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Abstract

The rise of work-related musculoskeletal disorders (WMSDs) has become a
major concern in various industries, leading to serious health problems and
economic losses. Despite the automation of some manufacturing processes,
manual tasks are still necessary and can pose ergonomic risks to workers.
To address this issue, an AI-powered tool for ergonomic risk assessment has
been developed. The tool successfully estimates the 3D human pose with a
mean per joint position error (MPJPE) of 46.8 mm, using the Human3.6M
dataset, and calculates the Rapid Entire Body Assessment (REBA) score in
real time, providing a comprehensive assessment of ergonomic risk factors.
Our approach has been validated by a specialist doctor in rehabilitation. The
system employs a semi-supervised learning approach with a fully convolu-
tional model based on dilated temporal convolution over 2D keypoints. The
developed AI-powered tool provides immediate feedback, enabling enhanced
actions for risk reduction. Case studies demonstrate the effectiveness of the
approach for improving the accuracy and efficiency of ergonomic risk assess-
ment in various industries.

Keywords:

REBA, WMSDs, Deep learning, temporal convolution, pose estimation.

Résumé

L’essor des troubles musculosquelettiques liés au travail (TMS) est devenu
une préoccupation majeure au sein de diverses industries, entraînant des prob-
lèmes de santé graves et des pertes économiques. Malgré l’automatisation de
certains processus de fabrication, les tâches manuelles demeurent nécessaires
et peuvent présenter des risques ergonomiques pour les travailleurs. Afin de
remédier à cette situation, un outil alimenté par l’intelligence artificielle (IA)
destiné à l’évaluation des risques ergonomiques a été développé. Cet outil
permet d’estimer avec succès la position tridimensionnelle du corps humain
avec une erreur moyenne de position par articulation (MPJPE) de 46,8 mm,
en utilisant l’ensemble de données Human3.6M, et de calculer en temps réel
le score de l’Évaluation Rapide de Tout le Corps (REBA), offrant ainsi une
évaluation globale des facteurs de risque ergonomique. Notre approche a reçu
la validation d’un médecin spécialiste en rééducation. Le système adopte une
approche d’apprentissage semi-supervisé avec un modèle entièrement convo-
lutif basé sur une convolution temporelle dilatée appliquée aux points clés
en deux dimensions. L’outil alimenté par l’IA développé fournit une rétroac-
tion immédiate, permettant ainsi de renforcer les mesures visant à réduire
les risques. Des études de cas démontrent l’efficacité de cette approche pour
améliorer la précision et l’efficacité de l’évaluation des risques ergonomiques
dans diverses industries.
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Mots-clés :

REBA, TMS liés au travail, apprentissage profond, convolution temporelle,
estimation de pose.

ملخص
الصناعات، مختلف في رئيسي قلق مصدر أصبح بالعمل المتعلقة الهيكلي العضلي الجهاز باضطرابات الإصابات تزايد
المهام أن الا التصنيع، عمليات بعض أتمتة من الرغم على و معتبرة. اقتصادية وخسائر خطيرة صحية مشاكل إلى يؤدي حيث
أداة بتطوير قمنا المشكل، هذا لمعالجة العمال. على العمل ببيئة متعلقة تهديدات تشكل قد والتي ضرورية تزال لا اليدوية
متوسط خطأ بمعدل بنجاح الابٔعاد ثلاثية البشري الجسم وضعية بتقدير تقوم الاخٔيرة هذه لتقييمها. الاصطناعي بالذكاء تعمل
السريع الكامل الجسم تقييم درجة النظام يحسب و ،Human 3.6M البيانات قاعدة باستعمال مم، بـ46.8 يقدر مفصل لكل
شبه التعلم نهج النظام يستخدم التأهيل. في متخصص طبيب قبل من نهجنا من التحقق تم الإنسانية. الهندسة مخاطر لعوامل
بالذكاء المدعومة الادٔاة توفر الابٔعاد، ثنائية الرئيسية للنقاط الموسع الزمني التحويل الى يستند بالكامل مدمج بنموذج المشرف
في النهج هذه فعالية الحالية الدراسات وتوضح المخاطر. لتقليل أفضل إجراءات اتخاذ من يمكن مما فوريًا إشعارًا الاصطناعي

الصناعات. مختلف في الإنسانية الهندسية مخاطر تقييم وفعالية دقة تحسين

مفتاحية: كلمات
الوضعية. تقدير الزمني، التحول العميق، التعلم بالعمل، المتعلقة الهيكلي العضلي الجهاز إصابات الكامل، السريع الجسم تقييم
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General introdution

0.1 Motivation

Even though there has been significant progress made in the field of industrial au-
tomation over the course of the past several decades, manual labour is still necessary
in many different fields. Workers who perform tasks that require physical exertion
are at an increased risk of developing musculoskeletal disorders as a result of their
jobs. Musculoskeletal problems caused by labour have become an issue of concern
on a global scale. If it were simple to get a hold of and competently carried out, its
risk assessment would be of great use to ergonomic job design and occupational
safety measures. In developed countries, WMSDs are currently the largest source
of sick leaves, work-related disability, and an overall loss in productivity without
forgetting the increasing of social healthcare costs. In the European Union, they
account for more than half of all work-related diseases and are responsible for more
than 40% of all economic losses caused by occupational health and safety concerns
[1]. In the United States of America, these conditions are responsible for more than
30% of all diseases and accidents that do not result in death [2]. In 1997, the National
Institute for Occupational Safety and Health in the United States advised a set of
actions to be included in every ergonomic program in order to avoid work-related
musculoskeletal disorders. This was done as a reaction to a problem that had arisen.
As a direct result of this suggestion and in light of the fact that it is of the extreme
significance that ergonomic risk assessment be carried out in a way that is both
effective and efficient, an abundance of methods and tools pertaining to ergonomic
risk assessment have been developed over the course of the past few decades. These
can be broken down into the following categories [3, 4, 5] :

1



• Self-assessment: where employees evaluate themselves using standardised
forms.

• Human observation: when qualified personnel observe workers and make
educated guesses about the angles at which they are standing, sitting, bending
and moving either on-site and/or off-line video.

• Direct measurement: where anthropometric equipment and gadgets are worn
by workers to collect data on their activities for the sake of ergonomic analysis.

• Computer-based assessment: where human body models are automatically
generated from camera captures by specialised computer vision application,
thereby giving systematic and objective model-based ergonomic measures [6].

Both self-assessment and human observation have subjective biases that make them
inconsistent in the matter of result. At the moment, the human observation approach
is the most common way for industrial workplaces to assess ergonomic risks. But
even experienced ergonomists often make mistakes when making subjective category
decisions. This is mostly because of poor visual conditions in the workplace, such
as poor lighting, occlusions, and bad camera angles when taking videos or pictures
[7]. Direct measurement and expert-based observation methods are also limited by
the amount of time it takes to do the assessment and the technical knowledge the
analysts need [8]. In the last few years, a number of disruptive technologies related to
the "industry 4.0" paradigm have made it possible for ergonomics to be used in new
and useful ways [9].In particular, artificial intelligence and technology breakthroughs
are opening up novel paths for ergonomics thanks to the impact of automated data
collecting and analysis on a new class of data-driven applications. In this group, we
highlight computer vision systems like colour and depth devices, stereo cameras,
and RGB colour cameras [10, 7, 11]. These AI-based methods can accurately find and
analyse a person’s posture and motion by automating the assessment process.

0.2 Objective

The objective of this research is to design and implement a cutting-edge system
that leverages computer vision and deep learning to assess full-body postures in the
workplace. The system is based on the Rapid Entire Body Assessment (REBA) pos-
ture assessment tool and aims to automate the process of ergonomic risk assessment.

2



0.3 Thesis structure

The study focuses on the creation of a computer vision model that can accurately
predict the human’s body joint coordinates from images or digital videos of workers
performing common occupational tasks such as lifting, pulling, machining, pushing
and others.

The system calculates the angle between different body segments and computes
relevant postural scores, which are then translated into REBA Grand scores that
indicate the level of risk associated with a specific posture. The proposed system is
validated through a statistical comparison with manual evaluations performed by
two ergonomic experts, ensuring its reliability and accuracy. This method signifi-
cantly reduces the time and resources required for REBA evaluations by eliminating
the need for manual sampling and evaluation of posture from video recordings of
workplace tasks.

In general, this research constitutes a significant advancement in the domain of
ergonomics and occupational health by presenting a resolution to the difficulties
linked with conventional ergonomic risk evaluation techniques. The findings of this
study possess the capability to provide insights for forthcoming advancements in the
field of ergonomic hasard evaluation and aid in the creation of novel and enhanced
instruments and approaches for averting work-related musculoskeletal disorders.

0.3 Thesis structure

• Introduction: briefly introduce the motivation behind this research and state
the objectives of the research.

• Chapter 1: this chapter defines and explains the main key concepts that this re-
search relies on such as ergonomics, occupational health safety, risk assessment
methods and artificial intelligence.

• Chapter 2: this chapter reviews the state of the art of techniques and methods
that will be used to build the project and provides a comprehensive overview
about it.

3



• Chapter 3: this chapter describes the research template design and method-
ology for this thesis besides all the steps involved in the AI-based system
developing.

• Chapter 4: this chapter presents the major findings of the research, including the
AI-based system performance. Also we discuss its advantages and limitations,
as well as the improvements and finished by a general discussion.

• General conclusion: this final chapter summarises the main results and major
contributions of our research, also discusses its implications for enhancing the
work quality and occupational health and safety.

4



C H A P T E R 1

G E N E R A L I T I E S

1.1 Introduction

The 4th industrial revolution has brought about a whirlwind of technological
advancements in the manufacturing sector, streamlining processes and altering the
nature of human work. however, this progress has also introduced new health and
safety hasards for workers besides their lack of productivity, as well as challenges
to their existing skills and knowledge. in this chapter we will explore the main
components and their impact on the conduct of this research.

1.2 Ergonomics

Ergonomics is an interdisciplinary field that deals with the performance of humans
in their work environment, including their interaction with machines and the design
of their workplace. It is derived from the Greek word "ergon" (meaning "work") and
"nomos" (meaning "natural laws") by Wojciech Jastrzebowski, a polish engineer. Also
known as the "human factor" , ergonomics aims to apply natural laws governing
human work by studying the human body and its responses to internal and external
forces (such as anthropometry and biomechanics), as well as work and environmental
physiology, human behaviour in response to work, information processing and
decision making (skill psychology), training and effort perception, and adapting
equipment and devices for human use [12].
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1 Generalities

When it comes to ergonomics, there are two common approaches for reducing
the risk of injury and improving overall health in workplace, as shown in Figure
1.1. The first approach, “fitting the task to the person”, focuses on modifying the
work environment and equipment to reduce physical strain [13] and improve task
efficiency [14], in the other side, the second approach, “fitting the person to the task”,
involves selecting workers with appropriate physical and cognitive abilities or pro-
viding training to help them perform the job demand. In practice, both approaches
are important and should be considered in combination to achieve optimal results
for both the employee and the task.

F I G U R E 1 . 1 : Illustration of two approaches in ergonomics. Based on [13, 15, 16, 17]

1.2.1 Scope of ergonomics

The purpose of ergonomics is to improve the health and capability of workers
while simultaneously preserving their safety, comfort, and productivity [18]. During
the early stages of this endeavor, the primary focus was on ensuring that human
operators were capable of getting the most out of their respective pieces of machinery
so as to maximise overall efficiency. Research on human performance was conducted
by designers so that they may gain a better understanding of human capabilities,
limitations, and responses to their surrounding environment. As time went on, Work-
related satisfaction, quality of life, ergonomics, injury prevention, stress management,
efficiency, and productivity were all found to be interconnected and intertwined
[18]. It has become increasingly acknowledged that ergonomics plays an important
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role in cost containment, particularly in connection to absenteeism, retraining in-
jured workers, medical expenses, liability insurance, and punitive damages. Today,
ergonomics places a strong emphasis on ensuring the long-term health and safety of
workers through the prevention and control of occupational injuries and illnesses,
particularly in the area of cumulative trauma disorders and the associated costs. This
can be done by keeping workers from getting hurt or sick on the job and taking care
of those who do.

1.2.2 Ergonomics evolution

The focus on work-related musculoskeletal disorders and ergonomics has been
around for centuries. In the early 20th century, Frederick Taylor and Frank and Lillian
Gilbreth analysed human performance through task, motion, and time analysis,
aiming to shorten cycle times for repetitive jobs such as bricklaying and manual
material handling. Technology continued to evolve at an accelerating pace, and
engineers and psychologists joined forces to understand how to design the human-
machine interface. At the end of the 20th century, personal computers became a major
focus in the field of ergonomics. In response, labour organisations in the United
States pushed for the creation of ergonomic workplace standards to protect workers
from these types of disorders.

However, some industries had successful ergonomic programs in place, while
others pushed for the repeal of the OSHA ergonomic standard, which was eventu-
ally repealed by Congress in 2001. The implementation of ergonomic best practices
has been shown to reduce workers’ compensation costs and increase productivity,
making it a cost-effective motivation for promoting safe work environments. As the
world economy continues to become more global, many countries are adapting to
incorporate ergonomic practices and standards. In America, ergonomics is a vital
aspect of worker health and safety, and as part of the National Institute for Occupa-
tional Safety and Health’s Total Worker Health initiative, ergonomic programs are
integrated with health promotion activities, leading to greater effectiveness.
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For example, combining an occupational health intervention that reduces the
respiratory hasard with a smoking cessation program doubles the smoking quit rate.
All four of the NIOSH Total Worker Health Centers emphasized strong ergonomic
initiatives as a key component of their comprehensive approach to workplace health
and safety [19].

1.2.3 Ergonomics across USA, Europe and Africa

While the USA and Europe have made significant strides in designing tasks,
workspaces, and equipment that fit employees’ physical capabilities and limitations,
Africa lags behind in both implementation and awareness. The National Institute
for Occupational Safety and Health (NIOSH) in the USA focuses on musculoskeletal
disorders and provides recommendations and guidelines for various industries,
while numerous industries and manufacturers in Europe apply ergonomic princi-
ples to their products and work environments, resulting in safer and more efficient
workplaces in both regions. However, limited resources, a lack of awareness, and
inadequate infrastructure contribute to the gap between Africa and the more devel-
oped regions. Additionally, the continent’s diverse cultural, social, and economic
contexts make it difficult to establish a unified approach to designing workspaces and
equipment that consider employees’ physical abilities and limitations. The absence
of guidelines and standards tailored to the African context exacerbates the problem,
resulting in a slower adoption of these practices. To bridge this gap, African countries
must invest in research, education, and context-specific guidelines to improve the
well-being and productivity of their workforce.

1.3 Occupational health

1.3.1 Musculoskeletal disorders (MSDs)

Musculoskeletal disorders, and particularly the sense of musculoskeletal-related
pain, are among the many unanswered questions regarding a person’s impression
of ill health, which may or may not have a physiological cause. Msds are defined as
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the injuries and disorders to muscles, nerves, tendons, ligaments, joints, cartilage
and spinal discs [20] and do not include injuries resulting from slips, trips, fall or
accidents. Movements of the arms and hands that cause MSDs include flexing,
extending, twisting, clenching, and reaching. As noted by (Lorusso et al, 2009) [21],
numerous epidemiological studies have demonstrated that ergonomic factors and
elements of work organisation significantly contribute to the onset of musculoskeletal
disorders. Simple, routine movements are not inherently dangerous in typical work
tasks. However, the repetition of these movements, often performed with force and at
a high speed with little time for recovery, can make them hasardous in the workplace.

F I G U R E 1 . 2 : Common MSDs [22]

1.3.2 Diagnosis musculoskeletal disorders

MSDs have a correlation with certain types of work patterns [23]:
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• Fixed or constrained body positions.
• Continual repetition of movements.
• Force concentrated on small parts of the body, such as the hand or wrist.
• A pace of work that does not allow sufficient recovery between movements

Musculoskeletal disorders are generally the result of the combined and interactive
effects of various factors, including repetitiveness, forceful movements, and a lack
of recovery time. Heat, cold, and vibration can also contribute to the development
of MSDs. The areas of the human body that are most susceptible to these disorders
include the lower back, upper back, neck, shoulders, knees, hipsthighs, elbows, an-
klesfeet, and wrists. But, the root causes of MSDs are complex and multi-faceted and
can be examined from two key perspectives biomechanical physical or ergonomic
factors and non-biomechanical factors [12]. The wear and tear of daily activities can
cause damage to muscle tissue, and trauma to an area, such as sudden movements,
automobile accidents, falls, fractures, sprains, dislocations, or direct blows to the
muscle, can also lead to musculoskeletal pain. Musculoskeletal disorders can be seen
in three stages: the early stage, the intermediate stage, and the late stage [24]. Each
stage is linked to a certain time when pain shows up and this is illustrated in the
figure 1.3 below:

F I G U R E 1 . 3 : MSDs’ stages development through time
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1.3.3 Work-Related Musculoskeletal Disorders

Work-related musculoskeletal disorders (WMSDs) are injuries to workers’ limbs
that are caused or worsened by the working conditions in a workplace [25]. These
disorders occur when there is a mismatch between the physical demands of the job
and the physical ability of the worker’s body. Some of the working conditions that
can lead to WMSDs include regular heavy lifting, exposure to whole-body vibration,
overhead work, working with the neck in a flexed position for long periods, and
performing repetitive and forceful tasks [12]. The specific body parts affected by
WMSDs depend on the nature of the tasks involved. For example, tasks that involve
the use of the upper body may cause pain in the upper arm, lower arm, wrists,
neck, and shoulders, while tasks involving the lower body may cause pain in the
legs, trunk, and feet [23]. Some common examples of WMSDs include Carpal Tunnel
Syndrome (Figure 1.4), Thoracic Outlet Syndrome (Figure 1.5), and Tendonitis (Figure
1.6).

F I G U R E 1 . 4 : Carpal Tunnel Syndrome [24]
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F I G U R E 1 . 5 : Thoracic Outlet Syndrome [26]

F I G U R E 1 . 6 : Patellar Tendonitis [27]

The connection between physical labour and its impact on health is influenced
by numerous factors. It is noteworthy to mention that there are also several other
hasards and their interactions not included in this model, such as organisational
and psychosocial aspects. Work is determined by the tasks, workplace, tools, and
schedules, referred to as the prescribed work [13]. Every individual is unique and
has varying effects on how work tasks are actually carried out. Personal traits such
as height, work methodology, and experience, as well as current personal conditions,
play a significant role in the actual work activity. An internal physiological response,
including muscular contractions and metabolic changes, will occur based on the
activity performed and the individual’s capability. This response can result in either
fatigue and reduced health or sustained and improved health, depending on the
length, frequency, and intensity level of the actual work activity [28]. By monitoring
the actual work activity through techniques such as evaluating posture, force, and

12



1.3 Occupational health

energy demand, researchers and practitioners can assess ergonomic hasards and
enhance work design.

F I G U R E 1 . 7 : Model of relationships between physical work and its effects on
health, with modifying factors. Model developed based on [28]

1.3.4 Prevention and Management

Preventive approaches to tackle WMSDs entail performing ergonomic risk assess-
ments [29]. These assessments entail scrutinising potential risk factors, including
exposure to detrimental biomechanical and psychosocial aspects of work and the
workplace, with the objective of identifying noteworthy risks associated with mus-
culoskeletal disorders. To gauge the degree of exposure to risk factors, each factor
ought to be assessed based on three key quantitative attributes [30]:
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• Intensity/amplitude: The intensity, or "how much?", measures the size of the
risk factor, such as the size of the joint angle in posture-related risk or the
weight of the object handled in musculoskeletal load-related risk.

• Frequency: The frequency, or "how often?", measures the presence of the risk
factor, including repetitiveness, number of work cycles, task variation, and
occurrence of micropauses, taking into account the time needed for tissue
recovery.

• Duration: The duration, or "how long?", measures the length of exposure to
the risk factor.

However, although the possibility to automate systematic methods, still, the pro-
cess ergonomists’ experience-driven, despite the fact that AI-based assessment pro-
vide real-time and accurate result without the traditional pen-paper process that
ends with subjective judgment.

1.4 Common Observational-based method for
ergonomic risk assessment

1.4.1 REBA (Rapid Entire Body Assessment)

The method known as Rapid Entire Body Assessment (REBA) was created by
Sue Hignett and Lynn McAtamney [31] at Nottingham Hospital in the year 2000.
This approach was developed through the collaborative efforts of team consisting
of ergonomists, physiotherapists, and nurses, who identified approximately 600
different working postures [31]. According to (Dohyung Kee, 2021) [32], REBA can be
defined as a method or technique that enables a quick evaluation of a worker’s neck,
back, upper arms, forearms, wrists, and feet posture during any activity that may
potentially result in musculoskeletal disorders (MSD), this means that it furnishes
a system of scoring that evaluates the range of motion of specific body parts and
the amount of force or load applied to the body during the task, additionally it’s
applicable to both the upper and lower body. The following worksheet shown in
Figure 1.8 provides a framework for the assessment:
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F I G U R E 1 . 8 : REBA worksheet

This method encompasses a series of actions such as monitoring labour activities,
analysing body position, evaluating postures, calculating predetermined scores,
determining the REBA score outcomes and promptly validating the action level as
shown in the table 1.1:

Score Level of MSD risk
1 Negligible risk, no action required

2-3 Low risk, change may be needed
4-7 Medium risk, further investigation, change soon

8-10 High risk, investigate and implement change
11+ Very high risk, implement change

TA B L E A U 1 . 1 : REBA score interpretation
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The calculation of the REBA score involves using several tables (Table A, B, and
C) and the REBA scoring format, which follows this methodology:

• Table A is used to obtain a score from group A (Trunk score, Neck score, and
Legs score).

• Table B is used to obtain a score from group B (Upper arm score, Lower arm
score, and Wrist score).

• Table C is used to determine a score based on the scores from Tables A and B.
• The final REBA score is obtained by summing the scores from Table C and the

activity scoring.

To determine the risk level of musculoskeletal disorders (MSD), the scoring outcome
will be compared to the interpretation table of the REBA score mentioned earlier.
The following flowchart given by Hignett and McAtamney [31] illustrates the calcu-
lation methodology:
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F I G U R E 1 . 9 : REBA score sheet methodology

1.4.2 RULA method (Rapid Upper Limb Assessment)

Rapid upper limb assessment, or RULA, is an observation-based method devel-
oped by L. McAtamney and E. N. Corlett [32] used to evaluate the posture of
employees during work that involves the body’s upper limb, where its aim is to
identify potential work-related musculoskeletal disorders that may occur while do-
ing the job and by assessing the body’s posture, force, and repetition, and to provide
recommendations in order to prevent and reduce the risk of occupational injury. The
following figure (1.10) presents the RULA worksheet:
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F I G U R E 1 . 1 0 : RULA worksheet

The calculation of RULA is done following these steps:

• Table A is used to obtain score from Group B which includes: Upper Arm,
Lower Arm, Wrist and Wrist twist.

• Table B is used to obtain score from Group B which includes: Neck, Trunk and
Legs.

• Calculate score C by summing Posture score A, muscle use score and force
score.

• Calculate score D by summing Posture score B, muscle use and force score.

The figure 1.11 illustrates the RULA methodology:
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F I G U R E 1 . 1 1 : RULA score sheet methodology

The RULA final score is translated into four levels of action that specify the
necessary intervention level to decrease the chances of physical loading injury to the
worker as shown in the table 1.2 below:

Score Level of MSDs risk
1-2 Acceptable working posture, no action required
3-4 Low risk, further investigation to change posture
5-6 Important risk, investigations to change posture
7+ Risk very high, posture changes required immediately

TA B L E A U 1 . 2 : RULA score interpretation

1.4.3 OWAS (Ovako Working Posture Analysis System)

OWAS, standing for "Ovako Working Posture Analysis System," is an observa-
tional technique that was developed by Ovako Oy [32], one of the largest steel bar
and profiles manufacturers in Europe [33]. The method is based on assessments of
work postures conducted in various divisions of the steel factory by 32 experienced
steelworkers and international ergonomists. The main objective of this approach is
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to categorize work postures into one of 252 potential combinations, considering the
back (4 categories), upper limb (3 categories), and lower posture (7 categories), as
well as the weight of the load or the amount of force used (3 categories), as illustrated
in the figure 1.12 below:

F I G U R E 1 . 1 2 : OWAS classification chart [33]

The classified work posture identified using OWAS is divided into four action
categories, as shown in Table 3.3. These categories indicate the level of risk of injury
associated with the posture and the priority for taking corrective actions, as described
by (Lee & Han, 2013) [34].
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OWAS Action Class Interpretation
AC 01 Adequate postures, no special attention needed, except some cases

AC 02 Posture indicates some WMSDs risk, corrective measures
need to be taken soon

AC 03 posture has serious harmful impact on musculoskeletal system,
corrective measures must be taken as soon as possible

AC 04 Posture needs immediate changing

TA B L E A U 1 . 3 : Action class interpretation

1.4.4 Comparison of observation-based methods

The implementation of intervention programs for lowering exposure to WMSDs
risk factors is the most well-known preventive measure, as stated in [35, 36, 37].
REBA, RULA, and OWAS are efficient and straightforward postural targeting meth-
ods for analysing worker postures and calculating the risk factor index. A number of
research compared REBA vs. RULA vs. OWAS in order to extract significant insights
for the aim of finding the best assessment method to apply in workplace under
multiple contexts.
The general characteristics of the three methods which have been summarized by
[38] are:

• Posture
• Force / External load
• Repetition motion
• Static posture
• Dynamic loading
• Coupling

The result fined by (Dohyung Kee, 2022) in [39] shows that the OWAS method can’t be
applied to assess the motion repetition, static posture, Dynamic loading and coupling,
in the other hand, RULA and REBA assess the posture and Force/external load, as
well as motion repetition and the effect of static posture. Meanwhile, in comparison
to RULA, REBA has additional features to evaluate, namely dynamic loading, which
is a quick shift in an unstable posture or basis, and coupling. During evaluation, the
OWAS does not distinguish between the left and right upper extremities, whereas
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the RULA and REBA examine just the side thought to be under more stress. When it
is difficult to determine which side is under more load, both sides are evaluated. The
OWAS evaluates postural loads based on time sampling, whereas the REBA chooses
and estimates the most frequent, protracted, or loaded postures [40]. Yet, it is typical
for the OWAS and RULA to observe the most frequent, lengthy, or laden postures,
as seen in the REBA. The three observational classification approaches include four
or five action types or levels [31, 33, 41].

Although all those results, still the three methods do not account for the impact
of recovery, vibration, duration, ambient condition, psychological and individual
characteristics [39] which are known to influence the incidence of WMSDs. The table
below provides a concise summary of the relatives strengths and limitations of the
three methods [40].

Methods Strengths limitations

RULA Fast and easy for use
and assessment

The emphasis is on upper limb posture,
coupling is excluded, difficulty of
choosing which side to assess.

REBA Fast and easy for use
and assessment

The necessity to choose the right side
to assess.

OWAS
Most efficient and user-friendly
method for classifying
leg posture in detail.

Exclusion of neck, elbow and wrist
postures,the static posture
and coupling are ignored.

TA B L E A U 1 . 4 : strengths and limitations of the three methods

1.5 Conclusion

In conclusion, we have discussed in this chapter the importance of ergonomics and
the impact of musculoskeletal disorders (MSDs) and work-related musculoskeletal
disorders (WMSDs) on employees’ health and productivity, and different observa-
tional methods for ergonomic risk assessment were also presented. However, these
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methods are often time-consuming and subject to observer bias. In the next chap-
ters, we will focus on the development of an automated system for ergonomic risk
assessment using AI techniques.
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C H A P T E R 2

L I T E R AT U R E R E V I E W

2.1 Introduction

In this chapter, we will explore the existing literature on the AI techniques that
could be in ergonomic risk assessment, also, we’ll analyse the advantages and lim-
itations of these approaches and identify the research gaps that will be addressed
in this study. Finally, we’ll outline the research questions and objectives that will
guide our investigation and provide a roadmap for the subsequent chapters of this
thesis.

2.2 Artificial Intelligence impact on ergonomic risk
assessment

The use of AI in ergonomic risk assessment can considerably increase the pro-
cess’s accuracy and efficiency because manual observations or surveys, which are
frequently used in traditional ergonomic risk evaluations, can be time-consuming
and error-prone. On the other hand, AI can aid in the automation of these processes
by analysing data from a variety of sources, including motion sensors, wearable
devices, and video recordings, to identify potential risks and estimate the risk of
injury. This can lead to a more thorough and accurate examination of the workplace
environment, improving overall workplace safety.AI can also assist in identifying
patterns and trends in occupational injuries, providing insights into potential threats
and allowing proactive steps to be implemented to prevent injuries. As an exam-
ple, an AI-based system can evaluate data from injury reports to discover common
variables such as repetitive motions or awkward postures, which can aid in identify-
ing areas of the workplace that require attention. This can lead to the deployment
of targeted measures to lower the risk of harm, such as work redesign or training
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programs.
Evaluating, identifying, and assessing ergonomic risks for human operators in man-
ufacturing is critical. Both physical and mental workloads, as well as fatigue, must be
researched to determine the correlation between operator actions and labour events,
and quantify the relationship between human work posture and the degree of er-
gonomic risk. Wearable gadgets, sensors, and videos are the primary data sources
used to record operators’ behaviours. Therefore, an operator model for ergonomic
risk can be evaluated from the perspectives of physical activity assessment (through
sensor-based and video data) and risk stratification, mental workload evaluation,
and tiredness classification [42].

2.2.1 Sensor-based work assessment

A range of sensors and wearable devices have been introduced to gather data on
posture and movement patterns. The work done by (Elena et al., 2021) [43] presents
a systematic assessment of ergonomic wearable gadgets and how they can improve
ergonomics. (Conforti et al, 2020) [44] used wireless inertial measurement devices
(IMUs) and ML algorithms recognise posture patterns to quantify biomechanical risk
in lifting load tasks, while (Hosseinian et al, 2019) [45] used random forest and SVM
models to classify static and dynamic work activities from a chest accelerometer.

2.2.2 Video-based motion analysis

In addition to sensor data, cameras and movies have been widely employed to
record human movement and gestures. Using computer vision and ML approaches,
(Fernandez et al, 2020) [6] proposed a method to automatically compute rapid
upper limb assessment (RULA) scores from digital video. Correspondingly, using a
convolutional neural network (CNN)-based pose detector to infer 2D poses from
photos and a deep neural network (DNN) to estimate RULA action levels, (Li et al,
2020) [46] introduced a real-time method for assessing postural risk factors linked
with MSDs. Using ML for time and motion studies in laboratory simulations of
timed repetitive activities for different hand activity level (HAL) and from footage
of people completing 50 industrial tasks based on decision tree and the presented
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feature vector training methods, (Akkas et al, 2016) [47] and (Akkas et al, 2018)
[48] developed the technique. In addition, a neural network-based motion analysis
system (MAS) is created by (Bartolini et al, 2018) [49] to analyse the ergonomic risk
in manual and assembly tasks by collecting operator movements and postures. In
addition, a publication [50] presents an application utilising Microsoft Kinect [11]
to utilise ML techniques such as AdaBoost [51] Trigger indication to detect lifting
and lowering actions with real-time motion data capturing on the shop floor for
ergonomic evaluations and risk assessment. In addition, statistical process control
and data analytic techniques are utilised in this work [52] to develop a human motion
analytic system to identify repetitive motion patterns and deviations from those
patterns by collecting, transforming, storing, and analysing data from repetitive
physical motions performed by manufacturing workers.

2.3 Human motion analysis

Throughout the centuries, our understanding of human movement has been
contingent on the available human motion capture techniques [53]. In the last few
decades, many 3D body posture systems have been made. Most of them fall into
one of three main categories: direct measurement, observational methods, and the
marker-less motion capture system, which is the focus of our thesis.

2.3.1 Marker-less capture system

Current computer vision and machine learning techniques have significant po-
tential for marker-less human motion capture, but they have not been extensively
researched for biomechanics applications, which require greater precision and re-
silience than other applications [54]. Recent research has mostly focused on monocu-
lar images and hard settings, like wild environments and figuring out where multi-
ple people are [55]. Monocular images can be acquired by a single camera and are
favoured for surveillance and entertainment purposes, but their performance is poor
due to the ambiguous nature of 3D-2D projection. Self-occlusion is a significant con-
tributor to this ambiguity, which can be resolved by employing numerous cameras.
Hence, biomechanics applications often require many cameras to acquire multi-view
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images and increase pose estimation or tracking precision. Several researches have
investigated computer vision and machine learning and offered marker-free ap-
proaches for biomechanical applications. Specifically, (Corazza et al, 2006)[56] and
(Sandau et al, 2014) [57] have developed a generative technique for fitting a specified
3D body model to an eight-camera visual hull. The process of fitting is presented as
an optimisation problem, and body segmentation and least-squares optimisation
are utilised to estimate the joint centre positions. Even though these approaches
are highly accurate, they rely heavily on background removal, which requires a
controlled setting and lighting conditions. In addition, a huge number of cameras
are required to create an accurate visible hull surface. Using training data, (Drori et
al, 2017) [58] constructed a discriminative approach to directly map a monocular
image to body position parameters from a monocular image. It is demonstrated that
their system is capable of accurately calculating a cyclist’s full-body kinematics and
two-dimensional position. Unfortunately, their method’s performance for 3D body
pose estimation has not been evaluated. These researches illustrate the viability of
computer vision and machine learning methodologies for biomechanics applications,
however, their results have not been confirmed for additional biomechanical analysis,
such as the calculation of joint force and moment.

F I G U R E 2 . 1 : images by the marker-less motion capture system [59]
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2.4 Human Pose Estimation approaches

2.4.1 The 2D human pose estimation

Various algorithms have been developed to determine the pixel coordinates (xi,
yi) of each joint i in a static image, where these algorithms are typically classified
into generative, discriminative and hybrid approaches.

a. Generative approaches

Back in 1980, Joseph O’Rourke and Norman I. Badler [52] proposed a method for
2D posture estimation in videos based on a top-down approach, where the human
body is considered a connected tree model. Paper’s [60] pictorial structures method
introduced a deformable parts model in which the appearance of each component
is treated independently, and pairwise interactions are modelled by spring-like
connections between the parts. These developments led to the creation of broad
frameworks for structural object detection [61], as well as significant advancements
in 2D human pose estimation [62, 63]. Many of these generative approaches require
storing a parametric model to learn spatial correlations between various body parts
and use efficient graphical inference techniques for final pose estimation.
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F I G U R E 2 . 2 : Tree-based model [52]

F I G U R E 2 . 3 : Pictorial structure model [60]
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b. Discriminative / hybrid approaches

One of the most prominent contributions in 2D Human Pose Estimation was the
hybrid approach where the human body is modelled as a flexible blend of elements
[63]. Nonetheless, with recent advances in deep learning techniques since 2012,
powerful discriminative Convolutional Neural Network (CNN) models proposed by
(Toshev & Szegedy, 2014) [64], stacked hourglass networks by (Newell et al, 2016) [65],
and OpenPose by (Cao et al, 2019) [66], have outperformed all previous approaches
based on hand- engineered feature extraction. The majority of them are based on the
notion of regressing heatmaps, which are a Gaussian distribution of joint positions
in pixel space. Convolutional Pose Machines [67] and Stacked Hourglass methods
were the first to employ multiple stacked networks with intermediate losses to
address the issue of vanishing gradients. This allowed the networks to comprehend
circumstances involving numerous instances of self and external occlusion.

F I G U R E 2 . 4 : CNN architecture for 2D pose estimation ( deep pose architecture is
on top, stacked hourglass in bottom) [68]

2.4.2 The 3D human pose estimation

Since the Human 3.6M dataset [69] was published, a number of techniques as men-
tioned in [70], attempted to generate 3D posture estimates directly from monocular
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input. Two-stage methods such as [70] estimate 2D (pixel-space) poses from monoc-
ular images by first estimating 2D poses, secondly, 3D joints in a camera-relative
frame are extracted from 2D pixels via constrained deep regression or by matching
2D poses with 2D projections produced from a library of existing 3D poses.

In order to predict a vector expressing 3D skeleton coordinates, a team published
[71] a learnable fusion of network parameters predicting 2D joint locations and
extracting 3D signals from the image. The work provided in [72] solves this challenge
in a geometry-aware manner by dividing the method into two parts. An autoencoder
first discovers a latent 3D representation of the person. The reconstructed 3D human
is then utilised to learn 3D poses in a supervised environment. Unfortunately, all
methods for estimating 3D joint coordinates from photos employ a root-relative
(torso-relative) coordinate frame and cannot be applied to real-world 3D settings.
Hence, all of these are learning the inherent properties of the camera and are not
applicable to real-world applications.

F I G U R E 2 . 5 : 3D pose estimation by geometry aware semi-supervised [72]

2.5 Gesture recognition

The automatic identification and analysis of human movement using visual input
is an extensively researched field in computer vision due to both its intriguing sci-
entific contribution and practical significance. Among the applications that could
benefit from this technology, we can clearly distinguish control, navigation, and ma-
nipulation in both real and virtual environments, clinical diagnosis and monitoring,
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system engineering, multimodal human-computer interaction; and the serious games
field. Gesture recognition can be defined as the process of extracting significant in-
sight from human movements [68]. Research in gesture recognition has experienced
explosive growth since 1990, when computers became capable of interacting in
real-time and processing video streaming.In addition, it permits communication
across great distances and in loud environments, which is particularly notable in a
manufacturing environment because there are several noise sources that are difficult
to eradicate and interfere with spoken communication. Thus, the gesture may play a
crucial function in HRC and HRI in the industrial sector.

One way to classify gesture recognition involves considering the specific task to
be performed, which can be either isolated or continuous. the first task involves clas-
sifying a pre-identified a gesture’s starting and ending point, while the second task
requires both detecting the starting and ending points of a gesture and classifying
the gesture itself. Gesture recognition is a very complex process, especially when
operating in the wild, and different challenges must be addressed like:

• The temporal information encoding : Temporal information is crucial since
most gestures are dynamic, and temporal information can significantly alter
the meaning of a sequence of frames [73].

• Embedded vision-based system : Since the system must function on embedded
devices, we must employ lightweight models to accomplish this objective [74].

F I G U R E 2 . 6 : Temporal images representation

A vision-based system can be architected as shown in figure 2.7:
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F I G U R E 2 . 7 : System workflow of gesture recognition

Figure 2.7 demonstrates that the Gesture Recognition module accepts one or more
modalities as input. The modality denotes the data used as input to the module,
which can operate with one or more of them (RGB data, depth data, skeleton data,
and dense optical flow are the most often employed modalities). The first two
modalities acquire raw data from conventional camera sensors. In contrast, the final
two modalities are derived through the use of algorithms and provide more detailed
information at the expense of computational expense. Normally, these modalities
are not employed separately, but collectively, which necessitates combining the
information from the various modalities. Fusion can occur at one or more of the
following levels: data, features, and decision.
For human-robot interaction, one could have choose to use facial expressions or hand
gestures recognition, but it is known that body signals are also crucial for attaining
proper social interactions, since in some cases, the body can show better emotional
expressions than the face [75], so they must be considered in the big picture.
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2.6 Synthesis

The field of ergonomics and industrial environments has greatly benefited from
the swift progress of machine learning and information technology, particularly since
the establishment of the fourth industrial revolution. Thanks to the implementation
of artificial intelligence technology, research in manufacturing ergonomics is shifting
away from limited, population-based, and fixed analyses towards more personalised,
dynamic, and comprehensive studies in real time.

In this chapter, we have explored several key concepts related to the use of artificial
intelligence for the analysis of human activities under the ergonomic constraints
of the industrial sector. First, we focused on the impact of artificial intelligence
techniques on ergonomic risk assessment by highlighting the most relevant tools
for data acquisition and discussing their different approaches. Next, in the human
motion analysis section, we focused in particular on the marker-less capture system,
which has gained popularity because of its ease of use and affordability. Finally,
we explored human pose estimation approaches as a first phase, including 2D and
3D pose estimation methods. As we reviewed the advantages and disadvantages
of each one of them, we also highlighted some of the limitations and challenges
that researchers encounter when utilising them. In the second phase, we examined
gesture recognition, which is a rapidly growing area of research that has numerous
potential uses in industry 4.0, especially in augmented and virtual reality and human-
robot interaction.

As a conclusion, this chapter provides a high-level overview of several key con-
cepts in the broad application of artificial intelligence for human activity analysis.
These tools and approaches can help to improve worker safety and health, partic-
ularly by avoiding the major issue of work-related musculoskeletal disorders and
improving job quality, as well as having a positive socioeconomic impact.
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C H A P T E R 3

M E T H O D O L O G Y

3.1 Introduction

Our project aims to create an artificial intelligence that analyses human activity
during work in order to prevent work-related illnesses by quantifying the ergonomic
risk. In this chapter, we will first present the results of an investigation based on
data concerning musculoskeletal disorders in a sample of the industry. Then, we will
analyse the spread of MSDs among workers to estimate damage to the biomechanical
system, in order to determine which ergonomic evaluation tool to automate. Next,
we will specify all the necessary techniques, methods, and resources to create a
new ergonomic evaluation system linked to observation methods and based on AI,
as well as the development of another system dedicated to gesture recognition to
naturalize human-robot interaction in an intuitive manner.
The development methodology is divided into three main sections. First, the "data
preparation" section involves collecting and processing all the necessary data for
result extraction, system training, and validation. Second, the second section is
dedicated to constructing the neural network architecture that relies on the Pytorch
framework for classification. Finally, the third section concerns the estimation of the
posture score based on REBA and its validation.
In this chapter, we will detail each methodology step by step.

3.2 Ergonomic risk assessment tool selection

The observational methods mentioned earlier are widely used in general, but the
manual task of conducting the assessment still has a lack of effectiveness due to
multiple reasons like time consuming, subjective and biased judgment, assessment
fitting to the task, etc. According to (Hita-Gutiérrez et al, 2020) [76] , the tools of
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MSD assessment ca vary depending on multiple factors like the country, the culture,
the companies’ environment and how they are carrying them out, the working
conditions and the acceptance of getting involved in the assessment itself, because
of the purpose of ethnomethodological, the people tend to perform actions that are
habitual and customary for them, but this can be changed under some circumstances
[77]. In this work, using some data collected from 140 individual at SPA-ALZINC
Ghazaouet [78] during an internship. The sample is composed of 31 female and 109
males, and the questions pertained to physical and work features, as well as pain
experiences.
The major findings from an analysis job on the data are:

Workers who perform
repetitive movement

Workers who exposed
to Awkward postures

Workers who sustained
to strained and staticposture

LBP UBP LLP LBP UBP LLP LBP UBP LLP
100% 73% 50% 100% 82% 68% 41% 90,625% 86%

TA B L E A U 3 . 1 : Results of different pain feeling among workers. (LBP: lower back
pain; UBP: upper back pain; LLP: lower limb pain)

Analysing those result, we can clearly notice that the low back pain is strongly
correlated with the repetitive movement and the awkward postures, where the static
posture causes the upper back pain as well as the lower limb pain, due to stress
exerted on it. Based on that, we will adopt the REBA method for the automation
process on account of the information mentioned in the literature review that is
consistent with the insight extracted from the interviews with the workers as well
as the data collected. Furthermore, the specialized physician’s confirmation, after
consultation, of the effectiveness of an AI-powered centralised system that evaluates
workers’ movements in real-time, especially in workplaces that require significant
exertion, all to preserve their health by avoiding any MSD-causing factors.

3.3 Data preparation

This study uses 3D human pose estimation in video with temporal convolution
and semi-supervised training [79], extending the Human 3.6M dataset [69], which
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is a large-scale dataset for 3D human pose estimation and one of the most used
datasets for benchmarking 3D pose estimation methods. The dataset contains over
3.6 million 3D human poses captured in a controlled environment using a motion
capture system composed of 4 cameras placed at different angles around the subject.
Each camera performs 15 different actions (directions, discussion, eating, greeting,
phoning, photo, posing, purchases, sitting, sitting down, smoking, waiting, walking,
walk dog, and walk together.), resulting in a total of 150 sequences, where each
sequence has a resolution of 1280 x 1024 pixels at a frame rate of 50 Hz (frames
per second). The Human 3.6M dataset provides data in both parametrizations: the
relative 3D joint position (R3DJP) and kinematic representation (KR), with a full
skeleton containing the same number of joints (32) in both cases. The dataset can be
found on the official website Human 3.6M Dataset and available for research and
non-commercial purpose as mentioned in the Terms and conditions.

F I G U R E 3 . 1 : Representative visual results for pose estimation on Human 3.6M
across four test sequences [80]

This study utilised images that had a visibility flag of either 1 or 2, and 17 key points
were identified using the REBA notation for whole-body postural analysis. These
key points included the nose, right and left eyes, shoulders, elbows, wrists, trunks,
knees, ankles, and knuckles. A supervised model was trained using these images
and key points. Figure 3.2 displays an image with the relevant body joints labelled.
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F I G U R E 3 . 2 : Full body annotated Keypoints

Moreover, this study also utilised a pre-trained neural network, specifically the key-
point rcnn R101 FPN 3x yaml, in conjunction with Detectron2 [81] to detect keypoints
for 3D pose estimation. The keypoint rcnn R101 FPN 3x.yaml is an advanced neural
network model that is employed for keypoint detection in images. This model is
founded on a ResNet-101 backbone [82] with a feature pyramid network (FPN) and
trained on the COCO dataset [83], which comprises over 330,000 images with more
than 2.5 million object instances labelled with keypoints. The FPN facilitates the
network to produce feature maps at various scales, which enhances the accuracy of
keypoint detection. Throughout training, the model learns to forecast the positions of
keypoints on the human body, such as the wrists, elbows, shoulders, hips, knees, and
ankles. These keypoints can be employed to estimate the 3D pose of a person in an
image or video. To enhance the accuracy of keypoint detection, data augmentation
methods were employed during training. This involved rotating images at random
angles and flipping them along their mid-vertical axis, which generated new training
data and improved the generalisation capabilities of the model.
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F I G U R E 3 . 3 : Final network structure of the ResNet101 + feature pyramid network
(FPN) [84]

3.4 Network architecture

3.4.1 Temporal dilated convolutional model

The temporal convolution network is a new CNN-based model proposed by (Bai
et al, 2018) [85] in the aim of adopting CNN for sequential modelling. In our study,
the model we’ve adopted utilises fully convolutional architecture with residual
connections to transform a 2D poses sequences as input through temporal convolu-
tion.
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F I G U R E 3 . 4 : Residual bloc [86]

Convolutional models possess a key attribute in that they facilitate parallel pro-
cessing across both the batch and time dimensions. In addition to the constant length
of the gradient path connecting the input and output, regardless of the sequence
length, our study reveals that a convolutional design effectively regulates the tempo-
ral receptive field, thereby conferring an edge in capturing temporal dependencies
in 3D pose estimation. Furthermore, dilated convolutions are employed in order
to capture extended temporal dependencies while utilising solely the lower layers
within the 1D fully connected convolution network.
The incorporation of a dilation factor, denoted as l, within convolutional filters results
in the establishment of a uniform spacing between neighbouring filter taps. This, in
turn, leads to an increase in the scope of inputs encompassed by the nodes present
in the hidden layers, thereby enabling the effective representation of extended his-
torical and dependency relationships. A dilation factor of 1 results in a standard
convolution, while in the other hand, longer dilation factors enable the output at
the highest layer to encompass a wider range of inputs, thereby broadcasting the
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receptive field of the convolutional network, this can be shown in this equation:

(F ∗l K) (p) = ∑
s+lt=p

F(s)K(t), (3.4.1)

where ∗l is a dilated convolution, F(s) the input, k(t) the kernel and (F ∗l K)(p) is
the output. The figure 3.5 illustrates an example of dilation factor of l=1 (left), l=2
(middle) and l=4 right.

F I G U R E 3 . 5 : Example of dilation with multiple factor

3.4.2 Final architecture

Our final model for fully-convolutional 3D pose estimation comprises a series
of interconnected layers and blocks. Specifically, the architecture is designed for
a receptive field size of 243 frames, where B = 4 blocks and J = 17 joints. In this
architecture, the convolutional layers are represented in green, where 2J, 3d1, 1024
denotes 2J input channels, kernels of size 3 with dilation 1, and 1024 output chan-
nels. For a sample 1-frame prediction, the tensor sizes are shown in parentheses,
where (243, 34) represents 243 frames and 34 channels. The input layer takes the
concatenated (x, y) coordinates of the J joints for each frame and applies a temporal
convolution with kernel size W and C output channels. The input layer is followed
by B ResNet-style blocks, which are surrounded by a skip-connection. Each block
performs a 1D convolution with kernel size W and dilation factor D = WB, followed
by a convolution with kernel size 1. We apply batch normalisation, ReLU (rectified
linear units) and dropout after each convolution, except the very last layer. The
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receptive field increases exponentially by a factor of W in each block, while the
number of parameters increases linearly.

We set the filter hyperparameters W and D so that the receptive field for any
output frame forms a tree that covers all input frames. The last layer of our model
outputs a prediction of the 3D poses for all frames in the input sequence using
both past and future data to exploit temporal information. Additionally, we explore
the use of causal convolutions to evaluate real-time scenarios, where convolutions
only have access to past frames [79]. Unlike convolutional image models that apply
zero-padding to obtain as many outputs as inputs, we observed better results with
unpadded convolutions. Instead, we padded the input sequence with replicas of the
boundary frames to the left and right. Figure 4.6 illustrates an instantiation of our
architecture for a receptive field size of 243 frames with B = 4 blocks. We set W = 3
with C = 1024 output channels for convolutional layers and use a dropout rate of p =
0.25.

Our proposed architecture demonstrates promising results for 3D pose estima-
tion, especially for large receptive fields and the utilisation of temporal information.
Nevertheless, further experiments and evaluations are necessary to assess its perfor-
mance and potential applications in real-world scenarios.

F I G U R E 3 . 6 : FCN 3D pose estimation architecture [79]

3.4.3 Training approach

In order to enhance and ensure accuracy progression in settings when there’s
limited labelled data available, we adopt the semi-supervised training method [79],
which in the context of 3D human pose estimation is a type of machine learning that
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uses both labelled and unlabelled data in a co-training [87] methodology where the
aim is to improve the model’s prediction accuracy.

The task of estimating 3D human poses can be challenging and costly due to
the difficulty in obtaining precise labels for extensive datasets. The method we are
using to address this issue involving the utilisation of unannotated video data in
conjunction with a readily accessible 2D keypoint detector to construct an autoen-
coder framework. The proposed methodology facilitates the estimation of 3D poses
through the utilisation of input joint coordinates. This approach is advantageous as
it is typically less complex and more cost-effective than obtaining complete ground-
truth annotations. Additionally, the estimated poses can be projected back into their
original 2D space. In the course of training, a loss function is employed to impose
penalties on disparities between the initial input joint coordinates and those that are
reconstructed by projecting backwards from the estimated poses. By adopting this
approach, we facilitate our model to acquire knowledge not only on the influence of
depth information on the overall posture but also on its correlation with each distinct
frame. Enhancing the model’s performance on tasks such as human pose estimation,
which may pose difficulties or incur high costs in terms of precise labelling at a
large scale, can be achieved through this approach. In general, the semi-supervised
methodology presents a potentially effective resolution to address the obstacles
associated with the estimation of 3D human pose.
Figure 3.7 illustrates the method mentioned above:
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F I G U R E 3 . 7 : Semi-supervised training approach

The figure above represents our technique that involves integrating a supervised
element with an unsupervised element, where this last functions as a regulator. The
supervised loss is trained using ground truth 3D poses as the target for the labelled
data; on the other hand, the unannotated data is utilised for the implementation
of an autoencoder loss function, wherein the anticipated 3D poses are projected
onto a 2D plane and subsequently assessed for coherence with the input. The 2D
pose on the screen is influenced by both the trajectory and the location of all joints
in relation to the root joint, due to the perspective projection. In the absence of
global positioning, the subject will consistently be displayed at the centre of the
screen with an unchanging level of magnification (constant scale). Consequently,
a secondary network is trained with the purpose of performing regression on the
individual’s 3D trajectory. This trajectory is then utilised to accurately project the
pose back to its 2D form. The network architecture employed for both pose and
trajectory regression is identical; however, weight sharing is not implemented due to
the observed adverse effects on training outcomes. The use of a weighted mean per-
joint position error (WMPJPE) loss function is employed to optimise the trajectory
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due to the inverse relationship between the accuracy of the trajectory regression and
the distance between the subject and the camera. The formula used for calculating
the loss is:

E =
1
yz
∥ f (x)− y∥, (3.4.2)

We give each sample a weight determined by the reciprocal of its ground-truth depth
in camera space. Moreover, we do not require an accurate trajectory estimation for
subjects at a distance because their 2D keypoints usually cluster together within a
small region.

Our aim is to provide incentives for the prediction of plausible 3D poses, rather
than mere replication of the input. In order to achieve this, we discovered that
incorporating a soft constraint was a successful approach. This constraint involved
roughly aligning the average bone lengths of the individuals in the unlabelled group
with those of the labelled group, as demonstrated by the "Bone length L2 loss" in
Figure 3.7.

3.4.4 Evaluation

Three evaluation protocols were employed in the assessment of the Human3.6M
dataset:

• Protocol #1 (MPJPE): determines the mean per-joint position error in millime-
tres through the computation of the Euclidean distance between anticipated
joint positions and actual joint positions.

• Protocol #2 (P-MPJPE): presents the error outcome subsequent to the alignment
of the anticipated poses with the actual values in terms of translation, rotation,
and scale.

• Protocol #3 (N-MPJPE): exclusively aligns the anticipated poses with the actual
values in terms of scale. The aforementioned protocol has been employed in
semi-supervised experiments and adheres to the methodology suggested in
reference [72].

The Human3.6M dataset experiments utilised a 17-joint skeleton and a unified model
was trained for all actions. The study involved conducting training on a sample of
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five subjects, specifically identified as S1, S5, S6, S7, and S8. Subsequently, the testing
phase was carried out on two subjects, namely S9 and S11.

The final model will takes as input 2D keypoint sequences and will generate
the convenient 3D pose estimation, the model will employ all the methods and
techniques mentioned earlier in the sections above.

F I G U R E 3 . 8 : Temporal Convolution Model (Taking 2D keypoint sequences and
outputs 3D pose estimation, from bottom to top)

3.5 REBA posture score estimation

We utilise Detectron2 [81] to obtain 2D kinematic joint locations and estimate
REBA body posture scores. The model employs a combination of joint angles and
force exerted on each joint. The Calculation of joint angles was performed through
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the utilisation of inverse kinematics. Additionally, the estimation of force was accom-
plished by employing deep learning algorithms that were based on joint position.

θab = cos−1 a⃗⃗b
|⃗a||⃗b|

(3.5.1)

The equation above is used to calculate the angle made by two adjacent body
segments (θab), in the context of REBA ergonomic assessment, it is an important factor
for assessing the risk of a task and identifying potential work-related musculoskeletal
disorders. A and b are two vectors representing the adjacent body segments being
analysed, where the vertical bars around the vectors denote their magnitude. To
obtain the angle, we use the inverse cosine function (cos-1) of the resulting fraction
and the output will be in radian convertible to degrees.

Angles are identified by the symbol θ and are labelled based on the limb involved,
for example U representing the upper arm and La representing the lower arm,
followed by a number indicating the type of movement. The movement types are
numbered as follows: flexion/extension is 1, twist is 2, and side-bending is 3. S
represents the score for a particular body part, and its subscripts identify the limb
and the type of movement, based on the numerical labels described above. Some
examples of REBA posture score calculations for each group are shown below, based
on 2D coordinates of the body joints.

47



3 Methodology

0° < θN <20°: +1
θN> 20°: +2
θN1: +2 (in extension)
θN2: +1 to neck score
θN3: +1 to neck score

θT=0°: +1
θT1= +2 (in extension)
0°< θT<20°: +2
20°< θT<60°: +3
60°< θT: +4
θT2: +1 to trunk score
θT3: +1 to trunk score

Stand on two legs vertically: +1
Stand on one leg: +2
30°< θLg<60°: +1 to legs score
θLg>60°: +2 to legs score

-20°< θU<20°: +1
θU<-20°: +2

20°< θU<45°: +2
45°< θU<90°: +3

90< θU: +4
Shoulder is raised: +1 to upper arm score

Upper arm is abducted: +1 to upper arm score
Person is leaning: -1 from upper arm score

60°< θU<100: +1
0< θU<60 or θU>100°: +2

TA B L E A U 3 . 2 : Example of REBA score for each group
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3.6 Validation

The validity of the posture scores generated by the system has been established
through their application to some commonly observed occupational workplace pos-
ture videos, ( images extracted are shown in figure 3.9). The occupational health
physician at SPA-ALZINC [78] conducted a comprehensive assessment of the pos-
tures, utilising the REBA worksheet to evaluate their suitability for the tasks at
hand. Additionally, the joint angles were verified through the use of an online tool
called ONLINE PROTRACTOR, which is a web-based measurement tool specifically
designed for angles. The study adheres to [88] as a guiding principle for compre-
hending the proper techniques for documenting workplace postures to enhance
precision and quality of analysis.

F I G U R E 3 . 9 : Example of workers’ posture while performing occupational tasks
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3.7 Conclusion

This chapter explores the multiple techniques and methods used to estimate the
human 3D pose starting from the extracted 2D keypoints by Detectron2 and denoted
by 17 points, which will be our model input structured in Section 3. Moreover, it will
generate a skeleton-based output that will be used to calculate all the joint angles in
order to calculate the REBA score frame by frame in real time.
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C H A P T E R 4

R E S U LT S

4.1 Introduction

This chapter presents a detailed account of all the experiments that were conducted
during the course of this thesis. The first section describes the environment where
our system was implemented and tested. The second section dives deeper into the
results obtained from the semi-supervised training and compares it with supervised
learning. And the last section, it includes 3D human pose estimation reconstruction
and REBA score calculation using both weight generated.

4.2 Experimental setup

The training was conducted using the machine learning framework Pytorch [89]
on Google Colaboratory [90]. Despite having access to a free GPU provided by
Google Colab, along with a disk space of 78 GB and 12.7 GB of RAM, we had to
purchase additional GPU computing units due to the large model size. To achieve
this, we subscribed to Google Colab Pro+ for 50$, which gave us access to 500 units
of A100 GPU with 40GB memory size, 1.55 GB/s bandwidth, 6912 CUDA cores, as
well as 166 GB of disk space and 83.5 GB of RAM.
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4.3 Trainings implementations

4.3.1 Semi-supervised training

This type of training for the 3D human pose estimation model was carried out
with a vast range of hyperparameters. These included the selection of the dataset of
interest, which was Human3.6M [69]. For the 2D keyoints within the ground truth,
we used the cascade pyramid network fine-tuned on the 2D projection of Human
3.6M with two separated feature extractors, indexed dbb (Double Blackbone). The
unlabelled subjects for the training are S2, S3, and S4, including all the actions. On
the other side, the labelled subjects are S1, S5, S6, S7, and S8, while S9 and S11 were
reserved for testing at the end of each epoch and in the final evaluation.

For the purpose of enhancing the model’s accuracy, data-augmentation and test-
time augmentation techniques were employed during the training, in which the
first technique flipped poses horizontally to double the training dataset, while the
second one also flipped the poses horizontally when testing the model. The model
architecture was based on a (3 × 3 × 3) (receptive field of 27 frames) fully convolu-
tional model. Due to some internet connection constraints (a larger model means
less guarantee of finishing the training). where the first 3 is 3×1 convolutions in the
foist layer, followed by two residual blocs with 3×1 convolutions.
Overall, all the hyperparameters and training arguments are shown in the table
below:

Hyperparameters Value Hyperparameters Value
Dataset h36m Warmup 1

Keypoints cpn_ft_h36m_dbb
No evaluation
during training

False

Subjects for training S1, S5, S6, S7, S8 Dense connections False
Subjects for testing S9, S11 Disable optimisations False
Actions * (all actions) Linear projection False
Optimizer Amsgrad[91] Bone length term True
Stride 1 No projection False
Epochs 60 Visualization subject None
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Batch size 1024 Visualization action None
Dropout 0.25 Visualization camera 0
Learning rate 0.001 Visualization video None
Learning rate decay 0.95 Visualization skip 0
Data augmentation True Visualization output None
Test-time
augmentation

True Visualization export None

Architecture 3*3*3 Visualization bitrate 3000

Channels 1024
Visualization without
ground truth

False

Subset 1 Visualization limit -1
Downsample 1 Visualization downsample 1

TA B L E A U 4 . 1 : The semi-supervised training hyperparameters and arguments

4.3.2 Supervised training

On the contrary to semi-supervised training, supervised training means that we
use the entire dataset as labelled, which includes all subjects from S1 to S8 for
training the temporal dilated convolutional model. However, subjects 9 and 11
will be reserved for testing. The architecture for this training type has the same
hyperparameters and arguments, as we will compare the model’s performance
using the three protocols mentioned earlier in Chapter 3.

4.4 Results

4.4.1 Reconstruction error on Human3.6M

a. Semi-supervised case

The table presents the results obtained from our convolutional model with B = 2
residual blocs and 27 input frames as receptive field:
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Action
Protocol MPJPE

(mm)
P-MPJPE

(mm)
N-MPJPE

(mm)
Directions 44.5 34.9 42.67

Photo 58.42 44.53 56.51
Discussion 49.97 37.55 46.75

Eating 44.47 35.39 42.46
WalkDog 51.25 40.87 49.26
Purchases 44.36 34.36 42.51

Posing 42.29 36.33 45.08
Walking 35.37 28.2 34.37
Greeting 47.45 39.16 46.3
Phoning 51.52 39.79 49.06
Waiting 45.47 35.38 44.33
Sitting 57.67 46.31 55.17

Smoking 49.37 36.69 47.39
WalkTogether 38.65 31.93 36.69
SittingDown 65.6 52.69 62.67

TA B L E A U 4 . 2 : Semi-supervised results

After the results were obtained, we calculate the overall action-wise averages :

P1 average P2 average P3 average
48.6 mm 38.5 mm 46.8 mm

TA B L E A U 4 . 3 : Action-wise average with three protocols

b. Analysis

With a velocity error of 3.23 mm per joint, the obtained results suggest that the
performance of the 3D human pose estimation model using semi-supervised learning
is relatively decent. Looking at the results by action, we can see that the model
performs better on certain actions than on others. Under protocol #1, the "Walk"
action has the lowest error at 35.37 mm, whereas "SitD." has the maximum error
at 65.6 mm. This indicates that the model may have difficulty estimating poses
for certain actions, potentially due to the complexity of the poses involved or the
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variation in how individuals perform the action. Protocol #2 (P-MPJPE) has the
smallest defect at 38.5 mm, followed by Protocol #3 (N-MPJPE) at 46.8 mm and
Protocol #1 (MPJPE) at 48.6 mm. This indicates that using the predicted 3D pose
as an input to a motion predictor can enhance the estimated pose’s accuracy. As a
whole, these results indicate that the semi-supervised learning approach used to
train the 3D human pose estimation model is effective; however, there is still room
for improvement, particularly for certain actions where the model’s performance is
less accurate, particularly when sub-optimal viewings conditions are considered.

c. Supervised case

Action
Protocol MPJPE

(mm)
P-MPJPE

(mm)
N-MPJPE

(mm)
Directions 46.42 35.02 43.67

Photo 57.63 43.66 55.41
Discussion 48.26 37.35 46.83

Eating 44.76 35.50 43.24
WalkDog 51.16 40.01 48.84
Purchases 45.02 34.39 43.29

Posing 46.79 35.72 45.28
Walking 36.02 27.58 34.40
Greeting 47.81 38.27 46.39
Phoning 50.63 38.38 48.26
Waiting 45.65 35.04 44.32
Sitting 57.34 45.64 55.29

Smoking 48.98 39.03 47.23
WalkTogether 38.78 31.49 36.64
SittingDown 55.03 42.53 52.58

TA B L E A U 4 . 4 : Supervised results

After the results were obtained, we calculate the overall action-wise averages :

P1 average P2 average P3 average
49.7 mm 38.9 mm 49.8 mm
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TA B L E A U 4 . 5 : Action-wise average with three protocols

d. Analysis

In this attempt at training, we obtained a velocity error per-joint of 4.13 mm. While
this value is relatively high under some application constraints, it is still acceptable to
say that the model performed well during training. The results analysis reveals that
the model performs better for actions that involve dynamic movement like walking,
with lower MPJPE values of 36.02 mm and 27.58 mm P-MPJPE. On the other hand,
we can clearly see a high error for actions that involve exposure to the camera from
sagittal and transverse planes, such as taking a photo and sitting, suggesting that the
model has difficulty accurately extracting 2D keypoints from such poses. This is also
confirmed by the higher P-MPJPE values. Furthermore, the model’s scale estimation
accuracy needs improvement, as indicated by the higher N-MPJPE values, which
confirms the issue with image planes.

4.4.2 Model’s performance

a. Semi-supervised case

Figure 4.1 represents the mean distance between the predicted trajectories and
ground truth over 60 epochs. The plot exhibits three distinct curves. The first curve,
depicted in dashed blue, signifies the average distance between the predicted and
ground truth trajectories for the training set, and evaluated on the labeled data.
The second curve, illustrated in solid blue, represents the same assessment on the
unlabeled data. Lastly, the third curve, portrayed in solid orange, denotes the same
evaluation on the validation set.
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F I G U R E 4 . 1 : Mean distance between the predicted trajectories and ground truth

Figure 4.2 represents mean per-joint position error (MPJPE) in 2D. The plot displays
four distinct curves. The first curve, depicted in blue, represents the MPJPE on
the labeled training set, which is evaluated on the labeled data. The second curve,
illustrated in dashed orange, represents the MPJPE on the unlabeled training set,
evaluated on the labeled data. The third curve, represented by solid orange, also
represents the evaluation on the unlabeled data. Finally, the fourth curve, depicted
in green, represents the evaluation on the validation set.
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F I G U R E 4 . 2 : Mean per-joint position error in 2D

Figure 4.3 is representing the 3D loss between the predicted poses and the the ground
truth 3D poses for the training set, as well as the evaluation training set and the
validation set. The plot comprises of three distinct lines, each delineating a unique
set. The blue dashed line depicts the MPJPE between the predicted and ground truth
poses for the training set, while the blue solid line represents the MPJPE for the
evaluated training set. The orange line, on the other hand, represents the MPJPE for
the validation set.
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4.4 Results

F I G U R E 4 . 3 : Mean per-joint position error in 3D

b. Analysis

In the mean distance representative figure (Figure 4.1), the training curves in
blue are indicating that the model is improving over time, with the training loss
decreasing quickly to reach 0,0058 m and the training validation reaching 0,026 m
in around 50 epochs. The validation curve is significantly not improving with time
due to some overfitting because there are only two unlabelled subjects unlabelled,
which makes it relatively small compared to labelled subjects, which makes the
model fit the labelled data too closely. In the second figure (Figure 4.2), the model
did well even though the validation on 2D faced some overfitting troubles, but the
data-augmentation regularisation worked well in that scenario, which means the
back-projection to 2D worked correctly after regressing the 3D trajectory sample.
The last result can be clearly seen in the 3D loss curves (Figure 4.3); we have stable
model performance during the training as well as the validation, which cannot be
considered overfitting because the threshold didn’t get surpassed and the model is
generalising well.
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c. Supervised case

Fiure 4.4 presents the MPJPE between the predicted 3D poses and the ground
truth poses for the training set, as well as the evaluation of the training set and the
validation set. The figure has 3 curves, of which the blue dashed one represents the
MPJPE error on the training set, the solid blue one illustrates the MPJPE error on the
evaluated training set, and the orange one shows the MPJPE error on the validation
set.

F I G U R E 4 . 4 : Mean per-joint position error in 3D

d. Analysis

The plot illustrates a consistent and steady decrease in the 3D train and 3D train
(eval) curves over the course of the training process. This observation suggests that
the model is acquiring knowledge and enhancing its performance on the training
dataset as time progresses. In contrast, the 3D valid curve exhibits an alternative
pattern, wherein the loss initially decreases but subsequently reaches a plateau or
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experiences a slight increase towards the conclusion of the training process. This
implies that the model is exhibiting overfitting tendencies towards the training data
and didn’t make any effort from the 9th epoch, thereby indicating a lack of generali-
sation capability towards the validation data. However, the lack of improvement in
the 3D valid curve suggests that the model may not be capturing important patterns
or relationships in the validation set.

e. Discussion

Upon conducting experiments on semi-supervised and supervised training, an
analysis of the results was performed, leading to the conclusion that the semi-
supervised approach provides a superior estimation of the 3D human pose, as
measured by the MPJPE protocol. The results of our analysis indicate that the semi-
supervised approach exhibited a comparatively lower MPJPE value on the validation
set as opposed to the supervised approach. The aforementioned observation implies
that the semi-supervised methodology exhibits superior capacity for generalisation
to novel data and for generating precise estimations of 3D human pose.
Furthermore, our discovery is congruent with prior studies that have exhibited the
efficacy of semi-supervised learning in enhancing the proficiency of diverse com-
puter vision assignments. It is noteworthy that the semi-supervised methodology
necessitates a smaller quantity of labelled data in comparison to the supervised
methodology. This is especially advantageous in situations where the acquisition of
significant amounts of labelled data is arduous or costly.

4.5 Inference

In this section, we’ll assess the effectiveness of the 3D human pose estimation
model obtained from semi-supervised training. To achieve this, we’ll test the model
on arbitrary videos from different sources including manufacturing and analyse the
predictions and reconstruction quality from multiple common views. Additionally,
we’ll calculate the REBA score in real-time on the output to evaluate the ergonomic
risk level of the estimated pose. This evaluation will help us determine the accuracy
and usefulness of the model in real-world scenarios and assess its potential for
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practical applications.
The inference process will follow the steps illustrated in figure 4.5:

F I G U R E 4 . 5 : Inference process

The model testing can consider multiple conditions; in our case we focus on complex
postures, sagittal plane views and noises. The reconstruction will display the right
arm and the right foot in red and the rest of body in black skeleton based model.
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4.5 Inference

a. Sample 01 (complex posture)

F I G U R E 4 . 6 : Sample 01 output

The model did well in mapping the 2D pose to 3D, even with the right arm and
half of the right leg are hidden, the model has change the camera view while ren-
dering to output the maximum accurate skeleton based 3D pose. The REBA score
for this posture is 100 % correct after confirming the calculation manually using
the REBA worksheet, as we can clearly see that the risk of having a work-related
musculoskeletal disorder is incredibly high.
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b. Sample 02 (complex posture)

F I G U R E 4 . 7 : Sample 02 output

In this capture, using 16 2D keypoints only, the model did better than the sample 01
in the rendering as we can see a perfect obvious skeleton based 3D pose. the REBA
score is 92 % correct (manually, the score is 13), however, the action level stills the
same and the posture needs to be change immediately.

c. Sample 03 (Sagittal plane)

F I G U R E 4 . 8 : Sample 03 output
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In this sample, the video capture was from sagittal view at 11 meters distance, we
can clearly see some reconstruction error, there was a compromise between the right
and left leg position, the model started a false prediction then rectified it quickly,
this error is due to worker’s pants unified color so the model has some trouble
differentiating the right from the left. For the REBA score, the model calculated it
100% correctly.

d. Sample 04

F I G U R E 4 . 9 : Sample 04 output

In this sample, the model did well predicting the 3D pose, even with the capture angle
is almost from the worker’s back, the model didn’t change the camera view to mirror
view to get an more accurate reconstruction, unfortunately it wasn’t fitting the 3D
space, due to input video resolutions which were bigger than that of Human3.6M.

4.6 Prototyping

Our project is unique in the occupational field, as it contributes in many ways to
the safety of workers while performing their tasks. This study is the first to estimate
the body posture REBA score from an input video in real-time by implementing
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Deep learning algorithm to automate the ergonomic risk assessment based on the
observation. One of our project’s outputs is the interpreted REBA score besides
the action must be taken. Using such method, not only in the industrial sector, but
even the healthcare sector occupants will be able to interpret patients movements
with high accuracy, the thing that will reduce evaluation time and eliminate any
human error. Additionally, our system which will be prototyped in its Beta version
as a friendly-user web application allowing multiple digitisation services. While
launching the web application, the interface shown in figure 4.10 will appear.

F I G U R E 4 . 1 0 : ANIMATOR user interface

In the left side, we find the input visualisation with both RGB and Gray scale besides
the 2D estimated pose; the main content section is the rendering output and the
control bar is situated in the bottom composed of:

• Input: a drop-down menu for choosing the file to process, we can find live
stream, uploaded video and some test sample within the web application

• Model: a checkbox for choosing the pose estimation model whether it’s face,
body or hand.

• Display: a checkbox for choosing the output display type whether it’s points,
outlines or mesh.

• Mesh: a checkbox for choosing the mesh displaying type between wireframe
or smooth.
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4.7 General discussion

4.7 General discussion

This study has demonstrated the effectiveness of semi-supervised learning in
leveraging unlabelled video data to estimate human 3D pose, aided by temporal
dilated convolution that is invariant to scale and visual noise. Furthermore, we have
successfully utilised the model output to calculate the REBA score with an accuracy
of over 92%. The model achieved a score of 48.6 mm mean per joint position error
(MPJPE) between the predicted and ground truth, indicating good results, particu-
larly considering the lack of reliance on any additional dataset. However, a 48.6 mm
error still represents a relatively small average prediction error. As mentioned earlier,
Overfitting occurs when a deep neural network fits the training data too closely,
rendering it unable to generalise to new input data, which could potentially affect
its performance. The architecture employed in the training demonstrated a mean
absolute error (MAE) of 14 mm between the training and validation of unlabelled
2D data, suggesting a low likelihood of deep neural network overfitting. Overall,
considering the architecture’s configuration, training environment, and constraints,
we have achieved a satisfactory outcome.

4.8 Conclusion

In this chapter, we presented the results obtained from training the temporal di-
lated convolutional network using both supervised and semi-supervised approaches.
The results showed that the semi-supervised approach was more effective in gener-
ating a model for inferring input videos and obtaining real-time 3D pose estimations,
along with calculating the REBA score. Therefore, we used the model obtained
through the semi-supervised approach to carry out our inference tasks.

67



General conclusion

This study discussed a Deep Learning based technique to estimate the 3D pose

of human from videos and calculating REBA score posture in real-time for the er-

gonomic context. This AI-based system is designed to maintain the occupational

health of workers in the industrial sector, and it aims to advocate for a major change

in the professional health law to recognise the Work-related musculoskeletal disor-

ders in the first place, in the same time raise awareness among industrial occupant

about the impact of false postures and false movements first on health, second on pro-

ductivity and all the economic consequences that result especially the absenteeism

rate and social compensation. The ergonomic application, despite its investment

charge, it’s a safe and profitable investment, in which its signs will appear in both

social and economic environment. This result will pave the road towards a devel-

oped industrial and service sector. Our project has proven its effectiveness from

different perspectives, such as contactless ergonomic assessment, movement data

collection and corrective actions recommendations. As future work, we tend to

implicate the Augmented reality in both industrial processes and ergonomic risk

assessment, because the AR overlay the digital information onto the physical envi-

ronment, which facilitates the manufacturing process understanding in parallel with

providing an accurate and efficient way to identify and mitigate ergonomic hasards

all virtually, especially that AR can enable real-time monitoring of workers’ posture

and movements.
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Chapter 1

Project presentation

1.1 Idea’s concept

ANIMATOR is an AI-based tool designed for ergonomic risk assessment and digiti-
sation to 3D environment. All started two years ago, when a massive data analysis
project began by me to understand the actual situation of the Algerian industry,
where the business problem was why aren’t we developed?. The first analysis lead
us to discover a huge gap of occupational health, where the well-being of workers
wasn’t a priority, which result on the task performance and productivity due to
a lot of factors. The role of ANIMATOR is to assess the workers’ postures and
movements as well as analysing the feedback to ensure the safety and avoid the
work-related musculoskeletal disorders which is a global health issue. Besides the
industrial sector, ANIMATOR can be used as an Aid-rehabilitation tool, since it’s
AI-based, it can be fed by the patient data to output a customise training under the
doctor supervision.

1.2 ANIMATOR’s Values

The main ANIMATOR’s values in its Beta version are:

• ANIMATOR will be the main key enhancing and guaranteeing the workers’
occupational health by providing a tracking assessment in real-time besides
a data-driven understanding of their behaviour, the thing that will make the
tasks affectation more efficient.

• ANIMATOR will provide the insights for the suitable training for any type of
work, which reduces the costs and burdens of traditional training, all of this

1



2 1.3. ANIMATOR goals

through augmented reality.

• The physician therapists will be able to process more patients online without
traveling.

• ANIMATOR will be a customised friendly-user tool.

1.3 ANIMATOR goals

The goals will vary depending on multiple aspects, in this section we’ll present the
main goals on the main three plans:

1.3.1 Operational plan

• Developing and enhancing the tool performance and the data collection.

1.3.2 Tactic plan

• Defining our "Purple Cow" to the agents by boosting our marketing plan,
increasing our network and defining the pricing politics.

• Covering the main industrial zone in Tlemcen.

1.3.3 Strategic plan

• Launching ANIMATOR commercial version (Free trial demo + Premium ac-
cess)

• Becoming a social partner.

1.4 Project planning

We’re using Agile methodology to manage and complete the project. This approach
allows us to be more flexible, adaptive and collaborative in our work, ensuring that
we’re delivering high-quality results that meet the need of our future agents. In
figure 1.1 presents the Agile progress board, where the task are distributed to four
main phase (To do, Doing, Done, Deployment).
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Figure 1.1: ANIMATOR progress board

Figure 1.2 represents the interactive dashboard of ANIMATOR task progress.

Figure 1.2: Animator progress dashboard



Chapter 2

Innovative aspects

2.1 Innovation in ANIMATOR

In concurrence with world’s ergonomic leader such as Ergo-Plus1 and others, AN-
IMATOR not only will be the first AI-based tool for ergonomic risk assessment in
real time, but the first tool that using it we’ll push to recognise the work-related
musculoskeletal disorders as occupational injuries. Second, we’ll lead ergonomics in
Algeria’s industrial field, besides all other services that ANIMATOR provides.

Figure 2.1: ANIMATOR user interface

1Ergo-plus can be accessed from this link Ergo-Plus

4



Chapter 3

Strategic market analysis

3.1 Market overview

Till nowadays, there isn’t an ergonomic market or even ergonomic plan considera-
tion in Algeria, another motivation for ANIMATOR. At the international level, the
ergonomic market value can reach 26.7 Billion by 2027 according to Markets and
Markets1 website, and since Algeria is a country on the path of growth, soon or later
it will be part of this market, especially the ISO certification is a requirement for
the international market.

3.2 Competition market analysis

3.2.1 SWOT analysis

Strengths

• Unique and innovative service that provides real-time 3D human pose estima-
tion and ergonomic risk assessment.

• Potential for digital twin construction.

• Ability to provide customised solution for various fitting task-person problems.

• Expertise in machine learning and computer vision besides the industrial en-
gineering.

1Markets and Markets is a website designed for any market description with real data

5



6 3.2. Competition market analysis

Weaknesses

• New brand, new market creation.

• Weakness of infrastructure (internet and technology).

• limited initial funding.

Opportunities

• Growing market demand for technology-based solution especially in health-
care, manufacturing and retail industries.

• Ability to expand into international market with similar needs.

Threats

• Social acceptance.

3.2.2 Porter’s Five Forces analysis

Threats of new entrants

This threat is relatively low, since it’s innovative and needs expertise in AI and
ergonomics.

Bargaining power of suppliers

ANIMATOR may face challenges in terms of the availability of required hardware
to develop and update.

Bargaining power of buyers

Relatively high or near high, since there are several similar software providing the
same principle of service and functionalities. However, ANIMATOR is unique as
it gives special features like the real-time ergonomic assessment and on demand
digitisation.

Threat of substitutes

This threat is moderate as there are many other manual methods for ergonomic
assessment, which is already new field in Algeria. However, ANIMATOR still ad-
vantageous.
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Competitive rivalry

ANIMATOR is the 1st web application in its kind of functionality.

3.3 Marketing strategy

Our strategy will be an hybrid non traditional method. First, we’ll push for the
conscience of occupational health, make the industrial sector occupant aware of the
harm of ergonomic risk and its impact on the economy. Then we’ll start the event
Marketing to showcase ANIMATOR’s services and products.
The network will be built using social media, social partners (CNAS, CASNOS and
Audit centers) and SEO (search engine optimisation). The pricing politics will start
with freemium, which is free trial in which we’ll provide the service of ergonomic risk
assessment by impleenting it during 2 months. The first month is for data collection
and processing, analysing the current work health and giving the recommendations
to enhance the health. In the second month, we’ll track and assess, comparing the
the previous month and share the enhanced results through both visualisations and
ground truth diagnosis, which will be seen in work productivity and workers’ well
being.
At that level, ANIMATOR will be a monthly subscription, and the prices will vary
based on the enhancement level.



Chapter 4

Production plan

4.1 Development workflow

ANIMATOR is developed using System engineering, which is an interdisciplinary
approach to designing, analysing and managing complex systems. The development
cycle will follow this diagram below:

Figure 4.1: Development workflow under system engineering
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Chapter 4. Production plan 9

4.2 Workforce

The integration of ANIMATOR will launch a new vision of the work quality and
task completion in the Algerian industry by changing the classic decision to a data-
driven decision. This unique leap is capable of creating a new chain of digital supply,
mainly first by providing a new data mine from the industrial sector. The main job
opportunities that will be created are in data analysis field in combination with
Industrial engineering.

4.3 Key partners

Since ANIMATOR is a purely new technology Startup, we will focus gaining the
major partners that can help us to release and spread our ideas and businesses:

• Tlemcen’s faculty of technology

• Industrial partners

• CNAS and CASNOS

• Hospitals

• IBM CLOUD

• Microsoft Azure

• Hardware suppliers



Chapter 5

Prototype

Until this day, We have reached the capability of 3 AI-based services which are:

• Ergonomic risk assessment (using REBA score).

• 3D body pose estimation.

• face reconstruction.

• Hand pose estimation.

Figure 5.1: Ergonomic risk assesssment
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Figure 5.2: Ergonomic risk assesssment

Figure 5.3: 3D body pose estimation
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Figure 5.4: Face reconstruction-Smooth

Figure 5.5: Face reconstruction-wireframe
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Figure 5.6: Hand pose estimation
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Business Model Canvas
Key Partners

• Tlemcen’s faculty of
technology.

• IBM Cloud.

• Microsoft azure.

• Industrial partners.

• CNAS/CASNOS.

• Hospitals.

• Hardware suppliers.

• Certification
organisations.

• Research and
development.

• Tailored ANIMATOR’s
services.

• Marketing and sales.

• Customer onboarding,
training and support.

• Regular updates and
enhancements.

Key Activities

• AI and Biomechanics
expertise.

• Data science team.

• Ergonomists.

• Research laboratory on
demand.

Key Resources

• Equipment costs.

• IT subscription costs.

• Third party costs

Cost Structure

• Software As A service (SaaS)

• Consultancy services and Data-driven solutions sales.

• Subscription packages.

• Digitisation solutions sales (Digital twin).

Revenue Streams

Value Propositions

• Real-time ergonomic risk
assessment.

• Enhancing work and
health quality.

• Provide simulated/AR
solutions for training

• Innovative markerless
human motion analysis.

• Telehealth-physical
therapy.

• Personalised customer
onboarding and training.

• Technical support using
email, phone and chat.

• Proactive communication
for updates.

Customer Relationships

• Online platforms.

• Direct sales.

• Partnership with
CNAS/CASNOS and
certification organisations.

• Content marketing using
social media, TV and
Podcasts.

• Events and tradeshows.

5. Channels

Customer Segments

• Manufacturing companies.

• Hospitals.

• physical therapy clinics.

• Professional sport’s
centers
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