https://arxiv.org/abs/1206.5538 [cs]
http://arxiv.org/abs/1206.5538
https://securereading.com/hacking-hacker-infiltrate-networks/
https://securereading.com/hacking-hacker-infiltrate-networks/

	Dedication
	Acknowledgements
	Abstract
	Résumé
	List of Figures
	List of Tables
	General introduction
	 Network Security & Intrusion Detection System
	Introduction
	Key Pillars of Network Security
	Confidentiality
	Integrity
	Availability

	Threats to Network Security
	Denial-of-Service (DoS)
	Distributed denial-of-service (DDoS)
	Brute force
	SQL injection
	Infiltration
	Botnet

	Network Security Measures
	Firewalls
	Virtual Private Networks (VPNs)
	Encryption
	Access Control
	Security Information and Event Management (SIEM) Systems
	Intrusion Detection and Prevention Systems (IDPS)

	Intrusion Detection System
	Types of Intrusion Detection System
	Network-based IDS (NIDS)
	Host-based IDS (HIDS)
	Hybrid IDS (HIDS + NIDS)

	IDS Detection Methods
	Signature-based detection
	Anomaly-based detection

	IDS Architecture
	Data collection
	Data pre-processor
	Intrusion recognition

	IDS Deployment Scenarios
	Perimeter-based IDS
	Internal-based IDS
	Distributed IDS

	Conclusion

	 Deep Learning
	Introduction
	Fundamentals of Machine Learning
	Supervised learning
	Dataset
	Model and its parameters
	Cost function
	Learning algorithm

	Advantages of Deep Learning over Traditional Machine Learning Algorithms
	Introduction to Deep Learning
	Artificial Neural Networks
	 Components of Artificial Neural Networks
	Feedforward Neural Networks (FFNNs)
	Convolutional Neural Networks (CNNs)
	Reccurent Neural Networks (RNNs)
	Activation Functions
	Loss function

	Metrics for Evaluating the Performance of Deep Learning Models
	Confusion Matrix
	Accuracy
	Precision
	Recall
	Specificity
	F1 score

	Conclusion

	 Building and Evaluation a Deep Learning Model
	Introduction
	Execution environment
	Descriptions of CSE-CIC-IDS2018 dataset
	Implementation
	Data pre-processing
	Merging files
	Data cleaning
	Label encoding
	 Normalization
	Splitting Data

	Model creation
	Results and analysis
	Improved Approach
	Conclusion

	General Conclusion
	Bibliography

