REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

> Université Abou Bekr Belkaid - Tlemcen Faculté de Technologie, Département de Génie Civil

Mémoire d'Obtention du Diplôme de MASTER en Génie civil Option : Constructions métallique et mixtes.

Thème :

ETUDE D'UNE HALLE INDUSTRIELLE EN CHARPENTE METALIQUE A SIDI ABDELLI

Présenté le décembre 2020 par :

MIIe. BENRAMEDANE IBTISSEM

Mlle. CHIKH TOURIA

Devant le jury composé de :

Président Examinateur Encadreur Co-Encadreur Mme. BENADLA.Z Mr. BABAHAMED.S Mr. MISSOUM.A Mr. BOUMECHRA.N

Dédicaces

Je dédie ce modeste travaille

À mes très chères parents pour tous leurs sacrifices depuis ma naissance à ce jour et pour les encouragements que j'ai eus de leur Part.

À Mon cher frère MOHAMMED

À mes sœurs FERYEL, AICHA et à son marie en Particulier. Mes chères MARWA, SETTI, HANANE, NAIMA, HOUDA, ASMAE, MERIEME, SABRINA, AMINE, MOHAMED, YASSINE, ISMAIL A toutes la famille BENRAMDANE, SABER sans exception (grand-père, grand-mère, *oncles, tante, cousin ,cousines,......)* et tous ce qui sont cher pour moi.

Ma binôme TOURIA est sa famille et à toute la promo Construction Métallique et Mixte 2019-2020 et à tous mes amis de proche ou de loin.

A notre promoteurs Mer A.MISSOUM et N.BOUMECH RA pour accepter de nous guider sur le bon chemin du travail.

A tous mes enseignants du primaire jusqu'à ce jour.

IDTICCENA

Dédicaces (

C'est grâce à ALLAH Azza wa djal seul que j'ai pu achever ce modeste travail, je le dédie spécialement à :

C'eux qui m'ont amené au monde, mes très chères parents, source d'amour de tendresse et de soutien, qui m'ont encouragé tout au long de mon cursus que Allah me les protègent.

Mes frères et sœurs, AZIZ, MOHAMMED, FATIMA. Toute la famille CHIKH et BENRAMDENE. A mon binôme IBTISSEM pour amitié. A toutes la promotion de Génie civil 2019-2020, en particulier mes collègues de la promotion charpente métallique et mixte.

CHIKH TOURIA

REMERCIEMENT

Au terme de ce modeste travail, nous rendons louange à Dieu le tout puissant de nous avoir donné le courage et la volonté de *l'avoir accompli.*

Comme nous tendons à adresser nos vifs remerciements à :

A nos familles : Qui nous ont toujours encouragés et soutenus durant toutes nos études.

A M[•].MISSOUM.A et M.BOUMECHRA.N : Notre promoteurs, pour avoir accepté de nous guider sur le bon chemin du travail.

Aux membres de jury : Pour avoir accepté de juger notre travail.

Et à tous ceux qui ont contribué de près ou de loin à la concrétisation de ce travail.

BENRAMDANE.I et CHIKH.T

Résumé

Ce projet consiste à faire une étude et un dimensionnement d'une halle industrielle en charpente métallique, située dans la commune de Sidi Abdelli dans la wilaya de Tlemcen.

Ce projet comporte plusieurs parties, en premier lieu l'évaluation des charges et surcharges. Ensuite, l'étude climatique (neige et vent) selon le «RNV99 Version 2013» a été réalisée. Puis le dimensionnement des éléments secondaires sont traités. Après, l'étude dynamique selon le «RPA99 Version 2003» est entamée. Pour décider de l'ossature finale de notre halle, la vérification des éléments principaux et le calcul des différents assemblages nécessaires selon le «CCM97» s'imposent. Le projet repose sur des fondations qui sont calculées selon le «BAEL91».

Enfin, Le logiciel ROBOT a été l'outil informatique utilisé tout au long de l'analyse de notre étude.

Mots clés : charpente métallique, étude dynamique, assemblage, fondation.

ملخص

هذا المشروع يتمثل في دراسة وتصميم مبنى ذو هيكل معدني، متواجد بدائرة سيدي العبد لي ولاية تلمسان.

يتكون هدا المشروع من عدة أجزاء في المقام الأول تقييم الأحمال ، بعدها دراسة مناخية(الثلوج و الرياح)وفقا RPA99 Version 2003 ،ثم أبعاد العناصر الثانوية، بعد ذلك تطرقنا لدراسة ديناميكية وفقا للمنشور RPA Version 2003 من أجل تقرير الهيكل النهائي للمشروع ،لابد من دراسة العناصر الرئيسية المختلفة إضافة إلى كيفية الربط بين مختلف العناصر وفقا للمنشور CCM97 .يستند المشروع على أسس التي تدرس وفقا للمنشور BAEL91.

برنامج ROBOT كان الوسيلة المستعملة لدراسة المشروع.

الكلمات المفتاحية : هيكل معدني ، دراسة ديناميكية، التجميع، الأسس.

Abstract

This Project is to study and design an industial building of metal frame with an overhead crane located in the commune of Sidi Abdelli, wilaya of Tlemcen.

This Project consists of several parts. In the first place the évaluation of charges and surcharges. Then, the climatic study (Wind and Snow) according to the «RNV Version 2013». Then, the study of the dimensioning of the secondary elements are treated. After that, the dynamic study according to the «RPA99 Version 2003» is started. To decide on the final frame of our hall, the sizing of the main various eletarted. To decide on the final frame of our hall, the sizing of the main various elements and calculating the different connections according to the «CCM97» is needed. The project is based on foundations that are calculated We finished according to the «CBA».

Finally, the ROBOT software was the computer tool used any analysis of our study.

Keywords : metal frame, assemblies , study dynamic , foundation.

Sommaire

Dédicaces	I
Dédicaces	11
REMERCIEMENT	. 111
Résumé	.IV
ملخص	.IV
Abstract	. IV
INTRODUCTION GENERALE	1
Chapitre I : Présentation de l'ouvrage	_
1.1. Introduction	3
1.2. Caractéristiques géométriques de l'ouvrage	3
I.2.1. Geometries de l'ouvrage	3
I.2.2 Etude de sol	4
I.3 Caractéristiques structurales	4
I.3.1 Covertures	4
I.3.2 Ossature de la structure	4
I.4. Matériaux Utilisés	4
I.4.1 L'acier	4
I.4.2 Proprieties de l'acier	5
I.5 Règlements techniques	5
Chapitre II : Evaluation des charges et surcharges	_
II.1 Charges permanentes	/
II .2 Charges d'exploitation	7
II .3 Etude de la neige	7
II .3.1 Charge de neige au sol (Sk)	8
II .3.2 Coefficient de la forme de la toiture (μ)	8
II .3.3 Charge de neige	8
II .4 ETUDE DE VENT	8
II .4.1 Données relatives au site	9
II .4.2 Charge de vent <i>wz</i>	9
II .4.3 Vent pour parois verticales z=12.8m	9
II .4.3.1 Calcul de la pression dynamique de la pointe	9
II .4.3.2 Coefficient d'exposition (Ce)	9
II .4.3.3 Coefficient dynamique (Cd)	10
II .4.3.4 Coefficient de pression extérieure Cpe	. 10
II .4.4 Vent pour toiture (16
II .4.4.1 Calcul de la pression dynamique de la pointe	16
II.4.4.2 Coefficient d'exposition (Ce)	. 17
II .4.5 Coefficient dynamique (Cd)	18

	II .4.6 Coefficient de pression extérieure Cpe	. 20
	II .4.7 Coefficient de pression extérieure Cpi	. 25
	II .4.8 Charge de vent wz	. 26
	Chapitre III : Dimensionnement des éléments secondaires	
II	1.1 Calcul des pannes	30
	A. Espacement entre pannes	. 30
	B.Dimensionnement des pannes	. 32
	B.1 Combinaison des charges	. 33
	B.2 Vérification de flèche à l'ELS	. 34
	B.3 Vérification de résistance des pannes à L'ELU	. 35
	B.4. Résistance de la panne au déversement	. 35
	B.5 Résistance de l'âme au voilement par cisaillement	. 36
	B.6 Stabilité au flambement de la semelle comprimée dans le plan de l'âme	. 36
	B.7 Incidence de l'effort tranchant	. 37
II	2 Calcul des lisses de bardages	38
	III .2.1 Détermination des sollicitations	. 38
	III .2.2 Vérification à l'état limite ultime	. 39
	III.2.3 Vérification de la flèche de l'UPN160 (ELS)	. 41
II	I.3 Calcul des potelets	42
	III.3.1 Calcul des charges et surcharges revenantes au potelet	. 42
	III.3.2 Incidence de l'effort tranchant	. 43
	III.3.3 Vérification de l'élément aux instabilités	. 44
	Chapitre IV : Etude sismique	
۱۱ ۱	/.1 Introduction	48
N	/.2 Principe de la méthode	48
N	/.3 Spectre de réponse de calcul	48
N	/.4 Analyse dynamique	49
N	7.5 Modélisation de la structure	49
N	7.6 Analyse modale	50
IV	7.7 Vérification de la structure	51
	IV.7.1. Vérification de la période fondamentale de la structure	. 51
	IV.7.2 Vérification de la force sismique à la base	. 51
	IV.7.3 Vérification des déplacements	. 52
١١	/.8 Conclusion	52
v	Chapitre V : Vérification des éléments structuraux	54
v	2 Justification des traverses	54
v	V 2 1 Charge rénartie sur la traverse	. J4 54
	V 2 2 Caractéristiques de la traverse	54 5/
	V.2.3 Efforts sollicitant	. 54

	54
V.2.5 Vérification au cisaillement	55
V.2.6 Vérification de la résistance à la flexion composée	55
V.2.7 Vérification de la flèche (ELS)	57
V.3 Justification des poteaux	57
V.3.1 Efforts sollicitant	57
V.3.2 Incidence de l'effort axial	58
V.3.3 Vérification au cisaillement	58
V.3.4 Vérification de la résistance à la flexion composée	58
V.3.5 Vérification de la fleche (ELS)	61
V.4 Vérification des contreventements	61
V.4.1 Introduction	61
V.4.2 Stabilités en X	61
V.4.2 .1 vérification à la traction	61
V.4.2.2 Vérification au flambement	62
V.5 Vérification des sablières	63
V.5.1 Vérification de la résistance à la flexion simple	63
V.5.2 Vérification de la flèche (ELS)	64
Chapitre VI : Calcul des assemblages	
V/1.1 Introduction	66
VI.2 Assemblage Poteau-Traverse	68
VI.2 Assemblage Poteau-Traverse	68 69
VI.2 Assemblage Poteau-Traverse VI.2.1 Soudure de la platine VI.2.2 Vérification de la soudure de la semelle a la traction	68 69 69
VI.2 Assemblage Poteau-Traverse VI.2.1 Soudure de la platine VI.2.2 Vérification de la soudure de la semelle a la traction VI.2.3 Vérification de la soudure de l'âme au cisaillement	68 69 69 69
VI.1. Introduction VI.2 Assemblage Poteau-Traverse. VI.2.1 Soudure de la platine VI.2.2 Vérification de la soudure de la semelle a la traction VI.2.3 Vérification de la soudure de l'âme au cisaillement VI.2.4 Détermination des efforts dans les boulons	68 69 69 69 70
 VI.2 Assemblage Poteau-Traverse. VI.2.1 Soudure de la platine VI.2.2 Vérification de la soudure de la semelle a la traction VI.2.3 Vérification de la soudure de l'âme au cisaillement VI.2.4 Détermination des efforts dans les boulons VI.2.5 Détermination de diamètre requise des boulons 	68 69 69 69 70 71
 VI.2 Assemblage Poteau-Traverse. VI.2.1 Soudure de la platine VI.2.2 Vérification de la soudure de la semelle a la traction VI.2.3 Vérification de la soudure de l'âme au cisaillement VI.2.4 Détermination des efforts dans les boulons VI.2.5 Détermination de diamètre requise des boulons VI.2.6 Vérification à la résistance de l'assemblage	68 69 69 70 71 71
 VI.2 Assemblage Poteau-Traverse. VI.2.1 Soudure de la platine VI.2.2 Vérification de la soudure de la semelle a la traction VI.2.3 Vérification de la soudure de l'âme au cisaillement VI.2.4 Détermination des efforts dans les boulons VI.2.5 Détermination de diamètre requise des boulons VI.2.6 Vérification à la résistance de l'assemblage VI.2.7 Vérification des boulons à l'interaction cisaillement-traction 	68 69 69 70 71 71
 VI.2 Assemblage Poteau-Traverse. VI.2.1 Soudure de la platine VI.2.2 Vérification de la soudure de la semelle a la traction VI.2.3 Vérification de la soudure de l'âme au cisaillement VI.2.4 Détermination des efforts dans les boulons	68 69 69 70 71 71 71
VI.1. Introduction VI.2. Assemblage Poteau-Traverse. VI.2.1 Soudure de la platine VI.2.2 Vérification de la soudure de la semelle a la traction VI.2.3 Vérification de la soudure de l'âme au cisaillement VI.2.4 Détermination des efforts dans les boulons. VI.2.5 Détermination de diamètre requise des boulons VI.2.6 Vérification à la résistance de l'assemblage VI.2.7 Vérification des boulons à l'interaction cisaillement-traction VI.2.8 Vérification au poinçonnement de la semelle du poteau VI.2.9 Vérification à la pression diamétrale	68 69 69 70 71 71 72 72
 VI.2 Assemblage Poteau-Traverse	68 69 69 70 71 71 72 72 72
VI.2 Assemblage Poteau-Traverse	68 69 69 70 71 71 72 72 72 72
 VI.2 Assemblage Poteau-Traverse VI.2.1 Soudure de la platine	68 69 69 70 71 71 72 72 72 73 73
 VI.2 Assemblage Poteau-Traverse	68 69 69 70 71 71 71 71 71 71 72 72 72 73 74
 VI.2 Assemblage Poteau-Traverse. VI.2.1 Soudure de la platine	68 69 69 70 71 71 71 72 72 72 72 73 74 74 74
VI.2 Assemblage Poteau-Traverse. VI.2.1 Soudure de la platine VI.2.2 Vérification de la soudure de la semelle a la traction VI.2.3 Vérification de la soudure de l'âme au cisaillement VI.2.4 Détermination des efforts dans les boulons VI.2.5 Détermination de diamètre requise des boulons VI.2.6 Vérification à la résistance de l'assemblage VI.2.7 Vérification des boulons à l'interaction cisaillement-traction VI.2.8 Vérification au poinçonnement de la semelle du poteau VI.2.9 Vérification à la résistance de l'âme du poteau dans la zone tendue VI.2.10 Vérification à la résistance de l'âme du poteau dans la zone comprimée VI.2.11 Vérification à la résistance de l'âme du poteau dans la zone cisaillée VI.2.12 Vérification à la résistance de l'âme du poteau dans la zone cisaillée VI.3.1 Détermination de diamètre requise des boulons VI.3.2 Vérification à la résistance de l'âme du poteau dans la zone cisaillée VI.3.1 Détermination de diamètre requise des boulons VI.3.2 Vérification à la résistance de l'âme du poteau dans la zone cisaillée VI.3.1 Détermination de diamètre requise des boulons VI.3.2 Vérification au cisaillement des boulons VI.3.2 Vérification au cisaillement des boulons	68 69 69 70 71 71 71 72 72 72 72 73 74 74 75 75
VI.2 Assemblage Poteau-Traverse VI.2.1 Soudure de la platine VI.2.2 Vérification de la soudure de la semelle a la traction VI.2.3 Vérification de la soudure de l'âme au cisaillement VI.2.4 Détermination des efforts dans les boulons VI.2.5 Détermination de diamètre requise des boulons VI.2.6 Vérification à la résistance de l'assemblage VI.2.7 Vérification des boulons à l'interaction cisaillement-traction VI.2.8 Vérification au poinçonnement de la semelle du poteau VI.2.9 Vérification à la résistance de l'âme du poteau dans la zone tendue. VI.2.10 Vérification à la résistance de l'âme du poteau dans la zone comprimée VI.2.11 Vérification à la résistance de l'âme du poteau dans la zone cisaillée VI.2.12 Vérification à la résistance de l'âme du poteau dans la zone cisaillée VI.3.1 Détermination de diamètre requise des boulons VI.3.3 Vérification a la pression diamètre le use boulons VI.3.1 Détermination de diamètre requise des boulons VI.3.2 Vérification à la pression diamètre le use boulons VI.3.3 Vérification à la pression diamètre le use boulons VI.3.3 Vérification à la pression diamètre	68 69 69 70 71 71 71 72 72 72 72 72 73 74 75 75
VI.2 Assemblage Poteau-Traverse VI.2.1 Soudure de la platine VI.2.2 Vérification de la soudure de la semelle a la traction VI.2.3 Vérification de la soudure de l'âme au cisaillement VI.2.4 Détermination des efforts dans les boulons VI.2.5 Détermination de diamètre requise des boulons VI.2.6 Vérification à la résistance de l'assemblage VI.2.7 Vérification a la résistance de l'assemblage VI.2.8 Vérification a la résistance de l'âme du poteau VI.2.9 Vérification à la pression diamétrale VI.2.10 Vérification à la résistance de l'âme du poteau dans la zone tendue VI.2.11 Vérification à la résistance de l'âme du poteau dans la zone comprimée VI.2.12 Vérification à la résistance de l'âme du poteau dans la zone cisaillée VI.2.11 Vérification à la résistance de l'âme du poteau dans la zone cisaillée VI.2.12 Vérification à la résistance de l'âme du poteau dans la zone cisaillée VI.3.1 Détermination de diamètre requise des boulons VI.3.1 Détermination de diamètre requise des boulons VI.3.2 Vérification a la pression diamétrale VI.3.3 Vérification a la pression diamétrale VI.3.3 Vérification a la pression diamétrale VI.4 Assemblage poteau-sablière (HEA340-HEA140)	68 69 69 70 71 71 71 72 72 72 72 72 73 74 75 76 76

Chapitre VII : Etude de l'infrastructure 80 VII.2 Pieds de poteaux 80 VII.2 I Efforts et sollicitations 81 VII.2.1 Efforts et sollicitations 81 VII.2.2 Resistance de calcul à l'écrasement du matériau de scellement 81 VII.2.2 Letimation de laire de la plaque d'assise 81 VII.2.2 Choix du type de la plaque d'assise 81 VII.2.2 Johnensions de la platine 81 VII.2.3 Uérification de la résistance en compression d'un tronçon en T de la semelle 82 VII.2.4 Vérification de la partie tendue de l'assemblage 82 VII.2.5 Résistance à la flexion de la plaque d'assise (par unité de longueur) 84 VII.2.4 Vérification à la résistance en flexion 84 VII.3 Calcul des pieds de potelet 86 VII.3.2 Efforts et sollicitations 86 VII.3.4 Estimation de la laque d'assise (par unité de longueur) 86 VII.3.3 Resistance de calcul à l'écrasement du matériau de scellement 87 VII.3.4 Estimation de la plaque d'assise. 87 VII.3.5 Choix du type de la plaque d'assise (par unité de longueur) 86 VII.3.4 Estimation de la lageur d'aspui additionnelle C 87 VII.3.5 Choix du type de la plaque d'assise (par unité de lon	VI.4.2 Vérification à la pression diamétrale	77
VII.1 Introduction 80 VII.2 Detds de poteaux. 80 VII.2.1 Efforts et sollicitations 81 VII.2.1 Estimation de l'aire de la plaque d'assise 81 VII.2.2 Resistance de calcul à l'écrasement du matériau de scellement 81 VII.2.2 A Dixe du type de la plaque d'assise 81 VII.2.2 J Dimensions de la plaque d'assise 81 VII.2.2 J Dimensions de la plaque d'assise 81 VII.2.2 A Détermination de la largeur d'appui additionnelle C 81 VII.2.3 Vérification de la résistance en compression d'un tronçon en T de la semelle	Chapitre VII : Etude de l'infrastructure	
VII.2 Pieds de poteaux 80 VII.2.1 Efforts et sollicitations 81 VII.2.2 Resistance de calcul à l'écrasement du matériau de scellement 81 VII.2.2.1 Estimation de l'aire de la plaque d'assise 81 VII.2.2.1 Doix du type de la plaque d'assise 81 VII.2.2.3 Dimensions de la platine 81 VII.2.3 Vérification de la largeur d'appui additionnelle C 81 VII.2.4 Détermination de la largeur d'appui additionnelle C 82 VII.2.4 Vérification de la plaque d'assise (par unité de longueur) 82 VII.2.5 Résistance de la partie tendue de l'assemblage 83 VII.2.6 Résistance à la flexion de la plaque d'assise (par unité de longueur) 84 VII.3.7 Vérification à la résistance en flexion 84 VII.3.2 Efforts et sollicitations 86 VII.3.3 Resistance de calcul à l'écrasement du matériau de scellement 86 VII.3.4 Estimation de l'aire de la plaque d'assise 87 VII.3.5 Choix du type de la plaque d'assise 87 VII.3.6 Dimensions de la platine 87 VII.3.6 Dimensions de la plaque d'assise (par unité de longueur) 89 VII.3.7 Détermination de la riare de la plaque d'assise (par unité de longueur) 89 VII.4.1 Calcul de la pa	VII.1 Introduction	80
VII.2.1 Efforts et solicitations 81 VII.2.2 Resistance de calcul à l'écrasement du matériau de scellement 81 VII.2.2.1 Estimation de l'aire de la plaque d'assise 81 VII.2.2.2 Choix du type de la plaque d'assise 81 VII.2.2.3 Dimensions de la platine 81 VII.2.2.4 Détermination de la résistance en compression d'un tronçon en T de la semelle 82 VII.2.3 Vérification de la résistance en compression d'un tronçon en T de la semelle 82 VII.2.4 Vérification de la résistance en compression d'un tronçon en T de la semelle 82 VII.2.5 Résistance de la partie tendue de l'assemblage 83 VII.2.6 Résistance à la flexion de la plaque d'assise (par unité de longueur) 84 VII.2.7 Vérification à la résistance en flexion 84 VII.2.7 Vérification à la résistance en flexion 84 VII.2.7 Stellations 86 VII.3.2 Efforts et sollicitations 86 VII.3.2 Efforts et sollicitations 86 VII.3.3 Esistance de la plaque d'assise 87 VII.3.4 Estimation de la plaque d'assise 87 VII.3.5 Dioix du type de la plaque d'assise (par unité de longueur) 89 VII.3.6 Dimensions de la platine 87 VII.3.7 Détermination de la résis	VII.2 Pieds de poteaux	80
VII.2.2 Resistance de calcul à l'écrasement du matériau de scellement	VII.2.1 Efforts et sollicitations	81
VII.2.2.1 Estimation de l'aire de la plaque d'assise 81 VII.2.2.2 Choix du type de la plaque d'assise 81 VII.2.2.3 Dimensions de la platine 81 VII.2.2.4 Détermination de la largeur d'appui additionnelle C 81 VII.2.3 Vérification de la résistance en compression d'un tronçon en T de la semelle 82 VII.2.4 Vérification de la résistance en compression d'un tronçon en T de la semelle 82 VII.2.5 Résistance de la partie tendue de l'assemblage 83 VII.2.6 Résistance à la flexion de la plaque d'assise (par unité de longueur) 84 VII.2.7 Vérification à la résistance en flexion 84 VII.3.2 Efforts et sollicitations 86 VII.3.2 Efforts et sollicitations 86 VII.3.3 Resistance de la plaque d'assise 87 VII.3.4 Estimation de l'aire de la plaque d'assise 87 VII.3.5 Choix du type de la plaque d'assise 87 VII.3.5 Choix du type de la plaque d'assise 87 VII.3.5 Dimensions de la plaque d'assise 87 VII.3.5 Choix du type de la plaque d'assise 87 VII.3.5 Choix du type de la plaque d'assise 87 VII.3.5 Choix du type de la plaque d'assise 87 VII.3.5 Choix du type de la plaque d'assise (par unité de l	VII.2.2 Resistance de calcul à l'écrasement du matériau de scellement	81
VII.2.2.2 Choix du type de la plaque d'assise 81 VII.2.2.3 Dimensions de la platine 81 VII.2.3.4 Détermination de la largeur d'appui additionnelle C 81 VII.2.3.4 Vérification de la résistance en compression d'un tronçon en T de la semelle 82 VII.2.5 Résistance de la partie tendue de l'assemblage 83 VII.2.5 Résistance de la partie tendue de l'assemblage 83 VII.2.5 Résistance da la plaque d'assise (par unité de longueur) 84 VII.2.7 Vérification à la résistance en flexion 84 VII.3.2 Efforts et sollicitations 86 VII.3.2 Efforts et sollicitations 86 VII.3.3 Resistance de la plaque d'assise 87 VII.3.4 Estimation de la résistance de tiges d'ancrage 87 VII.3.5 Choix du type de la plaque d'assise 87 VII.3.7 Détermination de la résistance de tiges d'ancrage 87 VII.3.7 Détermination de la résistance de tiges d'ancrage 87 VII.3.9 Résistance de la partie tendue de l'assemblage 88 VII.3.9 Résistance de la plaque d'assise (par unité de longueur) 89 VII.3.9 Résistance de la partie tendue de l'assemblage 88 VII.3.10 Résistance de la partie tendue de l'assemblage 88 VII.3.10 Résistance	VII.2.2.1 Estimation de l'aire de la plaque d'assise	
VII.2.2.3 Dimensions de la platine 81 VII.2.2.4 Détermination de la largeur d'appui additionnelle C 81 VII.2.3 Vérification de la résistance en compression d'un tronçon en T de la semelle 82 VII.2.4 Vérification de la résistance de tiges d'ancrage 82 VII.2.5 Résistance de la partie tendue de l'assemblage 83 VII.2.6 Résistance à la flexion de la plaque d'assise (par unité de longueur) 84 VII.2.7 Vérification à la résistance en flexion 84 VII.3.1 Calcul des pieds de potelet 86 VII.3.2 Clérots et sollicitations 86 VII.3.2 Efforts et sollicitations 86 VII.3.3 Resistance de calcul à l'écrasement du matériau de scellement 86 VII.3.4 Estimation de l'aire de la plaque d'assise 87 VII.3.5 Choix du type de la plaque d'assise 87 VII.3.6 Dimensions de la platine 87 VII.3.7 Détermination de la largeur d'appui additionnelle C 87 VII.3.9 Résistance de la plaque d'assise (par unité de longueur) 89 VII.4.1 Calcul de l'excentricté 90 VII.4.2 Nérification de la plaque d'assise (par unité de longueur) 89 VII.4.1 Calcul de la semelle est donnée par la condition 91 VII.4.1 Calcul de la sem	VII.2.2.2 Choix du type de la plaque d'assise	
VII.2.2.4 Détermination de la largeur d'appui additionnelle C 81 VII.2.3 Vérification de la résistance en compression d'un tronçon en T de la semelle 82 VII.2.4 Vérification de la résistance de tiges d'ancrage 82 VII.2.5 Résistance de la partie tendue de l'assemblage 83 VII.2.6 Résistance à la flexion de la plaque d'assise (par unité de longueur) 84 VII.2.7 Vérification à la résistance en flexion 84 VII.3.1 Introduction 86 VII.3.2 Efforts et sollicitations 86 VII.3.3 Resistance de calcul à l'écrasement du matériau de scellement 86 VII.3.4 Estimation de l'aire de la plaque d'assise 87 VII.3.5 Choix du type de la plaque d'assise 87 VII.3.6 Dimensions de la platine 87 VII.3.7 Détermination de la résistance de tiges d'ancrage 87 VII.3.8 Vérification de la résistance de tiges d'ancrage 87 VII.3.9 Résistance de la partie tendue de l'assemblage 88 VII.3.0 Résistance de la partie tendue de l'assemblage 88 VII.4.1 Dimensionnement de la semelle 90 VII.4.1 Dimensionnement de la semelle est donnée par la condition 91 VII.4.2 Hauteur utile de la semelle est donnée par la condition 91	VII.2.2.3 Dimensions de la platine	81
VII.2.3 Vérification de la résistance en compression d'un tronçon en T de la semelle	VII.2.2.4 Détermination de la largeur d'appui additionnelle C	
VII.2.4 Vérification de la résistance de tiges d'ancrage 82 VII.2.5 Résistance de la partie tendue de l'assemblage 83 VII.2.6 Résistance à la flexion de la plaque d'assise (par unité de longueur) 84 VII.2.7 Vérification à la résistance en flexion 84 VII.3.2 Calcul des pieds de potelet 86 VII.3.2 Calcul des pieds de potelet 86 VII.3.2 Efforts et sollicitations 86 VII.3.3 Resistance de calcul à l'écrasement du matériau de scellement 86 VII.3.4 Estimation de l'aire de la plaque d'assise 87 VII.3.5 Choix du type de la plaque d'assise 87 VII.3.6 Dimensions de la platine 87 VII.3.7 Détermination de la largeur d'appui additionnelle C 87 VII.3.8 Vérification de la résistance de tiges d'ancrage 87 VII.3.9 Résistance à la flexion de la plaque d'assise (par unité de longueur) 89 VII.4.1 Calcul de l'excentricité 90 VII.4.2 Hauteur utile de la semelle 90 VII.4.3 Vérification de la semelle est donnée par la condition 91 VII.4.4 Calcul des armatures de la semelle 91 VII.4.4 Calcul des langement 93 VII.4.5 Vérification de la condition de non fragilité 93	VII.2.3 Vérification de la résistance en compression d'un tronçon en T de la semelle	82
VII.2.5 Résistance de la partie tendue de l'assemblage 83 VII.2.6 Résistance à la flexion de la plaque d'assise (par unité de longueur) 84 VII.2.7 Vérification à la résistance en flexion 84 VII.3.2 Calcul des pieds de potelet 86 VII.3.1 Introduction 86 VII.3.2 Efforts et sollicitations 86 VII.3.3 Resistance de calcul à l'écrasement du matériau de scellement 86 VII.3.4 Estimation de l'aire de la plaque d'assise 87 VII.3.5 Choix du type de la plaque d'assise 87 VII.3.6 Dimensions de la platine 87 VII.3.7 Détermination de la largeur d'appui additionnelle C 87 VII.3.9 Résistance de la partie tendue de l'assemblage 88 VII.3.9 Résistance à la flexion de la plaque d'assise (par unité de longueur) 89 VII.4.1 Dimensionnement de la semelle 90 VII.4.2 Hauteur utile de la semelle est donnée par la condition 91 VII.4.3 Vérification de la condition de non fragilité 93 VII.4.4 Calcul des armatures de la semelle 93 VII.4.5 Vérification de la condition de non fragilité 93 VII.4.6 Calcul l'espacement 93 VII.4.7 Calcul des longrines 93 VI	VII.2.4 Vérification de la résistance de tiges d'ancrage	82
VII.2.6 Résistance à la flexion de la plaque d'assise (par unité de longueur)	VII.2.5 Résistance de la partie tendue de l'assemblage	83
VII.2.7 Vérification à la résistance en flexion 84 VII.3 Calcul des pieds de potelet 86 VII.3.1 Introduction 86 VII.3.2 Efforts et sollicitations 86 VII.3.3 Resistance de calcul à l'écrasement du matériau de scellement 86 VII.3.4 Estimation de l'aire de la plaque d'assise 87 VII.3.5 Choix du type de la plaque d'assise 87 VII.3.6 Dimensions de la platine 87 VII.3.7 Détermination de la largeur d'appui additionnelle C 87 VII.3.8 Vérification de la résistance de tiges d'ancrage 87 VII.3.9 Résistance de la partie tendue de l'assemblage 88 VII.4.1 Oficiation de la semelle 90 VII.4.1 Calcul de l'excentricité 90 VII.4.2 Hauteur utile de la semelle est donnée par la condition 91 VII.4.3 Vérification de la stabilité au renversement 91 VII.4.4 Calcul des armatures de la semelle 91 VII.4.2 Fauteur utile de la condition de non fragilité 93 VII.4.3 Cérification de la condition de non fragilité 93 VII.4.4 Calcul des longrines 93 VII.4.5 Vérification de la condition de non fragilité 93 VII.4.6 Calcul l'espacement 93	VII.2.6 Résistance à la flexion de la plaque d'assise (par unité de longueur)	84
VII.3.2 Calcul des pieds de potelet 86 VII.3.1 Introduction 86 VII.3.2 Efforts et sollicitations 86 VII.3.3 Resistance de calcul à l'écrasement du matériau de scellement 86 VII.3.4 Estimation de l'aire de la plaque d'assise 87 VII.3.5 Choix du type de la plaque d'assise 87 VII.3.6 Dimensions de la platine 87 VII.3.7 Détermination de la largeur d'appui additionnelle C 87 VII.3.8 Vérification de la résistance de tiges d'ancrage 87 VII.3.9 Résistance de la partie tendue de l'assemblage 88 VII.3.10 Résistance à la flexion de la plaque d'assise (par unité de longueur) 89 VII.4.1 Calcul de l'excentricité 90 VII.4.2 Hauteur utile de la semelle 90 VII.4.3 Vérification de la stabilité au renversement 91 VII.4.4 Calcul des armatures de la semelle 91 VII.4.2 Fauteur utile de la condition de non fragilité 93 VII.4.3 Cárcií des longrines 93 VII.4.4 Calcul des longrines 93 VII.4.9 Calcul du ferraillage 93 VII.4.10 Calcul d'armatures transversales 94 VII.4.10 Dimensionnement des fûts 94 <td< td=""><td>VII.2.7 Vérification à la résistance en flexion</td><td> 84</td></td<>	VII.2.7 Vérification à la résistance en flexion	84
VII.3.1 Introduction 86 VII.3.2 Efforts et sollicitations 86 VII.3.3 Resistance de calcul à l'écrasement du matériau de scellement 86 VII.3.4 Estimation de l'aire de la plaque d'assise 87 VII.3.5 Choix du type de la plaque d'assise 87 VII.3.6 Dimensions de la platine 87 VII.3.7 Détermination de la largeur d'appui additionnelle C 87 VII.3.7 Détermination de la résistance de tiges d'ancrage 87 VII.3.9 Résistance de la partie tendue de l'assemblage 88 VII.3.9 Résistance à la flexion de la plaque d'assise (par unité de longueur) 89 VII.4 Dimensionnement de la semelle 90 VII.4.1 Calcul de l'excentricité 90 VII.4.2 Hauteur utile de la semelle est donnée par la condition 91 VII.4.3 Vérification de la stabilité au renversement 91 VII.4.4 Calcul des armatures de la semelle 91 VII.4.5 Vérification de la condition de non fragilité 93 VII.4.7 Calcul des longrines 93 VII.4.8 Dimensionnement des longrines 93 VII.4.9 Calcul du ferraillage 93 VII.4.10 Calcul d'armatures transversales 94 VII.4.11 Dimensionnement des fûts	VII.3 Calcul des pieds de potelet	
VII.3.2 Efforts et sollicitations 86 VII.3.3 Resistance de calcul à l'écrasement du matériau de scellement 86 VII.3.4 Estimation de l'aire de la plaque d'assise 87 VII.3.5 Choix du type de la plaque d'assise 87 VII.3.6 Dimensions de la platine 87 VII.3.7 Détermination de la largeur d'appui additionnelle C 87 VII.3.8 Vérification de la résistance de tiges d'ancrage 87 VII.3.9 Résistance de la partie tendue de l'assemblage 88 VII.3.10 Résistance à la flexion de la plaque d'assise (par unité de longueur) 89 VII.4 Dimensionnement de la semelle 90 VII.4.1 Calcul de l'excentricité 90 VII.4.2 Hauteur utile de la semelle est donnée par la condition 91 VII.4.3 Vérification de la stabilité au renversement 91 VII.4.4 Calcul des armatures de la semelle 93 VII.4.5 Vérification de la condition de non fragilité 93 VII.4.6 Calcul l'espacement 93 VII.4.9 Calcul du ferraillage 93 VII.4.10 Calcul du ferraillage 93 VII.4.10 Calcul du ferraillage 93 VII.4.10 Calcul du ferraillage 94 VII.4.10 Calcul du ferraillage 94	VII.3.1 Introduction	86
VII.3.3 Resistance de calcul à l'écrasement du matériau de scellement 86 VII.3.4 Estimation de l'aire de la plaque d'assise 87 VII.3.5 Choix du type de la plaque d'assise 87 VII.3.6 Dimensions de la platine 87 VII.3.7 Détermination de la largeur d'appui additionnelle C 87 VII.3.8 Vérification de la résistance de tiges d'ancrage 87 VII.3.9 Résistance de la partie tendue de l'assemblage 88 VII.4.10 Résistance à la flexion de la plaque d'assise (par unité de longueur) 89 VII.4.1 Calcul de l'excentricité 90 VII.4.2 Hauteur utile de la semelle est donnée par la condition 91 VII.4.3 Vérification de la condition de non fragilité 93 VII.4.4 Calcul des armatures de la semelle 93 VII.4.5 Vérification de la condition de non fragilité 93 VII.4.6 Calcul l'espacement 93 VII.4.7 Calcul des longrines 93 VII.4.8 Dimensionnement des longrines 93 VII.4.9 Calcul du ferraillage 93 VII.4.10 Calcul d'armatures transversales 94 VII.4.11 Dimensionnement des fûts 94 VII.4.11 Dimensionnement des fûts 94	VII.3.2 Efforts et sollicitations	86
VII.3.4 Estimation de l'aire de la plaque d'assise 87 VII.3.5 Choix du type de la plaque d'assise 87 VII.3.6 Dimensions de la platine 87 VII.3.7 Détermination de la largeur d'appui additionnelle C 87 VII.3.8 Vérification de la résistance de tiges d'ancrage 87 VII.3.9 Résistance de la partie tendue de l'assemblage 88 VII.3.10 Résistance à la flexion de la plaque d'assise (par unité de longueur) 89 VII.4 Dimensionnement de la semelle 90 VII.4.1 Calcul de l'excentricité 90 VII.4.2 Hauteur utile de la semelle est donnée par la condition 91 VII.4.3 Vérification de la stabilité au renversement 91 VII.4.4 Calcul des armatures de la semelle 91 VII.4.5 Vérification de la condition de non fragilité 93 VII.4.6 Calcul l'espacement 93 VII.4.7 Calcul des longrines 93 VII.4.8 Dimensionnement des longrines 93 VII.4.9 Calcul du ferraillage 93 VII.4.10 Calcul d'armatures transversales 94 VII.4.11 Dimensionnement des fûts 94 VII.4.11 Dimensionnement des fûts 94	VII.3.3 Resistance de calcul à l'écrasement du matériau de scellement	86
VII.3.5 Choix du type de la plaque d'assise 87 VII.3.6 Dimensions de la platine 87 VII.3.7 Détermination de la largeur d'appui additionnelle C 87 VII.3.8 Vérification de la résistance de tiges d'ancrage 87 VII.3.9 Résistance de la partie tendue de l'assemblage 88 VII.3.10 Résistance à la flexion de la plaque d'assise (par unité de longueur) 89 VII.4 Dimensionnement de la semelle 90 VII.4.1 Calcul de l'excentricité 90 VII.4.2 Hauteur utile de la semelle est donnée par la condition 91 VII.4.3 Vérification de la stabilité au renversement 91 VII.4.4 Calcul des armatures de la semelle 91 VII.4.5 Vérification de la condition de non fragilité 93 VII.4.6 Calcul l'espacement 93 VII.4.7 Calcul des longrines 93 VII.4.8 Dimensionnement des longrines 93 VII.4.9 Calcul du ferraillage 93 VII.4.10 Calcul d'armatures transversales 94 VII.4.11 Dimensionnement des fûts 94 VII.4.11 Dimensionnement des fûts 94	VII.3.4 Estimation de l'aire de la plaque d'assise	87
VII.3.6 Dimensions de la platine 87 VII.3.7 Détermination de la largeur d'appui additionnelle C 87 VII.3.8 Vérification de la résistance de tiges d'ancrage 87 VII.3.9 Résistance de la partie tendue de l'assemblage 88 VII.3.10 Résistance à la flexion de la plaque d'assise (par unité de longueur) 89 VII.4 Dimensionnement de la semelle 90 VII.4.1 Calcul de l'excentricité 90 VII.4.2 Hauteur utile de la semelle est donnée par la condition 91 VII.4.3 Vérification de la stabilité au renversement 91 VII.4.4 Calcul des armatures de la semelle 91 VII.4.5 Vérification de la condition de non fragilité 93 VII.4.6 Calcul l'espacement 93 VII.4.7 Calcul des longrines 93 VII.4.8 Dimensionnement des longrines 93 VII.4.9 Calcul du ferraillage 93 VII.4.10 Calcul d'armatures transversales 94 VII.4.11 Dimensionnement des fûts 94 VII.4.11 Dimensionnement des fûts 94	VII.3.5 Choix du type de la plaque d'assise	87
VII.3.7 Détermination de la largeur d'appui additionnelle C. 87 VII.3.8 Vérification de la résistance de tiges d'ancrage. 87 VII.3.9 Résistance de la partie tendue de l'assemblage 88 VII.3.10 Résistance à la flexion de la plaque d'assise (par unité de longueur) 89 VII.4 Dimensionnement de la semelle 90 VII.4.1 Calcul de l'excentricité 90 VII.4.2 Hauteur utile de la semelle est donnée par la condition 91 VII.4.3 Vérification de la stabilité au renversement 91 VII.4.4 Calcul des armatures de la semelle 91 VII.4.5 Vérification de la condition de non fragilité 93 VII.4.6 Calcul l'espacement 93 VII.4.7 Calcul des longrines 93 VII.4.8 Dimensionnement des longrines 93 VII.4.9 Calcul du ferraillage 93 VII.4.10 Dimensionnement des fûts 94 VII.4.11 Dimensionnement des fûts 94	VII.3.6 Dimensions de la platine	87
VII.3.8 Vérification de la résistance de tiges d'ancrage 87 VII.3.9 Résistance de la partie tendue de l'assemblage 88 VII.3.10 Résistance à la flexion de la plaque d'assise (par unité de longueur) 89 VII.4 Dimensionnement de la semelle 90 VII.4.1 Calcul de l'excentricité 90 VII.4.2 Hauteur utile de la semelle est donnée par la condition 91 VII.4.3 Vérification de la stabilité au renversement 91 VII.4.4 Calcul des armatures de la semelle 91 VII.4.5 Vérification de la condition de non fragilité 93 VII.4.6 Calcul l'espacement 93 VII.4.7 Calcul des longrines 93 VII.4.9 Calcul du ferraillage 93 VII.4.10 Dimensionnement des fûts 94 VII.4.11 Dimensionnement des fûts 94	VII.3.7 Détermination de la largeur d'appui additionnelle C	87
VII.3.9 Résistance de la partie tendue de l'assemblage 88 VII.3.10 Résistance à la flexion de la plaque d'assise (par unité de longueur) 89 VII.4 Dimensionnement de la semelle 90 VII.4.1 Calcul de l'excentricité 90 VII.4.2 Hauteur utile de la semelle est donnée par la condition 91 VII.4.3 Vérification de la stabilité au renversement 91 VII.4.4 Calcul des armatures de la semelle 91 VII.4.5 Vérification de la condition de non fragilité 93 VII.4.6 Calcul l'espacement 93 VII.4.7 Calcul des longrines 93 VII.4.8 Dimensionnement des longrines 93 VII.4.9 Calcul du ferraillage 93 VII.4.10 Calcul d'armatures transversales 94 VII.4.11 Dimensionnement des fûts 94	VII.3.8 Vérification de la résistance de tiges d'ancrage	87
VII.3.10 Résistance à la flexion de la plaque d'assise (par unité de longueur) 89 VII.4 Dimensionnement de la semelle 90 VII.4.1 Calcul de l'excentricité 90 VII.4.2 Hauteur utile de la semelle est donnée par la condition 91 VII.4.3 Vérification de la stabilité au renversement 91 VII.4.4 Calcul des armatures de la semelle 91 VII.4.5 Vérification de la condition de non fragilité 93 VII.4.6 Calcul l'espacement 93 VII.4.7 Calcul des longrines 93 VII.4.8 Dimensionnement des longrines 93 VII.4.9 Calcul du ferraillage 93 VII.4.10 Calcul d'armatures transversales 94 VII.4.11 Dimensionnement des fûts 94 CONCLUSION GENERALE 95	VII.3.9 Résistance de la partie tendue de l'assemblage	88
VII.4 Dimensionnement de la semelle 90 VII.4.1 Calcul de l'excentricité 90 VII.4.2 Hauteur utile de la semelle est donnée par la condition 91 VII.4.3 Vérification de la stabilité au renversement 91 VII.4.4 Calcul des armatures de la semelle 91 VII.4.5 Vérification de la condition de non fragilité 93 VII.4.6 Calcul l'espacement 93 VII.4.7 Calcul des longrines 93 VII.4.8 Dimensionnement des longrines 93 VII.4.9 Calcul du ferraillage 93 VII.4.10 Calcul d'armatures transversales 94 VII.4.11 Dimensionnement des fûts 94	VII.3.10 Résistance à la flexion de la plaque d'assise (par unité de longueur)	89
VII.4.1 Calcul de l'excentricité 90 VII.4.2 Hauteur utile de la semelle est donnée par la condition 91 VII.4.3 Vérification de la stabilité au renversement 91 VII.4.3 Calcul des armatures de la semelle 91 VII.4.4 Calcul des armatures de la semelle 91 VII.4.5 Vérification de la condition de non fragilité 93 VII.4.6 Calcul l'espacement 93 VII.4.7 Calcul des longrines 93 VII.4.8 Dimensionnement des longrines 93 VII.4.9 Calcul du ferraillage 93 VII.4.10 Calcul d'armatures transversales 94 VII.4.11 Dimensionnement des fûts 94	VII.4 Dimensionnement de la semelle	
VII.4.2 Hauteur utile de la semelle est donnée par la condition 91 VII.4.3 Vérification de la stabilité au renversement 91 VII.4.4 Calcul des armatures de la semelle 91 VII.4.5 Vérification de la condition de non fragilité 93 VII.4.6 Calcul l'espacement 93 VII.4.7 Calcul des longrines 93 VII.4.8 Dimensionnement des longrines 93 VII.4.9 Calcul du ferraillage 93 VII.4.10 Calcul d'armatures transversales 94 VII.4.11 Dimensionnement des fûts 94	VII.4.1 Calcul de l'excentricité	90
VII.4.3 Vérification de la stabilité au renversement 91 VII.4.4 Calcul des armatures de la semelle 91 VII.4.5 Vérification de la condition de non fragilité 93 VII.4.6 Calcul l'espacement 93 VII.4.7 Calcul des longrines 93 VII.4.8 Dimensionnement des longrines 93 VII.4.9 Calcul du ferraillage 93 VII.4.10 Calcul d'armatures transversales 94 VII.4.11 Dimensionnement des fûts 94 VII.4.11 Dimensionnement des fûts 94	VII.4.2 Hauteur utile de la semelle est donnée par la condition	91
VII.4.4 Calcul des armatures de la semelle 91 VII.4.5 Vérification de la condition de non fragilité 93 VII.4.5 Calcul l'espacement 93 VII.4.7 Calcul des longrines 93 VII.4.8 Dimensionnement des longrines 93 VII.4.9 Calcul du ferraillage 93 VII.4.10 Calcul d'armatures transversales 94 VII.4.11 Dimensionnement des fûts 94	VII.4.3 Vérification de la stabilité au renversement	91
VII.4.5 Vérification de la condition de non fragilité 93 VII.4.6 Calcul l'espacement 93 VII.4.7 Calcul des longrines 93 VII.4.8 Dimensionnement des longrines 93 VII.4.9 Calcul du ferraillage 93 VII.4.10 Calcul d'armatures transversales 94 VII.4.11 Dimensionnement des fûts 94 CONCLUSION GENERALE 95	VII.4.4 Calcul des armatures de la semelle	91
VII.4.6 Calcul l'espacement	VII.4.5 Vérification de la condition de non fragilité	93
VII.4.7 Calcul des longrines	VII.4.6 Calcul l'espacement	
VII.4.8 Dimensionnement des longrines	VII.4.7 Calcul des longrines	93
VII.4.9 Calcul du ferraillage	VII.4.8 Dimensionnement des longrines	93
VII.4.10 Calcul d'armatures transversales	VII.4.9 Calcul du ferraillage	
VII.4.11 Dimensionnement des fûts	VII.4.10 Calcul d'armatures transversales	
CONCLUSION GENERALE	VII.4.11 Dimensionnement des fûts	
	CONCLUSION GENERALE	95

Références bibliographiques
Annexes
A.1 Coefficient de forme
A.2 Valeurs de la pression dynamique de référence
A.3 Définition des catégories de terrain99
A.4 Légende pour les parois verticales
A.5 <i>Cpe</i> pour les parois verticales de bâtiment à base rectangulaire100
A.6 Légende pour les toitures à deux versants100
A.7 Coefficient de pression extérieure pour la toiture à deux versant
A.8 Coefficient de pression intérieure des bâtiments sans face dominante
B.1 Rapport largeur –épaisseur maximal pour les parois comprimées
B.2 Coefficient C1 pour les différentes valeurs de K dans le cas de charges transversales104
B.3 L'abaque de MACQUART105
B.4 Facteur d'imperfection $lpha$ selon le choix de la courbe de flambement correspondant à une section106
B.5 Poids du bardage en Panneau Sandwich (TL75)107
C.1 Coefficient d'accélération de zone A109
C.2 Pourcentage d'amortissement critique109
C.3 Coefficient de comportement global de la structure R110
C.4 Valeur des pénalités selon le facteur de qualité111
C.5 Coefficient donnée en fonction du système de contreventement et du type de remplissage111
C.6 Périodes <i>T</i> 1 , <i>T</i> 2111
D.1 Coefficient $C1$ pour différents valeurs de k dans le cas de moment d'extrémités selon ψ 112
D.2 : Rapport largeur-épaisseur maximal pour les parois comprimées
E.1 Valeurs limites des pinces et entraxes116
E.2 Valeurs nominales de <i>f yb et f ub</i> des boulons116
E.3 Principales caractéristiques géométriques117
E.4 Variables selon la nuance d'acier118
E.5 Facteur de forme118
E.6 Coefficient de frottement118
F.1 Section A _s cm ² de N armatures de diamètre $\phi(mm)$ 119
F.2 Coefficient en fonction de la zone sismique et de la catégorie de site considéré $lpha$ 119
F.3 Les modes de ruines plaque d'assise/boulons d'ancrage120

Liste des tableaux

Chapitre II : Evaluation des charges et surcharges

24
25

Chapitre III : Dimensionnement des éléments secondaires

Tableau III.1 : Caractéristiques du profilé IPE180	. 47
Tableau III.2 : Caractéristique du profilé UPN160	. 52
Tableau III.3 : Caractéristique du profilé IPE300	. 56

Chapitre IV : Etude sismique

Tableau IV1 : Facteur de qualité suivant les deux sens	63
Tableau IV.2 : Résultante des forces sismiques à la base	66
Tableau IV.3 : Déplacements résultants suivants Z	66

Chapitre V : Vérification des éléments structuraux

Tableau V.1 : Caractéristiques du profilé HEA320	68
Tableau V.2 : Caractéristiques du profilé HEA340	71
Tableau V.3 : Caractéristiques du profilé UPN140	75
Tableau V.4 : Caractéristiques du profilé HEA140	77

Chapitre VI : Calcul des assemblages

Tableau VI.1 : Eléments de la structure.	78
Tableau VI.2 : Valeur du coefficient de frottement μ selon la surface	81
Tableau VI.3 : Principales caractéristiques géométrique	81

Liste des figures

Chapitre	:	Présentation	de		'ouvrage
----------	---	---------------------	----	--	----------

Figure I.1 :Vue 3D de structure.	
Figure I.2 : Panneau sandwich	19
Chapitre II: Evaluation des charges et surcharges	
Figure II.1 : charge d'entretien sur une panne	22
Figure II.2 : l'inclinaison des versants	23
Figure II.3: vent sur façade principale	25
Figure II.4 : valeurs de Cpe, 10 direction V ₁	
Figure II.5 : vent sur face arrière	27
Figure II.6 : division de la paroi verticale selon le chargement du vent direction V_{5}	27
Figure II.7 : valeurs de Cpe, 10 direction V_1	
Figure II.8 :vent sur long pan	
Figure II.9 : division de la paroi verticale selon le chargement du vent direction V ₂ et V ₈	29
Figure II.10 : valeurs de Cpe, 10 direction V_2 et V_8 .	29
Figure II.11 : vent sur long pan	30
Figure II.12 :division de la paroi verticale selon le chargement du vent direction V ₃ et V ₇	30
Figure II.13 : valeurs de Cpe, 10 direction V_3 et V_7	31
Figure II.14 : vent sur long pan	31
Figure II.15: division de la paroi verticale selon le chargement du vent direction V ₄ et V ₆	32
Figure II.16 : valeurs de Cpe, 10 direction V_4 et V_6	32
Figure II.17: vent sur toiture de façade principale.	
Figure II.18 : pressions sur la toiture directions du vent V ₁	
Figure II.19 :vent sur pignon	
Figure II.20 : pressions sur la toiture directions du vent V ₅	
Figure II.21: vent sur toiture	
Figure II.22 : pressions sur la toiture directions du vent V ₂ et V ₈	
Figure II.23 : vent sur toiture	
Figure II.24 : pressions sur la toiture directions du vent $V_3 V_4 V_6 V_7$.	41
Chapitre III : Dimensionnement des éléments secondaires	
Figure III.1 : Cas de l'effet de vent	47
Figure III.2 : Cas de l'effet de neige	47
Figure III.3 : Cas des sollicitations	50
Chapitre IV: Etude sismique	
Figure IV.1: Spectre de réponse suivant z.	67
Figure IV.2: Spectre de réponse suivant Y	67
Chapitre V : vérification des éléments structuraux	
Figure V.1: Contreventement en X	79
Chapitre VI: Calcul des assemblages	
Figure VI.1 Détail d'assemblage poteau - traverse (HEA340-HEA320)	
Figure VI.2 : 3D d'assemblage poteau - traverse (HEA340-HEA320)	86
Figure VI.3 :La longueur totale des cordons de soudure de la semelle et l'ame.	
Figure VI.4:Désignation des entraxes et des pinces.	
Figure VI.5: 3D d'assemblage des diagonales doubles cornières avec gousset	
Figure VI.6: Détail d'assemblage des diagonales doubles cornières avec gousset	
Figure VI.7 3D d'assemblage poteau-sablière.	
Figure VI.8 : Detail d'assemblage poteau-sabliere (HEA340-HEA140)	94
Chapitre VII: Etude de l'infrastructure	
Figure VII.1 : Détail d'assemblage pied-poteau	98
Figure VII.2 : 3D d'assemblage pied de poteau	
Figure VII.3: Illustration de la partie comprimée du pied de poteau.	100
Figure VII.4 : Longueur d'allongement du boulon d'ancrage	101
Figure VII.5: Disposition constructive	101
Figure VII.6 : Illustration moment + effort normale.	102
Figure VII.7: 3D d'assemblage pied de potelet	
Figure VII.8 : détail d'assemblage de pied potelet	104
Figure VII.7 : Les dimensions de la semelle sous poteau	108
Figure VII.8 : vue du ferraillage des semelles isolées	110
Figure VII.9: coupe transversal de la longrine	112

INTRODUCTION GENERALE

Pour n'importe quel projet de construction, il existe divers procédés de conception et de réalisation selon les besoins et les capacités : constructions en béton armé, en béton précontraint, charpente en bois ou charpente métallique. Ces procédés sont réglementés par des normes, des codes et des règlements soit nationaux ou internationaux.

Notre projet de fin d'étude a pour thème la réalisation d'une halle métallique en charpente métallique dans la commune de Sidi Abdelli à la wilaya de Tlemcen, en utilisant les règlements (RPA99/V2003, RNV2013, CCM97, EUROCODE3, DTR.BC.2.2).

Notre travail est structuré de la manière suivante : Dans un premier temps, on présentera notre ouvrage dans le premier chapitre, puis une étude climatique sera détaillée en chapitre 2. Le dimensionnement des éléments secondaires seront abordés respectivement aux chapitres 3. Le quatrième chapitre portera l'étude sismique puis la vérification des éléments structuraux est faite au chapitre 5. Par la suite, le calcul des assemblages sera traité dans le chapitre 5. On finit notre travail par l'étude de l'infrastructure.

Ce choix de thème est motivé par le fait que l'acier offre des avantages indéniables tels que : la légèreté qui favorise une rapidité dans le montage sur le chantier, la possibilité et l'avantage de franchir de longues portées, ainsi que la facilité de la modification.

CHAPITREI: Présentation de L'ouvrage

PRESENTATION DE L'OUVRAGE

I.1. Introduction

La présente étude consiste à dimensionner, calculer et vérifier la stabilité d'un Hangar industriel en Construction Métallique avec un pont roulant, dont l'ossature est formée par un système de barres constitué essentiellement de poteaux et traverses.

L'ouvrage sera implanté à Sidi Abdelli, Wilaya de Tlemcen qui est classée selon le règlement parasismique Algérien (RPA99 version 2003) comme zone faible sismicité (I).

Figure I.1 : Vue 3D de structure.

I.2. Caractéristiques géométriques de l'ouvrage

I.2.1. Geometries de l'ouvrage

Longueur total **=138,05m.** Largeur total **= 36,00m.** Hauteur total **= 17,24m.** Hauteur des poteaux H1 =8,5 m H2 = 12,8m H3=17,24m Entraxe entre portiques **=6m**

I.2.2 Etude de sol

Les études faites sur le sol, nous renseignement sur :

- La contrainte admissible sera limitée à : $\sigma_{adm} = 1.8 \ bars$.

I.3 Caractéristiques structurales

I.3.1 Covertures

Pour une isolation phonique due la pluie et une isolation thermique pour un confort des travailleurs, on a choisi les panneaux sandwich, ils sont constitués :(figure I.2)

De deux tôles de parement intérieur et extérieur.

D'une âme en mousse isolante.

Les panneaux sandwich nous offrent plusieurs avantages on site :

L'isolation et l'étanchéité

Une bonne capacité portante

Un gain de temps appréciable au montage.

Figure I.2 : Panneau sandwich.

I.3.2 Ossature de la structure

L'ossature de l'ouvrage sera constituée par des portiques métalliques auto-stables qui assurent la stabilité verticale et horizontale.

I.4. Matériaux Utilisés

I.4.1 L'acier

L'acier est un matériau constitué essentiellement de fer et un faible taux de carbone, qui est extraits de matières premières naturelles tirées du sous – sol (mines de fer et de charbon). Le carbone n'intervient dans la composition, que pour une très faible part (généralement inférieur à 1%).

Outre le fer et le Carbonne, l'acier peut comporter d'autres éléments qui leur sont associés, soit : Involontairement : phosphore, soufre...qui sont des impuretés et qui altèrent les propriétés des aciers.

Volontairement comme le silicium, le manganèse, le nickel, le chrome, le tungstène, le vanadium,...etc., qui ont pour propriété d'améliorer les caractéristiques mécaniques des aciers (résistance à la rupture, dureté, limite d'élasticité, ductilité, résilience, soudabilité, corrosion...). On parle, dans ces cas, **d'aciers alliés.**

I.4.2 Proprieties de l'acier

Résistance

Les nuances d'acier et leurs résistances limites sont données par l'EUROCODE (02 et 03).

La nuance choisie pour la réalisation de cet ouvrage est l'acier S235.

Ductilité :

Le rapport $f_u/f_v > 1,2$.

La déformation ultime doit être supérieure à 20 fois la déformation élastique ($\varepsilon_u \ge 20\varepsilon_y$).

A la rupture l'allongement relatif ultime ε_u doit être supérieur ou égal à 15%.

Coefficient de calcul de l'acier

Masse volumique $\rho = 7850 \text{Kg/m}^3$.

Module d'élasticité longitudinal E = 21000 MPa

Coefficient de poisson $\mu = 0,3$

Coefficient de dilatation thermique $\alpha = 12.10^{-6}/{}^{0}$ C.

Figure I.3 : Diagramme contrainte-déformation de l'acier (essai de traction)

I.5 Règlements techniques

Les règlements techniques utilisés dans cette étude sont : **CCM97** « Règle de calcul des constructions métalliques » **EUROCODE 03** « Calcul des structures en acier métalliques » **RPA99-V2003** « Règle Parasismique Algériennes RPA99 version 2003 » **RNV99-V2003** « Règle définissant les effets de la neige et du vent » **DTR-C2.2** « Document technique règlementaire charge permanentes et charges d'exploitation » **RAEL91** « Réton armé aux états limites »

BAEL91 « Béton armé aux états limites »

CHAPITRE II : Evaluation des charges et surcharges

CHAPITRE II

Introduction

Ce chapitre a pour but d'étudier l'effet des phénomènes météorologiques sur notre construction qui sont lié à l'état de l'atmosphère et l'implantation de notre ouvrage. Cette évaluation constitue l'étape fondamentale à partir de laquelle de dimensionnement des différent éléments de la structure commence, ces charge sont définis par :

- Le Poids propre de la structure.
- Les actions climatiques (neige, vent).
- Les actions accidentelles (séisme, choc...)

II.1 Charges permanentes

Elles sont données dans documents techniques pour vus par le fournisseur :

Toiture: (Annexe B.5)	
Panneau sandwich TL75	G=14,2 daN/m²
Bardage	
Panneau sandwich TL 35	6=10 ,9 daN/m²

II.2 Charges d'exploitation

Les charges d'exploitation sont déterminées suivant le document technique règlementaire charges surcharges d'exploitation (DTR-B-C-2.2)

Surcharges d'entretien (q) : Dans le cas des toitures inaccessible ont considéré uniquement dans le calcul une charge d'entretien qui est égale au poids d'un ouvrier et de son assistant et qui est équivalente à Deux charges concentrées de 1KN chacune située à (1/3) et (2/3) de la portée de la panne. Afin de vérifier la flèche sous les charges (charges permanentes) et les surcharges (charges d'exploitations), on cherche la charge uniformément répartie équivalente (Qeq) qui nous donne le même moment trouvé par les deux charges concentrées.

Figure II.1 : charge d'entretien sur une panne.

II .3 Etude de la neige

Le présent règlement (Règle Neige et vent Algérien) définit les valeurs représentatives de la charge statique de neige (S) sur toute surface située au-dessus du sol et soumise à l'accumulation de la neige et notamment sur les toitures. Il s'applique à l'ensemble des constructions en Algérie situées à une altitude inférieure à 2000 mètres. Au-delà de 2000 mètres le marcher doit préciser la valeur de charge de neige à prendre en compte. Cette charge est définit comme suit : $S = \mu \cdot S_k$

- **µ**: coefficient fonction de la forme de la toiture.
- S_k: valeur de la charge de neige sur le sol.

CHAPITREII

II .3.1 Charge de neige au sol (S_k)

La charge de neige sur le sol S_k par unité de surface est fonction de la localisation

géographique et de l'altitude du lieu considéré. La valeur de S_k est déterminée en fonction de l'altitude du point considéré. Notre projet situé dans la commune de Sidi Abdelli willaya de Tlemcen ; D'après RNV99, Sidi Abdelli est concéderai comme **zone de neige B** :

Alors :
$$S_k = \frac{0.04 \times H + 10}{100}$$

• H : est l'altitude de Sidi Abdelli environ 439m

$$S_k = \frac{0,04 \times 439 + 10}{100}$$
$$S_k = 0,2756 \text{KN/m}$$

II .3.2 Coefficient de la forme de la toiture (μ)

Cette structure est un hall à deux versants

$$\tan \alpha = \frac{(17,24-12,8)}{18}$$

 $\tan \alpha = 0,246$ Donc: $\alpha = 13,856$

On prend : $\alpha = 14^{\circ}$

On a : $0^{\circ} < \alpha < 30^{\circ}$ D'après le tableau 6 .2 du RNV 99 on a :

 $\mu=\mathbf{0}$, $\mathbf{8}$ (Annexe A.1)

II .3.3 Charge de neige

S = $\mu \cdot S_k$ S = 0,8 × 0,2756 S = 0,2204 KN/m

II.4 ETUDE DE VENT

Le vent est un phénomène de mouvement d'aire qui se déplace d'une zone de haute pression vers une zone de basse pression. Dans le Domain du génie civil et notamment la charpente métallique les actions du vent ont une grande influence sur la stabilité de l'ouvrage, pour cela il faut tenir compte des actions dues au vent sur les différent parois d'une construction, l'action du vent dépend de sa vitesse, de la catégorie de l'ouvrage, des proportions de l'ensemble, de l'emplacements de l'éléments étudier dans la construction et de son orientation par rapport au vent et enfin de la forme de l'éléments étudier. Dans ce chapitre on a déterminé les actions du vent naturel à prendre en compte pour calculer les éléments constitutifs pour cette structure. La vitesse locale du vent dépend du lieu, de la hauteur au-dessus du sol, du type de terrain que celui-ci rencontre sur sa trajectoire.

Figure II.2 : l'inclinaison des versants.

II .4.1 Données relatives au site

Le terrain est dans la commune de Sidi Abdelli ; willaya de Tlemcen.

Zone du vent : zone II

Catégorie de terrain est : catégorie III (Annexe A.3)

 $K_t = 0.215$ $z_0 = 0.3 m$ $z_{min} = 5 m$

Nature de site : on a choisi un site plat $C_t(z) = 1$

II .4.2 Charge de vent w(z)

$$\mathbf{v}(\mathbf{z}) = \mathbf{q}_{dyn}(\mathbf{z}) \cdot [\mathbf{C}_{pe} - \mathbf{C}_{pi}][N/m^2]$$

- $q_{dyn}(z)$: pression dynamique de pointe.
- C_{pe} : coefficient de pression extérieur
- *C*_{pi} : coefficient pression intérieur.

II.4.3 Vent pour parois verticales z=12.8m

II .4.3.1 Calcul de la pression dynamique de la pointe

 $q_{dyn}(z) = q_{ref} \times c_e(z) [N/m^2]$

- *q*_{réf} : la pression dynamique de la référence pour les constructions permanentes, donnée en fonction de la zone du vent.
- $c_e(z)$: coefficient d'exposition au vent, en fonction du coefficient de rugosité
- Zone du vent II : zones climatique du vent $q_{réf} = 435 N/m^2$ (Annexe A.2)

II .4.3.2 Coefficient d'exposition (C_e)

$$C_e(z) = C_r^2(Z) \times C_t^2(z) \times [1+7.I_V]$$

• <u>Coefficient topographique (C_t) </u>

Le coefficient de topographique prend en compte l'accroissement de la vitesse du vent lorsque celuici souffle sur des obstacles tel que les collines, les dénivellations isolées.

Dans notre case n a : $\boldsymbol{\varphi} < 0,05$ Car : on a un site plate Donc : $\boldsymbol{\mathcal{C}}_t(\boldsymbol{z}) = 1$

• <u>Coefficient de regosité $C_r(z)$ </u>

 $C_r(z) = \begin{cases} K_t \cdot \ln\left(\frac{z_{min}}{z_0}\right) & pour \quad z \le z_{min} \\ K_t \cdot \ln\left(\frac{z}{z_0}\right) & pour \quad z_{min} \le z \le 200m \end{cases}$

	K _t	z ₀ (m)	<i>z_{min}</i> (m)	8
Catégorie III	0,215	0,3	5,00	0,61

Tableau II.1 : différentes caractéristiques du terrain

On a z = 12, 8 m

 K_t : Est le facteur de terrain.

 z_0 : est le paramètre de rugosité

 z_{min} : est la hauteur minimale

z : est la hauteur considérée

$$z_{min} \le z \le 200m \longrightarrow C_r(12, 8) = 0.215. \ln\left(\frac{12.8}{0.3}\right) = 0.806$$

CHAPITRE II

• Intensité de turbulence $I_V(z)$

L'intensité de la turbulence est définie comme étant l'écart type de la turbulence divisé par la vitesse moyenne du vent.

$$\begin{cases} I_V(z) = \frac{1}{C_t(z).\ln\left(\frac{z}{z_0}\right)} & pour \quad z > z_{min} \\ I_V(z) = \frac{1}{C_t(z).\ln\left(\frac{z_{min}}{z_0}\right)} & pour \quad z \le z_{min} \\ 0 \text{ na } z_{min} = 5 m & \text{et} \quad z = 12,8m \\ \text{Donc} : z > z_{min} \implies I_V(z) = \frac{1}{C_t(z).\ln\left(\frac{z}{z_0}\right)} \\ I_V(z) = \frac{1}{1.\ln\left(\frac{12.8}{0.3}\right)} = 0,2664 \\ \text{Alors} : \ C_e(z) = C_r^{-2}(Z) \times C_t^{-2}(z) \times [1+7.I_V] \\ C_e(12,8) = 0,806^2 \times 1^2 \times [1+7 \times 0,2664] \\ C_e(12,8) = 1,861 \\ \text{Alors} : \ q_{dyn}(z) = q_{réf} \times c_e(z_e)[\text{N/m}^2] \\ q_{dyn}(12,8) = 435 \times 1,861[\text{N/m}^2] \end{cases}$$

$$q_{dyn}(12, 8) = 809, 53 \text{N/m}^2$$

II .4.3.3 Coefficient dynamique (C_d)

Pour parois verticales en a z=12,8 m < 15 mAlors : $C_d = 1$ 3.4 Coefficient de pression extérieure C

II .4.3.4 Coefficient de pression extérieure C_{pe}

Le coefficient de pression extérieur dépend de la forme géométrique de la base de la structure, et de la surface chargée par le vent.

$$C_{pe} = \begin{cases} C_{pe,1} & si & S \le 1,0 \ m^2 \\ C_{pe,1} + (C_{pe,10} - C_{pe,1}) \cdot \log 10 \ (S) & si & 1,0 \ m^2 < S < 10 \ m^2 \\ C_{pe,10} & si & S \ge 10 \ m^2 \end{cases}$$

Avec : S la surface chargée de la paroi considérée en (m²)

i) <u>Vent sur pignon</u>

- 🏷 <u>Partie I</u>
- Sens V_1

Figure II.3: vent sur façade principale

{b=36 m d=42,05 m h=12 .8 m

Figure II.4: division de la paroi verticale selon le chargement du vent direction V₁

On a: $C_{pe} = C_{pe,10}$ Les valeurs de $C_{pe,10}$ comme suit : (Annexe A.5)

Zone	А	В	С	D	E
<i>Cpe</i> ,10	-1 ,00	-0 ,8	-0,5	+0,8	-0,3

Tableau II.2 : valeurs de $C_{pe,10}$ direction V_{1.}

Figure II.4 : valeurs de $C_{pe,10}$ direction V₁

- ✤ <u>Partie II</u> pas de vent sur pignon dans cette partie
 - ♦ Partie III

Sens V₅

b=36 m d=48 m

On a

h=12 .8 m

 $e = \min(b; 2h) = \min(36; 2 \times 12, 8) = \min(36; 25, 6) = 25, 6m$

$$S = b \times h = 36 \times 12, 8 \rightarrow S = 460, 8 m^2 > 10 m^2 \rightarrow C_{pe} = C_{pe,10}$$

d=48 m et e=25,6 m

Alors : d>e (Annexe)

Figure II.7: division de la paroi verticale selon le chargement du vent direction V₅ On a : $C_{pe} = C_{pe,10}$ Les valeurs de $C_{pe,10}$ comme suit : (Annexe A.5)

Zone	Α	В	С	D	E
<i>Cpe</i> ,10	-1 ,0	-0 ,8	-0,5	+0,8	-0,3

Tableau II.3 : valeurs de $C_{pe,10}$ direction V₁

Figure II.8 : valeurs de $C_{pe,10}$ direction V_{1.}

- ii) <u>Vent sur long pan</u> ☆ <u>Partie I</u>
 - Sens $V_2 etV_8$

Figure II.9 : vent sur long pan

(b=42,05 m d= 36 m h=12 .8 m

$$e = \min(b; 2h) = \min(42,05; 2 \times 12,8) = \min(42,05; 25,6) m$$

 $e = 25, 6 m$
 $S = b \times h = 42,05 \times 12,8 \rightarrow S = 525,625 m^2 > 10 m^2 \rightarrow C_{pe} = C_{pe,10}$
 $d=36 m$ et $e=25,6 m$

On a :

Alors : d>e (Annexe A.4)

On a: $C_{pe} = C_{pe,10}$ Les valeurs de $C_{pe,10}$ comme suit :(Annexe A.5)

Zone	Α	В	С	D	E
<i>Cpe</i> ,10	-1 ,00	-0,8	-0,5	+0,8	-0,3

Tableau II.4 : valeurs de $C_{pe,10}$ direction V₂ et V_{8.}

🏷 <u>Partie II</u>

• Sens $V_3 et V_7$

Figure II.12 : vent sur long pan.

b =48 m d = 36 m h=12 .8 m

 $e = \min(b; 2h) = \min(48; 2 \times 12, 8) = \min(48; 25, 6) m$

$$e = 25, 6 m$$

$$S = b \times h = 48 \times 12, 8 \rightarrow S = 614, 4m^2 > 10 m^2 \rightarrow C_{pe} = C_{pe,10}$$

On a : d=36 m et e=25,6 m

Alors : d > e (Annexe A.4)

A;>	e/5=25,6/5	>	А	e/5=5,12 <i>m</i>
B -=⇒	e-e/5=25.6-5.12	>	В	e-e/5= 20,48m
С;	d-e=36-25,6	>	С	d-e=10,4 <i>m</i>

Figure II.13: division de la paroi verticale selon le chargement du vent direction V3 et V7

On a : $C_{pe} = C_{pe,10}$ Les valeurs de $C_{pe,10}$ comme suit : (Annexe A.5)

Zone	Α	В	С	D	E
<i>Cpe</i> ,10	-1 ,00	-0 ,8	-0,5	+0,8	-0,3

Figure II.14 : valeurs de $C_{pe,10}$ direction V₃ et V₇

- 🏷 <u>Partie III</u>
- \forall Sens $V_4 et V_6$

$$S = b \times h = 48 \times 12, 8 \rightarrow S = 614, 4m^2 > 10 m^2 \rightarrow C_{pe} = C_{pe,10}$$

On a :	d=36 m et	e=25,6 <i>m</i>		
Alors : d>e	e (Annexe A.4)			
A .=_; e/5	=25,6/5	>	А	e/5=5,12 <i>m</i>
В -=-;> е	-e/5=25.6-5.12	>	В	e-e/5= 20,48 <i>m</i>
C .=_;> d-	·e=36-25,6	>	С	d-e=10,4 <i>m</i>

Figure II.16: division de la paroi verticale selon le chargement du vent direction V₄ et V₆

On a: $C_{pe} = C_{pe,10}$

Les valeurs de $C_{pe,10}$ comme suit :(Annexe A.5)

Zone	Α	В	С	D	E
C _{pe,10}	-1 ,00	-0 ,8	-0,5	+0,8	-0,3

Tableau II.6 : valeurs de $C_{pe,10}$ direction V₄ et V₆

Figure II.17 : valeurs de $C_{pe,10}$ direction V₄ et V₆.

II .4.4 Vent pour toiture (z=17,24 m) II .4.4.1 Calcul de la pression dynamique de la pointe

$$q_{dyn}(z) = q_{r \acute{e} f} imes c_e(z) [{
m N/m^2}]$$

Avec :

- *q*_{réf} : la pression dynamique de la référence pour les constructions permanentes, donnée en fonction de la zone du vent.
- $c_e(z_e)$: coefficient d'exposition au vent, en fonction du coefficient de rugosité
- Zone du vent II : tableau A.2 : zones climatique du vent

 $q_{r \circ f} = 435 \ N/m^2$ (Annexe A.2)

II.4.4.2 Coefficient d'exposition (C_e)

$$C_e(z) = C_r^2(Z) \times C_t^2(z) \times [1+7.I_V]$$

• <u>Coefficient topographique (C_t)</u>

Le coefficient de topographique prend en compte l'accroissement de la vitesse du vent lorsque celuici souffle sur des obstacles tel que les collines, les dénivellations isolées.

Dans notre cas en a :

 $\varphi < 0.05$ Car : on a un site plat

Donc :

$$C_t(z) = 1$$

• Coefficient de regosité
$$C_r(z)$$

 $C_r(z) = \begin{cases} K_t \cdot \ln\left(\frac{z_{min}}{z_0}\right) & pour \quad z \le z_{min} \\ K_t \cdot \ln\left(\frac{z}{z_0}\right) & pour \quad z_{min} \le z \le 200m \end{cases}$

	K _t	z ₀ (m)	<i>z_{min}</i> (m)	ε
Catégorie III	0,215	0,3	5,00	0,61

Tableau II.7 : différentes caractéristiques du terrain

En a z = 17,24 m

 $\begin{cases} K_t : & \text{Facteur de terrain.} \\ z_0 : & \text{Paramètre de rugosité} \\ z_{min} : \text{Hauteur minimale} \\ z : & \text{Hauteur considérée} \end{cases}$

$$z_{min} \le z \le 200m \longrightarrow C_r(17, 24) = 0,215. \ln\left(\frac{12,8}{0.3}\right)$$

$C_r(17, 24) = 0,871$

• Intensité de turbulence $I_V(z)$

L'intensité de la turbulence est définie comme étant l'écart type de la turbulence divisé par la vitesse moyenne du vent.

$$\begin{cases} I_V(z) = \frac{1}{C_t(z) \cdot \ln\left(\frac{z}{z_0}\right)} & pour \quad z > z_{min} \\ I_V(z) = \frac{1}{C_t(z) \cdot \ln\left(\frac{z_{min}}{z_0}\right)} & pour \quad z \le z_{min} \end{cases}$$

En a
$$z_{min} = 5 m$$

Donc: $z > z_{min} I_V \implies (z) = \frac{1}{c_t(z).\ln(\frac{z}{z_0})}$
 $I_V(z) = \frac{1}{1.\ln(\frac{17,24}{0,3})}$
 $I_V(z) = 0,2468$
Alors: $C_e(z) = C_r^2(Z) \times C_t^2(z) \times [1+7.I_V]$
 $C_e(17,24) = 0,871^2 \times 1^2 \times [1+7 \times 0,2468]$
 $C_e(17,24) = 2,0692$

Alors :

 $q_{dyn}(z) = q_{r\acute{e}f} \times c_e(z_e) [N/m^2]$ $q_{dyn}(17, 24) = 435 \times 2,0692 [N/m^2]$

$$q_{dyn}(12, 8) = 900, 132 \text{ N/m}^2$$

II .4.5 Coefficient dynamique (**C**_d)

Pour toiture en a z=17,24m >15m

Alors :

$$C_d(z) = \frac{1+2g \times I_V(z_{eq}) \times \sqrt{Q^2 + R^2}}{1+7.I_V(z_{eq})}$$

• <u>l'échelle de turbulence</u> $L_i(z_{eq})$

Pour $z=z_{eq}$ $L_i(z_{eq}) = L_i(z_e)$ car: $z_{min} < z < 200$ m $L_i(z_{eq}) = 300 \times (\frac{z}{200})^{\varepsilon}$ $= 300 \times (\frac{17,24}{200})^{0,61}$ $L_i(z_{eq}) = 67,2636$ m

• <u>Partie quasi-statique "Q^{2"}</u>

$$Q^2 = \frac{1}{1+0,9 \times (\frac{(b+h)}{L_i(z_{eq})})^{0,63}}$$

$$Q^2 = rac{1}{1+0.9 imes(rac{(36+17,24)}{67,2636})^{0.63}} = Q^2 = 67,2637 \
m m$$

• La fréquence fondamentale de la structure $n_{1,x}$

$$n_{1,x} = \frac{46}{h} = \frac{46}{17,24}$$

$$n_{1x} = 2,6682$$
 Hz

• Décrément logarithmique d'amortissement des vibrations δ

Ce calcul pour le mode fondamentale dans la direction du vent

$$\delta = \delta_s + \delta_s$$

 $δ_s$: Décrément logarithmique d'amortissement structurel (tableau 3.1). En a une structure en acier ;Donc : $δ_s = 0, 05$

 δ_a : Décrément logarithmique d'amortissement aérodynamique pris égal à 0 (structure poteau- poutre)

$$\delta = 0,05+00$$
$$\delta = 0,05$$

• La vitesse moyenne du vent $V_m(z_{eq})$

D'après le RNV :
$$V_{r\acute{e}f} = 28 \ m/s$$

 $V_m(z_{eq}) = \ C_r(z) \times C_t(z) \times V_{r\acute{e}f}$
 $V_m(z_{eq}) = \ 0,871 \times 1 \times 28$
 $V_m(z_{eq}) = 24,388 \ m/s$

• La fréquence de la direction x du vent N(x)

$$N(x) = \frac{n_{1,x} \times L_i(z_{eq})}{V_m(z_{eq})}$$
$$N(x) = \frac{2,6682 \times 67,2637}{24,388}$$

$$N(x) = 7,3590$$

• La fonction de la densité spectrale de puissance R_N

$$R_{N=\frac{6,8\times N(x)}{(1+10,2\times N(x)^{\frac{5}{3}}}}$$

$$R_{N=\frac{6,8\times7,3590}{(1+10,2\times7,3590^{\frac{5}{3}})}}$$

• Les fonctions aérodynamiques R_bet R_b

$$R_{h=\left(\frac{1}{\eta_h}\right)-\left(\frac{1}{2\times\eta_h^2}\right)\times\left(1-e^{-2\times\eta_h}\right)}$$

$$R_{b=\left(\frac{1}{\eta_{b}}\right)-\left(\frac{1}{2\times\eta_{b}^{2}}\right)\times(1-e^{-2\times\eta_{b}})}$$
$$\eta_{b=\frac{4.6\times7,3590\times b}{L_{i}(zeq)}}$$

<u>Avec</u>: $\eta_{h=\frac{4,6\times7,3590\times h}{L_i(z_{eq})}}$

$$\eta_{h=\frac{4,6\times7,3590\times17,24}{67,2636}}$$

η_{*h*=}8,67627

$$R_{h=\left(\frac{1}{\eta_h}\right)-\left(\frac{1}{2\times\eta_h^2}\right)\times(1-e^{-2\times\eta_h})}$$

$$\begin{split} R_{h=\left(\frac{1}{8,67627}\right)-\left(\frac{1}{2\times8,67627^2}\right)\times(1-e^{-2\times8,67627})} & R_{h}=0,108161 \\ R_{b=\left(\frac{1}{18,11750}\right)-\left(\frac{1}{2\times18,11750^2}\right)\times(1-e^{-2\times18,11750})} \end{split}$$

$$R_{b=\left(\frac{1}{\eta_b}\right)-\left(\frac{1}{2\times\eta_b^2}\right)\times(1-e^{-2\times\eta_b})}$$

$$R_{b=}0,053672$$

• La partie résonnante R²

$$R^{2} = \frac{\pi^{2}}{2 \times \delta} \times R_{b} \times R_{h} \times R_{N}$$
$$R^{2} = \frac{\pi^{2}}{2 \times 0,05} \times 0,05367 \times 2,108161 \times 0,036647$$

 $R^2_{=}0,021$

• La fréquence propre v

v=
$$n_{1,x} \times \sqrt{\frac{R^2}{R^2 + Q^2}}$$

v=2,6682 $\times \sqrt{\frac{0,021}{0,021^2 + 67,2637^2}}$
v=0,0832 Hz

<u>3.11- Facteur de pointe g</u>

$$g = \sqrt{2 \times ln \ (600 \times v)} + \frac{0.6}{\sqrt{2 \times ln \ (600 \times v)}}$$
$$g = \sqrt{2 \times ln \ (600 \times 0, 0832)} + \frac{0.6}{\sqrt{2 \times ln \ (600 \times 0, 0832)}}$$
$$g = 3,0111 \text{ Hz}$$

• Intensité de turbulence $I_V(z)$

En a une construction verticale

$$z_{eq} = 0,6 \times h$$

$$z_{eq} = 0,6 \times 17,24$$
En a Z>Z_{min}

$$I_V(z_{eq}) = \frac{1}{C_t(z).\ln(\frac{z_{eq}}{z_0})}$$

$$I_V(z_{eq}) = \frac{1}{1.\ln(\frac{10,334}{0,3})}$$

$$I_V(z_{eq}) = 0,2824$$

$$\underline{\text{Donc}:} C_d(z) = \frac{1 + 2g \times I_V(z_{eq}) \times \sqrt{Q^2 + R^2}}{1 + 7 \cdot I_V(z_{eq})}$$

$$C_d(z) = \frac{1 + 2 \times 3,0111 \times 0,2824 \times \sqrt{67,2637 + 0,021}}{1 + 7 \times 0,2824}$$

$$C_d(z) = \mathbf{0,7724}$$

II .4.6 Coefficient de pression extérieure C_{pe-}

Le coefficient de pression extérieur dépend de la forme géométrique de la base de la structure, et de la surface chargée par le vent.

$$C_{pe} = \begin{cases} C_{pe,1} & si & S \le 1,0 \ m^2 \\ C_{pe,1} + (C_{pe,10} - C_{pe,1}) \cdot \log 10 \ (S) & si & 1,0 \ m^2 < S < 10 \ m^2 \\ C_{pe,10} & si & S \ge 10 \ m^2 \end{cases}$$

Avec : S la surface chargée de la paroi considérée en (m²)

iii) Vent sur pignon

- ♥ <u>Partie | : ө=90°</u>
- Sens V_1

Figure II.17: vent sur toiture de façade principale.

CHAPITRE II

b=36 m
 d=42,05 m

, h=17,24 m

 $e = \min(b; 2h) = \min(36; 2 \times 17, 24) = \min(36; 34, 48) m$

$$e = 34, 48 m$$

 $S = b \times h = 36 \times 17,24 \rightarrow S = 620,64 m^2 > 10 m^2 \rightarrow C_{pe} = C_{pe,10}$

En utilisent la même méthode pour obtenir Cpe

Figure II.18 : pressions sur la toiture directions du vent V₁

Partie II pas de vent sur pignon dans cette partie

Alors :

F	\$ /4=34,48/4	F	>	8,62 m
G	.−_;(<i>b</i> − e/2)/2=(36-34,48/2)/2	G	>	9,38 m
Н	\$/2-e/10=(34,48/2)-(34	Н	>	13,8 <i>m</i>
I	-⇒ e/2=48-34,48/2	I	>	30,76 m

En obtient les valeurs de par interpolation

- > F
- 5° -=-⇒ -1,6
- 14° --⇒ X

En utilisent la même méthode pour obtenir C_{pe}

Figure 22 II.20 : pressions sur la toiture directions du vent V_5

♦ Partie II et Partie III
• Sens V_4 , V_6 , V_3 et V_7

Figure 25 II.23 : vent sur toiture

(b=48 m d=36m h=17,24 m

> $e = \min(b; 2h) = \min(48; 2 \times 17, 24) = \min(48; 34, 48) m$ e = 34, 48 m $S = b \times h = 48 \times 17, 24 \rightarrow S = 827, 52 m^2 > 10 m^2 \rightarrow C_{pe} = C_{pe,10}$ On a : d=36 m

Alors :

F	·>	e/4=34,48/4	F> 8,62 m
G	·>	(<i>b</i> - e/2)= (48-34, 48/2)	G⇒ 30,76m
H et T	>	(d -e/5)/2= (36-34, 48/5)/2	Hetl⇒ 14,56m
J	;>	e/10=34, 48/10	J> 3,448 m

En obtient les valeurs de par interpolation

Figure II.24 : pressions sur la toiture directions du vent $V_3 V_4 V_6 V_7$.

II .4.7 Coefficient de pression extérieure C_{pi}

Pour obtenir les valeurs de C_{pi} on fait la projection des valeurs de (μ_p) et $(\frac{h}{d})$ dans la courbe suivante :(Annexe A.8)

Avec:
$$\mu_p = \frac{\sum des \ surfaces \ des \ ouvertures \ au \ C_{pe} \leqslant 0}{\sum des \ surfaces \ de \ toutes \ les \ ouvertures}$$

$$\sum$$
 les surfaces de toutes les ouvertures

 $S = \sum (6 \times 6) \times 3 + (6 \times 5)$

<u>Sur long pan</u>

• Sens V_2 , V_3 et V_4

$$\mu_{p} = \frac{\sum des \ surfaces \ des \ ouvertures \ au \ C_{pe} \leq 0}{\sum des \ surfaces \ de \ toutes \ les \ ouvertures}} \begin{cases} \mu_{p} = \frac{0}{\sum des \ surfaces \ de \ toutes \ les \ ouvertures}}{\left\{ \begin{array}{c} \mu_{p} = \frac{0}{138} \ \mu_{p} = 0 \end{array} \right.} \\ \left\{ \begin{array}{c} \frac{h}{d} = \frac{12,8}{36} \ \frac{h}{d} = 0,355 \\ C_{ni} = 0,35 \end{array} \right.} \end{cases}$$

• Sens V_6 , V_7et V_8

$$\mu_p = \frac{\sum des \ surfaces \ des \ ouvertures \ au \ C_{pe} \leqslant 0}{\sum des \ surfaces \ de \ toutes \ les \ ouvertures}} \ \mu_p = \frac{5 \times 6}{138} \ \mu_p = 0.217$$

$$\begin{cases} \frac{h}{d} = \frac{12.8}{36} \frac{h}{d} = 0.355\\ C_{pi} = 0.35 \end{cases}$$

<u>sur pignon</u>

• Sens V_1

$$\mu_p = \frac{\sum des \ surfaces \ des \ ouvertures \ au \ C_{pe} \leq 0}{\sum des \ surfaces \ de \ toutes \ les \ ouvertures}$$

$$\begin{cases} \mu_p = \frac{2 \times (6 \times 6)}{138} \ \mu_p = 0,521 \\ \frac{h}{d} = \frac{12,8}{48} \frac{h}{d} = 0,266 \end{cases}$$

C_{pi}=0,10

• Sens V_5 $\mu_p = \frac{\sum des \ surfaces \ des \ ouvertures \ au \ C_{pe} \leqslant 0}{\sum des \ surfaces \ de \ toutes \ les \ ouvertures}$

 $\mu_p = \frac{6 \times 6}{138} \ \mu_p = 0.2608$

$$\frac{h}{d} = \frac{12,8}{48} \frac{h}{d} = 0,266$$
$$C_{pi} = 0,35$$

II .4.8 Charge de vent w(z)

```
w(z) = q_{dyn}(z) [C_{pe} - C_{pi}][N/m^2]
> <u>Pour parois verticales</u>
```

<u>sur pignon</u>

• Sens V_1

	C _d	C _{pe}	C _{pi}	$C_{pe} - C_{pi}$	$q_{dyn}(z)$	$w(z)(N/m^2)$
Α	1,00	-1,00	0,10	-1,10	809,59	-890,549
В	1,00	-0,80	0,10	-0,90	809,59	-566,713
С	1,00	-0,50	0,10	-0,60	809,59	-485,754
D	1,00	+8,00	0,10	0,70	809,59	566,713
E	1,00	-0,3	0,10	-0,40	809,59	-323,836

• Sens V₅

zone	C _d	C _{pe}	C _{pi}	$C_{pe} - C_{pi}$	$q_{dyn}(z)$	$w(z)(N/m^2)$
Α	1,00	-1,00	0,35	-1,35	809,59	-1092,9465
В	1,00	-0,80	0,35	-1,15	809,59	-931,0285
С	1,00	-0,50	0,35	-0,85	809,59	-688,1515
D	1,00	+8,00	0,35	0,45	809,59	364,3155
E	1 ,00	-0,3	0,35-	-0,65	809,59	-526,2335

<u>Sur long pan</u>

zone	C _d	C _{pe}	C _{pi}	$C_{pe} - C_{pi}$	$q_{dyn}(z)$	$w(z)(N/m^2)$
Α	1,00	-1,00	0,35	-1,35	809,59	-1092,9465
В	1,00	-0,80	0,35	-1,15	809,59	-931,0285
С	1,00	-0,50	0,35	-0,85	809,59	-688,1515
D	1,00	+8,00	0,35	0,45	809,59	364,3155
E	1 ,00	-0,3	0,35-	-0,65	809,59	-526,2335

• Sens V_2 , V_3 et V_4 et Sens V_6 , V_7 et V_8

> <u>Pour toiture</u>

<u>sur pignon</u>

Sens V_1

zone	C _d	Cpe	C _{pi}	$C_{pe} - C_{pi}$	$q_{dyn}(z)$	$w(z)(N/m^2)$
F	0 ,7724	-1,30	0,10	-1,40	900,132	-973,366
G	0 ,7724	-1,33	0,10	-1,43	900,132	-994,224
н	0 ,7724	-0 ,61	0,10	-0,71	900,132	-493,636
I	0 ,7724	-0,51	0,10	-0,61	900,132	-424,110

• Sens V₅

zone	C _d	Cpe	C _{pi}	$C_{pe} - C_{pi}$	$q_{dyn}(z)$	$w(z)(N/m^2)$
F	0 ,7724	-1,30	0,35	-1,65	900,132	-1147,1822
G	0 ,7724	-1,33	0,35	-1,68	900,132	-1186,04
Н	0 ,7724	-0 ,61	0,35	-0,96	900,132	-667,451
I	0 ,7724	-0,51	0,35	-0,86	900,132	-597,925

CHAPITRE II

<u>Sur long pan</u>

zone	C _d	C _{pe}	C _{pi}	$C_{pe} - C_{pi}$	$q_{dyn}(z)$	$w(z)(N/m^2)$
F	0 ,7724	-0 ,98	35 <i>,</i> 0	-1,33	900,132	-1197,1755
•	0 ,7724, 0	1,8	35 <i>,</i> 0	1,45	900,132	1305,1914
G	0 ,7724	-0,84	35 <i>,</i> 0	-1,19	900,132	-1071,157
	0 ,7724	1,8	35 <i>,</i> 0	1,45	900,132	1305,1914
н	0 ,7724	0,33	35, 0	-0,02	900,132	-18,0026
	0 ,7724	1,8	35, 0	1,45	900,132	1305,1914
J	0 ,7724	-0,88	35, 0	-1,23	900,132	-1107,1623
	0 ,7724	-0,06	35, 0	-0,41	900,132	-369,054
I	0 ,7724	-0,42	35, 0	-0,77	900,132	-693,10
	0 ,7724	-0,06	0 ,35	-0,41	900,132	-369,054

• Sens V_2 , V_3 et V_4 et Sens V_6 , V_7 et V_8

CHAPITREIII : Dimensionnement des éléments secondaires

Introduction

L'ensemble des éléments d'un bâtiment industriel que ce soit les éléments secondaires ou primaires sont d'une importance capitale et sont intimement lié les uns aux autres. Ils constituent un ensemble indissociable pour la conception d'un ouvrage qui influe sans équivoque, sur le choix de la structure principale porteuse.

En effet, les éléments secondaire tels que les pannes les liesses et les potelets, parapet sont aussi importants que les éléments primaires et constituent le support pour envelopper la structure. Pour cela nous allons développer la procédure de calcule et de vérification de ces éléments.

III .1 Calcul des pannes

Les pannes sont des poutres destinées à transmettre les charges et les surcharges s'appliquant sur la traverse ou la ferme. Elles sont réalisées soit en profilé I ou U. Elles sont sollicitées en flexion déviée vue leur inclinaison par rapport à la verticale.

A. Espacement entre pannes

L'espacement entre pannes est déterminé en fonction de la portée de la couverture. On suppose que la couverture est d'une longueur de 18m, et appuyée sur 9 appuis ce qui donne un espacement moyen de 2,25m.

A.1 Combinaisons des charges

- Les charges permanents (poids propre de la couverture en panneau sandwich TL75) : G=14,2 daN/m² (Annexe B.5)
- Les Charges d'entretien : Q= 100 daN appliquées au 1/3 et 2/3 de la longueur de la panne.

$$Q_{\acute{e}q} = \frac{8.\,q}{3.\,l} = \frac{8 \times 100}{3 \times 6} = 44,44 \; daN/m$$

- Action de la neige : S=22,04daN/m²
- Action du vent : **W= 130,51 daN/m²**

Figure III.1 : Cas de l'effet de vent

Figure III.2 : Cas de l'effet de neige

• Etat limite ultime (ELU)

 $\begin{array}{l} q_1 = ep \times (\mathbf{1}, \mathbf{35}, \mathbf{G} + \mathbf{1}, \mathbf{5}, \mathbf{Q}) \\ \textbf{L'axe z-z} \\ q_z = 2,25 \times (1,35 \times 14, 2 + 1,5 \times 44, 44). \cos(14^\circ) \\ q_z = \mathbf{187}, \mathbf{38} \ daN/m \end{array}$

L'axe y-y

 $q_y = 2,25 \times (1,35 \times 14,2 + 1,5 \times 44,44) \cdot \sin(14^\circ)$ $q_y = 46,72 \ daN/m$

 $q_2 = ep \times (1, 35.G + 1, 5.S)$ L'axe z-z $q_z = 2,25 \times (1,35 \times 14,2 + 1,5 \times 22,04).\cos(14^\circ)$ $q_z = 114,03 \ daN/m$ L'axe y-y $q_{y} = 2,25 \times (1,35 \times 14,2 + 1,5 \times 22,04)$. sin(14°) $q_v = 28, 43 \text{ daN/m}$ $q_3 = ep \times (1, 35.G + 1, 5.W)$ L'axe z-z $q_z = 2,25 \times (1,35 \times 14,2.\cos(14^\circ) + 1,5 \times (-130,51))$ $q_z = -398,62 da N/m$ L'axe y-y $q_{v} = 2,25 \times (1,35 \times 14,2.\sin(14^{\circ}) + 1,5 \times (-130,51))$ $q_v = 430,04 \text{ daN/m}$ $q_4 = Gcos(\alpha) - 1, 5W$ L'axe z-z $q_3 = (2.25 \times 14.2) cos(14^{\circ}) - 1, 5 \times 130, 51 = -164, 76 daN/m$ $q_5 = 1,35G.sin(\alpha)$ L'axe y-y $q_5 = 1,35(14,2 \times 2,25)sin(14^\circ) = 10,43daN/m$ $q_6 = G. sin(\alpha) = (14, 2 \times 2, 25 \times sin(14^\circ)) = 7, 73 daN/m$ Donc on prend la combinaison la plus défavorable : Suivant l'axe z-z : $q_3 = -398,62 daN/m$ Suivant l'axe y-y : $q_3 = -430,04 daN/m$ Etat limite service (ELS) $q_1 = ep \times (G + Q)$ L'axe z-z $q_z = 2,25 \times (14,2 + 44,44) \cdot \cos(14^\circ)$ $q_z = 114, 80 \ daN/m$ L'axe y-y $q_{y} = 2,25 \times (14,2 + 44,44) \cdot \sin(14^{\circ})$ $q_{v} = 27,63 \ daN/m$ $q_2 = ep \times (G + S)$ L'axe z-z $q_z = 2,25 \times (14,2 + 22,04) \cdot \cos(14^\circ)$ $q_{z} = 79,33 da N/m$ L'axe y-y $q_{\nu} = 2,25 \times (14,2 + 22,04) \cdot \sin(14^{\circ})$ $q_{v} = 19,72 \ daN/m$ $q_3 = ep \times (G + W)$ L'axe z-z $q_z = 2,25 \times (14,2.\cos(14^\circ) + (-130,51))$ $q_z = -262, 64 \ daN/m$ L'axe y-y $q_{y} = 2,25 \times (14,2.\sin(14^{\circ}) + (-130,51))$ $q_z = -285,92 da N/m$

Donc on prend la combinaison la plus défavorable :

Suivant l'axe z-z : $q_3 = -262,64 daN/ml$ Suivant l'axe y-y : $q_3 = -285,92 daN/ml$:

A.2 Vérification de l'espacement

Le moment maximum pour une poutre à 9 appuis est déterminé selon l'abaque de MACQUAURT Le diagramme résultant des moments fléchissants est montré ci-dessous : **(Annexe B.3)**

- Diagramme du moment fléchissant des pannes-

$$\begin{split} M_{max} &= \mathbf{0}, \mathbf{842}. \, M_0 \qquad avec \qquad M_0 = \frac{q_u l^2}{8} \\ M_{max} &= 0, 846. \frac{q_u l^2}{8} = 0, 1057. \, q l^2 \\ \sigma &= \frac{M_{max}}{w} \leq f_y \qquad \Rightarrow M_{max} \leq f_y. \, w \qquad \Rightarrow 0, 1057. \, q_u l^2 \leq f_y. \, w \\ l &\leq \sqrt{\frac{f_y. w}{0, 105. \, q_u}} \qquad \Rightarrow l \leq \sqrt{\frac{235 \times 10^5 \times 49 \times 10^{-6}}{0, 1057 \times 430, 04}} \end{split}$$

$$l \le 5,03 m$$
On a: $ep = 2,25 m < l = 5,03m$
Donc : on prend
$$ep = 2,25 m$$

B.Dimensionnement des pannes

D'après le logiciel ROBOT, on adopté pour la section IPE180 $Q_{y,sd} = q_m \times \sin \alpha = 430,04 \times \sin 14 = 104,04 \ daN/m$

$$M_{z,sd} = Q_{y,sd} \times \frac{l^2}{8} = 104,04 \times \frac{6^2}{8} = 468,18d$$
aN.m

 $\boldsymbol{Q}_{\boldsymbol{z},\boldsymbol{sd}} = q_m \times \cos \alpha = 430,04 \times \cos 14 = 417,27 daN/m$

$$M_{y,sd} = Q_{z,sd} \times \frac{l^2}{8} = 417,27 \times \frac{6^2}{8} = 1877,72d$$
aN.m

Figure III.3 : Cas des sollicitations.

Profilé	Poid s	Section	Ĺ	Dimension		Caractéristique				
IPE180	p Kg/ m	A cm ²	H Mm	B Mm	t _f M m	t _w Mm	I _y cm ⁴	I _z cm ⁴	<i>W</i> _{pl-y} cm ³	<i>W</i> _{pl-y} cm ³
	18,8	2391	180	91	8	5,3	1317	100,9	166,4	34,60

Tableau III.1 : Caractéristiques du profilé IPE180.

Poids propre du profilé choisit : PP =18,8 Kg/m G= G de panne + G de toiture G= 18,8 + (14,2× 2,25) = 50,75 daN/m

B.1 Combinaison des charges

Plan (y-y)

$$q_{y1} = (1, 35G + 1, 5S) \times \cos(\alpha) = (1, 35 \times 50, 75 + 1, 5 \times 20, 04 \times 2, 25) \cos(14)$$

 $q_{y1} = 132, 10 \ daN/m$
 $M_{z1,sd} = q_{y1} \times \frac{l^2}{8} = 132, 10 \times \frac{6^2}{8} = 594, 45 \ daN.m$

$$q_{y2} = 1,356 \times \cos(\alpha) + 1,5W = 1,35 \times 50,75 \times \cos(14) + 1,5 \times 130,51 \times 2,25$$
$$q_{y2} = 262,24 \text{ daN/m}$$
$$M_{z2,sd} = q_{y2} \times \frac{l^2}{8} = 262,24 \times \frac{6^2}{8} = 1180,08 \text{ daN.m}$$

$$q_{\nu 3} = G \times cos\alpha - 1, 5W = 50, 75 \times cos(14) - 1, 5 \times 130, 51$$

$$q_{y3} = -146,52 \ daN/m$$
$$M_{z3,sd} = q_{y3} \times \frac{l^2}{8} = -146,52 \ \times \frac{6^2}{8} = -657,9 \ daN.m$$
$$q_{y4} = (1,356 + 1,5 \ Q) \times \cos(\alpha) = (1,35 \times 50,75 + 1,5 \times 44,44) \cos(14)$$

$$q_{y4} = 131, 16 daN/m$$

 $M_{z4,sd} = q_{y4} \times \frac{l^2}{8} = 131, 16 \times \frac{6^2}{8} = 590, 21 daN/m$

Plan (z-z)

$$q_{z1} = (1,35G + 1,5 \text{ S}) \times \sin(\alpha) = (1,35 \times 50,75 + 1,5 \times 22,04) \sin(14)$$
$$q_{z1} = 24,24 \, daN/m$$
$$M_{y1,sd} = q_{z1} \times \frac{l^2}{8} = 24,24 \times \frac{6^2}{8} = 109,08 \, daN.m$$

$$q_{z2} = 1,356 \times \sin(\alpha) = 1,35 \times 50,75 \times \sin(14)$$
$$q_{z2} = 13,57 \text{daN/m}$$
$$M_{y2,sd} = q_{z2} \times \frac{l^2}{8} = 13,57 \times \frac{6^2}{8} = 61,07 \text{daN.m}$$

 $q_{z3} = G \times sin\alpha = 50, 75 \times sin(14)$

 $q_{z3} = 12,78 \ daN/m$ $M_{y3,sd} = q_{z3} \times \frac{l^2}{8} = 12,78 \times \frac{6^2}{8} = 57,51 \ daN.m$

 $\begin{aligned} q_{z4} &= (1,35G\text{ +1,5 Q}) \times \sin(\alpha) \text{ =(} 1,35 \times 50,75 \text{+} 1,5 \times 44,44) \text{sin(14)} \\ q_{z4} &= 32,70 \text{daN/m} \end{aligned}$

$$M_{y4,sd} = q_{z4} \times \frac{l^2}{8} = 32,70 \times \frac{6^2}{8} = 147,16 \, daN/m$$

Donc la combinaison la plus défavorable :

Suivant (y-y) $q_{y2} = 262, 24 \text{ daN/m}$ Suivant (z-z) $q_{z4} = 32, 70 \text{ daN/m}$ Donc $q_{sy} = q_{y2} \times \cos(\alpha) = 262, 24 \times \cos(14^\circ) = 254, 45 \text{ daN/m}$ $M_{zsd} = q_{sy} \times \frac{l^2}{8} = 254, 45 \times \frac{6^2}{8} = 1145, 03 \text{ daN.m}$ $q_{sz} = q_{y2} \times \sin(\alpha) = 262, 24 \times \sin(14^\circ) = 63, 44 \text{ daN/m}$ $M_{ysd} = Q_{sz} \times \frac{l^2}{8} = 254, 45 \times \frac{6^2}{8} = 285, 49 \text{ daN.m}$

Classe de profile

a. Classe de l'âme fléchie (Annexe B.1)

$$\frac{d}{t_w} < 72 \varepsilon \text{ Avec } \varepsilon = \sqrt{\frac{235}{f_y}} \quad \text{; d=146mm, } t_w = 5,3\text{mm}$$

$$\frac{146}{53} = 27,54 < 72 \quad \text{l'âme est de classe 1}$$

- b. Classe de la semelle comprimée (Annexe B.1)
 - $\frac{c}{t_f}$ < 10 ε avec c= 45,5 mm; t_f = 8mm $\frac{45,5}{8}$ = 5,68< 10 la semelle est de classe 1 Alors : le profile IPE180 est de classe 1

B.2 Vérification de flèche à l'ELS Plan (z-z)

$$\delta_{max} = \frac{l}{200}$$
Alors: $\delta_{max} = \frac{600}{200}$
 $\delta_{max} = 3$

$$\delta = \frac{5 \times q_{sy} \times l^4}{384 \times E \times l_y}$$
alors: $\delta = \frac{5 \times 254,45 \times 10^{-2} \times 600^4}{384 \times 21 \times 10^5 \times 869,3} = 2,35 \text{ cm}$

Alors: $\delta_{max} > \delta_{max}$

• Plan (y-y)

 $\delta_{max} = rac{l}{200}$ Donc $\delta_{max} = 1, 5$

$$\boldsymbol{\delta} = \frac{5 \times q_{s_y} \times l^4}{384 \times E \times I_z}$$

alors :
$$\delta = \frac{5 \times 63,44 \times 10^{-2} \times 300^4}{384 \times 21 \times 10^5 \times 68,31} = 0,46 \ cm$$

Alors : $\delta_{max} > \delta_{max}$ CV

Donc : les pannes en IPE180 vérifient à l'ELS

B.3 Vérification de résistance des pannes à L'ELU

La vérification se fait par :

$$\left(rac{M_{y,sd}}{M_{Ny,Rd}}
ight)^{lpha} + \left(rac{M_{z,sd}}{M_{Nz,Rd}}
ight)^{eta} \leq 1$$
 (flexion bi- axial)

Pour les profiles laminé en I : $\alpha = 2$; $\beta = 1$.

a= min (
$${}^{A_{w}}/_{A}$$
; 0.5) = $min({}^{934}/_{2390}$; 0,5) = 0,39

Avec : $A_w = A - 2. b. t_f = 23.9 \times (10^2) - 2 \times 91 \times 8 = 934 mm^2$ $a=0.39 > \frac{N_{sd}}{N_{pl,Rd}} = 0 \ (N_{sd} = 0) \implies M_{Nz,Rd} = M_{plz,,Rd}$ $M_{Nz,Rd} = M_{pl,z,Rd} = (\frac{W_{pl,z} \times f_y}{\gamma_{M_0}}) = \frac{26.10 \times 10^3 \times 235}{1.1} = 557,59 daN.m$

$$M_{Ny,Rd} = M_{pl,y,Rd} = \left(\frac{W_{pl,y} \times f_y}{\gamma_{M_0}} \right) = \frac{123,9 \times 10^3 \times 235}{1,1} = 2646,95 \, daN. \, m$$

D'où

 $\left(\frac{285,49}{2646,95}\right)^2 + \left(\frac{1145,03}{557,59}\right)^1 = 0,22 < 1$

Donc : les pannes en IPE180vérifient la résistance à l'ELU

B.4. Résistance de la panne au déversement

Le moment résistant de déversement est donné par :

$$\begin{split} M_{sd} &\leq M_{b,Rd} \\ \text{Avec} \quad M_{b,Rd} = \chi_{LT} \cdot \beta_w \cdot \frac{\text{Wpl}_{,y \times fy}}{\gamma_{M1}} \\ M_{b,R} \end{split}$$

 $\boldsymbol{\beta}_w = \mathbf{1}$ Pour les sections de classes 1

L'élancement réduit $\overline{\lambda}_{LT}$ est déterminé par la formule suivante :

$$\overline{\lambda}_{LT} = \left[\frac{\beta_w \cdot Wpl, y \times fy}{M_{cr}}\right]^{0,5} = \left[\frac{\lambda_{LT}}{\lambda_1}\right] \cdot [\beta_w]^{0,5}$$

Où : $\lambda_1 = \pi \sqrt{\frac{E}{f_y}} = 93,9\varepsilon$ et $\varepsilon = \sqrt{\frac{235}{f_y}}$
Avec : $f_y \ en \ N/mm^2$
• $\lambda_1 = 93, 9\varepsilon$
Avec :

$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{235}} = 1$$

 $\lambda_1 = 93,9 \times 1 = 93,9$

Vent de soulèvement

$$M_{cr} = C_1 \times \frac{\pi^2 \times E \times I_Z}{L^2} \times \sqrt{\frac{I_W}{I_Z} + \frac{l^2 \times G \times I_t}{\pi^2 \times E \times I_Z}}$$

Avec : $C_1 = 1,132$ (Annexe B.3)

L=600cm

$$G = \frac{E}{2 \times (1+\nu)} = \frac{21 \times 10^6}{2 \times (1+0.3)} = 8.08 \times 10^6 N/cm^2$$

- I_t : Moment d'inertie de torsion : It=4,79 cm^4 .
- I_z : Moment d'inertie de flexion suivant l'axe (z z) : Iz= 100,9 cm^4 .
- I_W : Moment d'inertie de gauchissement : Iw = 7,43 × 10³ cm⁶
- $E = 210000 \text{ N/mm}^2 = 21. \ 10^6 \text{ N/cm}^2$

$$M_{cr} = 1,132 \times \frac{\pi^2 \times 21.10^6 (100,9)}{600^2} \times \sqrt{\frac{7,43 \times 10^3}{100,9}} + \frac{600^2 \times 8,08 \times 10^6 \times 4,79}{\pi^2 \times 21.10^6 \times 100,9}$$
$$M_{cr} = 3461,054 daN. m = 34,61054 KN. m$$

$$\overline{\lambda}_{LT} = \left[\frac{1 \times 166, 4 \times 10^{-6} \times 235 \times 10^{5}}{3461,054}\right]^{0,5} = 1,06 > 0.4$$

Donc : il y a un risque de déversement de la panne.

• $\frac{h}{b} = \frac{180}{91} = 1,97 > 1,2$

 $t_f = 8mm < 40mm$

Plan y-y (courbe de flambement « a » les profils laminés)

Alors :
$$\alpha_{LT} = 0, 21$$
 (Annexe B.4)

•
$$\varphi_{LT} = \mathbf{0}, \mathbf{5}. \left[\mathbf{1} + \alpha_{LT} (\overline{\lambda}_{LT} - \mathbf{0}, \mathbf{2}) + \overline{\lambda}_{LT}^2 \right]$$

 $\varphi_{LT} = 0.5. \left[1 + 0.21(1.06 - 0.2) + 1.06^2 \right] = 1.152$

•
$$\chi_{LT} = \frac{1}{\varphi_{LT} + \left[\varphi_{LT}^2 - \overline{\lambda}_{LT}^2\right]^{0.5}}$$

 $\chi_{LT} = \frac{1}{1,152 + [1,152^2 - 1,06^2]^{0.5}} = 0,62 < 1$

$$M_{b,Rd} = \chi_{LT} \cdot \beta_w \cdot \frac{(MpR, y + N)}{\gamma_{M1}}$$
$$M_{b,Rd} = 0.62 \times 1 \times \frac{(166.4 \times 10^{-6}) \times (235 \times 10^5)}{1.1} = 2204.0436 daN.m$$

 $M_{sd} = 1549,01 daN. m < M_{b,Rd} = 2204,04 daN. m$ Donc : les pannes en IPE180 résistent au déversement.

B.5 Résistance de l'âme au voilement par cisaillement $\frac{d}{t_w} \le 69. \xi$ On a $\frac{d}{t_w} = \frac{146}{5.3} = 27,55 < 69. \xi$; avec : $\xi = \sqrt{235}/ \text{ fy} = 1$

Donc : il n'y a pas lieu de vérifier le voilement par cisaillement.

B.6 Stabilité au flambement de la semelle comprimée dans le plan de l'âme

La stabilité au flambement sera vérifiée si la condition suivante est satisfaite :

$$\frac{d}{t_w} \le k \frac{E}{f_y} \times \sqrt{\frac{A_w}{A_{fc}}}$$

Avec :

 A_w : Aire de l'âme : $A_w = t_w imes ig(h-2 imes t_fig) = 5$, 3 imes (180-2 imes 8) = 869, $2mm^2$

 A_{fc} : Aire de la semelle comprimée : $A_{fc} = b \times t_f = 91 \times 8 = 728 mm^2$

k = 0, 3 (pour une semelle de classe 1)

D'où :

$$k\frac{E}{f_y} \times \sqrt{\frac{A_w}{A_{fc}}} = 0, 3\frac{21 \times 10^4}{235} \times \sqrt{\frac{869, 2}{728}} = 292, 93$$
$$\frac{d}{t_w} = \frac{146}{5,3} = 27,55$$

Donc : 27,55 < 292,93

Donc : les pannes en IPE180 sont stables au flambement de la semelle comprimée dans le plan de

l'âme

B.7 Incidence de l'effort tranchant

$$V_{z,Sd} \le 0, 5 V_{plz,Rd}$$
$$V_{ySd} \le 0, 5 V_{ply,Rd}$$

avec:

$$V_{z;Sd} = \frac{q_{z,Sd} \cdot l}{2} = \frac{63,44 \times 6}{2} = 190,32 \, daN$$

 $V_{z.sd} = 1,903KN$

$$V_{plz,rd} = A_{vz} \times \frac{f_y}{\sqrt{3} \times \gamma_{M0}} = 11, 20 \times \frac{23,5}{\sqrt{3} \times 1,1} = 138,14$$
KN

Avec :

 $\begin{aligned} A_{vz} &= A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f \\ &= 2390 - 2 \times 91 \times 8 + (5, 3 + 2 \times 9) \times 8 = 11, 20 cm^2 \end{aligned}$

Donc :

$$V_{z,Sd} = 1,903KN < 0.5 V_{plz,Rd} = 69,07....CV$$

Et

$$V_{y;Sd} = \frac{q_{y,sd} \cdot l}{2} = \frac{254,45 \times 6}{2} = 763,35 \, daN$$

 $V_{y,sd} = 7,633KN$

$$V_{ply,rd} = A_{vy} \times \frac{f_y}{\sqrt{3} \times \gamma_{M0}} = 14,56 \times \frac{23,5}{\sqrt{3} \times 1,1} = 179,59$$
KN

Avec :

$$A_{vy} = 2 \times b \times t_f$$

= 2 × 91 × 8 = 14,56cm²

Donc :

 $V_{y,Sd} = 7,633KN < 0,5 V_{ply,Rd} = 89,79....CV$

Conclusion : le profilé IPE180 convient comme panne pour notre structure.

III .2 Calcul des lisses de bardages

Les lisses sont des éléments de profilé laminé qui sont constitué de poutrelle en U, ils sont disposé horizontalement, ils portent sur les poteaux de portique ou éventuellement sur des potelets intermédiaires, ils sont destinés à reprendre les efforts du vent sur les bardages et ils sont calculés pour pouvoir résister au poids de la couverture, leur poids propre et les surcharges climatiques.

III .2.1 Détermination des sollicitations

Les lisses, destinées à reprendre les efforts du vent sur le bardage, sont posées naturellement pour présenter leur inertie maximale dans le plan horizontal. La lisse fléchit verticalement. En outre, sous l'effet de son poids propre et du poids du bardage qui lui est associé, elle fonctionne à la flexion déviée.

• Evaluation des charges et surcharges

Profilé	Poid s	Section	Dimension			Caractéristique				
UPN160	p Kg/ m	A cm²	h mm	$\begin{array}{c cccc} h & B & t_f & t_w \\ mm & M & Mm & Mm \\ m & & & \end{array}$		I _y cm ⁴	I_z cm^4	W_{pl-y} cm^3	W _{pl-z} cm ³	
	18.8	24	160	65	10.5	7.5	925	85.3	138	35.2

Tableau III.2 : Caractéristique du profilé UPN160

Vérification de la lisse de long pan

$$h \ge \frac{l}{40} \to h \ge \frac{6}{40} = 0,15 \ m$$

Donc on choisit le profil UPN 160

✓ charge permanents (G) :

-Bardage : Panneau sandwich TL 35 : G=10,9 daN/m (Annexe B.5)

-Poids propre de la lisse (UPN 160) : **18,8***daN/m G* = **10**, **9** × **1**, **4** + **18**, **8** = **34**, **06** *daN/m*

✓ Surcharge climatique du vent :

 $W = 130, 51 \times 1, 4 = 182, 71 \ daN/m$

• Combinaison des charges les plus défavorables : Flexion suivant l'axe (y-y)

 $Q_{v;sd} = 1,35.$ G= 1,35(34,06) = 45,98 daN/m

$$M_{z;sd} = \frac{Q_{y;sd} \cdot l^2}{8} = 45,98 \times \frac{6^2}{8} = 206,91 daN.m$$

Flexion suivant l'axe (z-z)

$$Q_{z;sd} = 1, 5. W = 1, 5 \times 182, 71 = 274, 06 daN/m$$

$$M_{y;sd} = \frac{Q_{z;sd} \cdot l^2}{8} = \frac{274,06 \times 6^2}{8} = 1233,27 \, daN. \, m$$

III .2.2 Vérification à l'état limite ultime

Détermination de la classe du profilé UPN160

Sclasse de la semelle comprimée (Annexe B.1)

$$\frac{c}{t_f} = \frac{\frac{b_{f/2}}{t_f}}{\frac{c}{t_f}} \le 10\varepsilon \quad \text{avec} \quad \varepsilon = \sqrt{\frac{235}{f_y}} = 1$$

$$\frac{c}{t_f} = \frac{\frac{65}{2}}{\frac{10.5}{10.5}} = 3,09 < 10 \Rightarrow \text{ semelle de classe 1}$$

Sclasse de l'âme fléchie (Annexe B.1)

$$\frac{d}{t_w} \le 72\varepsilon \quad \text{Avec } \varepsilon = \sqrt{\frac{235}{f_y}} = 1$$
$$\frac{d}{t_w} = \frac{112,2}{4,7} = 23,87 < 72 \Rightarrow \text{ Åme de classe 1}$$
Alors la section de classe 1

La lisse travaille à la flexion déviée et la formule de vérification est donnée comme suivant :

$$\begin{pmatrix} \frac{M_{y,Sd}}{M_{ply,Rd}} \end{pmatrix}^{\alpha} + \begin{pmatrix} \frac{M_{z,Sd}}{M_{plz,Rd}} \end{pmatrix}^{\beta} \leq 1 \quad (\text{flexion bi-axial})$$
Pour les profiles en I : $\alpha = 2$; $\beta = 1$

$$\mathbf{a} = \min(^{A_{w}}/_{A}; 0.5) = \min(^{1035}/_{2400}; 0, 5) = 0, 43$$
Avec : $A_{w} = A - 2 \times b \times t_{f} = 24 \times (10^{2}) - 2 \times 65 \times 10, 5 = 1035 mm^{2}$

$$\mathbf{a} = 0, 43 > \frac{N_{sd}}{N_{pl,Rd}} = 0 \quad (N_{sd} = 0) \implies M_{Nz,Rd} = M_{plz,Rd}$$

$$M_{Nz,Rd} = M_{pl,z,Rd} = \binom{W_{pl,z} \times f_{y}}{\gamma_{M_{0}}} = \frac{35, 2 \times 10^{3} \times 235}{1,1} = 752 \, daN. \, m$$

$$M_{Ny,Rd} = M_{ply,Rd} \times (\frac{1 - \frac{N_{sd}}{N_{pl,Rd}}}{1 - 0, 5a})$$

$$M_{pl,y,Rd} = \binom{W_{pl,y} \times f_{y}}{\gamma_{M_{0}}} = \frac{138 \times 10^{3} \times 235}{1,1} = 2948, 18 \, daN. \, m$$

$$M_{Ny,Rd} = 2948, 18 \times (\frac{1}{1 - 0, 5 \times 0, 43}) = 3755, 64 \, daN. m$$

$$D'où$$

$$(\frac{1233, 27}{2948, 18})^{2} + (\frac{206, 91}{752})^{1} = 0, 45 < 1$$

Donc : les lisse en UPN160 vérifient la résistance à l'ELU. Résistance de la lisse au déversement Le moment résistant de déversement est donné par :

$$\begin{split} M_{sd} &\leq M_{b,Rd} \\ \vdots \quad M_{b,Rd} &= \chi_{LT} \cdot \beta_w \cdot \frac{W \mathrm{pl}_{,y} \times \mathrm{fy}}{\gamma_{M_1}} \\ M_{b,Rd} &= \chi_{LT} \cdot \beta_w \cdot M_{ply,Rd} \end{split}$$

 $\beta_w = 1$ (Pour les sections de classes 1)

Avec :

L'élancement réduit $\overline{\lambda}_{LT}$ est déterminé par la formule suivante :

$$\overline{\lambda}_{LT} = \left[\frac{\beta_w \cdot Wpl, y \times fy}{M_{cr}}\right]^{0.5} = \left[\frac{\lambda_{LT}}{\lambda_1}\right] \cdot [\beta_w]^{0.5}$$
Où : $\lambda_1 = \pi \sqrt{\frac{E}{f_y}} = 93.9\varepsilon$ et $\varepsilon = \sqrt{\frac{235}{f_y}}$
Avec : $f_y \ en \ N/mm^2$
• $\lambda_1 = 93.9\varepsilon$
Avec :
 $\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{235}} = 1$

$$\lambda_1 = 93,9 \times 1 = 93,9$$
$$M_{cr} = C_1 \times \frac{\pi^2 \times E \times I_z}{L^2} \times \sqrt{\frac{I_w}{I_z} + \frac{l^2 \times G \times I_t}{\pi^2 \times E \times I_z}}$$

Avec : $C_1 = 1,132$ (Annexe B.2)

L=600cm

$$G = \frac{E}{2 \times (1 + v)} = \frac{21 \times 10^6}{2 \times (1 + 0.3)} = 8,08 \times 10^6 N/cm^2$$

 I_t : Moment d'inertie de torsion : $I_t=7,39cm^4$.

 $I_{\rm z}$: Moment d'inertie de flexion suivant l'axe (z – z) : I_z= 85,3 cm^4 .

 I_W : Moment d'inertie de gauchissement : $I_w = 3,26 \times 10^3 \ cm^6$

 $E = 210000 \text{ N/mm}^2 = 21.10^6 \text{ N/cm}^2$

$$M_{cr} = 1,132 \times \frac{\pi^2 \times 21.10^6 (85,3)}{600^2} \times \sqrt{\frac{3,26 \times 10^3}{85,3}} + \frac{600^2 \times 8,08 \times 10^6 \times 7,39}{\pi^2 \times 21.10^6 \times 85,3}$$
$$M_{cr} = 2219919,467N.\,cm = 2219,919 daN.\,m$$

$$\begin{split} \overline{\lambda}_{LT} &= \left[\frac{1 \times 138 \times 10^{-6} \times 235 \times 10^{5}}{2219,919}\right]^{0.5} = 1, 21 > 0.4\\ \text{Donc: il y a un risque de déversement de la lisse.}\\ \text{Et } \frac{h}{b} = \frac{160}{65} = 2,46 > 1,2\\ t_{f} = 10,5mm < 40mm \quad \alpha_{LT} = 0, 21 \text{ (Annexe B.4)}\\ \bullet \quad \varphi_{LT} = \mathbf{0}, 5. \left[1 + \alpha_{LT} (\overline{\lambda}_{LT} - \mathbf{0}, 2) + \overline{\lambda}_{LT}^{2}\right]\\ \varphi_{LT} &= 0,5. \left[1 + 0,21(1,21 - 0,2) + 1,21^{2}\right] = 1,34\\ \chi_{LT} = \frac{1}{\varphi_{LT} + \left[\varphi_{LT}^{2} - \overline{\lambda}_{LT}^{2}\right]^{0.5}} < 1\\ \chi_{LT} = \frac{1}{1,34 + \left[1,34^{2} - 1,21^{2}\right]^{0.5}} = \mathbf{0},52 < 1\\ M_{b,Rd} = 0,52 \times 1 \times \frac{(138 \times 10^{-6}) \times (235 \times 10^{5})}{1,1} = 1533,055 \text{ daN. m} \end{split}$$

 $M_{sd} = 1233,27 daN.m < M_{b,Rd} = 1533,0455 daN.m$

Donc : les lisses en UPN160 résistent au déversement.

III.2.3 Vérification de la flèche de l'UPN160 (ELS)

Plan (y-y)

$$q_y = G_l + (G_b \times 1.4) = 18.8 + (10.9 \times 1.4) = 34,06 \text{daN/m}$$

$$\delta_{y} = \frac{5}{384} \cdot \frac{q_{y} (l_{y})^{4}}{E \cdot I_{z}}$$
$$\delta_{y} = \frac{5}{384} \cdot \frac{34,06 \times 10^{-2} \times (300)^{4}}{21 \times 10^{5} \times 85,3} = \delta_{y} = 0,205 \text{ cm} < \delta_{\max} = 1,5 \text{ cm}$$

Donc : les lisses en UPN160 vérifient la flèche dans le plan y-y.

Plan (z-z)

$$q_z = W \times 1, 4 = 130, 51 \times 1, 4 = 182, 71 \ daN/m$$

 $\delta_z = \frac{5}{384} \cdot \frac{q_z \times l_z^2}{E \cdot l_y}$
 $\delta_z = \frac{5}{384} \cdot \frac{182, 71 \times 10^{-2} \times (600)^4}{21 \times 10^6 \times 925} = 1,59 < \delta_{max} = 3cm$

Donc : les lisses en UPN160 vérifient la flèche dans le plan z-z.

• Vérification au cisaillement

La vérification au cisaillement est donnée par les formules suivantes :

$$V_{z} \leq V_{plz,Rd} \quad et \ V_{plz,Rd} = \frac{A_{vz} \cdot (f_{y}/\sqrt{3})}{\gamma_{M0}}$$
$$V_{y} \leq V_{ply,Rd} \quad et \ V_{ply,Rd} = \frac{A_{vy} \cdot \left(\frac{f_{y}}{\sqrt{3}}\right)}{\gamma_{M0}}$$

 $A_{vy} = 2bt_f$

= 2 × 65 × 10,5

$$A_{vy} = 1365 mm^{2};$$

 $A_{vz} = 1,04ht_w$
= 1,04 × 160 × 7,5
 $A_{vz} = 1248 mm^2$

$$V_{plz,Rd} = \frac{A_{vz} \cdot \left(\frac{f_y}{\sqrt{3}}\right)}{\gamma_{M0}}$$

$$=\frac{12,48 \times \left(\frac{2350}{\sqrt{3}}\right)}{1,1}$$

V_{plz,Rd} = **15393**,21 daN

Dimensionnement des éléments secondaires

$$V_{ply,Rd} = \frac{A_{vy} \cdot \left(\frac{f_y}{\sqrt{3}}\right)}{\gamma_{M0}} = \frac{13,65 \times \left(\frac{2350}{\sqrt{3}}\right)}{1,1}$$
$$V_{ply,Rd} = 16836,32 \ daN$$

 $V_{z,Sd} = 137,03daN < V_{plz,Rd} = 15393,21.....CV$ $V_{y,Sd} = 28,74daN \le V_{ply,Rd} = 16836,32daNCV$ Conclusion :

Le profilé UPN160 convient comme lisse de bardage pour notre structure.

III.3 Calcul des potelets

Les potelets sont plus souvent de profilés en I ou H destinées à rigidifier la clôture (bardage) et résister aux efforts horizontaux du vent . Leurs caractéristiques varient en fonction de la nature du bardage (en maçonnerie ou en tôle ondulées) et de la hauteur de la construction. Ils sont considérés

comme articulé dans les deux extrémités comme la figure si dessous

III.3.1 Calcul des charges et surcharges revenantes au potelet D'après le ROBOT, on a opté pour la section IPE300

Profilé	Poid s	Section	ction Dimension				Caractéristique				
IPE300	p Kg/ m	A cm ²	H mm	B Mm	t _f mm	t _w mm	I _y cm ⁴	I _z cm ⁴	<i>W</i> _{pl-y} cm ³	W _{pl-y} cm ³	
	42 ,2	53,6	300	150	10,5	7,1	8356	603,8	628,4	125,2	

Tableau 9 III.3 Caractéristique du profilé IPE300

✓ <u>charge permanents (G)</u>

-Bardage : Panneau sandwich TL 35 : **G=10,9** *daN/ml* (Annexe B.5) -Poids propre de la lisse (UPN 160) : **18,8***daN/m*

 $G = 10, 9 \times 5, 5 \times 15, 54 + 18, 8 \times 5, 5 \times 5, 5 = 1500, 32 \ daN = 15,003 kN$

✓ <u>Surcharge climatique du vent</u>

 $W = 89,055 \times 5,5 = 489,80 \ kN/m$

Avec : **5,5 m**:entre axe du potelet III.3.2 Incidence de l'effort tranchant

 $V_{z,Sd} \leq 0, 5 V_{plz,Rd}$

avec:

$$V_{z;Sd} = \frac{Q_{z,Sd} \cdot l}{2}$$

$$Q_{z,Sd} = 1, 5. W = 1,5 \times 489,80$$

$$Q_{z,Sd} = 734, 7 \ daN/ml$$

$$V_{z;Sd} = \frac{489,80 \times 15,54}{2} = 3805,75 \ daN$$

$$v_{plz;Rd} = \frac{A_{vz} \cdot \frac{f_{y}}{\sqrt{3}}}{\gamma_{M0}}$$
avec:
$$A_{vz} = A - 2bt_{f} + (t_{w} + 2r)t_{f}$$

$$= 53, 8 - 2 \times 15 \times 1,07 + (0,71 + 2 \times 1,8) \times 1,07 = 17,088 \ cm^{2}$$

$$V_{plz;Rd} = \frac{17,088 \times 2350}{1,1 \times \sqrt{3}} = 21706,85 \ daN$$

 $\frac{V_{z;Sd}}{V_{plz;Rd}} = \frac{3805,75}{21706,85} = 0,175 < 0,5....CV$

Donc : L'incidence de l'effort tranchant sur le moment resistant peut etre negligée.

• Incidence de l'effort normal:

 $N_{Sd} \leq \text{Min}(0, 25, N_{pl;Rd}, 0, 5, \frac{A_w \cdot f_y}{\gamma_{M0}})$

$$N_{Sd} = 1,35.G = 1,35 \times 1500,32 = 2025,43daN$$
$$N_{pl;Rd} = \frac{A.f_y}{\gamma_{M0}} = \frac{53,8 \times 2350}{1,1} = 114936,36 \, daN$$
$$0,25.N_{pl;Rd} = 0,25 \times 114936,36 = 28734,09 \, daN$$
$$A_w = A - 2bt_f = 53,8 - 2 \times 15 \times 1,07 = 21,7 \, cm^2$$
$$0,5.\frac{A_w.f_y}{\gamma_{M0}} = 0,5.\frac{21,7 \times 2350}{1,1} = 23179,54 \, daN$$

 $N_{Sd} = 2025, 43 < Min (28734, 09; 23179, 54)=23179,54 daN.....CV$ Donc : L'incidence de l'effort normal sur le moment resistant peut etre negligée.

Classe de la section IPE300

- Classe de l'âme (Annexe B.1)

$$\frac{c}{t_w} = \frac{d}{t_w} \le 72\varepsilon \quad \text{Avec } \varepsilon = \sqrt{\frac{235}{f_y}} = 1$$
$$\frac{d}{t_w} = \frac{248.6}{7.1} = 35,01 < 72 \Rightarrow \text{ Åme de classe 1}$$
$$- Classe de la semelle (Annexe B.1)$$

L

$$\frac{c}{t_f} = \frac{\frac{b_{f/2}}{t_f}}{t_f} \le 10\varepsilon \quad \text{Avec } \varepsilon = \sqrt{\frac{235}{f_y}} = 1$$
$$\frac{c}{t_f} = \frac{\frac{150}{2}}{10.7} = 7,01 < 10 \Rightarrow \text{Semelle de classe1}$$

Alors la section de classe 1

Les potelets sont soumis à la flexion composée, il faut donc vérifier :

$$M_{y,Sd} \leqslant M_{pl,Rd}$$
$$M_{c,Rd} = M_{ply,Rd} = \frac{W_{ply} \cdot f_y}{\gamma_{M0}}$$

$$M_{ply,Rd} = \frac{628 \times 2350 \times 10^{-2}}{1.1} = 13416, 36 \, daN. \, m$$
$$M_{y,Sd} = \frac{Q_{z;y} \cdot l^2}{8} = \frac{734, 7 \times 5, 5^2}{8} = 2812, 116 \, daN. \, m$$

Donc :

La condition $M_{y,Sd} = 2812$, $116 daN. m < M_{ply,Rd} 13416$, 36 daN. m est vérifiée III.3.3 Vérification de l'élément aux instabilités

Le potelet est sollicité à la flexion (due au vent) et à la compression (due à son poids propre, aux poids des bacs de bardage et de lisses), Il travaille à la flexion composé

La vérification aux instabilités est donnée par les formules suivantes :

A. Flexion composée avec risque de flambement et déversement

$$\frac{N_{Sd}}{\chi_{min}.N_{pl,Rd}} + \frac{k_y.M_{y,Sd}}{M_{ply,Rd}} \le 1 \qquad \text{Et} \qquad \frac{N_{Sd}}{\chi_z.N_{pl,Rd}} + \frac{k_{LT}.M_{y,Sd}}{\chi_{LT}.M_{ply,Rd}} \le 1$$
$$N_{pl;Rd} = \frac{A.f_y}{\gamma_{M1}} = \frac{53.8 \times 235}{1.1} = 114936,36 \ daN_{M1}$$

A.1 Flexion composée avec de risque de flambement

$$\frac{N_{Sd}}{\chi_{min} \cdot N_{pl,Rd}} + \frac{k_{y} \cdot M_{y,Sd}}{M_{ply,Rd}} \le 1$$

Avec : $\chi_{min} = Min\left(\chi_y; \chi_z\right)$

Flambement par rapport à l'axe y-y

$$\chi_{y} = \frac{1}{\varphi_{y} + [\varphi_{y}^{2} - \overline{\lambda}_{y}^{2}]^{0.5}}$$

$$\varphi_{y} = 0, 5. \left[1 + \alpha_{y}(\overline{\lambda}_{y} - 0, 2) + \overline{\lambda}_{y}^{2}\right]$$

$$\frac{h}{b} = \frac{300}{150} = 2 > 1.2$$

$$t_{f} = 10.7mm < 40mm$$

Plan y-y (courbe de flambement « a ») $\rightarrow \alpha_y = 0, 21$ (Annexe B.4)

$$\overline{\lambda}_y = \frac{\lambda_y}{\lambda_1} (\boldsymbol{\beta}_A)^{0.5}$$
$$\lambda_1 = \pi \left(\frac{E}{f_y}\right)^{0.5} = 3,14 \times \left(\frac{2,1 \times 10^4}{23,50}\right)^{0.5} = 93,9$$
$$\lambda_y = \frac{l_y}{l_y} = \frac{1 \times 1554}{12,5} = 124,32$$
$$\boldsymbol{\beta}_A = 1 \text{ pour la section de classes } 1.$$

$$\overline{\lambda}_y = \frac{124,32}{93,9} \times 1 = 1,324$$

Alors :

$$\chi_{y} = \frac{\varphi_{y} = 0.5. [1 + 0.21(1.324 - 0.2) + 1.324^{2}] = 1,495}{\varphi_{y} + [\varphi_{y}^{2} - \overline{\lambda}_{y}^{2}]^{0.5}} = \frac{1}{1.495 + [1.495^{2} - 1.324^{2}]^{0.5}} = 0,46$$

Flambement par rapport à l'axe z-z

$$\chi_z = \frac{1}{\varphi_z + \left[\varphi_z^2 - \overline{\lambda_z}^2\right]^{0.5}}$$
$$\varphi_z = 0, 5. \left[1 + \alpha_z(\overline{\lambda_z} - 0, 2) + \overline{\lambda_z}^2\right]$$
$$\frac{h}{b} = \frac{300}{150} = 1.5 > 1.2$$
$$t_f = 10.7mm < 40mm$$

Plan z-z (courbe de flambement « b ») $ightarrow lpha_z = 0$, 34 (Annexe B.4)

$$\overline{\lambda}_{z} = \frac{\lambda_{z}}{\lambda_{1}} (\beta_{A})^{0.5}$$

$$\lambda_{1} = \pi \left(\frac{E}{f_{y}}\right)^{0.5} = 3.14 \times \left(\frac{2.1 \times 10^{4}}{23.50}\right)^{0.5} = 93.9$$

$$\lambda_{z} = \frac{l_{z}}{l_{z}} = \frac{1 \times 140}{3.5} = 40$$

 $\boldsymbol{\beta}_A = \mathbf{1}$ pour la section de classes 1.

$$\overline{\lambda}_z = \frac{40}{93,9} \times 1 = 0,43$$

Alors : $\varphi_z = 0.5 [1 + 0.34(0.43 - 0.2) + 0.43^2] = 0.77$

$$\chi_{z} = \frac{1}{\varphi_{z} + \left[\varphi_{z}^{2} - \overline{\lambda_{z}}^{2}\right]^{0.5}} = \frac{1}{0.77 + [0.77^{2} - 0.43^{2}]^{0.5}} = 0,71$$

$$\chi_{min} = Min\left(\chi_{y};\chi_{z}\right) = Min(0,46;0,71) = 0,46$$

$$k_{y} = 1 - \frac{\mu_{y} \cdot N_{Sd}}{\chi_{y} \cdot Af_{y}}$$

 $\mu_y = \overline{\lambda_y} (2\beta_{My} - 4) + \frac{w_{ply} - w_{ely}}{w_{ely}} = 0,897 \times (2 \times 1,3 - 4) + \frac{628 - 557}{557} = 0,13$ $\beta_{My} = 1,3 \text{ Poutre simplement appuyée avec une charge uniformément répartie } k_y = 1 - \frac{0,13 \times 2025,43}{0,46 \times 58,3 \times 2350} = 0,99 < 1,5$

Alors :

$$\frac{N_{Sd}}{\chi_{min} \cdot N_{pl,Rd}} + \frac{k_y \cdot M_{y,Sd}}{M_{ply,Rd}} \le 1$$

$$\frac{2025,43}{0,46\times114936,36} + \frac{0,99\times2813,116}{13416,36} = \mathbf{0}, \mathbf{24} < 1 \quad \dots \dots \mathbf{CV}$$

A.2 Flexion composée avec de risque de déversement

$$\frac{N_{Sd}}{\chi_z \cdot N_{pl,Rd}} + \frac{k_{LT} \cdot M_{y,Sd}}{\chi_{LT} \cdot M_{ply,Rd}} \le 1$$

<u>Calcul l'élancement réduit vis-à-vis du déversement $\overline{\lambda}_{LT}$ </u>

•
$$\lambda_{LT} = \frac{\frac{L_{z/i_z}}{c_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{L_{z/i_z}}{h/t_f}\right)^2\right]^{0.25}}}{\lambda_{LT}} = \frac{\frac{140}{3.5}}{1.132^{0.5} \left[1 + \frac{1}{20} \left(\frac{140}{3.5}\right)^2\right]^{0.25}} = 36,70$$

• $\overline{\lambda}_{LT} = \frac{\lambda_{LT}}{\lambda} (\beta_w)^{0.5} = \frac{36.70}{0.20} \times 1 = 0.390$

 $\overline{\lambda}_{LT} = 0,390 < 0,4$ Donc : il n'y a pas risque de déversement

Conclusion : le profilé IPE300 convient comme potelet pour notre structure.

CONCLUSION

A travers ce chapitre, qui présente les caractéristiques et le fonctionnement des éléments secondaires de la structure pour résister aux différentes sollicitations causées par les charges et les surcharges (G, Q, S, W). On conclut, d'après les calculs faits, on a choisi les profilés suivants qui assurent le bon fonctionnement et vérifient bien les conditions de résistance à la fois : Les pannes en profilé IPE 180, les lisses en profilé UPN 160, et les potelets en profilé IPE300

CHAPITRE IV : Etude séismique

IV.1 Introduction

Les actions sismiques sur un bâtiment sont des actions dynamiques complexes. Elles se manifestent par des mouvements essentiellement horizontaux imposés aux fondations. Les constructions résistent à ces mouvements par des forces d'inertie dues à leur masse qui s'opposent aux mouvements. Ce qui entraine bien entendu des efforts dans la structure.

L'objectif visé dans ce chapitre est la détermination des efforts sismiques susceptibles à solliciter notre structure et la vérification de la structure aux recommandations d'RPA (règlement parasismique Algérien version 99/2003).

Ce dernier propose trois méthodes de calcul dont les conditions d'applications différentes et cela selon le type de structure à étudier, le choix des méthodes de calcul et la modélisation de la structure doivent avoir pour objectif de reproduire au mieux le comportement réel de l'ouvrage. Ces méthodes sont suivantes :

- La méthode statique équivalente.
- La méthode d'analyse modale spectrale.
- La méthode d'analyse dynamique par un accélérogramme.

Suivant la particularité de la structure de notre bâtiment, notre calcul se fera par la méthode d'analyse modale spectrale

IV.2 Principe de la méthode

Elle consiste à déterminer les effets extrêmes engendrés par l'action sismique par le calcul des modes propres de vibrations de la structure qui dépendent à la fois de sa masse, de son effet d'amortissement et de ses forces d'inertie à travers un spectre de réponse de calcul.

IV.3 Spectre de réponse de calcul

L'action sismique est représentée par le spectre de calcul suivant :

$$\underbrace{S_a}{g} \begin{cases}
1,25 \text{ A} \left(1 + \frac{T}{T_1} \left(2,5 \eta \frac{Q}{R} - 1\right)\right) & 0 < T < T_1 \\
2,5 \eta (1,25 \text{ A}) \left(\frac{Q}{R} - 1\right) T_1 < T < T_2 \\
2,5 \eta (1,25 \text{ A}) \left(\frac{Q}{R}\right) \left(\frac{T_2}{T}\right)^{3/2} T_1 < T < 0,3 \\
2,5 \eta (1,25 \text{ A}) \left(\frac{T_2}{3}\right)^{3/2} \left(\frac{3}{T}\right)^{5/3} \left(\frac{Q}{R}\right) \text{ T} > 0,3
\end{cases}$$

Avec :

A : coefficient d'accélération de zone, donné suivant la zone sismique et le groupe d'usage du bâtiment.

(Annexe C.1)

A = 0.10

 ξ : le pourcentage d'amortissement critique \rightarrow des portique en acier avec un remplissage léger.

$\xi = 4\%$. (Annexe C.2)

 $\boldsymbol{\eta}$: facteur de Correction de l'amortissement

$$\boldsymbol{\eta} = \sqrt{\frac{7}{2+\xi}} = \mathbf{1}, \mathbf{08} > 0,7$$

CHAPITRE IV

T_{1 et} T₂: Périodes caractéristiques associées à la catégorie du site :

Site meuble S3 alors : (Annexe C.6)

 ${T_1 = 0, 15s \ T_2 = 0, 50 s}$

R : Coefficient de comportement global de la structure donnée en fonction du Système

de contreventement: Ossature contreventée par palée triangulée en V et en X.. (Appeve C 3) R=4

(Annexe C.3) R=4

Q : Facteur de qualité donné par la formule suivante : $Q = 1 + \sum_{1}^{5} Pq$ (Annexe C.4)

	P	q
Critère q	Suivant X	Suivant Y
1. Conditions minimales sur les files de Contreventement	0	0,05
2. Redondance en plan	0	0,05
3. Régularité en plan	0	0
4. Régularité en élévation	0	0
5. Contrôle de la qualité des matériaux	0,05	0,05
6. Contrôle de la qualité de l'exécution	0,10	0,10
Tableau IV1 : Facteur de qualité suivant les deux sens.	Qx = 1,15	Qy = 1,25

IV.4 Analyse dynamique

Elle permet de déterminer les efforts et les déplacements maximums d'une structure lors d'un séisme par l'étude de son comportement en vibrations libres non amorties tenant compte de ses caractéristiques dynamiques propres.

L'étude dynamique d'une structure telle qu'elle se présente réellement, est souvent très complexe et demande un calcul très fastidieux. C'est pour cette raison qu'on fait souvent appel à des modélisations qui permettent de simplifier suffisamment le problème pour pouvoir l'analyser.

IV.5 Modélisation de la structure

La modélisation représente l'établissement d'un modèle à partir de la structure réelle. Ce travail sera suivi de certaines modifications en vue d'approcher au maximum le comportement de la structure d'origine On fait appel pour la modélisation de notre structure au logiciel de calcul, ce dernier est un logiciel de calcul est de conception des structures d'ingénierie, particulièrement adapté au bâtiment, et ouvrage de génie-civil. Il permet en un même environnement la saisie graphique des ouvrages avec une bibliothèque d'éléments autorisant l'approche du comportement de ces structures, il offre de nombreuses possibilités d'analyses des effets statiques et dynamiques avec des compléments de conception et de vérification de structure.

IV.6. Analyse modale

Le calcul des effets maximums d'un séisme sur une structure se détermine par le biais de la méthode intitulée « analyse modale spectrale » qui se caractérise par la sollicitation sismique décrite sous la forme d'un spectre de réponse.

Une bonne modélisation permet, à travers ce type d'analyse appliqué à toute forme de structure, d'obtenir des résultats les plus exacts et les plus satisfaisants possibles et dont la fiabilité est extrême. Le spectre est caractérisé par les données suivantes :

- Zone sismique I (wilaya de Tlemcen).
- Groupe d'usage 2 (ouvrages d'importance moyenne).
- Site meuble (S3).
- Pourcentage d'amortissement (ξ = 4 %).
- Coefficient de comportement (R = 4).
- Facteur de qualité suivant z (Qx= 1,15).

Figure IV.1: Spectre de réponse suivant X.

• Facteur de qualité suivant Y (Qy= 1,25).

IV.7 Vérification de la structure

IV.7.1. Vérification de la période fondamentale de la structure

T_F <**T+30%T**

La valeur de T calculé par le logiciel de calcul ne doit pas dépasser celle estimée à partir de la formule empirique appropriée par le RPA99 de plus de 30 %.

La période fondamentale obtenue par le logiciel de calcul (robot) : T_F = 0,34 s.

La période empirique est donnée par la formule suivante : T = $C_t \times h_n^{3/4}$ Avec :

• C_t : Coefficient donné en fonction du système de contreventement et du type de remplissage ($C_t = 0,085$), pour des portiques autostables en acier sans remplissage en maçonnerie

• h_n : hauteur mesurée en mètres à partir de la base de la structure $(h_n = 17,24 m)$. D'où :

• $T = 0,085 \times 17,24^{3/4}$

$$T = 0, 29 s$$

Donc : 0, 34 s < 0,377 s

Conclusion : la vérification de la période fondamentale de la structure par rapport à la période empirique donnée par le RPA99-V2003 est assurée.

IV.7.2. Vérification de la force sismique à la base

La combinaison des valeurs modales permet d'obtenir la résultante des forces sismique à la base V_t égale ou supérieure à 80% de la résultante des forces sismiques, elle-même déterminée par la méthode statique équivalente V pour une valeur de la période fondamental donnée par la formule empirique appropriée.

 V_t > 0,8V (§ 4.3.6 RPA99/V2003) La force sismique totale V est donnée par la formule suivante :

$$V = \frac{A \times D \times Q}{R} \times W$$

A: Coefficient d'accélération de zone A = 0,10.

D: Facteur d'amplification dynamique moyen **D = 2,5**imes η = 2,7

Q_x: Facteur de qualité suivant Z :Q_x = 1,15

Q_{y :} Facteur de qualité suivant Y : Q_Y = 1,25

R : Coefficient de comportement : R = 4

W: Poids total de la structure (calculée par ROBOT) W =3694,69 kN.

$$V_X = \frac{A \times D \times Q}{R} \times W$$

$$V_X = {0, 10 \times 2, 7 \times 1, 15 \over 4} \times 3694, 69$$

 $V_X =$ 286,80 KN

$$V_Y = \frac{A \times D \times Q}{R} \times W$$

$$=\frac{0,10\times2,7\times1,23}{4}\times3694,69$$

V_Y =311,74KN

	$V_t(KN)$	V(KN)	80%V(KN)	$V_t > 80\% V$
Vz	280,7	286,80	229,44	Vérifiée
Vy	307,2	311,74	249,39	Vérifiée

Tableau IV.2 : Résultante des forces sismiques à la base.

Conclusion : notre structure vérifie l'effort tranchant à la base.

IV.7.3. Vérification des déplacements

Le déplacement horizontal à chaque niveau (k). Est calculé par la formule suivante :

 $\boldsymbol{\delta}_{\boldsymbol{k}} = \boldsymbol{R} \times \boldsymbol{\delta}_{\boldsymbol{e}\boldsymbol{k}}$ (4.43 RPA99/V2003).

• **R**: Coefficient de comportement

• δ_{ek} : Déplacement dû aux forces sismiques

Les déplacements latéraux ne doivent pas dépasser 1% de la hauteur de l'étage.

	structure	$\delta_{ek}(cm)$	R	$\delta_k(cm)$	$1\% h_k(cm)$	$\delta_k \leq 1 \% h_k$	
		1,5	4	6	17,24	Vérifiée	

Tableau IV3 : Déplacements résultants suivants Z.

IV.8.Conclusion

Afin de déterminer les caractéristiques dynamiques de la halle dans la wilaya de Tlemcen, un modèle 3D en éléments finis a été développé. Ce modèle a servi de base pour élaborer le calcul sismique.

La vérification de la période fondamentale de la structure par rapport à la période empirique donnée par le « RPA 99 version 2003» est vérifiée.

La résultante des forces sismiques à la base obtenue par combinaison des valeurs modales ne dépasse pas les 80% de la résultante des forces sismiques calculée par la méthode statique équivalente. Apres l'analyse dynamique de la structure on peut dire que les effets du vent sur la structure suivant toutes les directions sont les plus défavorables par rapport aux efforts tranchants à la base de la structure dûs au séisme.

CHAPITRE V: Vérification des éléments structuraux

V.1. Introduction

Le calcul d'une structure exige que sous toutes les combinaisons d'actions possible définies réglementairement, la stabilité statique doit être assurée tant globalement, au niveau de la structure, qu'individuellement au niveau de chaque élément. Les diverses sollicitations, générées par les actions, développent des contraintes au sein même des matériaux ce qui peut provoquer la déformation des éléments qui composent la structure. Il est impératif donc de vérifier que les contraintes et les déformations sont en deçà des limites admissibles conformément à la réglementation pour garantir le degré de sécurité souhaité.

V.2. Justification des traverses

V.2.1. Charge répartie sur la traverse

- Poids du panneau sandwich
- Poids des pannes
- Poids propre de la traverse
- Charge d'entretien
- Charge de neige
- Charge de vent.

V.2.2. Caractéristiques de la traverse

Après introduction des charges sur la structure, le logiciel de calcul ROBOT nous a proposé comme profilé **HEA320** pour les traverses, ses caractéristiques sont les suivantes :

Profilée	p(kg/m)	h (mm)	b (mm)	$t_w(mm)$	$t_f(mm)$	$A(cm^2)$	$I_y(cm^4)$	$I_z(cm^4)$
HEA320	97,6	310	300	9	15,5	124,4	22930	6985

Tableau V.1 Caractéristiques du profilé HEA320

V.2.3. Efforts sollicitant

Pour assurer la vérification selon le règlement, on fait appel au logiciel de calcul pour nous donner les efforts les plus défavorables :

- $M_{sd} = 26548,32 \ daN.m$
- $V_{sd} = 18256,40 \ daN$
- $N_{sd} = 2102,63 daN$

V.2.4. Classe de la section transversale de la traverse (Annexe D.2)

> <u>Classe de l'âme fléchie :</u>

$$\frac{d}{t_w} \le 72\varepsilon \quad \text{Avec } \varepsilon = \sqrt{\frac{235}{f_y}} = 1$$
$$\frac{d}{t_w} = \frac{225}{9} = 25 < 72 \Rightarrow \text{ Åme de classe } 1$$

> Classe de la semelle comprimée :

$$\frac{c}{t_f} = \frac{\frac{b_{f/2}}{t_f}}{\frac{c}{t_f}} \le 10\varepsilon \quad \text{Avec} \quad \varepsilon = \sqrt{\frac{235}{f_y}} = 1$$
$$\frac{c}{t_f} = \frac{\frac{300}{2}}{15,5} = 9,67 < 10 \Rightarrow \text{ semelle de classe 1}$$

Donc la section transversale HEA320 est de classe I

• Incidence de l'effort axial

$$N_{sd} \leq Min[0, 25N_{pl,rd}; 0, 5\frac{A_w f_y}{\gamma_{M_0}}]$$

N_{sd} : Effort normal sollicitant

*N*_{*pl.rd*} : Effort normal plastique résistant

$$\begin{split} N_{pl,rd} &= \frac{A*f_y}{\gamma_{M_0}} = \frac{124.4 * 2350}{1.1} = 265763,64 \text{ daN} \\ 0,25N_{pl,rd} &= 66440,91 \text{ daN} \\ A_w &= A - 2. \ b. \ t_f = 124, 4 \times 10^2 - 2 \times 300 \times 15, 5 = 3140 mm^2 \\ 0,5\frac{A_w \cdot f_y}{\gamma_{M_0}} &= 0,5\frac{31.40 * 2350}{1.1} = 33540,91 \ daN \\ N_{sd} &= 2102,63 daN \leq Min[66440,91 ; 33540,91 \] = \ 33540,91 \ daN \ \dots CV \\ Donc: \ L'incidence \ de \ l'effort \ axial \ sur \ le \ moment \ fléchissant \ est \ négligée. \end{split}$$

V.2.5. Vérification au cisaillement

On doit vérifier que :

$$V_{sd} \le 0, 5 \times V_{pl,Rd}$$
$$V_{sd} \le V_{pl,Rd}$$

Avec : $V_{plz,Rd} = \frac{A_{\nu z} \cdot \left(\frac{f_y}{\sqrt{3}}\right)}{\gamma_{M0}}$

$$et A_{vz} = A - 2bt_f + (t_w + r)t_f$$

= 124,4.10² - 2 × 300 × 15,5 + (9 + 27) × 15,5

$$A_{vz} = 3698mm^2$$

alors:

$$V_{plz,Rd} = \frac{A_{vz} \cdot \left(\frac{f_y}{\sqrt{3}}\right)}{\gamma_{M0}} = \frac{36,98 \times \left(\frac{2350}{\sqrt{3}}\right)}{1,1}$$

$$V_{plz,Rd} = 45612, 24 \ daN$$

Alors :

 $V_{sd} = 18256, 40 \le V_{pl,Rd} = 456112, 24.....CV$ $V_{sd} = 18256, 40 \le 0, 5 \times V_{pl,Rd} = 22806. 12 \ daN$ CV Donc : les travers HEA320 en résistent au cisaillement

L'effet de l'effort tranchant sur le moment résistant peut-être négligée

V.2.6 Vérification de la résistance à la flexion composée

Résistance de la traverse au déversement

Comme il y a la flexion composée sur les traverses, il y a donc un risque de déversement à vérifier.

Le déversement est pris en considération que si : $\overline{\lambda}_{LT} \ge 0, 4$

$$\overline{\lambda}_{LT} = \left[\frac{\lambda_{LT}}{\lambda_1}\right] \cdot [\boldsymbol{\beta}_w]^{0.5}$$

 $\beta_w = 1$ Pour les sections de classes 1

$$\lambda_1 = 93, 9\varepsilon = 1$$

Avec:

$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{235}} = 1$$

Puisque les traverses sont encastrées aux extrémités, les facteurs de longueur effective K et K_w sont pris égale à 0,5 et donc la formule de λ_{LT} est de forme

$$\lambda_{LT} = \frac{k \times L \times (\frac{W_{pl,y}^2}{I_w \times I_z})^{0,25}}{\sqrt{C_1} \times [(\frac{K}{K_w})^2 + \frac{(K \times L)^2 \times G \times I_t}{\pi^2 \times E \times I_w}]^{0,25}}$$

L=18,53 m $C_1 = 2,609$ (Annexe D.1)

$$\lambda_{LT} = \frac{0.5 \times 1853 \times (\frac{1628^2}{1824 \times 7436})^{0.25}}{\sqrt{2,609} \times [(\frac{0.5}{0.5})^2 + \frac{(0.5 \times 1853)^2 \times 8,08 \times 10^6(127,2)}{\pi^2 \times 21 \times 10^6 \times 1824}]^{0.25}} = 54,85$$
$$\overline{\lambda}_{LT} = \left[\frac{54,85}{93,9}\right] = 0.58 > 0.4$$

Donc : il y a un risque de déversement.

Donc : la vérification de notre traverse en HEA320 va être faite par la formule suivante :

$$\frac{N_{sd}}{\chi_z \times \frac{A \times f_y}{\gamma_{M1}}} + \frac{K_{LT} \times M_{y,sd}}{\chi_{LT} \times \frac{W_{pl,y} \times f_y}{\gamma_{M1}}} + \frac{K_z \times M_{z,sd}}{\frac{W_{pl,z} \times f_y}{\gamma_{M1}}} \le 1$$

Calcul de χ_{z}

 $\overline{\lambda}_{z} = \left[\frac{\lambda_{z}}{\lambda_{1}}\right] = \frac{I_{fz}/i_{z}}{\lambda_{1}} = \frac{\frac{(0,5 \times 1853}{93,9}}{93,9} = 1,32 \quad \text{Avec: } I_{fz} = 0,5L \text{ (encastré - encastré)}$ Donc le flambement sera considéré dans le sens (z-z)

$$\varphi_z = \mathbf{0}, \mathbf{5}. \left[\mathbf{1} + \alpha_z (\overline{\lambda}_z - \mathbf{0}, \mathbf{2}) + \overline{\lambda}_z^2 \right]$$

= 0,5. [1 + 0,49(1.32 - 0,2) + 1.32²]

$$arphi_{z} = 1,65$$

Avec: $rac{h}{b} = rac{320}{300} = 1,06 < 1,2$
 $t_{f} = 15,5mm < 100mm$
Alors: $lpha_{z} = 0,49$ (Annexe B.4)

$$\chi_{z} = \frac{1}{\varphi_{z} + \left[\varphi_{z}^{2} - \bar{\lambda}_{z}^{2}\right]^{0.5}} = \frac{1}{1.65 + [1.65^{2} - 1.32^{2}]^{0.5}} = 0.38 < 1$$

Calcul de K_{LT}
K_{LT} = $1 - \frac{\mu_{LT} \times N_{sd}}{\chi_{z} \times A \times f_{y}}$

Avec: $\mu_{LT} = 0,15 \times \overline{\lambda}_z \times \beta_{MLT} - 0,15$

$$\beta_{MLT} = 1,8 - 0,7 \times \Psi_z = 1,8 - 0,7 \times (-0,19) = 1,93 \text{ (Annexe E-E.4)}$$
$$\Psi_z = \frac{M_{\text{Min}}}{M_{\text{Max}}} = \frac{2654,83}{-13609} = -0,19$$
$$\mu_{LT} = 0,15 \times 1,32 \times 1,93 - 0,15 = 0,23 < 0,9$$

Alors: $K_{LT} = 1 - \frac{0,23 \times 2102,63}{0,38 \times 124,4 \times 2350} = 0,995 < 1$

Calcul de χ_{LT}

$$\chi_{LT} = \frac{1}{\varphi_{LT} + \left[\varphi_{LT}^2 - \overline{\lambda}_{LT}^2\right]^{0.5}}$$
$$\varphi_{LT} = \mathbf{0}, \mathbf{5}. \left[\mathbf{1} + \alpha_{LT}(\overline{\lambda}_{LT} - \mathbf{0}, \mathbf{2}) + \overline{\lambda}_{LT}^2\right]$$
$$= 0, \mathbf{5}. \left[\mathbf{1} + 0, 2\mathbf{1}(\mathbf{1}.58 - \mathbf{0}, \mathbf{2}) + \mathbf{1}.58^2\right] = \mathbf{1}, \mathbf{89}$$
$$\mathbf{Alors}: \ \chi_{LT} = \frac{1}{\mathbf{1}, \mathbf{89} + \left[\mathbf{1}, \mathbf{89}^2 - \mathbf{0}, \mathbf{58}^2\right]^{0.5}} = \mathbf{0}, \mathbf{27} < 1$$
$$\mathbf{Donc}: \quad \frac{2\mathbf{102}, \mathbf{63}}{\mathbf{0}, \mathbf{38} \times \frac{\mathbf{124}, 4 \times 2350}{\mathbf{1}, \mathbf{1}}} + \frac{\mathbf{0}, \mathbf{995} \times \mathbf{13609}}{\mathbf{0}, \mathbf{27} \times \frac{\mathbf{1650} \times 2350}{\mathbf{1}, \mathbf{1}}} = \mathbf{0}, \mathbf{04} < \mathbf{1}$$

Donc: les traverses en HEA320 vérifient la résistance à la flexion composée. V.2.7 Vérification de la flèche (ELS)

$$\delta < \delta_{max}$$

$$\delta_{max} = \frac{L}{200} = \frac{1853}{200} = 9,27cm$$

Avec: L: la longueur de la traverse (L=18,53m) Alors: $\delta = 1.8 \ cm$ (d'aprés le logiciel ROBOT) $< \delta_{max}$

Donc: les traverses en HEA320 vérifient la fleche (ELS)

Conclusion:

Le profile HEA320 répond à les conditions de CCM99 concernant la verification de résistance et de la fleche.

V.3. Justification des poteaux

Après plusieurs essais sur logiciel de calcule ROBOT, le profilé HEA 340 a assuré la stabilité vis-à-vis des phénomènes d'instabilité

V.3.1. Efforts sollicitant

Pour pouvoir faire la vérification suivant le règlement, on a obtenu les efforts les plus défavorables de l'élément à l'aide du logiciel de calcul

- $M_{sd} \cap M_{sd,Min}$ = 1935,9015 KN.m
 - $L M_{sd,Max}$ = 10325,1622 KN.m
- $N_{sd} = 50,3256 \ KN$
- $V_{sd} = 169,4578 \ KN$

Profilée	p(kg/m)	h (mm)	b (mm)	$t_w(mm)$	$t_f(mm)$	$A(cm^2)$	$I_y(cm^4)$	$I_z(cm^4)$
HEA340	105	330	300	9,5	16,5	133,5	27690	7436

Tableau V.2 Caractéristiques du profilé HEA340

- Classe de la section transversale du poteau (Annexe D.2)
- > <u>Classe de l'âme fléchie :</u>

$$\frac{d}{t_w} \le 72\varepsilon \quad \text{Avec } \varepsilon = \sqrt{\frac{235}{f_y}} = 1$$
$$\frac{d}{t_w} = \frac{243}{9,5} = 25,57 < 72 \Rightarrow \text{ Åme de classe } 1$$

Classe de la semelle comprimée :

$$\frac{c}{t_f} = \frac{\frac{b_{f/2}}{t_f}}{t_f} \le 10\varepsilon \quad \text{Avec} \quad \varepsilon = \sqrt{\frac{235}{f_y}} = 1$$
$$\frac{c}{t_f} = \frac{\frac{300}{2}}{16.5} = 9,09 < 10 \Rightarrow \text{ semelle de classe 1}$$

Donc la section transversale HEA340 est de classe I

V.3.2 Incidence de l'effort axial

$$\begin{split} N_{sd} &\leq Min[0, 25N_{pl,rd}; 0, 5\frac{A_w.f_y}{\gamma_{M_0}}] \\ N_{sd}: \text{effort normal sollicitant} \\ N_{pl,rd}: \text{effort normal plastique résistant} \\ N_{pl,rd} &= \frac{A*f_y}{\gamma_{M_0}} = \frac{133,5 * 2350}{1,1} = 285204,54 \text{ daN} \\ 0,25N_{pl,rd} = 71301,136 \text{ daN} \\ A_w &= A - 2. \text{ b. } t_f = 133,5 \times 10^2 - 2 \times 300 \times 16,5 = 3450 mm^2 \\ 0,5\frac{A_w.f_y}{\gamma_{M_0}} &= 0,5\frac{34,50 * 2350}{1,1} = 36852,272 \text{ daN} \\ N_{sd} &= 5032,569 \text{ daN} \leq Min[71301,136; 36852,272] = 36852,272 \text{ daN} \dots CV \\ Donc: L'incidence de l'effort axial sur le moment fléchissant est négligé. \end{split}$$

V.3.3 Vérification au cisaillement

On doit vérifier que :

$$V_{sd} \le 0, 5 \times V_{pl,Rd}$$
$$V_{sd} \le V_{pl,Rd}$$

$$V_{plz,Rd} = \frac{A_{vz} \cdot \left(\frac{f_y}{\sqrt{3}}\right)}{\gamma_{M0}}$$

et $A_{vz} = A - 2bt_f + (t_w + r)t_f$
= 133,5.10² - 2 × 300 × 16,5 + (9,5 + 27) × 16,5

$$A_{vz} = 4052.25mm^2$$

Avec :

alors:

$$V_{plz,Rd} = \frac{A_{vz} \cdot \left(\frac{J y}{\sqrt{3}}\right)}{\gamma_{M0}}$$
$$= \frac{40,52 \times \left(\frac{2350}{\sqrt{3}}\right)}{1,1}$$

/f \

$$V_{plz,Rd} = 49981, 67 \ daN$$

Alors :

 $V_{sd} = 16945.78 \le 0, 5 \times V_{pl,Rd} = 24990.83 \ daN \ \dots \dots CV$ V.3.4 Vérification de la résistance à la flexion composée

Vérification au déversement

Comme il y a la flexion composée sur les traverses, il y a donc un risque de déversement à vérifier. Le déversement est pris en considération que si $\overline{\lambda}_{LT} > 0.4$

•
$$\overline{\lambda}_{LT} = \left[\frac{\lambda_{LT}}{\lambda_1}\right] \cdot [\boldsymbol{\beta}_w]^{0,5}$$

 $\lambda_1 = 93, 9$

 β_w =1

Puisque les poteaux sont articulés en pied et encastrés à la tête, les facteurs de longueur effective K et K_W sont pris égale à 0,7 et donc, la formule de λ_{LT} est de forme

$$\lambda_{LT} = \frac{K \times L \times \left(\frac{W_{pl,y}}{I_{w} \times I_{Z}}\right)^{0,25}}{\sqrt{C_{1}} \times \left[\left(\frac{K}{K_{w}}\right)^{2} + \frac{(KL)^{2} \times G \times I_{t}}{\Pi^{2} \times E \times I_{w}}\right]^{0,25}}$$

*C*₁= 2,092 (Annexe D.1)

$$\lambda_{LT} = \frac{0.7 \times 1724 \times \left(\frac{1850^2}{1824 \times 10^3 \times 7436}\right)^{0.25}}{\sqrt{3,348} \times \left[\left(\frac{0,7}{0,7}\right)^2 + \frac{(0.7 \times 1724)^2 \times 8.08 \times 10^6 \times 127,2}{\pi^2 \times 21 \times 10^6 \times 1824 \times 10^3}\right]^{0.25}} = 43,41$$
$$\overline{\lambda}_{LT} = \left[\frac{\lambda_{LT}}{\lambda_1}\right]$$

$$\overline{\lambda}_{LT} = \frac{\lambda_{LT}}{\lambda_1} = \frac{43,41}{93.9} = 0,462$$

Alors:

$$\overline{\lambda}_{LT}=0.462>0.4$$

Donc : il y a un risque de déversement.

La formule de vérification de la section sera comme suit :

$$\frac{N_{sd}}{\chi_z \times \frac{A \times f_y}{\gamma_{M1}}} + \frac{K_y \times M_{y,sd}}{\frac{W_{pl,y} \times f_y}{\gamma_{M1}}} + \frac{K_z \times M_{z,sd}}{\frac{W_{pl,z} \times f_y}{\gamma_{M1}}} \leqslant 1$$

Calcul de χ_z :

$$\begin{split} \overline{\lambda}_z &= \frac{\lambda_z}{\lambda_1} \\ \lambda_z &= \frac{l_z}{l_z} = \frac{0.7 \times 1724}{7.46} = 161,77 \text{ (articulé- encastré)} \\ \text{Alors:} \\ \overline{\lambda}_z &= \frac{161,77}{93.9} = 1,72 \\ \left\{ \begin{array}{c} \frac{h}{b} = \frac{330}{300} = 1.1 < 1,2 \\ t_f = 16.5mm &< 100 \ mm \end{array} \right. \alpha = 0,49 \text{ (Annexe B.4)} \end{split}$$

$$\varphi_z = \mathbf{0}, \mathbf{5}. \left[\mathbf{1} + \alpha (\overline{\lambda}_z - \mathbf{0}, \mathbf{2}) + \overline{\lambda}_z^2 \right]$$

 $\varphi_z = 0.5. \left[1 + 0.49(1.72 - 0.2) + 1.72^2 \right] = 2.35$

$$\chi_{z} = \frac{1}{\varphi_{z} + \left[\varphi_{z}^{2} - \overline{\lambda}_{z}^{2}\right]^{0.5}}$$
$$\chi_{z} = \frac{1}{2.35 + [2,35^{2} - 1,72^{2}]^{0.5}} = 0,25 < 1$$

4

Calcul de K_z :
$K_z = 1 - \frac{\mu_z \times N_{sd}}{\chi_z \times A \times fy}$

$$\mu_{z} = \overline{\lambda_{z} \times (2\beta_{Mz} - 4)} + \frac{W_{plz} - W_{elz}}{W_{elz}}$$
$$= 1,72 \times (2 \times 1,67 - 4) + \frac{775,9 - 495,7}{495,7}$$
$$\mu_{z} = 0,57 < 0,9$$

Avec: $\boldsymbol{\beta}_{Mz} = 1.8 - 0.7 \times \Psi_z = 1.8 - 0.7 \times (0.19) = 1.67$

$$\Psi_{\rm z} = \frac{M_{\rm Min}}{M_{\rm Max}} = \frac{1935,901}{10325,162} = 0,19$$

Alors :

 $K_z = 1 - \frac{0.57 \times 5032,569}{0.25 \times 133,5 \times 2350} = 0,95$ Calcul de χ_y

$$\lambda_y = \frac{l_y}{l_y} = \frac{1724}{14,40} = 119,79$$

$$\overline{\lambda}_{y} = \frac{119,79}{93,9} = 1,28$$

$$\varphi_{y} = \mathbf{0}, \mathbf{5}. \left[\mathbf{1} + \alpha_{y}(\overline{\lambda}_{y} - \mathbf{0}, \mathbf{2}) + \overline{\lambda}_{y}^{2}\right]$$

$$= 0,5. \left[1 + 0,49(1,28 - 0,2) + 1,28^{2}\right] = 1,58$$

$$\chi_{y} = \frac{1}{\varphi_{y} + \left[\varphi_{y}^{2} - \overline{\lambda}_{y}^{2}\right]^{0,5}}$$

$$= \frac{1}{1,58 + \left[1,58^{2} - 1,28^{2}\right]^{0,5}} = \mathbf{0},39$$

$$\mu_{y} = \overline{\lambda}_{y}(2\beta_{My} - 4) + \frac{W_{ply} - W_{ely}}{W_{ely}}$$

$$= 1,28 \times (2 \times 1,67 - 4) + \frac{1850 - 1678}{1678} = -0,74$$

$$k_{y} = 1 - \frac{\mu_{y} \cdot N_{Sd}}{\chi_{y} \cdot Af_{y}}$$

$$k_{y} = 1 - \frac{(-0.74) \times 5032,569}{0.39 \times 133,5 \times 2350} = 1,03 < 1,5$$

$$\frac{N_{sd}}{\chi_z \times \frac{A \times f_y}{\gamma_{M1}}} + \frac{K_y \times M_{y,sd}}{\frac{W_{pl,y} \times f_y}{\gamma_{M1}}} + \frac{K_z \times M_{z,sd}}{\frac{W_{pl,z} \times f_y}{\gamma_{M1}}} \leq 1$$

$$\frac{5032,569}{0.25 \times \frac{133,5 \times 2350}{1.1}} + \frac{1,03 \times 193590,15}{\frac{1850 \times 2350}{1.1}} + \frac{0.95 \times 1032516,22}{\frac{775,9 \times 2350}{1.1}} = 0,71 < 1$$

Donc : les poteaux en HEA340 vérifient la résistance à la flexion composée. V.3.5 Vérification de la fleche (ELS)

 $\delta < \delta_{max}$

$$\delta_{max} = \frac{L}{200} = \frac{1724}{200} = 8,62cm$$

Avec: L: la longueur du Poteau (L=17,24m) Alors: $\delta = 1,9 \ cm \ (d'aprés \ le \ logiciel \ ROBOT) < \delta_{max}$ Donc: les poteaux en HEA340 vérifient la fleche (ELS)

Conclusion : le profilé HEA 340 répond à toutes les conditions des règles de CCM97 concernant la vérification de résistance et de la flèche.

V.4. Vérification des contreventements

V.4.1 Introduction

Un contreventement est un système statique destiné à assurer la stabilité globale d'un ouvrage vis-à-vis des effets horizontaux issus des éventuelles actions sur celui-ci par exemple : (vent, séisme, choc, etc.). Il sert également à stabiliser localement certaines parties de l'ouvrage (poutres, colonnes) relativement aux phénomènes d'instabilité (flambage ou déversement).

V.4.2 Stabilités en X

Pour les stabilités nous avons opté des profilés en X (2UPN 140).

	Poids	Section		Di	mensio	ns	Caractéristiques				
Profilé	P Kg/m	A cm ²	h mm	b mm	Tf Mm	tw mm	d mm	ly cm4	l _z cm4	Wpl,y cm3	Wpl,z cm3
UPN140	16	20,4	140	60	10	7	98	605	62,7	103	28,3

Tableau V.3 Caractéristiques du profilé UPN140.

V.4.2 .1 vérification à la traction

$$\begin{split} N_{sd,t} &\leq N_{t,Rd} = \min(N_{pl,Rd} ; N_{u,Rd} ; N_{net,Rd}) \\ A_{net} &= A - (n \times d \times t) \\ A_{net} &= 20,4 \times 10^2 - (2 \times 18 \times 10) \\ A_{net} &= 1680 mm^2 \end{split}$$

• $N_{pl,Rd} = \frac{A.f_y}{\gamma_{M0}} = \frac{2 \times 20.4 \times 2350}{1.1} = 87163,64 \, daN$ • $N_{u,Rd} = \frac{0.9 \times A_{net} \times f_u}{\gamma_{M2}} = \frac{0.9 \times 16,8 \times 2 \times 3600}{1.25} = 87091,2 \, daN$

 $N_{net,Rd} = \frac{A_{net} \times f_y}{\gamma_{M0}} = \frac{16,8 \times 2 \times 2350}{1.1} = 71781,82 \, daN$

 $N_{sd,t} \le N_{t,Rd}$ =min $(N_{pl,Rd}; N_{u,Rd}; N_{net,Rd})$ = $N_{net,Rd}$ = 717,81daN Figure V.1: Contreventement en X $N_{sd,t}$ = 300,30 $KN \le N_{net,Rd}$ = 717,81 KN.....CV Conclusion : Les contreventements 2UPN140 vérifient la traction.

V.4.2.2 Vérification au flambement

$$Nsdc < Nc, Rd = \frac{\chi \times \beta_A \times A \times f_y}{\gamma_{M1}}$$

Avec :

 N_{sd} : effort sollicitant.

Nb, Rd : Résistance au flambement.

 χ : Coefficient de réduction.

 β_A = **1** : pour les sections de classe **1**

 $\gamma_{M1}=1,1$

• Calcul du coefficient de réduction minimal pour le flambement

$$\chi_{min} = Min(\chi_z; \chi_y)$$

Flambement par rapport à l'axe (y-y)

$$\chi_y = \frac{1}{\phi_{y^+} \sqrt{\phi_{y^-}^2 - \overline{\lambda y^2}}}$$

$$\phi_y = 0,5 \times [1 + \alpha y \times (\overline{\lambda y} - 0,2) + \overline{\lambda y}2]$$

$$\overline{\lambda y} : \text{élancement réduit suivant l'axe y-y}$$

xy : elancement reduit sulvant i axe y-y

$$\overline{\lambda y} = \begin{bmatrix} \frac{\lambda y}{\lambda_1} \end{bmatrix} \times \sqrt{\beta_w} \qquad Avec: \ \beta w = \mathbf{1} \ (Section \ de \ classe \mathbf{1})$$
$$\lambda_1 = 93,9. \varepsilon = 93,9 \times 1 = 93,9 \quad Avec: \ \varepsilon = \sqrt{\frac{f_y}{235}} \sqrt{\frac{235}{235}} = 1$$
$$\lambda_y = \frac{l_y}{l_y} = \frac{410}{5,45} = 75,23 \qquad Avec: ly: l = 4,10 \ m.$$
$$\overline{\lambda y} = \begin{bmatrix} \frac{75,23}{93,9} \end{bmatrix} = 0,8 > 0,2$$

Courbe de flambement : $\frac{h}{b} = \frac{140}{60} = 2,3 > 1,2$ $c \rightarrow \alpha = 0,34$ (Annexe B.4) $t_f = 10mm < 100mm$ $\emptyset y = 0,5 \times [1 + 0,34 \times (0,8 - 0,2) + 0,8^2] = 0,92$ $\chi_y = \frac{1}{0,92 + \sqrt{0,92^2 - 0,8^2}} = 0,72 < 1$

Flambement par rapport à l'axe (z-z)

$$\chi_z = \frac{1}{\emptyset_z + \sqrt{\emptyset_z^2 - \overline{\lambda z}^2}}$$

$$\overline{\lambda z} = \left[\frac{\lambda_z}{\lambda_1}\right] \times \sqrt{\beta_w} \qquad Avec: \ \beta w = 1 \ (Section \ de \ classe \ \mathbf{1})$$

$$\lambda_1 = 93,9.\epsilon = 93,9 \times 1 = 93,9$$
 Avec: $\epsilon = \sqrt{\frac{f_y}{235}} \sqrt{\frac{235}{235}} = 1$

$$\lambda_{z} = \frac{l_{z}}{l_{z}} = \frac{82}{1,75} = 46,86 \qquad Avec \ lz: l = 82 \ cm.$$
$$\overline{\lambda z} = \left[\frac{46,86}{93,9}\right] = 0,49 > 0,2$$

Courbe de flambement : $c \rightarrow \alpha = 0,49$ (Annexe B.4)

$$\emptyset z = 0,5 \times [1 + 0,49 \times (0,49 - 0,2) + 0,49^2] = 0,69 \chi_z = \frac{1}{0,69 + \sqrt{0,69^2 - 0,49^2}} = 0,85 < 1$$

 \Rightarrow Xmin = Min (0,67; 0,85) = 0,67

$$Nc, Rd = \frac{0.67 \times 1 \times 2 \times 20.4 \times 2350}{1.1} = 58399.64 daN$$

 $Nsdc = 183,81 \ kN \ < \ Nc, Rd = 583,99 \ kN$ CV

Donc : Les contreventements 2UPN140 vérifient la compression.

V.5 Vérification des sablières

Après avoir fait plusieurs vérifications par le logiciel ROBOT, on a opté pour la section HEA 140.

	Poids	Section		Di	mensio	ns	Caractéristiques				
Profilé	Р	A cm ²	h	b	Τf	Tw	d	ly	Ι _Ζ	Wpl,y	Wpl,z
	Kg/m		mm	mm	Mm	mm	mm	cm4	cm4	cm3	cm3
HEA140	24,7	31,4	133	140	8,5	5,5	92	1033	389 <i>,</i> 3	173,5	84,85

Tableau V.4 Caractéristiques du profilé HEA140.

D'après le Logiciel ROBOT, on prend les valeurs de charges les plus importantes sous la combinaison la plus défavorable qui est : 1,35. G + 1,5W :

 $M_{sd,max}$ = 962 daN.m

Détermination de la classe de la section transversale du profilé HEA 140

• Classe de l'âme fléchie

$$\frac{d}{t_w} \le 72. \varepsilon \qquad \text{Avec:} \quad \varepsilon = \sqrt{235} / \text{ fy} = 1 \text{ (Annexe D.1)}$$

$$\frac{d}{t_w} = \frac{92}{5,5} = 925,5 = 16,727 < 72 \qquad \rightarrow L' \text{ ame est de classe } \mathbf{1}.$$

• Classe de la semelle comprimée

$$\frac{c}{t_f} \le 10. \varepsilon \qquad \text{Avec:} \qquad \varepsilon = \sqrt{235} / \text{ fy} = 1 \text{ (AnnexeD.1)}$$

$$\frac{c}{t_f} = \frac{b/2}{t_f} = (140/2) / 8.5 = 8.235 < 10 \times 1 = 10 \rightarrow \text{La semelle est de classe 1}$$

Donc : la section globale du profilé HEA 140 est de classe 1.

V.5.1 Vérification de la résistance à la flexion simple

On doit vérifier que :

$$\begin{split} M_{sd} &\leq M_{c,Rd} \\ \text{Avec}: M_{c,Rd} = W_{pl,y} \times \frac{f_y}{\gamma_{M0}} \\ M_{c,Rd} &= 173,5 \times 2350/1,1 = 370659,0909 \text{ daN.cm} = 3706,591 \text{ daN.m} \\ M_{sd} &= 962 \text{ daN.m} < M_{c,Rd} = 3706,591 \text{ daN.m} \\ \text{Donc}: \text{les sablières en HEA 140 vérifient la résistance à la flexion simple.} \end{split}$$

V.5.2 Vérification de la flèche (ELS)

$\delta \leq \delta max$

La flèche admissible de la traverse est calculée par le logiciel ROBOT : δ = 1,5 cm δ max = L/200 = 600/200 = 3 cm

Avec : L : la longueur de la sablière (L = 6 m).

Alors : δ = 1,5 cm $\leq \delta$ max = 3 cm Donc : les sablières en HEA 140 vérifient la flèche (ELS). Conclusion :

Le profilé HEA 140 répond à toutes les conditions des règles de CCM97 concernant la vérification de résistance et de la flèche.

Conclusion

Ce chapitre résume les résultats du dimensionnement des éléments de la structure par rapport aux

efforts sollicitant tel que présenté sur le tableau suivant :

Éléments de la structure	Profilé
Traverses	HEA320
Poteaux	HEA340
Stabilités en X	2UPN140
Sablières	HEA140

Tableau V : Eléments de la structure.

CHAPITRE VI : Calcul des assemblages

VI.1. Introduction

La conception et le calcul des assemblages ont une importance équivalente à celle du dimensionnement des pièces constituant la structure. En effet, les assemblages constituent un dispositif qui permet de réunir et de solidariser les pièces entres-elles, en assurant la transmission et la répartition des diverses sollicitations régnant dans les différents composants structurels, en cas de défaillance d'un assemblage, c'est bien le fonctionnement global de la structure qui est remis en cause les principaux. Fonctionnement modes d'assemblages des assemblages sont:

a) Le boulonnage

Le boulonnage est le moyen d'assemblage le plus utilisé en construction métallique du fait de sa facilité de mise en œuvre et des possibilités de réglage qu'il offre sur site. Dans notre cas, le choix a été porté sur le boulon de haute résistance (HR) il comprend une vis à tige filetée, une tête hexagonale ou carrée et un écrou en acier à très haute résistance :

Classe	4.6	4.8	5.6	5.8	6.6	6.8	8.8	10.9
f _{yb} (N / mm ²)	240	320	300	400	360	480	640	900
$f_{Ub}(N / mm^2)$	400	400	500	500	600	800	800	1000

Tableau VI.1: Caractéristique mécanique des boulons selon leur classe d'acier.

b) Le soudage

En charpente soudée les assemblages sont plus rigides, cela a pour effet un encastrement partiel des éléments constructifs. Les soudages à la flamme oxyacéthylénique et le soudage à l'arc électrique sont des moyens de chauffages qui permettent d'élever à la température de fusion brilles des pièces de métal à assembler.

c) Fonctionnement par adhérence

Dans ce cas, la transmission des efforts s'opère par adhérence des surfaces des pièces en contact.

Cela concerne le soudage, le collage, le boulonnage par boulons HR.

d) Coefficients partiels de sécurité (chap.6.1.2 -eurocode3)

- Résistance des boulons au cisaillement : $\gamma_{MB} = 1,25$

- Résistance des boulons à traction : γ_{MB} = 1,50

CHAPITRE VI :

e) Coefficient de frottement

Un bon assemblage par boulons HR exige que des précautions élémentaires soient prises, notamment .Le coefficient de frottement μ doit correspondre à sa valeur de calcul. Cela nécessite une préparation des surfaces, par brossage ou grenaillage, pour éliminer toute trace de rouille ou de calamine ; de graissage, etc.

Surface de classe A	$\mu = 0.5$	Pour surfaces grenaillées ou sablées
Surface de classe B	$\mu = 0.4$	Pour surfaces grenaillées, sablées et peintes.
Surface de classe C	$\mu = 0.3$	Pour surfaces brossées
Surface de classe D	$\mu = 0.2$	Pour surfaces non traitées

Tableau 1 VI.2 : Valeur du coefficient de frottement µ selon la surface.

• Rôle des assemblages

Pour réaliser une structure métallique ; on dispose de pièces individuelles, qu'il convient d'assembler :

-Soit bout à bout (éclissage, rabotages).

-Soit concourantes (attaches poutre/poteau, treillis et systèmes réticulés).

Pour conduire les calculs selon les schémas classiques de la résistance des matériaux, il y a lieu de distinguer, parmi les assemblages :

Les assemblages articulés : qui transmettront uniquement les efforts normaux et tranchants.

Les assemblages rigides : qui transmettront en outre les divers moments.

Désignation	M8	M10	M12	M14	M16	M18	M20	M22	M24	M27	M30
d (mm)	8	10	12	14	16	18	20	22	24	27	30
do (mm)	9	11	13	15	18	20	22	24	26	30	33
A (mm2)	50,3	78,5	113	154	201	254	314	380	452	573	707
A₅ (mm2)	36,6	58	84,3	115	157	192	245	303	353	459	561
arphirondelle	16	20	24	27	30	34	36	40	44	50	52
(mm)						e					· · · · · · · · · · · · · · · · · · ·
arphi clé (mm)	21	27	31	51	51	51	58	58	58	58	58
Tôle usuelle (mm)	2	3	4	5	6	7	8	10,14	>14	-	-
Cornière usuelle (mm)	30	35	40	50	60	70	80	120	>120	-	-

Tableau VI.3: Principales caractéristiques géométrique.

d : diamètre de la partie non filetée de la vis.

d0 : diamètre nominal du trou.

A : section nominale du boulon.

As : section résistante de la partie filetée.

VI.2. Assemblage Poteau-Traverse

Le principe de l'assemblage est de souder une platine en bout de traverse, elle est percée symétriquement de part et d'autre de la poutre. Les mêmes perçages qui sont effectuées sur l'aile du poteau, permettent de solidariser les deux éléments assembles. Le jarret qui figure sous la traverse permet d'obtenir un bras de levier assez important, pour pouvoir développer une meilleure résistance, vis-à-vis du moment de flexion, qui est très fréquemment la sollicitation prédominante.

Figure VI.1 Détail d'assemblage poteau - traverse (HEA340-HEA320)

Figure VI.2 : 3D d'assemblage poteau - traverse (HEA340-HEA320)

A. Efforts solicitant

Les efforts sollicitant sur l'assemblage sont donnée par le logiciel Robot:

 $M_{max} = 26548, 32 \text{daN.m}$ V_{max} = 18256,40daN N_{max} =2102,63daN

VI.2.1 Soudure de la platine

• Cordon de soudure

Epaisseur de la platine : $e_p = 20mm$ Gorge assemblant semelle – platine (af) Epaisseur la plus mince entre la semelle et a platine

 $tmin = min(t_f; e_p) = min(15,5; 20) = 15,5mm$ $3,5 \le a_f \ge 10,5$ mm On adopte pour $a_f = 8mm$ Gorge assemblant l'âme – platine (aw) Epaisseur la plus mince entre l'âme et la platine $tmin = min (t_w; e) = min (9; 20) = 9mm$ 2,8mm ≤*a*_w≤ 6mm On adopte pour a_w = 5mm VI.2.2 Vérification de la soudure de la semelle a la traction

$$N_{sd} \le F_{w,Rd} = \frac{a \times \sum l \times f_u}{\sqrt{2} \times \beta_w \times \gamma_{mw}}$$

$$\beta_w = 0.8 : \gamma_{mw} = 1.25 \text{ (Annexe E.2)}$$

Avec : p_w $= 0.8 ; \gamma_{mw}$ - 1,2

La longueur totale des cordons de soudure des semelles :

$$\sum l = 3b + 2(b - t_w - 2r) = 3 \times 300 + 2(300 - 9 - 2 \times 27) = 1374mm$$

$$F_{w,Rd} = \frac{8 \times 1374 \times 360}{\sqrt{2} \times 0.8 \times 1.25} = 2798,11 \, kN$$

$$N_{sd} = \frac{M_{sd}}{h} = \frac{265,48}{0,460} = 577,13 \ kN$$

 $N_{sd} = 577,13kN < F_{w,Rd} = 2798,11kN$ Condition vérifiée VI.2.3 Vérification de la soudure de l'âme au cisaillement

$$V_{sd} \le F_{v,Rd} = \frac{a \times \sum l \times f_u}{\sqrt{3} \times \beta_w \times \gamma_{mw}}$$
Avec : $\beta_w = 0.8$; $\gamma_{mw} = 1.25$

La longueur totale des cordons de soudure de l'âme :

$$\sum l = 2 \times (2 \times h - 4t_f - 4r) = 2 \times (2 \times 300 - 4 \times 15, 5 - 4 \times 27) = 860 \, mm$$

$$F_{\nu,Rd} = \frac{8 \times 860 \times 360}{\sqrt{3} \times 0.8 \times 1.25} = 1429,98 \ kN$$

 $V_{sd} = 182,56 \ kN < F_{v,Rd} = 893,738 \ kN$ Condition vérifiée

Figure VI.3 : La longueur totale des cordons de soudure de la semelle et l'âme.

VI.2.4 Détermination des efforts dans les boulons

$$N_i = \frac{M_{sd} \times d_i}{\sum d_i^2}$$

Calcul de la hauteur de la partie comprimée

$$x = t_f \sqrt{\frac{b}{t_w}} = 15,5 \sqrt{\frac{300}{9}} = 89,49 mm$$

Disposition constructive

L'assemblage est réalisé par 10 boulons HR de classe 10.9 **(Annexe E.2)** de diamètre ø20 mm ainsi que les dimensions de la platine d'about sont 460m x300mm ; épaisseur platine = 20mm

L'épaisseur la plus mince pour la détermination les pinces est :

$$t = \min(t_f; t_{platine}) = (15,5; 20) = 15,5 mm$$

Avec : t_f : l'épaisseur de la semelle $t_{platine}$: l'épaisseur de la platine

Distance entre axes des boulons (Annexe E.1)

$$1.2d_0 = 1,2 \times 22 = 26,4mm \le e_1 \le 12t = 12 \times 15,5 = 186mm \implies e_1 = 53mm$$

$$1.5d_0 = 33mm \le e_2 \le 12t = 186 mm \implies e_2 = 115 mm$$

$$2.2d_0 = 48,4mm \le p_1 \le 14t = 217mm \implies p_1 = 70mm$$

$$3d_0 = 66mm \le p_2 \le 14t = 217 mm \implies p_2 = 70mm$$

$$N_i = \frac{M_{sd} \times d_i}{\sum d_i^2}$$

Figure VI.4: Désignation des entraxes et des pinces.

Calcul de la hauteur de la partie comprimée

$$x = t_f \sqrt{\frac{b}{t_w}} = 15,5 \sqrt{\frac{300}{9}} = 89,49$$

L'axe neutre se trouve au-dessous de la dernière rangée de boulons, ce qu'il fait que Les deux boulons de la dernière rangée sont comprimés et les boulons des quatre rangées restantes sont tendus.

$$d_{1} = 407mm$$

$$d_{2} = 337 mm$$

$$d_{3} = 267mm$$

$$d_{4} = 127 mm$$

$$d_{5} = 57 mm$$

$$\sum d_{i}^{2} = 0,37 m^{2}$$

L'effort de traction dans les deux boulons supérieur :

$$N_1 = \frac{265,48 \times 0,407}{0,37} = 292,03kN$$

VI.2.5 Détermination de diamètre requise des boulons

L'effort de précontrainte autorisé dans les boulons : $F_p = 0.7 \times f_{ub} \times A_s$

$$N_1 = n \times F_p \longrightarrow A_s \ge \frac{N_{sd}}{0.7 \times f_{ub} \times n} = \frac{121,60}{0.7 \times 1000 \times 2} = 86,857 \ mm^2$$

Donc on adopte des boulons **M20** de classe 10.9 $As = 245 mm^2$

VI.2.6 Vérification à la résistance de l'assemblage

Moment résistant effectif de l'assemblage :

$$F_{p,cd} = 0.7 \times f_{ub} \times A_s = 0.7 \times 1000 \times 245 = 171500N = 171,5kN$$

$$M_{Rd} = \frac{n \times F_{p,cd} \times \sum d_i^2}{d_i} = \frac{2 \times 171,5 \times 0,37}{0,407} = 311,82 \ kN$$

 $M_{Rd} = 311,82 \ kN > 265,48$ Condition vérifiée

VI.2.7 Vérification des boulons à l'interaction cisaillement-traction

La résistance au glissement par boulons doit satisfaire la condition suivante

$$F_{v,sd} \leq F_{v,Rd} = \frac{K_s \times m \times \mu}{\gamma_{m2}} \times (F_{p,cd} - 0.8 \times \frac{N_{sd}}{2})$$

Avec: $K_s = 1.0$: Trous normaux (Annexe E.5) m = 1.0 : Plans de glissement $\mu = 0.3$: Classe de surface C (Annexe E.6) $F_{v,Rd} = \frac{1 \times 1 \times 0.3}{1.25} (171,5 - 0.8 \times (121,60/2)) = 29,49 \, kN$ $F_{v,Sd} = \frac{182,56}{10} = 18,25 KN < F_{v,Rd} = 29,49 kN$ Condition vérifiée VI.2.8 Vérification au poinconnement de la semelle du poteau $F_{t,Sd} \le B_{p,Rd} = \frac{0.6\pi \times d_m \times t_p \times f_u}{\gamma_{m2}}$ $t_p = t_f = 15,5 \, mm$ Épaisseur de la pièce poinconnée $d_m = 32,4mm$ $B_{p,Rd} = \frac{0.6 \times 3,14 \times 32,4 \times 15,5 \times 360}{1.25} = 272,49 \, kN$

$$F_{t,sd} = \frac{N_1}{2} = \frac{121,60}{2} = 60,8kN < 272,49 kN$$
 Condition vérifiée

VI.2.9 Vérification à la pression diamétrale

$$F_{v,sd} \leq F_{b,Rd} = \frac{K_s \times \alpha_b \times d \times t \times f_u}{\gamma_{m2}}$$

Avec : $K_s = 2,5$

$$\alpha_{b} = \min\left(\frac{e_{1}}{3d_{0}}; \left(\frac{p_{1}}{3d_{0}} - 0, 25\right); \frac{f_{ub}}{f_{u}}; 1\right) = 1$$

$$K_{s} = \min\left[\left(2, 8 \times \frac{e_{2}}{d_{0}} - 1, 7\right); \left(1, 4 \times \frac{p_{2}}{d_{0}}\right); 2, 5\right] = 2, 5$$

$$t = 36,5mm \qquad \text{Épaisseur platine} + \text{ semelle poteau} \\ F_{b,Rd} = \frac{2,5 \times 1 \times 20 \times 36,5 \times 360}{1,25} = 525,6 \ kN > F_{v,Sd} = \frac{182,56}{10} = 18,25 \ kN$$

Condition vérifiée

VI.2.10 Vérification à la résistance de l'âme du poteau dans la zone tendue $F_{v} \leq F_{t,Rd} = t_{wc} \times b_{eff} \frac{f_{v}}{\gamma_{m0}}$

Avec :

 $F_{t,Rd}$: Résistance de lame du poteau a la traction

 t_{wc} : Épaisseur de lame du poteau

 b_{eff} : Entraxe des boulons. (P₁=70mm)

$$F_{t,Rd} = 9.5 \times 70 \frac{235}{1.1} = 142.07 \ kN$$

$$F_{v} = \frac{M_{sd}}{h - e_{1}} = \frac{265,48}{0,460 - 0,053} = 652,29 \ kN > F_{t,Rd} = 142,07 \ kN$$

Condition non vérifiée

Donc on prévoit un raidisseur d'épaisseur 8 mm

VI.2.11 Vérification à la résistance de l'âme du poteau dans la zone comprimée

$$N_{sd} \le F_{c,Rd} = \frac{K_c \times b_{eff} \times \rho \times t_{wc} \times f_y}{\gamma_{m1}\sqrt{1 + 1.3(b_{eff}/h)^2}}$$

$$b_{eff} = t_{fb} + 2a_p\sqrt{2} + 5(t_{fc} + r_c) + 2t_p$$

Avec :

- t_{fb} : Épaisseur semelle poutre
- t_{fc} : Épaisseur semelle poteau
- t_p : Épaisseur platine
- *r*_c : Rayon de raccordement âme-semelle du poteau
- a_p : Épaisseur de la gorge de la soudure

$$b_{eff} = 15,5 + 2 \times 6 \times \sqrt{2} + 5(16 + 27) + 2 \times 20 = 287,47 mm$$

Élancement réduit de la partie efficace de l'âme:

$$\overline{\lambda_p} = 0.932 \sqrt{\frac{b_{eff} \times d_{wc} \times f_y}{E \times t_{wc}^2}} = 0.932 \sqrt{\frac{28.7 \times 24.3 \times 23.5}{2.1 \times 10^4 \times 0.95^2}} = 0.87 > 0.72$$

$$\rho = \frac{\overline{\lambda_p} - 0.2}{\overline{\lambda_p}^2} = 0.89$$

 K_c : Interaction avec la contrainte de compression dans l'ame du poteau. Par simplification $K_c = 1.0$

$$F_{c,Rd} = \frac{1 \times 28,7 \times 0,89 \times 0,95 \times 23,5}{1,1\sqrt{1+1,3\left(\frac{28,7}{33}\right)^2}} = 368,11 \, kN$$
$$N_{sd} = \frac{M_{sd} \times \sum d_i}{\sum d_i^2} = \frac{265,48 \times 1,195}{0,37} = 857,43 \, kN$$

 $N_{sd} > F_{c,Rd}$ Condition non vérifiée

La résistance de l'âme du poteau en compression est faible. Il faut donc prévoir Un raidisseur d'épaisseur 8 mm. VI.2.12 Vérification à la résistance de l'âme du poteau dans la zone cisaillée

$$\begin{split} F_{v} &\leq V_{Rd} = 0.58 \times f_{y} \times h \frac{t_{w}}{\gamma_{m0}} = 0.58 \times 2350 \times \frac{44,97}{1,1} = 55721,92 daN = 557,22 \, kN \\ A_{v} &= A - 2 \times b \times t_{f} + (t_{w} + 2r) \times t_{f} \\ A_{v} &= 133.5 \times 10^{2} - 2 \times 300 \times 16,5 + (9,5 + 2 \times 27) = 4497,75 mm^{2} \\ \text{L'effort de cisaillement vaut :} \\ F_{v} &= \frac{M_{sd}}{h - t_{f}} = \frac{265,48}{2(0,33 - 0,0165)} = 423,41 kN < V_{Rd} = 577,22 kN \text{ Condition vérifiée} \end{split}$$

VI.3 Assemblage des diagonales de palée de stabilité (2UPN140)

Les boulons sont sollicités en cisaillement seulement. Les diagonales les plus sollicitées sont celles qui

reprennent un effort de traction maximum.

Figure V.5: 3D d'assemblage des diagonales doubles cornières avec gousset

Figure V.6: Détail d'assemblage des diagonales doubles cornières avec gousset

A. Effort sollicitant

L'effort sollicitant sur l'assemblage est donnée par le logiciel Robot: $N_{sd} = 300,30 kN$

VI.3.1 Détermination de diamètre requise des boulons

L'effort de cisaillement repris par un boulon est:

$$F_{v,sd} = \frac{N_{sd}}{3} = \frac{300,30}{3} = 100.1 \ kN$$
$$F_{v,Rd} = \frac{0,6 \times A_s \times f_{ub} \times m}{\gamma_{m2}}$$

m = 2: Nombre des plans de cisaillement

 $A_s \ge \frac{F_{v,sd} \times \gamma_{m2}}{0.6 \times f_{ub} \times m} = \frac{100,1 \times 1,25}{0.6 \times 800 \times 2} = 130,34 \ mm^2$

m = 2: Nombre des plans de cisaillement

Donc on adopte des boulons *M***16** HR $As = 157 mm^2$

• Disposition constructive

L'assemblage est réalisé par 3 boulons de classe 8.8 de diamètre ø16 mm

• Les dimensions des goussets

Gousset central : 660 mm x 660 mm ; t = 10 mm Gousset de rive : 450 mm x 450 mm ; t = 10 mm

• Distance entre axe des boulons (Annexe E.1)

$$d_{0} = d + 1 = 17$$

$$1.2d_{0}=20,4mm \le e_{1} \le 12t=120mm \implies e_{1}=40mm$$

$$1.5d_{0}=25,5mm \le e_{2} \le 12t=120mm \implies e_{2}=80mm$$

$$2.2d_{0}=37,4mm \le p_{1} \le 14t=140mm \implies p_{1}=60mm$$

VI.3.2 Vérification au cisaillement des boulons

$$F_{v,sd} \le F_{v,Rd} = \frac{\alpha_v \times \beta_{LF} \times A_s \times f_{ub} \times m}{\gamma_{m2}}$$

Avec :

 $\begin{array}{l} \beta_{LF} = \ 1.0: \mbox{Assemblages courants} \\ \alpha_{v} = \ 0.6 \\ m = \ 2: \mbox{Nombre des plans de cisaillement} \\ F_{v,Rd} = \frac{0.6 \times 1 \times 157 \times 800 \times 2}{1,25} = 120,57 \ kN \end{array}$

 $F_{v,sd} = \frac{300,30}{3} = 100.1 \ KN < F_{v,Rd} = 120,57 \ kN$ Condition vérifiée

VI.3.3 Vérification à la pression diamétrale

$$F_{\nu,sd} \le F_{b,Rd} = \frac{K_s \times \alpha_b \times d \times t \times f_u}{\gamma_{m2}}$$

Avec :

$$K_{s} = 2,5$$

$$\alpha_{b} = \min\left(\frac{e_{1}}{3d_{0}}; \left(\frac{p_{1}}{3d_{0}} - 0,25\right); \frac{f_{ub}}{f_{u}}; 1\right) = \min(0,78; 0,92; 2,22; 1) = 0,78$$

t = 20 *mm*: Somme des épaisseurs

$$F_{b,Rd} = \frac{2,5 \times 0,78 \times 16 \times 20 \times 360}{1,25} = 179,7 \ kN > \frac{N_{sd}}{3} = 100,1 \ kN \quad \text{Condition vérifiée}$$

VI.4 Assemblage poteau-sablière (HEA340-HEA140) A. Efforts sollicitant

Les efforts sollicitant sur l'assemblage sont donnée par le logiciel Robot:

 $V_{sd} = 456 daN$

Figure VI.7 3D d'assemblage poteau-sablière.

CHAPITRES VI

• Disposition Constructive (Annexe E.1)

L'assemblage est réalisé avec des boulons M12 de Classe 4.6 dans les deux cotes de la cornière.

On choisi une double Cornière de $L100 \times 100 \times 10$ t=min $(t_w; t_c) = min(5,5:10) = 5,5mm$ $2,2d_0 = 28,6 < P_1 < 14t = 77 \implies P_1 = 60 mm$ $1.2d_0 = 15,6 < e_1 < 12t = 66 \implies e_2 = 20 mm$ $1.5d_0 = 19,5 < e_2 < 12t = 66 \implies e_1 = 60 mm$

VI.4.1 Vérification au cisaillement des boulons $F_{R,sd} < F_{v,Rd} = \frac{0.6 \times A_s \times f_{ub}}{\gamma_{mb}} = \frac{0.6 \times 84.3 \times 400}{1.25} = 1618,56 daN = 16,1856 kN$

- Cisaillement par effort tranchant

$$F_{v,sd} = \frac{V_{sd}}{4} = \frac{456}{4} = 114 \, daN$$

- Cisaillement par moment

$$F_{h,sd} = \frac{V_{sd}/2 \times e}{p} = \frac{456/2 \times 60}{60} = 228 \ daN$$

- Cisaillement total

$$F_{R,sd} = \sqrt{F_{v,sd}^2 + F_{h,sd}^2} = \sqrt{114^2 + 228^2} = 254,9 \ daN$$

$$F_{R,sd} = 254,9 \ daN = 2,549 kN < F_{v,Rd} = 16,185 \ kN$$

Alors: l'assemblage poteau-sablière résiste au cisaillement.

VI.4.2 Vérification à la pression diamétrale

$$V'_{sd} \leq F_{b,Rd}$$

$$\begin{split} F_{b,Rd} &= \frac{K_s \times \alpha_b \times d \times t \times f_u}{\gamma_{m2}} \\ \alpha_b &= \min\left(\frac{e_1}{3d_0}; \left(\frac{p_1}{3d_0} - 0.25\right); \frac{f_{ub}}{f_u}; 1\right) = \min(0.512; 1.288; 1.11; 1) = 0.512 \\ k_s &= \min\left(\left(2.8 \times \frac{e_2}{d_0} - 1.7\right); \left(1.4 \times \frac{p_2}{d_0}\right); 2.5\right) = \min(11.2; 2.5) = 2.5 \\ F_{b,Rd} &= \frac{2.5 \times 0.512 \times 12 \times 5.5 \times 360}{1.25} = 2433.024 daN = 24.330 kN \\ V'_{sd} &= \frac{F_{R,sd}}{n_b} = \frac{254.9}{8} = 31.863 daN = 0.318 kN \\ V'_{sd} &= 0.318 kN < F_{b,Rd} = 24.330 kN \end{split}$$

Alors: l'assemblage poteau-sablière résiste à la pression diamétrale.

Conclusion

Ce chapitre consiste à étudier l'assemblages entre les différents éléments de la structure pour assurer la stabilité et la sécurité de cette dernière. L'assemblage des éléments principaux comme poteau-traverse sont assuré par 10 boulons HR de classe10.9 de diamètre 20mm. Pour les assemblages des éléments secondaires comme poteau-sablière est réalisé avec une file verticale de 2 boulons de diamètre 12mm de classe 4.6 dans les deux côtes de la cornière, et la stabilité est assuré par une file de 3 boulons de classe 8.8 de diameter 16mm dans chaque côté de la barre.

CHAPITREVII: Etude De L'infrastructure

VII.1 Introduction

Tout structure à besoin d'une bonne base pour ne pas s'effondrer.

Les fondations sont les parties de l'ouvrage qui sont en contact avec le sol auquel elles transmettent les charges de la superstructure ; et constituent donc une partie essentielle de l'ouvrage puisque de leur bonne conception et réalisation découle la bonne tenue de l'ensemble.

On peut retrouver trois principaux types de fondation qui sont :

- Fondation superficielle.
- Fondation demi- profonde.
- Fondation profonde.

> Documents utilisés

Les documents utilisés pour le calcul et le dimensionnement de cette structure sont :

- Calcul des ouvrages en béton armé (Règles C.B.A.93 R.P.A2003).
- Cours de béton armé BEAL91.

> Le rapport géotechnique

D'après le rapport géotechnique :

• $\sigma_{sol} = 1,80$ bars

VII.2 Pieds de poteaux

Figure VII.1 : Détail d'assemblage pied-poteau

Figure VII.2 : 3D d'assemblage pied de poteau

VII.2.1 Efforts et sollicitations

Le dimensionnement de la plaque d'assisse d'un HEA 340 se fait sous l'action des charges suivantes :

$$N_{sd} = -31,146kN$$
; $M_{sd} = 98 kN.m$; $V_{sd} = 20,873$

VII.2.2 Resistance de calcul à l'écrasement du matériau de scellement

• Resistance du béton à la compression

$$f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_c$$

Fondation en béton de classe C25/30, On prend:

 $\gamma_c = 1.5; \ \alpha_{cc} = 1 \qquad \Longrightarrow f_{cd} = 1 \times 25/1.5 = 16.7 \ N/mm^2$ $f_{jd} = \alpha.\beta j. f_{cd}$ $\beta j = 2/3$: La valeur du coefficient du matériau de scellement

 α = 1,5 : Les dimensions de la fondation étant inconnues

$$f_{jd} = \alpha . \beta j . f_{cd} = 16,7$$
 N/mm²

VII.2.2.1 Estimation de l'aire de la plaque d'assise

$$A_{co} = \max\left[\frac{1}{h.b} \left(\frac{N_{sd}}{f_{cd}}\right)^2; \frac{N_{sd}}{f_{cd}}\right] = \max\left[\frac{1}{330.300} \left(\frac{31,146}{16,7}\right)^2; \frac{31,146}{16,7}\right]$$
$$A_{co} = \max[0,0351; 1,8657] = 1,865m^2 = 1865,0mm^2$$

VII.2.2.2 Choix du type de la plaque d'assise

$$A_{co} = 1865 < 0.95 h.b = 0.95 \times 330 \times 300 = 94050 mm^2$$

Une plague à projection courte est satisfaisante

VII.2.2.3 Dimensions de la platine

 $\begin{array}{l} b_p \geq b \ + \ 2t_f = \ 300 \ + \ 2 \ \times \ 16,5 = \ 333 \ mm \\ h_p \ \geq \ h \ + \ 2t_f = \ 330 \ + \ 2 \ \times \ 16,5 = \ 363 \ mm \\ \text{On prend}: b_p = \ 500 \ mm ; \ h_p \ = \ 600 \ mm \\ \text{Ce qui donne}: A_{co} = \ 500 \ \times \ 600 = \ 300000 \ > \ 1865 \ mm^2 \end{array}$

VII.2.2.4 Détermination de la largeur d'appui additionnelle C

En posant : t = 20 mm comme épaisseur de la platine.

Il n'y a pas de recouvrement des ails en compression pour les tronçons des deux semelles.

$$C = 35 \left(\frac{f_{yp}}{3f_{jd}\gamma_{m0}}\right)^{0.5} = 35 \left(\frac{235}{3 \times 16.7 \times 1.1}\right)^{0.5} = 72,27mm$$
$$C = 72,27mm < \frac{h - 2t_f}{2} = 148,5mm$$

Il n'y a pas de recouvrement des ails en compression pour les tronçons des deux semelles. -**Disposition des boulons d'ancrage**

Entraxes (p_1 ; p_2)

2,2. $d_0 \le p_1 \le 14$.t → 2,2 × 30 = 66 mm $\le p_1 \le 14$ × 35 = 490 mm Alors on prend p_1 = 420 mm. 2,4. $d_0 \le p_2 \le 14$.t → 2,4 × 30 = 72 mm $\le p_2 \le 14$ × 35 = 490 mm Alors on prend p_2 = 95 mm **Pinces (** e_1 ; e_2)

 $1,2. \le e_1 \le 8.t \rightarrow 1,2 \times 30 = 36 \text{ mm} \le e_1 \le 8 \times 35 = 280 \text{ mm} \text{ Alors on prend}: e_1 = 90 \text{ mm}.$ $1,2. d_0 \le e_2 \le 8.t \rightarrow 1,2 \times 30 = 36 \text{ mm} \le e_2 \le 8 \times 35 = 280 \text{ mm} \text{ Alors on prend}: e_2 = 155 \text{ mm}.$

-Dimensionnement des tiges d'ancrage

L'ancrage est réalisé par 6 tiges On prend : φ = 27mm

VII.2.3 Vérification de la résistance en compression d'un tronçon en T de la semelle

$$\begin{split} F_{c.Rd} &= f_{jd} \times b_{eff} \times l_{eff} \\ l_{eff} = \min(b_p; b_{fc} + 2c) = \min(500; 300 + 2(72,27)) = 444,54mm \\ b_{eff} = \min\left(c; \frac{h}{2} - t_{fc}\right) + t_{fc} + \min\left(c; \frac{h_p - h_c}{2}\right) \\ b_{eff} = \min\left(72,27; \frac{330}{2} - 16,5\right) + 16,5 + \min\left(72,27; \frac{600 - 330}{2}\right) = 161,04 \ mm \\ F_{c.Rd} &= 16,7 \times 161,04 \times 444,54 = 1195,531 \ kN \\ N_{sd} = 31,146kN < F_{c,Rd} = 1195,531 \ kN \quad Condition \ vérif \acute{e} \end{split}$$

VII.2.4.Vérification de la résistance de tiges d'ancrage

 $F_{t,Rd,anchor} = min[f_{t,bond,Rd}; f_{t,Rd}]$ Résistance du boulon d'ancrage à la traction : $F_{t,Rd} = \frac{0.9 \times A_s \times f_{ub}}{\gamma_{mb}} = \frac{0.9 \times 459 \times 1000}{1.25} = 330.48kN$

Calcul de la contrainte d'adhérence On a : d=27mm ≤ 32 mm

$$F_{bd} = \frac{0,36\sqrt{f_{ck}}}{\gamma_c} = \frac{0,36\times5}{1,25} = 1,2 MPa$$

Résistance de calcul par adhérence entre le béton et le boulon d'ancrage

$$F_{t,bond,Rd} = \frac{\pi \times d \times l_b \times f_{bd}}{\alpha}$$

d: Diamètre de la tige d =27mm

 $l_{\rm b}$: L'encrage dans le béton $l_{\rm b}$ = 600 mm

 f_{ck} : Résistance du béton f_{ck} = 25 MPa

 α : Facteur tenant en compte la forme de la tige : crochet $\rightarrow \alpha$ = 0.7

$$F_{t,bond,Rd} = \frac{\pi \times 27 \times 600 \times 1,2}{0,7} = 87,202 \ kN$$

 $F_{t,Rd,anchor} = min[87,202kN; 330,48 kN] = 87,202kN$

VII.2.5 Résistance de la partie tendue de l'assemblage

-Vérification de la présence de l'effet de levier

Figure VII.4 : Longueur d'allongement du boulon d'ancrage.

*L*_b: Longueur d'allongement du boulon d'ancrage

 $L_b = 8 d + e_m + t_p + t_{wa} + 0.5 k$

 t_{wa} : Épaisseur de la rondelle t_{wa} = 5 mm

k : Épaisseur de l'écrou k = 0.8 d=21,6mm

 e_m : Épaisseur de mortier de calage : e_m = 30 mm

 $L_b = 8 \times 27 + 30 + 35 + 5 + 0.5 \times 21,6 = 296,6 mm$

*L*_b: Longueur limite d'allongement du boulon d'ancrage.

$$L_b^* = \frac{8,8 \times m^3 \times A_s}{l_{eff,1} t_p^3} = \frac{8,8 \times 35^3 \times 459}{173,75 \times 35^3} = 23,247 \text{ mm}$$

Avec :

w=95mm ; e=155mm ; $e_x = 90mm$; $m_x = 35mm$

Figure VII.5: Disposition constructive.

Mécanisme circulaire

$$\begin{split} l_{eff,np} &= \min(\ 2.\pi.\ m_x = 2 \times 3, 14 \times 35 = 219, 8 \ \text{mm}; \\ \pi.\ m_x + w &= 3, 14 \times 35 + 95 = 204, 9 \ \text{mm}; \\ \pi.\ m_x + 2.e &= 3, 14 \times 35 + 2 \times 155 = 419, 9 \ \text{mm}) \\ & \rightarrow l_{eff,np} = 204, 9 \ \text{mm} \end{split}$$

Mécanisme non circulaire

$$\begin{split} l_{eff,nc} &= \min(4.\,m_x + 1,25.\,e_x = 4 \times 35 + 1,25 \times 90 = 252,5 \,\,\text{mm}; \\ 2.\,m_x + 0,625.\,e_x + w/2 = 2 \times 35 + 0,625 \times 90 + 95/2 = 173,75 \,\,\text{mm}; \\ 2.\,m_x + 0,625.\,e_x + e = 2 \times 35 + 0,625 \times 90 + 155 = 281,25 \,\,\text{mm}; \\ b_p/2 = 500/2 = 250 \,\,\text{mm}) \\ &\rightarrow l_{eff,nc} = 173,75 \,\,\text{mm} \\ l_{eff,1} &= \min(l_{eff,nc};\,l_{eff,np}) = 173,75 \,\,\text{mm} \end{split}$$

L'effet de levier ne peut pas être développé et les modes de ruine 1-2, 3 et 4 peuvent être considérés. (Annexe F.3)

VII.2.6 Résistance à la flexion de la plaque d'assise (par unité de longueur)

$$m_{pl,Rd} = \frac{t_p^2 f_y}{4 \times \gamma_{m0}} = \frac{35^2 235}{4 \times 1,1} = 65,426 \, kN$$

Calcul de la résistance de l'assemblage à la traction

La résistance finale de l'assemblage d'un tronçon en T équivalent tendu pris égale à la valeur de résistance la plus petite des modes de ruine.

$$F_{T,Rd} = \min(F_{t,1-2,Rd}; F_{t,3,Rd}; F_{t,4,Rd})$$

✓ Mode 1-2:

$$F_{t,1-2,Rd} = \frac{2M_{pl,1,Rd}}{m_x} = \frac{2 \times 11,367}{0,035} = 649,58kN$$

Avec :
$$M_{pl,1,Rd} = m_{pl,Rd} \times l_{eff,1} = 11,367kN.m$$

✓ Mode 3:

$$F_{t,3,Rd} = 2F_{t,Rd,anchor} = 2 \times 87,202 = 174,40 \ kN$$

$$F_{T,Rd} = \min(F_{t,1-2,Rd}; F_{t,3,Rd}) = 174,40 \ kN$$

VII.2.7 Vérification à la résistance en flexion

Figure VII.6 : Illustration moment + effort normale.

Moment de flexion dominant

$$M_{sd} \le M_{Rd} = min\left[\frac{-F_{c,Rd} \times Z}{\frac{Z_T}{e_N} - 1}; \frac{F_{T,Rd} \times Z}{\frac{Z_c}{e_N} + 1}\right]$$
$$Z = Z_T + Z_c = \frac{420}{2} + (\frac{330}{2} - \frac{16,5}{2}) = 366,75 mm$$

Avec: $Z_T = 210mm$ Et $Z_c = 156,75mm$

$$e_N = \frac{M_{sd}}{N_{sd}} = \frac{98}{-311,146} = -0,3149m$$

$$M_{Rd} = min\left(\frac{-1195,531 \times 0,36675}{\frac{0,21}{-0,3149} - 1}; \frac{174,40 \times 0,36675}{\frac{0,15675}{-0,3149} + 1}\right)$$

$$M_{Rd} = min(2462,927;127,356) = 127,356kN.M$$

 $M_{sd} = 98kN.m \ge M_{Rd} = 127,356kN.m$ Condition vérifiée

Donc : le pied de poteau encastré résiste à la flexion en présence de l'effort axial.

Cordon de soudure :

On choisit le cordon de soudure platine-poteau à l'aide de l'abaque de pré-dimensionnement de la gorge (a)

 $\begin{array}{l} \textit{HEA340:} \ t_w \ = \ 9,5 \ mm \ ; \ t_f \ = \ 16.5 \ mm \ ; \ t_p \ = \ 35 \text{mm} \\ 2,8mm \ \le \ a_w \ \le \ 7 \ mm \ ; \ \mathsf{Donc} \ a_w \ = \ 6mm \\ 4,4mm \ \le \ a_f \ \le \ 11mm \ ; \ \mathsf{Donc} \ a_f \ = \ 10mm \end{array}$

• Vérification de la soudure de l'âme au cisaillement

$$V_{sd} \le F_{\nu,Rd} = \frac{a_w \times \sum l \times f_u}{\sqrt{3} \times \beta_w \times \gamma_{mw}}$$

Avec : $\beta_w = 0.8$; $\gamma_{mw} = 1.25$

La longueur totale des cordons de soudure de l'âme :

$$\sum l = 2 \times (h - 2t_f - 2r) = 2 \times (330 - 2 \times 16, 5 - 2 \times 27) = 486mm$$
$$V_{sd} \le F_{v,Rd} = \frac{6 \times 486 \times 360}{\sqrt{3} \times 0, 8 \times 1, 25} = 606079, 22N$$

$$V_{sd} = 20,873kN \le F_{v,Rd} = 606,079kN$$
 Condition vérifiée

VII.3 Calcul des pieds de potelet

VII.3.1 Introduction

Il suffit de calculer la base uniquement pour le potelet le plus sollicite et d'adopter la même base pour tous les autres potelets. Le potelet travaille en compression simple sous le poids propre. Les pieds de potelets sont articulés.

Figure VII.7: 3D d'assemblage pied de potelet

Figure VII.8 : détail d'assemblage de pied potelet

VII.3.2 Efforts et sollicitations

Le dimensionnement de la plaque d'assisse d'un IPE300 se fait sous l'action des charges suivantes : $N_{sd} = 19,2249kN$; $V_{sd}37,811kN$

VII.3.3 Resistance de calcul à l'écrasement du matériau de scellement

• Resistance du béton à la compression

 $f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_c$

Fondation en béton de classe C25/30, On prend:

 $\gamma_c = 1.5; \alpha_{cc} = 1 \implies f_{cd} = 1 \times 25/1.5 = 16.7 N/mm^2$

$$f_{jd} = \alpha . \beta j . f_{cd}$$

 β j = 2/3 : La valeur du coefficient du matériau de scellement

 α = 1,5 : Les dimensions de la fondation étant inconnues

$$f_{jd} = \alpha . \beta j . f_{cd} = 16,7$$
 N/mm²

VII.3.4 Estimation de l'aire de la plaque d'assise

$$A_{co} = \max\left[\frac{1}{h.b} \left(\frac{N_{sd}}{f_{cd}}\right)^2; \frac{N_{sd}}{f_{cd}}\right] = \max\left[\frac{1}{300.150} \left(\frac{19224.9}{16.7}\right)^2; \frac{19224.9}{16.7}\right]$$
$$A_{co} = \max[29.4; 1151.1] = 1151.1mm^2$$

VII.3.5 Choix du type de la plaque d'assise

 $A_{co} = 1151, 1 < 0.95 \ h. \ b = 0.95 \times 300 \times 150 = 42750 \ mmmode mmmmode$

VII.3.6 Dimensions de la platine

VII.3.7 Détermination de la largeur d'appui additionnelle C

En posant : t = 10 mm comme épaisseur de la platine.

$$C = t \left(\frac{f_{yp}}{3f_{jd}\gamma_{m0}}\right)^{0.5} = 10 \left(\frac{235}{3 \times 16.7 \times 1.1}\right)^{0.5} = 20.67mm$$
$$C = 20.67mm < \frac{h - 2t_f}{2} = \frac{300 - 2 \times 10.7}{2} = 193.3mm$$

Il n'y a pas de recouvrement des ails en compression pour les tronçons des deux semelles

-Disposition des boulons d'ancrage

Entraxe : p = 110 mm. **Pince :** e= 95 mm.

Dimensionnement des tiges d'ancrage

L'ancrage est réalisé par 2 tiges On prend : φ = 16mm

VII.3.8 Vérification de la résistance de tiges d'ancrage

$$F_{t,Rd,anchor} = min[f_{t,bond,Rd}; f_{t,Rd}]$$

Résistance du boulon d'ancrage à la traction :

$$F_{t,Rd} = \frac{0.9 \times A_s \times f_{ub}}{\gamma_{mb}} = \frac{0.9 \times 157 \times 800}{1.25} = 90.432kN$$

Calcul de la contrainte d'adhérence On a : d=16mm ≤ 32 mm

$$F_{bd} = \frac{0.36\sqrt{f_{ck}}}{\gamma_c} = \frac{0.36 \times 5}{1.25} = 1.2 MPa$$

Résistance de calcul par adhérence entre le béton et le boulon d'ancrage

$$F_{t,bond,Rd} = \frac{\pi \times d \times l_b \times f_{bd}}{\alpha}$$

d: Diamètre de la tige d =16mm

 $l_{\rm b}$: L'encrage dans le béton $l_{\rm b}$ = 600 mm

 f_{ck} : Résistance du béton f_{ck} = 25 MPa

 α : Facteur tenant en compte la forme de la tige : crochet $\rightarrow \alpha$ = 0.7

$$F_{t,bond,Rd} = \frac{\pi \times 16 \times 600 \times 1.2}{0.7} = 51,6754 \, kN$$

 $F_{t,Rd,anchor} = min[51,675kN;90,432\ kN] = 51,67kN$

VII.3.9 Résistance de la partie tendue de l'assemblage

-Vérification de la présence de l'effet de levier

*L*_b: Longueur d'allongement du boulon d'ancrage

 $L_b = 8 d + e_m + t_p + t_{wa} + 0.5 k$

 t_{wa} : Épaisseur de la rondelle t_{wa} = 5 mm

k : Épaisseur de l'écrou k = 0.8 d=12,8mm

 e_m : Épaisseur de mortier de calage : e_m = 30 mm

 $L_b = 8 \times 16 + 30 + 10 + 5 + 0.5 \times 12,8 = 179,4 mm$

*L*_b: Longueur limite d'allongement du boulon d'ancrage.

$$L_b^* = \frac{8.8 \times m^3 \times A_s}{l_{eff,1} t_p{}^3} = \frac{8.8 \times 44,379^3 \times 157}{278,70 \times 10^3} = 433,29 \, mm$$
$$m = \frac{p}{2} - \frac{t_w}{2} - 0.8 \times \sqrt{2}a_w = \frac{110}{2} - \frac{7.1}{2} - \sqrt{2} \times 5 = 44.379 \, mm$$

Mécanisme circulaire:

$$l_{eff,cp} = 2.\pi.m = 2 \times 3,14 \times 44,379 = 278,70$$

Mécanisme non circulaire:

$$l_{eff,nc} = 4.m + 1,25e = 4 \times 44,379 + 1,25 \times 95 = 296,26$$
$$l_{eff,1} = \min(l_{eff,nc}; l_{eff,cp}) = 278,70mm$$

- Le cordon de soudure: $t_w = 7,1mm \rightarrow a_{min} = 2,4 < t_w < a_{max} = 5,1$

$$t_f = 10,7mm \rightarrow a_{min} = 2,8 < t_w < a_{max} = 7,1$$

Donc:
$$a_w = 5mm$$
 et $a_f = 7mm$

 $L_b^* = 433,29mm > L_b = 179,4mm$

L'effet de levier ne peut pas être développé et les modes de ruine 1-2, 3 et 4 peuvent être considérés. (Annexe F.3)

VII.3.10 Résistance à la flexion de la plaque d'assise (par unité de longueur)

$$m_{pl,Rd} = \frac{t_p^2 f_y}{4 \times \gamma_{m0}} = \frac{10^2 235}{4 \times 1.1} = 5.3409 \ kN$$

$$F_{T,Rd} = \min(F_{t,1,Rd}; F_{t,2,Rd}; F_{t,3,Rd}; F_{t,4,Rd})$$

✓ Mode 1:

$$F_{t,1,Rd} = \frac{4M_{pl,1,Rd}}{m} = \frac{4 \times 1,4885}{44,379 \times 10^{-3}} = 134,1625kN$$

Avec :
$$M_{pl,1,Rd} = m_{pl,Rd} \times l_{eff,1} = 1,4885kN.m$$

✓ Mode 2:

$$F_{t,2,Rd} = \frac{4M_{pl,2,Rd}}{m+n} + \frac{2 \times n \times F_{t,Rd,anchor}}{m+n}$$
$$= \frac{4 \times 1,58229}{(44,379+55,473) \times 10^{-3}} + \frac{2 \times 55,473 \times 10^{-3} \times 51,67}{(44,379+55,473) \times 10^{-3}} = 120,7959kN$$

Avec : $n = \min(e; 1,25 \times m) = \min(95; 1,25 \times 44,379) = 55,473mm$ $M_{pl,2,Rd} = m_{pl,Rd} \times l_{eff,2} = 1,5822kN.m$ $l_{eff,2} = l_{eff,nc} = 296,26mm$

✓ Mode 3:

$$F_{t,3,Rd} = 2F_{t,Rd,anchor} = 2 \times 51,67 = 103,34 \, kN$$

✓ Mode 4:

$$F_{t,4,Rd} = \frac{b_{eff,t} \times t_w \times f_y}{\gamma_{M0}} = \frac{278,70 \times 7,1 \times 235}{1,1} = 422,737kN$$

$$F_{T,Rd} = \min(F_{t,1,Rd}; F_{t,2,Rd}; F_{t,3,Rd}; F_{t,4,Rd}) = 103,34 \, kN$$
$$N_{sd} = 19,2249 \, kN < F_{T,Rd} = \min(F_{t,1,Rd}; F_{t,2,Rd}; F_{t,3,Rd}; F_{t,4,Rd}) \, 103,34 \, kN$$

• Vérification de la soudure de l'âme au cisaillement

$$V_{sd} \leq F_{v,Rd} = \frac{a \times \sum l \times f_u}{\sqrt{2} \times \beta_w \times \gamma_{mw}}$$
$$\beta_w = 0.8 \qquad ; \qquad \gamma_{mw} = 1.25$$

Avec :

La longueur totale des cordons de soudure de l'ame :

$$\sum l = 2 \times d = 2 \times 248,6 = 497,2mm$$
$$V_{sd} \le F_{v,Rd} = \frac{5 \times 497,2 \times 360}{\sqrt{2} \times 0,8 \times 1,25} = 632,8322kN$$

$$V_{sd} = 37,811kN \le F_{v,Rd} = 632,8322kN$$
 Condition vérifiée

VII.4 Dimensionnement de la semelle

Les dimensions de la semelle sont choisies de manière qu'elles soient homothétiques avec celles du pied de poteau.

Les dimensions du fut sont généralement débordées aux dimensions de la platine d'assise avec une distance de 20 cm.

$$a = a_p + c = 0.5 + 0.2 = 0.7m$$

$$b = b_p + c = 0.6 + 0.2 = 0.8 m$$

Avec : a_p et b_p : dimensions de la platine

$$\frac{b}{a} = \frac{0.8}{0.7} = \frac{6}{5} \Longrightarrow \frac{A}{B} = \frac{6}{5} \Longrightarrow A = \frac{6}{5}B$$

On suppose B=1,5m alors $A = \frac{6}{5}(1,5) = 1,8m$

A et B : dimensions de la semelle

VII.4.1 Calcul de l'excentricité

Figure VII.7 : Les dimensions de la semelle sous poteau

$$M_{s} = 54,376; N_{s} = 247,166kN$$
$$e = \frac{M_{s}}{N_{s}} = 0,22 m$$

Pour les semelles de dimensions A x B la valeur des contraintes extrêmes est donnée par :

On écrit que les dimensions minimaux de A et B sont telles que :

$$\frac{N}{S} \times \left(1 + \frac{6 \times e}{B}\right) \le \sigma_{sol} \to \frac{247,166}{1,8 \times 1,5} \times \left(1 + \frac{6 \times 0;22}{1,5}\right) = 172,101 kN/m^2$$

 $\rightarrow \frac{172,101 \text{ kN}}{m^2} < 1,8 \text{ bars} = 18000 \text{ daN}/m^2$

On prend : $A \times B = 1,8m \times 1,5m$

VII.4.2 Hauteur utile de la semelle est donnée par la condition

$$d = max\left(\frac{A-a}{4}; \frac{B-b}{4}\right) = max(0,3; 0,25) = 0,3m = 30cm$$

On prend : d = 30cm

 $h_t = d + 10 = 40 \ cm$: Hauteur total de la semelle

VII.4.3 Vérification de la stabilité au renversement

 $e_0 = 0,22m < \frac{A}{4} = \frac{1,8}{4} = 0,45m \rightarrow \text{Condition vérifiée}$ $e_0 = 0,22m < \frac{B}{4} = \frac{1,5}{4} = 0,375m \rightarrow \text{Condition vérifiée}$

Donc : la stabilité au renversement est vérifiée.

VII.4.4 Calcul des armatures de la semelle

• Méthode des bielles

$$e=0,22<rac{B}{6}=rac{1,5}{6}=0,25$$

Direction A

• $N_U = 31, 146kN$

$$A_u = \frac{N'_u \times (A - a)}{8 \times d \times \sigma_{st}}$$

Avec : $N'_u = N_u \times \left(1 + \frac{3 \times e}{B}\right) = 31,146 \times \left(1 + \frac{3 \times 0,22}{1,5}\right) = 44,851kN$ $\sigma_{st} = \frac{f_e}{N} = \frac{400}{1.15} = 347,826MPa$

$$A_u = \frac{44,851 \times (1,8 - 0,6)}{8 \times 0.3 \times 347.826 \times 10^6} = 6,44 \times 10^{-5} m^2$$

• $N_s = 247, 166kN$

$$A_u = \frac{N'_s \times (A-a)}{8 \times d \times \sigma_{st}}$$

Avec : $N'_s = N_s \times \left(1 + \frac{3 \times e}{B}\right) = 247,166 \times \left(1 + \frac{3 \times 0,22}{1,5}\right) = 355,919kN$ $\sigma_{st} = \min\left(\frac{2}{3} \times \frac{f_e}{\gamma_s}; \sqrt{n \times f_{t28}}\right) = \min(266,667; 201,633) = 201,633MPa$

Avec :
$$f_e = 400MPa$$

n=1,6H.A
 $f_{t28} = 0,6 + 0,06 \times 25 = 2,1MPa$; avec $f_{c28} = 25MPa$
 $A_u = \frac{355,919 \times (1,8 - 0,6)}{8 \times 0,3 \times 201,633 \times 10^6} = 8,825 \times 10^{-4}m^2$

Direction B

• $N_U = 31, 146kN$

$$A_u = \frac{N'_u \times (B-b)}{8 \times d \times \sigma_{ct}}$$

Avec : $N'_u = N_u \times \left(1 + \frac{3 \times e}{A}\right) = 31,146 \times \left(1 + \frac{3 \times 0,22}{1,8}\right) = 42,567kN$ $\sigma_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1,15} = 347,826MPa$

$$A_u = \frac{42,567 \times (1,5-0,5)}{8 \times 0.3 \times 347,826 \times 10^6} = 5,09 \times 10^{-5} m^2$$

• $N_s = 247, 166kN$

$$A_u = \frac{N'_s \times (B-b)}{8 \times d \times \sigma_{st}}$$

Avec :
$$N'_s = N_s \times \left(1 + \frac{3 \times e}{A}\right) = 247,166 \times \left(1 + \frac{3 \times 0,22}{1,8}\right) = 337,794kN$$

 $\sigma_{st} = \min\left(\frac{2}{3} \times \frac{f_e}{\gamma_s}; \sqrt{n \times f_{t28}}\right) = \min(266,667;201,633) = 201,633MPa$

Avec : $f_e = 400 MPa$

n=1,6H.A

$$\begin{split} f_{t28} &= 0.6 + 0.06 \times 25 = 2.1 MPa \; ; avec \; f_{c28} = 25 MPa \\ A_u &= \frac{337,794 \times (1.5 - 0.5)}{8 \times 0.3 \times 201,633 \times 10^6} = 6.98 \times 10^{-4} m^2 \end{split}$$

Figure VII.8 : vue du ferraillage des semelles isolées

CHAPITRE VII

VII.4.5 Vérification de la condition de non fragilité

$$A_{min} = 0,23 \frac{f_{t28}}{f_e} A \times d = 0,23 \times \frac{2,1}{400} \times 1800 \times 360 = 7,824 \ cm^2$$

Avec: $d=0.9 \times h_t=0.9 \times 400 = 360mm$

On prend **10712** ($A' = 11,31cm^2$) (Annexe F.1)

VII.4.6 Calcul l'espacement

 $S_t \leq min(15\phi_{l\,min}; \, 40cm) = min(18cm; 40cm)$

On prend un espacement de 10 cm

VII.4.7 Calcul des longrines

Les longrines ont pour rôle de relier les semelles entres elles, elles sont soumises a

un effort de traction.

VII.4.8 Dimensionnement des longrines

Selon le RPA99, pour les sites S1 et S3 les dimensions minimales de la section

transversale des longrines sont : 25 cm x 30 cm.

On prend $S = 40 \times 40$ cm.

VII.4.9 Calcul du ferraillage

Les longrines doivent être calculées pour résister à la traction sous l'action d'une

force égale à :

$$F = max[N/\alpha; 20 kN].$$

Avec :

 α : Coefficient fonction de la zone sismique et de la catégorie de site considérée, pour les sols S3 (α = 15). (Annexe F.2)

L'ELU :

$$F = \frac{N}{\alpha} = \frac{31,146}{15} = 2,0764 \ kN$$
$$A_{st} = \frac{F}{\sigma_{st}} = \frac{207,64}{347,826 \times 10} = 0,059 \ cm^2$$

• L'ELS:

$$F = \frac{N}{\alpha} = \frac{247,166}{15} = 16,477 \ kN$$
$$A_{st} = \frac{F}{\sigma_{st}} = \frac{1647,7}{347,826 \times 10} = 0,47 \ cm^2$$

Le RPA99 exige une section minimale : A_{min} = 0,6%S = 0,6%(40×40) = 9,6cm². On prend 6T16 avec A_{st} =12,06 cm^2 (Annexe F.1)

• La condition de non fragilité

$$Amin = 0,23 \frac{f_{t_{28}}}{f_e} B \times d < A_{st}$$

 $Amin = 0.23 \frac{f_{t28}}{f_e} B \times d = 0.23 \times 0.4 \times 0.36 \times \frac{2.1}{400} = 1.738 \ cm^2 < A_{st} = 12.06 \ cm^2 \ \text{CV}$ Avec : d=0.9h = 360mm

VII.4.10 Calcul d'armatures transversales

$$\phi_t \le min\left(\frac{h}{35}; \phi_{min}; \frac{b}{10}\right) = min\left(\frac{400}{35}; 14; \frac{400}{10}\right) = min(11, 428; 14; 40) = 11, 428$$

On prend $\phi_t = 8 \text{ mm}$

 $St \le (20 \ cm; 15 \ \phi t) \rightarrow St \le (20 \ cm; 12) ; On \ prend \ St = 10 \ cm.$

Figure VII.9: coupe transversal de la longrine.

VIII.4.11 Dimensionnement des fûts

Les dimensions des fûts (b \times h) : 70 cm \times 60 cm.

• Calcul ferraillage longitudinale

- Le RPA99/V2003 exige: une section minimale d'armature longitudinal de 0.7%.B.

Amin = 0,7% × (70 × 60) = 29,40 cm² On prend : 20T14 avec : A_{st} = 30,772 cm², avec des Cadres Ø8 (**Annexe F.1**)

Conclusion

Ce chapitre étudie l'assemblage de pied de poteau qui est réalisé par 6 tiges d'ancrage de diamètre 27 mm de classe 10.9, et l'assemblage de pied potelet qui est réalisé par 2 tiges d'ancrage dz diamètre 16mm de classe 8.8. Il traite aussi les fondations qui reportent les charges à un niveau convenable en assurant la stabilité et la sécurité de la structure.

CONCLUSION GENERALE

Ce travail nous a donné une occasion pour appliquer et approfondir toutes nos connaissances acquises durant le cursus de notre formation de master en génie civil.

La conception d'une structure métallique repose le dimensionnement aux états limites ultimes en tenant compte des actions environnantes les plus sèvres tel que les surcharges d'exploitation, la neige, le vent et le séisme.

Ce travail consiste à étudier et dimensionner un hangar métallique à usage industriel. Apres avoir défini les charges agissantes sur la structure, les poteaux, poutres, contreventements, pannes, potelets et lisses de bardage comme éléments de la structure ont été dimensionnés.

Ce dimensionnement concerne chaque élément, assemblage, connexion ou partie sensible de la construction. La précision et la rigueur dans les calculs et vérification d'une part et la définition exacte des différents détails de la construction sont requises.

La structure a été modélisée par le logiciel ROBOT afin d'élaborer le calcul sismique. Le calcul de la résultante des forces sismiques à la base obtenue par combinaison des valeurs modales ne dépasse pas les 80% de la résultante des forces sismiques, comme exiger par le règlement.

Cette expérience nous a permis aussi de faire mieux comprendre le domaine de la construction en charpente métallique qui nous a permis d'un coté d'assimiler les différentes techniques et logiciel de calcul ainsi que la réglementation régissant les principes de conception et de calcul des ouvrages dans ce domaine, et développée les idées grâce à la lecture des déférentes références bibliographiques et surtout à l'aide de l'équipe des professeurs de la charpente métallique département de génie civil (Faculté de technologie de université de Tlemcen).

A la fin de ce projet qui constitue pour nous une première expérience dans ce vaste domaine, il nous acquis des grandeurs très importantes pour mettre le premier pas dans ma future vie professionnelle.
Références bibliographiques

[1] Document Technique Réglementaire Algérienne D.T.R – C – 2 - 47 : Règlement Neige et Vent « RNV 99/Version 2013 », Centre National de Recherche Appliquée en Génie Parasismique, (Algérie).

[2] Document Technique Réglementaire D.T.R – BC - 2.2 : « Charge Permanente et Charge d'Exploitation », Centre National de Recherche Appliquée en Génie Parasismique, 2008, (Algérie).

[3] Document Technique Réglementaire Algérienne D.T.R – BC – 2 - 48 : Règles Parasismiques Algériennes « RPA99/VERSION 2003 », Centre National Algérien de Recherche Appliquée en Génie Parasismique, 2003, (Algérie).

[4] Document Technique Réglementaire D.T.R - BC – 2 - 44 : Règles de Conception et de Calcul des Structures en Acier « CCM 97 », Centre National Algérien de Recherche Appliquée en Génie Parasismique, 1997, (Algérie).

[5] EUROCODE 3 : « Calcul des structures en acier », Calculs des Eléments Résistants d'une Construction Métallique, Office des Publications Universitaires, 2009.

[6] Règles Techniques de Conception et de Calcul des Ouvrages et des Constructions en Béton Armé Suivant la Méthode des Etats Limites « BAEL 91 révisée 99, Ministères de l'Habitat et de l'Urbanisme, Ed : CSTB 2000 (France).

[7] Lahlou Dahmani : « CALCUL DES ELEMENTS RESISTANTS D'UNE CONSTRUCTION METALLIQUE SELON L'EUROCODE 3, Edition Eyrolles Paris, 2009.

[8] Mr. Rais Youcef et Mr. Basri Hamza : « ETUDE D'UNE HALLE INDUSTRIELLE EN CHARPENTE MÉTALLIQUE À HASSI AMEUR, WILAYA D'ORAN », PFE Master, Université Abou Bekr Belkaid de Tlemcen, 2017 – 2018.

[9] Mr. Mezouar Abderrahmane et Mr. GHalem Abdelhadi : « ÉTUDE ET DIMENSIONNEMENT D'UN HALL INDUSTRIEL À PLUSIEURS VERSANTS », PFE Master, Université Abou Bekr Belkaid de Tlemcen, 2017 - 2018.

Annexes

Annexes

Chapitre II : Evaluation des charges et surcharges

A.1 Coefficient de forme

Figure 6 : Coefficient de forme - Toitures à deux versants

 (α) angle du versant par rapport à l'horizontale (en ⁶) 	$0^\circ \le \alpha \le 30^\circ$	$30^\circ < \alpha < 60^\circ$	$\alpha \geq 60^\circ$
coefficient µ1	0.8	$0.8.\left(\frac{60-\alpha}{30}\right)$	0.0

Tableau 2 : Coefficients de forme - Toitures à deux versants

A.2 Valeurs de la pression dynamique de référence

Zone	qréf (N/m ²)
I	375
II	435
III	500
IV	575

Tableau 2.2 : Valeurs de la pression dynamique de référence

Catégories de terrain	Kr	20 (m)	Zmin (m)	ε
0 Mer ou zone côtière exposée aux vents de mer	0.156	0.003	1	0,38
I Lacs ou zone plate et horizontale à végétation négligeable et libre de tous obstacles.	0.170	0.01	1	0,44
II Zone à végétation basse telle que l'herbe, avec ou non quelques obstacles isolés (arbres, bâtiments) séparés les uns des autres d'au moins 20 fois leur hauteur.	0,190	0,05	2	0,52
III Zone à couverture végétale régulière ou des bâtiments, ou avec des obstacles isolés séparés d'au plus 20 fois leur hauteur (par exemple des villages, des zones suburbaines, des forêts permanentes).	0,215	0,3	5	0,61
IV Zones dont au moins 15% de la surface est occupée par des bâtiments de hauteur moyenne supérieure à 15 m.	0,234	1	10	0,67

Tableau 2.4 : Définition des catégories de terrain

A.4 Légende pour les parois verticales

VUE EN PLAN

ELEVATION

Figure 5.1 : Légende pour les parois verticales

A.5	C_{ne} pour	les parois	verticale	es de	bâtiment à	base r	ectangulaire
T HO	opepour	ieb pui oib	verticult	o uc	butilitent u	bube I	cetangulane

Paroi latérale					Paroi au vent		paroi sous le vent		
Α,	A'	B,	B	(÷	1)		E
C _{pc,10}	C _{pc.1}	C _{pt,10}	Cpc,t	Cpc.10	C _{pc,1}	C _{pr,10}	C _{pt,1}	C _{pt,10}	C _{pc1}
- 1,0	- 1,3	- 0,8	- 1,0	- 0,5		+0,8	1,0	+ 0,3	

Tableau 5.1 : Cpe pour les parois verticales de bâtiments à base rectangulaire

A.6 Légende pour les toitures à deux versants

Figure 5.4 : Légende pour les toitures à deux versants

Angle de			10111 mm	Zones p	sur vent de	direction f	$) = 0^{+}$	_		
pente	F		0	¥	E	1	1			fill.
- 01	$C_{p_1,\infty}$	Cpt.1	$C_{\mu\nu/m}$	Cpc1	C20.10	Cm.)	C26.10	Cmi	Cpc.10	Cmi
-451	-0,	6	-0	.6	-0	.8.	-0,	7	-1.0	-1.5
$+30^{4}$	-1,1	-2,0	-0.8	-1,5	+0	8	-0,	6	-0.8	-1,4
- 15%	-2,5	-2,8	-1,3	-2,0	-0,9	+1,2	-0,	5	-0.7	-1,2
. 41			1.00			44	+0	+0.2		.2
100	440	1400	-1.6	-2,0	-0.8	-1.2	-0,			.6
	-1,7	-2.5	-1.2	-2.0	-0.6	-1.2			+0	2
	-0.	0	+0	.0	+0	.0		D.	-0	.6
151	-0.9	-2.0	-0.8	-1,5	-0	3	-0,	4	-1.0	-1.5
	+ 0,	2	× 0	1,2	+ (1.2	+0.	0	0.0	0.0
30*	-0,5	-1,5	-0,5	-1.5	+0	7	-0,	4	-0	5
100	0,7		0,	7	0,	4	0,0	3	0,	0
111	0,0		0,	0	0,	9	-0,	2	-0	3
1.00	+0,	7	+0	7	+0	1,6	0,0)	0,	0
60*	+0,1	2	+0	.7	+0	.7	-0,	2	-0.	3
75%	+0,1	κ.	+0	8	+0	.8	-0,	2	-0,	3

A.7 Coefficient de pression extérieure pour la toiture à deux versant

Angle de		Zonet pour vent de direction $\theta = 90^{\circ}$									
pente	F		(5	11		1				
α	Cault	C _{pc1}	C_{p_1m}	Cput	Cpt.N	Cant	C _{20,10}	C _{pi}			
-451	-1,4	-2.0	-1,2	-2.0	-1,0	-1,3	-0,9	+1,2			
-341*	-1.5	-2.1	-1.2	-2.0	-1,0	-1.3	-0.9	-1.2			
+3.51	-1,9	-2.5	-1,2	-2.0	-0,K	-1,2	-0.8	-1.2			
-3*	-1,8	-2.4	-1,2	-2,0	-0.7	-1,2	-0.6	-1,2			
31	-1,6	-2.2	-1.3	-2.0	-0,7	-1.2	-4	6.			
15*	-1,3	-2.0	-1.3	-2,0	-0.6	+1.2	-0				
30°	-1.1	-1.5	+1,4	-2,0	-0,8	-1,2	-0	.5			
45"	24.1	-1.5	-1,4	-2,0	-0.9	-1.2	-0	5			
60°	-1,1	+1.5	-1,2	-2,0	-0,8	-1.0	-0	5			
151	+1,1	-1.3	-1,2	-2.0	-0.8	-1,0	-0	5			

Tableau 5.4 : Coefficients de pression extérieure pour toitures à deux versants

A.8 Coefficient de pression intérieure des bâtiments sans face dominante

Figure 5.14 : Coefficients de pression intérieure C_{pr} des bâtiments sans face dominante

Chapitre V : Dimensionnement des éléments secondaires

B.1 Rapport largeur –épaisseur maximal pour les parois comprimées

Tableev 0.1.2	Coefficients C ₁ , C ₂ et dans la cas de charge	C ₃ , pour ditá a Vanevaciales	ndin vala	ndet,			
Chargement at	Disgramme de	Veleurde	_	Coefficients			
energia d'attore	morrenz de Nexion	k	¢ ₁	Q2	Ċ3		
·		1,0	1,132	0,459	0,525		
	1000	6,5	6,972	0,304	6,960		
	L.	1,0	1,288	1,562	0,753		
		0,5	8,712	0,622	1,070		
_ <u>_</u>		ų	1,065	6,953	1,730		
		0,5	1,070	0,432	3,050		
L'		1,0	1,565	1,287	2,540		
		0,5	0,658	0,715	4,000		
.1.		1.0	1,048	0,400	1,120		
		63	1,010	0,410	1,890		
		1.201	-				

B.2 Coefficient *C*₁ pour les différentes valeurs de K dans le cas de charges transversales

B.3 L'abaque de MACQUART

B.4 Facteur d'imperfection α selon le choix de la courbe de flambement correspondant à une section

Courbe de flambement	A	B	С	D
Facteur d'imperfection a	0,21	0,34	0,49	0,79

B.5 Poids du bardage en Panneau Sandwich (TL75)

NUTLOWING SH Neith in Computant Inferridian DIRECTION DENGRALS BP 75 Bert - Mangour WIBSJAIA THU:+(21)(04 Jan) 10/14/16/71 Fax:+(21)(04 Jan) 10/14/16/71

FICHE TECHNIOUE

PANNEAU SANDWICH TOITURE (TL75)

Description

1. Principe

Le parmeau sandwich d'enveloppe de bâtiment, est un produit composite, fabriqué industriellement en continu, comportant un parement extérieur métallique, ute ânte isolante et un parement intérieur métallique solidarisés par adhérence à l'ârre isolante. Ces composants travaillem ensemble et ne constituent ainsi qu'un seul élément autoportant présentant différents niveaux de résistance mécanique, de réaction et de résistance au feu, d'isolation thermique et acoustique, d'étanchérité à l'air, à l'eau et à la vapeur d'eau et d'esthétique architecturale.

2. Matériaux

1.1 Tâle d'acier

Parementis interne et externe en 10ke d'acter d'épaisseur nominale minimum 0.4 mm, galvanisé à chaud en continu selon les nomes NE EN 10326; NF EN 10142 et NF EN 10143 : Numce d'acter : DX51D ou \$280GD Epaisseur de la couche de Zn : 150 g/m2 pour les deux faces Nuture et épaisseur du revétement organique : «Recto : 25 m nominal polyester selon EN 10169 (dont primaire 5 µm).

-Verso : 7 m nominal polyester selon EN 10169 (dont primaire 5 µm).

Les parois ont pour épaisseur

Toiture TL 75 : - 0,55 mm à l'intérieur, - 0,75 mm à l'estérieur
-0,4 mm à l'intérieur -0,6 mm à l'extérieur

2.2 Mousse isolante

L'isolarit est constitué de recusse rigide de polyaréthane expansée, obtenue per injection en continu d'un mélange de polyol, isocyanate, catalyseur et agent d'expansion de type Pentare, dont les catactéristiques sont indiquées ci-après :

6

Tablees 1 - Coroctivistiques de la formalation

Caractéristiques	Spirifications
Masse volumique selon NF EN1602	40 kg/m3 + 2 kg/m3
Traction perpendiculaire (adhérence sur parement) selon NF EN 1607	80 kPa
Compression usus 10 % d'écrasement selon NF EN 826	100 kPa
Plexion quatra points salon. Pr EN 14509	100 kPa
Stabilită dimensionnalie (48 h à 70 °C)	2%
Subilité dimensionnelle (48 h à -20 °C)	1%

3. Caractéristiques dimensionnelles

Tableou 2 : Dimensions et solérances

Dimensions (mm)	14	Toldrances (mme)
Largeur hors tout	1000 à 2000-	7,5
Largeur utile du pannesas	Toilare :1035	#2
Longoeur du paesesa	< 3000 1000 ± 2000 2001 ± 4000 4000	5 7,5 10 15
Epaissours norstrades	23	+2
Défaut d'équerrage		6,21
Défaut de plandid (en fonction de la longueur mésurée l.)	L = 300 mm L = 400 mm L > 700 mm	 Defaut de plasérié 0,6 mm Difaut de plasérié 1,0 mm Défaut de plasérié 1,5 mm

Poids spécifique (kg/m2) : 14.2

4. Autres informations techniques

4.1 Isolation thermique :

Pour le neyau de moutoe qui est recouvert des 2 cotés de pessos étandes à la diffusion,

le coefficient de conduction thermique (3.) = 0.026 wirs.k

Patentau	71,75	
Coefficient de transmission thermique (w/m ² ,K)	0.40	

4.2 Isolution phonique : TL75 : 26d8

7

Chapitre VI : Etude sismique

C.1 Coefficient d'accélération de zone A

Tableau 4.1 : Coefficient d'accélération de zone "A".

Les valeurs du coefficient d'accélération de zone "A" sont révisées comme suit :

	12	ZON	IE	
Groupe	I	IIa	пр	ш
1 A	0,15	0,25	0,30	0,40
1 B	0,12	0,20	0,25	0,30
2	0,10	0,15	0,20	0,25
3	0.07	0.10	0.14	0.18

C.2 Pourcentage d'amortissement critique

Tableau 4.2 : Valeurs de ξ (%)

	Porti	ques	Voiles ou murs
Remplissage	Béton armé	Acier	Béton armé/maçonnerie
Léger	6	4	10
Dense	7	5	

Cat	Description du système de contreventement (voir chapitre III § 3.4)	Valeur de R
A	Béton armé	
1a	Portiques autostables sans remplissages en maçonnerie rigide	5
1b	Portiques autostables avec remplissages en maçonnerie rigide	3,5
2	Voiles porteurs	3,5
3	Noyau	3,5
4a	Mixte portiques/voiles avec interaction	5
4b	Portiques contreventés par des voiles	4
5	Console verticale à masses réparties	2
6	Pendule inverse	2
B	Acier	
7	Portiques autostables ductiles	6
8	Portiques autostables ordinaires	4
9a	Ossature contreventée par palées triangulées en X	4
9Ъ	Ossature contreventée par palées triangulées en V	3
10a	Mixte portiques/palées triangulées en X	5
10b	Mixte portiques/palées triangulées en V	4
11	Portiques en console verticale	2
<u>c</u>	Maconnerie	
12	Maçonnerie porteuse chaînée	2,5

D	Autres systèmes	
13	Ossature métallique contreventée par diaphragme	2
14	Ossature métallique contreventée par noyau en béton armé	3
15	Ossature métallique contreventée par voiles en béton armé	3,5
16	Ossature métallique avec contreventement mixte comportant un	4
	noyau en béton armé et palées ou portiques métalliques en façades	
17	Systèmes comportant des transparences (étages souples)	2

C.3 Coefficient de comportement global de la structure R

C.4 Valeur des pénalités selon le facteur de qualité

	1	9	
Critère q »	Observé	N/observé	
1. Conditions minimales sur les files de contreventement	0	0,05	
2. Redondance en plan	0	0,05	
3. Régularité en plan	0	0,05	
4. Régularité en élévation	0	0,05	
5. Contrôle de la qualité des matériaux	0	0,05	
6. Contrôle de la qualité de l'exécution	0	0,10	

Tableau 4.4.: valeurs des pénalités P_q

C.5 Coefficient donnée en fonction du système de contreventement et du type de remplissage

Tableau 4.6 : valeurs du coefficient C_T

Cas nº	Système de contreventement	$\mathbf{C}_{\mathbf{T}}$
1	Portiques autostables en béton armé sans remplissage en maçonnerie	0,075
2	Portiques autostables en acier sans remplissage en maçonnerie	0,085
3	Portiques autostables en béton armé ou en acier avec remplissage en maconnerie	0.050
4	Contreventement assuré partiellement ou totalement par des voiles en	0,050
	béton armé, des palées triangulées et des murs en maçonnerie	0,050

C.6 Périodes T_1 , T_2

Tableau 4.7 : Valeurs de T1 et T2

Site	S_1	S ₂	S ₃	S4
T _{1(sec)}	0,15	0,15	0,15	0,15
T _{2(sec)}	0,30	0,40	0,50	0,70

D.1 Coefficient $C_1\,$ pour différents valeurs de k dans le cas de moment d'extrémités selon ψ

Chargement et	Diagramme de	Valeur de	Coefficients			
conditions d'appuis	moment de flexion	k	C1 C2 C			
	1	1,0	1,000		1,000	
	mmmmm	0,7	1,000		1,11	
		0,5	1,000		1,14	
	¥	1,0	1,141		0,99	
	mmmmm	0,7	1,270		1,56	
		0,6	1,305		2,28	
	¥ 1/2	1,0	1,323		0,99	
	IIIIIII	0,7	1,473		1,55	
		0,6	1,514		2,27	
	* 14	1,0	1,563		0,97	
	(TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	0,7	1,739		1,59	
n		0,5	1,768	•	2,23	
	f 1	1,0	1,879		0,93	
	(TTTTT-	0,7	2,092		1,47	
		0,6	2,150	•	2,15	
	¥ =-14	1,0	2,281		0,85	
	IIII	0,7	2,538		1,34	
		0,5	2,609		1,95	
	¥ 141	1,0	2,704		0,67	
	TITTE	0,7	3,009		1,05	
		0,5	3,093	•	1,54	
	¥ +-34	1,0	2,927		0,30	
	ITT	0,7	3,258		0,57	
	UIIII	0,5	3,348		0,83	
	- dl		102/002/ 10/00 10/00	14 12 11	11000	
	¥)	1,0	2,752		0,00	
	ITT	0,7	3,063		0.00	
		0,5	3,149		6,00	

D.2 : Rapport largeur-épaisseur maximal pour les parois comprimées

Rapports largeur-épaisseur maximaux pour parois comprimées

61		100	AL AL	semblage
, , ,	ice longiludinele e j	12	tart (1)	Plat Intérieur
		1		1,2 0, (1)
Pir	ice transversale #2	+-	121 ou 150 mm (2) (max	12t ou 150 mm (2) (n
	14 (ASA) 750	E	(1,5 d ₀ ⁽²⁾)	1,5 0 (7)
Entraxe p1	File extériéure	1-	121 ou 150 mm (2) (mex)	121
	Elevent	2	2.2 do (4)	and (4)
	Element comprime	×	141 ou 200 mm (0) (4,4.00
	ris meriaute	5	2.2 d (4)	141 ou 200 mm (6) (m
	Elément comprimé	1		2,2 do (4)
	File exiédeure	k	141 ou 200 mm (0) (min)	141 ou 200 mm (4) (mi
	Elément lendu	1		2,2 da (4)
	File Intérleure	1	141 au 200 mm (5) (min)	14t ou 200 mm (5) (m)
	Bément lendu	E	2,2 0 (4)	2,2 4 (4)
straxe p2	Elément commuter	1	281 ou 400 mm (8) (min)	2ht au 400 au (5)
1181	and a sumplifying	*	34,01	14 (7)
	THE		141.eu 200 mm (0)	10 ₀ 11
	Coment Lendu	3	3 d (7)	141 ou 200 mm (6) (min
	diamétre du trou	-		30,00

E.1 Valeurs limites des pinces et entraxes

Tableau 65.1 : Valeurs limites des pinces et entraxes

E.2 Valeurs nominales de f_{yb} et f_{ub} des boulons

Classe	4.6	4.8	5.6	5.8	6.6	6.8	8.8	10.9
f _{yb} (N/mm²)	240	320	300	400	360	480	640	900
f _{ub} (N/mm²)	400	400	500	500	600	600	800	1000

Tableau 3.3 : Valeurs nominales de f_{yb} et f_{ub} des boulons

.

Diamètre nominal d	Pas P	Clef	Diamètre du noyau de la vis d3	Diamètre intérieur de l'écrou d1	Diamètre de la rondelle	Section résistante As	Diamètre moyen dm	Töle usuelle	Cornière usuelle
8	1.25	13	6.466	6.647	16	36.6	14	2	30
10	15	17	8.160	8.376	20	58.0	18.3	3	35
12	1.75	19	9.853	10.106	24	84.3	20.5	4	40
14	2	22	11.546	11.835	27	115	23.7	5	50
16	2	24	13.546	13.835	30	157	24.58	6	60
18	2.5	27	14.933	15.294	34	192	29.1	1	70
20	2.5	30	16.933	17.294	36	245	32.4	8	80
22	2.5	32	18.933	19.294	40	303	34.5	10.14	120
24	3	36	20.319	20.752	44	353	38.8	>14	>120
27	3	4]	23.319	23.752	50	459	44.2		
30	3.5	46	25,706	26.211	52	561	49.6		
33	3.5	50	28,706	29.211		694			
36	4		31.093	31.670		817			

E.3 Principales caractéristiques géométriques

Tableau 1 : Principales caractéristiques géométriques

Acier	f _u (MPa)	βw	Y Mw
S 235	360	0,8	1,25
S 275	430	0,85	1,30
S 355	510	0,9	1,35

E.4 Variables selon la nuance d'acier

. .

 $\beta_w \; \gamma_{mw} \;$ variables selon la nuance d'acier

E.5 Facteur de forme

Coefficients	trou nominal	trou surdimensionné	trou oblong 0.7 1.20	
k,	1	0.85		
Misser ELS	1.20	1.20		
YMs.ult ELU	1.10	1.25	1.25	

E.6 Coefficient de frottement

Classe de surface	μ coefficient de frottement	état de surface			
A 0.5		Grenaillé ou sablé			
B 0.4		Grenaillé, sablé et peint			
C 0.3		Brossé			
D 0.2		Non traité			

Chapitre VII : Etude de l'infrastructure

F.1 Section A_s cm² de N armatures de diamètre $\phi(mm)$

ø	Poids	5	SECTIONS EN CENTIMETRES CARRES									
mm [kg		Perimet	1	2	3	4	5	6	7	8	9	10
5	0.154	1.5 cm	0.20	0.39	0.59	0.79	0.9 8	1.18	1.37	1.57	1.77	1.96
6	0.222	1.9	0.28	0.57	0.85	1.1 3	1.41	1.70	1.98	2.2 6	2.54	2.83
8	0.392	2.5	0.50	1.0 1	1.51	2.01	2.51	3.02	352	4.0 2	452	5.0 3
10	0.613	3.1	0.79	1.57	2.36	3.14	3.93	4.71	550	6.26	7.07	7.85
12	0882	3.8	1.1 3	2.26	3.39	452	565	6.79	7.92	903	10.10	11.24
14	1201	4.4	1.5 4	3.08	4.62	6.16	7.70	9.24	10.78	1222	10.10	11.31
16	1.568	5.0	201	4.0.2	6.03	8.04	10.05	12.06	14.07	12.52	13.00	15.39
20	2450	6.3	3.14	6.28	9.42	12.57	15.70	10.00	14.07	10.08	18.10	20.11
25	3826	78	201	0.0.0	1/ 112	10.12	10.40	10.85	21.99	25.13	28.27	31.42
20	1020	1.0	4.7 1	9,0 2	14.73	19.03	24.54	29.45	34.36	39.27	44.18	49.09
52	6-273	10.0	80 4	16.08	24.13	32.17	40-21	48.25	56.30	66.31	70.00	
f0	9.80 2	12,6	12.57	25.13	37.70	50.27	62.83	7531		04.34	12.39	80.42
								13:30	87.96	100.53	113.10	125.66

F.2 Coefficient en fonction de la zone sismique et de la catégorie de site considéré α

		Zone	
Site	I	п	III
S_1	-	-	-
S ₂	-	15	12
S_3	15	12	10.
S_4	12	10	8

F.3 Les modes de ruines plaque d'assise/boulons d'ancrage

Mode 4 : Plastification de l'ame du poteau en traction

