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Abstract

The Numidian Formation in the Ouarsenis Mountains, NW Algeria consists of siliciclastic
deposits intercalated with hemipelagic mudstones in the four sections studied, located in the
Theniet El Haad and Chlef regions. The latter includes two main informal lithostratigraphic
units: (1) the lower unit (mud-dominated); (2) the upper unit (sand-dominated). The lower unit
delivers rare agglutinated foraminifers, such as Glomospira sp., Ammodiscus sp.,
Paratrochamminoides sp., Haplophragmoides sp., Trochamminoides sp., and Recurvoides sp.
In contrast, investigations for dinoflagellate cysts from the lower and upper units of the sections
studied gave positive results. Both units yielded rich although taxonomically impoverished,
dinoflagellate cyst assemblages associated with other aquatic palynomorphs. Biostratigrapic
interpretation of the assemblages from the interval studied is difficult and imprecise so far, but
it suggests a time span from the late Paleogene to early Miocene.

Eight lithofacies have been distinguished, including, structureless sandstone (F1),
normally-graded, medium- to very coarse-grained sandstone (F2), inversely-graded pebbly
sandstone to parallel stratified sandstone (F3), medium- to fine-grained sandstone (F4), and
mudclast conglomerates (F5), soft-sediment deformed sandstone/siltstone (F6), mudstone with
siltstone and sandstone (F7), and varicoloured marly mudstone (F8). These lithofacies yielded
three main facies associations, including (1) FAL sand-rich facies association deposited in the
channel-fill setting. It occurs in the upper part of all the studied sections; (2) FA2 mudstone and
sandstone alternations facies association, corresponding to channel margin, channel-levee-
overbank, crevasse-splays, and lobes. This facies association occurs occasionally in the lower
and the upper units of the studied sections; (3) FA3 mud-rich facies association deposited on
the basin-floor or slope-apron settings, which were cut by narrow, sparse channels, occurring
in the lower unit of all the studied sections except for the Forét des Cédres section.

Twenty-two ichnogenera have been determined, with the dominance of post-depositional
ichnotaxa (62%), and predepositional ichnotaxa (38%). They commonly occur in fine-grained,
thin-bedded sandstones (representing facies F4), mostly in facies associations FA2 and FA3.
Ichnological analysis associated with sedimentary data indicate a deep-sea environment with
typical trace fossil assemblages attributed to the Nereites ichnofacies, including its three main
ichnosubfacies, i.e. (1) the Ophiomorpha rudis ichnosubfacies recorded within FA1, originated
in channel and levee-overbank environments; (2) the Paleodictyon ichnosubfacies occurs in
facies F4, deposited probably in channel-margin or channel-levee-overbank settings; (3) The
Nereites ichnosubfacies is recorded in FA2, which were probably deposited in the basin-floor
environment, specifically in crevasse splays or small lobes characterized by occasional
turbiditic flows associated with pelagic and hemipelagic sedimentation.

The method of provenance analysis in conjunction with data on palaeocurrent orientation
is applied here to constrain the source rock of the Numidian Formation sediments. Analysis of
the palaeoflow data based on measurements of sole marks does not show a single orientation
of the palaeocurrent. However, the major orientation based on orientation of flute casts and
frondescent marks is more consistent and ranges from the south-east to the east. 205 zircon
grains were separated from two representative samples (KMS-b29 and KRS-b01) to perform
U/Pb geochronology and morphological description. CL images of zircon grains and Th/U ratio
show abundant grains of magmatic origin and less abundant zircon grains indicating
metamorphic origin. Three main groups of zircon ages were characterized: (1) 563—-992 Ma
indicating the Neoproterozoic; (2) 1007-1527 Ma indicating the Mesoproterozoic; (3) 1684—
2470 Ma indicating the Paleoproterozoic, with a few zircon grains indicating the Neoarchean
and Mesoarchean. These zircon ages indicate the Eburnean and the Panafrican orgenies without
evidence of the Hercynian and Alpine orogenies. The above-mentioned characteristics of the
zircon grains analysed, associated with palaeoflow data, point toward an African origin of the
deposits studied.
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Résumé

La Formation Numidienne dans les Monts de I'Ouarsenis, au Nord-Ouest de I'Algérie, est
constituée de dépé6ts siliciclastiques intercalés avec des argilites hémipélagiques dans les quatre
coupes étudiees, situées dans les régions de Theniet EI Haad et de Chlef. Ces derniers
comprennent deux principales unités lithostratigraphiques informelles : (1) l'unité inférieure
(dominée par les argiles) ; (2) I'unité supérieure (dominée par les gres). L'unité inférieure a livré
de rares foraminiferes agglutinés, tels que Glomospira sp., Ammodiscus sp.,
Paratrochamminoides sp., Haplophragmoides sp., Trochamminoides sp., et Recurvoides sp..
En revanche, les recherches de kystes de dinoflagellés dans les unités inférieure et supérieure
des coupes étudiées ont donné des résultats positifs manifesté par des assemblages riches, bien
que taxonomiquement appauvris, associés a dautres palynomorphes aquatiques.
L'interprétation biostratigraphique de ces assemblages est difficile et imprécise jusqu'a présent,
mais elle suggére une période allant de la fin du Paléogéne au début du Miocéne.

Huit lithofacies ont été distingués, dont un grés massif (F1), un gres a grains moyens a tres
grossiers, a granoclassement normal (F2), un gres caillouteux a granoclassement négatif a un
grés a stratification parallele (F3), gres a grains moyens a fins (F4), et conglomérats a
mudclastes (F5), gres/siltite déformé (F6), Alternance d’argilite avec siltite et gres (F7), et
argiles marneux versicolores (F8). Ces lithofacies ont donné lieu a trois principales associations
de faciés, dont (1) I'association de faciés riche en sable FA1 déposée en remplissage de chenaux.
Il est présent dans la partie supérieure de toutes les coupes étudiées ; (2) I'association de facies
FAZ2, alternances d’argile silteuse et de gres, correspondant au dépét de la bordure de chenal,
au débordement du chenal, aux crevasses-splay et/ou lobes. Cette association de facies se
rencontre occasionnellement dans les unités inférieures et supérieures des coupes étudiées ; (3)
I'association de facies FA3, riche en boue déposée sur le fond du bassin ou sur le talus
continental, qui ont été coupées par des chenaux étroits et épars, présente dans l'unité inférieure
de toutes les coupes étudiées, a I'exception de la coupe de la Forét des Cedres.

Vingt-deux ichnogenres ont été déterminés, avec une dominance des ichnotaxons post-
dépositionnels (62%), et des ichnotaxons pré-dépositionnels (38%). Ils sont généralement
présents dans les grés a grains fins et a lits minces (représentant le faciés F4), principalement
dans les associations de facies FA2 et FA3. Les analyses ichnologiques associées aux données
sédimentologiques indiquent un environnement de mer profonde avec des assemblages
typiques de traces fossiles attribués a l'ichnofaciés Nereites, y compris ses trois principaux
ichno-sous-faciés, notamment : (1) I'ichno-sous-facies Ophiomorpha rudis, enregistré dans le
facies F1, provenant d'environnements de chenaux et de levées; (2) l'ichno-sous-facies
Paleodictyon enregistré dans le facies F4, déposé dans des environnements de marges de
chenaux ou de levées; (3) L'ichno-sous-faciés Nereites est enregistré dans FA2, qui a
probablement été déposé dans I'environnement du fond de bassin, spécifiquement dans des
crevasses-splay ou de petites lobes caractérisés par des flux turbiditiques occasionnels associés
a une sédimentation pélagique et hémipélagique.

La méthode d'analyse de provenance avec les données du paléocourant est appliquée ici
pour contraindre la roche mere des sédiments de la formation Numidienne. L'analyse des
données du paléocourant basée sur les mesures prises sur des structures sédimentaires de base
de banc ne montre pas une orientation unique du paléocourant. Cependant, l'orientation
principale basée sur les flutes casts et les frondescent marks est plus cohérente et va du Sud-est
a I'Est. 205 grains de zircon ont été separés de deux échantillons représentatifs (KMS-b29 et
KRS-b01) pour effectuer des analyses géochronologiques U/Pb et une description
morphologique. Les images CL des grains de zircon et le rapport Th/U montrent des grains
abondants d'origine magmatique et des grains de zircon moins abondants indiquant une origine
métamorphique. Trois groupes principaux d'ages de zircon ont été caractérisés : (1) 563-992
Ma indiquant le Néoprotérozoique ; (2) 1007-1527 Ma indiquant le Mésoprotérozoique ; (3)
1684-2470 Ma indiquant le Paléoprotérozoique, avec quelques grains de zircon indiquant le
Néoarcheen et le Mésoarchéen. Ces ages de zircon indiquent les orogeneses éburnéenne et
panafricaine sans preuve sur les orogenéses hercynienne et alpine. Les caractéristiques
susmentionnées des grains de zircon analysés, associées aux données de paléocourant, pointent
vers une origine africaine des dépots étudiés.
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CHAPTER 1 INTRODUCTION

1.1. MOTIVATION AND OBJECTIVES

Many multidisciplinary studies on the Numidian Formation (NF) deposits were conducted
in the Mediterranean region, but very few in Algeria, where they mainly refer to the regional
geology and are commonly limited to the general geological data. Hoyez (1975, 1989)
performed general sedimentological studies on all the NF of the Mediterranean, including some
data results on the palaeoenvironment and the provenance of the detrital material. The first
detailed sedimentological study on the NF in Algeria was carried out by Moretti et al. (1991) in
the Constantine Mountains, including detailed results about the petrography and the depositional
processes.

This PhD thesis deals with multidisciplinary studies that involve various aspects of
sedimentology, stratigraphy, and ichnology as well as geochemical and isotopic analysis. The
studies on ichnofossils are an important part of this project. This study aims to: (1) identify of
the palaeoenvironments of the Numidian Formation in the study area, with a better
understanding of the factors controlling the dynamics of deposition (foremost sedimentological
and ichnological methods are applied); (2) determine of a more precise age and palaeoecological
conditions of these deposits on the basis of microfossils (foraminifers and calcareous
nannoplankton); (3) determine of the provenance of detrital material that feed the NF basin of

this area using U/Pb zircon dating and the orientation of the depositional palaeoflow.

1.2. PRESENTATION OF THE NUMIDIAN FORMATION

The Numidian Formation (NF) is an extensive deep-sea series of clastic deposits, which
outcrops run over the distance of 2500 km in a 100 km wide belt, from Gibraltar through
Morocco, Algeria, and Tunisia to Calabria (Fig. 1). It is placed within the Maghrebian orogenic
domain, which is called the Maghrébides (Durand-Delga and Fonboté, 1980; Wildi, 1983). The
term "Numidien™ was coined for the first time by Ficheur (1890) to define the Numidian stage
(corresponding to the Upper Eocene), which was represented (as understood at that time) by a
series of clays overlying by thick-bedded sandstones in the Algerian coastal chains NW of
Greater Kabylia. This term was integrated in Tunisia by Aubert (1891), and in Morocco by Fallot
(1937). Later, the Numidian stage was transferred to the rank of “facies” to distinguish the
Numidian series made up of a series of mudstone and sandstone, in coincidence with the time
when the new concept of allochthonous tectonics in the Algerian Tell was established
(Glangeaud, 1932; Flandrin, 1948). In this thesis, the term Numidian Formation (NF) is used
instead of the Numidian Flysch, because the term “flysch” is considered ambiguous in

application to these deposits (Patacca et al., 1992; Guerrera et al., 1993, 2012).
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of the Numidian Formation in the Mediterranean (Hoyer, 1989).

1.3. GEOLOGICAL SETTING

The Numidian Formation (NF) in Algeria is built mostly of deep sea turbiditic sandstone
and mudstone deposits, which are Late Oligocene to early Burdigalian in age (Durand Delga
and Magné, 1958; Mattauer, 1958; Magné and Raymond, 1972; Raoult, 1974; Raymond, 1976;
Bizon and Hoyez, 1979; Lahondére et al., 1979; Feinberg et al., 1981; Hoyez, 1989; Moretti et
al., 1991) and form a part of the Maghrebian domain. This domain is interpreted as an Alpine-
type orogen which resulted from closure of the Maghrebian part of the Tethys Ocean (Wildi,
1983; Bouillin, 1992). Deposits of the NF accumulated in the Maghrebian Flysch Basin (MFB)
(Fig. 2), which is considered as a foreland basin, remnant of the neo-Tethys Ocean in the western
part of the current Mediterranean Basin (Thomas et al., 2010b). The MFB was located in the
western palaeo-Tethys realm, bordered to the north by a southward verging accretionary prism,

underlain by European crustal blocks which rode above northwards subducting oceanic crust
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(Guerrera et al., 2005; Thomas et al., 2010b). It is bordered to the south by the African passive
margin.

The MFB was opened after the Pangaea breakup during the Jurassic-Cretaceous transition
(Wildi, 1983; Bouillin, 1986). In general, sedimentation of the NF deposits ceased 16—-15 Ma at
the end of the Burdigalian (see Vila et al., 1994; Esteras et al., 1995) except for the Apennines
and Sicily, where it was extended into the Langhian (Guerrera et al., 2005; Thomas et al., 2010;
Pinter et al., 2018; Butler et al., 2020). At the beginning of the Langhian (15 Ma), the Kabylides
began accretion to Africa (Frizon de Lamotte et al., 2000). The NF underwent north verging
folding and thrusting. Part of the flysch succession was detached as thrust sheets and overthrust
in the external zone of the Maghrebides (Bouillin, 1977; Vila, 1980). This conditioned
distribution of the NF in several commonly isolated areas in the northern Algeria (Fig. 2).

The NF occurs in three different zones (Bouillin, 1986), i.e. in (1) an internal position,
superimposed on the Kabylia massifs, where the NF deposits are referred to as the North
Kabylide Flysch, in (2) a relatively external position at the southern margin of the Kabylia
massifs, where the NF is called the South Kabylide Flysch, and in (3) a very external position,
as isolated masses floating on the Tellian series (Paleozoic—Eocene), where they have been
tectonically transported up to 100 km to the south, and are preserved in the hinge of synclinal
folds. The study area in the Ouarsenis Mountains refers to this position. The most
stratigraphically complete deposits of the NF are present in the outcrops of Greater Kabylia. It
is subdivided for the first time by Raymond (1976) into three “termes” (Fig. 3): (1) the “terme
inférieur” (Upper Oligocene) represented by varicoloured clays with the common trace fossil
“Tubotomaculum” (assigned to Ophiomorpha recta in Riahi et al., 2014 and Tubulichnium
mediterraneum in Uchman and Wetzel, 2017); (2) the “terme médian” (Aquitanian) represented
by alternating sandstones, quartz pebble conglomerates and mudstones; it is known as the
Numidian Sandstone; and (3) the “terme supérieur” (Aquitanian to lower Burdigalian) formed
by mudstones, marlstones and cherts (“silexites”) and referred to as the supra-Numidian
succession. This lithostratigraphic scheme is similar to those in other Mediterranean outcrops of
the NF, i.e. in Tunisia (Glacon and Rouvier, 1967; Rouvier, 1977; Riahi et al., 2010, 2015),
Sicily (Broquet, 1968; Guerrera et al., 1992; Patacca, 1992), the Apennines (La Manna et al.,
1995), Spain (Didon et al., 1984; Martin Algarra, 1987; Esteras et al., 1995), and Morocco
(Chalouan et al., 2008) (Fig. 3).
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Oligocene—Early Miocene (25-21 Ma); (C) Late Burdigalian—Langhian (17-14 Ma) (Leprétre
et al., 2018, modified).
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1.4. OVERVIEW ON THE STUDY AREA

This thesis focuses on the NF outcropping in the Ouarsenis Mountains, NW Algeria. The
latest forms a part of the External Domain of the Algerian Northern Belt. The Ouarsenis
Mountains are bordered to the north by the Chlef Plain (developed on a vast Neogene basin) and
by Zaccar Mount (Djebel Zaccar), to the south by the Sersou Plateau, to the east by the Bibans
Mountains (near Médéa city) and by the post-Miocene formations of the Miliana region. To the
west, there is no distinct boundary, although Polvéche (1960) considered the Miocene deposits
of Zemmoura as the western limit of the NF in the study area. The NF in the study region occurs
in a complex of allochthonous units stacked above Triassic and Cretaceous deposits (Mattauer,
1958; Polveche, 1960) (Figs. 4, 5). It comprises two main lithological units: (1) varicoloured
(greenish to dark brown) marly mudstone of the Upper Oligocene at the base (the equivalent of
the “terme inférieur” in Greater Kabylia); and (2) alternating sandstones, quartz pebble
conglomerates and bluish grey mudstones at the top (Mattauer, 1958), which are an equivalent
of the “terme médian” in Greater Kabylia. The contact between these two units is unclear

(covered) in the study area; it is marked by a lithological change.
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1.5. PREVIOUS RESEARCH

The history of the Numidian Formation went through many periods, starting from the
discovery of these deposits gradually all around the Mediterranean, followed by numerous

studies attempting to understand its genesis.

1.5.1. The recognition and stratigraphy of the Numidian Formation

The term "Numidien™ was coined for the first time by Ficheur (1890) to define the
Numidian stage (corresponding to Upper Eocene), which was represented (as understood at that
time) by a series of clays overlying by thick-bedded sandstones in the Algerian coastal chains
NW of Greater Kabylia. It was recognized in the study area (Ouarsenis Mountains, NW
Algeria), for the first time by Repelin (1895), in the outcrops of Kef Tachta, Djebel Saadia, and
Djebel Maiz, considering its age as Upper Eocene, in accordance with the ideas of Ficheur
(1890).

This term was integrated in Tunisia by Aubert (1891) to describe the sandstone outcrops
from the north-western massifs of “La Caile” in Bizerte. In Morocco, this term was used for the
first time by Fallot (1937), Flandrin (1948), and in the Betic Cordillera by Gavala (1924).
However, this term was used later in the southern Apennines by Flandrin (1948).

Ficheur (1890 subdivided the Eocene into two stages, i.e. the upper stage E corresponding
to the “Numidien”, and the lower stage D, made up of mudstone and sandstone (stratotype in
de Chellata), named later the “Médjanien” by the same author (Ficheur, 1893). This
terminology was used in Algeria until the beginning of the 20" century.

Dareste de la Chavanne (1910) modified the proposition of Ficheur (1890 by inclusion of
the Médjanien Flysch and the “Numidian” Flysch to the Oligocene, because this author
considered that these two facies are coeval, but without any palaeontological proof. However,
the subdivisions by Ficheur (1890 remained in use. Erhmann (1923) discovered the first
fossil, i.e. the foraminifer Lepidocyclina which suggests an Oligocene age of the Numidian
sandstone, However, the impact of this discovery remains weak, and some doubts arouse
about the stratigraphic value of this foraminifer.

Later, the Numidian stage was transferred to the rank of facies which includes the Numidian
series composed of mudstones and sandstones (Glangeaud, 1932). This was in coincidence with
the time when the new concept of allochthonous tectonics in the Algerian Tell was established
(Glangeaud, 1932; Flandrin, 1948).

Important stratigraphic details were presented by Flandrin (1948) in his monograph on the

Algerian Nummulitic Paleogene. The term Médjanien Flysch was abandoned because it

9



CHAPTERI INTRODUCTION

appeared that its stratotype section in Chellata belongs to the Cretaceous. The new finding of
large foraminifera permits the attribution of the thick sandstone unit of the NF to the Oligocene
and the underlying mudstone unit to the Priabonian. However, this stratigraphic attribution was
not used later.

As this period was known by the introduction of the concepts of allochthonous tectonics,
Caire (1951) defined the stacking of three nappes in the sub-Bibanic region, and named them
nappes A, B, and C. The concept of allochthonous tectonics was also applied to the Ouarsenis
Mountains (Mattauer, 1953; Polvéche, 1958, 1960), in the Setifian region (Glacon, 1955, 1961),
and in the region of Oued Athménia (\VVan De Fliert et al., 1958), but not in the Constantine
region and in Tunisia at that time.

Significant fossils from the Numidian Formation in north-western Algeria were discovered
by Mattauer (1953), who identified the foraminifers with Miogypsina in the lower part of the
Numidian Formation in the Ouarsenis Mountains. This allowed dating of the sandstone unit to
the end of the Oligocene. New findings of foraminifers and calcareous nannoplankton in the
Numidian Formation of eastern Algeria (Martini, 1971; Raymond & Magné, 1972; Raoult,
1974; Gélard, 1979; Lahondere et al., 1979) allowed dating of the lower mudstone unit to the

upper Oligocene (Chattian), and the upper sandstone unit to the lower Burdigalian—Aquitanian.

1.5.2. Provenance of the Numidian Formation material

In the middle of the 20" century, an intensive debate began about the provenance of the
sedimentary material that feeds the MFB. Two opposite views point to (1) a northern
provenance, represented by the European AlKaPeCa domain. This suggestion was supported
by: Mattauer (1958, 1973), Caire (1961), Caire and Duée (1971); Magné and Raymond, (1972);
Ivaldi, (1977); Lahondére et al. (1979); Vilaetal., 1995; Van Houten (1980), Parize et al. (1986,
1999), Benomran et al. (1987), Yaich et al. (2000), and recently Fildes et al (2010) based on the
interpretation of zircon dating carried out from the northern Tunisia and Sicily; or to (2) the
southern provenance represented by the African craton (Durand Delga (1955, 1980), Ogniben
(1960), Wezel (1970a), Gaudette et al. (1995); Hoyez (1975, 1989), Lancelot et al., 1977;
Moretti etal., 1991; Johansson et al. (1998) ; Thomas et al (2010a, 2010b); Guerrera et al (1992,
2012); Fornelli et al. (2015); Azdimousa et al. (2019). The review of the problems by Thomas

et al. (2010b) favours a southern provenance of the Numidian material.

10



CHAPTERI INTRODUCTION

1.6. MATERIAL AND METHODS

The methods used in the preparation of this thesis include two main parts: (1) field work,

and (2) laboratory analysis.

1.6.1. Field work: Many field trips were carried out between 2015 and 2020 in the study area,
located in the Ouarsenis Mountains, north-western Algeria. Four sections were studied in detail

with a focus on sedimentological and ichnological data.

« Logging: A detailed lithological description bed by bed was performed for all the sections
studied, associated with sketching and photography. The physical sedimentary structures
were described and photographed in the field, with information about their occurrence,
frequencies, and their associations. The orientation of directional sedimentary structures,
including flute casts, groove casts, and frondescent marks, was measured with a compass

to deduce the predominant orientation of the depositional palaeoflow.

* The terminology and the symbols used for the description are after Tucker (2003) and
Collinson et al. (2006). The bed thickness classification is after Ingram (1954), with
laminae (<1 cm), very thin beds (1-3 cm), thin beds (3—10 cm), medium beds (10-30 cm),
thick beds (30-100 cm) and very thick beds (>100 cm).

» Description of trace fossils: The ichnofossils were photographed and partly described in
the field with information on their occurrence, abundance. Their distribution is marked in
the logs whenever possible. To determine their abundance, the terminology by Knaust
(2017) is used, where very rare means 1 ichnotaxon, rare — 2-6 ichnotaxa, common — 7-9,

very common — 10-22, abundant — 23-41, and very abundant — >42 ichnotaxa.

« Sampling: Samples were carried out from sandstones to prepare thin sections, and to
perform the geochemical analysis. Some specimens of trace fossils were collected for
further laboratory analysis. Samples from mudstones and marls are collected for the

micropalaeontological studies.

1.6.2. Laboratory analysis: The samples carried out in the field are analysed in the laboratory
as follows:
* Preparation and study of thin sections using a polarizing microscope. This method allows

the determination of the petrographic composition of the samples. The sandstone rocks
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were cut into small rectangular pieces ready to use in the preparation of thin sections, in
the Laboratory 25, at the University of Tlemcen, Algeria. The study of the thin sections

was done in the Institute of Geological Sciences of the Jagiellonian University, Poland.

* The identification of trace fossils was carried out from the field with the help of Prof. Alfred
Uchman. The specimens taken from the field were analysed and photographed in the

laboratory.

* The preparation of samples for micropalaeontological studies, including washing through
a series of sieve (@: 63:80:125:250 pm). Pick-up and identification of foraminifers was
done partly in the laboratory n° 25 of the University of Tlemcen, with the help of Dr. Adaci
Mohamed, and in the Institute of Geological Sciences of the Jagiellonian University, with
the help of Dr. Ewa Malata.

« Sample preparation for dinoflagellate cyst studies, including rock sample processing and
taxonomical identification, was performed by Dr. Przemystaw Gedl from the Institute of
the Geological Sciences of the Polish Academy of Sciences, Research Centre in Krakdow,
Poland. A set of samples was selected and processed at the Institute of Geological Sciences,
Polish Academy of Sciences, Research Centre in Krakow. The samples were subjected to
the following processing procedure, which included treatment with 38% hydrochloric acid
(HCI), 40% hydrofluoric acid (HF) treatment, heavy-liquid (ZnCl>+HCI; density 2.0 g-cm”
%) separation, ultrasound for 10-15 s and sieving at 10 pm, on a nylon mesh. No nitric acid
(HNO:s) treatment was applied. The quantity of each rock sample processed was 20 g. Two

slides from each sample were made using glycerine jelly as a mounting medium.

* The preparation of slides for the study of calcareous nannofossils was performed in the
Institute of Geological Sciences of the Jagiellonian University, with the help of Dr. Hab.
Marta Oszczypko-Clowes, and MSc. Adam Wierzbicki from the Institute of Geological

Sciences of the Jagiellonian University.

* Calcimetry method: samples from mudstone were tested for carbonate (CaCos) content
in the University of Tlemcen with the help of Dr. Sid Ahmed Hamouda and in the
Jagiellonian University with the help of MSc. Katarzyna Maj-Szeliga and MSc. Bartosz
Kluska.

 U-Pb detrital zircon geochronology PIG-PIB: Two samples of sand-rich sandstone from

Kef Maiz and Kef Rzama sections were analyzed for zircon geochronology in the Polish

12
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Geological Institute — National Research Institute, Warsaw, Poland, and supported

financially by the International Association of Sedimentologists (I1AS).

1.7. ORGANIZATION OF THE THESIS
This manuscript includes five main chapters:

Chapter 1: An introduction, including a presentation of the problem and the objectives of this
thesis, a geological overview, an overview of the study area, a literature review showing the

results of the studies done so far on the subject, and the methods.

Chapter 2: Lithostratigraphy and remarks on biostratigraphy, focuses on the description of the
studied sections with characterisation of the main lithostratigraphic units and some remarks on

their biostratigraphy.

Chapter 3: Sedimentology, focuses on the study of lithofacies, their interpretations, and their

association to give an overview on the depositional environment.

Chapter 4: Ichnology & Palaeoenvironment, focuses on the study of trace fossils occurring in
the study area, including their detailed systematic description, palaeoenvironmental

significance, and a comparison with their analogues from the NF in the Mediterranean.

Chapter 5: Sediment provenance analysis, including a study of provenance of the Numidian
material using U/Pb zircon dating and palaeoflow orientation.

Chapter 6: General conclusions showing the main results of our study.

Chapter 7: References.
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CHAPTER 2 LITHOSTRATIGRAPHY & REMARKS ON BIOSTRATIGRAPHY

2.1. INTRODUCTION

This chapter is dedicated to the lithostratigraphy of the Numidian Formation outcropping
in the Ouarsenis Mountains, NW Algeria, with some remarks on biostratigraphy. This was made
on the basis of detailed bed-by-bed logs of representative outcrops, which were documented by
sketches and photographs. Sedimentary structures and trace fossils were described and
photographed in the field, with information about their occurrence and abundance. Samples of
mudstone were analysed for foraminifers, calcareous nannoplankton, and dinocysts in order to
give a precise age to the studied deposits.

This study focuses on four main outcrops: (1) the outcrops of Theniet EI Haad, which
include three main sections (Forét des Cédres, Ain Ghanem, and Kef Rzama), situated at 7 km,
12 km and 2.5 km northwest of Theniet EI Had city, respectively, and around 50 km northeast
of the Wilaya of Tissemsilt, and (2) the Chlef region with one main outcrop in Kef Maiz mount,
which is located 4 km north of Ouled Ben Abdelkader city and 20 km south-west of the Wilaya
of Chlef (Fig. 6).
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Fig. 6. Map showing the distribution of the main Numidian outcrops in the Ouarsenis

Mountains.
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2.2. DESCRIPTION OF THE STUDIED SECTIONS

2.2.1. KEF RZAMA SECTION

Figs. 8, 9

The Kef Rzama section (GPS-coordinates: N36°3.733’, E1°15.786') is 127 m thick. The
beds gently dip (10-15°) to the SSW, and strike at NNW-SSE. It includes two distinct units:

the lower unit (mud-dominated) and the upper unit (sand-dominated).

The lower unit: It consists of varicoloured marly mudstones (greenish to dark brown), with

rare discontinuous, fine grained, thin to very thin-bedded (2-15 cm) sandstone, beige, dark

brown to greenish in colour, showing rare trace fossils. The mudstone shows full relief trace

fossils, including Tubulichnium mediterraneum called “Tubotomaculum” in the former

literature, and rare Alcyonidiopsis isp.
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The upper unit: It is made up of yellowish to fair grey, fine to very coarse-grained,
conglomeratic in some parts, thin to very thick-bedded sandstone (0.07—6 m thick) alternating
with greenish mudstone and grey siltstone (0.05-3 m thick). All the sandstone beds are
discontinuous, with normal, inverse grading or ungrading, and show commonly sharp base and
sharp top. The normally graded sandstone shows commonly erosive bases with sole structures
(flute casts, groove casts). It includes also plane-parallel, ripple cross-laminations, and rarely
load casts. The inversely grading occurs at the base of very thick bedded-pebbly sandstone with
erosive bases. Ungraded sandstone beds are commonly thick to very thick, either structureless
or showing some bedding. Fluid escape structures and slump structures are present in them.
Convolute lamination occurs in fine-grained sandstone beds in association with other Bouma
divisions or separately within siltstone beds. The load casts occur commonly on the sole of fine-
grained medium-bedded sandstone. The siltstone beds show plane-parallel lamination and
convolute lamination in some parts. The mudstone dominated parts include thin bedded-
siltstone/fine-grained thin-bedded sandstone showing ripple cross lamination and plane-parallel

lamination.

Fig. 8. Panoramic view of the Kef Rzama section showing the lower and upper units.
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Fig. 9. Lithological column of the Kef Rzama section with indication of the numbering of beds

and sedimentary structures.
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2.2.2. AIN GHANEM SECTION
Figs. 10, 11

The Ain Ghanem section (GPS-coordinates: N35°47.841’, E1°56.413’) is 154 m thick. The
beds weakly dip (10-15°) to the NNE and strike at ESE-NNW. Two main units have been
distinguished: the lower unit (mud-dominated) and the upper unit (sand-dominated).

The lower unit: It consists of the varicoloured (greenish to dark brown) marly mudstones,
which are very rich in full relief trace fossil Tubulichnium mediterraneum called
“Tubotomaculum” in the former literature, including discontinuous intercalations of very thin
to thin siltstone lenses and fine- to medium-grained thin, medium to rarely thick bedded
sandstone (0.03-0.75 m), beige to yellowish, dark brown to greenish in colour, scattered
randomly within the mudstone. Sandstone beds are generally deformed, showing different dip
angles. They are rarely structureless. Most of them show depositional sedimentary structures
(horizontal laminations, cross lamination, ripple marks, groove casts, flute casts) and soft
sedimentary deformation structures (convolute laminations, fluid escape structures). The
thinner beds are intensively bioturbated. A single thin limestone bed (0.07 m), greenish in
colour, alternating with thin-bedded sandstones is present. The siltstone occurs as thin

discontinuous lenses within the mudstone.

Fig. 10. Panoramic view of the Ain Ghanem section, showing the lower unit, varicoloured marly

mudstone, and the upper unit (sand-dominated).

The upper unit: It consists of coarse- to fine-grained, very thick- to thin-bedded sandstone
(0.05-6 m), yellowish to beige, dark brown to greenish in colour including some intercalation
of mudstone/siltstone (0.05-3 m). The mudstone dominated parts include thin- to medium-
bedded sandstone with ferruginous irregular levels rich in Tubulichnium mediterraneum;

siltstone as thin layers or discontinuous lenses; some septarian nodules occur. The sandstone
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beds are dominated by ungraded beds, showing convolute laminations and fluid escape

structures. Normally graded beds show commonly flute casts, groove casts, longitudinal scours,

horizontal lamination, and ripple marks. Mud clasts occur commonly in the upper part of the

thick- to very thick-bedded sandstone.

Ain Ghanem section
Lower unit (mudstone-
dominated)
N35°47.841' E1°56.413'E
(Upper Oligocene)

Ain Ghanem section
Upper unit (sandstone-

dominated)

(Lower Miocene)

Photography
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Fig. 11. Lithological column of the Ain Ghanem section with indication of the numbering of
beds and sedimentary structures.
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2.2.3. KEF MAIZ SECTION
Figs. 12, 13

The Kef Maiz section (GPS-coordinates: N36°3.733' / E1°15.786") is 233 m thick. Beds
are tabular in general, striking at NNE— SSW. The section includes two distinct units: the lower

unit (mud-dominated) and the upper unit (sand-dominated).

The lower unit: It consists of varicoloured marly mudstones (greenish to dark brown),
including some lenticular intercalations of bioturbated fine-grained, medium to thin bedded
sandstone (3—-30 cm), yellowish to beige, dark brown to greenish in colour. These beds are
highly deformed, showing in some cases convolute lamination, whereas the thinner beds show
intense bioturbation. Moreover, some deformed thick-bedded sandstone (0.30—2 m), yellowish

to beige in colour, was observed as a random isolated mass within marly-mudstone.

Fig. 12. Panoramic view showing the lower and upper units of the Kef Maiz section.

2.2.3.2. The upper unit: It is made up of greenish, yellowish to fair grey, fine to very coarse-
grained, thin to very thick-bedded sandstone (0.05-7 m thick) alternating with greenish
mudstone and siltstone (0.07-1.10 m thick) showing in some parts shale fissility. Conglomerate
is very rare and occurs as thin gravelly horizons within normally graded sandstone beds. All the
sandstone beds have an uneven thickness, with normally-grading or an ungrading and show
commonly sharp base and sharp top. Normal graded sandstone shows a commonly irregular

base with flute casts, groove casts, amalgamation, ripple marks, and incomplete Bouma
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sequence (Ta, Toe, Tabe, Tance) With rare fluid escape structures. Convolute lamination occurs
separately within siltstone and fine-grained sandstone beds or in association with other Bouma
divisions. The ungraded sandstone beds are commonly thick to very thick and show commonly
fluid escape structures (pipes, dishes and convolute lamination). The load casts occur commonly
on the soles of fine-grained medium sandstone beds. Mud clasts (0.2—-10 cm long) are common
at the top of medium, thick- to very thick sandstone beds. The mudstone dominated parts include
fine-grained thin to medium-bedded sandstone intensively bioturbated and siltstone yellowish
to grey in colour as thin lenses within mudstone. Thin to thick silty sandstone, friable beds
(0.07-0.80) were observed below the very thick-bedded sandstone.

Kef Maiz section
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2.2.4. FORET DES CEDRES SECTION
Figs. 14, 15

This section (GPS-coordinates: N35°52.469', E1°57.020") is well exposed in a road cut;
however, only the sand-dominated unit (upper unit) is observed. It is 56 m thick and dominated
by sandstone beds (89% of the section) intercalated with mudstones. The beds are in the
overturned position steeply dipping (60—70°) towards the SW and striking at approximately
150° (i.e. NNE-SSW). Some faulted/folded beds show gentler dipping. It consists of beige to
pale grey/white, fine- to very coarse-grained, medium- to very thick-bedded sandstones (0.15—

11 m thick), alternating with greenish to grey, thin silty mudstone units (0.10-0.30 m thick).

Fig. 14. Panoramic view of the Forét des Cédres section (A) The lower part, (B) Succession of
medium-to thick-bedded sandstone in the middle part of the section.

The sandstone beds are either normally-graded or ungraded. Many of the thicker beds show
irregular erosional bases covered by a variety of different sole structures (groove casts, flute
marks). At the top, they contain greenish mud clasts, which are 0.2-20 cm long. Most of the
thinner sandstone beds are generally fine- to medium-grained, rich in muscovite and trace
fossils. They show horizontal, plane-parallel lamination, and more rarely, ripple lamination.
Post-depositional deformation structures are common in some beds, especially in fine- to
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medium-grained sandstones, including slide and slump structures, load casts, ball-and-pillow
structures and fluid escape features. Most of these beds show a sharp and planar base, rather
than erosive. Both thickening-up and thinning-up trends are present in some parts.

The top of this section shows thicker mudstone intervals (0.05-1.50 m thick). It includes
fine- to medium-grained sandstone beds, 0.10-0.15 m thick, with load casts at their base and

ripple marks at their top.

Forét des Cedres section
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(Lower Miocene) Photography
N 35°52.469' E 1°57.020'

56
m

26

3 m more ' 129 5

23

20

S =

NN

r oo~ ©

B
é S

[

(ERY:
SV

3¢S T

= NOAMO O N ®

B

e
clvf fmcve

Fig. 15. Lithological column of the Forét des Cédres section with indication of the numbering
of beds and sedimentary structures.
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2.3. PARTIAL CONCLUSIONS

The Numidian Formation in the Ouarsenis Mountains is represented by the four sections
described above of siliciclastic deposits with intercalated hemipelagic mudstones. These
sections are subdivided into two main informal lithostratigraphic units: (1) the lower unit (mud-
dominated) made up of varicoloured mudstones (greenish to dark brown) with abundant full
relief trace fossil Tubulichnium mediterraneum and rare ?Alcyonidiopsis isp., including isolated
bodies of sandstone and mudstone alternations or discontinuous thin-bedded, fine grained-
sandstone; (2) the upper unit (sand-dominated) consists of beige to pale grey/white, fine- to very
coarse-grained, conglomeratic in some parts, medium- to very thick-bedded sandstones,
alternating with greenish to grey, thin silty mudstone. The contact between these two units is
unclear (covered) in the study area; it is marked by a lithological change. The two upper and
lower aforementioned units are present in three of the four sections; the Forét des Cedres section
comprises only the sand-dominated upper unit.

Based on lithological similarities and biostratigraphic data, correlation between the
lithostratigraphic subdivisions here and in the NF of Great Kabylia shows that the lower unit in
the study area, dated to the Upper Oligocene by Mattauer (1958) is considered as an equivalent
of the lower member in Great Kabylia, dated to the upper Oligocene, and the upper unit as an
equivalent of the middle member, which is dated to the Lower Miocene in Great Kabylia
(Raymond, 1976).

Investigations of the calcareous nannoplankton and foraminifers by the author of the thesis
are based on several samples. Samples from the lower units contain rare agglutinated
foraminifers, such as Glomospira sp., Ammodiscus sp., Paratrochamminoides sp.,
Haplophragmoides sp., Trochamminoides sp., and Recurvoides sp. Unfortunately, samples
from the upper unit appeared to be barren, similarly to previous attempts to find microfossils
there. Unlike calcareous nannoplankton and foraminifers, investigations of dinoflagellate cysts
in the lower and upper units of the studied sections gave positive results. Both units yielded
rich, although taxonomically impoverished, dinoflagellate cyst assemblages associated with
other aquatic palynomorphs. Biostratigraphic interpretation of the assemblages from the interval
studied is difficult and imprecise so far, but it suggests a time span from the late Paleogene to

early Miocene.
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3.1. INTRODUCTION

The NF deposits in the sections studied consist of siliciclastic turbidites associated with
hemipelagic mudstones. They are organized into two lithostratigraphic units except for the
Forét des Cédres section, which shows only the sandstone dominated upper unit. Ten thin
sections were prepared and examined under polarizing microscope to confirm lithological
determinations in the field and obtain a brief overview of the mineralogical content. The
sandstone composition shows a quartz-dominated mineral assemblage, with a minor
contribution of feldspar, muscovite, and polycrystalline quartz. Dispersed grains of heavy
minerals include zircon, tourmaline, glauconite, and opaque minerals (Fig. 16).

This chapter focuses on the study of lithofacies, their interpretations, and their association
to give an overview on the depositional environment. The distribution and occurrence of trace
fossils is marked in the lithological columns and mentioned in the description of lithofacies
according to their occurrence. The occurrences and abundance of trace fossils are summarized
in Table 3.

3.2. LITHOFACIES

Based on bed thickness, sedimentary structures, grain size, texture, and petrographic

content, eight distinct facies have been identified (Table 1).

3.2.1. Structureless sandstone (F1)
Fig. 17A, B

This facies consists of fine- to medium-grained, thick- and very thick-bedded sandstones,
commonly occurring as a package of amalgamated layers, 0.40—11 m thick and <150 m wide.
Individual layers do not show any grading but have sharp, erosional lower boundaries, sharp
upper boundaries, and uneven thicknesses. They tend to be structureless, except for some soft-
sediment deformation structures, which include fluid-escape structures and load casts. The
fine-grained sandstones, which mostly constitute the upper parts of the layers, are rich in
muscovite and floating mud clasts. Such layers are occasionally overlain by greenish
mudstone with discontinuous siltstone laminae. Trace fossils are absent.

This facies is interpreted to represent deposition from rapidly decelerating concentrated
density flows (cf. Arnott and Hand, 1989; Kneller and Branney, 1995) or rapid mass
deposition due to intergranular friction in a concentrated dispersion (cf. Pickering and Hiscott,
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2015). On a small scale, these beds are comparable to division S3 of Lowe’s (1982) sequence
and to facies F8 of Multti (1992).

angular quartz grains associated with rare feldspars (F), Muscovite (M), sparite cement (S),

Kef Maiz section; (B) Quartz rich thin section including glauconite (G), and zircon grains (z),
Forét des Cédres section; (C) Polycrystalline quartz grains (PQ), Forét des Cedres section; (D)
Coarse cracked quartz grain (Q) with zircon crystal (Z), Forét des Cedres section; (E)

Tourmaline crystal (T), Forét des Cedres section; (F) Muscovite (M), Forét des Cedres section.
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Fig. 17. Photographs of the main described lithofacies. (A) Massif sandstone bed (F1), Forét
des Cedres section; (B) Massif sandstone bed (F1), Ain Ghanem section; (C), (F)
Conglomerates rich in mudstone clasts (F5), upper unit of Kef Rzama section; (D), (E), (G)
Inversely-graded pebbly sandstone to parallel stratified sandstone (F3), upper unit of the Kef
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Rzama section; (H) Reverse grading in F3, upper unit of Kef Rzama section; (I), (J) Normal

grading (F2) from the upper unit of the Ain Ghanem section.

3.2.2. Normally-graded, medium- to very coarse-grained sandstone (F2)
Figs. 17E, J, 18A—-E, 19A-H

Facies F2 consists of one bed or a package of two to four beds of medium- to thick-bedded
sandstones (10-80 cm thick), which show uneven thicknesses. The sandstones are medium-,
coarse- to granule-grained and show normal grading. Their soles show abundant scour marks
(qutter casts, flute casts, crescent marks, gutter casts, longitudinal ridge, furrow marks,
frondescent marks), tool marks (groove casts), (Fig. 19A-H). Sedimentary structures are
frequent, mostly parallel and convolute laminations. In some beds, the normally graded part
is followed by plane parallel lamination and occasionally by convolute lamination and ripple
cross-lamination. Fluid-escape structures are rare. Some beds show amalgamation. The beds
are often overlain by laminated silt- and or mudstone. Greenish floating mud clasts of 0.2-5
cm in size are randomly distributed in the upper part of some beds. Trace fossils are rare;
Thalassinoides isp. is present within normally graded intervals, and Ophiomorpha rudis
occurs within intervals with parallel lamination.

This facies is interpreted to probably represent concentrated density flows. The normally
graded intervals equivalent to the Ta intervals of Bouma (1962) were deposited grain-by-grain
from suspension, with rapid burial and no significant traction transport on the bed (Pickering
and Hiscott, 2015). The successive Bouma intervals Ty, Tc, and Tq in the upper part of the
layers probably resulted from the continuous deposition by a low-density turbidity current
characterized by occasional phases of sediment reworking or bypassing (Talling et al., 2012).

Sole marks are very common within this facies, mostly in the Forét des Cedres section,
where they are clearly seen on the bases of the overturned beds. A new type of flute-mark
structure (Fig. 19) has been documented for the first time on the base of medium-grained
sandstone beds (F2) in this section (Menzoul et al., 2019). These features are designated as
curved flute marks. It is suggested that they are the result of the flow interaction with an
obstacle or an irregular relief on the sea floor in the path of a strong turbidity current. Similar
features were generated in laboratory simulations by Dzutynski (1965) and have never been
documented from the field.
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Fig. 18. Photographs of some sole marks from the sections studied. (A), (B) Groove casts

within F2, Forét des Cedres section; (C) Casts of mud ripples within F2, Forét des Cedres
section; (D) Flute casts associated with flute-loaded within F2, Forét des Cedres section; (E)

Small-size flute casts within F4, Forét des Cedres section.
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Fig. 19. Photographs of other sole marks from the sections studied. (A), (B) Casts of
longitudinal scours (ridge and furrow structures) within F2, upper part of the Ain Ghanem

section; (C), (D) Gutter casts within F2, Forét des Cédres section; (E), (F), (G), (H)
Frondescent mark casts, F2 sandstone, Forét des Cedres section.
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Fig. 20. Photographs of the Curved flute structure; (A), (B) panoramic photographs of the
curved flute structure, Forét des Cédres section; (C) structure obtained experimentally by
Dzutynski (1965) described as asymmetrical flute.

3.2.3. Inversely-graded pebbly sandstone to parallel stratified sandstone (F3)
Figs. 17D, E, G, H

Facies F3 occurs only once in the Kef Rzama section as a thin package (2—2.60 m thick)
of amalgamated sandstone beds This package begins with an erosional surface. The lower
part of the package shows repetitive intervals of inversely graded pebbly sandstones followed
by normally graded sandstones and is overlain by sandstone with climbing ripples (ripple drift
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cross-lamination). The upper part of the package is composed of repetitive amalgamated
layers of medium- to coarse-grained sandstone (10—15 cm thick). Each of these layers has an
erosional base; they show inverse grading in the lower part, and massive sandstone in the
upper part. Groove casts are common on the sandstone soles. The whole package is overlain
by mudstones alternating with siltstones.

The reverse grading is interpreted to result probably from the “kinetic sieve” process,
whereby coarser grains rise to the top because of sheared dispersion (Middleton, 1970), or
from coarser sub-populations of grains lagging behind finer sub-populations along the
transport path (Hand and Ellison, 1985). The sediments were deposited by concentrated
density flows (cf.

Pickering and Hiscott, 2015) generating climbing ripples due to simultaneous settling from
suspension, with some episodes of bypass (Lowe, 1982). The lower part of the inversely
graded beds reflects a traction carpet, similar to the facies F5 of Mutti (1992) and the division
S2 of Lowe (1982). The overlying parallel stratified sandstone layers are identical to those
that were first described by Hiscott and Middleton (1979) and later referred to as "spaced
stratification™ by Hiscott (1994b); they are interpreted as a result of concentrated density
flows, in which the lower erosional surface and the inversely graded intervals are formed by
repeated burst/sweep cycles of large turbulent eddies, and of which the overlying massive part

is formed by rapid fallout from suspension. No trace fossils have been found in this facies.

3.2.4. Medium- to fine-grained sandstone (F4)

This facies consists of medium- to thin-bedded sandstones (3—-30 cm thick) with uneven
thicknesses Individual layers extend over less than 100 m in the outcrops. Some layers are
structureless, whereas others show parallel and/or convolute lamination; rare load casts are
present on their soles. Most layers are overlain by mudstone and siltstone. Occasionally, this
facies occurs as a unit composed of 2—4 sandstone layers separated by very thin layers of
mudstone. Trace fossils are common in the thinner beds; almost all the ichnotaxa mentioned
in the present study are present. They include (1) pre-depositional taxa (Spirophycus bicornis,
Spirophycus isp., Oravaichnium isp., Phycodes isp., Thorichnus isp., Squamodictyon
tectiforme, Megagrapton irregulare, ?Arthrophycus tenuis, Cosmorhaphe lobata, C. sinuosa,
Gordia arcuata, Helminthoidichnites isp., Helminthopsis isp., Paleomeandron rude,
Rutichnus isp., Paleodictyon strozzii) and (2) post-depositional taxa (Planolites montanus, P.
beverleyensis, ?Planolites isp., Siphonichnus isp., Nereites isp., Chondrites isp., Phycosiphon
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incertum, Taenidium isp., Lophoctenium isp., ?Scolicia vertebralis, S. strozzii, Gyrochorte
isp., Zoophycos isp., Oravaichnium isp., Halimedides isp., Ophiomorpha annulata, O. rudis,
Palaeophycus tubularis, Palaeophycus striatus, Palaeophycus isp., ?Parataenidium isp.,
Thalassinoides isp., Tubulichnium rectum, Lockeia isp., and Diplocraterion isp.). In contrast
to the thin layers with abundant trace fossils, the thicker layers are poorly bioturbated. They
may contain Thalassinoides isp., Diplocraterion isp., and Zoophycos isp.

The sediments of this facies are interpreted to have probably been deposited by low-

density turbidity currents. Their internal structures correspond to the Bouma (1962) intervals
Ta, Tc, Td, and Te.
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Fig. 21. Photographs of soft-sediment deformation structures from the sections studied. (A),
(B) Fluid-escape structures (dish structures) within F1, upper unit of the Kef Maiz section;
(C), (D) Fluid-escape structures, F2, lower unit of the Ain Ghanem section; (E), (F) Load

casts, F1, Forét des Cedres section.

3.2.5. Conglomerates rich in mudstone clasts (F5)
Fig. 17C, F

This facies occurs only in the Kef Rzama section. It is built of very fine- to- medium-
grained, very thick-bedded, massive, muddy pebbly sandstones, organized in bodies of
variable thickness (1-4 m). The sandstones contain dispersed quartz pebbles, but also
contorted huge siltstone and mudstone clasts of up to one metre in size (Fig. 17F). However,
most clasts are smaller in size, thus forming intraformational mudstone clasts. These clasts
are built of gently to highly folded siltstones, mudstones, or sandstones (similar to facies F4),
which show deformed lamination, and ball-and-pillow structures. The lower and upper
boundaries of these layers are highly uneven, commonly resulting in a lens shape of the whole
body

This facies is interpreted to have been deposited by cohesive debris flows and mudflows

(cf. Talling et al., 2012; Pickering and Hiscott, 2015 and references therein).

3.2.6. Strongly deformed sand/siltstones (F6)
Figs. 22A, B, 23B

This facies is characterized by abundant soft-sediment deformation structures (SSDS),
commonly within fine- to medium-grained sandstones and siltstones. Deformations range
from centimetre-scale (Figs. 22A, B) contorted lamination to slump folds in metre-scale thick-
bedded sandstones (Fig. 23B). Contorted lamination commonly occurs within fine-grained,
thin- and medium-bedded sandstone/siltstone layers. Fluid-escape structures are common
within massive sandstones. Load casts are common on the soles of massive, medium- to fine-
grained sandstone layers. Most large folds occur within fine- to medium-grained, medium- to
very thick-bedded (dm to m) sandstones, commonly in the sand-dominated part between
undisturbed layers or as isolated units in the mud-dominated part of some sections. Ball and

pillow structures are common.
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The SSDS are interpreted to represent gravitational instabilities (cf. Allen, 1982; Owen,
1996), reflecting slumping (Allen, 1982). No trigger mechanism can be deduced with any
certainty from the field data, but earthquakes, sediment overloading and wave action seem the
most likely (Owen, 2008).

3.2.7. Mudstones with intercalated sand/silt/mudstones (F7)
Figs. 22C, B

Facies F7 consists of light green, light grey to dark grey laminated mudstones, 5 cm to 3
m thick. Some parts of the mudstones contain intercalations that start with thin- to very thin-
bedded, parallel-laminated sandstone grading into siltstone and mudstone (Fig. 22C),
representing Bouma’s (1962) Tq and Te intervals. These intercalations may form lenses. This
facies occurs within all previously described facies.

The Bouma divisions can be compared with Stow’s (1980) divisions T6 and T7. This
facies results from suspension fall-out during a final gravity flow event associated with

hemipelagic sedimentation (Stow and Piper, 1984).
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Fig. 22. Photographs showing some soft-sediment deformation structures with incomplete
intervals of Bouma sequences within the studied sections. (A), (B) Deformed bed (F6), the
lower unit of the Ain Ghanem section; (C), (D) Ball-and-pillow structures within F6, the Forét
des Cédres section; (E) Incomplete Bouma sequence (F2), the upper unit of the Kef Maiz

section; (F) Incomplete Bouma sequence (F2), the lower unit of the Ain Ghanem section.

3.2.8. Marly mudstones (F8)
Fig. 23A, B

Facies F8 constitutes the main component of the lower unit in almost all four sections. It
consists of greenish, reddish to dark brown, grey to dark grey massive marly mudstones (Fig.
23A), with 1.11-23% CaCOs. The trace fossils ?Alcyonidiopsis isp. and Tubulichnium
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mediterraneum are abundant. There are some discontinuous intercalations of siltstones and
thin-bedded fine-grained sandstones, with a ferruginous rusty to brownish colour, with locally
parallel lamination. Septarian concretions are common. Isolated slump/slide-deformed,
medium to fine-grained sandstones of facies F6 occur as rare intercalations (Fig. 23B). A
preliminary biostratigraphic investigation showed the occurrence of rare agglutinated
foraminifers such as Glomospira sp., Ammodiscus sp., Paratrochamminoides sp.,
Haplophragmoides sp., Trochamminoides sp., and Recurvoides sp.

The mudstones are interpreted to have been deposited by suspension settling from a mud
cloud after flow cessation and from hemipelagic processes and suspension fall-out during the

final phase of gravity flow events. The rare silt/sandstone intercalations result from low-
density turbidity currents (Stow and Piper, 1984; Pickering et al., 1986; Stow et al., 1996;
Stow and Tabrez, 1998).
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Fig. 23. Photographs of the lower unit of the studied sections; (A) Varicoloured marly
mudstone, F8, lower unit of the Ain Ghanem section; (B) Soft-sediment deformed

sandstone, F6, lower unit of the Kef Maiz section.
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Table 1. Lithofacies of the Numidian Formation in the study area, with their corresponding sedimentary structures, trace fossils and interpretation of
the depositional processes.

litho-facies

primary sedimentary  Trace fossils

structures

interpretation of the depositional

process (es)

F1: Structureless

massive sandstones

hydroplastic deformations,
fluid-escape structures
(pillars and dish structures),

load casts

concentrated density flows,
deposited from rapidly
decelerating flows (Arnott and
Hand, 1989; Kneller and Branney,
1995)

F2: normally-
graded, medium- to
very coarse-grained

sandstones

parallel lamination, ripple

cross-lamination, scour

marks (gutter casts, flute

casts, scours around

obstacles, gutter casts, Thalassinoides isp., Ophiomorpha rudis
longitudinal ridge and

furrow marks, and

frondescent marks), tool

marks (groove casts),

rare convolute lamination

and fluid-escape structures

concentrated density flows; the
normally graded intervals (Ta
intervals of Bouma, 1962) were
deposited grain-by-grain from
suspension, with rapid burial and
no significant traction transport on
the bed (Pickering and Hiscott,
2015)
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F3: inversely-

graded pebbly S o
climbing ripple lamination,
sandstones to
. groove casts
parallel-stratified

sandstones

concentrated density flows
(Pickering and Hiscott, 2015)

F4: medium- to abundant convolute
fine-grained lamination, parallel

sandstones lamination, rare load casts

Spirophycus bicornis, Spirophycus isp.,
Oravaichnium isp., Phycodes isp., Thorichnus
isp., Squamodictyon tectiforme, Megagrapton
irregulare, ?Arthrophycustenuis, Cosmorhaphe
lobata, C. sinuosa, Gordia arcuata,
Helminthoidichnites isp., Helminthopsis isp.,
Paleomeanderonrude, Rutichnus isp.,
Paleodictyon strozzii) and (2) post-depositional
taxa (Planolites montanus, P. beverleyensis,
?Planolites isp., Siphonichnus isp., Nereites isp.,
Chondrites isp., Phycosiphon incertum,
Taenidium isp., Lophoctenium isp.,?Scolicia
vertebralis, S. strozzii, Gyrochorte isp.,
Zoophycos isp., Oravaichnium isp., Halimedides
isp., Ophiomorpha annulata, O. rudis,

Palaeophycus tubularis, Palaeophycus striatus,

low-density turbidity currents
(Stow & Shanmugam, 1980)
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Palaeophycus isp.,?Parataenidium isp.,
Thalassinoides isp., Tubulichnium rectum,

Lockeia isp., and Diplocraterion isp.

F5: conglomerates

with mudstone

folded sandstone beds,

convolute lamination, ball

cohesive debris flows and
mudflows (Talling et al., 2012;
Pickering and Hiscott, 2015 and

clasts and pillow structures )
references therein)
convolutions are related to
F6: convolute lamination fluidization processes, which

sandstone/siltstone
deformed while still
unlithified

within the siltstones, ball
and pillow structures slump

folds within the sandstones

create gravitational instabilities
(Allen, 1982; Owen, 1996); the
slump folds resulted from slope-
down shear stress (Allen, 1982)

F7: mudstones with
siltstone and
sandstone

intercalations

parallel lamination

suspension fall-out during a final

gravity flow event associated with

hemipelagic sedimentation (Stow
and Piper, 1984)

F8: varicoloured

marly mudstones

parallel lamination

Alcyonidiopsis isp., Tubulichnium mediterraneum

suspension settling of hemipelagic

processes and suspension fall-out

during last phase of a gravity flow
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3.3. DESCRIPTION OF THE STUDIED SECTIONS

Facies and facies association are mentioned here in the description of the sections. The

distribution of trace fossils is marked in the lithological columns (Figs. 24-28).

3.3.1. Forét des Cedres section
Fig. 24

This section contains only the sand-dominated upper unit of the NF. It belongs to FAL, and
consists of beds of facies F1, F2, and F4 (0.15-11 m thick), alternating with facies F7 (0.10—
0.30 m thick). The sandstone beds (F4) are generally rich in muscovite and contain trace fossils.
Post-depositional deformation structures are common in a few beds, especially in fine- to
medium-grained, non-graded sandstone beds (F1), including slump folds, load casts, and fluid
escape features. The uppermost part of this section shows thicker mudstone intervals (F7)
(0.05-1.50 m thick), including beds of facies F4, which are 0.10-0.15 m thick.

3.3.2. Kef Maiz section
Figs. 25, 26

The section includes two distinct units: (1) a lower unit which is mud-dominated (FA3)
and consists of facies F8, contains isolated bodies of FA2 and alternations of mudstones and
beds of F4 (3—-30 cm); facies F4 is commonly deformed and very rich in trace fossils. Isolated
very thin- to thin-bedded sandstones of facies F4 occur separately within the mudstones.

Deformed thick-bedded sandstones (F6) (0.30—2 m) occur randomly as isolated masses
within marly mudstone (F8); (2) the upper unit dominated by sand- (FA1), composed of beds
of facies F1, F2, and F4 (0.05-7 m thick) alternating with facies F7 (0.07-1.10 m thick).
Conglomerates are very rare and occur in thin layers within the sandstone beds (F2). The
mudstone dominated intervals (F7) contain beds of facies F4 which are rich in trace fossils.
Thin to thick beds of friable (non-cemented) silty sandstones (0.07-0.80 m thick) occur between
beds nos. 25 and 26.

3.3.3. Kef Rzama section
Fig. 27

This section comprises (1) a lower unit dominated by varicoloured mudstones (facies

association FA3), very rich in full relief trace fossils Tubulichnium mediterraneum and rare
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?Alcyonidiopsis isp., and (2) an upper unit, which is sand-dominated (FA1) and consists of
facies F1, F2, F3, F5, and F4 (0.07-6 m thick) alternating with facies F7 (0.05-3 m thick).

3.3.4. Ain Ghanem section
Fig. 28

This section includes (1) the unit, mud-dominated (FA3), with the abundant full relief trace
fossil Tubulichnium mediterraneum, including isolated bodies of FA2, composed of an
alternation of mudstone and beds of facies F4, F2 (0.03-0.75 m), commonly deformed, and in
an overturned position, showing different dip angles. The thinner beds of facies F4 are
intensively bioturbated. A single thin limestone bed (0.07 m), greenish in colour, occurs within
a series of thin beds of facies F4; (2) the upper unit is sand-dominated (FA1), composed of beds
of facies F1 and F2 (0.05-6 m), including a few intercalations of facies F7 (0.05-3 m). The
mudstone dominated intervals (F7) include thin ferruginized beds (F4) rich in Tubulichnium

mediterraneum and septarian concretions.
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Fig. 24. Lithological column of the Forét des Cédres section with indication of the numbering

of beds, trace fossils and sedimentary structures.
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Fig. 25. Lithological column (part 01) of the Kef Maiz section with indication of the

numbering of beds, trace fossils and sedimentary structures.
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3.4. FACIES ASSOCIATIONS

The eight lithofacies can be grouped into three facies associations (FA1 through FA3). Each

facies association corresponds to a specific depositional sub-environment.

3.4.1. Sand-rich channel fills (FA1)

The facies association FA1 forms the upper part of the four sections studied. It consists
mostly of massive sandstones from facies F1, which form packages of amalgamated sandstone
layers, with or without mudstone intercalations of facies F7. Facies F2, F4 and F6 are less
common, and facies F5 is rare. FAL is 30—60 m thick and occurs in bodies up to150 m wide
which commonly show a thinning- and fining-upward trend. These bodies are interbedded with,
or pass laterally into, FA2. Facies F3 and F5 occur only in the upper unit of the Kef Rzama
section as isolated thick beds overlain by facies F7 and subsequently facies F1. Trace fossils
(Thalassinoides isp. and Ophiomorpha rudis) occur within the thinner sandstone layers.

FA1 is comparable to the massive sandstone facies, including deep-water massive sands
(DWMS) described by Stow and Johansson (2000) and interpreted as the product of high-
density turbidity currents and sandy debris flows. This facies association has also been reported
from the Numidian Formation of Sicily (Johansson et al., 1998) and Tunisia (Riahi et al., 2009;
Riahi et al., 2021).

The main features of FAL, such as the high sand content, the frequent erosional features,
amalgamation, lateral discontinuity of beds, and fining- and thinning-upward trends are
characteristic of a channel-fill environment (Mutti and Ricci Lucchi, 1975; Walker, 1978;
Hendry, 1978; Normark, 1978; Stow and Johansson, 2000; Huneke and Mulder, 2010).

3.4.2. Mudstone and sandstone alternations from channel margins,

channel/levee/overbank systems, crevasse-splays and lobes (FA2)

This facies association is built mainly by facies F4 and F7, and occasionally facies F2. It
is represented by fine-, medium- to coarse-grained, thin- to medium-bedded sandstones (a few
to 50 cm thick), alternating with thin- to very thick-bedded mudstones and siltstones (F7). The
sediments of this association form lenticular bodies (<50 m wide) in the transverse section. The
layers of facies F2 consist of incomplete Bouma intervals (Tae, Tade, Tae, Thde, Thede, Tcde), and

show thinning, thickening- and fining-upward trends.
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This facies association is interpreted as the product of medium- to low-density turbidity
currents that interrupt hemipelagic sedimentation. It occurs in three main stratigraphic
positions: (1) in the lower part (Upper Oligocene) of the Ain Ghanem and Kef Maiz sections
as isolated lithological units within the marly mudstone of facies F8, (2) in the lower part of
the upper unit of the Kef Maiz section, and (3) as intercalations with association FA1 in the
upper unit of all the sections under study here. These features jointly suggest deposition
within narrow submarine channels and/or in a crevasse-splay setting (Mutti and Ricci Lucchi,
1975; Walker, 1978; Hendry, 1978; Normark, 1978; Stow and Johansson, 2000; Huneke and
Mulder, 2010; Pickering and Hiscott, 2015 and references therein). The alternations of
mudstones and siltstones of facies F7 and the sandstones of facies F4, the folds, the
incomplete Bouma intervals, and the thinning- and fining-upward trends suggest deposition
within a channel/levee/overbank setting or a crevasse-splay setting (cf. Pickering et al., 1995;
Hubbard et al., 2008; Huneke and Mulder, 2010; Pickering and Hiscott, 2015). The upward
thickening of the beds, characterized by tabular morphology and a well-developed cyclicity

suggest deposition within lobes setting (Mutti and Ricci Lucchi, 1975).

3.4.3. Basin floor mudstones (FA3)

This facies association is composed mainly of facies F8 and is present in the lower unit of
three of the sections under study; it is not present in the Forét des Cédres section. It forms
isolated bodies of mudstone/sandstone alternations of facies association FA2 (F7 alternating
with F2 and F4, <50 m wide), slumped units of medium- to fine-grained sandstones (F6), and
rare thin- to very thin-bedded sandstones isolated within mudstones. Trace fossils are common
(?Alcyonidiopsis isp. and Tubulichnium mediterraneum). The latter trace fossil has also been
reported from the deep-sea Cretaceous-Palaeogene mudstones of the lower part of the
Numidian Formation in the Mediterranean region (Pautot et al., 1975).

The joint characteristics simply show that these sediments were deposited on a basin floor
or on a sloping apron cut by sparse, narrow channels. The channels were occasionally fed by
turbidites, which penetrated the channel levees and formed crevasse-splay deposits and small
lobes at their distal end. The abundance of facies F6, mostly in the Kef Maiz section, also

suggests deposition in a slope setting (cf. Stow and Johansson, 2000).

Table 2. Description and interpretation of the three facies associations of the Numidian
Formation in the study area.
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3.5. PARTIAL CONCLUSION

The sedimentological study of the NF in the Ouarsenis Mountains, NW Algeria, permit to
characterize eight main lithofacies including structureless sandstone (F1), normally-graded,
medium- to very coarse-grained sandstone (F2), inversely-graded pebbly sandstone to parallel
stratified sandstone (F3), medium- to fine-grained sandstone (F4), and mudclast conglomerates
(F5), soft-sediment deformed sandstone/siltstone (F6), mudstone with siltstone and sandstone
(F7), and varicoloured marly mudstone (F8). The association of these lithofacies yielded three
main facies associations, corresponding to the depositional subenvironment setting, including
(1) FAL sand-rich facies association deposited in the channel-fill setting. It occurs in the upper
part of all the studied sections; (2) FA2 mudstone and sandstone alternations facies association,
corresponding to channel margin, channel-levee-overbank, crevasse-splays and lobes. This
facies association occurs occasionally in the lower and the upper unit of the studied sections;
(3) FA3 mud-rich facies association deposited on the basin-floor or slope-apron settings, which
were cut by sparse, narrow channels, occurring in the lower unit of all the studied sections

except for the Forét des Cédres section.
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4.1. INTRODUCTION

Ichnology is the study of biogenic sedimentary structures formed by organisms (plants,
animals, and microbes) as a result of their life activity by modifying the original structure of
the substrate. It involves both disciplines, paleontology, and sedimentology. According to
(Schafer, 1956), two main categories of biogenic sedimentary structures are distinguished; (1)
trace fossils, which have a distinct shape with clear outlines, permitting their classification;
(2) biodeformational structures, do not show a definite shape nor a clear outline, and which
destroy the pre-existing structures (e.g., Wetzel, 1983).

Ichnology is considered a powerful tool for the recognition of the sedimentary
environment, especially when it is coupled with sedimentological and palaeontological data
(e.g., Buatois and Mangano, 2011). This chapter is dedicated to the study of trace fossils
occurring in the Numidian Formation of the Ouarsenis Mountains, including their detailed
systematic description, palaeoenvironmental significance, and a comparison with their
analogue deposits in the Mediterranean. The distribution and occurrence of trace fossils is
marked in the lithological columns and mentioned in the description of lithofacies according
to their occurrence in the third chapter. The occurrences and abundance of trace fossils are
summarized in Table 3. The data presented in this chapter have already been published in a
paper intituled ”Deep-sea trace fossils from the Numidian Formation (Upper Oligocene —

Lower Miocene) in the Ouarsenis Mountains, north-western Algeria“ (Menzoul et al., 2022).

4.2. SYSTEMATIC DESCRIPTION OF TRACE FOSSILS

4.2.1. Circular and elliptical structures

Lockeia James, 1879 Lockeia isp.
Fig. 29B, C

Description. A hypichnial, isolated, elongate, slightly curved, smooth, almond-shaped mound,
preserved in full relief. The two illustrated specimens are 13 mm long and 8 mm wide, and 9

mm long and 4 mm wide.

Remarks. Lockeia is commonly interpreted as a bivalve resting trace produced by its

wedgeshape foot (Seilacher and Seilacher-Drexler, 1994). However, small crustaceans may also
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produce such traces (Bromley and Asgaard, 1979). Lockeia in general occurs in marine and

non-marine environments since the ?late Cambrian (Fillion and Pickerill, 1990).

4.2.2. Spiral structures

Spirophycus Héntzschel, 1962
Spirophycus bicornis (Heer, 1877)
Fig. 29G, I, J

Description. Hypichnial, horizontal, semi-circular ridge ending with one spiral whorl. The
analysed specimens are 10-30 mm wide, at least 40-115 mm long, filled with the same material
as the host sediment, smooth or occasionally covered with rare tubercles and preserved in

semirelief. The spiral whorl is 48—-75 mm wide.

Remarks. Spirophycus has been considered as a preservational variant of Nereites MacLeay
(Wetzel vide Uchman, 1998). It is commonly reported in deep-sea turbiditic deposits (e.g.,
Seilacher, 2007).

Spirophycus isp.
Fig. 29F

Description. Incompletely preserved hypichnial smooth ridge with an incomplete circular
whorl at the end. The ridge is 6-9 mm wide, preserved in semi-relief and filled with the same
material as the host sediment. The whorl is 55 mm in diameter.

Remarks. Radius of the whorl with respect to the width of the ridge is larger than in

Spirophycus bicornis.

4.2.3. Simple and branched structures
Siphonichnus Stanistreet, le Blanc Smith and Cadle, 1980

Siphonichnus isp.
Fig. 29E
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Description. Hypichnial, circular, flat-top mound with steep flanks. It shows a circular
depression in the centre. The mound is 4.5-5.5 mm in diameter and the central depression is 2

mm in diameter.

Fig. 29. Elliptical, simple and branched structures from the Numidian Formation in the
Ouarsenis Mountains, NW Algeria. (A) Planolites montanus (PIm) and ?Palaeophycus isp. (P),
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hypichnial full reliefs; (B) Lockeia isp. (Lo) and Helminthoidichnites isp. (He), hypichnial full
and semi-reliefs, respectively; (C) Lockeia isp. (Lo) and Planolites montanus (PIm), hypichnial
full reliefs; (D) ?Planolites isp. (PI) and Thorichnus isp. (Th), hypichnial full and semi-reliefs,
respectively; (E) Siphonichnus isp. (Si), full relief manifested on the lower bedding surfaces
and Thorichnus isp. (Th), preserved in hypichnial semi-relief; (F) Spirophycus isp. (arrowed),
hypichnial semi-relief; (G), (1), (J) Spirophycus bicornis (arrowed), hypichnial semi-reliefs; (H)
Halimedides isp. (Ha) and Palaeophycus isp. (P), hypichnial semi-reliefs; (K) Oravaichnium
isp. (Or), ?Arthrophycus tenuis (Art), and Planolites beverleyensis (PIb), hypichnial full reliefs;
scale =1 cm.

Remarks. The described structure represents the bedding-plane preservation of a vertical or
oblique, cylindrical burrow with a median core, which can be assigned to Siphonichnus (for
similar preservational variants see Knaust, 2015). Siphonichnus is interpreted as a dwelling
trace of a suspension feeder (Stanistreet et al., 1980; Gingras and Bann, 2006; Gingras et al.,
2008; Dashtgard, 2011) or a pascichnion of bivalves such as tellinids (Knaust, 2015). It is
commonly reported from shallow-marine and marginal-marine deposits (Calver, 1968a, b;
Melvin, 1986; Pollard, 1988; Rippon and Apears, 1989), often related to salinity fluctuations
and freshwater influx (Knaust, 2015). Rarely, it is reported from deep-sea deposits (Krobicki et

al., 2006), which is also a case presented in this paper.

Arthrophycus Hall, 1852
?Arthrophycus tenuis (Ksigzkiewicz, 1977)
Fig. 29K

Description. Horizontal, subcylindrical, straight, simple ridges, covered with striations,

preserved as hypichnial semi-reliefs, 0.2—1 mm in diameter and traced for the length of 10 mm.

Remarks. ?Arthrophycus tenuis occurs in flysch deposits from the Valanginian (Ksigzkiewicz,
1977) to the (?) Lower Miocene (Alexandrescu and Brustur, 1981). Its assignment to
Arthrophycus has been questioned (Mangano et al., 2005), but a possible solution of this

problem requires separate studies.

Halimedides Lorenz von Liburnau, 1902
Halimedides isp.
Fig. 29H
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Description. Poorly preserved, hypichnial, horizontal, smooth, straight ridge, 1.5-3 mm wide
with irregularly oval or crescent chambers, each 3-8 mm wide and located symmetrically along

the ridge, 8-11 mm apart. The trace fossil is preserved in semi-relief.

Remarks. The taxonomy of Halimedides was discussed by Uchman (1999). Lukeneder et al.
(2012) distinguished the Halimedides Horizon within the Upper Barremian pelagic to
hemipelagic succession (Southern Alps in Italy), which is characterized by stiffgrounds and
firmgrounds developed below a discontinuity surface. Halimedides has been interpreted by
Gaillard and Olivero (2009) as an agrichnion deep-sea trace fossil, probably produced by small
crustaceans in stiff to firm substrates, where the chambers were used as traps and storage for
food. The densely chambered specimens were considered to indicate lower oxygenation, while
the sparse chambered point to higher oxygenation (Gaillard and Olivero 2009). Rodriguez-
Tovar etal. (2019) underlined the agrichnial/sequestrichnial behaviour of Halimedides after the
Toarcian Anoxic Event in the Lusitanian Basin, Portugal, and considered it as an indicator of

palaeoenvironmental changes.

Ophiomorpha Lundgren, 1891
Ophiomorpha annulata (Ksigzkiewicz, 1977)

Description. Cylindrical, straight or slightly curved, unbranched or rarely branched, horizontal
hypichnion. It is preserved in full relief, 3—7 mm in diameter and at least 100 mm long. Its

surface is smooth or rough locally.

Remarks. Ophiomorpha annulata is common in turbiditic facies (Uchman, 2001). It was

produced by small crustaceans (Uchman et al., 2004).

Ophiomorpha rudis (Ksigzkiewicz, 1977)

Figs. 30A, B, 31H,

Description. A hypichnial, tubular structure preserved in full relief, 2-9 mm in diameter, traced
for 30-110 mm. It shows Y- and T-shaped branches. It is smooth or displays a wall covered
with discoidal or ovoid pellets, which are 1-3 mm wide. The wall is smooth from the interior.
Remarks. Ophiomorpha rudis is the eponymous trace of the Ophiomorpha rudis ichnofacies,
which characterizes sand-dominated flysch deposits since the Tithonian (Tchoumatchenco and
Uchman, 2001; Uchman, 2009).
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Oravaichnium Plic¢ka and Uhrova, 1990
Oravaichnium isp.
Figs. 29K, 30D

Description. Hypichnial, horizontal, simple, curved to irregularly meandering, smooth ridges,

v-shaped in cross section, 1-8.5 mm wide, preserved in semi-relief.

Remarks. This trace fossil differs from Oravaichnium hrabei Plicka and Uhrova, 1990 by its
V-shaped cross section. O. hrabei occurs in Eocene turbiditic deposits and is interpreted as a
locomotion trace of wedge footed bivalves (Uchman et al., 2011)

Palaeophycus Hall, 1847
Palaeophycus tubularis Hall, 1847
Figs. 30F

Description. Hypichnial, horizontal to subhorizontal, simple, straight to curved, unlined
smooth semicircular ridge. It is filled with the same sediment as the host rock, preserved in full
relief, 5-7.5 mm wide and at least 75 mm long.

Remarks. Palaeophycus is commonly interpreted as a domichnion/pascichnion produced by
carnivorous or omnivorous invertebrates, mostly polychaetes (Pemberton and Frey, 1982;
Jensen, 1997). It occurs in a wide range of continental to marine palaeoenvironments (Knaust,
2017).

Palaeophycus striatus Hall, 1852
Fig. 30E

Description. Hypichnial, simple, horizontal to subhorizontal, straight to slightly curved,
semicircular ridge covered partially with longitudinal wrinkles and small mounds having the
same burrow orientation. This trace fossil is preserved as a hypichnial full relief filled with the

same sediment as the host rock, 5-6 mm in wide and 25 mm long.

?Palaeophycus isp.
Figs. 29A, H,
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Description. Hypichnial, horizontal to subhorizontal, semicircular curved to winding simple
ridge, 1.5-5.5 mm wide. The ridge diminishes its width along the course and terminates with
an irregular elongated swelling. It is preserved in full relief.

Remarks. Assignment of this trace to Palaeophycus is unsure due to the atypical change in

width and a swelling at the termination.

Planolites Nicholson, 1873
Planolites beverleyensis (Billings, 1862)
Figs. 29K, 30D, G

Description. Hypichnial, horizontal to slightly inclined, simple or branched, straight to
winding, smooth, cylindrical ridge, 3—7.5 mm in diameter, preserved in full relief.

Remarks. The trace fossil is ascribed to Planolites because there is no evidence of lining.
Planolites is interpreted as a pascichnion produced by infaunal deposit-feeding vermiform
organisms (Pemberton and Frey, 1982), occurring in a wide range of palaeoenvironments, from
continental and fresh water to deep-sea deposits (Keighley and Pickerill, 1995; Pemberton et
al., 2001). It can be abundant in deposits of well-oxygenated as well as dysaerobic environments
(Wignall, 1991, p. 268; Bromley, 1996).

Planolites montanus Richter, 1937
Figs. 29A, C

Description. Hypichnial, horizontal to inclined, simple, rectilinear to slightly curved,

subcylindrical smooth ridge, 1-3.5 mm in diameter, preserved in full relief.

Remarks. This trace fossil is distinguished by its short appearance on the bedding surfaces and

its irregular, commonly contorted course (Pemberton and Frey, 1982).

?Planolites isp.
Figs. 29D, 30C

Description. A hypichnial, horizontal, unbranched, straight, curved or winding semicylindrical
ridge, preserved in full relief or semi-relief, 5-8 mm in diameter and at least 10-30 mm long.

The diameter may change along the burrow.
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Remarks. The preservation in semi-relief does not permit to recognize if the burrows are lined
or not. Without that it is impossible to distinguish between Planolites and Palaeophycus.

Therefore, the trace fossil is reservedly described under Planolites.

Parataenidium Buckman, 2001
?Parataenidium isp.
Fig. 30H, I

Description. Epichnial, horizontal structure composed of a basal, slightly sinuous
semicylindrical burrow with menisci-like structures at the top. The structures are 6—22 mm

apart. The trace fossil is 9-24 mm wide and at least 140 mm long.

Remarks. The menisci-like structures are interpreted as the basal part of oblique, running up
protrusions. Parataenidium was made by an unknown organism which processed the sediment
and produced the structure mainly by the backfill action (Seilacher, 1990). The lower unit is
attributed to locomotion and the upper part to feeding (Buckman, 2001). The taxonomy has
been discussed by Uchman and Gazdzicki (2006).

Phycodes Richter, 1850
Phycodes isp.
Fig. 31A

Description. Hypichnial, horizontal to subhorizontal, poorly outlined, low, flat ridges that
diverge from a common stem. The ridges are straight to slightly curved, with a granulated
surface. Their termination is poorly marked and welded with the bedding surface. The ridges

are 2.2-4 mm wide and up to 45 mm long, preserved as semi-reliefs.

Remarks. Phycodes has been considered as a deposit-feeding trace made by annelids (Fillion
and Pickerill, 1990). It was commonly reported from shallow marine environments but has also
been found in brackish and deep-sea deposits (Hakes, 1985; Fillion and Pickerill, 1990; Han
and Pickerill, 1994a; Hanken et al., 2016; Jackson et al., 2016). Phycodes ranges from the early
Cambrian to the Miocene (Crimes, 1987, 1992; Han and Pickerill, 1994a).
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Fig. 30. Simple and branched structures, including a single ichnotaxon of network structures,
from the Numidian Formation in the Ouarsenis Mountains, NW Algeria. (A), (B) Ophiomorpha
rudis (arrowed), hypichnial full relief; (C) ?Planolites isp., hypichnial full relief; (D) Planolites
beverleyensis (Plb), hypichnial full relief; Oravaichnium isp. (Or), hypichnial semi-relief;
Paleodictyon strozzii (Pas) hypichnial semi-relief; (E) Palaeophycus striatus (Ps), hypichnial

full relief; Helminthoidichnites isp. (He), hypichnial semi-relief; (F) Palaeophycus tubularis
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(Pt), hypichnial full relief; (G) Planolites beverleyensis (Plb), hypichnial full relief; wash-out
?Planolites isp. (PI), hypichnial semi-relief; (H), (I) ?Parataenidium isp. (arrowed), epichnial

semi-relief; scale =1 cm.

Thalassinoides Ehrenberg, 1944
Thalassinoides isp.
Fig. 31B-E

Description. A hypichnial, horizontal or inclined tubular, branched ridge, 15-30 mm wide,
without lining. The filling is massive. The ridges are preserved in full relief, occasionally in
semi-relief. Three morphotypes are distinguished: (1) larger, showing Y-shaped branches, 30
mm wide and at least 250 mm long, occurring within medium to coarse-grained sandstone beds
(Fig. 31B, C), (2) smaller, with Y-shaped branches, 5 mm wide and at least 50 mm long, found
in thin, fine-grained sandstone beds (Fig. 31D), and (3) forms with an unspecified branching,

5-8 mm wide and 30-60 mm long, found in thin, fine-grained sandstone beds (Fig. 31E).

Remarks. Thalassinoides occurs in variable marine environments, commonly in shallow
marine settings (Palmer, 1978; Archer and Maples, 1984; Frey et al., 1984; Mangano and
Buatois, 1991; Pemberton et al., 2001), but also at greater depths (Uchman, 1995, 1998;
Uchman and Tchoumatchenco, 2003; Wetzel et al., 2007). It is produced mostly by crustaceans
and interpreted as a domichnion and fodinichnion (Frey et al, 1978; Schlirf, 2000).
Thalassinoides has been recorded since the Ordovician till the present (Swinbanks and
Luternauer, 1987).

Thorichnus Pokorny, 2017
Thorichnus isp.
Fig. 29D, E

Description. Horizontal, smooth to granulated, curved or winding, semi-circular to flattened
branched ridges, 2-0.5 mm in diameter. The branches are mostly short and run obliquely or
perpendicularly from the main ridge at irregular distances. Second-order branching is rare. The

trace fossil is preserved as a hypichnial semi-relief, traced for 25 mm.
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Remarks. The general morphological features fit to Thorichnus, which was described from the
Upper Miocene deep-lake turbiditic claystones and siltstones in SE Iceland and considered as a
fodinichnion produced by annelids or arthropod larvae (Pokorny, 2017).

Fig. 31. Simple and branched structures from the Numidian Formation in the Ouarsenis
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Mountains, NW Algeria. (A) Phycodes isp. (arrowed), hypichnial semi-relief; (B), (C)
Thalassinoides isp. (arrowed), larger form, hypichnial semi-relief; (D), (E), Thalassinoides isp.
(arrowed), smaller form, hypichnial full relief; (F), (G), (H) Tubulichnium rectum (Tr)
(arrowed), hypichnial semi-relief; (H) with Ophiomorpha rudis (Opr), hypichnial full relief;

scale =1 cm.

Alcyonidiopsis Massalongo, 1856
?Alcyonidiopsis isp.

Description. Simple, straight cylindrical endichnial burrow, 9-11 mm in diameter showing
randomly distributed, elongate pellets (1-3 mm in diameter) on the surface. The burrow is filled
with oxidized siltstone. It is preserved in full relief.

Remarks. Probably, originally the pellets filled the whole burrow, but diagenesis obliterated
their outline in the axial part of the burrow. Alcyonidiopsis is regarded as a polychaete feeding
burrow (Chamberlain, 1977; Uchman, 1999), although there is no convincing proof of that
(Rodriguez-Tovar and Uchman, 2004a, b). Alcyonidiopsis occurs in a wide range of

environments from the Ordovician to the Miocene (Uchman, 1999).

Tubulichnium Ksiazkiewicz, 1977

Tubulichnium mediterraneum (Garcia-Ramos, Mangano, Pifiuela, Buatois and Rodriguez-
Tovar, 2014)

Fig. 32A-C

Description. An endichnial tubular structure preserved in full relief, 5-20 mm diameter and
10-70 mm long, covered with elongated pellets, which are 1-2 mm long, and 0.7-1 mm wide.

In some specimens, the longer axis of these pellets follows the burrow course.

Remarks. This trace fossil was re-described under the ichnogenus Tubotomaculum (Garcia-
Ramos Mangano, Pifiuela, Buatois and Rodriguez-Tovar., 2014) but it is considered an
ichnospecies of Tubulichnium Ksiazkiewicz, 1977 (Uchman and Wetzel, 2017). So far, it has
been found in the deep-sea Cretaceous-Paleogene deposits in the Mediterranean region,
especially in mudstones of the lower part of the NF (Pautot et al., 1975), where it is abundant
in the varicoloured clays (Durand Delga, 1955; Broquet, 1968; Wezel, 1968; Moretti et al.,
1988).
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Tubulichnium rectum (Fischer-Ooster, 1858)
Fig. 31F, G, H

Description. Oblique to horizontal, unbranched, blindly ending tube with margins densely lined
with ellipsoidal muddy pellets. The trace fossil is 4—7 mm wide and 27-60 mm long. The long

axis of the pellets measures 1-2 mm.

Remarks. Tubulichnium rectum is considered a post-depositional structure, probably
produced by vermiform organisms which fed on organic-rich sediment deposited seasonally or
episodically on the sea floor (Uchman and Wetzel, 2017). It occurs commonly in muddy to
fine sandy siliciclastic and marly deep-sea deposits from the Turonian to the Eocene, and
possibly in the Oligocene-Miocene (Uchman and Wetzel, 2017). Here, the Oligocene-Miocene

age is confirmed.

4.2.4. Winding and meandering structures

Cosmorhaphe Fuchs, 1895
Cosmorhaphe lobata Seilacher, 1977
Fig. 33C

Description. Horizontal, winding, hypichnial semi-circular string, 1. 5-2 mm wide, showing
two-order dense meanders, higher than wider. The first and second order meanders display a
wavelength of ~29 mm and ~100 mm, respectively, and their amplitude is ~24 mm and 150
mm, respectively. Single meanders have a smaller amplitude and amplitude/wavelength ratio.

The string is preserved in semi-relief.

Remarks. Cosmorhaphe is a pre-depositional trace fossil ascribed to agrichnia. It is common,
but never abundant on the soles of sandy turbidites (Ksigzkiewicz, 1977; Uchman and Wetzel,
2012) and reported from recent deep-sea pelagic sediments (e.g., Rona and Merill, 1978; Ekdale
and Berger, 1978; Ekdale, 1980; Gaillard, 1991).

Cosmorhaphe sinuosa (Azpeitia Moros, 1933)
Fig. 33D
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Description. Hypichnial, horizontal, semi-circular string showing two-order meanders, which
are mostly wider than higher. The string is 1.5-2.5 mm wide and preserved in semi-relief. The
first and second order meanders have a wavelength of ~26 mm and ~100 mm, respectively, and

their amplitude is ~18 mm and ~150 mm, respectively.

Exterior zone rich in iron oxydes

Fig. 32. Simple structures from the Numidian Formation in the Ouarsenis Mountains, NW

Algeria. (A) Tubulichnium mediterraneum, endichnial full relief; (B) T. mediterraneum within
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marly mudstone in the lower unit of the Ain Ghanem section. (C) micrograph showing the cross
section of the trace fossil in thin section, showing two main zones: (1) the internal zone filled
with micrite, including quartz grains, some microfossils and shell fragments; (2) the external
zone (envelope) made up of stacking pellets, without any internal structure, dominated by iron

oxides, brown to dark brown in colour; scale =1 cm.

Gordia Emmons, 1844
Gordia arcuata Ksigzkiewicz, 1977
Fig. 33E-G

Description. A hypichnial, horizontal, smooth, sinuous, commonly semi-circular, unbranched

ridge, 0.5-1 mm in diameter, commonly forming loops, preserved in semi-relief.

Remarks. Gordia is a grazing trace (pascichnion). It occurs in a variety of marine and
nonmarine soft, low energy deposits, e.g., in marine (e.g., Ksiagzkiewicz, 1977; Gibert et al.,
2000; Trewin et al., 2002), lacustrine turbiditic (Buatois and Mangano, 1993) and varve deposits
(Uchman et al., 2009).

Helminthoidichnites Fitch, 1850
Helminthoidichnites isp.
Figs. 29B, 30E, 33A, B, E, 34A

Description. Hypichnial, horizontal, semi-cylindrical, winding, smooth ridges, occasionally
overcrossing, rarely forming loops, 0.4-2 mm in diameter and traced for at least 220 mm,

preserved as hypichnial semi-reliefs. The filling of the burrow is the same as the host sediment.

Remarks. This is a non-marine and marine eurybathic trace, common also in deep-sea facies,
including flysch (Chamberlain, 1971; McCann and Pickerill, 1988; Fillion and Pickerill, 1990;
Uchman, 1995, 1998; Wetzel et al., 2007). Helminthoidichnites is common from the
Precambrian (Narbonne and Aitken, 1990) to the Pleistocene (Uchman et al., 2009).

Helminthopsis Wetzel and Bromley, 1996
Helminthopsis isp.
Fig. 33A,B
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Description. Hypichnial, horizontal, simple, smooth, semi-circular, irregularly meandering
ridge, which is 5-2.2 mm wide and traced for 700 mm. It is preserved in semi-relief. The

meanders are 40—70 mm wide. Their amplitude ranges from 20 to 45 mm.

Remarks. The trace fossil resembles Cosmorhaphe, but the meanders are less regular than in
representatives of that ichnogenus. Moreover, regular second-order meanders are not obvious;
rather irregular turns of the general course are present. Helminthopsis is a repichnion produced
probably by polychaetes or priapulids, and is common in flysch deposits (Ksiazkiewicz, 1977,
Fillion and Pickerill, 1990; Wetzel and Bromley, 1996). It occurs from the Cambrian (Crimes,
1987) to the recent (Swinbanks and Murray, 1981; Wetzel, 1983a, b).

Nereites MacLeay in Murchison, 1839
Nereites isp.
Fig. 33H, I

Description. Hypichnial, horizontal, unbranched, winding to meandering low ridges or bands,
0.5-1.2 mm wide and traced for ~100 mm. Thy are bounded by thin levees and preserved in

semi-relief. The limbs of the meanders are 2-10 mm apart and their amplitudes are 8-26 mm.

Remarks. The levees are interpreted as reworked zones bounding faecal strings (cf. Uchman,
1995). Nereites is a pascichnion (Mangano et al., 2000), but it is also considered a fodinichnion
(Knaust, 2017). Nereites is a typical element of deep-sea environments, with a tendency to occur
within sediments deposited under moderate energy (Wetzel, 2002). It also occurs in slope
(Callow et al., 2013; Demircan and Uchman, 2016), shelf (Knaust, 2017) and exceptionally in
sandy estuarine deposits and tidal flats (Martin and Rindsberg, 2007; Neto de Carvalho and
Baucon, 2010). Nereites ranges from the Cambrian (e.g., Acefiolaza and Alonso, 2001) to the
Holocene (Wetzel, 2002).

Scolicia de Quatrefages, 1849

?Scolicia vertebralis Ksigzkiewicz, 1977

Description. Epichnial, curved, V-shaped furrow, 3—10 mm wide, with elevated margins. The

furrow bottom shows a rope-like elevation, which is 2-4 mm wide.

Remarks. Scolicia is interpreted as a deposit-feeding trace (e.g., Uchman, 1995; Fu and

Werner, 2000), which is produced by irregular echinoids (e.g., Plaziat and Mahmoudi, 1988;
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Uchman, 1995, 1998). Scolicia occurs commonly in shallow-marine (Fu and Werner, 2000) and
deep-sea deposits, including turbiditic successions (Uchman, 1995). Scolicia ranges from the

Tithonian (Tchoumatchenco and Uchman, 2001).

Fig. 33. Winding and meandering structures with one single network structure, from the
Numidian Formation in the Ouarsenis Mountains, NW Algeria. (A), (B) Helminthopsis isp.
(Hel), hypichnial semi-relief; Paleomeanderon rude (PIr), hypichnial semi-relief; Paleodictyon
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strozzii (Pas), hypichnial semi-relief; Helminthoidichnites isp. (He), hypichnial semi-relief; (C),
(D) Cosmorhaphe sinuosa (Cs), hypichnial semi-relief; (C) C. lobata (CI), hypichnial semi-
relief; (E) Helminthoidichnites isp. (He), hypichnial semi-relief; Gordia arcuata (Ga),
hypichnial semi-relief; (F), (G) Gordia arcuata (arrowed), hypichnial semi-relief; (H), (I)

Nereites isp. (arrowed), epichnial semi-relief; scale = 1 cm.

Scolicia strozzii (Savi and Meneghini, 1850)
Fig. 34B

Description. Simple, winding, smooth, bilobate ridge, 15-30 mm wide, ~5 mm high, and at

least 90-330 mm long, preserved as a hypichnial semi-relief.

Gyrochorte Heer, 1865
Gyrochorte isp.
Figs. 34D-F, 35J

Description. Epichnial, straight to curved or winding, bilobate ridge with median furrow, 0.7—

1.2 mm wide and 5-130 mm long. The trace fossil shows overcrossings.

Remarks. Gyrochorte is interpreted as a feeding trace (e.g., Weiss, 1941; Fu and Werner, 2000;
Gibert and Benner, 2002), produced by vermiform organisms, probably polychaetes (Seilacher,
2007; Fursich et al., 2017). It was commonly reported from nearshore and shallow-marine
deposits with moderate energy (Gibert and Benner, 2002), and rarely from deep-sea settings

(Uchman and Tchoumatchenco, 2003 and references therein).

Taenidium Heer, 1877
Taenidium isp.
Fig. 34C

Description. Epichnial, horizontal, simple, curved ribbon or low ridge, 3-9 mm wide and 3—

220 mm long, showing dense meniscate structure. The menisci are 3-5 mm apart.

Remarks. Taenidium is interpreted as a deposit-feeding trace produced by marine vermiform
organisms (Gevers et al., 1971; Keighley and Pickerill, 1994; Smith et al., 2008b). It was
reported from shallow-to deep-sea deposits (Keighley and Pickerill, 1994; Smith and Hasiotis,
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2008; Jackson et al., 2016). Taenidium ranges from the Ediacaran to the recent (e.g., Crimes,
1992; Jenkins, 1995; Uchman, 1998; Jackson et al., 2016).

4.2.5. Branched winding and meandering structures

Chondrites von Sternberg, 1833
Chondrites isp.
Fig. 34C

Description. Patches of epichnial, circular to oval depressions filled with mudstone. The

patches are 0.5-4 mm wide and the depressions are 0.3—1 mm wide.

Remarks. The depressions in patches are cross sections of downward spreading branched
tunnels which are typical of Chondrites (cf. fig. 3c in Uchman, 2007). This ichnogenus is
interpreted as a feeding trace (deep-tier chemichnion) of unknown vermiform organisms, which
may burrow below the redox boundary (for discussion, see Uchman, 1999; Wetzel, 2008). It
occurs mostly offshore and deeper, rarely in nearshore restricted environments (e.g., Knaust,
2017). Chondrites occurs from the Cambrian (Webby, 1984) to the Holocene (Wetzel, 1981,
2008).

Paleomeandron Peruzzi, 1880
Paleomeandron rude Peruzzi, 1880
Fig. 33A

Description. Hypichnial, winding tract built of a string bent in small, densely packed, relatively
shallow, irregular, second-order rectangular meanders. The trace fossil is 3-5 mm wide and can
be traced for about 150 mm.

Remarks. This trace fossil is ascribed to graphoglyptids (Seilacher, 1977) and occurs in
turbiditic deposits (Uchman, 1998).
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Fig. 34. Spreite, meandering, branched, and network structures from the Numidian Formation
in the Ouarsenis Mountains, NW Algeria. (A) Phycosiphon incertum (Ph), epichnial semirelief;
Helminthoidichnites isp. (He), hypichnial semi-relief; Oravaichnium isp. (Or), hypichnial semi-
relief; (B) Scolicia strozzii, hypichnial semi-relief; (C) Taenidium isp. (Ta), epichnial semi-
relief, Chondrites isp. (Cn), epichnial full relief; Zoophycos isp. (Z), epichnial semi-relief; (D)
(E), (F), Gyrochorte isp. (Gy), epichnial semi-relief; (E) Zoophycos isp. (Z), epichnial semi-
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relief; (G), (H), Lophoctenium isp. (Lo), epichnial semi-relief; (G) Ophiomorpha rudis (Opr),
hypichnial full relief; (I) Megagrapton irregulare (arrowed), hypichnial semi-relief; scale = 1

cm.

Rutichnus D’ Alessandro, Bromley and Stemmerik, 1987
Rutichnus isp.
Fig. 35A

Description. Hypichnial, horizontal to subhorizontal, winding, semi-circular, tubular ridges, 1
4 mm wide and 15-40 mm long, preserved in full relief. Their surface looks as a series of
slightly distorted segments separated by narrow constrictions. The segments are 1-4 mm wide
and 2-5 mm long. False branching is developed with tunnel overcrossings.

Remarks. Rutichnus is interpreted as a deposit-feeding trace produced by vermiform organisms
or arthropods. It occurs in shallow-marine and deep-sea flysch deposits (D’Alessandro et al.,
1987; Monaco, 2011).

4.2.6. Spirals and networks

Megagrapton Ksigzkiewicz, 1968
Megagrapton irregulare Ksigzkiewicz, 1968
Fig. 34l

Description. Hypichnial, horizontal, incomplete, irregular network, composed of winding

strings (1-2.5 mm wide), branching at ~90°. The meshes are at least 80 mm across.

Remarks. Megagrapton irregulare is interpreted as an agrichnion (Seilacher, 1977; Uchman,
1998) ranging from the Silurian (Crimes and Crossley, 1991) to the Miocene (D’Alessandro,

1982), and occurring mainly in deep-sea flysch deposits.

Paleodictyon Meneghini in Savi and Meneghini, 1850
Paleodictyon strozzii Meneghini in Savi and Meneghini, 1850
Figs. 30D, 33A,B
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Description. Horizontal networks composed of regular, hexagonal meshes (2.5-2.5 mm wide;

the strings are 0.2—1 mm wide) preserved as hypichnial semi-reliefs.

Remarks. Paleodictyon is interpreted as a farming trace (agrichnion) produced by unknown
organisms commonly in deep-sea turbiditic deposits (Seilacher, 1977) and less frequently in
shelf sediments (Fursich et al., 2007). It ranges from the Cambrian (Crimes and Anderson,
1985) to the recent (Ekdale, 1980; Miller, 1991).

Squamodictyon Vialov and Golev, 1960
Squamodictyon tectiforme (Sacco, 1886)
Fig. 35B

Description. Hypichnial, horizontal networks composed of irregular scale-like meshes (7.5-11

mm wide; the strings are 0.5-1 mm in diameter) preserved in semi-relief.

Remarks. Squamodictyon tectiforme is interpreted as a pascichnion produced by unknown
organisms (Uchman, 2003). It was reported from Cretaceous and Cenozoic flysch deposits
(Seilacher, 1977).

4.2.7. Spreite structures

Phycosiphon Fischer-Ooster, 1858
Phycosiphon incertum Fischer-Ooster, 1858
Fig. 34A

Description. Epichnial, horizontal, straight to curved lobes bifurcating into two curved to
winding lobes, showing marginal tubes and internal spreite. The marginal tube is 0.3-0.5 mm

wide, and the lobes are up to 1-2 mm wide and 5-7 mm long.

Remarks. Phycosiphon is interpreted as the deposit-feeding trace of small, unknown vermiform
organisms that exploit the sediment for organic-rich matter (Wetzel, 2010; Izumi, 2014). It is
reported from a wide range of palaeoenvironments, but mostly from fine-grained lower
shoreface and deeper, mainly siliciclastic deposits (Goldring et al., 1991; Savrda et al., 2001;

Pemberton et al., 2012; Callow et al., 2013). The tracemaker colonized freshly deposited
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turbidites in the sequential colonization model, when the sediment contained abundant food

resources and well-oxygenated pore waters (Wetzel and Uchman, 2001).

Diplocraterion Torell, 1870
Diplocraterion isp.
Fig. 35C, D

Description. Endichnial, vertical U-shaped burrows with a marginal tunnel, concave-upward
spreite and a semi-circular bottom, preserved in full relief. Two morphotypes have been
distinguished: (1) with parallel limbs, 2-3 mm in diameter, 15 mm apart and 30 mm deep; (2)

with divergent downward limbs, 4-6 mm in diameter, 25-30 mm apart and 80 mm deep.

Remarks. Diplocraterion is interpreted as a suspension-feeding dwelling trace (Goldring,
1962; Ekdale and Lewis, 1991; Bromley, 1996), although deposit-feeding has been proposed as
well (Leaman and Mcllroy, 2016). It was produced probably by polychaetes (Arkell, 1939),
although crustaceans have also been considered (Bromley, 1996).

Diplocraterion occurs mostly in shallow marine (Knaust, 2017), rarely in deep-sea
(Crimes et al., 1981; Leszczynski et al., 1996) and continental deposits (Kim and Paik, 1997)
from the Cambrian (Cornish, 1986; Bromley and Hanken, 1991; Mangano and Buatois, 2016)
to the Holocene (Corner and Fjalstad, 1993), including recent, small incipient forms produced

by amphipods (Dashtgard and Gingras, 2012).

Lophoctenium Richter 1850
Lophoctenium isp.
Fig. 34G, H

Description. Comb- and star-like traces composed of curved probes running from a main axis

or centre. The probes (mm long, mm wide) are developed on both sides of the axis.

Remarks. Lophoctenium is interpreted as a deposit feeder trace, encountered mostly in deep
water sediments (e.g., Ksigzkiewicz, 1977). It ranges from the Ordovician (Hantzschel, 1975)
to the Miocene (Uchman, 1995). It is interpreted as a product of repetitive lateral probing for
feeding (Seilacher, 2007). Similar traces are produced by bivalves (Ekdale and Bromley, 2001)

but they are usually only a part of a burrow system, such as Hillichnus (Bromley et al., 2003).
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Zoophycos Massalongo, 1855
Zoophycos isp.
Fig. 35E-J

Description. Spreite-filled planar structures manifested on the bedding surface as small (Fig.
35E, F) or large whorls or lobs (Fig. 35G-J). They are part of a helical structure having similar
elements at different levels of the same bed (Fig. 351). The spreite laminae, which are mostly
straight to curved, run radially from a central point. The structure is encircled by a marginal
tunnel, which is 0.3-5 mm wide. The whole structure is from 30-50 mm (smaller forms) to 140
mm wide (larger forms). The margin is lobate. In some specimens, spreite-filled tongues are
present. The tongues are 9-50 mm wide and 30-80 mm long. They are encircled by a marginal

tunnel as in the other parts of this trace fossil.

Remarks. Zoophycos is interpreted as a deposit-feeding trace of a vermiform organism (\Wetzel
and Werner, 1981), possibly polychaetes (Bischoff, 1968; Knaust, 2009), echiurans (Kotake,
1991) or sipunculids (Wetzel and Werner, 1981; Olivero and Gaillard, 2007). Zoophycos ranges
from the Cambrian (Alpert, 1977; Jensen, 1997) to the recent (Seilacher, 2007; Wetzel, 2008).
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Fig. 35. Spreite, network, branched, and meandering structures from the Numidian Formation
in the Ouarsenis Mountains, NW Algeria. (A) Rutichnus isp., hypichnial full relief; (B)
Squamodictyon tectiforme, hypichnial semi-relief; (C), (D) Diplocraterion isp., endichnial full
relief; (E), (F), (G) Zoophycos isp., small forms; (H), (1), (J) Zoophycos isp. (2), large forms;
(J) Gyrochorte isp. (Gy), epichnial semi-relief; scale = 1 cm.
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4.3. DISTRIBUTION OF TRACE FOSSILS
Table 3

The NF in the Ouarsenis Mountains, Algeria, reveals diverse trace fossils belonging to
twenty-two ichnogenera. The Ain Ghanem and Kef Maiz sections have a larger ichnodiversity
(35% and 46% of all ichnotaxa, respectively) than the Kef Rzama and the Forét des Cédres
sections (9% and 10%, respectively).

The ichnodiversity changes significantly among the facies. Facies F4 reveals almost all the
trace fossils recorded in the studied sections, primarily in (1) the lower unit of the Ain Ghanem
and Kef Maiz sections, (2) the lower part of the upper unit of the Kef Maiz section, and (3)
when interbedded with facies F1 in the upper unit of all the studied sections.

The ichnodiversity decreases significantly in facies F2, which yields only Ophiomorpha
rudis and Thalassinoides isp. in the upper unit of the Forét des Cédres section and
Thalassinoides isp. in the lower unit of the Ain Ghanem section. Facies F8 yields very abundant
Tubulichnium mediterraneum in the lower and upper units of the Ain Ghanem section, and in

the lower unit of the Kef Rzama section, where it co-occurs with rare ?Alcyonidiopsis isp.

Table 3. Distribution of trace fossils and the corresponding facies in the investigated sections
of the Numidian Formation in the Ouarsenis Mountains, NW Algeria. Abundance: very rare
(VR; 1 ichnotaxon), rare (R; 2—6 ichnotaxa), common (C; 7-9 ichnotaxa), very common (VC;
10-22 ichnotaxa), abundant (A; 23-41 ichnotaxa), very abundant (VA; >42 ichnotaxa).

Forét des | Kef Rzama Ain Ghanem Kef Maiz section
Ichnotaxon Cedres section section

section

upper lower | upper | lower upper | lower upper

unit unit unit | unit unit unit unit
Lockeia isp. R (F4)
Spirophycus bicornis R (F4)
Spirophycus isp. R (F4)
Siphonichnus isp. R (F4)
?Arthrophycus tenuis C (F4)
Halimedides isp. R (F4)
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Ophiomorpha R (F4)
annulata
Ophiomorpha rudis R (F2) C (F4)
Oravaichnium isp. R(F4) | R(F4)
Palaeophycus R (F4)
tubularis
Palaeophycus striatus R (F4)
Palaeophycus isp. R(F4) | R(F4)
Planolites R(F4) | R (F4)
beverleyensis
Planolites montanus R (F4) C(F4) |C(F4
?Planolites isp. R (F4) C R (F4) C(F4) |VC
(F4) (F4)
?Parataenidium isp. R (F4)
Phycodes isp. VR
(F4)
Thalassinoides isp. R (F2, R (F2,
F4) F4)
Thorichnus isp. VvC VC
(F4) (F4)
?Alcyonidiopsis isp. R (F8)
Tubulichnium VA VA (F8) | C(F7)
mediterraneum (F8)
Tubulichnium rectum C (F4)
Cosmorhaphe lobata R (F4)
Cosmorhaphe sinuosa R (F4)
Gordia arcuata A (F4)
Helminthoidichnites R (F4) R (F4) VC (F4) C(F4) |VC
isp. (F4)
Helminthopsis isp. R (F4) VR
(F4)
Nereites isp. R (F4) R (F4)
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?Scolicia vertebralis R (F4)

Scolicia strozzii R (F4)

Gyrochorte isp. VC (F4)

Taenidium isp. R(F4) |R(F4)

Phycosiphon incertum R (F4)

Chondrites isp. C (F4) C(F4) |R(F4)

Megagrapton VR
irregulare (F4)

Paleomeandron rude VR (F4)

Rutichnus isp. C (F4)

Paleodictyon strozzii C (F4) R (F4)

Squamodictyon R (F4)

tectiforme

Diplocraterion isp. R (F4)

Lophoctenium isp. VC (F4)

Zoophycos isp. C (F4) R (F4)

4.4. DISCUSSION

4.4.1. ICHNOFACIES AND DEPOSITIONAL SYSTEM
Figs. 36, 37

Some data on the palaeoenvironment of the NF in Algeria were given by Moretti et al.
(1991), who suggested a submarine slope setting for the NF strata in the Constantine Mountains
based on sedimentological data, but no such interpretations were given for the study area. The
described trace fossil assemblages and ichnofacies based on them along with the presented
sedimentary features allow for a more precise interpretation of the NF palaeoenvironment. The
trace fossil assemblage, in general, belongs to the deep-sea Nereites ichnofacies. This is
indicated by the presence of graphoglyptids (Paleodictyon, Paleomeandron, Megagrapton,
Cosmorhaphe) and other trace fossils (Table 4), which are common in this ichnofacies (see
Uchman and Wetzel, 2012). The distribution of trace fossils, and differences in their
composition and diversity permit to distinguish the three main ichnosubfacies of the Nereites
ichnofacies (Table 4).
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The deep-sea interpretation is supported by agglutinated foraminifers, which are recorded
(preliminary data) from the varicoloured marly mudstone (facies F8) in the studied sections and
previously reported from the same facies in the Constantine Mountains (Hoyez, 1989; Moretti
et al., 1991). The foraminifers include representatives of Ammodiscus isp.,

Bathysiphon isp., Cyclammina isp., Hyperammina isp., Kalamopsis isp., Glomospira isp.,
Glomospirella isp., Haplophragmoides isp., Recurvoides isp., Trochammina isp., and
Trochamminoides isp. They are very similar to those recorded in the NF from Morocco
(Kaminski et al., 1996) and Tunisia (Riahi et al., 2014), and in the Eocene Variegated Shale in
the Carpathian Flysch in Poland (Kender et al., 2005), and correspond to lower bathyal to
abyssal depths (Kaminski et al., 1996).

The Ophiomorpha rudis ichnosubfacies is recorded in the medium- to very thick-bedded
sandstones (FAL), interbedded with thinner beds of facies F2 and F4 in the upper unit of the
Forét des Cedres and Kef Maiz sections. This ichnofacies contains abundant Ophiomorpha
rudis, O. annulata, and Thalassinoides isp., which may co-occur with ?Planolites isp., P.
montanus, Gordia arcuata, and Helminthoidichnites isp. Deposits representing this
ichnosubfacies accumulated probably in channel and channel-levee-overbank settings. A more
distal variant of the Ophiomorpha rudis ichnosubfacies occurs in the thick- to thin-bedded
sandstones of facies F2 and F4 in the lower unit of the Ain Ghanem section. They yield O. rudis,
Thalassinoides isp., Zoophycos isp., Lophoctenium isp., Scolicia strozzii, Tubulichnium rectum,
?Planolites isp., and P. montanus. These deposits probably accumulated in crevasse splays
generated from nearby isolated narrow channels within the mud-dominated part of the
depositional system, which were occasionally fed with sandy turbiditic sediments. The channels
were subjected to avulsion.

The Paleodictyon ichnosubfacies occurs in thin- to medium-bedded sandstones of facies
F4 in the lower unit of the Ain Ghanem and Kef Maiz sections and the lowest part of the upper
unit in the Kef Maiz section. These deposits were probably deposited in channel-margin or
channel-levee-overbank settings. Trace fossils representing this ichnosubfacies include
Paleodictyon strozzii, Paleomeandron rude, Megagrapton irregulare, Squamodictyon
tectiforme, Chondrites isp., Taenidium isp., Helminthopsis isp., Helminthoidichnites isp.,
Zoophycos isp., Cosmorhaphe sinuosa, C. lobata, ?Planolites montanus, ?Planolites isp., P.
beverleyensis, Oravaichnium isp., Halimedides isp., Rutichnus isp., Thorichnus isp.,
Siphonichnus isp., and ?Arthrophycus tenuis.

The Nereites ichnosubfacies is recorded from thin-bedded sandstones of facies F4 in the
lower unit of the Kef Maiz and Ain Ghanem sections. The sandstones were deposited on the

84



CHAPTER 4 ICHNOLOGY & PALAEOENVIRONMENT

basin floor by occasional turbidites in crevasse-splays (spilling over from nearby channels) or
small lobes located in the distal parts of vanishing channels or at their terminations. The
turbidites interrupted the pelagic and hemipelagic sedimentation. This ichnosubfacies is
represented by Nereites isp., Phycosiphon incertum, ?Scolicia vertebralis, Helminthoidichnites
isp., Tubulichnium mediterraneum, ?Alcyonidiopsis isp., ?Planolites isp., Spirophycus isp., and
S. bicornis.

The vertical distribution of trace fossils shows a general shallowing-up trend resulting
mostly from the progradation of the depositional system. The succession of ichnofacies starts
with the Nereites ichnosubfacies in the lower unit of the studied sections, and is associated with
the exclusive occurrence of the Ophiomorpha rudis ichnosubfacies in the lower unit of the Ain
Ghanem section, followed by the Paleodictyon ichnosubfacies in the lower unit of the Ain
Ghanem section and the lowest part of the Kef Maiz section. The upper unit of the studied
sections is dominated by the Ophiomorpha rudis ichnosubfacies, as observed mainly in the
Forét des Cedres and Kef Maiz sections. Diplocraterion isp. occurs at the top of the Kef Maiz
section. Generally, this is a shallow-marine trace fossil of the Skolithos ichnofacies, but no
sedimentological features of a shallow-marine setting have been noted in the studied section.
Its occurrence fits to the general shallowing-up trend but is still rather in a deep-sea setting.

The shallowing-up trend recorded by the succession of ichnosubfacies is also associated
with a generally decreasing-upward abundance and diversity of the trace fossils in the sections.
The high diversity of trace fossils in the lower unit is related to favourable environmental and
preservational conditions. A calm environment associated with an occasional turbiditic input
rich in nutrients allowed for the proliferation of burrowing organisms. In contrast, the low
diversity and low abundance of trace fossils in the upper unit can be caused in general by stress
conditions related to high episodic turbulence, erosion of the sea floor and substrate instability
(as evidenced by soft-sediment deformation structures), which limited the proliferation of trace
makers and caused the erosion of the bioturbated sediments. In the calmer environment of the
lower unit, delicate souring and casting promoted preservation of burrows formed in mud,
which are generally more abundant than burrows formed in sand in deep-sea turbiditic systems
(Kern, 1980).
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Table 4. Distribution of trace fossils according to their ichnosubfacies.

Paleodictyon

ichnosubfacies

Ophiomorpha rudis

ichnosubfacies

Nereites

ichnosubfacies

Non-attributable

trace fossils

Squamodictyon
tectiforme,

Paleodictyon strozzii,
Paleomeandron rude,
Megagrapton irregulare,
Chondrites isp.,
Taenidium isp.,
Helminthopsis isp.,
Helminthoidichnites isp.,
Zoophycos isp.,
Cosmorhaphe sinuosa,
Cosmorhaphe lobata,
Planolites montanus,
Planolites beverleyensis,
?Planolites isp.,
Oravaichnium isp.,
Halimedides isp.,
Rutichnus isp.,
Thorichnus isp.,
Siphonichnus isp.,
?Arthrophycus tenuis

Ophiomorpha rudis,
Ophiomorpha
annulata,
Thalassinoides isp.,
Zoophycos isp.,
Lophoctenium isp.,
Scolicia strozzii,
Gordia arcuata,
Helminthoidichnites
isp.,

Tubulichnium rectum,
Planolites montanus,

?Planolites isp.

Nereites isp.,
Phycosiphon
incertum, ?Scolicia
vertebralis,
Helminthoidichnites
isp.,

Tubulichnium
mediterraneum,
?Alcyonidiopsis isp.,
?Planolites isp.,
Spirophycus isp.,
Spirophycus bicornis

Lockeia isp.,
Gyrochorte isp.,
Phycodes isp.,
Palaeophycus
tubularis,
Palaeophycus,
striatus,
Palaeophycus isp.,
?Parataenidium
isp.,
Diplocraterion isp.
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Fig. 37. Simplified schematic block diagram showing the distribution of ichnofacies in the study area.

88



CHAPTER 4 ICHNOLOGY & PALAEOENVIRONMENT

4.4.2. COMPARISONS

The trace fossil assemblages from the NF in Algeria are similar to those in Tunisia (Riahi
et al., 2014) and southern Spain (Rodriguez-Tovar et al., 2016), which represent also the
Nereites ichnofacies with the Paleodictyon and Ophiomorpha rudis ichnosubfacies. However,
the fossil assemblages from the sections studied in Algeria are less diverse. Data on the
ichnology of other parts of the NF (apart from Tunisia and Spain) are not available, except for
fragmentary data by Myron (2011), who reported some dispersed trace fossils from Sicily and
attributed them to the Nereites ichnofacies. Similarly to the Algerian sections studied, the
Tunisian and Spanish sections display the highest ichnodiversity in the mudstone/sandstone
alternations, which are equivalents of FA2, including the dominance of graphoglyptids in
equivalents of facies F4 in this study. The medium- to very thick-bedded sandstones of facies
F1 and F2 in Algeria are poorly bioturbated and show lower ichnodiversity. On the contrary,
some of their equivalents in Tunisia are characterized by abundant Ophiomorpha rudis and
Diplocraterion cf. habichi (Riahi et al., 2014). Moreover, sections in southern Spain yield
abundant Ophiomorpha and Scolicia (Rodriguez-Tovar et al., 2016). The mudstone or marly
mudstone facies (F8) shows abundant to very abundant Tubulichnium mediterraneum in almost
all compared outcrops in addition to rare ?Alcyonidiopsis isp. in Algeria, and abundant
Diplocraterion cf. habichi, Planolites montanus, and Chondrites isp. in Tunisia.

When comparing to other equivalent Oligocene to Miocene turbiditic deposits from the
Mediterranean region, the Gres d’ Annot Basin deposits from southern France (Phillips et al.,
2011) display highly abundant and low diversity trace fossil assemblages, mostly in fine- to
medium-grained sandstones (equivalent to facies F4), dominated by Ophiomorpha,
Phycosiphon, Planolites, and Scolicia. In turn, the thick-bedded sandstones of France
(equivalent to facies F1) show low diversity trace fossils, dominated by Ophiomorpha rudis
with less common Thalassinoides suevicus. The foredeep basins of the Northern Apennines in
central Italy (Monaco et al., 2010) shows more abundant and diverse trace fossils. The
muddominated facies (equivalent to facies F8 and F7) reveals less common trace fossils
dominated by Zoophycos, Thalassinoides suevicus, and Ophiomorpha annulata in some parts
while other places show trace fossils of the Nereites ichnosubfacies. The bulk of trace fossils
occurs in thin- to medium-bedded sandstones (equivalent to facies F4), such as 1)
interturbidites with channelized facies or 2) rhythmic beds within mudstones, including
predepositional and postdepositional trace fossils with a general dominance of graphoglyptids.
The thick-bedded sandstones (equivalent to facies F1 and F2) reveal scarce trace fossils,

dominated by Ophiomorpha and Scolicia.
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In addition to the general similarities, the comparison shows that every depositional
system, even if almost of the same age and region, shows some differences in trace fossil
composition, abundance, and distribution. This may be caused by differences in depositional

processes, food abundance and other local factors, including preservational potential.

4.5. PARTIAL CONCLUSIONS

The presented ichnological study allowed the determination of twenty-two ichnogenera and
the distinguishing of eight lithofacies grouped in three main facies associations. The trace fossils
are dominated by post-depositional ichnotaxa (62%), including Planolites montanus, P.
beverleyensis, ?Planolites isp., Siphonichnus isp., Nereites isp., Chondrites isp., Phycosiphon
incertum, Taenidium isp., Lophoctenium isp., ?Scolicia vertebralis, S. strozzii, Gyrochorte isp.,
Zoophycos isp., Oravaichnium isp., Halimedides isp., O. annulata, Ophiomorpha rudis,
Palaeophycus tubularis, Palaeophycus striatus, Palaeophycus isp., ?Parataenidium isp.,
Thalassinoides isp., Tubulichnium mediterraneum, ?Alcyonidiopsis isp., Tubulichnium rectum,
Lockeia isp., and Diplocraterion isp., and pre-depositional ichnotaxa (38%), including
Spirophycus bicornis, Spirophycus isp., Oravaichnium isp., Phycodes isp., Thorichnus isp.,
Squamodictyon tectiforme, Megagrapton irregulare, ?Arthrophycus tenuis, Cosmorhaphe
lobata, C. sinuosa, Gordia arcuata, Helminthoidichnites isp., Helminthopsis isp.,
Paleomeandron rude, Rutichnus isp., and Paleodictyon strozzii. They commonly occur in fine
grained, thin-bedded sandstones (representing facies F4), mostly in facies associations FA2
and FAS3. Ichnological analysis associated with sedimentary data indicate a deep-sea
environment with typical trace fossil assemblages attributed to the Nereites ichnofacies,
including its three main ichnosubfacies, i.e. (1) the Ophiomorpha rudis ichnosubfacies recoded
in medium- to very thick-bedded sandstones (FAL) interbedded with thinner sandstone beds of
facies F2 and F4 in the upper unit of the studied sections. These deposits probably originated
in channel and levee-overbank environments. The medium to thin-bedded sandstones (FA2) in
the lower units of the Kef Maiz and Ain Ghanem sections were deposited probably in isolated
narrow channels in the mud-dominated part of the depositional system, which was occasionally
fed with turbiditic sands. (2) The Paleodictyon ichnosubfacies occurs in thin- to medium-
bedded sandstones (facies F4) deposited probably in channel-margin or channel-levee-
overbank settings, which are recorded in the lower units of the Ain Ghanem and Kef Maiz
sections, and the lower part of the upper unit in the Kef Maiz section. (3) The Nereites

ichnosubfacies is recorded in thin-bedded sandstones (FA2), which were deposited probably in
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the basin-floor environment, specifically in crevasse splays or small lobes characterized by

occasional turbiditic flows associated with pelagic and hemipelagic sedimentation.
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5.1. INTRODUCTION

The provenance of the deposits of the Numidian Formation (NF) was and is still a matter
of controversy among Mediterranean geologists whether the source rock of the detrital
material that fed the Maghrebian Flysch Basin (MFB) is of European or African origin. Two
main perspectives were suggested; (1) a northern source, represented by the European
AlKaPeCa domain. This proposition was supported by Mattauer (1958, 1973), Caire (1961),
Caire and Duée (1971); Magné and Raymond, (1972); Ivaldi, (1977); Lahondére et al. (1979);
Vila et al., 1995; Van Houten (1980), Parize et al. (1986, 1999), Benomran et al. (1987),
Yaich et al. (2000), and recently by Fildes et al. (2010) based on the interpretation of zircon
dating carried out from the northern Tunisia and Sicily; (2) the second perspective was a
southern provenance, represented by the African craton, and supported by Durand Delga
(1955, 1980), Ogniben (1960), Wezel (1970a), Gaudette et al. (1995), Hoyez (1975, 1989),
Lancelot et al. (1977), Moretti et al. (1991), Johansson et al. (1998); Thomas et al. (2010a,
2010b), Guerrera et al... (1992, 2012), Fornelli et al. (2015), and Azdimousa et al. (2019).
The northern source is represented by the continental basement from mainland Europe or by
the terranes rifted from it, including the AlKaPeCa (Alboran, Calabria, Peloritan, Kabylies)
microplate, Sardinia, and Corsica. The southern source is represented by the West African
craton, the Hoggar and Tibesti massifs, and the east of the African craton.

In this chapter, the zircon geochronology method is applied to constrain the source rock
for the NF deposits in the Ouarsenis Mountains. This method is applied for the first time on
the NF in Algeria. It is supported by data on orientation of the palaeoflow measured on the

basis of sedimentary structures, specifically sole marks.

5.2. METHODS

The detailed procedure for U-Pb detrital zircon geochronology PIG-PIB is explained here
step by step.

Two samples of quartz-rich sandstone were processed using the standard method for
separating zircons, i.e., crushing, sieving, using heavy liquids and the Frantz isodynamic
separator, followed by careful inspection of the heavy fraction that could potentially contain
zircon under binocular microscope. No zircon grains were found in the magnetic fraction in
either of the two sand samples.

Following the separation of zircons, more than 200 grains from each sample were
transferred to a double-sided tape. Transferring the zircons took place without qualitative
selection to achieve random grain choice without any preference for size, colour, or shape.
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The zircons from two samples together with the chips of Temora-2 standard zircon
(?Pb/?%U age of 416.8 +0.3 Ma; Black et al., 2004) and the “91500” standard zircon as a
reference for U-content (U = 78 ppm, a 2°’Pb/?°®Pb age of 1065.4 +0.3 Ma; Wiedenbeck et al.,
1995) were mounted on epoxy disc (~3.5 cm — megamount) and polished until quasi-central
sections were reached. The reference zircon Temora-2 was used to control for the stability and
accuracy of the instrument.

Subsequently, the grains were photographed in both transmitted light and reflected light
modes using a Nikon Eclipse LU100NPol polarizing microscope with NIS Element software.
After optical imaging, the mount was vacuum-coated with 5 nm of gold for
cathodoluminescence (CL).

The internal zircon textures were imaged using a HITACHI SU 3500 scanning electron
microscope located at PGI-NRI. On the basis of SEM CL, the area of U-Pb analysis was pre-
selected. Before isotopic measurement, the gold film was removed and the mount re-cleaned,
prior to being recoated with about 15 nm of high purity gold for SHRIMP analysis. All U-Pb
isotopic results were collected on the SHRIMP Ile/MC instrument (the sensitive high-
resolution ion microprobe) using a duoplasmatron as the primary ion source, according to the
general procedure described by Wiliams (1998).

The isotopic ratios were analysed using a ~20-23 pum-diameter primary beam consisting
of ionized oxygen molecules (02)1, purified by a Wien filter. Before each analysis, the
surface of the site was cleaned by rastering of the primary beam for 2 min, to reduce the
amount of common Pb on the mount surface. Secondary ions were collected on a single
electron multiplier by cycling the magnet through six scans on nine masses: 1% Zr,0, 2%4Pb,
204.1 (as a background), 2%Pb, 2°7Pb, 208ph, 238y, 2#ThO, and 2**UO. The measurements were
carried out with a mass resolution of approximately 5400 (at 1% peak height) for about ~16
min.

The analyses were collected in a sequence consisting of one analysis of a Temora-2
reference zircon measurement after every fourth unknown sample analysis. SHRIMP U-Pb
data were processed using open-source SQUID-2 software from Geoscience Australia and
plotted using Isoplot (Ludwig, 2009) and IsoplotR (VVermeesh, 2018) software. Common-Pb
corrections for unknown samples were based on measured 2%“Pb. The isotopic composition
was calculated using the Pb isotopic evolution model of Stacey and Kramers (1975), and the
time corresponding to the preliminary 2°°Pb/>®U age was calculated using the default
common-Pb compositions.

The ages are 2°Pb/?%8U for zircon grains < 1000 Ma, and 2°’Pb/?°Pb for those > 1000
Ma, as a consequence of the relatively short half-life of the 2®U parent, making 2°"Pb/?°°Pb
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ages less precise than 2%Pb/?8U ages for relatively young zircons (Black et al., 2003). For
detrital grains > 1000 Ma, the 2°°Pb/?°’Pb age is used in the cumulative probability plot, but
for data < 1000 Ma, the 2°°Pb/?®U age is preferred because 2°°Ph/2%8U ages are generally more
precise for younger ages, whereas 2°°Pb/?°’Pb ages are more precise for older ages (Gehrels,
2011).

5.3. SAMPLING LOCALITIES AND DESCRIPTION OF SAMPLES

The sample KMS-B29 (N36°3.716’, E1°15.784") was carried out from very thick-bedded
sandstone (5-7 m) belonging to facies F1 (structureless sandstone) (Figs. 38A, B, 39). The
sample KRS-BO1 (N35°50.190'; E2°2.061") was carried out from very coarse, coarse to

medium-grained with dispersed granules, very thick bedded sandstone belonging to facies F3

(inversely-graded pebbly sandstone to parallel stratified sandstone) (Figs. 38C, D, 39).

j"-';‘}’ ;""?l":,- 25 " =3
Fig. 38. Photographs of the beds analysed for zircon dating. (A), (B) Photographs of the
sample KMS-bed 29, the Kef Maiz section; (A), (B) Photographs of the sample KRS-bed-01,

the Kef Rzama section.
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5.4. RESULTS

5.4.1. PALAEOCURRENT DATA
Table 4, Fig. 40

In order to know the palaeoslope dip direction and eventually the possible source of
sediment, sedimentary structures that indicate palaeocurrent direction mostly sole marks are
analysed here from the study area, including groove casts, frondescent marks, flute casts,
longitudinal scour. Fifty-six (56) measurements are taken from the Forét des Cedres section,

twenty-seven (27) from the Ain Ghanem section, and five (5) from the kef Rzama section.

Table 5. Detail data of palaecoflow measurement in the study area

Section Class ml:ausTlPeer;:rt s Sedimentary structures
30-60 15 Groove casts
60-90 11 Groove casts / frondescent marks
Forét des Cedres 90-120 5 Frondescent casts
section 120-150 18 Flute casts
150-180 7 Flute casts / longitudinal scour
140-150 3 Groove casts
230-240 3 Flute casts
Ain Ghanem 240-250 10 Flute casts
section 250-260 6 Flute casts
260-270 5 Flute casts
Kef Rzama section 60-90 5 Groove casts

135

150 Flute casts

I Groove casts
(©) [ Frondescent marks
[ Crescent marks

Fig. 40. Palaeocurrent rose diagrams from the study area. (A) Data measured from the Forét des
Cédres section; (B) Data measured from the Ain Ghanem section; (C) Data measured from the Kef

Rzama section.
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5.4.1.1. INTERPRETATION

In the Forét des Cédres section, flute casts and frondescent casts indicate a south-eastern
orientation; however, groove casts show SW-NE directions with a major south-east
orientation. In the Ain Ghanem section, flute casts indicate an eastern-to-north-eastern
orientation, and the groove casts indicate a close direction-oriented SE-NW. A few data on
groove casts from the Kef Rzama section indicate mostly the E-W direction.

The presented palaeoflow data do not show a single orientation of the palaeocurrent but
the major orientation given by flute casts ranges from the south-east to the east. Previous
studies from the Numidian Formation in the Mediterranean concluded that there is no single
dominant orientation of the palaeoflow orientation in Algeria (Hoyez, 1975; Moretti et al.,
1991; Laval, 1992; Vila et al., 1995), Tunisia (Hoyez, 1975; Parize et al., 1986; Parize and
Beaudoin, 1987; Yaich, 1992a), and Italy (Wezel, 1969; Wezel, 1970b; Parize et al., 1986;
Fornelli, 1998; Parize et al., 1999).

The tectonic complications related to the emplacement of the NF in the study area
(overturned sections) can justify in some way the discordance of the palaeoflow orientation
between different sections. Palaeomagentic studies from Italy, Tunisia, Spain, and Morocco
have demonstrated a structural rotation of the NF thrust sheets of about 55° to 76°, which
weakens the reliability of the use of the palaeoflow method to constrain the provenance of the
NF sediments (Thomas et al., 2010b and references therein), no such studies were performed

on the NF in Algeria.

5.4.2. ZIRCON DATA

5.4.2.1. ZIRCON TEXTURES

Zircon crystals are generally rounded, subrounded, and columnar in shape, occasionally
fractured and broken. The original external morphology is generally not preserved as a result
of transport (Fig. 41). Their size ranges from 50 to 270 um. The CL images of zircon grains
show a variety of morphological pattern, including (1) zircons with regular not perturbed
oscillatory zoning (Fig. 41A, B) indicating that the crystals crystalized in one single magmatic
event (Corfu et al., 2003); (2) zircons with xenocrystic cores showing oscillatory zoning
discordant with a rim showing subsequent oscillatory zoning of magmatic overgrowth (Fig.
41C, F); (3) zircons showing oscillatory zoning on the core and no zoning on the rim (Fig.

41D, E) which is interpreted as the cores is of magmatic origin overprinted by metamorphism
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(Corfu et al., 2003); (4) zircon without zoning showing irregular and complex texture (Fig.
41G, H) indicating a metamorphic origin (Corfu et al., 2003).

Unperturbed magmatic 50 um
oscillatory zoning

rounded xenocrystic core

metamorphic zircon with irregular
growth zoning or recristalisation

Fig. 41. CL images showing the main zircon textures in the study area. (A), (B) zircons with
unperturbed zoning, sample KMS-B29; (C), (F), sample KRS B01; (D), (E), (H), sample
KRS B01; (G), sample KMS-B29.

5.4.2.2. U-Pb ZIRCON AGES
Figs. 42-44

The results of the U-Pb zircon ages are illustrated in Figures 42, 43, and 44. Data with a
high discordance of U-Pb age (>10%) were discarded.

One hundred and two zircon grains from sample KMS-B29 (the Kef Maiz section) were
selected for U-Pb isotopic dating. Oscillatory zoning is common within these grains, which
indicates a magmatic origin (Corfu et al., 2003). The Th/U ratio in this sample show 47% >

0.5, indicating a magmatic origin, and 53% between 0.01 and 0.5, indicating an intermediate
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origin. The latter generally represent zircon grains of magmatic origin that are affected by

medium to high-grade metamorphism (Fig. 44). U-Pb analysis shows a wide range of

concordant zircon ages, grouped into four main populations, including (1) twenty-two zircon

grains giving ages from 551 to 992 Ma, indicating the Neoproterozoic; (2) twenty-four zircon

grains giving ages from 1002 to 1527 Ma, indicating the Mesoproterozoic; (3) twenty zircon

grains giving ages from 1670 to 2205 Ma, indicating the Paleoproterozoic; (4) four zircon

grains giving ages from 2624 to 2728 Ma, indicating the Neoarchean. A single zircon grain

indicating the Mesoarchean was discarded (Fig. 42).
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Fig. 42. U-Pb concordia and probability diagrams of zircon ages from the sample KMS-

B29, the Kef Maiz section. (A) Histogram of probability density plots of zircon ages; (B) U-

Pb concordia diagram showing all data, and (C) showing only youngest ages.
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One hundred and three zircon grains from sample KRS-B01 (the Kef Rzama section)
were selected for U-Pb isotopic dating. This sample also shows abundance oscillatory zoning
pointing to a magmatic origin (Corfu et al., 2003). The Th/U ratio in this sample show
41.74% > 0.5, indicating a magmatic origin, and 56.31% between 0.01 and 0.5 indicating
intermediate origin, and only 2% < 0.01, suggesting a metamorphic origin (Fig. 44).

The U-Pb analysis shows a high number of concordant zircon ages, grouped into three
main populations, including (1) twenty-six zircon grains giving ages from 563 to 987 Ma,
indicating the Neoproterozoic; (2) ten zircon grains giving ages from 1007 to 1328 Ma,
indicating the Mesoproterozoic; (3) twenty-three zircon grains giving ages from 1684 to 2470
Ma, indicating the Paleoproterozoic. A few zircon grains indicating the Ordovician, the

Cambrian, the Neoarchean and the Mesoarchean were discarded (Fig. 43).
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Fig. 43. U-Pb concordia and probability diagrams of zircon ages from the sample KRS-B01,
the Kef Rzama section. (A) Histogram of probability density plots of zircon ages; (B) U-Pb

concordia diagram showing all data; (C) data showing only youngest ages.
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Fig. 44. Diagrams showing the Th/U ratio within the samples KMS-B29 from the Kef Maiz

section, and KRS-B01 from the Kef Rzama section.

5.4.2.3. DISCUSSION

The zircon analysed from the two samples KMS-b29 and KRS-b01 yielded similar
cluster ages, including three main groups: (1) 563—-992 Ma; (2) 1007-1527 Ma; (3) 1684—
2470 Ma, with a few zircon grains that indicate the Neoarchean and the Mesoarchean. A few

zircon grains from the sample KRS-b01 indicate younger ages (538 to 470 Ma).
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The histogram of the probability density of ages from the two samples KMS-b29 and
KRS-b01 (Fig. 42A, Fig. 43A) shows similar peaks with abundant zircon grains, indicating
the Paleoproterozoic, the Mesoproterozoic and the Neoproterozoic, the ages characterising the
Eburnean and the Panafrican orogenies, respectively, without evidence for the Hercynian and
Alpine orogenies.

The zircon ages between 470 and 650, representing the end of the Panafrican orogeny
(550—650 Ma) can be found in either in the European terranes (Peucat et al., 1996; Hammor et
al., 2006) or the African basement within the Hoggar and Tibesti massifs, and the East
African craton (Bertrand et al., 1986; Paquette et al., 1997; Walsh et al., 2002; Inglis et al.,
2004; Kuster et al., 2008). However, the zircon ages older than 600 Ma including those
indicating the Eburnean orogeny (~2 Ga) are exclusively represented in the African cratons
(Walsh et al., 2002; Peucat et al., 2005; 19) Peucat et al., 2003; Suayah et al., 2006; Kuster et
al., 2008).

The above-mentioned characteristics of the analysed zircons from the study area,
including textures roundness, and the abundance of o zircons referred to the Eubrunean and
Panafrican orogenies, with the absence of ages indicating the Hercynian and the Alpine
orogenies, point toward an African provenance of the studies deposits. These deposits were
affected by polycyclic reworking within the Continental Intercalaire (Cretaceous) (Moretti et
al., 1991) or the Nubian Sandstone in Libya (Cretaceous) (Wezel, 1970a; Johansson et al.,
1998). The Moroccan Anti-Atlas can also provide zircons with the found ages (Thomas et al.,
2010b and references therein).

Similar zircon age populations were found in the NF in the Rif Chain, Morocco
(Azdimousa et al., 2019), and in the NF in the Southern Apennines, Italy (Fornelli et al.,
2015). Zircon ages from the NF in Gibraltar and Sicily (Lancelot et al., 1976, 1977) deliver
only two populations (1830 and 1350 Ma), whereas those analysed from the NF in Tunisia by
Gaudette et al. (1975) and Gaudette et al. (1979) deliver one population dated to about 1750
Ma. All these mentioned zircon ages were interpreted as sourced from the African Craton, in
contrast to the interpretation given by Fildes et al. (2010) based on the results of zircon ages
from the NF in Tunisia and Sicily giving around 514 to 550 Ma, interpreted as sourced from
an European source. The review by Thomas (2010b) from the NF in the Mediterranean gives

very strong arguments favouring the southern provenance.
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5.5. PARTIAL CONCLUSIONS

The method of provenance analysis is applied here in conjunction with data on
palaeocurrent orientation to constrain the source rock of the Numidian Formation deposits in
the Ouarsenis Mountains. The analysis of the palaeoflow data based on measurements of sole
marks does not show a single orientation of the palaeocurrent. However, the major orientation
based on orientation of flute casts and frondescent marks is more consistent and ranges from
the south-east to the south-west.

A representative number of 205 zircon grains were separated from two samples KMS-
b29 and KRS-b01 to perform U/Pb geochronology and morphological description. CL images
of zircon grains show a variety of morphological patterns characterized by (1) abundant grains
showing oscillatory zoning indicative of magmatic origin associated and (2) zircon grains
with oscillatory zoning at the core and no zoning at the rim, indicating magmatic origin
overprinted by metamorphism. Structureless zircon grains indicative of metamorphic origin
are rare.

The zircons analysed yielded similar cluster ages, including three main groups: (1)
563—992 Ma indicating the Neoproterozoic; (2) 1007-1527 Ma indicating the
Mesoproterozoic; (3) 1684-2470 Ma indicating the Paleoproterozoic, with a few zircon grains
indicating the Neoarchean and Mesoarchean. A few zircon grains from sample KRS-b01
indicate younger ages (538-470 Ma). These zircon ages indicate the Eburnean and the
Panafrican orgenies without evidence for the Hercynian and Alpine orogenies.

The above-mentioned characteristics of the zircon grains, including roundness,
palaeoflow data, and the abundance of grains showing Eburnean and Panfrican ages, with
absence of ages indicating the Hercynian and the Alpine orogenies, point toward an African

origin of the studied deposits.
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6. GENERAL CONCLUSIONS

The main objectives planned for this doctoral thesis on the Numidian Formation of the
Ouarsenis Mountains, NW Algeria were achieved, including sedimentological and
ichnological studies, and determination of the provenance of detrital material. Biostratigraphic
analysis did not provide valuable results, permitting a detailed dating of the studied deposits.
More work is needed to deal with this last problem.

The Numidian Formation in the Ouarsenis Mountains is represented by siliciclastic
deposits with intercalated hemipelagic mudstones in the four sections studied. The latter are
subdivided into two main informal lithostratigraphic units: (1) the lower unit (mud-
dominated) made up of varicoloured mudstones (greenish to dark brown) with abundant full
relief trace fossil Tubulichnium mediterraneum and rare ?Alcyonidiopsis isp., including
isolated bodies of sandstone and mudstone alternations or discontinuous thin-bedded, fine
grained-sandstone; (2) the upper unit (sand-dominated) consists of beige to pale grey/white,
fine- to very coarse-grained, conglomeratic in some parts, medium- to very thick-bedded
sandstones, alternating with greenish to grey, thin silty mudstone. The two upper and lower
aforementioned units are present in three of the four sections; the Forét des Cedres section
comprises only the sand-dominated upper unit. The lower unit is dated to the Upper
Oligocene and the upper unit to the Lower Miocene, based on correlation with the NF of
Great Kabylia and on biostratigraphic data from previous studies on the study area.

Investigations of calcareous nannoplankton and foraminifers by the author of the thesis
gave some results but only from the lower unit, including rare agglutinated foraminifers, such
as Glomospira sp., Ammodiscus sp., Paratrochamminoides sp., Haplophragmoides sp.,
Trochamminoides sp., and Recurvoides sp. In contrast to calcareous nannoplankton and
foraminifers, investigations for dinoflagellate cysts from the lower and upper units of the
studied sections gave positive results. Both units yielded rich although taxonomically
impoverished dinoflagellate cyst assemblages associated by other aquatic palynomorphs.
Biostratigrapic interpretation of the assemblages from the interval studied is difficult and
imprecise so far, but it suggests a time span from the late Paleogene to early Miocene.

The sedimentological study permits characterizing eight lithofacies including
structureless sandstone (F1), normally-graded, medium- to very coarse-grained sandstone
(F2), inversely-graded pebbly sandstone to parallel stratified sandstone (F3), medium- to fine-
grained sandstone (F4), and mudclast conglomerates (F5), soft-sediment deformed
sandstone/siltstone (F6), mudstone with siltstone and sandstone (F7), and varicoloured marly
mudstone (F8). The association of these lithofacies yielded three main facies associations,
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corresponding to the depositional subenvironment setting, including (1) FA1 sand-rich facies
association deposited in the channel-fill setting. It occurs in the upper part of all the studied
sections; (2) FA2 mudstone and sandstone alternations facies association, corresponding to
channel margin, channel-levee-overbank, crevasse-splays and lobes. This facies association
occurs occasionally in the lower and the upper units of the studied sections; (3) FA3 mud-rich
facies association deposited on the basin-floor or slope-apron settings, which were cut by,
narrow, sparse channels, occurring in the lower unit of all the studied sections except for the
Forét des Cedres section.

Ichnological study coupled with lithofacies allowed the determination of twenty-two
ichnogenera. Trace fossils are dominated by post-depositional ichnotaxa (62%), including
Planolites montanus, P. beverleyensis, ?Planolites isp., Siphonichnus isp., Nereites isp.,
Chondrites isp., Phycosiphon incertum, Taenidium isp., Lophoctenium isp., ?Scolicia
vertebralis, S. strozzii, Gyrochorte isp., Zoophycos isp., Oravaichnium isp., Halimedides isp.,
O. annulata, Ophiomorpha rudis, Palaeophycus tubularis, Palaeophycus striatus,
Palaeophycus isp., ?Parataenidium isp., Thalassinoides isp., Tubulichnium mediterraneum,
?Alcyonidiopsis isp., Tubulichnium rectum, Lockeia isp., and Diplocraterion isp., and
predepositional ichnotaxa (38%), including Spirophycus bicornis, Spirophycus isp.,
Oravaichnium isp., Phycodes isp., Thorichnus isp., Squamodictyon tectiforme, Megagrapton
irregulare, ?Arthrophycus tenuis, Cosmorhaphe lobata, C. sinuosa, Gordia arcuata,
Helminthoidichnites isp., Helminthopsis isp., Paleomeandron rude, Rutichnus isp., and
Paleodictyon strozzii. They commonly occur in fine-grained, thin-bedded sandstones
(representing facies F4), mostly in facies associations FA2 and FA3. Ichnological analysis
associated with sedimentary data indicate a deep-sea environment with typical trace fossil
assemblages attributed to the Nereites ichnofacies, including its three main ichnosubfacies,
i.e. (1) the Ophiomorpha rudis ichnosubfacies recoded in medium- to very thick-bedded
sandstones (FAL) interbedded with thinner sandstone beds of facies F2 and F4 in the upper
unit of the sections studied. These deposits probably originated in channel and levee-overbank
environments. Medium- to thin-bedded sandstones (FA2) in the lower units of the Kef Maiz
and Ain Ghanem sections were probably deposited in isolated narrow channels in the mud-
dominated part of the depositional system, which was occasionally fed with turbiditic sands.
(2) The Paleodictyon ichnosubfacies occurs in thin- to medium-bedded sandstones (facies F4)
deposited probably in channel-margin or channel-levee-overbank settings, which are recorded
in the lower units of the Ain Ghanem and Kef Maiz sections, and the lower part of the upper
unit in the Kef Maiz section. (3) The Nereites ichnosubfacies is recorded in thin-bedded

sandstones (FA2), which were probably deposited in the basin-floor environment, specifically
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in crevasse splays or small lobes characterized by occasional turbiditic flows associated with
pelagic and hemipelagic sedimentation.

The method of provenance analysis is applied here in conjunction with data on
palaeocurrent orientation to constrain the source rock of the Numidian Formation deposits in
the Ouarsenis Mountains. The analysis of the palaeoflow data based on measurements of sole
marks does not show a single orientation of the palaeocurrent. However, the major orientation
based on orientation of flute casts and frondescent marks is more consistent and ranges from
the south-east to the east.

A representative number of 205 zircon grains were separated from two samples KMS-
b29 and KRS-b01 to perform U/Pb geochronology and morphological description. CL images
of zircon grains show a variety of morphological patterns characterized by (1) abundant grains
showing oscillatory zoning indicative of magmatic origin and (2) zircon grains with
oscillatory zoning at the core and no zoning at the rim, indicating magmatic origin overprinted
by metamorphism. Structureless zircon grains indicative of metamorphic origin are rare.

The zircons analysed yielded similar cluster ages, including three main groups: (1)
563—992 Ma indicating the Neoproterozoic; (2) 1007-1527 Ma indicating the
Mesoproterozoic; (3) 1684-2470 Ma indicating the Paleoproterozoic, with a few zircon grains
indicating the Neoarchean and Mesoarchean. A few zircon grains from sample KRS-b01
indicate younger ages (538-470 Ma). These zircon ages indicate the Eburnean and the
Panafrican orgenies without evidence for the Hercynian and Alpine orogenies.

The above-mentioned characteristics of the zircon grains, including roundness,
palaeoflow data, and the abundance of grains showing Eburnean and Panfrican ages, with
absence of ages indicating the Hercynian and the Alpine orogenies, point toward an African

origin of the studied deposits.
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