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Abstract 

Most studies in real-time Flexible Manufacturing System (FMS) scheduling and 
control area do not consider the effect of routing flexibility; their focus is typically 
on use of scheduling (i.e., dispatching) rules based on routing selection carried out 
prior to production. Such an approach is not applicable to random-type FMS, in 
which no knowledge about incoming part types is available prior to production. 
For such a scenario, parts can have alternative routings, even for parts of the same 
type. Thus, the control system of a random-type FMS requires the capability to 
adapt to the randomness in arrivals and other unexpected events in the system by 
effectively using operation and routing flexibility in real-time.  In this chapter, the 
objective is to present a comparative study of a group of meta-heuristics, including 
tabu search (TS), ant colony optimization (ACO), genetic algorithms (GA), par-
ticle swarm optimization (PSO), electromagnetic meta-heuristic (EM), and simu-
lated annealing (SA), against the Modified Dissimilarity Maximization Method 
(Modified DMM). DMM (Saygin and Kilic 1999) is an alternative process plan 
selection method originally proposed for the routing selection in off-line schedul-
ing of an FMS. In subsequent studies (Saygin, Chen, and Singh, 2001) and 
(Saygin, Chen, and Singh, 2004)   DMM has been: (i) used as a real-time deci-
sion-making tool to select routings for the parts that are in the system, (ii) tested 
and benchmarked against First-in-First-out/First Available (FIFO/FA) and Equal 
Probability Loading (EPL). Based on the DMM model, a modified DMM (Has-
sam and Sari 2007) is developed for selection of alternative routings in real time 
in an FMS. Modified DMM method improves the performances of the FMS in 
terms of higher production rate, higher utilization rate of the machines and the ma-
terial handling system.  

 



8.1 Introduction 

Nowadays, businesses are facing increased competition; pressure for higher varie-
ty of customized products, shorter lead times, higher quality, and lower cost due to 
competitors.  Today, being flexibility in production and effectively managing it to 
be more competitive is more crucial than ever. Several decades after its concep-
tion, flexible manufacturing systems (FMS) still provide great flexibility. They 
provide various benefits, such as high resource utilization, high productivity, re-
duced work-in-progress, and many more.  

In such systems, resource allocation decisions, process planning, and scheduling 
of operations are generally made dynamically and in a very short time almost in 
real-time, depending on the state of the production system (availability of re-
sources, availability of the system handling, the presence of bottlenecks), the cha-
racteristics of the production plan (due date of manufacturing orders) and the pro-
duction targets (production rate increase, reduce work in process).  

The real-time scheduling of operations uses multiple approaches, such as selection 
of parts in buffers for immediate machining and selection of machines for a part 
among alternative machines by priority (i.e., scheduling or dispatching) rules, 
which is one of the simplest and most commonly used methods. These priority 
rules have been studied for many years. See  Saygin and Kilic, 1999 for an exten-
sive literature survey.  

Among the rules and methods of scheduling in real time, we can find the Dissimi-
larity Maximization Method (DMM) (Saygin et al. 2001), (Saygin and Kilic 
2004) which is a rule for selecting alternative routing in real time in an FMS based 
on its original version for off-line routing selection (Saygin and Kilic, 1999), and 
the Modified DMM (Hassam and Sari 2007) which is an improvement of the 
DMM rule in order to improve the performances of the production system. These 
methods use coefficients of dissimilarity between the machines to make decisions 
related to routings..  

The scheduling problems in manufacturing systems are generally NP hard and 
there are not universal methods making it possible to solve all the cases effectively 
(Garey and Johson 1979). 

Meta-heuristics are the algorithms of the stochastic type aiming to solve a broad 
range of hard optimization problems, for which one does not know more effective 
traditional methods. Often inspired by analogies with reality, such as physics (si-
mulated annealing, simulated diffusion,) biology (evolutionary algorithms, taboo 
search,) and ethnology (ant colony, swarm intelligence).  They are generally of 
discrete origin, but can be adapted to the other types of problems and they share 
also the same disadvantages: difficulties of parameters adjustment and large com-
putation time.  

In this chapter, our interest is focused on a group of meta-heuristics, which include 
in particular the simulated annealing (SA), genetic algorithm (GA), taboo search 
(TS), ant colony algorithms (ACO) and particle swarm optimization (PSO) and 



electromagnetism like method (EM); we are going to present a comparative study 
between these meta-heuristics and the modified DMM rule. 

We will see that the meta-heuristics are largely based on a common set of prin-
ciples, which make it possible to design solution algorithms, the various regroup-
ings of these principles lead thus to a large variety of meta-heuristics. 

8.2 Literature review 

The scheduling problems are usually NP hard. One of the first studies of the sche-
duling of FMS is the work of (Nof et al., 1979) where they demonstrate the impor-
tance and effect of scheduling decisions on various performance measures of pro-
duction systems. Traditional scheduling involves sequencing of operations and 
time allocation on their start and end times before the production starts.  Tradi-
tional scheduling requires that production orders in terms of part types and their 
routings are known prior to production.  On the other hand, real-time scheduling is 
carried out as a control activity, which involves real-time decision making in 
terms of selection of part types and their routings as parts come in to the produc-
tion system.  This category of scheduling problems involves various challenges, 
such as variable part arrival rates, unexpected breakdowns, need for synchroniza-
tion of tool management, effective management of material handling systems, and   
lack of raw materials.  

The factors listed above and many others, makes reordering required so that to 
avoid the increase in waiting time, the increase in work in process, the low utiliza-
tion of machinery and equipment and possibly the degradation of the production 
system performances (Wu and Wysk, 1989), (Ishii and Muraki, 1996).  

Several researchers propose different methods to provide maximum flexibility in 
real time scheduling in order to increase the performance of systems (Saygin and 
Kilic, 1999) (Liu and MacCarthy, 1997), (Saygin and Kilic, 1996). However, 
the real-time scheduling is always desirable but elusive goal (Basnet and Mize, 
1994), (Shukla and Chen, 1996).  

Consequently, establishing an integrated system for real-time scheduling and con-
trol that responds to changes in the state of the system is essential to improve the 
performance of a production system. 

The control and real-time scheduling of flexible production systems have become 
a popular research area since the early 1980’s, a period in which flexible produc-
tion systems were adopted by the industrialized countries (Saygin et al, 1995), 
(Saygin and Kilic, 1997), (Peng and Chen, 1998). But many studies in control-
ling and scheduling of FMS in real time do not take into account the flexibility of 
alternative routing (Byrne and Chutima, 1997), (Kazerooni et al, 1997) and 
most studies that take into account this point , handle the problem of routing selec-
tion prior to the start of production (Das and Nagendra, 1997), (Cho and Wysk, 
1995).  



Scheduling rules have been studied by many researchers.  The common conlcu-
sion among these studies includes 1) results are dependent on the production sys-
tem that has been studied, therefore cannot be generalized, 2) these rules are myo-
pic in nature, therefore they lead to imperfect scheduling since they do not capture 
the relevant information at various levels of production systems (Rachamadugu 
and Stecke, 1994), (Gupta et al., 1989), (Kouiss et al., 1997).  

The weakness of these scheduling rule-based approaches in handling real time 
scheduling in FMS has been the major driving force behind the development of 
new methods for alternative routing selection in real time. 

8.3 Part Routing 

8.3.1 General Job Shop Models: 

In a job shop, each job has its own predetermined route to follow. The simplest 
job shop models assume that a job may be processed on a particular machine at 
most once on its route through the system (see Figure 8.1). In others, a job may 
visit a machine several times on its route through the system. These shops are said 
to be subject to recirculation, which increases the complexity of the model consi-
derably. The routes of the jobs are order-specific and require recirculation. More 
general models assume a production environment that consists of a network of in-
terconnected facilities with each facility being a (flexible) flow shop or a (flexible) 
job shop.  At a higher level, supply chain managements also makes use of such 
planning and scheduling of networks for streamlining supply and demand among 
the business partners and end customers. 

  

 

Fig8.1 Job shop. 



8.3.2 Simulation of an FMS Environment:  

In order to compare meta-heuristics and the modified DMM model, we developed 
a simulation model of an FMS environment.  

This system contains seven machines, a loading station, an unloading station, and 
one automated guided vehicle (AGV). Six different types of parts are considered 
for production in the system.  The machines and stations are as follows:  

• Two vertical milling machines (VMC).  

• Two horizontal milling machines (HMC).  

• Two vertical turning centres (VTC).  

• One shaper (SHP).  

• One loading station (L).  

• One unloading station (UL).  

 

Each machine has an input buffer and an output buffer.  The loading station also 
contains an input buffer. The configuration of the FMS is given in figure 2: 
 

 
HMC: Horizontal 
Machining centre.  
VMC: Vertical Ma-
chining centre.  
VTC: Vertical Turn-
ing centre.  
SHP: Shaper.  
L: Loading Station.  
UL: Unloading Sta-
tion.  
I : Input Buffer.  
O : Output Buffer. 
- -  AGV routes. 

Fig.8.2 Configuration of the FMS. 

 
 
 



The alternative routing and the processing time for each type of part are given in 
table 8.1: 
  

Part type and 
Production 

RATIO Routing (processing time) 

A 17℅ 

L – VTC1 (30) – VMC1 (20) - UL 
L – VTC1 (30) – VMC2 (20) - UL 
L – VTC2 (30) – VMC1 (20) - UL 
L – VTC2 (30) – VMC2 (20) - UL 

B 17℅ 

L – VTC1 (20) – SHP (1) – VMC1 (15)-UL 
L – VTC1 (20) – SHP (1) – VMC2 (15)- UL 
L – VTC2 (20) – SHP (1) – VMC1 (15) - UL 
L – VTC2 (20) – SHP (1) – VMC2 (15) - UL 

 
C 17℅ 

 

L – VTC1 (40) – VMC1 (25) - UL 
L – VTC1 (40) – VMC2 (25) - UL 
L – VTC2 (40) – VMC1 (25) - UL 
L – VTC2 (40) – VMC2 (25) - UL 

 
D 21℅ 

 

L – VTC1 (40) – SHP (1) – VTC1 (20) – HMC1 (35)–UL 
L – VTC1 (40) – SHP (1) – VTC1 (20) – HMC2 (35)–UL 
L – VTC1 (40) – SHP (1) – VTC2 (20) – HMC1 (35)–UL 
L – VTC1 (40) – SHP (1) – VTC2 (20) – HMC2 (35)–UL 
L – VTC2 (40) – SHP (1) – VTC1 (20) – HMC1 (35)–UL 
L – VTC2 (40) – SHP (1) – VTC1 (20) – HMC2 (35)–UL 
L – VTC2 (40) – SHP (1) – VTC2 (20) – HMC1 (35)– UL 
L – VTC2 (40) – SHP (1) – VTC2 (20) – HMC2 (35)–UL 

E 20℅ 
 

L – VTC1 (25) – SHP (1) – VTC1 (35) – HMC1 (50)–UL 
L – VTC1 (25) – SHP (1) – VTC1 (35) – HMC2 (50)–UL 
L – VTC1 (25) – SHP (1) – VTC2 (35) – HMC1 (50)–UL 
L – VTC1 (25) – SHP (1) – VTC2 (35) – HMC2 (50)–UL 
L – VTC2 (25) – SHP (1) – VTC1 (35) – HMC1 (50)–UL 
L – VTC2 (25) – SHP (1) – VTC1 (35) – HMC2 (50)–UL 
L – VTC2 (25) – SHP (1) – VTC2 (35) – HMC1 (50)–UL 
L – VTC2 (25) – SHP (1) – VTC2 (35) – HMC2 (50)–UL 

F 8℅ L –HMC1 (40) – UL 
L –HMC2 (40) – UL 

Table 8.1 Alternative routings of part types. 

 
The studied operations on the flexible production system are based on the follow-
ing assumptions:  
• The alternative routings of each type of part are known before the start of pro-

duction.  
• The AGV routes depend on the selected alternative routings in real time.  
• The processing time is known.  
• The processing time of an operation is the same on the alternatives machines 

identified for this operation.  
Each machine can process one piece at a time. 

 



8.4 DMM and modified DMM 

8.4.1 DMM for Real Time Routing Selection  

The original Dissimilarity Maximization Method (DMM) is a method for selecting 
alternative process plans developed by (Saygin and Kilic, 1999) for the selection 
of alternative routing to schedule off line FMS. It is a method inspired from the 
group technology. The DMM method has a reciprocal function in group technolo-
gy, as it tends to maximize the dissimilarity coefficients instead of similarity coef-
ficients.  

This method selects routings for the parts in the system among their alternative 
routings where the total dissimilarity among the selected routings is maximized.  
Dissimilarity between two routings is defined in terms of machines that belong to 
each routing. The selection of a routing among alternative routings of each part is 
performed according to the maximization of the sum of the dissimilarity coeffi-
cients. This method was developed to reduce congestion and increase production 
rate in FMS. 

Notations : 

n : Number of parts. 

q : Number of routings.  

D
ij 

: dissimilarity between routings i and j.  

C
ij 

= 1 if routing j belongs to the routings of part i. Otherwise, C
ij 

= 0  

X
j 
= 1 if routing j is selected. Otherwise, X

j 
= 0  

S
j
: Sum of maximum dissimilarity.  

The dissimilarity coefficient (dissimilarity of machine type) between two routing i 
and j is defined as follows (Saygin and Kilic, 1999): 

)1.8(
routingbothintypesmachineofnumberTotal

jandiroutingbothincommonnotarethattypesmachineofNumber
ijD =  

For the selection of alternative routing we will maximize the total sum of dissimi-
larities between the routing as follows (Saygin and Kilic., 1999): 
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Equation (8.3) states that only one routing will be selected for each part. 
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Equation (8.4) states that the number of selected routings will be equal to the 
number of parts. 

8.4.2 Modified DMM for Real Time Routing Selection: 

The Modified DMM rule (Hassam and Sari, 2007) was developed based on the 
DMM rule mentioned earlier.  The major motivation behind the modified DMM 
was twofold. For high arrival rate of parts and small buffer capacities, the produc-
tion system is overloaded and yet the utilization rates of the machines and the ma-
terial handling system are low.  

These two factors affect the performance of the FMS. For this we propose the 
Modified DMM rule to overcome these problems. Our modification of DMM rule 
is intended to keep the same principle which depends on the maximization of dis-
similarity coefficients for the selection of various routing, but by affecting several 
parts to a single routing.  

So if all routes are selected by a part, the newly created part will choose among 
routing, the part will be delivered in the routing where the queue of the first ma-
chine of this routing, contains at least one free place.  

8.4.3 ALGORITHM OF MODIFIED DMM RULE:  

In this section we show the integration of Modified DMM rule in FMS for the se-
lection of an alternative routing among routings available for each type of part.  
The parts arriving in the first have a higher priority following the FIFO rule, the 
other parts will wait in input or output queues of various machines or in the load-



ing station. The modified rule will use the following algorithm for the selection of 
alternative routing in real time in a flexible production system. 

Step 1: All routes are free (available) so X(i)=0.  
Step 2: Calculation of dissimilarity coefficients D

ij 
(1).  

Step 3: Creation (arrival) of parts.  
Step 4: Condition: depending on the type of part tested:  
 If there's at least one free routing and at least one free place in the queue  
 of the loading station.  
 
Or  

 If all routes are busy and the input queue of the first machine of at least     
one routing contains at least one free place and this machine is not broken 
down.  

 
Step 5: If the previous condition is not verified, the part is in a queue until the   

condition is verified.  
Step 6: If the condition of step 4 is checked then we calculate the sum:  

           )5.8(
1

),()()( ∑
=

=
q

i
jiDiXjS  

Step 7: Test, if we find a maximum of S (j) (There is free routings).  
Step 8: If the previous condition is checked then go to step 10.  
Step 9: If the condition of step 7 is not checked, then select the routing where the 

input queue of its first machine contains at least one free place.  
Step 10: Routing j selected according to Step 7 or step 9 is occupied, X(j)=1.  
Step 11: Treatment of the part according to the selected routing j.  
Step 12: At the end of treatment, routing becomes available again X(j)=0.  
Step 13: Part leaves the system.  
 
The cycle repeats itself from Step 3 to Step 11 every time a part arrives. 

8.5 Meta‐heuristics for job shop routing 

8.5.1 Ant colony Optimization: 

This meta-heuristic was introduced by (Dorigo M 1992) and was inspired by the 
studies on the real ant whose members are individually equipped with very limited 
faculties but can find the shortest path from a food source to their nest without 
visual cue. They are also capable of adapting to changes in the environment like 
the appearance of an unexpected obstacle on the initial path between the food 
source and the nest.  



 
The first algorithm of this type of meta-heuristics was conceived to solve travel-
ling salesman problem (Dorigo M 1992). This algorithm principle is simple. 
When an ant k moves from city i to city j, it leaves a trail on the way. Moreover, it 

chooses the next city to be visited using a probability p k

ij
 based on a compro-

mise between the intensity of the trail )(tk

ijτ  and visibility ηij that represents the 

reciprocal of the distance between i and j, the relative importance of the two ele-
ments is controlled by two parameters α and β.  
Each ant k has a form of memory tabuk it points out the ordered list of the cities 
which have been already visited in order to force this one to form an acceptable 
solution. After a full run, each ant deposit a certain quantity of pheromone 

)(tk

ijτΔ  which depends on the quality of the solution found on the whole of its 

course. This algorithm has been adapted to our problem by replacing the city i by 
the part i and the city j by the routing j. For each part i, the choice of routing j is 

based on a compromise between the intensity of the trail )(tk

ijτ and visibility ηij 

(depends on the number of parts in the input buffer of the first machine of the 
routing and its load). 
The relative importance of the two elements is always controlled by two coeffi-
cients α and β. If the full number of ants is m and the size of the loading station is 
n, a cycle is carried out when each m ants assigns n first parts of the infinite queue 
to routings j. After a full rotation (the assignment of all n first parts of the infinite 
queue to the routings by the ants), each ant leaves a certain quantity of phero-

mone )(tk

ijτΔ  which depends on the quality of the found solution on the whole 

of the selected routings for the parts. 

Algorithm: 

Step1:  if there is a free place in the loading station then 
Step2: For t = 1 to tmax 
Step3: For each ant k = 1to m 
Step4: Select  randomly a routing for the first part of the infinite queue according 

to its type.               
Step5: For each part i contents in the second place until the nth  place of the infi-

nite queue 
Step6: Select a routing i, among the possible routings according to a probability 

depending on the intensity of the trace and the number of the parts in the in-
put queue of the first machine of this routing and its load. 

Step7: End For. 



Step8: Evaluation: of the objective function. (Produced loads of the routings) 

Step9: Leave a track )(tk

ijτΔ  on the way Tk(t) (for each routing j selected for 

part i by the ant k).  
Step10: End For. 
Step11: Evaporate the tracks and modify the intensities.  
Step12: End For. 
Step13: End if. 

8.5.2 Simulated Annealing 

The simulated annealing method was conceived by (Kirkpatrick S et al 1983). It 
is a meta-heuristic inspired by a process used in metallurgy to obtain a well or-
dered solid state with minimal energy called annealing process.  
This technique consists in carrying material at high temperature, then to lower this 
temperature slowly. This optimization method is based on works of (Metropolis 
N et al 1953) which allow describing the behavior of a system in thermodynamic 
equilibrium at a certain temperature. This technique transports the annealing 
process to the resolution of an optimization problem: the objective function to be 
minimized being the energy E of material. The temperature T is also introduced. 
From an initial solution at a temperature T, we generate another solution close in a 
random way. If this solution improves the objective function, this latter is auto-
matically accepted. If it degrades the objective function, it can also be accepted 
according to a probability exp(-ΔE) were ΔE is the variation of the objective func-
tion, once thermodynamic equilibrium is reached one should lowers the front tem-
perature slightly before implementing a new iteration.  
 

Algorithm: 

Step1: If there' is a free place in the loading station then 
Step2: Build the initial state (assign n first parts to routings randomly). 
Step3: Calculate the product of loads of the routings.  
Step4: For t = 1,…, tmax 
Step5: Modify the routings of certain parts among n first parts contained in the in-

finite queue.  
Step6: Calculate the product of loads of the routings.  
Step7: If the objective function is improved then this solution is accepted 
Step8: End if  
Step9: Else  generate a random number   
Step10: If this number is lower or equal to exp (- ΔE): (ΔE is the variation of the 

objective function) then this solution is accepted  
Step11: End if    



Step12: End if    
Step13: End For. 
Step14: End 

8.5.3 Particle Swarms Optimization  

PSO is a recent meta-heuristic approach proposed by Kennedy and Eberhart in 
(Eberhart  R.C and Kennedy J 1995). It is based on the metaphor of social inte-
raction and communication, such as fish schooling and bird flocking when it is 
randomly searching for food in an area, where there is only one piece of food 
available and none of them knows where it is, but they can estimate how far it 
would be at each iteration. For this problem, the simplest strategy to find and get 
the food is to follow the bird known as the nearest one to the food.  
In PSO, each single solution is called a particle, the group becomes a swarm (pop-
ulation) and the search space is the area to explore. Each particle has a fitness val-
ue calculated by a fitness function, and a velocity of flying towards the optimum. 
In the original version of PSO, all particles adjust theirs positions not only accord-
ing to their own experience but also according to the experience of other particles, 
they fly across the problem space following the particle nearest to the optimum by 
two elastic forces. One attracts it to the best location so far encountered by the par-
ticle. The other attracts it with random magnitude to the best location encountered 
by any member of the swarm. 

PSO originally designed for continuous optimization problems, but can be 
adapted to discrete problems like our problem of routing selection where the posi-
tion of the particle is updated by the following equation proposed by Pan et al 
(Pan et al, 2005):  

( ) ( )( ) ( )( ) ( )( ) )6.8(1,1,112132 −−−⊕⊕⊕= tGtptXFwFcFctX iii
     

The equation consists of three components: The first component is 
( ) ( )( )11 −⊕= tXFwt iiλ  which represents the velocity of the particle. F1 represents an 

operator which modifies the routing of some parts with the probability of w, a uni-
form random number r is generated between 0 and 1. If r is less than w then the F1 
is applied to generate a perturbed permutation of the particle by ( ) ( )( )11 −= tXFt iiλ , 
otherwise current permutation is kept as ( ) ( )1−= tXt iiλ .Of the same way, the second 

component which is cognition part of the particle  ( ) ( ) ( )( )1,21 −⊕= tptFct iii γδ  and 
the third component which is the social part of the particle 

( ) ( ) ( )( )1,32 −⊕= tGtFctX iii δ  have been modified where F2 and F3 represent the 
crossover with the probability C1 and C3 where pi and G are the bests local and 
global. 

 
 



Algorithm: 
 
Pi, and G are the bests local and global.   

n1: number of individuals 

Step1: If n  is the size of the queues.      
Step2: If there is a free place in the loading station then 
Step3: Initialize the population 
Step4: Initialize the parameters  
Step5: While  (hasn’t met stop criterion) 
Step6: For i = 1 to n1  (for each particle xi) 
Step7: Calculate the products of the routings loads of this bird  
Step8: If F (xi) > F (Bli) then: update the best local Bli =xi 
Step9: End if  
Step10: If F (xi) > F (Bg) then: update the best global Bg = xi 
Step11: End if  
Step13: End for 
Step14: For i = 1 to n1 (update the particle position)  

( ) ( )( ) ( )( ) ( )( )1,1,112132 −−−⊕⊕⊕= tGtiptiXFwFcFctiX  
Step15: End for 
Step16: End while 
Step17: End if  
Step18: End if  

8.5.4 Genetic algorithms 

Genetic algorithms were proposed by (Holland J.H 1975). They were inspired 
from the principles of natural genetics and the theory of evolution.  
In a GA, each solution is stored in an artificial chromosome represented by a code. 
Each of these chromosomes is defined by two characteristics. The first is their ge-
notype, which is the actual sequence which defines the chromosome. It is called 
like this because of the analogy with a genetic sequence in biology. The second is 
the phenotype, which is the decoded version of the genotype that determines the 
traits of the individual. 
With each of the chromosomes, the parameters are decoded and evaluated by the 
fitness function to determine the quality of the phenotype. New candidates are 
generated gradually from a set of renewed populations by applying artificial ge-
netic operators selected, after repeatedly using operators of crossover and muta-
tion (Goldberg, E.E 1989). Crossover is performed by taking two fit genotypes, 
choosing a place along the bit string, cutting each of them at that place and then 
connecting one string's left to the other string right and vice versa. This produces 
two new chromosomes, which are a combination of the two parents. 



Reproduction is simply a matter of passing chromosomes which are judged to be 
above a certain fitness level through to the next generation and mutation is done 
by choosing bits randomly and swapping them. 
 
Algorithm 

Step1: If there' is a free place in the loading station then 
Step2: Generate a random population. 
Step3: While  (hasn’t meet stop criterion) 
Step4: For each individual 
Step5: Evaluate the fitness of this individual (the product of the routings loads).  
Step6: If the objective function is higher than the best solution then update the 

best solution. 
Step7: End for  
Step8: Select  the individuals for the reproduction (selection  operator). 
Step9: Apply the operator of crossing (we obtains a set of new individuals). 
Step10: Apply the operator of mutation on the new individuals. 
Step11: Constitute the new generation. 
Step12: End while 
Step13: End if 

8.5.5  Taboo search 

This method was formalized by (Glover F. and Manual Laguana 1997). It is 
based on the use of mechanisms inspired by the human memory. An algorithm 
based on this meta-heuristic requires an initial solution and a neighborhood struc-
ture.  
 The principle of this meta-heuristic is simple: we generate an initial configuration 
and we proceed by transiting from one solution to another. The mechanism of pas-
sage of one configuration, called s, to the next one, called t, comprises two stages 
(Dréo et al, 2003):  
- The first builds the set of the neighbours of s, i.e. the set of the accessible confi-
gurations in only one elementary movement of s, let V (s) be the set (or the subset) 
of these neighbours. 
- The second evaluates the objective function f of the problem for each configura-
tion belonging to V (s). The configuration t, which succeeds s in the series of the 
solutions built by the taboo method, is the configuration of V (s) in which f takes 
the minimal value. This configuration t is adopted even if it is worse than s; due to 
this characteristic the taboo method can avoid the trapping in the local minima.  
To avoid to return to a retained configuration and generate a cycle in each iteration 
the taboo list (of length fixed or variable) that gave its name to the method con-
tains m movements (t → s), which are the opposite of the last m movements (s → 
t) carried out. 
 



Algorithm 

Step1: If n is the capacity of the queues.    
Step2: If there is a free place in the loading station then  
Step3: Build the initial state S (assign n first parts of the infinite queue to routings 
in a random way) 
Step4: Initialize the parameters  
Step5: Calculate the products of the routings loads 
Step6: While (hasn’t meet stop criterion) 
Step7: For t= 1,…, n_neighbors 
Step8: Modify the routings of certain parts chosen randomly among n first parts 
of the infinite queue with no tabou’s movements (modification of S).  
Step9: Calculate the products of the routings loads. 
Step10: If the objective function (produced the routings loads) is higher than the 
best solution, then update the best solution. 
Step11: End if 
Step12: End for  
Step13: If  T is the best of these neighbors then 
Step14: Insert movement T->S in the tabou list. 
Step15: S=T 
Step16: End while 
Step17: End if 

8.5.6 Electromagnetism Like Method : EM 

Electromagnetism-like algorithm is a population-based meta-heuristic which 
has been proposed by S. Birbil et al in 2003 ( Birbil et Fang, 2003) to solve con-
tinuous problems effectively. 
EM simulates the attraction-repulsion mechanism of electromagnetism theory 
which is based on Coulomb’s law.  
At this approach, each solution is characterized and updated by a charge and a 
force, the charge of each particle is relative of the objective function.   
 
The generic pseudo-code for the EM which consists of five procedures (the ini-
tialisation of population, local search to explore the search space, calculation of 
the total force of each particle witch depends on the charges of the particles, mov-
ing along this force, and evaluation of the objective function before implementing 
a new iteration) is as follows: 

1- initialize  
2- while (hasn’t met stop criterion) do 
3- local search 
4- calculate total force F 
5- move particle by F 



6- evaluate particles 
7- End While 

To solve our problem we used an hybrid Framework witch combines the EM algo-
rithm with genetic operators proposed by (chen et al , 2007 ) 
 

Algorithm: 

m: size of the population. 

Step1: If there is a free place in the loading station then 
Step2: Generate a random population. 
Step3: While (hasn’t meet stop criterion) 
Step4: For i= 1. , m  (for each particle Xi) 
Step5: Search with modifying the routings of parts among n first of the infinite 
queue.  
Step6: Evaluate objective function. 
Step7: If the objective function is higher than the best solution then update the 
best solution. 
Step8: End for  
Step9: Calculate of average of the objective functions (avg ← calcAvgObjective-
Values()).  
Step10: For i= 1. , m 
Step11: If I ≠ best and F (xi) > avg then 
Step12: j = particle selected  
Step13: Uniform crossing (xi, xj) 
Step14: End if 
Step15: Else If f(xi) < avg Then 
Step16: Calculate force and move (xi) 
Step17: End if 
Step18: End for  
Step19: End while 
Step20: End if 

8.6 Performance evaluation for routing selection method 

8.6.1 Without presence of breakdown in the system: 

8.6.1.1 Production rate:  



Figure 8.3, shows that for a significant rate of arrival of the parts in the system 
(between 5 and 20 minutes), results obtained by Meta-heuristics are practically the 
same of these obtained with modified DMM method with a little advantage for 
Meta-heuristics. If the arrival rate is less or equal then 1/25 the production rate is 
practically the same for all methods. We can see that the results of PSO and GA 
meta-heuristics are the best among meta-heuristics. 

Rate of arrival of 
the parts (1/min) 1/40 1/35 1/30 1/25 1/20 1/15 1/10 1/5 

Modified   DMM 99,99 99,99 99,98 99,71 84,47 60,73 41,67 21,15 
ACO 99,99 99,99 99,99 99,99 90,52 64,54 43,2 21,51 
TS 99,99 99,99 99,99 99,99 95,28 64,93 43,29 21,78 
GA 99,99 99,99 99,99 99,99 98,44 71,08 47,25 23,7 
PSO 99,99 99,99 99,99 99,99 99,22 69,33 46,1 23,12 
SA 99,99 99,99 99,99 99,99 94,73 61,9 41,21 20,61 
EM 99,99 99,99 99,99 99,99 98,52 66,94 44,75 22,42 

Table8.2 Production rate for queue size=2. 
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Fig.8.3 Production rate for queue size=2. 

8.6.1.2 Machines utilization rate: 

The utilization rate of the machines is a very significant criterion in the measure-
ment of the performance, of a production system. The utilization rate for the ma-



chines VTC 1 and VTC2 is more significant for the Meta-heuristics and Modified 
DMM if the system is saturated (rate of arrival of parts is over than 1/25), the 
DMM Method performances are ameliorate if the parts arrives every 25 minutes if 
the rate is between 1/30 and 1/40 the utilization of the VTC machines is almost 
similar for all methods. Figure 8.4 show that GA is the best if one is interested on 
machines utilization rate for a rate of arrives of the parts superior than 1/20. 
 

Rate of arrival of 
the parts (1/min) 1/40 1/35 1/30 1/25 1/20 1/15 1/10 1/5 

Modified   DMM 49.97 56.94 66.59 79.85 84.52 82.72 83.58 84.70 

ACO 48.44 54.59 63.99 76.31 85.73 81.97 82.26 82.06 
TS 48.24 54.425 63.72 76.43 90.36 84.73 84.75 85.27 
GA 48.36 54.51 64.32 75.67 92.72 90.98 90.85 90.96 
PSO 48.29 54.71 63.96 76.55 93.2 89.2 88.84 88.95 
SA 48.59 54.74 64.16 76.2 89.42 80.49 80.41 80.47 
EM 48.24 54.48 63.96 76.19 92.39 86.16 86.56 86.75 

Table 8.3 VTC Machines utilization rate for queue size=2. 
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Fig.8.4 VTC Machines utilization rate for queue size=2 . 

8.6.1.3 Material handling utilization rate 

Figure 8.5 shows us that for a saturated system the ratio utilization of the AGV is 
practically the same for all methods. The results given by meta-heuristics are less 
good than those of the Modified DMM but these results are more stable because 
variations of values are very low, this is due to the high production rate and the in-



crease in the use of the machines. The results of PSO and GA Meta-heuristics are 
little better than other meta-heuristics if the system is saturated. 
 

Rate of arrival of 
the parts (1/min) 1/40 1/35 1/30 1/25 1/20 1/15 1/10 1/5 

Modified   DMM 14.98 17.46 21 27.31 30.26 29.16 30.19 30.44 
ACO 17.47 19.58 22.89 27.36 30.64 29.37 29.46 29.41 
TS 17.37 19.5 22.86 27.42 32.32 30.68 30.69 30.88 
GA 17.43 19.54 23.16 27.04 33.07 32.69 32.67 32.68 
PSO 17.40 19.64 22.98 27.48 33.20 32.00 31.97 31.98 
SA 17.55 19.65 23.08 27.30 31.92 29.104 29.07 29.10 
EM 17.37 19.52 22.98 27.29 32.89 31.12 31.2 31.26 

 Table 8.4 Material handling utilization rate for queue size=2. 
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Fig.8.5 Material handling utilization rate for queue size=2. 



8.6.1.4 Work in process 

Figure 8.6 shows that if the rate of creation of the parts is greater or equal than  1/ 
30, the number of parts that remains in the system if  we use Modified DMM is 
higher than those of the Meta-heuristics. Therefore if the system is saturated the 
results given by meta-heuristics are better than those of Modified DMM. If the 
system is less saturated the results of work in process is draw nearer for all me-
thods. 

  

Rate of arrival of the parts (1/min) 1/40 1/35 1/30 1/25 1/20 1/15 1/10 1/5 
Modified   DMM 6.79 12.95 15.79 19.01 17.84 18.19 16.86 18.12 

ACO 3.9 4.04 4.45 5.21 7.29 8.4 8.44 8.46 
TS 3.89 4.03 4.47 5.26 7.98 8.4 8.4 8.41 
GA 3.9 4.04 4.46 5.23 7.45 8.9 8.85 8.85 
PSO 3.88 4.03 4.45 5.25 7.35 8.67 8.67 8.64 
SA 3.91 4.03 4.46 5.22 7.11 7.95 7.95 7.95 
EM 3.89 4.04 4.44 5.28 7.99 8.64 8.66 8.62 

 

Table 8.5 Work in process for queue size=2. 
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Fig 8.6 .Work in process for queue size=2. 



8.6.1.5 Cycle time: 

Figure 8.7, shows that if the rate of arrival of the parts is greater than 1/30, the 
cycle time of these parts in the system is better in the Meta-heuristics case than the 
ones in modified DMM. The results of cycle time given by meta-heuristics are 
practically the same. If the rate of arrival parts is between 1/30 and 1/40 we can 
see that the results of all methods are similar. These results show that the cycle 
times given by Meta-heuristics are better than those of Modified DMM in case of 
saturated system. 

Rate of arrival of the 
parts (1/min) 1/40 1/35 1/30 1/25 1/20 1/15 1/10 1/5 

Modified   DMM 81,94 87,83 101,63 155,89 203,37 204,70 207,22 204,21 
ACO 90,91 83,76 89,03 98,83 155,29 166,69 165,41 163,58 
TS 91,49 80,37 86,24 98,02 135,97 171,79 174,84 173,94 
GA 89,62 81,81 88,65 98,74 132,702 169,87 168,93 168,14 
PSO 89,62 81,23 91,7 96,19 125,92 173,51 173,24 169,49 
SA 95,33 83,81 90,34 99,59 135,51 170,44 168,95 168,15 
EM 92,29 81,6 90,16 101,12 124,84 170,57 170,85 168,91 

Table 8.6 Cycle time for queue size=2. 
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Fig8.7 .Cycle time for queue size=2. 

8.6.2 With the presence of breakdown in the system: 

8.6.2.1 Production rate:  



The results in Figure 8.8 are similar to those in Figure 8.3, for a rate of arrival of 
the parts in the system between 5 and 25 minutes, results obtained by Meta-
heuristics are better than those obtained in the modified DMM. GA and PSO me-
ta-heuristic give the better results. If the arrival rate is less or equal then 1/30 the 
production rate is practically the same for all methods. We can conclude that in 
general even with the presence of breakdown in the system, the performances of 
meta-heuristics are the best. 

Rate of arrival of the parts (1/min) 1/40 1/35 1/30 1/25 1/20 1/15 1/10 1/5 
Modified   DMM 99,99 99,97 99,62 85,02 66,70 50,91 34,29 17,04 

ACO 99,99 99,99 99,99 99,98 84,47 63,13 42,11 21,13 
TS 99,99 99,99 99,99 99,99 84,53 63,45 42,28 21,12 
GA 99,99 99,99 99,99 99,99 92 69,05 46,22 23,12 
PSO 99,99 99,99 99,99 99,99 90.04 67.5 44.99 22.61 
SA 99,99 99,99 99,99 99,99 80,72 60,22 40,24 20,23 
EM 99,99 99,99 99,99 99,99 89,78 65,61 43,76 21,96 

Table 8.7 Production rate for queue size=2. 
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Fig8.8 .Production rate for queue size=2. 

 

8.6.2.2 Machines utilization rate: 

Even with the introduction of failures, the utilization rate for the machines VTC 1 
and VTC2 is more significant for the Meta-heuristics when compared to Modified 
DMM if the system is saturated (rate of arrival of  parts is over than 1/20). The 



Modified DMM Method performances are ameliorated if the parts arrive every 25 
minutes.  Otherwise, the rate of utilization of the VTC machines is almost similar 
for all methods. Figure 8.9 show that PSO and GA meta-heuristics are the best if 
the system is saturated. 

Rate of arrival of the parts 
(1/min) 1/40 1/35 1/30 1/25 1/20 1/15 1/10 1/5 

Modified   DMM 49,88 56,94 66,78 77,16 77,77 78,13 78,50 78,75 
ACO 48,29 54,58 63,9 76,13 80,44 80,2 80,24 80,5 
TS 48,40 54,65 63,955 76,03 82,75 82,8 82,76 82,75 
GA 48,3 54,90 64,04 76,1 88,135 88,44 88,63 88,67 
PSO 48.64 54.8 64.26 76.45 86.71 86.63 86.61 86.9 
SA 48,23 54,47 64,25 76,2 78,73 78,35 78,53 79,84 
EM 48,30 54,60 64,01 75,95 86,16 84,6 84,65 84,96 

Table 8.8 VTC Machines utilization rate for queue size=2. 
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Fig8.9 .VTC Machines utilization rate for queue size=2.   

 



8.6.2.3 Material handling utilization rate: 

Figure 8.10 shows us that for a saturated system the ratio utilization of the AGV is 
more significant for meta-heuristics than modified DMM rule. If the rate of arrival 
parts is less than 1/25 all of the methods give practically the same performances. 
The results of PSO and GA Meta-heuristics are little better than other meta-
heuristics if the system is saturated. 

Rate of arrival of the parts 
(1/min) 1/40 1/35 1/30 1/25 1/20 1/15 1/10 1/5 

Modified   DMM 14,98 17,55 21,19 24,28 24,07 24,54 24,67 24,54 

ACO 17,39 19,57 22,95 27,27 28,82 28,74 28,75 28,84 

TS 17,45 19,61 22,97 27,21 29,96 29,98 29,96 29,97 

GA 17,402 19,73 23,02 27,25 31,78 31,79 31,83 31,85 

PSO 17.57 19.68 23.13 27.42 31.2 31.16 31.15 31.24 
SA 17,37 19,52 23,13 27,302 28,46 28,33 28,309 28,88 

EM 17,404 19,58 23,008 27,17 30,96 30,49 30,51 30,62 

Table 8.9 Material handling utilization rate for queue size=2. 
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Fig8.10 .Material handling utilization rate for queue size=2. 

8.6.2.4 Work in process:  

Figure 8.11 shows that if the rate of arrival of the parts is greater or equal than  1/ 
30, the number of parts that remains in the system if we use Modified DMM rule 
is higher than those of  meta-heuristics. In this case the results of all meta-



heuristics are the same practically. If the system is not saturated the results given 
by meta-heuristics and Modified DMM rule are very similar.  

Rate of arrival of the parts (1/min) 1/40 1/35 1/30 1/25 1/20 1/15 1/10 1/5 

Modified   DMM 4.55 7.79 28.62 29.82 30.51 28.04 28.64 27.2 

ACO 3.95 4.09 4.55 5.4 8.46 8.43 8.43 8.46 
TS 3.94 4.1 4.54 5.36 8.41 8.4 8.41 8.39 

GA 3.92 4.1 4.58 5.34 8.83 8.87 8.85 8.81 

PSO 3.94 4.09 4.55 5.39 8.67 8.68 8.68 8.7 
SA 3.93 4.1 4.54 5.44 7.95 7.94 7.99 8.05 

EM 3.93 4.09 4.56 5.41 8.65 8.61 8.61 8.6 

Table 8.10 .Work in process for queue size=2 
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Fig8.11 .Work in process for queue size=2. 

8.6.2.5 Cycle time: 

Figure 8.12, shows that if the rate of arrival of the parts is greater than 1/30, the 
cycle time of these parts in the system is better in the Meta-heuristics case than the 
ones in modified DMM. The results of cycle time given by meta-heuristics are 
practically the same. If the rate of arrival parts is between 1/30 and 1/40 we can 
see that the results of all methods are similar. These results show that the cycle 
times given by Meta-heuristics are better than those of Modified DMM in case of 
saturated system even with presence of breakdowns. 

 



Rate of arrival of the 
parts (1/min) 1/40 1/35 1/30 1/25 1/20 1/15 1/10 1/5 

Modified   DMM 91,10 99,13 119,99 325,16 353,34 346,81 339,85 341,13 
ACO 97,59 82,67 90,14 104,02 169,87 169,89 167,36 175,42 

TS 94,59 85,92 91,91 103,42 177,106 178,4 173,76 176,05 
GA 94,27 85,76 93,3 104,61 170,8 174,606 175,23 176,25 
PSO 95.5 84.9 93.2 103.2 170.8 175.1 174.6 173.9 
SA 93,07 86,26 93,58 99,45 172,33 175,78 175,08 173,36 
EM 92,78 83,37 91,26 102,16 174,09 172,91 175,84 169,91 

Table 8.11 Cycle time for queue size=2. 
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Fig8.12 .Cycle time for queue size=2. 

8.7 Conclusion 

In this paper we presented a number of meta-heuristics and compared their per-
formances with a method of selection of alternative routing in real time namely: 
modified Dissimilarity Maximization Method.  
For each rule, we notice that the simulation results without breakdowns are better 
than those with breakdown, which is predictable since breakdown lowers the per-
formance of the system. Results obtained showed that all meta-heuristics gave re-
sults better than modified DMM and clearly increased the performances of the 
system for a saturated production system and high rate of creation of parts because 
they increase the production rate and the utilization rate of machines and the utili-
zation of AGV. We can remark the improvement of the performances concerning 
the cycle time and the rate of the work-in-process of the system if we use the 



meta-heuristics contrary to modified DMM which can’t improve these perform-
ances. 
Results showed that PSO (Particle Swarms Optimization) and GA (Genetic Algo-
rithms) gives the best results practically in all cases. If the production system is 
not overloaded all methods give the same results practically. 
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