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Abstract

The thesis presents an h-p FEM model for analyzing linear/nonlinear free vibrations of

cracked isotropic/FGM nanoplates using nonlocal elasticity theory and the first-order shear

deformation theory under the assumptions of the geometrical non-linearity of Von Karman.

Non-local elasticity has been used to capture the small-scale effect that has a significant

influence at the nano-scale. The h-p FEM has been employed due to its advantages in

modeling cracked structures where two different meshing strategies have been used; full

p-refinement on few simple elements is used for linear analysis and selective p-refinement

around the crack tip on an h-refinement dominated mesh is used for nonlinear analysis.

The results obtained are compared with those available in the literature and show the fast

convergence, accuracy, and efficiency of the h-p FEM numerical model. Original results are

presented and discussed through several parametric studies whereas the influence of crack

parameters (length, orientation, and position), non-local parameter, plate geometry (aspect

ratio and thickness), material volume fraction exponent, and large amplitude vibrations

on linear/nonlinear free vibrations of cracked nanoplates under several cases of boundary

conditions.

Key words: h-p version of finite elements method; free vibrations; non-linear; functionally

graded materials; crack; non-local elasticity; nanoplate.
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  ملخص

لطريقة العناصر المتناهية لتحليل الاهتزازات الحرة الخطية و h-p  الأطروحة تقدم نموذج رقمي لـ

المشقوقة المصنوعة من مواد متماثلة الخواص أو مواد متدرجة وظيفيا،  اللاخطية للصفائح النانومترية

للصفائح تحت فرضيات اللاخطية الهندسية  ستعمال نظرية المرونة اللاموضعية و نظرية الدرجة الأولى�

الصغير الذي  ثير السلم� دف التقاط�  نظرية المرونة اللاموضعية استعملتVon Karman. لـ

 ةطقن في طغضلا ةلاح نإف ،ةدقعلما ةير ظنلا هذه بسح.يثير واضح في السلم النانومتر � يكون ذو

 طقنلا لك في ههو شتلا ةلابح انمإو  ،ةطقنلا هذه في هو شتلا ةلابح طقف سيل ددتح ةدالما نم ةنيعم

نمذجة البنيات  لطريقة العناصر المتناهية استعملت نظرا للأفضلية التي توفرها في h-p .ىر خلأا

على عدد صغير من p  خدام استراتيجيتان مختلفتان للربط؛ تحسين كامل من نوعالمشقوقة، أين تم است

حول طرف الشق على شبكة  p البسيطة استعمل للتحليل الخطي و تحسين جزئي من نوع العناصر

النتائج . استعملت هذه الاستراتيجية للتحليل اللاخطي h ربط يهيمن عليها تحسين من نوع

الطول، (عوامل الشق : ثير� مناقشتها عن طريق عدة دراسات تبينالمتحصل عليها تم تقديمها و 

 ، أس النسبة)العرض و السمك/نسبة الطول(، عامل اللاموضعية، هندسة الصفيحة )الزاوية و الموضع

الحجمية للمادة و سعة الاهتزازات، على الاهتزازات الخطية و اللاخطية للصفائح النانومترية المشقوقة 

 .يةحد وطثير عدة شر � تحت

طريقة العناصر المتناهية؛ اهتزازات حرة؛ اللاخطية؛ مواد متدرجة وظيفيا؛ ل: h-p كلمات مفتاحية

 نومترية� صفيحة شق؛ المرونة اللاموضعية؛



Résumé

La thèse présente un modèle h-p MEF pour l’analyse linéaire/non-linéaire des vibrations

libres des nano-plaques fissurées en matériaux isotropes et en matériaux à gradient fonc-

tionnel, en utilisant la théorie d’élasticité nonlocal et la théorie du premier ordre des plaques

sous les hypothèses de la non-linéarité géométrique de Von Karman. L’élasticité nonlocal

a été utilisé dans le but de capturer l’effet de petite échelle dont il a une influence signifi-

catif à l’échelle nano. h-p MEF a été utilisé pour ces avantages dans la modélisation des

structures fissurées, deux stratégies différentes de maillage ont été utilisées; p-raffinement

entier sur peu des éléments simples utilisés pour l’analyse linéaire et p-raffinement sélectif

autour du front de fissure sur un maillage dominé par h-raffinement utilisé pour l’analyse

non-linéaire. Les résultats obtenus sont présentés et discutés à travers plusieurs études

paramétriques tandis que l’influence des: paramètres de fissure (longueur, orientation et

position), paramètre non-local, geometry de la plaque (rapport hauteur/largeur et épais-

seur), exposant de la fraction volumique du matériau et l’amplitude des vibrations, sur les

vibrations libres linéaires/non-linéaires des nano-plaques fissurées avec plusieurs condi-

tions aux limites.

Mots clés: version h-p de la méthode des éléments finis; vibration libre; non-linéaire;

matériaux à gradient fonctionnel; fissure; élasticité nonlocal; nano-plaque.
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Nomenclature

Acronyms

CPT Classical Plate Theory

DSG Discrete Shear Gap method

FEM Finite Elements Method

FGM Functionally Graded Material

FSDT The first order shear deformation theory

GFEM Generalized finite element method

h-p FEM h-p version of finite elements method

HSDT higher-order shear deformation plate theory

IDI Inplane deformation and inertia

IGA Isogeometric Analysis

LUM Linearized Update Method

MD Molecular Dynamics

VDQ Variational Differential Quadrature method

XFEM Extended finite element method

XIGA Extended Isogeometric Analysis
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Greek Letters

γ Crack position to length ratio

α Crack angle

β Crack length ratio

κ Averaging kernel or the spatial non-local kernel

γxy, γxz, γyz Shear strains

µ The non-local parameter

ν f The distribution of effective Poisson’s ratio

ω Vibration frequency

ωnl non-linear frequency

ω Non dimentional frequency parameter

σ i j the non-local stress components

ρ Material density

τi (t) Time functions

θx, θy The rotations of transverse normal to the mid-plane about the x and y

axes

εxx, εyy Normal strains

ϕi (x,y) Shape functions

ϖi Numerical integration weight

ξ , η Coordinates in the space of reference element

ℵ Non-linear term
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σi j stress tensor

Latin Letters

−C− Clamped edge

−F− Free edge

−S− Simply supported edge

[K] Stifness matrix

[M] Mass matrix

[J] The jacobian matrix for geometric transformation

{q} Vector of generalized degrees of freedom

P f (z) The distribution of effective material properties

a, b Plate length and width

Ai j Extensional stiffness coefficients

Bi j Bending-extensional coupling stiffness

Di j Bending stiffness coefficients

e0 non-dimensional parameter considered as a constant appropriate for the

material

E f (z) The distribution of effective Young’s modulus

h Plate thickness

I0, I1, I2 The mass moments of inertia

K Kinetic energy

K0 The modified Bessel’s function of the second kind of order zero

viii



le The external characteristic length

n Volume fraction exponent

N, M, Q The stress resultant forces and moments

p Degree of polynomial aproximation

T Temperature

U Elastic potential energy

u, v In-plane displacement

u0, v0 Mid-plane In-plane displacement

V External work

Vc Volume fraction of ceramic

Vm Volume fraction of metal

w transversal displacement

w0 Mid-plane transversal displacement

x,y,z Cartisian coordinates

Operators

L linear differential operator

∇2 Laplace operator ∑
i

∂

∂xi
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Introduction

A perception of the mechanical properties of nano structures is absolutely necessary for

an efficient and reliable designing of nanodevices. Consequently, the modeling methods

to predict their mechanical behavior are challenging research problems. The mechanical

behavior of nano structures can be computed by means of various theoretical and computa-

tional methods, involving quantum mechanical-based methods, atomistic modeling meth-

ods, continuum modeling methods and multi-scale and multi physics simulation methods.

Evidently, the quantum mechanical approaches are the most accurate methods to deter-

mine the behavior of nano structures, as the dynamics of the electrons and the nuclei are

described using solutions of the many-body Schrödinger equation [1]. In spite of that they

are restricted to very small systems containing a few tens to a few hundreds of atoms, due

to the fact that they are inherently computationally very expensive and time-consuming [2].

The atomistic modeling techniques are used to provide fundamental descriptions of

the behavior of nano structures. These methods have been broadly used to complement

experimental testing, and to obtain input data for continuum models, Besides they can

be used to predict the mechanical properties of nano structures. Theses techniques are

based on the use of inter-atomic potentials and empirical force fields. The atomistic meth-

ods include classical molecular dynamics (MD) with empirical inter-atomic potentials and

semi-empirical (SE) methods (tight-binding (TB) method) [3]. Compared to the quantum

mechanical-based methods, the atomistic-based methods can be used to study much larger

systems. However, atomistic modeling methods are still limited to relatively small sys-

tems containing up to several million atoms for very short time scales, from picoseconds to

1
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nanoseconds [4]. That being so, aiming for alternative approaches such as the continuum-

based modeling methods, is highly advisable seeing that they are the most computationally

efficient methods for the analysis of nano structures.

Classical continuum mechanics applicability is limited due to long-range inter-atomic

attractions at small scales (or lattice spacing between individual atoms) as well as the dis-

crete material structure that cannot be homogenized into a continuum. Hence, material

properties at small scales are size-dependent. Therefore, the small scale effect must be

considered for accurate prediction of the mechanical behavior of nanomaterials. For that

reason, in the continuum models classical mechanical structures such as rods, beams, plates

and shells are used combined with modified non local constitutive law namely the non local

elasticity, in order to capture the small scale effect. The emergence of non-local continuum

models sparked an inflationary development of research on modeling mechanical behavior

of nanostructures.

The non-local elasticity theory has the great potential to predict the mechanical behavior

of both small and relatively larger nanoscopic structures without solving a large number of

highly complex equations. This theory differs from the local classical elasticity theory

only in the constitutive equations describing the material medium. In non-local elasticity

the state of stress at a given point in a material depends not only on the state of strain at

that point, but also on the state of strain at other points. This agrees with the concept of

the many-body Schrödinger equation where inter-atomic forces acting on a certain atom

in a material depend not only on the local interaction between this certain atom and its

adjacent neighbors, but also non-local interactions among all other atoms far of this certain

atom. Therefore, deformation over all material points is required to acquire the stress state

of the body at a particular point. Based on this hypothesis, the long-range inter-atomic

interactions between material points are naturally taken into account and so the model is

dependent on the size of the structure.

Moreover the presence of a crack in a structure is a complicating effect that makes

its mechanical behavior significantly different from that of an intact structure especially

for the dynamic behavior. A crack can be defined as a geometric discontinuity in a solid

body which is characterized by an initiation (or nucleation) point. Hence, The use of nu-

merical methods is the most suitable approach to solve cracked structures problems, more
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precisely multi domain methods such as domain decomposition methods, finite element

method (FEA) and its variants, which provides easy fitting of complex geometries and

arbitrary combinations of boundary conditions (i.e., discontinuities, curves and irregular

domains) by dividing the complex original geometric domain into a small number of man-

ageable subdomains (i.e., elements). Plenty of research work has been performed on the

computation of stress intensity factor (i.e., static analysis) for cracked local plates, However

free vibrations studies of cracked local plate are comparatively little and absent for cracked

nanoplates. Furthermore the literature on the vibrations of cracked plates using h-p FEM is

still in its infancy.

This thesis addresses the absence of linear and nonlinear analysis of free vibrations of

cracked nanoplates and the scarcity of employing the h-p version of finite elements method

to solve vibration problems of cracked plates.

Aims and objectives

The overall aim of this thesis is to advance the understanding linear and nonlinear behavior

of cracked nanoplates and develop techniques for modelling cracks using the h-p version

of finite element method.

It has been accomplished through achieving 04 main objectives:

• Develop and verify and h-p FEM numerical model based on first order shear defor-

mation theory and nonlocal elasticity.

• Investigate the linear free vibration behavior of isotropic nanoplates with different

crack parameters.

• Further explore linear free vibration behavior of FGM cracked nanoplates.

• Investigate nonlinear free vibration behavior of cracked nanoplates using h-p FEM

with an alternative refinement approach.

.
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Thesis outline

Present work deals with free vibrations of cracked nanoplates Accordingly this thesis is

organized into 06 chapters as follow:

• Chapter 1, a brief literature review is presented, related to nonlocal elasticity of Erin-

gen in modeling vibrations of nanoplates and numerical models employed to solve

cracked plates problems. In the first section 1.1, we discuss the significant role of

scale effects on behavior of intact nanoplates and present importance of nonlocal

elasticity theory through previous researchers work. After that we present gaps in

current literature about linear/nonlinear free vibrations of cracked nanoplates.

In the second section 1.2, we explore the literature of numerical models used to

model cracked plates and discuss their accuracy and efficiency. Then we discuss

the potential advantages of h-p version of finite element method to model cracked

structures and the scarcity of research on this topic.

• Chapter 2, introduces a h-p FEM model to solve linear/nonlinear cracked nanoplates

free vibration problems based on first order shear deformation theory (FSDT) and

nonlocal elasticity theory of Eringen. In section 2.1 we present the mathematical

description of interactions between points in a solid nano-structure based on the on

nonlocal elasticity theory. Then in section 2.2, the first order shear deformation the-

ory of plates is used in conjunction with nonlocal elasticity to derive equations of

motions for nanoplates. Section 2.3 is dedicated to functionally graded materials

effective properties.

In section 2.4 the finite element method is used with the obtained equations of motion

to derive a system of algebraic equation, to be constructed and solve numerically. The

numerical methods used to construct the system of equations and solve it, are pre-

sented in section 2.5. Computer implementation and computational considerations

employed in order to efficiently conduct calculations on machines are discussed in

section 2.6.

• Chapter 3, we investigate linear free vibrations behavior of isotropic cracked

nanoplates where the influence of crack parameters and the non-local parameter are
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studied and discussed. In section 3.1, convergence of the linear solution is presented

for intact and cracked local/nonlocal plates. Then a comparison is carried out in or-

der to validate the accuracy of the presented model. In section 3.2, we study the

influence of crack parameters such as crack position (central, side), crack length and

orientation on frequency parameters for different values of nonlocal parameter and

for different cases of boundary conditions.

• Chapter 4, the linear free vibrations behavior of FGM cracked nanoplates is investi-

gated, by studying the influence of material parameters (i.e. volume fraction expo-

nent n) along with crack parameters (position, length and orientation) and nonlocal

parameter. In section 4.1 we study convergence for intact and cracked FGM plates,

and present a comparison with results in literature to verify the accuracy of the model

for intact FGM plates. In section 4.2, we conduct parametric studies for cracked

nonlocal FGM plates, involving several cases of boundary conditions, in order to in-

vestigate the influence of volume fraction exponent, crack length and orientation and

nonlocal parameter. Then we study the effect of crack position along volume fraction

exponent on linear free vibrations of cracked FGM nanoplates.

• Chapter 5, the nonlinear free vibration of cracked nanoplates has been studied using

h-p FEM with selective p-refinement around the crack tip. In section 5.1, we verify

the convergence of full and selective p-refinement for the linear and nonlinear so-

lutions of intact and cracked plates. Then a comparison is conducted to verify the

accuracy of nonlinear solutions for intact isotropic/FGM plates. In section 5.2, we

investigate the effect of horizontal crack length and nonlocal parameter on non-linear

free vibrations of cracked nanoplates under several boundary conditions. Finally we

study the effect of horizontal crack position and non-local parameter on nonlinear

free vibrations of cracked nanoplates.

• Chapter 5.3, the conclusions and potential further work are discussed.



Chapter 1

Literature review

In this chapter, a brief literature review is presented, focusing on two key points, nonlo-

cal elasticity of Eringen in modeling vibrations of nanoplates and numerical methods and

approaches employed to solve cracked plates problems.

1.1 Vibration of nanoplates

In light of the development and excellent properties of nanostructures, modeling and pre-

dicting their behavior has become a pertinent issue. On one hand, the classical continuum

model usually overestimates the frequencies of nanoplates because it does not take into

account the scale effect, on the other hand, accurate results can be obtained by means of

atomistic and hybrid atomistic-continuum simulation but that would be computationally

expensive for large scale systems. The emergence of non-local elasticity theory of Eringen

and Wegner [5] enabled researchers to account for scale effect and make use of continuum

models simplicity. According to this theory, the stress state at a point depends on the strain

at all points of the structure. Several researchers have extensively studied the role of non-

local elasticity theory in modeling nanostructures and identified its importance. Liew et al.

[3] introduce a literature review on the applications of non local elasticity theory in mod-

eling nanoplates. Ansari et al. [6], Pradhan and Kumar [7] used a generalized differential

quadrature model based on Eringen’s non-local elasticity and the classical plate theory to

6
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conduct vibration analysis of graphene sheets. Malekzadeh et al. [8] employed the differ-

ential quadrature method to investigate the free vibration of orthotropic arbitrary straight-

sided quadrilateral nanoplates based on the non-local theory and the first order shear de-

formation theory (FSDT). Wang et al. [9] studied the non-local effect on the vibration of

mono-layer graphene and boron-nitride sheets. Huang et al. [10] calibrated the small scale

effect parameter of simply supported graphene sheets under bending by matching results

obtained from non-local elasticity theory and molecular dynamics (MD) simulations. Chen

et al. [11] used the non-local theory and the classical plate theory to analytically determine

the thermo-electro-mechanical free vibration of piezoelectric nanoplates. Malekzadeh and

Shojaee [12] applied a two-variable refined plate theory and non-local elasticity of Eringen

to determine the effect of the non-local parameter on the vibration of nanoplates. Hosseini

et al. [13] used an analytical model based on non-local constitutive relations and third-order

shear deformation plate theory to investigate the buckling and free vibration of rectangular

nanoplates.

Pradhan and Phadikar [14] reformulated classical plate theory (CPT) and first-order

shear deformation theory (FSDT) using the non-local elasticity constitutive relations of

Eringen, and employed Navier’s approach to solve the resulting equations of motion for

simply supported boundary conditions. Moreover the authors investigated the effect of the

non-local parameter on natural frequencies of the nanoplates. Furthermore the analysis

of double layered nanoplates has been carried out to study the effect of non-local param-

eter, length, height, elastic modulus and stiffness of Winkler foundation of the plate on

natural frequencies. Liu et al. [15] Solved analytically the thermo-electro-mechanical free

vibration of piezoelectric nanoplates using Kirchhoff plate theory in conjunction with non-

local elasticity theory. Analooei et al.,[16] studied the buckling and vibrations of isotropic

and orthotropic nano-plates using finite strip method and Eringen’s non-local elasticity.

The authors determined the effects of plate size, non-local parameter, aspect ratio and

boundary conditions on natural frequencies and buckling load. Aksencer and Aydogdu

[17] reported the forced vibration of nano-plates based on non-local elasticity using the

Navier type solution method. Their work considered different values of non-local param-

eter, length of plates and several loading cases. Aghababaei and Reddy [18] introduced

the third-order shear deformation plate theory of Reddy [19] in conjunction with non-local
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elasticity constitutive relations. Their study presented analytical solutions of bending and

free vibration of simply supported rectangular nanoplates. Wang and Wang [20] proposed

consideration of surface energy to study vibration of simply supported nanoplates based

on non-local elasticity, Kirchhoff’s and Mindlin’s plate theories. solution are obtained in

a closed form using Navier’s approach. The authors have concluded that surface energy

increases natural frequencies of the nanoplates (i.e., stiffening effect). Chakraverty and

Behera [21] employed the Rayleigh-Ritz method with algebraic polynomial displacement

function, based on non-local elasticity and classical plate theory to determine the vibration

of isotropic rectangular nanoplates subjected to different boundary conditions. Necira et

al.[22] used a curved hierarchical quadrilateral element to study free vibration of arbitrary

shaped Mindlin’s nanoplates. Zhang et al. [23] performed free vibration analysis of a

graphene sheet by combining non-local elasticity and classical plate theory in the frame-

work of the kp-Ritz method. The authors obtained the values of non-local parameter by

matching results with Molecular dynamics models, their results showed that non-local pa-

rameter depends on boundary conditions. Kiani [24] investigated the dynamic response

of thin nanoplates subjected to moving nanoparticle taking into account the presence of

Coulomb friction, the study has been accomplished by employing the eigen function tech-

nique and the Laplace transform method to solve the non-local equations of motion. Wang

et al. [25] explored the nonlinear vibrations of double-layered nano-plates subjected to sev-

eral boundary conditions based on non-local elasticity. Jomehzedeh and Saidi [26] studied

the nonlinear free and forced vibration of simply supported and clamped nanoplates using

the von Karman geometrical model and non-local elasticity theory.

Functionally graded nanoplates have been also studied extensively by other researchers.

Natarajan et al. [27] studied the linear vibration behavior of functionally graded nano-

plates using the iso-geometric analysis in conjunction with non-local elasticity constitutive

relations and the Mori–Tanaka homogenization scheme. The author investigated the effect

of material gradient index, the non-local parameter, the plate thickness, the plate aspect

ratio and the boundary conditions on the natural frequencies of the nano-plate. Nami et al.

[28] investigated the effects of gradient parameter, aspect ratio and non-local parameter on

natural frequencies of FGM nanoplates using the non-local Kirchhoff plate. Belkorissat et

al. [29] presented a hyperbolic refined plate model in conjunction with non-local elasticity
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to study free vibration properties of FGM nano-plates, the study considered investigating

the effects of non-local parameter, the plate thickness, the plate aspect ratio, and various

material compositions on natural frequencies of FGM nano-plate. Ansari et al. [30] used

variational differential quadrature (VDQ) method to solve the three dimensional flexural

vibrations problem of FGM nano-plates based on non-local elasticity theory.

The considerable amount of research on vibrational behavior of nanoplates and other

simple structures (nanotubes...) is a consequence to its importance in different applica-

tions in fields as electronics, optics, sensor devices, and nano-electromechanical devices.

The experience gained from studying these simple nanostructures enabled researchers to

study the mechanical behavior of more complex nanoscopic structures (Resonant Sensors

and nanoturbines). Resonant sensors belong to a class of novel devices in nanometrology,

these sensors are mechanically triggered and used to detect the presence of nanoparticles

and biomolecules or to survey temperature or pressure at the nanoscale. Their detection

criteria is obtained by the measurement of the resonant frequency shift of the sensor which

is sensitive to the position, size and shape of the detected particle. Shen et al. [31] investi-

gated vibration of graphene-based nanomechanical sensor based on the non-local Kirchhoff

plate theory, the sensor is considered as a simply supported rectangular nanoplate carrying

a nanoparticle considered as a concentrated mass, the authors explored the effects of the

mass and position of the nanoparticle on the frequency shift which would be helpful to the

design of nanomechanical mass sensor with mass sensitivity that can reach 10−21g. Similar

findings has been reported by other researchers [32, 33]. Fazelzadeh and Ghavanloo [34]

investigated the application of single layered graphene sheet as nanomechanical mass sen-

sors in thermal environments, the results indicated that the sensitivity of the mass sensor in-

creases with increasing temperature difference. Shen et al. [35] explored the possibility of

development of a new generation of resonant mass sensors using double-layered graphene

sheets. Murmu and Adhikari [36] compared the results obtained by non-local elasticity and

molecular dynamics when modeling a nanomechanical sensor and reasonable agreement

has been observed. Consequently it was concluded that the non-local theory can be used to

model nanomechanical mass sensors. Jalali et al. [37] investigated the application of single

layered graphene sheets as resonant sensors in detection of ultra-fine nanoparticles via MD
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and non-local elasticity approaches. To take into consideration the effect of geometric non-

linearity, non-locality and atomic interactions between graphene sheets and nanoparticles,

a nonlinear non-local plate model carrying an attached mass-spring system is introduced.

MD simulations, are employed in order to calibrate the non-local small-scale parameter by

matching frequency shifts obtained by non-local and MD simulation approaches. The field

of research on nanoturbines is in the primary stages, a conceptual design proposed by Li et

al. [38], composed of an single-wall carbon nanotube and graphene sheets. They studied

the rotational motion of the proposed nanoturbine quantitatively by using MD simulations.

This work attracted the attention of other researchers Shafiei et al. [39] who attempted

to apply the non-local elasticity theory to perform vibration analysis of nanoturbine blade

subjected to rotation effects of the nanoturbine. The previously mentioned works employed

the non-local elasticity theory to model and design nanodevices which would offer support

for the plausibility of this theory.

1.2 Vibration of cracked plates

The presence of a crack in a plate is a complicating effect that renders its mechanical behav-

ior significantly different from that of an intact plate especially for the dynamic behavior. A

crack can be defined as a geometric discontinuity in a solid body which is characterized by

an initiation (or nucleation) point. Hence, The use of numerical methods is the most suit-

able approach to solve cracked structures problems, more precisely multi domain methods

such as domain decomposition methods, finite element method (FEM) and its variants,

which provides easy fitting of complex geometries and arbitrary combinations of bound-

ary conditions (i.e., discontinuities, curves and irregular domains) by dividing the complex

original geometric domain into a small number of manageable subdomains (i.e., elements).

Plenty of research work has been performed on the computation of stress intensity factor

(i.e., static analysis) for cracked local plates, However studies of cracked local plate free

vibrations are comparatively little and absent for cracked nanoplates.

Most of the investigations in literature considered the classical plate theory (CPT) for

thin plates to determine vibrational behavior of rectangular plates having cracks parallel to

one of the edges, with simply supported conditions at all edges or two opposite edges. Stahl
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and Keer [40] determined the natural frequencies of rectangular plates with mixed boundary

conditions arising from a crack parallel and symmetric to two opposite edges using Fourier

series, the resulted dual series equations are converted to homogeneous Fredholm integral

equation to determine natural frequencies and mode shapes. Solecki [41] solved vibra-

tion problems of a rectangular, simply supported, isotropic plate by means of finite Fourier

transformation of discontinuous functions, with a crack located parallel to one edge, sym-

metrically with respect to one symmetry axis which allowed the use of mixed boundary

conditions to model the crack. While Hirano and Okazaki [42] studied the vibration prob-

lems of cracked rectangular plates with two opposite edges perpendicular to the line of the

crack assumed to be simply supported, the Levy-Nadia’s form of solution is employed and

the weighted residual methods was used to establish the mixed boundary conditions on the

line of the crack. The use of mixed boundary conditions to model a crack in the afore-

mentioned works is limited to parallel and symmetrically positioned cracks with respect to

one symmetry axis. Having that said, Liew et al. and Lee and Lim [43, 44] employed the

Ritz method in conjunction with domain decomposition method to determine the vibration

frequencies of cracked plates. Which enable the subdivision of cracked plate domain into

a number of subdomains according to the crack location. These subdomains are assembled

to form the complete domain through a continuity matrix. Although the studied cracks in

this two papers are parallel to one edge, the model can be further extended to plates with

cracks in any orientation as shown by Huang and Leissa [45, 46]. However a considerable

amount of tedious procedure would be encountered to implement geometric transformation

due to the inherit lack of automation of the method.

Several interesting studies used finite elements method variants to investigate the vi-

bration and buckling of cracked plates using Kirchhoff (ie,. CPT) and Reissner-Mindlin

plate theory. Qian et al. [47] generalized an FEM approach developed for beams in a pre-

vious paper [48] to two-dimensional structure. The stiffness matrix of the plate element

with crack is obtained by a flexibility coefficient that is expressed by the stress intensity

factor which is related to the additional strain energy caused by the presence of the crack.

Krawczuk [49] employed a similar to the method described by Qian et al. [47] but contrary

to their approach, the stiffness matrix of the element with a crack is presented in the closed

form. Despite the fact that the two previously mentioned works [47, 49] are quite common
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in literature and considered as the simplest model since it is based on reducing the elastic

coefficients of the element at the crack location. The downside of this approaches is that

the reduced elastic coefficients are not related to the geometry of the crack and the stress

concentration around the crack tip is neglected.

The most promising and realistic approach is based on separating the nodes of the ele-

ments on both sides of the crack [50, 51]. In this approach the mesh has to be established

so that element edges coincide with the crack lines and nodes must be placed on each side

of the crack to allow material separation along the crack. This would provide realistic des-

cription of the geometric discontinuity of the crack and the singular nature of stresses and

strains fields near the crack tip, the results obtained by this approach are highly accurate.

However, a dense mesh around the crack tip is necessary (i.e., significant h-refinement)

which increases the computational cost drastically and tedious amount of post processing

tasks is required even with the use of highly developed software. Natarajan et al. [52]

studied linear free vibrations of FGM plates with a through center crack using the finite

element method based on FSDT and eight-nodes quadrilateral element (h-refinement and

nodes separation). Alternatively the previously mentioned approach can be further opti-

mized by employing special elements with singular shape functions [53, 54, 55, 56] that

produces strain singularities with minimal mesh condensation when careful treatment is

carried out.

Another thriving variants of FEM in modeling cracked structures is the generalized /

extended finite element method (XFEM and GFEM) which are basically identical methods.

In this method the mesh is completely independent of the crack surfaces and tip, contrary to

h-FEM (standard FEM) where the element edges must fit to the crack geometry and dupli-

cate nodes must be placed there. And since the singular aspects of stresses and strains fields

are known for cracks, based on these fields, additional basis functions that approximate the

near tip behavior are introduced to elements containing the crack. The advantage here is

a convenient simulation of crack evolution because as a crack grows there is no need for

re-meshing. Bachene et al. [57] adopted the extended finite element method (XFEM) to an-

alyze vibrations of cracked plates, based on Mindlin’s plate theory and taking into account

rotatory inertia, where enriched elements by discontinuous functions proposed by Moës et
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al. [58] are implemented. followed by another free vibration study [59] where isotropic ho-

mogeneous plates having a through crack located at various positions are studied. Natarajan

et al. [60] performed the vibration analysis of cracked FGM (functionally graded material)

plates using 4-noded quadrilateral plate element using XFEM based on first order shear

deformation theory. their work studied rigorously the effect of crack length, crack location,

crack orientation and gradient index of the material on the free flexural vibrations of the

plates under various cases of boundary conditions. Although the first order shear defor-

mation theory (FSDT) suffers from shear locking when implemented with FEM, this can

be addressed by reduced integration on linear elements, or by using higher order elements

(Reddy). However Bletzinger et al. [61] introduced the discrete shear gap method (DSG)

as an efficient approach to prevent shear locking, Which has been integrated with XFEM

by Yu et al. [62] to investigate vibration of cracked Mindlin plates.
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(a) h-version of finite element method (node separa-
tion)

(b) extended finite element method, gray elements
are enriched elements

(c) h-p version of finite element method (node sep-
aration), gray elements are selectively p-refined ele-
ments

Figure 1.1: Discretization of a cracked plate with different variants of FEM

Other works exploited the advantage of higher-order inter-element continuity of isoge-

ometric analysis (IGA) to studied the vibration of cracked plates. Tran et al. [63] employed

extended isogemetric analysis (XIGA) to study the free vibration of cracked FGM plates

based on HSDT. Yin et al. [64] studied the free vibration and buckling analysis of imper-

fect (i.e. crack and cutout) Reissner-Mindlin plate using XIGA. Further, Yu et al. [65]

investigated the thermal buckling of functionally graded plates with internal defects (i.e.,

crack or cutout) by FSDT based XIGA. Tan et al. [66] employed XIGA in conjunction

with two-variable refined plate theory to perform the dynamic analysis of cracked FGM
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plate. Singh et al.[67] solved several isotropic cracked plates problems using XIGA based

on HSDT.

The h-p version of finite element method (h-p FEM) is a combination of the conven-

tional h-version and p-version, where convergence can be achieved by refining the mesh

or/and increasing the degree of polynomial interpolation of the elements. Hence it inherits

the merits of the flexibility of finite element method when modeling specific structural ge-

ometries, and enables the user to select an optimal choice of h-refinement and p-refinement.

Based on numerical experience in linear elastic fracture mechanics Szabo et al. [68] found

that the rate of convergence of p-refinement is substantially greater than that of h-refinement

and requires substantially fewer degrees of freedom to achieve similar levels of precision.

Consequently mesh density would be only dependent on the complexity of geometry (i.e.

the minimum number of elements needed to fit crack edges) and not dependent on re-

quirements of solution precision. Moreover p-refinement can be selectively applied only to

elements around crack tip to capture the singular nature of stress and strain fields. How-

ever there is a paucity of literature on the vibrations of cracked plates using h-p FEM.

Only two papers in the published literature applied h-p FEM on the vibrations of cracked

plates. Bardell et al. [69] studied the natural frequencies and modes of laminated cantilever

plate subjected to a through-the-thickness cracks along the center-line. And extended the

geometric complication by studying free vibration of C shaped laminated plates having

through-the-thickness corner cracks. Hadjoui et al. [70] investigated the free vibrations of

triangular cracked orthotropic plates based on Mindlin’s plate theory in the framework of

h-p FEM, their study considered different crack lengths, locations and different angles of

fiber orientation.

1.3 Summary

In this chapter, the literature about vibration of nanoplates using nonlocal elasticity and

numerical methods used to model cracked plates was explored and discussed.

In section 1.1, the literature about the vibration of nanoplates and the different trends

in models used were discussed. Among these models, the non-local elasticity theory seems

to be of prime importance as it results in less computationally expensive simulations. The
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overwhelming amount of research that is using non-local elasticity to model and design

nanodevices, offers support for the plausibility of this theory. However, the calibration of

the non-local parameter may be problematic.

Based on the observations in section 1.1, the following points are concluded:

• Scale effects plays a significant role in predicting behavior of nanostructures, thus

the effect of non-local parameter will be investigated in this thesis.

• All previous work on vibration of nanoplates, considered only intact nanoplates,

hence this thesis will further explore the vibration of cracked nanoplates.

• The nonlinear free vibration of nanoplates studies in literature are scarce, and con-

sider only uncracked plates, thus in this work nonlinear vibration will be examined,

to better understand non-linearity in cracked local/nonlocal plates.

As a mathematical model is the basis of studying mechanical systems, in section 1.2, the

literature about a number of powerful methods for studying cracked plates were reviewed,

and the limitations of these methods were discussed. For example, some of them are sim-

ple and based on reduction of the elastic coefficients at the crack location. However the

geometry of the crack is not considered and the stress concentration at the crack tip is

neglected. Other methods, suffer from the lack of automation and the need for extensive

preprocessing. Based on the discussion in section 1.2, the following points are concluded:

• An accurate prediction of behavior of cracked structures requires a nodes separation

approach. However, a dense mesh around the crack tip is required, hence a significant

amount of preprocessing is used, thus in this work h-p FEM is employed to exploit

its potential advantages in solving cracked plates problems.

• The h-p FEM is a promising method to model cracked structures due to its advantages

inherited from h-version and p-version. However a lack of research on vibration

cracked plates using h-p FEM is observed.

In the following chapter, an h-p FEM model is developed to model cracked nanoplates

based on first order shear deformation theory and nonlocal elasticity theory.



Chapter 2

Preliminaries

In the previous chapter, a literature review has been conducted in order to convey what

theories, numerical methods and approaches have been employed on the topic of vibration

of nanoplates and vibration of cracked plates, and what their advantages and gaps. The aim

of this chapter is to develop an h-p FEM model to solve linear/nonlinear cracked nanoplates

problems based on first order shear deformation theory (FSDT) and nonlocal elasticity

theory of Eringen.

In this chapter we:

• Introduce the concept of nonlocal elasticity and its mathematical description of in-

teractions between points in a solid nano-structure.

• Employ nonlocal elasticity in conjunction with first order shear deformation plate

theory (FSDT) to derive equations of motion of nonlocal plate.

• Present Functionally graded material effective properties.

• Use h-p FEM to discretize the obtained equations of motion, present numerical meth-

ods employed to construct and solve the discretized system and introduce computer

implementation approaches used to efficiently conduct calculations.

17
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2.1 Non-local elasticity theory

According to the non-local elasticity theory, the state of stress at a point x(x,y,z) in a

material is given not only by the state of strain at that point, but also by the state of strain at

all other points x′(x′,y′,z′). This concept is consistent with the quantum physics description

of interactions between atoms in material which considers that an certain atom is interacting

locally with adjacent atoms and non-locally with remote atoms (see Figure 2.1).

m1 m2 m3 m4 m5

k12

knlk13 knlk35

k23 k34 k45

knlk14

knlk15

knlk24 knlk25

m1 m2 m3 m4 m5

k12 k12 k12 k12

Local model

Non-local model

Figure 2.1: Mass spring discrete models illustrating difference between local and non-local
concepts

Thus the non-locality or the non-local average of a local physical quantity field (e.g.,

stress) σi j (x,y,z, t) in a domain Ω and time t is described by a weighted average formula

[5]:
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σ i j (x,y,z, t) =
∫
Ω

κ
(∥∥x′−x

∥∥ ,µ)σi j
(
x′,y′,z′, t

)
dx′dy′dz′ / µ =

e0li
le

(2.1)

Where σ i j is the non-local stress component. κ is a continuous function called averag-

ing kernel or the spatial non-local kernel, and µ is the non-local parameter which represent

the rate of spatial decay of the averaging kernel κ , e0is a non-dimensional parameter con-

sidered as a constant appropriate for the material, le is the external characteristic length that

may refer to the size of the structure, li is the internal characteristic length that may refer

to the spacing between atoms. For nano-structures, the external characteristic length is of

the same order of magnitude as the internal one (i.e., li
le
∼ 1). The non-local constitutive

equation of elasticity can be written as [4]:

σ i j (x,y,z, t) =
∫
Ω

κ
(∥∥x′−x

∥∥ ,µ)Ei jklεkl
(
x′,y′,z′, t

)
dx′dy′dz′ (2.2)

The non-local kernels substantially affect the spatial distribution of the considered phys-

ical quantity (i.e., the spatial decay of the long range interactions). Therefore, a non-local

kernel has the following essential properties [71]:

• It describes correctly the long-range inter-atomic interactions between material

points by acquiring its maximum at x′ = x and decreasing rapidly to zero at large

distances. Hence that non-local interactions are only effective in a finite vicinity of

the point.

• When µ → 0 must revert to the Dirac delta function and the non-local elasticity

reduces to the classical elasticity.

lim
µ→0

κ
(∥∥x′−x

∥∥ ,µ)= δ̂
(∥∥x′−x

∥∥) (2.3)

• The non-local kernel is symmetric with respect to x, i.e., κ (‖x′−x‖ ,µ) =

κ (‖x−x′‖ ,µ).
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• Non-local kernel must be normalized so that their integrals over the domain of inte-

gration (line, surface, volume) give unity.∫
Ω

κ
(∥∥x′−x

∥∥ ,µ)dxdydz = 1 (2.4)

The above considerations further suggest that Eq.((2.1)) may be considered as the prob-

abilistic average of σi j, if κ is considered to be a probability density function. Such a

consideration resembles the method of analysis of quantum mechanics with the probability

density function [2].

Based on the aforementioned proprieties of a non-local kernel, a handful of non-

local kernels have been proposed in the literature like the cone-shaped function [5], the

bell-shaped function [72], the Gaussian function [5], the exponential function [73], the

atomistically-based kernel [74].

However mathematical difficulties emerges when solving non-local elasticity problems

by directly using these kernels, since it involves integropartial differential equations. In

order to overcome these difficulty, Eringen [75] proposed to replace the spatial integrals

by differential operators, by assuming that the kernel κ is a Green’s function Eq.(2.5) of a

linear differential operator L [76].

κ
(∥∥x′−x

∥∥ ,µ)= 1

2π (µle)
2 K0

(
−‖x

′−x‖
µle

)
(2.5)

where K0 is the modified Bessel’s function of the second kind of order zero. The dif-

ferential operator L has the following propriety Eq.((2.6))

L κ
(∥∥x′−x

∥∥ ,µ)= δ̂
(
x′−x

)
(2.6)

Where δ̂ is the Dirac unit impulse. Applying operator L to Eq.((2.1)) leads to the

following differential equation Eq.(2.7):

L σ i j (x,y,z, t) = σi j
(
x′,y′,z′, t

)
(2.7)
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Further more if L is a differential operator with constant coefficients, we have the

following propriety [2]:

∂

∂x j

(
L σ i j

)
= L

(
∂σ i j

∂x j

)
(2.8)

Applying operator L to the equation of motion of elastic solid body Eq.(2.9) and taking

into account the previously mentioned proprieties, the equation of motion is reduced to the

partial differential equation Eq.(2.10):

∂σ i j

∂x j
+ fi−ρ

∂ 2ui

∂ t2 = 0 (2.9)

∂σi j

∂x j
+L

(
fi−ρ

∂ 2ui

∂ t2

)
= 0 (2.10)

The statement in Eq.(2.10) is by analogy equivalent to the following expression of

Hamilton’s principle (i.e., weak form)

T∫
0

δU +δV −δK =

T∫
0

∫
Ω

σi jδεi j +L ( fi)δui−L

(
ρ

∂ui

∂ t

)
δ

(
∂ui

∂ t

)
dvdt = 0 (2.11)

The obtained partial differential equation can be easily solved using well known an-

alytical or numerical methods. That being said, the differential operator associated with

the Green’s function kernel proposed by Eringen is the Helmholtz operator, which is a

second-order linear operator with constant coefficients expressed as [2]:

L = 1−µl2
e ∇

2 / ∇
2 = ∑

i

∂

∂xi
(2.12)

2.2 Non-local first order shear deformation theory

According to the first order shear deformation theory the displacement field u, v and w at a

point (x,y,z) are defined as
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u(x,y,z, t) = u0− zθx (x,y, t)

v(x,y,z, t) = v0− zθy (x,y, t)

w(x,y,z, t) = w0 (x,y, t)

(2.13)

where θx and θy are the rotation of transverse normal to the mid-plane about the x and

y axes. The strain field is defined as



εxx

εyy

γyz

γxz

γxy


=



ε
(0)
xx

ε
(0)
yy

γ
(0)
yz

γ
(0)
xz

γ
(0)
xy


+ z



ε
(1)
xx

ε
(1)
yy

0

0

γ
(1)
xy


=



∂u0
∂x + 1

2

(
∂w0
∂x

)2

∂v0
∂y + 1

2

(
∂w0
∂y

)2

θy +
∂w0
∂y

θx +
∂w0
∂x

∂u0
∂y + ∂v0

∂x + ∂w0
∂x

∂w0
∂y


+ z



∂θx
∂x
∂θy
∂y

0

0
∂θx
∂y +

∂θy
∂x


(2.14)

Using variational calculus we obtain virtual strains



δε
(0)
xx

δε
(0)
yy

δγ
(0)
yz

δγ
(0)
xz

δγ
(0)
xy


=



δ

(
∂u0
∂x

)
+δ

(
∂w0
∂x

)
∂w0
∂x

δ

(
∂v0
∂y

)
+δ

(
∂w0
∂y

)
∂w0
∂y

δθy +δ

(
∂w0
∂y

)
δθx +δ

(
∂w0
∂x

)
δ

(
∂u0
∂y

)
+δ

(
∂v0
∂x

)
+δ

(
∂w0
∂x

)
∂w0
∂y + ∂w0

∂x δ

(
∂w0
∂y

)


(2.15)



δε
(1)
xx

δε
(1)
yy

0

0

δγ
(1)
xy


=



δ

(
∂θx
∂x

)
δ

(
∂θy
∂y

)
0

0

δ

(
∂θx
∂y

)
+δ

(
∂θy
∂x

)


(2.16)
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where
(

ε
(0)
xx , ε

(0)
yy , γ

(0)
yz , γ

(0)
xz , γ

(0)
xy

)
are the middle surface strain also known as mem-

brane strains, and
(

ε
(1)
xx , ε

(1)
yy , γ

(1)
yz , γ

(1)
xz , γ

(1)
xy

)
are the flexural strains.



σxx

σyy

σxy

σxz

σyz


=
(
1−µ∇

2)


σ̄xx

σ̄yy

σ̄xy

σ̄xz

σ̄yz


=



C11 C12 0 0 0

C21 C22 0 0 0

0 0 C66 0 0

0 0 0 κsC55 0

0 0 0 0 κsC44





εxx

εyy

γxy

γxz

γyz


(2.17)

where µ = (e0li)
2 denotes the nonlocal parameter in terms of a material constant e0 and

the internal characteristic length li, Ci j are coefficients of the elastic matrix [C] given by



C11 (z) =C22 (z) =
E f (z)

1− v2
f (z)

C12 (z) = v f (z)C11

C44 (z) =C55 (z) =C66 (z) =
E f (z)

2
(
1+ v f (z)

)
(2.18)

where E f (z) and ν f (z) are Young’s modulus and Poisson’s ratio respectively. κs is the

shear correction factor taken as 5/6 [77].

The governing equation for the first-order plate theory can be obtained using Hamilton’s

principle

T∫
0

δU−δK = 0 (2.19)

Where δU and δK are the virtual strain and kinetic energy, the virtual strain energy δU

is expressed as:

δU =
∫

Ω

{∫ h
2

− h
2

[σxxδεxx +σyyδεyy +σxyδγxy +σxzδγxz +σyzδγyz]dz

}
dxdy (2.20)
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Substituting Eqs.(2.14-2.17) into Eq.(2.20) we obtain the expression for the virtual

strain energy.

δU =
∫

Ω

{
Nxx

(
δ

(
∂u0

∂x

)
+δ

(
∂w0

∂x

)
∂w0

∂x

)
+Nyy

(
δ

(
∂v0

∂y

)
+δ

(
∂w0

∂y

)
∂w0

∂y

)
+Nxy

(
δ

(
∂u0

∂y

)
+δ

(
∂v0

∂x

)
+δ

(
∂w0

∂x

)
∂w0

∂y
+

∂w0

∂x
δ

(
∂w0

∂y

))
+Mxxδ

(
∂θx

∂x

)
+Myyδ

(
∂θy

∂y

)
+Mxy

(
δ

(
∂θx

∂y

)
+δ

(
∂θy

∂x

))
+ Qx

(
δθx +δ

(
∂w0

∂x

))
+Qy

(
δθy +δ

(
∂w0

∂y

))}
dxdy (2.21)

N, M, Q are the stress resultant forces and moments expressed as follows


Nxx

Nyy

Nxy

=


A11 A12 0

A12 A22 0

0 0 A66




ε
(0)
xx

ε
(0)
yy

ε
(0)
xy

+


B11 B12 0

B12 B22 0

0 0 B66




ε
(1)
xx

ε
(1)
yy

ε
(1)
xy

 (2.22)


Mxx

Myy

Mxy

=


B11 B12 0

B12 B22 0

0 0 B66




ε
(0)
xx

ε
(0)
yy

ε
(0)
xy

+


D11 D12 0

D12 D22 0

0 0 D66




ε
(1)
xx

ε
(1)
yy

ε
(1)
xy

 (2.23)

{
Ql

y

Ql
x

}
= κs

[
A44 0

0 A55

]{
γ
(0)
yz

γ
(0)
xz

}
(2.24)

where Ai j are extensional stiffness coefficients, Di j are bending stiffness coefficients

and Bi j are bending-extensional coupling stiffness, which are defined as
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Ai j =
∫ h

2

− h
2

Ci j (z)dz (2.25)

Bi j =
∫ h

2

− h
2

zCi j (z)dz (2.26)

Di j =
∫ h

2

− h
2

z2Ci j (z)dz (2.27)

For an isotropic material Young’s modulus E and Poisson’s ratio ν are constants

through the plate thickness, hence stiffness coefficients yields

Ai j = hCi j , (2.28)

Bi j = 0, (2.29)

Di j =
h3

12
Ci j (2.30)

The virtual kinetic energy δK is expressed as:

δK =
∫

Ω

(
1−µ∇

2)∫ h
2

− h
2

ρ (z)(δ u̇u̇+δ v̇v̇+δ ẇẇ) dzdxdy (2.31)

Substituting displacement field relation Eq.(2.1) into Eq.(2.31) we obtain the expression

for the virtual kinetic energy.

δK=
∫

Ω

(
1−µ∇

2) I0 (δ u̇0u̇0 +δ v̇0v̇0 +δ ẇ0ẇ0)

+I1

(
δ u̇0θ̇x +δ v̇0θ̇y + ˙δθxu̇0 + ˙δθyv̇0

)
+I2

(
˙δθxθ̇x + ˙δθyθ̇y

)
dxdy (2.32)
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I0, I1 and I2 are the mass moments of inertia expressed as

I0 =
∫ h

2

− h
2

ρ (z) dz (2.33)

I1 =
∫ h

2

− h
2

ρ (z)zdz (2.34)

I2 =
∫ h

2

− h
2

ρ (z)z2 dz (2.35)

Using Eqs.(2.22-2.24) and Eq.(2.19) the weak form of the governing equation of motion

is obtained Eq.(2.36) after performing both spatial and time integration-by-parts.

0=
T∫
0

∫
Ω

∂δu0

∂x

(
A11

∂u0

∂x
+A12

∂v0

∂y
+B11

∂θx

∂x
+B12

∂θy

∂y

)

+
∂δv0

∂y

(
A12

∂u0

∂x
+A22

∂v0

∂y
+B12

∂θx

∂x
+B22

∂θy

∂y

)
+

(
∂δu0

∂y
+

∂δv0

∂x

)(
A66

(
∂u0

∂y
+

∂v0

∂x

)
+B66

(
∂θx

∂y
+

∂θy

∂x

))
+

(
∂δw0

∂x
+δθx

)
A55

(
θx +

∂w0

∂x

)
+

(
∂δw0

∂y
+δθy

)
A44

(
θy +

∂w0

∂y

)
+

∂δθx

∂x

(
B11

∂u0

∂x
+B12

∂v0

∂y
+D11

∂θx

∂x
+D12

∂θy

∂y

)
+

∂δθy

∂y

(
B12

∂u0

∂x
+B22

∂v0

∂y
+D12

∂θx

∂x
+D22

∂θy

∂y

)
+

(
∂δθx

∂y
+

∂δθy

∂x

)(
B66

(
∂u0

∂y
+

∂v0

∂x

)
+D66

(
∂θx

∂y
+

∂θy

∂x

))

+ℵ(u0,v0,w0,θx,θy)dxdydt−
T∫
0

∫
Ω

I0 (δu0ü0 +δv0v̈0 +δw0ẅ0)
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+I1
(
δu0θ̈x +δv0θ̈y +δθxü0 +δθyv̈0

)
+ I2

(
δθxθ̈x +δθyθ̈y

)
+4µ

[
I0

(
∂δu0

∂x
∂ ü0

∂x
+

∂δu0

∂y
∂ ü0

∂y
+

∂δv0

∂x
∂ v̈0

∂x

+
∂δv0

∂y
∂ v̈0

∂y
+

∂δw0

∂x
∂ ẅ0

∂x
+

∂δw0

∂y
∂ ẅ0

∂y

)
+I1

(
∂δu0

∂x
∂ θ̈x

∂x
+

∂δu0

∂y
∂ θ̈x

∂y
+

∂δv0

∂x
∂ θ̈y

∂x
+

∂δv0

∂y
∂ θ̈y

∂y

+
∂δθx

∂x
∂ ü0

∂x
+

∂δθx

∂y
∂ ü0

∂y
+

∂δθy

∂x
∂ v̈0

∂x
+

∂δθy

∂y
∂ v̈0

∂y

)]
+I2

(
∂δθx

∂x
∂ θ̈x

∂x
+

∂δθx

∂y
∂ θ̈x

∂y
+

∂δθy

∂x
∂ θ̈y

∂x
+

∂δθy

∂y
∂ θ̈y

∂y

)
dxdydt (2.36)

Where ℵ(u0,v0,w0,θx,θy) is the nonlinear part expressed as:

ℵ(u0,v0,w0,θx,θy) =
1
2

[
∂δu0

∂x

(
A11

(
∂w0

∂x

)2

+A12

(
∂w0

∂y

)2
)

+
∂δv0

∂y

(
A12

(
∂w0

∂x

)2

+A22

(
∂w0

∂y

)2
)
+

∂δθx

∂x

(
B11

(
∂w0

∂x

)2

+ B12

(
∂w0

∂y

)2
)
+

∂δθy

∂y

(
B12

(
∂w0

∂x

)2

+B22

(
∂w0

∂y

)2
)]

+

(
A66

(
∂δu0

∂y
+

∂δv0

∂x

)
+B66

(
∂δθx

∂y
+

∂δθy

∂x

))
∂w0

∂x
∂w0

∂y

+
∂δw0

∂x
∂w0

∂x

(
A11

(
∂u0

∂x
+

1
2

(
∂w0

∂x

)2
)
+A12

(
∂v0

∂y
+

1
2

(
∂w0

∂y

)2
)

+ B11
∂θx

∂x
+B12

∂θy

∂y

)
+

∂δw0

∂y
∂w0

∂y

(
A12

(
∂u0

∂x
+

1
2

(
∂w0

∂x

)2
)

+ A22

(
∂v0

∂y
+

1
2

(
∂w0

∂y

)2
)
+B12

∂θx

∂x
+B22

∂θy

∂y

)
+

(
∂δw0

∂x
∂w0

∂y

+
∂δw0

∂y
∂w0

∂x

)(
A66

(
∂u0

∂y
+

∂v0

∂x
+

∂w0

∂x
∂w0

∂y

)
+B66

(
∂θx

∂y
+

∂θy

∂x

))
(2.37)
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(a) continuous variation (b) discrete variation

Figure 2.2: Volume fraction variation models

2.3 Functionally graded materials effective properties

Various FGMs are composed of two phases of different materials usually ceramic and

metal. Where the volume fraction of each phase gradually varies in a given direction (e.g.,

thickness direction), consequently the effective properties of FGMs change along this di-

rection.

Volume fraction variation is modeled with one of two approaches: discrete variation

and continuous variation. When the discrete variation of the volume fraction of ceramic or

metal is assumed, the FGM is considered to be layered with constant volume fraction for

each region also called quasi-homogeneous ceramic–metal layers (Figure 2.2b).

For the continuous variation of the volume fraction of ceramic or metal (Figure 2.2a),

the metal and ceramic volume fractions expressed by the following function of the thickness

coordinate z.
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Vm =

(
2z+h

2h

)n

(2.38)

Vc = 1−Vm (2.39)

− h
2
≤ z≤ h

2
0≤ n <+∞

where h is the thickness of the structure, and n is a volume fraction exponent that

represent the material variation profile through the thickness2.3.

Figure 2.3: Metal volume fraction variation profile through the thickness

The distribution of effective material properties P f (z) of the isotropic FGM layer, like

Young’s modulus E f (z) , and Poisson’s ratio ν f can then be expressed as

P f (z) = PmVm (z)+PcVc (z) (2.40)
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However it is necessary to consider temperature-dependency for accurate prediction

of the mechanical response, since FGMs are often employed in high-temperature environ-

ments that introduce notable changes in properties of constituent materials [78]. Thus, a

constituent material property is temperature dependent and can be expressed as [79]:

P j (T ) = P0
(
P−1T−1 +1+P1T +P2T 2 +P3T 3) (2.41)

where P−1, P0, P1, P2, and P3 are the coefficients of temperature T (K) and are unique to

a constituent material j. From Eqs.(2.38-2.41) we have [80]:

E f (z,T ) = (Em (T )−Ec (T ))
(

2z+h
2h

)n

+Ec (T ) (2.42)

ν f (z,T ) = (νm (T )−νc (T ))
(

2z+h
2h

)n

+νc (T ) (2.43)

Table 2.1 (from [78]) contains values of coefficients for Young’s modulus and Poisson’s

ratio of some ceramics and metals.

2.4 Finite element model of non-local FSDT

The finite elements method consists of employing an interpolation by subdomains (i.e., el-

ements) on unknown field variables (e.g., displacement, temperature, velocity ... etc) in or-

der to transform integral equations (i.e., weak formulation) derived from partial differential

equations (i.e., strong formulation ) into a system of algebraic equations. Relating at least

three branches of knowledge, engineering science to derive partial differential equations

or integral equations of studied physical system, numerical methods to construct and solve

algebraic equations and programming and software development to efficiently conduct cal-

culations on a machine [81]. In this section finite element model for FSDT non-local plates

is developed.
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Table 2.1: Coefficients for Young’s Modulus E f and Poisson’s ratio ν f of ceramics and
metals

Materials P0 P−1 P1 P2 P3

Young’s Modulus

Zirconia 244.27e+9 0.0 -1.371e-3 1.214e-6 -3.681e-10

Aluminum oxide 349.55e+9 0.0 -3.853e-4 4.027e-7 -1.673e-10

Silicon nitride 348.48e+9 0.0 -3.070e-4 2.160e-7 -8.946e-11

Ti-6Al-4V 122.56e+9 0.0 -4.586e-4 0.0 0.0

Stainless steel 201.04e+9 0.0 3.079e-4 -6.534e-7 0.0

Nickel 223.95e+9 0.0 -2.794e-4 -3.998e-9 0.0

Poisson’s ratio

Zirconia 0.2882 0.0 1.133e-4 0.0 0.0

Aluminum oxide 0.2600 0.0 0.0 0.0 0.0

Silicon nitride 0.2400 0.0 0.0 0.0 0.0

Ti-6Al-4V 0.2884 0.0 1.121e-4 0.0 0.0

Stainless steel 0.3262 0.0 -2.002e-4 3.797e-7 0.0

Nickel 0.3100 0.0 0.0 0.0 0.0

Source: Reddy and Chin [77]
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Supposing that the dependent field variables (u0,v0,w0,θx,θy) are approximated over a

finite element Ω e by:

u0 (x,y, t) =τ1 (t)
n

∑
i=1

ϕi (x,y)q5i−4v0 (x,y, t) =τ2 (t)
n

∑
i=1

ϕi (x,y)q5i−3 (2.44)

w0 (x,y, t) =τ3 (t)
n

∑
i=1

ϕi (x,y)q5i−2 (2.45)

θx (x,y, t) =τ4 (t)
n

∑
i=1

ϕi (x,y)q5i−1θy (x,y, t) =τ5 (t)
n

∑
i=1

ϕi (x,y)q5i (2.46)

Assuming that the plate response is periodic, where τi (i = 1,2, ...,5) are the time func-

tions taken as [82, 83].

τ1 = τ2 = τ
2
3 = τ

2
4 = τ

2
5 = cos2

ωt (2.47)

Substituting approximations Eqs.(2.44-2.46) for (u0,v0,w0,θx,θy) and their derivatives

into Eq.(2.36), we obtain a system of algebraic equations of the form:

[M]{τ̈q}+[K (τ,q)]{q}= 0 (2.48)

Using time functions Eq.(2.47), since Eq.(2.48) is a third order function of {q} and

cos3ωt = 3
4cosωt+ 1

4cos3ωt, applying the harmonic balance method and neglecting higher

harmonic component, The resulting equation is a standard eigenvalue equation

−ω
2 [M]{q}+[KL +KNL (q)]{q}= 0 (2.49)

where [M] is the element mass matrix,[KL] is linear stiffness matrix and [KNL] is non-

linear stiffness matrix. This matrices can be arranged as follow
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[M] =



[
M11] [0] [0]

[
M14] [0]

[0]
[
M22] [0] [0]

[
M25]

[0] [0]
[
M33] [0] [0][

M41] [0] [0]
[
M44] [0]

[0]
[
M52] [0] [0]

[
M55]



e

(2.50)

[KL] =



[
K11] [

K12] [0]
[
K14] [

K15][
K12]T [

K22] [0]
[
K24] [

K25]
[0] [0]

[
K33] [

K34] [
K35][

K14]T [
K24]T [

K43] [
K44] [

K45][
K15]T [

K25]T [
K53] [

K54] [
K55]



e

(2.51)

[KNL] =
3
4



[0] [0]
[
K̃13
]

[0] [0]

[0] [0]
[
K̃23
]

[0] [0]

2
[
K̃13
]T

2
[
K̃23
]T [

K̃33
]

[0] [0]

[0] [0] [0] [0] [0]

[0] [0] [0] [0] [0]



e

(2.52)

[
M11

i, j
]
=
[
M22

i, j
]
=
[
M33

i, j
]
= I0Si j (2.53)[

M44
i, j
]
=
[
M55

i, j

]
= I2Si j (2.54)[

M14
i, j
]
=
[
M25

i, j

]
=
[
M25

i, j

]T
=
[
M25

i, j

]T
= I1Si j (2.55)

Si j =
∫
Ω

ϕiϕ j +4µ

(
∂ϕi

∂x
∂ϕ j

∂x
+

∂ϕi

∂y
∂ϕ j

∂y

)
dxdy (2.56)
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[
K11

i, j
]
=
∫
Ω

A11
∂ϕi

∂x
∂ϕ j

∂x
+A66

∂ϕi

∂y
∂ϕ j

∂y
dxdy (2.57)

[
K12

i, j
]
=
∫
Ω

A12
∂ϕi

∂x
∂ϕ j

∂y
+A66

∂ϕi

∂y
∂ϕ j

∂x
dxdy =

[
K21

i, j
]T

(2.58)

[
K14

i, j
]
=
∫
Ω

B11
∂ϕi

∂x
∂ϕ j

∂x
+B66

∂ϕi

∂y
∂ϕ j

∂y
dxdy =

[
K41

i, j
]T

(2.59)

[
K15

i, j

]
=
∫
Ω

B12
∂ϕi

∂x
∂ϕ j

∂y
+B66

∂ϕi

∂y
∂ϕ j

∂x
dxdy =

[
K51

i, j

]T
(2.60)

[
K22

i, j
]
=
∫
Ω

A22
∂ϕi

∂y
∂ϕ j

∂y
+A66

∂ϕi

∂x
∂ϕ j

∂x
dxdy (2.61)

[
K24

i, j
]
=
∫
Ω

B12
∂ϕi

∂y
∂ϕ j

∂x
+B66

∂ϕi

∂x
∂ϕ j

∂y
dxdy =

[
K42

i, j
]T

(2.62)

[
K25

i, j

]
=
∫
Ω

B22
∂ϕi

∂y
∂ϕ j

∂y
+B66

∂ϕi

∂x
∂ϕ j

∂x
dxdy =

[
K52

i, j

]T
(2.63)

[
K33

i, j
]
=
∫
Ω

κsA55
∂ϕi

∂x
∂ϕ j

∂x
+κsA44

∂ϕi

∂y
∂ϕ j

∂y
dxdy (2.64)

[
K34

i, j
]
=
∫
Ω

κsA55
∂ϕi

∂x
ϕ jdxdy =

[
K43

i, j
]T

(2.65)

[
K35

i, j

]
=
∫
Ω

κsA44
∂ϕi

∂y
ϕ jdxdy =

[
K53

i, j

]T
(2.66)

[
K44

i, j
]
=
∫
Ω

κsA55ϕiϕ j +D11
∂ϕi

∂x
∂ϕ j

∂x
+D66

∂ϕi

∂y
∂ϕ j

∂y
dxdy (2.67)

[
K45

i, j

]
=
∫
Ω

D12
∂ϕi

∂x
∂ϕ j

∂y
+D66

∂ϕi

∂y
∂ϕ j

∂x
dxdy =

[
K54

i, j

]T
(2.68)

[
K55

i, j

]
=
∫
Ω

κsA44ϕiϕ j +D22
∂ϕi

∂y
∂ϕ j

∂y
+D66

∂ϕi

∂x
∂ϕ j

∂x
dxdy (2.69)
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[
K̃13

i, j

]
=

1
2

∫
Ω

(
∂ϕi

∂x

(
A11

∂w0

∂x
∂ϕ j

∂x
+A12

∂w0

∂y
∂ϕ j

∂y

)

+A66
∂ϕi

∂y

(
∂w0

∂x
∂ϕ j

∂y
+

∂w0

∂y
∂ϕ j

∂x

))
dxdy =

1
2

[
K̃31

i, j

]T
(2.70)[

K̃23
i, j

]
=

1
2

∫
Ω

[
∂ϕi

∂y

(
A12

∂w0

∂x
∂ϕ j

∂x
+A22

∂w0

∂y
∂ϕ j

∂y

)

+A66
∂ϕi

∂x

(
∂w0

∂x
∂ϕ j

∂y
+

∂w0

∂y
∂ϕ j

∂x

)]
dxdy =

1
2

[
K̃32

i, j

]T
(2.71)

[
K̃33

i, j

]
=

1
2

∫
Ω

{
∂ϕi

∂x
∂ϕ j

∂x

[
A11

(
∂w0

∂x

)2

+A12

(
∂w0

∂y

)2
]

+
∂ϕi

∂y
∂ϕ j

∂y

[
A22

(
∂w0

∂y

)2

+A12

(
∂w0

∂x

)2
]

+2A66
∂w0

∂x
∂w0

∂y

(
∂ϕi

∂x
∂ϕ j

∂y
+

∂ϕi

∂y
∂ϕ j

∂x

)}
dxdy (2.72)

2.4.1 Polynomial spaces

In this work standard quadrilateral elements are defined as shown in Figure 2.4 are used,

1 2

34
Side3

Side2

Side1

Side4

1

1

-1

-1

ξ

η

Figure 2.4: Square reference element
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1

ξ

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

η

η2

η3

η4

η5

η6

η7

ξη

ξ2η

ξ3η

ξ4η

ξ5η

ξ6η

ξη2

ξη3

ξη4

ξη5

ξη6

ξ2η2
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ξ4η2

ξ5η2

ξ2η3

ξ2η4
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Figure 2.5: Monomials in the trunk space polynomials

Trunk spaces

Trunk spaces, also known as “Serendipity” spaces, are polynomials containing the mono-

mials ξ iη j, i, j = 0,1,2, ..., p where i+ j = 0,1,2, ..., p. Regarding quadrilateral elements

monomials ξ η for p = 1 and by ξ pη ,ξ η p for p≥ 2 are also added. Hence the dimension

of the polynomial space yields (see Figure 2.5) [84]:

n(p) =


4p for p < 4

4p+
(p−2)(p−3)

2
for p≥ 4

(2.73)

Product spaces

Product space polynomials contain the monomials 1,ξ ,ξ 2, ...,ξ p and 1,η ,η2, ...,ηq in

addition to their products (see Figure 2.6) [84]. Hence a product spaces dimension is

n(p,q) = (p+1)(q+1).
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Figure 2.6: Monomials in the product space polynomials

2.4.2 Hierarchic shape functions for quadrilaterals

The shape functions of the four nodes are defined as [85]

ϕ1 (ξ ,η) =
1
4
(1−ξ )(1−η)

ϕ2 (ξ ,η) =
1
4
(1+ξ )(1−η)

ϕ3 (ξ ,η) =
1
4
(1+ξ )(1+η)

ϕ4 (ξ ,η) =
1
4
(1−ξ )(1+η)

(2.74)

The shape functions of the four sides are defined for p≥ 2 and k = 2,3, ..., p as [84]

ϕ
k
1 (ξ ,η) =

1
2
(1−η)ψk+1 (ξ )

ϕ
k
2 (ξ ,η) =

1
2
(1+ξ )ψk+1 (η)

ϕ
k
3 (ξ ,η) =

1
2
(1+η)ψk+1 (−ξ )

ϕ
k
4 (ξ ,η) =

1
2
(1−ξ )ψk+1 (−η)

(2.75)
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Thus we obtain 4(p−1) side functions. The internal shape functions for the serendipity

space are defined for p≥ 4 as

ϕ
(k,l) (ξ ,η) = ψk+1 (ξ )ψl+1 (η) , k, l = 2,3, ..., p, k+ l = 4,5, ..., p (2.76)

Resulting in (p−2)(p−3)/2 internal shape functions. For the product space the in-

ternal shape functions are defined for p≥ 2 and q≥ 2 as

ϕ
(k,l) (ξ ,η) = ψk+1 (ξ )ψl+1 (η) , k = 2,3, ..., p, l = 2,3, ...,q, k+ l ≤ p+q (2.77)

where ψs (ξ ) are blending function defined by using Rodrigues’ form of Legendre poly-

nomials as [86]

ψs (ξ ) =
[s/2]

∑
i=0

(−1)i (2s−2i−5)!!
2ii!(s−2i−1)!

ξ
s−2i−1 , s > 2 (2.78)

[s/2] denotes the integer part of s/2 and n!! is defined by the following recursive rela-

tion:

n!! =

1 if n = 0 or n =−1

n× (n−2)!! if n≥ 1
(2.79)

The hierarchic feature is achieved by assigning unique sequential numbers to the shape

functions according to their polynomial degree as shown for example in Figure A.1

2.4.3 Mapping

Fitting irregular domains with a small number of elements can not be achieved with simple

rectangles. This can be achieved by distorting simple forms into others of more arbitrary

shaped through a geometric transformation , where standard elements (i.e., reference ele-

ments, local elements or parent elements) will be ‘mapped’ into distorted forms (i.e., real

element). In Figure 2.7 it is shown that the local coordinates ξ ,η are transformed to the
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(−1,−1)
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(1,−1)

(1, 1)(−1, 1)
ξ

η

ξ

η

x

y

Figure 2.7: Geometric transformation of reference element from the local coordinates ξ ,η
space to the global cartesian x,y space

global Cartesian x,y space. Thus shape functions and their derivatives can be specified in

local coordinates and by suitable transformations the element properties established in the

global coordinate system [81].

The problems treated in the present work does not involve any curved geometries, hence

requires only mapping using bi-linear Lagrange functions identical to those used for dis-

placement approximation with p = 1.
x(ξ ,η) =

4

∑
i=1

ϕ̄i (ξ ,η)Xi

y(ξ ,η) =
4

∑
i=1

ϕ̄i (ξ ,η)Yi

(2.80)

Where Xi, Yi are the coordinates of element nodes in the global coordinate system. From

Eq.(2.80) one can see that this transformation defines the x,y coordinates of each point in

the real element using ξ ,η coordinates of the corresponding point in the standard element.
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Also this transformation depends on the form and position of the real element because it in-

volves Xi, Yi the coordinates of element nodes, consequently the transformation is different

for each element.

The most important property of mapping to ensure is uniqueness (i.e., one-to-one map-

ping), in other words the transformation must be bijective where each point on the parent

element corresponds to one and only one point in real element and inversely. This leads to

the definition of a quantity called the jacobian determinant where the uniqueness of map-

ping is ensured if the sign of the jacobian determinant remains unchanged at all points of

the element. It can be shown that the transformation based on Lagrange bi-linear shape

functions is unique only and only if no internal angle is equal or greater than 180◦ (see

Figure 2.8) [81].

ξ

η

ξ

η

α < 180

Figure 2.8: Mapping uniqueness condition for quadrilateral elements

In order to evaluate mass and stiffness matrices two transformations are needed. First,

expressing the global derivatives
(

∂ϕ

∂x ,
∂ϕ

∂y

)
in terms of local derivatives

(
∂ϕ

∂ξ
, ∂ϕ

∂η

)
and(

∂x
∂ξ

, ∂x
∂η

, ∂y
∂ξ

, ∂y
∂η

)
. Secondly the element of surface over which the integration is carried

out must be expressed in terms of the local coordinates.

Global derivatives

Using the usual rules of partial differentiation Eqs.(2.81, 2.82) we have the derivatives with

respect to ξ and η in matrix form is expressed by Eq.(2.83)
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∂

∂ξ
=

∂x
∂ξ

∂

∂x
+

∂y
∂ξ

∂

∂y
(2.81)

∂

∂η
=

∂x
∂η

∂

∂x
+

∂y
∂η

∂

∂y
(2.82)


∂

∂ξ

∂

∂ξ

=


∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η




∂

∂x

∂

∂y

= [J]


∂

∂x

∂

∂y

 (2.83)

Where the matrix [J] is known as the jacobian matrix for the transformation. if the jaco-

bian matrix is not singular (i.e., |J| 6= 0 hence the transformation is unique), the derivatives

with respect to x and y are defined in terms of local coordinates as
∂

∂x

∂

∂y

= [J]−1


∂

∂ξ

∂

∂η

 (2.84)

where

[J]−1 =
1
|J|

[
J22 −J12

−J21 J11

]
(2.85)

Substituting the transformation 2.80 in the expression of the jacobian matrix we obtain

in terms shape functions and nodes coordinates the following

[J] =


∂ϕ1
∂ξ

∂ϕ2
∂ξ

∂ϕ3
∂ξ

∂ϕ4
∂ξ

∂ϕ1
∂η

∂ϕ2
∂η

∂ϕ3
∂η

∂ϕ4
∂η




X1 Y1

X2 Y2

X3 Y3

X4 Y4

 (2.86)
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Integrals

To transform the variables and the domain from global domain to the local domain on

which the integration is made we have

dxdy = |J|(ξ ,η)dξ dη , |J| 6= 0 (2.87)

Hence

∫
Ω

F (x,y)dxdy =
1∫
−1

1∫
−1

F (ξ ,η) |J|(ξ ,η)dξ dη (2.88)

Where F (ξ ,η) = F (x(ξ ,η) ,y(ξ ,η)).

2.5 Numerical Methods

2.5.1 Numerical integration

Explicit calculation of the above integrals is generally impossible. Therefore, the integrals

are evaluated numerically using the Gauss–Legendre quadrature.

1∫
−1

f (ξ )dξ =
n

∑
i=1

f (ξi)ϖi (2.89)

Where ξi is the i-th root of Legendre polynomial Pn . The weights ϖi are defined as

ϖi =
2(

1−ξ 2
i
)[

P′n (ξi)
]2 (2.90)

The error term is given by Eq.(2.91), where f (2n) is 2nd derivative of f . The error term

indicates that if f (ξ ) is a polynomial of degree p and then the integral will be exact if

n≥ (p+1)/2.

En =
22n+1 (n!)4

(2n+1) [(2n)!]3
f (2n) (ξ ) (2.91)
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The integration procedure can be extended directly to the local quadrilateral element

1∫
−1

1∫
−1

f (ξ ,η)dξ dη =

nξ

∑
i=1

nη

∑
j=1

f
(
ξi,η j

)
ϖiϖ j (2.92)

where nξ and nη is the number quadrature points in the ξ axis and η axis respectively.

2.5.2 Solving generalized eigenvalue problems

Solving a generalized eigenvalue problem [K]{q} = ω2 [M]{q}, yields n eigenval-

ues ω2
1 , ω2

2 , ....ω
2
n , and corresponding eigenvectors {q}1 , {q}2 , .... {q}n, Each eigenpair(

ω2
i ,{q}i

)
satisfies:

[K]{q}i = ω
2
i [M]{q}i ; i = 1,2, ..,n

Several eigensystem solutions methods have been developed. However, In finite ele-

ment analysis the involved matrices has specific properties such as being sparse, banded,

positive definite, and so on. Therefor the solution algorithm should take advantage of these

properties so that it delivers a solution accurately and efficiently. The solution methods can

be subdivided into several groups, corresponding to which basic property is used as the ba-

sis of the solution algorithm [], The vector iteration methods, The transformation methods,

subspace iteration methods

2.5.3 Nonlinear solution process

Several iterative methods are applied to solve the nonlinear equations of motion in the

frequency domain 2.49. Among these methods we have, the linearized update mode (LUM)

method, Newton method that has better rates of convergence than LUM method and the

continuation method which is based on the Newton method and a constrain equation. In

this work the LUM method is employed due to its simplicity. The LUM method consists

of the following steps: refs

Step 1: Solve the linear eigenvalue problem
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(
−ω

2 [M]+ [KL]
)
{q}= 0 (2.93)

Step 2: Normalize the specified Mode shape {q}i

Find the maximum transverse displacement w0 according to the mode {q}i using the

expression:

w0 =
n

∑
j=1

ϕ j (x,y)q j (i) (2.94)

Normalize {q}i using:

{q}i←
wm

w0
{q}i (2.95)

Step 3: Construct the complete stiffness matrix using the normalized mode shape {q}i

[K]i = [KL +KNL ({q}i)] (2.96)

Step 4: Solve the linearized eigenvalue/eigenvector problem for the specified mode

(
−ω

2
i+1 [M]+ [K]i

)
{q}i+1 = 0 (2.97)

The improved solution ω2
i+1 and {q}i+1 is obtained.

Step 5: Check convergence

Erri+1 =

∣∣∣∣∣ω2
i+1−ω2

i

ω2
i+1

∣∣∣∣∣ (2.98)

If Erri+1 > Tol then go to Step 2. Tol is generally taken between 10−3 ∼ 10−6.

Step 6: Output results and terminate

When studying cracked plates with crack length ratio β ≥ 0.3, it is observed that the previ-

ously presented LUM method is not successful at obtaining result for amplitudes w/h> 0.8
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and convergence is not attained because successive iterations jump between two values.

According to Reibero [87] the difficulty to attain convergence is due to the big difference

between the two eigenvectors of the previous successive iterations. In order to address this

difficulty, Reibero [87] used the average of the two or three eingenvectors of the preceding

iterations to construct the non-linear terms of the stiffness matrix, hence Step 2 become as

follow:

Step 2:

1. Normalize the specified Mode shape {q}i

w0 =
n

∑
j=1

ϕ j (x,y)q j (i) (2.99)

Normalize {q}i using:

{q}i←
wm

w0
{q}i (2.100)

2. Calculate the average of eigenvectors from the last three solutions

{q}i←
1
3
(
{q}i +{q}i−1 +{q}i−2

)
(2.101)

2.6 Computer implementation

In this section, we present two important programming techniques employed in this work

in order to improve the efficiency and minimize the calculation time on one hand, and to

reduce the storage requirements on the other hand.

2.6.1 Constructing stiffness/mass matrices

One difficulty associated with the p-refinement is that of accurately calculating all the inte-

grals required to establish the stiffness and mass matrices of high order elements especially

nonlinear terms. Through numerical experimentation it is found that a bottleneck arises at
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the integration step, since the number of terms to integrate and the number of integration

points increase simultaneously as the degree p is increased see Figures 2.9 & 2.10. One

attempt to solve this problem is the use symbolic computing [86], however this technique

is would be difficult to apply on distorted and curved elements since the integrals to be

evaluated are no longer polynomials. In this work, this problem is solved using parallel

computing where all entries in element mass/stiffness matrix are integrated simultaneously

on a multi-core processor or even better a graphics processing unit (GPU) with hundreds

of cores allowing much better parallelism. In this work, the graphics processing unit used

is an Nvidea Quadro K2100M card.

Figure 2.9: Bar diagram comparing computation time using parallel computation and se-
quential computation for linear vibration of a simply supported square plate at different
p-refinement values.



2.6. COMPUTER IMPLEMENTATION 47

Fi
gu

re
2.

10
:

B
ar

di
ag

ra
m

co
m

pa
ri

ng
co

m
pu

ta
tio

n
tim

e
us

in
g

pa
ra

lle
l

co
m

pu
ta

tio
n

an
d

se
qu

en
tia

l
co

m
pu

ta
tio

n
fo

r
no

n-
lin

ea
rv

ib
ra

tio
n

of
a

si
m

pl
y

su
pp

or
te

d
sq

ua
re

pl
at

e
at

di
ff

er
en

tp
-r

efi
ne

m
en

tv
al

ue
s.



2.6. COMPUTER IMPLEMENTATION 48

2.6.2 Storage Scheme

The assembly of global mass and stiffness matrices results in sparse matrices with large

number of zero elements (see Figure 2.11), hence special schemes are used to store these

matrices. Obviously, the purpose is to avoid storage and computational redundancy, by stor-

ing only the nonzero elements, sparse matrix data structures require less computer memory.

And by avoiding arithmetic operations on zero elements when performing common matrix

operations by employing sparse matrix adapted algorithms that require less computing time

[88].

The main parameter of a sparse square matrix S (n×n) is nz, the number of nonzero

elements. Computer storage requirements are proportional to nz. The computational com-

plexity of simple array operations should also be proportional to nz, and perhaps also de-

pend linearly on n, but be independent n2. A sparse matrix is stored using the Compressed

Sparse Column (CSC) scheme (see Figure2.12). This format is commonly used to store

general sparse matrices. It consists of three arrays that are structured as follow: [89]

• A real array S consists of the nonzero real values Si j stored column by column, from

column 1 to n, the length of S is nz.

• An integer array IS contains the row indices i of the nonzero elements Si j , the length

of IS is nz.

• An integer array JS contains the pointers to the beginning of each column in the

arrays Sp and IS. Thus, the content of JS ( j) is the position in arrays Sp and IS where

the j-th column starts.

The storage requirement for an n×n real sparse matrix with nz nonzero entries is nz reals

and nz+n integers. On typical 32–bit architecture machines with 8-byte reals and 4-byte in-

tegers, this is 12nz+4nbytes [90]. Table 2.2 gives an example of the memory requirements

for storing mass/stiffness matrices as sparse matrices and as a traditional full matrices, as

well as the execution time for solving their associated generalized eigenvalues problem.



2.6. COMPUTER IMPLEMENTATION 49

(a) Sparsity pattern associated with p-refinement dominated mesh, All elements are p-refined p = 16

(b) Sparsity pattern associated with h-refinement dominated mesh, only gray elements are p-refined
p = 4

Figure 2.11: Plots of the sparsity pattern in stiffness matrices encountered in h-p FEM, for
a centrally cracked plate
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Table 2.2: Exemple of storage requirements & computationale cost for sparse matrices

Sparse Full
h-refinement dominated mesh Figure 2.11b
p = 6, matrices size 3900×3900
mass matrix nz = 202626, stiffness matrix nz = 467678

Memory of stiffness matrix (Mbytes) 8.23 121.68

Memory of mass matrix (Mbytes) 3.27 121.68

Solving time (seconds) 2.28† 9.99‡

p-refinement dominated mesh Figure 2.11a
p = 11, matrices size 3960×3960
mass matrix nz = 1111698, stiffness matrix nz = 2590044

Memory of stiffness matrix (Mbytes) 45.43 125.45

Memory of mass matrix (Mbytes) 17.82 125.45

Solving time (seconds) 2.88† 797.05‡

†Solved using

‡Solved using

S =


1.2 0.0 0.0 2.3 0.0
3.4 4.5 0.0 5.6 0.0
6.7 0.0 7.8 8.9 9.1
0.0 0.0 10.0 11.0 0.0
0.0 0.0 0.0 0.0 12.0


S 1.2 3.4 6.7 4.5 7.8 10.0 2.3 5.6 8.9 11.0 9.1 12.0
IS 1 1 1 2 3 3 4 4 4 4 5 5
JS 1 4 5 7 11

Figure 2.12: Exemple of how the Compressed Sparse Column (CSC) scheme is used to
store a sparse matrix
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2.7 Summary

In this chapter, we developed a h-p FEM model to handle problems of linear/nonlinear free

vibrations of cracked nanoplates, the model is based on first order shear deformation the-

ory (FSDT) and nonlocal elasticity theory of Eringen. First we introduced the concept of

nonlocal elasticity and its description of interactions in a solid nano-structure. The impor-

tance of employing the differential form of nonlocal elasticity has been also highlighted.

Then, the first order shear deformation theory of plates with nonlocal elasticity are em-

ployed to derive equations of motions for nanoplates. The obtained equations of motion

are reduced to a system of algebraic equations using finite element approximations. Then

we have presented the numerical methods to be used in order to construct and solve the

system of equations. Finally, we have presented and discussed computer implementation

techniques such as parallel computing and sparse matrices storage scheme employed in

order to efficiently conduct calculations on machines.



Chapter 3

Linear Vibration of isotropic cracked
nanoplates

In this chapter, firstly, the rate of convergence is investigated for intact and cracked plates

in both local and non-local cases. Secondly, the accuracy of the present model is verified

for intact local and non-local plates, then the accuracy is investigated again for cracked

local plates with respect to analytical, numerical and experimental results in literature.

Thus original results for cracked non-local plates, subjected to several cases of boundary

conditions, can be presented and discussed in a series of parametric studies involving plate

aspect ratio a/b, crack length ratio β , crack angle α , and non-local parameter µ .

(a) plate with side crack

a

b

X

Y

1e 2e 3e

4e 5e 6e

(b) plate with central crack

Figure 3.1: Geometric parameters and mesh configuration for cracked plates

52
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3.1 Convergence and Comparison

In order to establish the number elements and the correspondent order of interpolation p

needed to reach convergence, a test is carried out. The variation of frequency parameters

as a function of mesh size and order of interpolation is investigated. Table 3.1 shows the

rate of convergence for a simply supported square plate. It is observed that for a 1×1 mesh

with p = 12 and a 4×4 mesh with p = 8, the frequency parameters are increasingly refined

and approach a fixed value in both local and non-local cases.

Table 3.1: Convergence of frequency parameters ω = ω
a2

π2

√
ρh
D22

for a simply supported
isotropic square plate w/o non-local effect

mode mesh 1×1 4×4
p 4 8 12 16 4 8 12 16

Isotropic local Plate (ν = 0.25, µ = 0)

1 2.125 2.000 2.000 2.000 2.015 2.000 2.000 2.000
2 3398 5.017 5.000 5.000 5.186 5.000 5.000 5.000
3 3398 5.017 5.000 5.000 5.186 5.000 5.000 5.000
4 3398 8.045 8.000 8.000 8.348 7.999 8.000 8.000

Isotropic non-local Plate ν = 0.25, µ = 0.5

1 17.73 1.694 1.694 1.694 1.710 1.694 1.694 1.694
2 3398 3.558 3.547 3.547 3.712 3.547 3.547 3.547
3 3398 3.558 3.547 3.547 3.712 3.547 3.547 3.547
4 3398 5.006 4.981 4.981 5.263 4.981 4.981 4.981

On the other hand, the rate of convergence for a simply supported square plate in the

presence of a side crack and a central crack is studied in Table 3.2 using a 2×2 and 3×2

mesh (Figure 3.1). It is observed that for p ≥ 16, the frequency parameters for local and

non-local plate reach a reasonable convergence in both cases of crack length ratios β = 0.3

and β = 0.7.
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Table 3.2: Convergence of frequency parameters ω = ω
a2

π2

√
ρh
D22

for a simply supported
isotropic cracked (β = [0.3, 0.7]) square plates w/ and w/o non-local effect

mode n° β = 0.3 β = 0.7
p 8 12 16 18 20 8 12 16 18 20

Si
de

cr
ac

k

Isotropic local Plate ν = 0.25, µ = 0
1 1.990 1.986 1.985 1.984 1.984 1.817 1.792 1.783 1.781 1.779
2 4.971 4.962 4.958 4.957 4.957 3.169 3.124 3.109 3.105 3.102
3 4.980 4.977 4.976 4.976 4.976 4.882 4.878 4.876 4.876 4.875
4 7.853 7.837 7.832 7.830 7.829 6.315 6.312 6.311 6.311 6.310

Isotropic non-local Plate ν = 0.25, µ = 0.1
1 1.916 1.912 1.911 1.910 1.910 1.747 1.722 1.714 1.711 1.710
2 4.543 4.533 4.530 4.529 4.528 3.007 2.965 2.952 2.948 2.946
3 4.555 4.553 4.553 4.553 4.552 4.452 4.449 4.448 4.448 4.447
4 6.880 6.869 6.866 6.865 6.864 5.555 5.554 5.553 5.553 5.553

C
en

tr
al

cr
ac

k

Isotropic local Plate ν = 0.25, µ = 0
1 1.956 1.935 1.928 1.925 1.924 1.777 1.744 1.735 1.733 1.731
2 4.933 4.923 4.920 4.920 4.918 3.499 3.408 3.380 3.373 3.368
3 4.999 4.995 4.993 4.992 4.992 4.922 4.887 4.876 4.873 4.871
4 7.996 7.994 7.994 7.994 7.993 7.408 7.328 7.302 7.295 7.290

Isotropic non-local Plate ν = 0.25, µ = 0.1
1 1.948 1.928 1.920 1.918 1.916 1.770 1.737 1.728 1.725 1.724
2 4.887 4.878 4.874 4.873 4.873 3.481 3.391 3.364 3.357 3.352
3 4.950 4.946 4.944 4.944 4.944 4.874 4.839 4.828 4.826 4.824
4 7.873 7.871 7.870 7.870 7.870 7.310 7.233 7.208 7.202 7.197

To validate the present model predictions accuracy, the obtained results are compared

with the analytical, numerical and experimental results reported by other researchers [21,

40, 43, 91].

In Table 3.3 the first four frequency parameters for square nanoplates (a = 5nm)

with several boundary conditions (S-S-S-S, F-C-F-C and F-S-F-S) and non-local param-

eters ranging between
(
0nm2−4nm2), are compared with numerical results presented by

Chakraverty and Behera [21] based on the classical plate theory using Rayleigh-Ritz

method . The obtained results are in good agreement and relative differences are less than
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0.4% due to the different assumptions adopted in plate theories and the solution method in

the two studies.

Table 3.3: Comparison of first four frequency parameters ω = ωa2
√

ρh
D22

for a square
nanoplate (a = 5nm) subjected to several boundary conditions

µ = 0 µ = 1 µ = 2 µ = 4

mode n° present ref[21] present ref[21] present ref[21] present ref[21]

S-S-S-S

1 19.739 19.700 14.755 14.755 12.291 12.291 9.680 9.680
2 49.347 49.300 28.615 28.615 22.185 22.185 16.545 16.545
3 49.347 49.300 28.615 28.615 22.185 22.185 16.545 16.545
4 78.956 79 38.719 38.719 29.189 29.190 21.383 21.384

C-C-C-C

1 35.994 36 25.627 25.618 20.937 20.929 16.214 16.207
2 73.430 73.400 40.327 40.281 30.904 30.865 22.867 22.836
3 73.430 73.400 40.327 40.281 30.904 30.865 22.867 22.836
4 108.235 108.200 50.334 50.272 37.654 37.598 27.453 27.408

S-C-S-C

1 28.950 29 21.109 21.109 17.409 17.409 13.591 13.591
2 54.748 54.700 31.363 31.361 24.251 24.249 18.053 18.052
3 69.326 69.300 38.478 38.478 29.553 29.553 21.901 21.901
4 94.591 94.600 45.115 45.113 33.871 33.869 24.749 24.748

F-C-F-C

1 22.196 22.200 18.067 18.058 15.296 15.293 11.793 11.790
2 26.454 26.500 18.790 18.787 15.544 15.536 12.437 12.429
3 43.624 43.600 23.511 23.507 18.017 18.013 13.526 13.524
4 61.224 61.200 33.317 33.313 24.845 24.843 18.166 18.165

F-S-F-S

1 9.628 9.600 8.1344 8 7.1707 7.173 5.962 5.964
2 16.134 16.100 11.7854 11 9.7192 9.719 7.585 7.585
3 36.622 36.700 19.9499 20 15.269 15.324 11.297 11.339
4 38.929 38.900 24.1200 24 18.958 18.974 14.267 14.281
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Table 3.4 shows a comparison of the first six frequency parameters obtained the present

model, analytical results of Stahl and Keer [40] and numerical results of Liew et al.[43],

for simply supported rectangular local plate a/b = 2.0 with a side crack, for several crack

length ratios (0−0.8). It is observed that the results of the present study are in good

agreement with those in references.

Table 3.4: Comparison of the first six frequency parameters ω = ωa2
√

ρh
D22

, for simply
supported isotropic ν = 0.31 rectangular a/b = 2.0 local plate with a side crack

Crack ratio Source Mode n°
β 1 2 3 4 5 6
0.0 ref[40] 49.35 78.96 128.3 167.8 197.4 -

ref[43] 49.35 78.96 128.3 167.8 197.4 197.4
present 49.35 78.96 128.3 167.8 197.4 197.4

0.2 ref[40] 48.95 77.87 126.6 167.1 194.0 -
ref[43] 49.05 78.08 126.9 167.2 194.7 195.6
present 49.03 78.08 126.9 167.2 194.3 195.7

0.4 ref[40] 44.51 73.28 100.1 124.5 173.8 -
Liew[43] 45.40 73.82 104.7 124.5 173.7 193.9
present 45.12 73.95 102.5 125.0 173.8 194.5

0.5 ref[40] 40.37 72.79 73.63 123.4 168.6 -
ref[43] 41.62 72.89 76.55 123.8 170.5 192.5
present 41.26 73.34 75.58 124.3 169.7 193.1

0.6 ref[40] 36.17 57.49 72.59 121.3 141.4 190.1
ref[43] 37.44 59.31 72.62 121.0 145.8 190.3
present 37.22 59.12 73.22 122.6 144.0 190.3

0.8 ref[40] 29.90 39.53 68.20 94.50 120.2 166.4
ref[43] 30.50 40.02 68.82 95.79 120.3 168.0
present 30.87 40.77 69.51 96.67 121.5 168.9

Table 3.5 lists experimental and numerical results reported by Fujimoto [91] and numer-

ical results of Liew et al. [43] compared to results obtained by the present study. Numerical

results of Fujimoto [91] are obtained by the h-version of the finite element method using

the triangular elements with very fine meshes along the crack tip, the experimental data

reported in the same article, are obtained from the laser holography technique. Numerical
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results of Liew et al. [43] are based on the classical plate theory and solved using domain

decomposition method. The considered plate is centrally cracked, subjected to C-F-C-F

boundary conditions, and have the following properties: E = 6.9GPa, v = 0.31, the aspect

ratio a/b = 0.5 and crack length ratio β = 0.4. It is again noticed that the present model

can accurately predict solutions for cracked local plates.

Table 3.5: Comparison of the first five frequency parameters ω = ωa2
√

ρh
D22

, for an C-F-C-F
rectangular local plate with central crack (E = 6.9GPa , ν = 0.31 , β = 0.4 , a/b = 0.5)

mode n° finite element Domain decomposition Experimental with Present
[91] [43] laser holography[91]

1 5.33 5.26 5.3 5.317
2 8.93 8.98 9.0 8.936
3 15.32 15.11 15.6 15.13
4 20.63 20.50 20.6 20.51
5 26.37 26.56 26.3 26.73

Figure 3.2 represents the first four modes shapes of a simply supported square plate

with a central crack (β = 0.5,α = 0◦)

3.2 Parametric study of cracked nano-plates

The influence of different values of plate aspect ratios a/b and crack length ratio β is

presented in Table 3.6 for a side and central horizontal crack α = 0 in simply supported

nanoplate. It is observed in both cases of side and central crack that, the frequency param-

eters in all four modes decrease with the growth of crack length, whereas for plates with

a certain crack length, the frequency parameters increase with the increase of plate aspect

ratio a/b.

The effect of different values of side to thickness ratios a/h, plate aspect ratios a/b and

crack length ratio β is presented in Table 3.7 for a side and central horizontal cracks α = 0

in simply supported nanoplate. It is observed in both cases of side and central crack that,
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(a) Mode N°1 (b) Mode N°2

(c) Mode N°3 (d) Mode N°4

Figure 3.2: The first four mode shapes of a simply supported square plate with a central
crack (β = 0.5,α = 0◦)

the fundamental frequency parameter decreases with the growth of crack length, whereas

for plates with a certain crack length, the fundamental frequency parameter increases with

the increase of plate aspect ratio a/b and the increase of side to thickness ratios a/h.
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Table 3.6: Effect of plate aspect ratios a/b and crack length ratio β on the first four fre-

quency parameters ω = ωa2
√

ρh
D22

, for an S-S-S-S rectangular nanoplates with side and
central crack

(
ν = 0.3 , α = 0 , µ = 0.1nm2 , a = 10nm , a/h = 103

)
mode n°

a/b 0.5 1 2
β 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Side crack
1 12.03 11.89 11.57 18.92 17.99 16.28 44.31 36.72 28.14
2 19.00 18.74 16.76 44.80 40.60 26.14 66.88 63.18 38.19
3 30.10 28.99 26.97 45.04 43.65 43.42 101.74 63.83 60.31
4 38.74 38.46 30.70 68.46 57.11 54.46 128.39 99.89 86.33

Central crack
1 11.96 11.74 11.49 18.43 17.09 15.89 40.43 32.17 26.59
2 18.98 18.64 17.18 44.83 40.49 28.98 68.52 65.04 42.93
3 29.58 28.00 26.54 45.06 44.53 43.28 101.30 72.86 58.58
4 38.80 38.68 34.05 68.82 68.10 61.97 125.89 100.2 92.49

Table 3.7: Effect of side to thickness ratios a/h, plate aspect ratios a/b and crack length

ratio β on the fundamental frequency parameter ω = ωa2
√

ρh
D22

, for an S-S-S-S rectangular
nanoplates with side and central crack

(
ν = 0.3 , α = 0 , µ = 0.1nm2 , a = 10nm

)

a/h
a/b 0.5 1 2
β 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

Side crack
10 11.81 11.63 11.28 18.35 17.20 15.49 41.10 33.08 25.49
50 12.02 11.86 11.53 18.87 17.83 16.11 44.00 35.88 27.52

100 12.03 11.87 11.55 18.90 17.89 16.18 44.16 36.20 27.78
1000 12.03 11.89 11.57 18.92 17.99 16.28 44.31 36.72 28.14

Central crack
10 11.70 11.43 11.19 17.62 16.17 15.13 36.24 28.59 24.09
50 11.93 11.68 11.44 18.27 16.86 15.73 39.46 31.19 26.00

100 11.94 11.70 11.46 18.33 16.95 15.80 39.83 31.56 26.26
1000 11.96 11.74 11.49 18.43 17.09 15.89 40.44 32.17 26.59
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3.2.1 Side crack

Here, we consider a plate with aspect ratio a/b = 1, as shown in Figure 3.1a, a 2×2 mesh

is used for plates with side crack, the interpolation order is p = 16 for each element. The

effect of crack length ratio β and crack angle α on frequency parameters ω = ωa2
√

ρh
D22

,

is studied for different values of non-local parameter µ ∈
{

0nm2 , 0.06nm2 , 0.1nm2} and

several cases of boundary conditions (S-S-S-S, C-F-C-F and S-F-S-F).

Figure 3.3: Plots of the first three frequency parameters ω versus crack length ratio β for
an S-S-S-S nanoplate with a side crack and different values of crack angle α and non-local
parameter µ .
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Figures (3.3, 3.4 and 3.5) depicts the effects of the crack length ratio β on the three first

frequency parameters for a square nanoplate with a side crack, subjected to (S-S-S-S, C-

F-C-F and S-F-S-F) boundary conditions respectively. Again it is seen that the frequency

parameters decrease with the increasing values of non-local parameter µ for nanoplates

with side crack for all cases of boundary conditions and for all values of crack length ratio

β and crack angle α .

Figure 3.4: plots of the first three frequency parameters ω versus crack length ratio β for
an C-F-C-F nanoplate with a side crack and different values of crack angle α and non-local
parameter µ .

For crack angle α = 0, it is observed that with respect to crack length ratio β all the

frequency parameters are decreasing. For inclined side crack (α = 30◦) non-monotonic
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behavior is observed for all frequency parameters in all cases of boundary conditions. For

inclined side crack (α = 60◦) and (S-S-S-S) boundary condition, it is observed that fre-

quency parameters exhibit an increasing behavior with respect to crack length ratio β .

Figure 3.5: plots of the first three frequency parameters ω versus crack length ratio β for
an S-F-S-F nanoplate with a side crack and different values of crack angle α and non-local
parameter µ .

However, in the case of (C-F-C-F and S-F-S-F) configurations, the first frequency pa-

rameter is decreasing for (C-F-C-F) case and decreasing with a low rate then increases

with a high rate at β ≥ 0.3 for (S-F-S-F) configuration, whereas the third frequency param-

eter increases then decreases at β ≥ 0.35 for (C-F-C-F) case and exhibits non-monotonic

behavior for (S-F-S-F) configuration.
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Figure 3.6: plots of the first three frequency parameters ω versus crack angle α for an S-S-
S-S nanoplate with a side crack and different values of crack length ratio β and non-local
parameter µ .

Figures (3.6, 3.7 and 3.8) shows the impact of the crack angle α on the three first

frequency parameters for a square nanoplate with a side crack, subjected to (S-S-S-S, C-F-

C-F and S-F-S-F) boundary conditions respectively.
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Figure 3.7: plots of the first three frequency parameters ω versus crack angle α for an C-F-
C-F nanoplate with a side crack and different values of crack length ratio β and non-local
parameter µ .

Once again an examination of the results shows that the non-local parameter µ is caus-

ing frequency parameters to drop for all cases of boundary conditions and for all values of

crack length ratio β and crack angle α . It is also observed that for all boundary conditions

configurations, frequency parameters are often increased as a function of crack angle α , ex-

cept for the cases where crack length ratio β = 0.5 frequency parameters start to decrease

after a certain value of crack angle α .
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Figure 3.8: plots of the first three frequency parameters ω versus crack angle α for an S-F-
S-F nanoplate with a side crack and different values of crack length ratio β and non-local
parameter µ .

In order gain a more comprehensive view of effect of crack length ratio β and crack

angle α on the three first frequency parameters for square nanoplates µ = 0.1nm2 with side

crack, contour plots for (S-S-S-S, C-F-C-F and S-F-S-F) boundary conditions are presented

in Figures (3.9, 3.10 and 3.11) respectively. Again it is noticed that increasing crack angle

α often causes frequency parameters to increase. On the other hand, increasing crack

length ratio causes frequencies to drop for crack angle α = 0, but for crack angle α 6= 0, it

is noticed that increasing crack length ratio β often amplifies the effect of crack angle α on

the frequency parameters.
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Figure 3.9: contour plots of the first three frequency parameters ω versus crack angle α

and crack length ratio β for an S-S-S-S nanoplate µ = 0.1nm2 with a side crack.
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Figure 3.10: contour plots of the first three frequency parameters ω versus crack angle α

and crack length ratio β for an C-F-C-F nanoplate µ = 0.1nm2 with a side crack.
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Figure 3.11: contour plots of the first three frequency parameters ω versus crack angle α

and crack length ratio β for an S-F-S-F nanoplate µ = 0.1nm2 with a side crack.

It is concluded from the analysis of the presented results that the presence of a hori-

zontal side crack α = 0 reduces the flexural stiffness as the crack length increases which

results in lower frequency parameters. However, the presence of an inclined central crack

α 6= 0 increases the flexural stiffness that results in higher frequency parameters.
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3.2.2 Central crack

Here, we investigate crack parameters influence (crack length and angle ), we consider a

plate with aspect ratio a/b = 1, as shown in Figure 3.1b, a 3× 2 mesh is used for plates

with central crack, the interpolation order is p = 16 for each element. The effect of crack

length ratio β and crack angle α , is studied with different values of non-local parameter

µ ∈
{

0nm2 , 0.06nm2 , 0.1nm2} for several cases of boundary conditions (S-S-S-S, C-F-C-

F and S-F-S-F).

Figure 3.12: plots of the first three frequency parameters ω versus crack length ratio β

for an S-S-S-S nanoplate with a central crack and different values of crack angle α and
non-local parameter µ .

Figures (3.12, 3.13 and 3.14) represent the variation of the three first frequency pa-

rameters as a function of the crack length ratio β for a square nanoplate with a central
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crack, subjected to (S-S-S-S, C-F-C-F and S-F-S-F) boundary conditions respectively. It is

noticeable that the frequency parameters decrease with the increasing values of non-local

parameter µ for nanoplates with central crack for all cases of boundary conditions and for

all values of crack length ratio β and crack angle α . Also it is observed that for crack angle

α = 0, the frequency parameters are decreasing with the increase of crack length ratio β .

Figure 3.13: plots of the first three frequency parameters ω versus crack length ratio β

for an C-F-C-F nanoplate with a central crack and different values of crack angle α and
non-local parameter µ .

For inclined central crack (α = 30◦) and (S-S-S-S) boundary condition, it is noticed that

the fundamental frequency parameter exhibits an increasing behavior for crack length ratio
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β ∈ [0 : 0.77], then decreases for β > 0.77. Also the second frequency parameter exhibits

an increasing behavior for crack length ratio β ∈ [0 : 0.65], then decreases for β > 0.65.

However, the fundamental frequency parameter is decreasing with a low rate with respect

to crack length ratio β for (C-F-C-F) configuration, and with a slightly higher rate for

(S-F-S-F) configuration, then it changes behavior to increasing at β ≥ 0.85.

Figure 3.14: plots of the first three frequency parameters ω versus crack length ratio β

for an S-F-S-F nanoplate with a central crack and different values of crack angle α and
non-local parameter µ .

For inclined central crack (α = 60◦) and (S-S-S-S) boundary condition, it is observed

that the first and second frequency parameter monotonically increases with respect to crack



3.2. PARAMETRIC STUDY OF CRACKED NANO-PLATES 72

length ratio β , whereas for (C-F-C-F) configuration, the fundamental frequency parameter

is at constant value and start increasing with higher and higher rates from β ≥ 0.5. However

for the (S-F-S-F) configuration, it is decreasing with low rates and starts increasing with

higher and higher rates from β ≥ 0.7.

Figure 3.15: plots of the first three frequency parameters ω versus crack angle α for an
S-S-S-S nanoplate with a central crack and different values of crack length ratio β and
non-local parameter µ .

On the other hand for (S-S-S-S, C-F-C-F and S-F-S-F) boundary condition, the third

frequency parameter manifests a fluctuating behavior as a function of crack length ratio

β for both configurations of crack angle (α = 30◦) and (α = 60◦). Also the second fre-

quency parameter is increasing with a high rate then decreases with relatively lower rate
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with respect to crack length ratio β for (C-F-C-F and S-F-S-F) configuration in both cases

of crack angle (α = 30◦) and (α = 60◦).

Figure 3.16: plots of the first three frequency parameters ω versus crack angle α for an
C-F-C-F nanoplate with a central crack and different values of crack length ratio β and
non-local parameter µ .

The three first frequency parameters as a function of the crack angle α for a square

nanoplate with a central crack, subjected to (S-S-S-S, C-F-C-F and S-F-S-F) boundary

conditions are shown in Figures (3.15, 3.16 and 3.17) respectively. It is clear that for all

boundary conditions configurations, frequency parameters are generally increasing with

respect to crack angle α , whereas the rate of increase is higher for higher values of crack
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length ratios β . Again the non-local parameter µ is causing frequency parameters to drop

for all cases of boundary conditions and for all values of crack length ratio β and crack

angle α .

Figure 3.17: plots of the first three frequency parameters ω versus crack angle α for an
S-F-S-F nanoplate with a central crack and different values of crack length ratio β and
non-local parameter µ .

The three first frequency parameters as function of crack length ratio β and crack angle

α for square nanoplates µ = 0.1nm2 with central crack, are presented as contour plots

for (S-S-S-S, C-F-C-F and S-F-S-F) boundary conditions in Figures (3.18, 3.19 and 3.20)

respectively.
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Figure 3.18: contour plots of the first three frequency parameters ω versus crack angle α

and crack length ratio β for an S-S-S-S nanoplate µ = 0.1nm2 with a central crack.

This representation gives a more complete insight into the combined effect of crack

length ratio β and crack angle α , it can be noted that increasing crack angle α often causes

frequency parameters to increase. On the other hand increasing crack length ratio causes

frequencies to drop for crack angle α = 0, but for crack angle α 6= 0, it is noticed that

increasing crack length ratio β often amplifies the effect of crack angle α on the frequency

parameters.
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Figure 3.19: contour plots of the first three frequency parameters ω versus crack angle α

and crack length ratio β for an C-F-C-F nanoplate µ = 0.1nm2 with a central crack.
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Figure 3.20: contour plots of the first three frequency parameters ω versus crack angle α

and crack length ratio β for an S-F-S-F nanoplate µ = 0.1nm2 with a central crack.

Similar to the results of the side crack, the presented results of a horizontal central crack

α = 0 suggest that the crack reduces the flexural stiffness as the crack length increases,

hence lowering frequency parameters. However the an inclined central crack α 6= 0 in-

creases the flexural stiffness resulting in higher frequency parameters.
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3.3 Summary

In this chapter, we considered linear vibration of isotropic cracked nanoplates based on

non-local elasticity and first-order shear deformation theory. The cracked plate is modeled

using the h-p version of the finite element method. The advantage of this modeling ap-

proach is that it requires significantly less preprocessing and no human intervention when

refinement is needed or when crack parameters are changed. The developed numerical ap-

proach is shown to be accurate when compared to results in literature for intact nanoplates

and cracked local plates, thus the model is suitable to study cracked nanoplates. The inves-

tigation of the effect of crack parameters (length, orientation), plate geometry, boundary

conditions and the non-local parameter on frequency parameter revealed that the non-local

parameter has a softening effect that leads to the decrease of frequency. Also, the frequency

parameter increases as a function of plate aspect ratio and side to thickness ratios. With re-

gard to crack parameters, it is concluded that a horizontal crack softens the nanoplate as

the crack length increases which results in lower frequencies. However, an inclined crack

increases the flexural stiffness and increases frequency parameters. In the following chap-

ter, linear free vibrations of functionally graded material (FGM) cracked nanoplates will be

considered.



Chapter 4

Linear Vibration of cracked FGM
nanoplates

In the previous chapter, the influence of crack parameters and the non-local effect on linear

free vibration of isotropic cracked nanoplates has been investigated and discussed. The aim

of this chapter is to investigate the linear free vibrations of functionally graded nano-plates

by studying the influence of material parameters (i.e. volume fraction exponent n) along

with crack parameters.

In this chapter we:

• Investigate convergence for intact and cracked FGM plates.

• Conduct a comparison with results in literature to verify the accuracy of the present

model for intact FGM plates.

• Present and discuss original results for cracked non-local FGM plates, subjected to

several cases of boundary conditions, in order to investigate the influence of volume

fraction exponent n, crack length ratio β , crack angle α and non-local parameter µ .

• Study the influence of crack position γ and volume fraction exponent on linear free

vibrations of cracked FGM nanoplates.

79
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Table 4.1: Material constants of Ti–6Al–4V and Aluminum oxide at T=300K

P0 P−1 P1 P2 P3 P @ 300K

Aluminum oxide
E 349.55 e9 0.0 -3.853 e-4 4.027 e-7 -1.673 e-10 3.2024 e11

ν 0.26 0.0 0.0 0.0 0.0 0.26

ρ 3750 0.0 0.0 0.0 0.0 3750

Ti–6Al–4V
E 122.56 e9 0.0 -4.586 e-4 0.0 0.0 1.057 e11

ν 0.2884 0.0 1.12 e-4 0.0 0.0 0.2981

ρ 4429 0.0 0.0 0.0 0.0 4429

4.1 Convergence and Comparison

In this section, convergence of the linear solution is verified for a centrally cracked β = 0.3

simply supported square plate modeled using one p-element (3×2 mesh in the serendipity

polynomial space). Materials properties used in this chapter are listed in Table 4.1.

Table 4.3 depicts results of first three modes for a moderately thick plate a
h
= 10, for

increasing p-refinement. It is clear that reasonable convergence of the linear solution is

achieved at low values of p.

Table 4.2: Comparison of the first frequency parameter ω = ωh
√

ρc
Ec

of simply supported
square Al/Al2O3 FG plates

a/h Source
n

0 0.5 1 4 10

5

ref [92] 0.2121 0.1819 0.1640 0.1383 0.1306

ref [93] 0.2055 0.1757 0.1587 0.1356 0.1284

present 0.2112 0.1862 0.1756 0.1473 0.1289

10

ref [92] 0.0577 0.0492 0.0443 0.0381 0.0364

ref [93] 0.0567 0.0482 0.0435 0.0376 0.0359

present 0.0577 0.0507 0.0480 0.0405 0.0354
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Table 4.3: Convergence of first three frequency parameters ω = ωh
√

ρc
Ec

for a simply sup-
ported square FG (Al/Al2O3) plates with central crack β = 0.3

n mode n°
p†

4 5 6 7 8 9 10 11 12

0

1st 0.0558 0.0550 0.0547 0.0545 0.0544 0.0544 0.0543 0.0543 0.0543

2nd 0.1353 0.1339 0.1330 0.1327 0.1325 0.1324 0.1322 0.1321 0.1321

3rd 0.1378 0.1374 0.1373 0.1373 0.1372 0.1372 0.1372 0.1372 0.1372

0.5

1st 0.0491 0.0484 0.0481 0.0479 0.0479 0.0478 0.0478 0.0477 0.0477

2nd 0.1192 0.1180 0.1172 0.1169 0.1168 0.1166 0.1165 0.1164 0.1163

3rd 0.1213 0.1210 0.1209 0.1209 0.1208 0.1208 0.1208 0.1208 0.1208

1.0

1st 0.0464 0.0458 0.0455 0.0453 0.0453 0.0452 0.0452 0.0451 0.0451

2nd 0.1125 0.1114 0.1106 0.1104 0.1102 0.1101 0.1100 0.1099 0.1098

3rd 0.1146 0.1143 0.1142 0.1142 0.1141 0.1141 0.1141 0.1141 0.1141

5

1st 0.0409 0.0404 0.0401 0.0400 0.0400 0.0399 0.0399 0.0399 0.0398

2nd 0.0981 0.0970 0.0964 0.0962 0.0960 0.0959 0.0958 0.0957 0.0956

3rd 0.1002 0.1000 0.0999 0.0999 0.0999 0.0998 0.0998 0.0998 0.0998

10

1st 0.0376 0.0371 0.0369 0.0368 0.0368 0.0367 0.0367 0.0367 0.0367

2nd 0.0902 0.0892 0.0886 0.0884 0.0883 0.0881 0.0880 0.0880 0.0879

3rd 0.0922 0.0920 0.0919 0.0919 0.0919 0.0918 0.0918 0.0918 0.0918

a/b = 1, a/h = 10

†: Serendipity polynomial space

In order to verify the accuracy of the present model for FGM plates a comparison is

carried out for linear free vibration of intact plates results available in literature. In Table

4.2 the fundamental frequency parameters ω = ωh
√

ρc
Ec

of simply supported square plates

are compared with numerical results of Matsunga [92] and Zhao [93]. It is clear that the

results of the present model are in good agreement with those of references.
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4.2 Parametric study of cracked FGM nano-plates

The effect of volume fraction exponent n and crack length ratio β is presented in Table

4.4 for a side and central horizontal crack α = 0 in simply supported nanoplate. It is

observed in both cases of side and central crack that, the frequency parameters in all modes

decrease with the growth of crack length, whereas for plates with a certain crack length,

the frequency parameters decrease with the increase of volume fraction exponent n.

Table 4.4: Effect of volume fraction exponent n and crack length ratio β on the first three

frequency parameters ω = ω
a2

h

√
12(1−ν2

m)ρm
Em

, for an S-S-S-S square nanoplates with side

and central crack
(
ν = 0.3 , α = 0 , µ = 0.1nm2 , a/h = 103

)
β 0.25 0.5 0.75

mode n° 1 2 3 1 2 3 1 2 3
Side crack

0.0 42.735 101.326 101.692 40.985 92.353 99.469 37.710 60.911 99.110
0.2 34.824 82.551 82.880 33.344 75.166 80.927 30.591 49.423 80.613
0.5 29.761 70.537 70.839 28.460 64.177 69.077 26.053 42.098 68.793
0.8 27.289 64.671 64.958 26.078 58.814 63.295 23.844 38.531 63.028
1.0 26.243 62.190 62.471 25.070 56.547 60.851 22.911 37.025 60.590
1.5 24.606 58.304 58.575 23.493 52.997 57.023 21.450 34.666 56.774
2.0 23.649 56.035 56.300 22.572 50.922 54.787 20.595 33.287 54.544

10.0 20.463 48.469 48.724 19.487 43.983 47.299 17.712 28.634 47.070
100.0 19.108 45.246 45.506 18.160 41.005 44.078 16.452 26.600 43.849

Central crack
0.0 41.789 101.198 101.754 39.254 91.968 100.915 36.906 67.286 98.930
0.2 34.024 82.474 82.927 31.887 74.869 82.190 29.919 54.625 80.451
0.5 29.058 70.490 70.877 27.186 63.935 70.212 25.468 46.549 68.644
0.8 26.635 64.637 64.992 24.894 58.599 64.364 23.302 42.615 62.886
1.0 25.609 62.161 62.502 23.926 56.342 61.890 22.387 40.953 60.451
1.5 24.004 58.284 58.604 22.409 52.809 58.017 20.955 38.351 56.639
2.0 23.067 56.019 56.327 21.523 50.744 55.755 20.118 36.829 54.411

10.0 19.935 48.478 48.745 18.543 43.845 48.204 17.287 31.705 46.941
100.0 18.596 45.274 45.523 17.251 40.890 44.981 16.045 29.471 43.717



4.2. PARAMETRIC STUDY OF CRACKED FGM NANO-PLATES 83

4.2.1 Side crack

Here, we consider a square plate a/b = 1 with side crack, a 2×2 elements mesh is used as

shown in Figure 3.1a, the degree of interpolation is p = 16 for each element. The effect of

volume fraction exponent n, crack length ratio β and crack angle α on the non-dimensional

frequency parameters ω = ω
a2

h

√
12(1−ν2

m)ρm
Em

, is studied for different values of non-local

parameter µ and several cases of boundary conditions (C-C-C-C, S-S-S-S, C-S-C-S, S-C-S-

C, C-F-C-F, F-C-F-C, S-F-S-F and F-S-F-S).

The effects of the crack length ratio β , volume fraction exponent n and crack angle α on

the two first frequency parameters for a clamped (C-C-C-C) square nanoplate with a side

crack is presented in Figure 4.1 for different values non local parameter µ . The obtained

results show that the fundamental frequency decreases with a relatively low rate for hori-

zontal crack α = 0 as a function of crack length ratio β , however it increases with a high

rate for an inclined side crack α = 60° and fluctuates for lower crack angles α = 20°,40°

but mostly the fundamental frequency is higher than that of an intact plate. Furthermore the

second frequency parameter for a horizontal crack decreases with a low rate for β < 0.5

then with high rate as the crack length ratioβ is higher than 0.5, this is also mostly true

for slightly inclined crack α = 20° however some minor fluctuations can be observed a

low crack lengths 0 < β < 0.3, in addition for moderately inclined crack α = 40° signif-

icant fluctuations are exhibited yet the second frequency is often higher than that of an

intact plate. For highly inclined crack α = 60° the second frequency parameter increases

monotonically with a relatively low rate.
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Figure 4.1: Plots of the first and second frequency parameters ω versus crack length ratio
β of a FGM nanoplate with a side crack for different values of volume fraction exponent
n, crack angle α and non-local parameter µ , subjected to C-C-C-C boundary conditions.

Figure 4.1 presents the effects of the crack length ratio β on the two first frequency pa-

rameters for a simply supported (S-S-S-S) square nanoplate with a side crack and different

values of volume fraction exponent n, crack angle α and non local parameter µ . These

results show generally similar trends when compared to clamped plate especially for hori-

zontal crack α = 0. However some differences can be noted, for example the fluctuations of

frequency parameters for inclined side cracks are much more intense than those of clamped

plates and the fluctuating frequencies are always higher than those of intact plates.



4.2. PARAMETRIC STUDY OF CRACKED FGM NANO-PLATES 85

µ=0

µ=0.04

µ=0.08

n=0.2

n=0.8
n=2

2nd mode

1st mode

1st mode

2nd mode
2nd mode

1st mode

1st mode

2nd mode

Figure 4.2: Plots of the first and second frequency parameters ω versus crack length ratio
β of a FGM nanoplate with a side crack for different values of volume fraction exponent
n, crack angle α and non-local parameter µ , subjected to S-S-S-S boundary conditions.

The effects of the crack length ratio β on the two first frequency parameters of a (C-S-

C-S) square nanoplate with a side crack is presented in Figure 4.1 for different values non

local parameter µ , volume fraction exponent n and crack angle α . The obtained results

show identical trends when compared to the results of clamped (C-C-C-C) plates.
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Figure 4.3: Plots of the first and second frequency parameters ω versus crack length ratio
β of a FGM nanoplate with a side crack for different values of volume fraction exponent
n, crack angle α and non-local parameter µ , subjected to C-S-C-S boundary conditions.

Figure 4.4 presents the effects of the crack length ratio β on the two first frequency

parameters for square nanoplates with a side crack subjected to (S-C-S-C) boundary con-

ditions and different values of volume fraction exponent n, crack angle α and non local

parameter µ .
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Figure 4.4: Plots of the first and second frequency parameters ω versus crack length ratio
β of a FGM nanoplate with a side crack for different values of volume fraction exponent
n, crack angle α and non-local parameter µ , subjected to S-C-S-C boundary conditions.

The previously presented results considered different combinations of clamped and

simply supported boundary conditions, showing slight to moderate differences in vibra-

tional behavior of side crack FGM nanoplates. Subsequently various combinations of free

edges with clamped or simply supported boundary conditions are studied and discussed.

Figure 4.5 shows the effects of the crack length ratio β on the two first frequency parame-

ters for a square FGM nanoplate with a side crack for different values of volume fraction

exponent n, crack angle α and non local parameter µ , subjected to (C-F-C-F) boundary

conditions. it is observed that the fundamental frequency parameter is decreasing as the

crack length increases, the decreasing rate is high for horizontal an slightly inclined cracks

α = 0°, 20° and relatively low rate of decrease is observed for higher angles α = 40°, 60°

with a minor fluctuation for crack angle α = 40°. Additionally the second frequency pa-

rameter for a horizontal side crack decreases with a low rate for crack length ratio β < 0.5

and a high rate for β > 0.5. For low and moderate crack angles α = 20°, 40° the second
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frequency parameter increases if crack length ratio β < 0.5 and then decreases with a high

rate. At high crack angle α = 60° the second frequency parameter increases with high rate.
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Figure 4.5: Plots of the first and second frequency parameters ω versus crack length ratio
β of a FGM nanoplate with a side crack for different values of volume fraction exponent
n, crack angle α and non-local parameter µ , subjected to C-F-C-F boundary conditions.

Figure 4.6 presents the effects of the crack length ratio β on the two first frequency pa-

rameters of a square nanoplate with a side crack for different values non local parameter µ ,

volume fraction exponent n and crack angle α subjected to (F-C-F-C) boundary conditions

(i.e., the crack is emanating from a clamped edge). The obtained results are very different

when compared to the results of (C-F-C-F) plates where the crack is emanating from a free

edge. The fundamental frequency parameter is decreasing slightly in the case of a hori-

zontal crack α = 0, increasing with high rate in the case of high crack angle α = 60° and

exhibits intense fluctuations with frequency values higher than those of intact plates in the

case of crack angles α = 20°, 40°. The second frequency parameter for a horizontal side

crack decreases with a low rate for crack length ratio β < 0.5 and a high rate for β > 0.5.

For low and moderate crack angles α = 20°, 40° the second frequency parameter fluctuates
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yet its value remains higher than that of an intact plate. At high crack angle α = 60° the

second frequency parameter increases with high rate.
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Figure 4.6: Plots of the first and second frequency parameters ω versus crack length ratio
β of a FGM nanoplate with a side crack for different values of volume fraction exponent
n, crack angle α and non-local parameter µ , subjected to F-C-F-C boundary conditions.

Formerly two combinations of free and simply supported boundary conditions (C-F-C-

F, F-C-F-C) and the results clearly suggest significant differences in vibrational behavior

of side cracked FGM nanoplate depending on whether the crack is emanating from a free or

clamped edge. Hence two combinations of free and simply supported boundary conditions

(S-F-S-F, F-S-F-S) are studied and discussed. Figure 4.7 presents the effects of the crack

length ratio β on the two first frequency parameters of a square nanoplate with a side crack

for different values non local parameter µ , volume fraction exponent n and crack angle

α subjected to (S-F-S-F) boundary conditions (i.e., the crack is emanating from a simply

supported edge). The first frequency parameter is decreasing with a high rate in the case

of a horizontal crack α = 0, in the case of crack angle α = 20° it is decreasing with a

relatively moderate rate until β ' 0.8 then it starts to increase but it remains lower than the
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value of an intact plate. In the case of moderate and high crack angles α = 40°, 60°, the

first frequency parameter decreases with low rate until the crack length ratio β reaches a

certain value then it increases with high rate and becomes higher than the value of an intact

plate. the second frequency parameter behavior is quite similar to that of a plate subjected

to (C-F-C-F) boundary conditions.
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Figure 4.7: Plots of the first and second frequency parameters ω versus crack length ratio
β of a FGM nanoplate with a side crack for different values of volume fraction exponent
n, crack angle α and non-local parameter µ , subjected to S-F-S-F boundary conditions.

Figure 4.8 presents the effects of the crack length ratio β on the two first frequency pa-

rameters of a square nanoplate with a side crack for different values non local parameter µ ,

volume fraction exponent n and crack angle α subjected to (F-S-F-S) boundary conditions

(i.e., the crack is emanating from a free edge). it is observed that in the case of a horizontal

crac α = 0 similar trends are exhibited when comparing with a side cracked plate sub-

jected to (F-C-F-C) boundary conditions. For inclined cracks although the fluctuations in

frequency parameters are also present, however the drops are much less intense, allowing

for much higher frequencies to be attained.
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Figure 4.8: Plots of the first and second frequency parameters ω versus crack length ratio
β of a FGM nanoplate with a side crack for different values of volume fraction exponent
n, crack angle α and non-local parameter µ , subjected to F-S-F-S boundary conditions.

In the analysis of previous results, the influence of side crack parameters and boundary

conditions on free vibrations of FGM nanoplates has been presented. Concerning the influ-

ence of volume fraction exponent n and non local parameter µ , it is clear from the results

that the obtained curves are identical but shifted as the values of volume fraction exponent

n or non local parameter µ are changed, this observation means that the influence of these

two material parameters is independent of the crack length ratio β and the crack angle α .

4.2.2 Central crack

In this study, vibrational behavior of a square plate a/b = 1 with central crack is investi-

gated, a 3× 2 elements mesh is used as shown in Figure 3.1b, the degree of interpolation

is p = 16 for each element. The effect of volume fraction exponent n, crack length ratio β

and crack angle α on the non-dimensional frequency parameters ω = ω
a2

h

√
12(1−ν2

m)ρm
Em

, is
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studied for different values of non-local parameter µ and several cases of boundary condi-

tions (C-C-C-C, S-S-S-S, C-S-C-S, S-C-S-C, C-F-C-F, F-C-F-C, S-F-S-F and F-S-F-S).

Figure 4.9 presents the effects of the crack length ratio β on the two first frequency pa-

rameters for a clamped (C-C-C-C) square nanoplate with a central crack for different values

of volume fraction exponent n, crack angle α and non local parameter µ . It is observed

in the case a horizontal central crack α = 0, the first and second frequency parameters

decrease as the crack length ratio β evolves and become equals as β ≈ 1. In the case

of moderately inclined central crack α = 15°,30°, the first frequency parameter increases

then decreases as β reaches a certain value 0.6 v 0.7 depending on the angle α , the sec-

ond frequency parameter is generally decreasing with a low rate then the rate of decrease

becomes high as β > 0.5∼ 0.6 depending on the angle α , it is also observed that at certain

crack length ratio β > 0.75 ∼ 0.8, the first and second frequency parameters are equals.

In the case of highly inclined central crack α = 45°,60°, the first frequency parameter is

increasing monotonically with a high rate, the second frequency parameter exhibits minor

fluctuations around the value of the second frequency of an intact plate, also the first and

second frequency parameters become equals as β ≈ 1.
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Figure 4.9: Plots of the first and second frequency parameters ω versus crack length ratio β

of a FGM nanoplate with a central crack for different values of volume fraction exponent
n, crack angle α and non-local parameter µ , subjected to C-C-C-C boundary conditions.

The effects of the crack length ratio β on the two first frequency parameters of a simply-

supported square nanoplate with a central crack is presented in Figure 4.10 for different

values non local parameter µ , volume fraction exponent n and crack angle α . The obtained

results show almost similar trends when compared to the results of clamped (C-C-C-C)

plates especially for the first frequency parameter, however some differences concerning

the second frequency parameter emerges whereas, for moderately inclined central crack

α = 15°, 30° increases at low rate then decreases and for highly inclined central crack α =

45°, 60° increases with a low rate contrary to fluctuating behavior in the case of clamped

plate.



4.2. PARAMETRIC STUDY OF CRACKED FGM NANO-PLATES 94

2nd mode

1st mode

1st mode

2nd mode

2nd mode

1st mode

2nd mode
2nd mode

µ=0.0

µ=0.06

µ=0.1

n=0.2

n=0.8
n=2.0

1st mode

1st mode

Figure 4.10: Plots of the first and second frequency parameters ω versus crack length ratio
β of a FGM nanoplate with a central crack for different values of volume fraction exponent
n, crack angle α and non-local parameter µ , subjected to S-S-S-S boundary conditions.

Figure 4.11 presents the effects of the crack length ratio β on the two first frequency

parameters of a square nanoplate with a central crack for different values of volume fraction

exponent n, crack angle α and non local parameter µ subjected to (C-S-C-S) boundary

conditions. the obtained results show similar trends when compared to results of a clamped

plate.
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Figure 4.11: Plots of the first and second frequency parameters ω versus crack length ratio
β of a FGM nanoplate with a central crack for different values of volume fraction exponent
n, crack angle α and non-local parameter µ , subjected to C-S-C-S boundary conditions.

Figure 4.12 presents the effects of the crack length ratio β on the two first frequency

parameters of a square nanoplate with a central crack for different values of volume fraction

exponent n, crack angle α and non local parameter µ subjected to (S-C-S-C) boundary

conditions. the obtained results show similar trends when compared to results of a simply

supported plate.
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Figure 4.12: Plots of the first and second frequency parameters ω versus crack length ratio
β of a FGM nanoplate with a central crack for different values of volume fraction exponent
n, crack angle α and non-local parameter µ , subjected to S-C-S-C boundary conditions.

After discussing the results where four different combinations of clamped and simply

supported boundary conditions are considered and observing an overall slight influence of

these boundary conditions on vibrational behavior of centrally cracked FGM nanoplates.

Subsequently various combinations of free edges with clamped or simply supported bound-

ary conditions are studied and discussed. Figure 4.13 presents the effects of the crack length

ratio β on the two first frequency parameters for a square FGM nanoplate with a side crack

for different values of volume fraction exponent n, crack angle α and non local parameter

µ , subjected to (C-F-C-F) boundary conditions. it is observed that the first frequency pa-

rameter is decreasing as the crack length increases for horizontal an slightly inclined cracks

α = 0°, 15°,30° and rate of decrease becomes low as the crack angle α increases, however

for higher angles α = 45°, 60° the first frequency parameter increases as a function of

crack length ratio β and high rates of increase are observed as the crack angle increases.

The second frequency parameter for a horizontal side crack decreases with for crack length

ratio β < 0.5 and a high rate for β > 0.5. For inclined crack α = 15°, 30°, 45° the second



4.2. PARAMETRIC STUDY OF CRACKED FGM NANO-PLATES 97

frequency parameter increases if crack length ratio β < 0.5 and then decreases and keep-

ing frequency higher than that of an intact plate. At high crack angle α = 60° the second

frequency parameter increases with high rate.
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Figure 4.13: Plots of the first and second frequency parameters ω versus crack length ratio
β of a FGM nanoplate with a central crack for different values of volume fraction exponent
n, crack angle α and non-local parameter µ , subjected to C-F-C-F boundary conditions.

Figure 4.14 presents the effects of the crack length ratio β on the two first frequency

parameters of a square nanoplate with a central crack for different values non local param-

eter µ , volume fraction exponent n and crack angle α subjected to (F-C-F-C) boundary

conditions. The obtained results are very different when compared to the results of (C-F-

C-F) plates especially in the case of inclined crack. It is observed in the case a horizontal

central crack α = 0, the first and second frequency parameters decrease as the crack length

ratio β evolves and become equals as β ≈ 1. The first and second frequency parameters are

increasing with a high rate and become equals after a certain crack length β . At low and

moderate crack angles α = 15°, 30° the first and second frequency parameters decrease

after some value of crack length ratio β .
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Figure 4.14: Plots of the first and second frequency parameters ω versus crack length ratio
β of a FGM nanoplate with a central crack for different values of volume fraction exponent
n, crack angle α and non-local parameter µ , subjected to F-C-F-C boundary conditions.

Previously, (C-F-C-F, F-C-F-C) boundary conditions has been discussed and the re-

sults clearly suggest significant differences in vibrational behavior of the centrally cracked

FGM nanoplate depending on whether the crack is growing toward a free or clamped edge.

Therefore boundary conditions (S-F-S-F, F-S-F-S) are presented and discussed. The ef-

fects of the crack length ratio β on the two first frequency parameters of a (S-F-S-F) square

nanoplate with a side crack is presented in Figure 4.15 for different values non local param-

eter µ , volume fraction exponent n and crack angle α . The obtained results show similar

trends when compared to the results of plates subjected to (C-F-C-F) boundary conditions.
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Figure 4.15: Plots of the first and second frequency parameters ω versus crack length ratio
β of a FGM nanoplate with a central crack for different values of volume fraction exponent
n, crack angle α and non-local parameter µ , subjected to S-F-S-F boundary conditions.

Figure 4.15 presents the effects of the crack length ratio β on the two first frequency

parameters of a (F-S-F-S) square nanoplate with a side crack for different values non local

parameter µ , volume fraction exponent n and crack angle α . The obtained results show

similar trends when compared to the results of plates subjected to (F-C-F-C) boundary

conditions.
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Figure 4.16: Plots of the first and second frequency parameters ω versus crack length ratio
β of a FGM nanoplate with a central crack for different values of volume fraction exponent
n, crack angle α and non-local parameter µ , subjected to F-S-F-S boundary conditions.

In the analysis of above results, the influence of central crack parameters and bound-

ary conditions on free vibrations of FGM nanoplates has been presented. Concerning the

influence of volume fraction exponent n and non local parameter µ , once again it is clear

from the results that the obtained curves are identical but shifted as the values of volume

fraction exponent n or non local parameter µ are changed, this observation means that the

influence of these two material parameters is independent of the crack length ratio β , the

crack angle α and also independent of the crack position (central crack, side crack). In or-

der to further study the influence of crack position combined with the influence of volume

fraction exponent n and non local parameter µ on the vibrational behavior of cracked FGM

nanoplates, the next section 4.2.3 will consider a side crack at different positions on the

edge from which the crack is emanating.
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4.2.3 Crack position

Earlier on, side and central cracks influence on vibrational behavior of FGM nano-plates

has been studied and discussed. In order to further explore the effect of crack position

beyond only side and central positions, in this study, vibrational behavior of a square

plate a/b = 1 with side crack positioned arbitrarily on an edge is investigated, a 2× 2

elements mesh is used as shown in Figure 4.17, the degree of interpolation is p = 16 for

each element. The effect of crack position ratio γ , crack length ratio β , crack angle α

and volume fraction exponent n on the non-dimensional fundamental frequency param-

eter ω = ω
a2

h

√
12(1−ν2

m)ρm
Em

, is studied for two values of non-local parameter µ = 0, 0.1

and several cases of boundary conditions (C-C-C-C, S-S-S-S, C-S-C-S, S-C-S-C, C-F-C-F,

F-C-F-C, S-F-S-F and F-S-F-S).

a

b
α 
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4e

1 2 3
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Figure 4.17: Crack position to plate length ratio γ and mesh configuration for side cracked
plates

Figure 4.18 presents the effects of the crack position ratio γ on the fundamental fre-

quency parameters of a local and non-local FGM clamped square plate with a side crack
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for different values crack length ratio β , crack angle α and volume fraction exponent n. For

a horizontal crack α = 0°, it is observed that the fundamental frequency parameter curve

is symmetric about γ = 0.5 axis and value of frequency decreases as the crack position is

moved toward the middle of the edge, Also the rate of decrease is higher as the position is

closer to the center of the edge. In the case of crack angle α = 40, the curve symmetry axis

is translated to a lower value γ ≈ 0.25.

µ=0

µ=0.1

n=0.2

n=0.5

n=0.8

Figure 4.18: Plots of the fundamental frequency parameter ω versus crack position ratio
γ of a FGM local and non-local plate with a side crack for different values of volume
fraction exponent n, crack angle α and crack length ratio β , subjected to C-C-C-C boundary
conditions.

The effects of the crack position ratio γ on the fundamental frequency parameter of a

local and non-local FGM simply-supported square plate with a side crack is presented in

Figure 4.19 for different values crack length ratio β , crack angle α and volume fraction

exponent n. Obviously similar trends are shown when comparing with the previous results

of the clamped plate, however the drops in frequency are much higher.
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µ=0

µ=0.1

n=0.2

n=0.5

n=0.8

Figure 4.19: Plots of the fundamental frequency parameter ω versus crack position ratio
γ of a FGM local and non-local plate with a side crack for different values of volume
fraction exponent n, crack angle α and crack length ratio β , subjected to S-S-S-S boundary
conditions.

Figure 4.20 presents the effects of the crack position ratio γ on the fundamental fre-

quency parameters of a local and non-local FGM square plate with a side crack for differ-

ent values crack length ratio β , crack angle α and volume fraction exponent n subjected

to (C-S-C-S) boundary conditions. For a horizontal crack α = 0°, it is observed that the

fundamental frequency parameter curve is symmetric about γ = 0.5 axis and value of fre-

quency decreases as the crack position is moved toward the middle of the edge, however

contrary to the simply supported and clamped plates the rate of decrease is much more uni-

form. In the case of crack angle α = 40, the curve symmetry axis is translated to a lower

value γ ≈ 0.25.
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µ=0

µ=0.1

n=0.2

n=0.5

n=0.8

Figure 4.20: Plots of the fundamental frequency parameter ω versus crack position ratio
γ of a FGM local and non-local plate with a side crack for different values of volume
fraction exponent n, crack angle α and crack length ratio β , subjected to C-S-C-S boundary
conditions.

Figure 4.21 presents the effects of the crack position ratio γ on the fundamental fre-

quency parameter of a local and non-local FGM square plate with a side crack subjected to

(S-C-S-C) boundary conditions for different values crack length ratio β , crack angle α and

volume fraction exponent n. it is clear that similar trends are exhibited when comparing

with the results of the clamped and simply supported plates.



4.2. PARAMETRIC STUDY OF CRACKED FGM NANO-PLATES 105

µ=0

µ=0.1

n=0.2

n=0.5

n=0.8

Figure 4.21: Plots of the fundamental frequency parameter ω versus crack position ratio
γ of a FGM local and non-local plate with a side crack for different values of volume
fraction exponent n, crack angle α and crack length ratio β , subjected to S-C-S-C boundary
conditions.

From the results of different combinations of clamped and simply supported boundary

conditions, it is observed that slight differences are occurring in vibrational behavior of

side crack FGM nanoplates under different boundary conditions. Hence various combina-

tions of free edges with clamped or simply supported boundary conditions are studied and

discussed. Figure 4.22 shows the effects of the crack position ratio γ on the fundamen-

tal frequency parameters a of a local and non-local FGM square plates with a side crack

for different values of volume fraction exponent n, crack angle α and crack length ratioβ ,

subjected to (C-F-C-F) boundary conditions (i.e., crack emanating from a clamped edge).

It is observed that the trends are significantly different from those of plates subjected to

simply-supported and clamped combinations. For a horizontal crack α = 0 the fundamen-

tal frequency parameter curves are symmetric about γ = 0.5 axis and the value of frequency

increases as the crack position is moved toward the middle of the edge for a crack length
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β = 0.5, however for a crack length ratio β = 0.255 the fundamental frequency parameter

starts to slightly decrease as the crack position approaches the middle of the edge. For in-

clined crack α = 40° and crack length ratio β = 0.5 the fundamental frequency parameter

increases as the crack position ratio increases

µ=0

µ=0.1

n=0.2

n=0.5

n=0.8

Figure 4.22: Plots of the fundamental frequency parameter ω versus crack position ratio
γ of a FGM local and non-local plate with a side crack for different values of volume
fraction exponent n, crack angle α and crack length ratio β , subjected to C-F-C-F boundary
conditions.

Figure 4.24 shows the effects of the crack position ratio γ on the fundamental frequency

parameters a of a local and non-local FGM square plates with a side crack for different

values of volume fraction exponent n, crack angle α and crack length ratioβ , subjected to

(F-C-F-C) boundary conditions (i.e., crack emanating from a free edge). It is observed that

the trends are very similar to those of plates subjected to simply-supported and clamped

combinations.
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µ=0

µ=0.1

n=0.2

n=0.5

n=0.8

Figure 4.23: Plots of the fundamental frequency parameter ω versus crack position ratio
γ of a FGM local and non-local plate with a side crack for different values of volume
fraction exponent n, crack angle α and crack length ratio β , subjected to F-C-F-C boundary
conditions.

The effects of the crack position ratio γ on the fundamental frequency parameter of a

local and non-local FGM square plate with a side crack subjected to (S-F-S-F) boundary

conditions (i.e., crack emanating from a simply-supported edge) is presented in Figure 4.24

for different values crack length ratio β , crack angle α and volume fraction exponent n. For

a horizontal crack α = 0 the fundamental frequency parameter curves are symmetric about

γ = 0.5 axis and the value of frequency decreases for crack position ratio 0.1 < γ < 0.2

then increases for 0.2 < γ < 0.4 and slightly decreases for 0.4 < γ < 0.5. For inclined

crack α = 40° the fundamental frequency parameter increases as the crack position ratio γ

increases.
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µ=0

µ=0.1

n=0.2

n=0.5

n=0.8

Figure 4.24: Plots of the fundamental frequency parameter ω versus crack position ratio
γ of a FGM local and non-local plate with a side crack for different values of volume
fraction exponent n, crack angle α and crack length ratio β , subjected to S-F-S-F boundary
conditions.

Figure 4.25 shows the effects of the crack position ratio γ on the fundamental frequency

parameters a of a local and non-local FGM square plates with a side crack for different

values of volume fraction exponent n, crack angle α and crack length ratioβ , subjected to

(F-S-F-S) boundary conditions (i.e., crack emanating from a free edge). It is observed that

the trends are very similar to those of plates subjected to simply-supported and clamped

combinations.
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µ=0

µ=0.1

n=0.2

n=0.5

n=0.8

Figure 4.25: Plots of the fundamental frequency parameter ω versus crack position ratio
γ of a FGM local and non-local plate with a side crack for different values of volume
fraction exponent n, crack angle α and crack length ratio β , subjected to F-S-F-S boundary
conditions.

4.3 Summary

In this chapter, we investigated linear free vibration of FGM cracked nanoplates based on

non-local elasticity and first-order shear deformation theory, by employing the modeling

approach used in the previous chapter 3. A good agreement has been found between the

results obtained by the present approach and results in literature for intact FGM plates.

The investigation of the influence of material volume fraction exponent n along with crack

parameters (length, orientation), plate geometry, boundary conditions and the non-local

parameter on frequency parameter further confirmed the softening effect of the non-local

parameter expressed by the decrease of frequency.
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Concerning the crack parameters, it is concluded that, for any value of material volume

fraction exponent n or any value of non-local parameter µ , the increase in crack length for a

horizontal crack (side or central crack) softens the nanoplate resulting in lower frequencies,

unlike the horizontal crack, an inclined crack at certain values of α can increase the stiffness

of the plate resulting in higher frequencies than those of an intact plate. Regarding the crack

position, it is concluded that as the crack is positioned closer to the middle of the plate,

the stiffness of the plate is decreased resulting in reduced frequency. In the next chapter,

the influence of crack parameters on nonlinear free vibrations of cracked nanoplates will

investigated.



Chapter 5

Non-Linear Vibration of cracked
nanoplates

In the previous chapters, linear free vibration of isotropic/FGM cracked nanoplates has

been investigated and discussed. In this chapter we consider the nonlinear free vibrations

of cracked nanoplates. The chapter begins by introducing a convergence study of non-

linear free vibrations of simply supported plates, then a comparison study is carried out to

investigate the accuracy of the model with nonlinear results found in literature. After that

parametric studies are conducted where, the effects of crack parameters (length, position)

and non-local parameter on the nonlinear free vibration of cracked nanoplates are the key

point of interest.

In this chapter we:

• Study the convergence of the linear and non-linear solutions of intact and cracked

plates obtained using full and selective p-refinement.

• Present a comparison to verify the accuracy of nonlinear solutions of the present

model for intact isotropic/FGM plates.

• Study the influence of horizontal crack length and non-local parameter on non-linear

free vibrations of cracked nanoplates subjected to different boundary conditions.

111
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• Study the effect of horizontal crack position and non-local parameter on non-linear

free vibrations of cracked nanoplates for several cases of boundary conditions.

5.1 Convergence and Comparison

In this section, convergence of the nonlinear solution is tested for an intact simply supported

square plate modeled using one p-element (1× 1 mesh in the product polynomial space),

Table 5.1 depicts results of the fundamental mode at different plate thickness ratios a
h

, for

increasing p-refinement. It is clear that the linear solution converges at low values of p, and

the nonlinear solution reaches a reasonable convergence but at higher values of p. Also

it is observed that the number of iterations needed for the nonlinear iterative process to

converge increases as the thickness of the plate increases.

Table 5.1: Convergence of the fundamental linear/nonlinear frequency of a simply sup-
ported isotropic square plate modeled with one p-element (shape function of the product
polynomial space)

a
h

p
2 3 4 5 6 7

20
1.9639 ∗ 1.9639 1.9637 1.9637 1.9636 1.9636
2.2169(12)† 2.2148(12) 2.2140(12) 2.2131(12) 2.2127(12) 2.2113(12)
1.1288‡ 1.1278 1.1274 1.1270 1.1268 1.1262

50
1.9822 1.9834 1.9832 1.9831 1.9831 1.9831
2.2674(11) 2.2677(11) 2.2671(11) 2.2666(11) 2.2663(11) 2.2660(11)
1.1439 1.1433 1.1431 1.1430 1.1428 1.1426

100
1.9864 1.9907 1.9901 1.9902 1.9902 1.9902
2.2771(7) 2.2811(7) 2.2800(7) 2.2797(7) 2.2795(7) 2.2793(7)
1.1463 1.1459 1.1457 1.1455 1.1454 1.1453

250
1.9890 1.9998 1.9978 1.9992 1.9992 1.9992
2.2834(7) 2.2959(7) 2.2923(7) 2.2935(7) 2.2933(7) 2.2932(7)
1.1480 1.1480 1.1474 1.1472 1.1471 1.1470

∗: linear first frequency parameter ω = ω
a2

π2

√
ρh
D22

†: non-linear first frequency parameter ωnl at wmax
h = 0.6

‡: non-linear to linear frequency ratio ωnl
ω

(· · ·): number of iterations for relative error ∆ω

ω
< 10−5
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Convergence analysis has been performed in Table 5.2 for the nonlinear solution of

a simply supported rectangular plate with central crack β = 0.3 modeled using selective

p-refinement (see Figure 5.1a), it is observed that the nonlinear solution is refined as p is

increased, hence it can be considered that reasonable convergence is achieved. Concerning

the convergence of the nonlinear iterative process, it is clear that increasing the amplitude
wmax

h increases the number of iterations needed to reach convergence.

Table 5.2: Convergence of the fundamental linear/nonlinear frequency of a simply sup-
ported isotropic rectangular plate with a horizontal central crack β = 0.3

wmax

h
a
b

p†

2 3 4 5 6

0.0
0.5 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1)
1.0 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1)

0.2
0.5 1.0067 (5) 1.0066 (5) 1.0066 (5) 1.0066 (5) 1.0066 (5)
1.0 1.0042 (5) 1.0041 (5) 1.0041 (5) 1.0040 (5) 1.0040 (5)

0.4
0.5 1.0264 (5) 1.0261 (5) 1.0261 (5) 1.0260 (5) 1.0260 (5)
1.0 1.0163 (5) 1.0160 (5) 1.0158 (5) 1.0156 (5) 1.0153 (5)

0.6
0.5 1.0575 (6) 1.0567 (6) 1.0567 (6) 1.0565 (6) 1.0565 (6)
1.0 1.0352 (6) 1.0345 (6) 1.0340 (6) 1.0332 (6) 1.0328 (9)

0.8 ‡
0.5 1.0980 (6) 1.0966 (11) 1.0964 (11) 1.0961 (11) 1.0960 (11)
1.0 1.0590 (7) 1.0575 (7) 1.0564 (7) 1.0541 (11) 1.0537 (16)

1.0 ‡
0.5 1.0194 (9) 1.0192 (9) 1.0192 (11) 1.0192 (9) 1.0192 (9)
1.0 1.0126 (11) 1.0125 (11) 1.0125 (11) 1.0125 (11) 1.0126 (15)

Side to thickness ratio
a
h
= 50, crack length ratio β = 0.3

†: shape functions in the product polynomial space
‡: results obtained using LUM method with averaging (see: paragraph 2.5.3 )
(· · ·): number of iterations for relative error ∆ω

ω
< 10−5

In order to assess the accuracy of the present model and since the literature results are

limited to intact plates, the comparison is carried out for nonlinear results of intact plates

available in literature [94, 95, 96, 97]. In Table 5.3 the fundamental frequency ratio ωnl
ω

of

simply supported rectangular plates are compared with numerical results in literature. It is

clear that the results of the present model are in good agreement with those of references.
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Table 5.3: Comparison of the fundamental frequency ratio ωnl
ω

of a simply supported
isotropic rectangular plate

ref[94] ref [95] ref[96] ref [97] Present

wmax

h
h-FEM

Elliptic
function

Pertur-
bation

Rayleigh-
Ritz

w/ IDIa w/o IDI

Square plate (a/h = 240)
0.2 1.0185 1.0195 1.0196 1.0149 1.0193(2)b 1.0269(2)
0.4 1.0716 1.0757 1.0761 1.0583 1.0753(2) 1.1029(2)
0.6 1.1533 1.1625 1.1642 1.1270 1.1629(2) 1.2171(3)
0.8 1.2565 1.2734 1.2774 1.2166 1.2758(3) 1.3574(4)
1.0 1.3752 1.4024 1.4097 1.3230 1.4082(3) 1.5156(5)

Rectangular plate (a/b = 2.0, a/h = 480)
0.2 1.0238 1.0241 1.0241 1.0177 1.0247(2) 1.0340(3)
0.4 1.0918 1.0927 1.0933 1.0690 1.0959(2) 1.1292(2)
0.6 1.1957 1.1975 1.1998 1.1493 1.2065(3) 1.2703(2)
0.8 1.3264 1.3293 1.3347 1.2533 1.3490(4) 1.4437(2)
1.0 1.4762 1.4808 1.4903 1.3753 1.5153(6) 1.6346(6)

a IDI: Inplane deformation and inertia
b Number of iterations for relative error ∆ω

ω
< 10−5

Table 5.4: Nonlinear to linear frequency ratio ωNL
ωL

of FGM simply supported square plate
(n = 2.0)

wmax

h
0.0 0.2 0.4 0.6 0.8 1.0

ZrO2/Ti–6Al–4V
ref[98] 1.000 1.021 1.082 1.176 1.296 1.436
present 1.000 1.038 1.109 1.206 1.325 1.459
error % 0.000 1.638 2.435 2.488 2.189 1.576

Si3N4/SUS304
ref[98] 1.000 1.021 1.081 1.174 1.293 1.432
present 1.000 1.037 1.106 1.202 1.320 1.453
error % 0.000 1.543 2.260 2.330 2.046 1.445
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In Table 5.4 the fundamental frequency ratio ωnl
ω

of simply supported FGM square plates

are presented along with numerical results of Huang and Shen [98]. A good agreement is

observed between the results of the present model and those of the reference.

5.2 Parametric study of cracked nano-plates

In this study, the influence of a horizontal crack α = 0 parameters such as length ratio β

and crack position (side, central and vertical position γ), on the backbone curves is studied

under different cases of boundary conditions, unless stated otherwise all studied plates are

square a/b = 1 with a = 10µm and a/h = 50. A 20× 20 mesh is used with selective p-

refinement where only elements around the crack tip are refined Figure 5.1, this selective

p-refinement strategy is adopted due to computational considerations. If full p-refinement is

used like in studies of chapters 3 and 4 for nonlinear simulations where p must be as high as

16 to reach reasonable convergence, the computation time needed to establish the nonlinear

stiffness matrices would be impractically high even when using parallel computation.

(a) Central crack (b) Side crack

Figure 5.1: Geometric parameters and mesh configuration for cracked plates, gray elements
are selectively p-refined elements
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5.2.1 Side crack

In this part of the study, backbone curves of the fundamental mode for side cracked

nanoplates are presented and discussed for several cases of crack lengths β and nonlocal

parameter µ under different boundary conditions (S-S-S-S, C-C-C-C, F-C-F-C, F-S-F-S,

C-F-C-F, S-F-S-F).

Figure 5.2 presents backbone curves for non-local and local plates having a horizontal

α = 0 side crack subjected to simply supported / clamped boundary conditions for different

values of crack length ratios β . The stiffening effect of large amplitude on free vibrations

is clearly observed for intact local and non-local plate, however as the crack length ratio β

is increased the non-linear effect is decreased ωnl
ω
∼ 1, further increase in crack length ratio

β or vibration amplitude wmax
h causes a softening effect ωnl

ω
< 1.

(a) Clamped plate (b) Simply supported plate

Figure 5.2: Backbone curves for the first mode of isotropic, square plates with a side crack
for different values of crack length ratios β and and non-local parameter µ . subjected to
clamped 5.2a and simply supported 5.2b boundary conditions.

Figure 5.3 presents backbone curves for non-local and local plates having a horizontal

α = 0 side crack subjected to F-C-F-C 5.3a / F-S-F-S5.3b boundary conditions for different

values of crack length ratios β . Similar to previous results the stiffening effect is clearly
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observed for intact local and non-local plate, however the softening effect is less significant

and require higher crack length ratios β and higher vibration amplitudes wmax
h to be clearly

observed.

(a) F-C-F-C boundary conditions. (b) F-S-F-S boundary conditions.

Figure 5.3: Backbone curves for the first mode of isotropic, square plates with a side crack
for different values of crack length ratios β and and non-local parameter µ . subjected to
F-C-F-C 5.2a and F-S-F-S 5.2b boundary conditions.

Figure 5.4 presents backbone curves for non-local and local plates having a horizontal

α = 0 side crack subjected to C-F-C-F 5.4a / S-F-S-F5.4b boundary conditions for different

values of crack length ratios β . Similar to previous results the stiffening effect is clearly

observed for intact local and non-local plate, however the softening effect is much more

significant then that observed for simply supported or clamped plates. Also, it can be

observed that the backbone curve will be almost a straight vertical line ωnl
ω

= 1 at vibration

amplitudes wmax
h < 0.5 and crack length ratios 0.3 < β < 0.4, suggesting that the vibration

will only be carried out linearly.
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(a) C-F-C-F boundary conditions. (b) S-F-S-F boundary conditions.

Figure 5.4: Backbone curves for the first mode of isotropic, square plates with a side crack
for different values of crack length ratios β and and non-local parameter µ . subjected to
C-F-C-F 5.2a and S-F-S-F 5.2b boundary conditions.

5.2.2 Central crack

In this section, the effect of crack lengths β and nonlocal parameter µ under different

boundary conditions (S-S-S-S, C-C-C-C, C-F-C-F, S-F-S-F) on the backbone curves of the

fundamental mode for centrally cracked nanoplates is investigated and discussed .

Figure 5.5 depicts the backbone curves for the fundamental mode vibration of clamped

square local/non-local centrally cracked plates α = 0 for different values of crack length

ratio β , it is observed from this results that the softening effect is significant as the crack

length β increases, and for a small crack length ratio β = 0.2 the non-linear to linear

frequency ratio ωnl
ω

≈ 1 which means the vibrational behavior is linear (i.e the non-linear

effect is negligible).
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Figure 5.5: Backbone curves for the first mode of isotropic, clamped, centrally cracked
square plates with different values of crack length ratios β and and non-local parameter µ .

The backbone curves for the fundamental mode vibration of simply-supported square

local/non-local centrally cracked plates α = 0 for different values of crack length ratio β is

presented in Figure 5.6, it is observed that the presence of the crack 0 < β < 0.4 decrease

the stiffening effect observed in intact plate, and at higher crack length ratios β > 0.4 a

softening effect is observed.
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Figure 5.6: Backbone curves for the first mode of the isotropic, simply supported, cen-
trally cracked square plates with different values of crack length ratios β and and non-local
parameter µ .

Figures 5.7 and 5.8 depicts the backbone curves for the fundamental mode vibration

local/non-local centrally cracked plates α = 0 for several values of crack length ratios β

subjected to C-F-C-F / S-F-S-F boundary conditions, again it is observed that the stiffening

effect is decreasing as the crack length ratio β increases, and the stiffening effect is much

more significant for the plates subjected to S-F-S-F boundary conditions.



5.2. PARAMETRIC STUDY OF CRACKED NANO-PLATES 121

Regarding the influence of the non-local parameter µ it is observed that it decreases the

stiffening effect for all cases of central or side crack.

Figure 5.7: Backbone curves for the first mode of isotropic, centrally cracked square plates
with different values of crack length ratios β and and non-local parameter µ , subjected to
C-F-C-F boundary conditions.
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Figure 5.8: Backbone curves for the first mode of isotropic, centrally cracked square plates
with different values of crack length ratios β and and non-local parameter µ , subjected to
S-F-S-F boundary conditions.

5.2.3 Crack position

in this part of the study, we investigated the influence of position γ of a horizontal central

crack (see Figure 5.9 ) in local plates µ = 0 and nonlocal plates µ = 0.2 under different

boundary conditions (S-S-S-S, C-C-C-C, S-F-S-F, C-F-C-F).
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a

b

X
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a

a

Figure 5.9: Crack position to plate length ratio γ and a centrally cracked plates

Figure 5.10 presents backbone curves for non-local and local plates having a horizontal

α = 0 central crack β = 0.3 subjected to simply supported boundary conditions for different

values of crack position ratios γ . It is clear that the stiffening effect of large amplitude on

free vibrations is decreased as the crack is positioned closer to the middle of the plate.

Figure 5.10: Backbone curves for the first mode of isotropic, centrally cracked β =
0.3, α = 0° simply-supported square plates with different values of crack position ratio
γ and and non-local parameter µ .
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Figure 5.11 depicts the backbone curves for the fundamental mode vibration of clamped

square local/non-local centrally cracked plates α = 0, β = 0.3 for different values of crack

position ratio γ , Similarly to the simply-supported plates, it is observed that the stiffening

effect of large amplitude on free vibrations is decreased noticeably as the crack is positioned

closer to the middle of the plate 0.2 < γ < 0.4. for crack position ratios 0.4 < γ < 0.5 and

amplitudes wmax
h < 0.7 the backbone curves are almost vertical straight lines ωnl

ω
≈ 1 (i.e.

the vibration is carried out linearly), for amplitudes wmax
h > 0.7 a softening effect appears

ωnl
ω

< 1.

Figure 5.11: Backbone curves for the first mode of isotropic, centrally cracked β =
0.3, α = 0° clamped square plates with different values of crack position ratio γ and and
non-local parameter µ .

The backbone curves for the fundamental mode vibration of square local/non-local cen-

trally cracked plates α = 0, β = 0.3 for different values of crack position ratio γ subjected
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to S-F-S-F are presented in Figure 5.12, it is observed that the stiffening effect of large am-

plitude on free vibrations is increased for crack position ratios 0 < γ < 0.3 and decreased

for 0.3 < γ < 0.5.

Figure 5.12: Backbone curves for the first mode of isotropic, centrally cracked β =
0.3, α = 0° square plates with different values of crack position ratio γ and and non-local
parameter µ , subjected to S-F-S-F boundary conditions.

Figure 5.13 depicts the backbone curves for the fundamental mode vibration of C-F-

C-F square local/non-local centrally cracked plates α = 0, β = 0.3 for different values of

crack position ratio γ , Similarly to the plates subjected to S-F-S-F boundary conditions, it

is observed that the stiffening effect of large amplitude on free vibrations is increased for

crack position ratios 0 < γ < 0.25 and decreased for 0.25 < γ < 0.5.
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Figure 5.13: Backbone curves for the first mode of isotropic, centrally cracked β =
0.3, α = 0° square plates with different values of crack position ratio γ and and non-local
parameter µ , subjected to C-F-C-F boundary conditions.

5.3 Summary

In this chapter, the non-linear free vibration of cracked nanoplates has been studied, based

on non-local elasticity and first-order shear deformation theory, using h-p FEM with selec-

tive p-refinement. The obtained results for intact isotropic/FGM plates, are shown to be in

very good agreement with the results literature. The investigation of the effect of horizon-

tal crack length, boundary conditions and the non-local parameter on first mode backbone

curves revealed that, the non-local parameter has a softening effect for all cases of bound-

ary conditions and all values of crack length or crack position. The increase of crack length

decreases the stiffening effect of large amplitude on free vibrations and at certain values of

length ratio the vibration carried out linearly. Concerning the crack position, it is concluded
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that as the crack is positioned closer to the middle of the plate, the stiffening effects of large

amplitude vibrations is decreased.



Conclusion and future work

This thesis presented linear and nonlinear free vibrations of cracked nanoplates. Nonlocal

elasticity theory has been applied in conjunction with first order shear deformation theory

to derive equations of motion describing free vibrations of nanoplates. An h-p FEM model

has been developed in order to accurately and efficiently handle the above mentioned prob-

lems. Several parametric studies has been established on the subject of linear/nonlinear

free vibrations of isotropic/FGM cracked nanoplates, detailed conclusions were drawn at

the end of each chapter. In the following sections, some important conclusions are sum-

marized with respect to the numerical model, its implementation and results of parametric

studies mentioned in previous chapters, recommendations for future work are also included.

Conclusions

The h-p FEM model that has been developed to handle problems of linear/nonlinear free

vibrations of cracked nanoplates, has been used with computer implementation techniques

such as parallel computing and sparse matrices storage scheme in order to efficiently con-

duct calculations on machines, along with two different meshing strategies, the first strategy

was based on using few number of simple elements with full refinement (i.e,. all elements

are p-refined), this strategy allowed full automation of mesh generation and refinement in

other words parametric studies can be carried out without human intervention each time

a crack parameter is changed. However a drawback of this strategy is the need for a rel-

atively high p-refinement to reach convergence, this would be fine for linear analysis but

for nonlinear analysis the integration step would be impractically slow even with parallel

integration. The second meshing strategy addresses this problem by using an h-refinement

128
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dominated mesh (i.e., selective p-refinement) where only elements around the crack tip are

p-refined with a low degree p. This approach with parallel computing provided practical

calculation time. However, it lacks full automation of mesh generation especially when

changing crack orientation.

In the analysis of linear vibration of isotropic cracked nanoplates, the numerical model

is shown to be accurate and efficient compared to results in literature for intact nanoplates

and cracked local plates. The study of the effect of crack parameters (length, orientation),

plate geometry, boundary conditions and the non-local parameter on frequency suggests

that the non-local parameter has a softening effect that leads to the decrease of frequency.

As for to crack parameters, a horizontal crack softens the nanoplate as the crack length

increases (i.e., lower frequencies). However, an inclined crack mostly would increase the

flexural stiffness.

In the analysis of linear free vibration of FGM cracked nanoplates. A good agreement

has been found between our results and results in literature for intact FGM plates. The

study of the influence of material volume fraction exponent n along with crack parameters

(length, orientation), plate geometry, boundary conditions and the non-local parameter on

frequency parameter further confirmed the softening effect of the non-local parameter. With

regard to the crack parameters, for any value of material volume fraction exponent n or any

value of non-local parameter µ , the increase in crack length for a horizontal crack (side

or central crack) softens the nanoplate. Nevertheless, an inclined crack can increase the

stiffness of the cracked plate. As for the crack position, as the crack is positioned closer to

the middle of the plate, the stiffness of the plate is decreased.

For the analysis of non-linear free vibration of cracked nanoplates using h-p FEM with

selective p-refinement around the crack tip. A very good agreement has been remarked

between the obtained results and the results of literature for intact isotropic/FGM plates.

From the parametric studies, it is concluded that the non-local parameter has a softening

effect for any cases of boundary conditions and any values of crack length or crack posi-

tion. The increase of crack length decreases the stiffening effect of large amplitude on free

vibrations and at certain values of length ratio the vibration carried out linearly. As for the

crack position, as the crack is positioned closer to the middle of the plate, the stiffening

effects of large amplitude vibrations is decreased.
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In this work, the main contributions for the simulation of cracks and nanoplates are:

1. The first endeavour to investigate linear free vibrations of cracked isotropic

nanoplates based on nonlocal elasticity has been accomplished. Novel results

characterizing the effect of different crack parameters such as length, orientation and

position on linear vibrational behavior of isotropic nanoplates has been presented

and discussed.

2. The achieved work has been further extended to linear free vibrations of FGM

cracked nanoplates, where original results have been obtained relating the effect of

material volume fraction exponent along with crack parameters and non-local param-

eter.

3. Original results for nonlinear free vibrations of cracked local plates (Classical elas-

ticity) as well as nonlocal plates (nonlocal elasticity) have been presented and dis-

cussed.

4. Enrich the literature on the vibrations of cracked plates using h-p FEM since there is

a paucity of research on the topic.

Suggestions for potential future work

The work in this thesis is limited and some improvements for the future may be considered:

• Extend the current numerical model to handle non-conforming meshes (i.e., irreg-

ular meshes) with hanging nodes, in the frame work h-p version of finite elements

method (i.e., Coupling of h and p finite elements). This approach would allow better

h-refinement around the crack tip and the transition out of the crack tip region would

be carried out using few p-elements. The advantages of this approach are easy au-

tomation of mesh generation for any crack length or orientation, the ability to exploit

h-, p- and r-refinements and obtain accurate results with fewer degrees of freedom.

• In nonlinear vibrations it is possible to encounter turning and bifurcation points at

large amplitudes, translating into regions with multiple solutions (i.e., backbone
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curve with secondary branches), which can not be handled using the LUM or Newton

methods. Thus it is necessary to resort to the continuation method which is able to

predict bifurcation points and construct secondary branches.

• The presented model can be further extended to other nanostructures (e.g., shells, 3D

solids...) with multiple cracks and curved geometries.

• Another topic that can be considered for future research is forced linear/nonlinear

vibrations of cracked nano-plates.

• Although the current state of literature is presenting non-local elasticity as a complete

theory for nanostructures. However the data provided by different researchers on the

value of the non-local parameter are not yet unitary and unambiguous. Thus the

calibration of the non-local parameter is a pertinent factor for this theory to serve the

engineering community in terms of predicting nanostructures behavior.
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Appendix A

First Appendix
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