ــمـهـوريـــــة الجــــــزائـريــة الدميـــــقـراطيــة الـش الج **REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIR** وزارة التصحيح العصالي والبصحث العصلمي Ministère de l'Enseignement Supérieur et de la Recherche Scientifique __ان

Université AboubakrBelkaïd

كالية عاروم الطبيعةوالحاة، وعاروه الأرض والكون

Faculté des Sciences de la Nature et de la Vie. et des Sciences de la Terre et de l'Univers Département Sciences de la Terre et de l'Univers.

– Tlemcen –

MÉMOIRE

Présenté par

BENKOU Yousra

FELLAH Hadjer Fatima Zohra

En vue de l'obtention du

Diplôme de MASTER

En Géologie des bassins sédimentaires

Thème :

Calcul de réserves du gisement de Cu(Au)de teferaouin. Algérie Nord occidentale

Soutenu le devant le jury composé de :

Président	BENSALAH Mustapha	Pr	Université de Tlemcen.
Encadrant	BELMOUHOUB Abdelkader	M.C.B	Université de Tlemcen.
Examinateur	BENCHOUK Mustapha	M.C.A	Université de Tlemcen.

Année universitaire 2021/2022

<u>؞ؗڮۦ ؠ؇ۦ ؠ؇ۦ ؠ؇ۦ ؠ؇ۦ ؠ؇ۦ ؠ؇ۦ ؠ؇ۦ ؇؇</u> <u>؞؇</u> <u>؞؇</u> <u>؞؇؇ ؞؇؇</u>

Remerciements

Avant tout. nous remercions **ALLAH** le Tout-puissant de nos avoir donné le courage. la volonté et la patience de mener à terme ce présent travail dans les meilleures conditions.

Nous remercions vivement en premier lieu notre encadrant Monsieur : **A.BELMOUHOUB**. enseignant chercheur à l'Université Abou Bekr Belkaid Tlemcen qui. par ses compétences scientifiques. ses encouragements. ses critiques constructives et son soutien moral nous a assisté durant toute la période de la préparation de ce mémoire.

Nos sincères remerciements vont également Monsieur **BENSALAH.M** professeur À l'Université de Tlemcen. d'avoir bien voulu présider ce jury de mémoire

Nos vis remerciements vont également à Monsieur **BENCHOUK.M** enseignant à l'Université de Tlemcen. qui m'a fait l'honneur de faire partie de ce jury.

A l'issue de notre cursus universitaire nous remercions le corps des enseignants en particulier Mr. KACEMI.A. Mr. BOUCIF.A. Mr. ADACI.M et on tête Mr. HABIB.H le chef de département *pour les connaissances qui nous ont inculquées.*

A la fin. nous tenons à remercier toutes les personnes qui ont participé de près ou de loin à la réalisation de ce modeste travail.

Dédicaces

Je dédie ce modeste travail à

La mémoire de Ma grand-mère. symbole de tendresse profonde et permanente. de sacrifice et d'amour éternel. (Allah Yarhamha)

Toute ma famille ;

Mes enseignants depuis mon enfance ;

A ceux qui me sont chers. ceux que j'aime du fond de mon cœur.

<u>Hadjer</u>

Je dédie ce modeste travail à ma chère mère que je lui dois toute chose dans cette vie. à mon exemple dans la vie mon père pour son soutient morale et sa présence dans les moments difficile

Mes sœurs (NAILA. Raghad) et mon frère (Oussama)

Mes enseignants depuis mon enfance ;

A ceux qui me sont chers. à moi

<u>Yousra</u>

<u>Résumé</u>

Les andésites altérées du volcan de Tifaraouine d'âge miocène (centre éruptif de Sahel d'Oran) encaissent une minéralisation sulfurée essentiellement cuprifère. Les forages réalisés dans le volcan ont recoupé de la chalcopyrite encaissée dans les tufs altérés par la carbonatation. Les analyses effectuées sur les carottes de forages ont révélé. par endroits des teneurs en cuivre de dimension économique. D'une manière concomitante certains forages ont révélé des niveaux où avec le cuivre la présence de l'or.

L'estimation des ressources a permis de dégager une enveloppe minéralisée à 14millions de tonnes de cuivre et 5.508Kg d'Or.

Abstract

The altered andesites of the Tifaraouine volcano of Miocene age (eruptive center of Sahel d'Oran) host a mainly copper-bearing sulphide mineralization. Boreholes drilled in the volcano have intersected chalcopyrite hosted in tuffs altered by carbonation. The analyzes carried out on the drill cores revealed. in places. copper contents of an economic dimension. Concomitantly. some drilling revealed levels where with copper the presence of gold. The resource estimate revealed a mineralized envelope of 14 million tonnes of copper and 5.508 kg of gold

ملخص

تجمع الأنديسايت المتغيرة لبركان تيفار اوين في العصر الميوسيني (المركز البركاني لساحل و هران) تمعدن كبريتيد يحتوي على النحاس بشكل أساسي .وقد تقاطعت الأبار المحفورة في البركان كالكوباير ايت المستضاف في الحواف التي تغيرت عن طريق الكربنة.

كشفت التحليلات التي أجريت على لب الحفر ، في بعض الأماكن ، عن محتويات النحاس ذات البعد الاقتصادي. بالتزامن مع ذلك ، قدمت لنا بعض عمليات الحفر مستويات أخرى عن وجود الذهب مع النحاس.

في الأخير أعطانا تقدير الموارد غلاف ممعدن من 14 مليون طن من النحاس و 5.508 كجم من الذهب.

Tableau Des Matiers

.

Liste des FiguresI
Liste des Tableaux III
Chapitre I : Généralité1
I.1. Introduction
I.2. Généralités
I.3. problématique
I.4. méthodologie
Chapitre II : Cadre géologique et géographique5
II.1. Aperçu géographique et géologique :
II.1.1Aperçu géographique :
II.1.2 Géologie régionale7
II.1.3 Géologie de Tifaraouine
II.2. Tectonique
Chapitre III : Traitement des données 12
III-1 Estimation des ressources en cuivre et en or :
III.2.1 Cuivre(Cu)
III.2.2.Or (Au)
III.3 Coupes :
Conclusion générale
Conclusion générale :
Annexes:
-Bibliographie:

°.

° ° ° ° °

°°

 ·······

 ~

°°

Liste des Figures

Figure 01:Centre éruptif du Sahel d'Oran
Figure 02:Schéma montrant les centres volcaniques du Littoral Oranais d'après Megartsi (1985).
Figure 03:Carte géologique simplifiée du Sahel d'Oran (réalisée à partir de la carte de Guardia.
1975)
Figure 04:Schéma structural du Tell oranais
Figure 05:Carte d'interprétation du levé aéromagnétique 11
Figure 06:Schéma montrant les positions des forages réalisés par l'ORGM 13
Figure 07:Modèle
Figure 8.1:CH2
Figure 8.2:CH1
Figure 8.3:CH3
Figure 8.4:CH6
Figure 8.5:S10
Figure 8.6:S1
Figurev8.7:TifS5
Figure 8.8:TifS3
Figure 8.9:TifS6
Figure 8.10:TifS8
Figure 8.11:TifS11
Figure 8.12:TifS12
Figure 8.13:TifS13
Figure 8.14:TifS14
Figure 8.15:Tifs15
Figure8.16:TifS16
Figure 8.17:TifS18
Figure 8.18:TifS20
Figure 8.19:TifS21
Figure 9.1:Coupe CH3-TifS21

~

······

°. °.

Ι

Figure 9.2:Coupe TifS21-TifS1	30
Figure 9.3Coupe TifS12-TifS15	30
Figure 9.4:Coupe TifS13-TifS3	31
Figure 9.5Coupe TifS14-TifS22	32
Figure 9.6:Coupe TifS20-TifS1	33

°.

~ ~ ~ ~ ~

~

°° °°

~ ~ ~ ~ ~ ~

~

°° °°

a a a a a a a

° ° °

~°

°°

°° °° °°

°°

°°

°° °° °°

°°° °°°

°° °° °° °° °° °° °° °° °° °°

°°° °°°

0° 0° 0° 0° 0° 0° 0°

00 00 00

°° °° °°

00000

°° °°

~

-%

Liste des Tableaux

0,0

°°

°°

00

.

L°.

Table 1 : teneur en cuivre $\geq 0.4\%$. 21
Table 2 : Ressourcesen cuivre	. 22
Table 3 : Test de biais de la teneur moyenne pondérée de 5 sondages :	. 24
Table 4 : Test de biais de la teneur moyenne pondérée de 8 sondages :	. 25
Table 5 : Teneur en Or ≥ 0.2 g/t :	. 25
Table 6 : Ressources en Or :	. 26
Table 7 : Test de biais de la teneur moyenne pondérée de 4 sondages :	. 27
Table 8 : Test de biais de la teneur moyenne pondérée de 7 sondages :	. 28

°.

° ° °

° °

a a a a a a a a

III

-06

Chapitre I : Généralité

I.1. Introduction

°°

°°° °°°

°°°

°°°

<u>o</u>o oo oo oo oo oo oo oo oo oo oo

00 00 00

0° 0° 0° 0° 0° 0°

Le présent travail. s'inscrit dans l'objectif d'obtention du diplôme de Master en géologie option (géologie des bassins sédimentaires). Il s'intéresse à la valorisation des ressources en cuivre et or que recèlent les formations volcaniques miocènes. calco-alcaline du volcan de Tifarouine (centre éruptif du Sahel d'Oran). Celles-ci ont été mises au jour par forage. Ainsi. se veut-il comme objectif de cerner les perspectives minières de ces formations.

Le massif volcanique en question fait partie d'une ceinture volcano-métallogéniquequi borde du côté sud la méditerranée.

Dans la portion orientale de cette ceinture. à Oued Amizour (Béjaia) et à Oued el Kébir (jijel) l'Office National de Recherche Géologique et Minière (ORGM) a découvert. la fin du siècle dernier. des gisements de Cu- Pb-Zn et Au associés aux mêmes types de formations. Ces découvertes laissent entrevoir la présence dans notre secteur. d'un nouveau contexte minéralisé de dimension économique.

Il constitue une unité de l'ensemble volcanique du Sahel d'Oran et se caractérise par la présence de formations magmatiques formant un complexe de coulées de laves. de couches de produits pyroclastiques et de corps subvolcaniques. Ces derniers se sont mis en place sous forme de dykes. dômes et d'intrusions.

Les traits essentiels du secteur sont conditionnés par l'existence de structure en caldeira où l'on voit se développer des roches altérées en association avec une minéralisation de magnétite. pyrite. chalcopyrite. et or. Outre cela. le secteur renferme deux types de minéralisations ; une minéralisation ferrifère oxydée affleurant représentée essentiellement par de l'hématite et une minéralisation sulfurée essentiellement cuprifère a dominante de chalcopyrite a été recoupée a différents niveaux de la colonne de la pile andésitique par forages.

Le traitement statistique des données analytiques du cuivre et de l'or obtenues sur des échantillons de carottes des forages. a permis de circonscrire une enveloppe minéralisée justifiant la présente ébauche pour l'estimation de ces ressources.

I.2. Généralités

~

00

°°° °°°

<u>o</u>o oo oo oo oo oo oo oo oo oo oo

00000

Durant le Miocène. le bassin méditerranéen a été le siège d'une importante activité téctono-magmatique a l'origine de nombreux événements géologiques. Pour la région oranaise. a eu lieu la mise en place des massifs schistosés littoraux oranais. l'édification des différents appareils volcaniques et enfin le charriage du Nord au Sud. Ce magmatisme à été suivi par une phase hydrothermale post magmatique minéralisatrice engendrant diverses minéralisations.

Le massif volcanique de Tifaraouine fait partie de l'ensemble volcanique du Sahel d'Oran. Il se met en place sur le prolongement occidental d'un massif schistosé dénommé Dj Akehal qui fait l'armature tectonique de la région. Il se caractérise par la présence de deux unités géologiques

A l'Est. des formations plissées métamorphisées mises en place sous la forme d'un horst recouvert en partie par des terrains sédimentaires miocènes représentées par des marnes aux intercalations gréseuses rubéfiées et à l'Ouest par des terrais volcaniques : celles-ci sont constituées de deux séries :

Une première série d'andésite à amphibole surmontée par une série d'andésite à pyroxènes ; ces séries sont dominées par la présence de produits pyroclastiques (brèches et tufs).

Des altérations hydrothermales représentées par une silicification. argilisation. chloritisation et une carbonatation affectent ces séries et elles sont à l'origine de la mise en place des minéralisations sulfurées recoupées en profondeur par forages.

Ces minéralisations se présentent sous forme de disséminations dans les tufs. de veinules et bréchiques dans les coulées ; Les analyses effectuées sur des carottes de forages ont révélé la présence de cuivre et d'or ; autre cela. sur vingt forages réalisés. dix ont recoupé des teneurs à enjeu économique

I.3. problématique

Les forages réalisés. la fin du siècle passé dans les andésites du massif volcanique de Tifaraouine ont recoupé. sur des niveaux différents et a différentes profondeurs des minéralisations sulfurées représentées essentiellement par de la chalcopyrite et dans une moindre mesure galène et sphalérite. Certains forages ont recoupé des teneurs en cuivre répondant au caractère économique.

Ainsi. l'objectif de ce travail consiste en l'estimation des ressources de ces minéralisations en cuivre encaissées dans les andésites du massif.

Le mémoire s'articule et se subdivise en quatre chapitres :

-En premier lieu. sera abordée une revue du cadre géologique et métallogénique du secteur. Sera dégagé. dans ce cadre. le lien entre la géologie et la minéralisation (encaissant et structure).

- La deuxième partie de ce travail est consacrée à l'étude des données analytiques par des méthodes statistiques. des tests seront effectués sur les données en cuivre et on Or et les résultats obtenus.

Les données analytiques utilisées dans ce cadre. ont été obtenues à partir des analyses des échantillons de roches prélevés sur des carottes de forages réalisés dans le secteur d'étude.

La démarche entreprise est relative à l'estimation des ressources en Cu et Au.

Enfin. une conclusion générale sanctionne ce travail. Nous concluons sur les potentialités minières du secteur d'étude.

I.4. méthodologie

Pour répondre à cet objectif nous avons suivi des méthodes classiques d'estimation de ressources.

 D'abord ; nous avons calculé un modèle qui a laissé apparaitre un trend d'enrichissement de la minéralisation. Celui-ci caractérise une tendance d'enrichissement de la minéralisation vers le Nord.

Des striplogs effectués ont montré une distribution hétérogène de la minéralisation. Des variations verticales de la distribution y ont été constatées.

-Ensuite. nous avons sélectionné les forages dont les teneurs en cuivre $\ge 0.4\%$. en Or ≥ 0.2 g/t et l'épaisseur > 2m.

Des coupes ont été réalisées suivant ces forages. Celles-ci ont montré les diverses morphologies de corps minéralisés.

Un traitement statistique des données est effectué sur un lot d'échantillons de dix forages. Ce traitement consiste en le calcul du volume et la teneur moyenne de l'assise productive.

Des tests de bais ont été effectués sur les valeurs calculées respectives obtenues et des représentations graphiques établies ont permis de visualiser les différentes morphologies de ces minéralisations. Pour effectuer ce travail ; nous avons utilisé le logiciel Rocksworks15 et Excel.

Chapitre II: Cadre géologique et géographique

II.1. Aperçu géographique et géologique :

II.1.1Aperçu géographique :

00 00 00

ļ

°°°

°°°

°° °° °° °° °° °° °° °° °° °°

00 00 00

°°

00 00 00

000

000

ļ

Le massif volcanique de Tifaraouine se localise à une soixantaine de kilomètres au SW de la ville d'Oran à une trentaine de kilomètres. à vol d'oiseau. au Nord de Ain Témouchent. Il fait partie d'un ensemble volcanique dénommé ensemble volcanique du Sahel d'Oran ou centre éruptif du Sahel d'Oran (fig.1.).

Figure 01:Centre éruptif du Sahel d'Oran

Celui-ci comprend d'Ouest en Est. le cap Figalo. le volcan de Tifaraouine. le cap Sigale à l'extrémité nord orientale et à quatorze kilomètres au large. les îles Habibas. Le massif Tifaraouine couvre une superficie de 60km² environ.

II.1.2 Géologie régionale

°°

De nombreux auteurs (Sadran 1958. Guardia. 1975;Megartsi. 1985 ont effectué des travaux sur le magmatisme de l'Oranie.

Sadran. 1958 a réalisé des travaux de cartographie dans la région d'étude et il a défini des basaltes. des andésites. des dacites et des rhyolites; les andésites sont prédominantes. Il évoqua. en outre. la présence de deux indices minéralisés de Tifaraouine (Touila et Chadia).

Guardia (1975) a été le premier à distinguer deux épisodes volcaniques:

- premier épisode volcanique d'âge messinien caractérisé par la coexistence de laves calcoalcalines à shoshonitiques localisées dans les massifs de la moyenne Tafna. M'sirda et dans le Sahel d'Oran.

- un deuxième épisode volcanique d'âge plio-quaternaire qui est à l'origine de la mise en place de basaltes alcalins. Ces basaltes se sont épanchés sur de très grandes surfaces que l'on retrouve dans les massifs de la Basse Tafna. d'Ain Témouchent. du Fillaoussène et de Souhalia.

Megartsi (1985). en se basant sur la nature pétrographique. le chimisme et l'âge de mise en place. a subdivisé les produits du volcanisme du premier épisode en trois ensembles (fig.2.):

- (i) un ensemble magmatique mis en place entre -9.7 et -8 Ma. Cet ensemble est formé d'andésito-basaltes. de dacites et de rhyolites dans le secteur Tifraouine-Bouzedjar. Des dacites et de rhyolites dans les îles Habibas. Enfin des andésites à M'sirda ;

- (ii) un ensemble magmatique mis en place entre -10 et -8 Ma formé de basaltes et laves andésitiques associées dans la moyenne Tafna et M'sirda ;

(iii) un ensemble rhyolitique formant le piton de Hammam Bou Ghrara.

Plus récemment des âges radiométriques ont été réalisés sur ces roches volcaniques. Les datations par la méthode K/Ar (Loun-Hacini 1995) ont donné un âge compris entre -11.7 et -7.2 Ma pour les andésites du premier épisode volcanique et autour de - 4 Ma pour le volcanisme du deuxième épisode.

Cadre géologique et géographique

II.1.3 Géologie de Tifaraouine

La géologie du secteur d'étude laisse apparaitre deux unités géologiques (fig.3.) : Une première unité est formée par un socle paléozoïque. Cette unité est constituée de terrains plissés et métamorphisés de nature schisto-quartzitique recoupés par des péridotites. Ces terrains affleurent à la faveur d'une boutonnière anticlinale qui évolue en horst. Ils sont surmontés en discordance par une couverture néogène transgressive de nature marneuse renfermant des intercalations gréseuses rubéfiées. Ce horst dénommé dj el Akhal est visible dans la portion orientale du massif de Tifaraouine.

-Une deuxième unité forme le volcan de Tifaraouine lui-même. Celui-ci se localise sur le prolongement occidental du horst. Cette unité est constituée essentiellement par des andésites (80% environ du volume émis par le volcan) rarement dacite. Deux séries andésitiques sont observables dans le massif.

A la première série se rapporte les andésites à amphibole. Celles-ci montrent un développement important dans la portion occidentale du massif de Tifaraouine ; aux environs de la baie de BouZedjar.

La deuxième série corresponde à des andésites à pyroxènes. Celles-ci forment le reste du massif

Toutes ces formations volcaniques sont dominées par des produits pyroclastiques ; les brèches couvrent environ 80% du volume de matériel émis par le volcan en question.

Des corps subvolcaniques représentés par des dykes. necks et des dômes recoupant les brèches sont visibles dans le terrain.

Figure 03: Carte géologique simplifiée du Sahel d'Oran (réalisée à partir de la carte de Guardia. 1975).

II.2. Tectonique

000

000

°°°

°°

000

L'ensemble volcanique du Sahel d'Oran se localise sur le prolongement occidental du horst du Dj el Akhal qui forme. en outre. l'armature tectonique de cette région. L'examen de la carte structurale du Tell oranais (fig.3.) montre que le secteur en question se situe au niveau du nœud d'intersection de deux familles de failles synchrones. Une première famille de failles orientée autour de N60-70° et une deuxième famille de failles autour de N140°-160° (fig.4.).

0°0 0°0

°° °° °°

°° °° °°

Figure 04:Schéma structural du Tell oranais

L'interprétation de la carte aéromagnétique montre la présence de deux structures circulaires concentriques. interne de 3.7 kilomètre de diamètre circonscrite dans une structure externe de 14 kilomètre de diamètre. Ces deux structures apparaissent au niveau du lieu de croisement de ces deux familles de failles et elles sont interprétées comme des caldeiras (fig.5.)

10

Cadre géologique et géographique

000

°°

000

°°°

°°°

°° °° °° °° °° °°

.

Figure 05: Carte d'interprétation du levé aéromagnétique

Par ailleurs, l'établissement d'une coupe géologique orientée N-S effectuée suivant les forages réalisés par l'ORGM a montré que la portion centrale de la caldeira est constituée par les terrains primaires du horst et les portions septentrionale et méridionale par des grabens remplis respectivement d'andésites et de formations sédimentaires récents.

La minéralisation sulfurée mise au jour par forages est localisée dans le graben du Nord qui parait constituer son contrôle structural.

Chapitre III : Traitement des données

III-1 Estimation des ressources en cuivre et en or :

°°

°°° °°°

000

°°°

°°°

°° °° °° °° °° °° °° °° °° °°

000

°°

00 00 00

°°

°°

.

Pour l'estimation des ressources en cuivre et en or que recèlent les andésites du secteur en question. un traitement statistique a été effectué dans le cadre de notre étude. Celui-ci porte sur les résultats d'analyse des échantillons prélevés sur des carottes de vingt forages (fig.6.) réalisés par l'ORGM dans la caldeira du volcan de Tifaraouine. Le logiciel utilisé est Rockworks15 Révision 2009.10.27. Et XIs.

Fig. 6. Schéma montrant les positions des forages réalisés par l'ORGM

Le modèle extrait à partir des 20 forages (fig.7.) montre un trend d'enrichissement des métaux vers le Nord.

13

000

°° °° °°

°°

000

00

000

000

000

.

La légende montre des différents couleurs. Il passe depuis 5000ppm vers 30000ppm. Ceci montre une augmentation de minéralisation beaucoup plus vers le Nord

Pour l'étude de la distribution des éléments dans les carottes. les figures. striplogs (fig.8.1 à8.19) montrent d'une part que certains forages ont recoupé des teneurs en métaux plus riches que d'autres et d'autre part une répartition verticale très hétérogène.

000

0.00

60

-°°--

_%___%__

_%___%_

000

0

000000

°°°

000

°°° °°

°°

.

°°°

°°

0.00

_%___%

Traitement des données

°. °.

~

~

°. °.

°° °° °°

°° °°

L______

_%___%__

_%__%_

_%__

~ ~

 ~

_%__%_

_%___%___%

000

000

°°°

000

.

00

000

°° °° °°

0

000000

°°

°° °° °°

°°

000000

"

°°°

°°

20

_%

%

Pour réaliser ce traitement. deux conditions constituent des préalables:

*les teneurs de coupure sont fixées à des teneurs $\geq 0.4\%$ pour Cu et $\geq 0.2g/t$ pour Au (valeurs choisies pour définir la portion du matériel qui sera considérée comme niveau porteur. autrement dit les volumes que l'on peut vraiment sélectionner comme économiquement rentables).

*l'épaisseur minimale exigée est ≥2m

Le traitement a été effectué sur les données de ces forages répondant à ces préalables et il porte sur les paramètres à calculer suivants:

*teneur moyenne pondérée par les épaisseurs pour chaque sondage

*moyenne des teneurs moyennes pondérées par les épaisseurs pour chaque sondage qui représente la teneur moyenne de toute la zone minéralisée.

N°Sondages	Ep. (m)	T pondérée %	Accumulation
S10	49.2	0.83	40.836
S11	11.2	0.54	6.048
S12	4	0.8	3.2
S14	3	0.63	1.89
S15	73.1	1.25	91.375
S18	4	0.57	2.28
S20	4.8	0.25	1.2
dfS22	26.8	0.91	24.38
Moyenne	22.025	0.85	21.40

Table 1 : teneur en cuivre ≥0.4%

III.2.1 Cuivre(Cu)

Soit :

T (tonnage de minerai) S (Surface de la zone minéralisée calculée par le logiciel Rockworks).

Ep : puissance moyenne en mètre ou moyenne des épaisseurs des sections minéralisées observées sur les sondages calculée par Excel

V (volume).

t (teneur moyenne pondérée par ep)

 ρ (densité du minerai).

 $T=S^*\;ep^*\;\rho$

Surface :S=(X*Y)= 840m*20980m= 17623200m2

Volume :V=Surface*épaisseur=17623200m2*22m=387710400 m3 Tonnage = volume * ρ = 387710400 m3*4.2=1 628383.680

Table 2 : Ressourcesen cuivre

Volume m ³	Tonnage	T en moyenne en %	Resources en tonners
387710400	<mark>1628383680</mark>	0.85	13841261.28

III.2.1.1 Résultat

Le calcul effectué a permis d'estimer les ressources à 14 millions de tonnes environ 0.85% soit 1628383680 de tonnes.

Pour la validation de la teneur moyenne observée. des tests sont effectués.

°. Traitement des données

~ °. °. ~

°. °. °. °. ~

%

- 00

°° ~

°°

°°

°°° °°° °°°

~

"

。 。 %

°°

°°° °°°

°° °° °° °° °° °° °° °° °° °°

~

°°°

°°

00 00

°°

%

00000

000

000

000000

.

°°°

°. °°0

000

<u>______</u>

°. °. °. ~ °. ~ ~

III.2.1.2Test de bais

Pour réaliser ce test de biais on divise les 8 sondages en 2 séries.

La première série comprend cinq sondages (S11. S12. S14. S18 et S20) (Tab N°03.) et la deuxième l'ensemble de tous les forages (Tab N°04.).

1^{ère} série :

Table 3 :	Test	de biais	de la	teneur	movenne	pondérée	de 5	sondages	:
I dole e l	1000			concar	inoj enne	ponderee		somaages	•

N° sondage	Т	T pondérée	ξ=T- 0.85	ξ2
S11	0.54	0.85	-0.31	0.09
S12	0.8	0.85	-0.05	0.0016
S14	0.63	0.85	-0.22	0.0484
S18	0.57	0.85	-0.28	0.0784
S20	1.25	0.85	0.4	0.16
Somme			T ^{* =} -0 .46	∑=0.3784

 $\xi = T^*/N = -0.46/5 = 0.092$

M= 0.85-0.092= 0.758

 $S = \sum \xi 2 - T2/N = 0.3744 - 0.03872$

V = S/N-1 = 0.033968/4 = 0.0840

σ=0.289

Teneur moyenne observée : 0.85

Teneur moyenne calculée : 0.758±0.289

0.758+0.289=1

0.758-0.289=0.469

A l'issue du calcul de la 1ère série. Un grand écart est constaté entre la valeur moyenne observée et la valeur moyenne calculée; ceci peut être due au caractère trop hétérogène de la minéralisation

La précision est de l'ordre de 0.289

2ème série de forages (S10. S11. S12. S14. S15. S18. S20. S22).

N° sondage	Т	T pondérée	ξ=T- 0.85	ξ ²
S10	0.83	0.85	-0.02	0.0004
S15	1.24	0.85	0.39	0.1369
S22	0.91	0.85	0.06	0.0036
Somme			0.43	0.1445
Pour 8 Sondages			-0.03	0.5229

Table 4 : Test de biais de la teneux	r moyenne pondérée	de 8 sondages :
--------------------------------------	--------------------	-----------------

 $\xi^{**} = T^{**}/N=0.03/8=-0.00375$ M=0.85-0.00375= 0.84 S= $\Sigma\xi^2$ -T2/N =0.5229-0.0001125=0.5227 V=S/N-1= 0.07 $\sigma = 0.26$ $\sigma N^{1/2}= 0.091$ Teneur moyenne observée : 0.85 Teneur moyenne calculée : 0.84±0.26 0.84+0.26=1

0.84-0.26=0.58

A l'issue du calcul de l'ensemble des 8 forages. la valeur moyenne calculée montre aussi un écart par rapport à la valeur moyenne observée.

La précision passe de 0.289 pour 5 sondages à 0.26 pour la totalité des forages.

Remarque :

La teneur moyenne de calcul s'écart de la teneur moyenne observée en raison du nombre insuffisant de forages.

Si l'on veut augmenter la précision de l'estimation jusqu'à la valeur 1 (σ =1). le nombre de forages à réaliser sera :

 $\sigma N^{1/2}=1 \rightarrow 0.26 \text{ N}1/2=1 \rightarrow N1/2=1/0.26=4 \rightarrow N=16.$

III.2.2.Or (Au)

Fable 5	:	Teneur	en	Or ≥0.2 g/t :	
----------------	---	--------	----	---------------	--

N°sondage	Ep moyenne (m)	T pondérée (g/t)
TifS6	2.2	0.2
TifS8	4	0.2

Traitement des données

S10	117.2	0.42
TifS11	8.2	0.69
TifS12	35.7	0.57
TifS14	28	0.41
TifS15	67.2	0.83
Moyenne	37.5	0.48

S=(X*Y)=840m*20240m = 17001600m2

V=Surface*épaisseur = 17001600m2*37.5 = 637560000m3

Tonnage= volume * 18= 637560000m3*18*10-6=

63756*0.18=11.476.08T= 11.476.08T

Table 6 : Ressources en Or :

Volume m ³	Tonnage	T en moyenne en g/t	Ressources en tonners
637560000	1147608T	0.48	5508.5184 g ≈ 5.508 kg

III.2.2.1Résultat

Le calcul effectué a permis d'estimer les ressources à 1147608T environ à

0.48g/t soit 5.508kg d'Or.

Pour la validation de la teneur moyenne observée, des tests sont effectués.

Test de bais

Pour réaliser ce test de biais on divise les 7 sondages en 2 séries.

La première série comprend quatre sondages (S8. S11. S12 et S15) (Tab N°07.) et la deuxième l'ensemble de tous les forages (Tab N°08.).

1er série :

Table 7 :	Test de biais	de la teneur	movenne	pondérée de 4	sondages :
	I est de sidis	ac in concar	moy enne	pomaeree ac .	bomanges .

N°sondage	Т	0.48	ξ=T-0.48	ξ ²
TifS8	0.2	0.48	-0.28	0.0784
TifS11	0.69	0.48	0.21	0.0441
TifS15	0.83	0.48	0.35	0.1225
TifS12	0.57	0.48	0.09	0.0081
Somme			0.37	0.2531

 $\xi^*{=}\,T^* \ / \ N = 0.37/4{=}\ 0.0925$

m' = 0.48 - 0.0925 = 0.3875

 $S = \sum \xi 2 - T2/N = 0.2531 - 0.034225 = 0.218875$

V=S/N-1 = 0.218875/3=0.0729583333

 $\sigma = 0.2701.$

σN=0.135

Teneur moyenne observée : 0.48

Teneur moyenne calculée : 0.3875±0.2701

0.3875 + 0.2701 = 0.6576

0.3875-0.2701=0.1174

A l'issue du calcul de la 1ère série. un grand écart est constaté entre la valeur moyenne observée et la valeur moyenne calculée ; ceci peut être due au caractère trop hétérogène de la minéralisation

La précision est de l'ordre de0.2701.

N°sondage	Т	0.48	ξ=T-0.48	ξ ²
TifS14	0.41	0.48	-0.07	0.0049
S10	0.42	0.48	-0.06	0.0036
TifS6	0.2	0.48	-0.28	0.0784
Somme			-0.41	0.0896
S pour 7 sondages			-0.04	0.34

Table 8 : Test de biais de la teneur moyenne pondérée de 7 sondages :

 $\xi^{**} = T^{**} / N = -0.04/7 = -0.0057142857$

m'= 0. 38-0.0057142857 = 0.4742857143

 $S = \sum \xi 2 - T^{**}2/N = 0.34 - 0.0002285714 = 0.3397714286$

V = S/N - 1 = 0.0566285714

 $\sigma = 0.237$

 $\sigma N=0.089$

Teneur moyenne observée : 0.48

Teneur moyenne calculée : 0.47 ±0.237

0.47+0.237=0.707

0.47-0.237=0.233

A l'issue du calcul de l'ensemble des 7 forages. la valeur moyenne calculée montre aussi un écart par rapport à la valeur moyenne observée.

La précision passe de 0.2701 pour 4 sondages à 0.237 pour la totalité des forages.

Traitement des données

°.

~

III.3 Coupes :

°°

°°

ļ

000

, ,

0

ļ

°°°

, .,

°°

°° °° °°

00

°° °° °°

%

000

.

, ,

0

ļ

0

000

0,00

~

°° °°

000

000

00000

"

°°

00000

0.0

60

Coupe TifS21-TifS1

~

 ~ ~ ~

Traitement des données

Figure 10.2:Coupe TifS21-TifS1

0°0

°°°

.

00000

, .,

°°

°° °° °° °° °° °° °° °° °° °° °° °° °°

°°

00000

0

°°°

00000

.

°°

°°

Figure 10.3:Coupe TifS12-TifS15

00

<u>"</u>

000

.

°°°

, ,

000000

°° °° °° °° °° °° °° °° °° °°

°°

000

0

000

°°

000

°°° °°

00000

.

000

°°°

Figure 10.4:Coupe TifS13-TifS3

_%__

_°°-

_°°-

______%_____%_____%

°°

0

ļ

°°

°°° °°°

°° °° °° °° °° °°

°°

Figure 10.5:Coupe TifS14-TifS22

_%

_%___%___%__

00 00 00

00 00 00

°°

000

000

°°

0

ļ

°°°

°°° °°°

°°° °°° °°°

°° °° °°

°° °°

°° °° °°

°°° °°°

°° °° °° °°

°°

00 00 00

.

°°°

°°

0

Figure 10.6:Coupe TifS20-TifS1

Les coupes (fig.10.1 à 10.6.) illustrent les morphologies des corps minéralisés recoupés par forages (UTM). Elles montrent des pipes. nids et amas de concentration de Cu. Ces corps sont reliés à la présence de tufs andésitiques altérés par la carbonatation.

Conclusion générale

Conclusion générale :

Le secteur d'étude est constitué de deux unités géologiques :

*Un horst qui constitue l'armature tectonique du secteur. Il est constitue de terrains paléozoïques de nature schisto-quartizique recouverts en partie par des marnes à intercalations gréseuses rubéfiées d'âge Miocène.

* le volcan de Tifaraouine constitué par des andésites (environ 80% du matériel émis par le volcan et 20% de dacite).Ces formations se présentent essentiellement sous forme de brèches. tufs et dans une moindre mesure de coulées de laves. Des corps subvolcaniques représentés par des dykes. necks et dômes tardifs recoupent ces formations. Par ailleurs. ces terrains ont subi postérieurement à leur mise en place des altérations hydrothermales. Ils montrent des portions silicifiées. argilisées. chloritisées et carbonatisées Le secteur en question se caractérise par une tectonique souple à l'origine de la mise en place d'une voûte anticlinale qui évolue en horst orienté autour de N60°-70° et des failles transversales orientées N140°-160°. Par ailleurs deux structures circulaires concentriques emboitées. interne de diamètre 3.7km et externe de 14km de diamètre mises en place au ni ²veau de ce carrefour tectonique interprétées en caldeira.

La portion septentrionale de la caldeira interne encaisse des minéralisations. Les forages implantés dans la portion nord de la caldeira ont recoupé des minéralisations sulfurées dominées par la chalcopyrite.

Les échantillons de carotte analysés ont révélé des teneurs en cuivre à enjeu par endroits. économique. Certains ont également recoupé des niveaux faisant apparaître avec le cuivre de l'or.

L'estimation des ressources en cuivre et en or ont livré 13. 841.261.28 T de cuivre et 5.508Kg d'Or.

°. Annexes

~ °. ~ °. 20

~

Annexes:

°° °, ~ ~

~

~ ~ ~

~ ~ ~ ~ ~

~ ~ ~

S10

~

°. °.

~°°

00 00 00

°°° °°°

°° °° °°

°°°

000

°°

-%

_% -%°-°°--~° _% _%_ _°°--_____%____%

$\sim - \cdot$					
DE	А	Epaisseur (m)	Teneur en Cu (ppm)	Teneur pondérée (ppm)	Au g/t
250	250.8	0.8	50000	40000	0.02
279	280	1	17500	17500	0.5
229.3	230.1	0.8	17300	13840	0.5
234	235	1	14500	14500	0.05
248	249	1	12800	12800	0.01
267	269	2	12300	24600	0.02
278	279	1	11000	11000	0.8
249	250	1	10300	10300	0.5
273	275	2	10300	20600	0.05
251.6	253	1.4	8800	12320	0.2
275	276	1	8800	8800	0.5
280	281	1	8800	8800	0.02
2	4	2	8300	16600	0.05
271	273	2	8300	16600	0.01
230.1	231	0.9	7800	7020	0.01
282	284	2	7500	15000	0.5
286	288	2	7300	14600	0.05
281	282	1	7000	7000	0.05
4	6	2	6800	13600	0.2
246	247	1	6800	6800	0.1
276	277	1	6500	6500	0.2
261	263	2	6000	12000	0.1
265	267	2	6000	12000	0.005
235	236	1	5800	5800	0.005
284	286	2	5800	11600	0.05
232.5	234	1.5	5500	8250	0.02
247	248	1	5500	5500	0.5
12	14	2	5000	10000	0.1
269	271	2	5000	10000	0.5
228.5	229.3	0.8	4800	3840	0.02
259	261	2	4800	9600	0.0025
236	237	1	4500	4500	0.0025
245	246	1	4500	4500	0.01
277	278	1	4300	4300	0.05
239	240	1	4000	4000	0.1
243	244	1	4000	4000	0.2
Somme		49.2		408670	
Movenne				8306.300813	1

°° _%__ _%__ _°°__ _% _%--°° -°°---_°°-_% -% -0° 36

-0° ~~

°° Annexes

°.

~ ~ ~

2

°.

TifS11					
			Teneur brute Cu	Teneur	$\Delta u (\sigma/t)$
DE	Α	Epaisseur m	(ppm)	pondérée(ppm)	Au (g/t)
54	55	1	8800	8800	2
55	56	1	8300	8300	0.5
57	57.9	0.9	6300	5670	0.1
189.8	190.8	1	5500	5500	0.0025
53	54	1	4800	4800	0.1
185.4	186.5	1.1	4800	5280	1
51	52	1	4500	4500	0.1
190.8	191.8	1	4500	4500	
159.6	160.6	1	4300	4300	0.5
186.5	187.6	1.1	4300	4730	0.005
187.6	188.7	1.1	4000	4400	0.0025
		11.2	5463.636364	60780	
				5426.785714	

TifS12

~ °. ~ ~

~ ~

~~

°°

o o o o o o o o o o

°° **"** , ,, °°

°°°

, .,

°°

°°° °°°

00

ço ço ço ço ço ço

°°

00000

000

°°°

°° °° °°

000 %

000000

"

°°

°°°

000

_% -%°-~~ _____%____%__

 _%___%___%___%__

å

DE	A	Epaisseur m	Teneur en Cu (ppm)	teneur pondérée (ppm)	Au g/t
80.2	81.2	1	15000	15000	4
174	175	1	7300	7300	1
94	95	1	5300	5300	1
93	94	1	4800	4800	2
		4	8100	32400	
				8100	

TifS14

			Teneur en	Teneur	An g/t
DE	Α	Epaisseur m	Cu(ppm)	pndérée(ppm)	g, v
469	470	1	9000	9000	
506.7	507.7	1	6000	6000	0.2
502.7	503.7	1	4000	4000	
		3	6333.333333	19000	
				6333.333333	

<u>_%__%__%__%__%__%__%__%__</u>

_%

°° __|

°. °. ~ ~ °° -

°°

			Teneur en	Teneur	
DE	Α	Epaisseur m	Cu(ppm)	pndérée(ppm)	Au g/t
76.6	77.6	1	50000	50000	1
77.6	78.6	1	42500	42500	2
72.6	73.6	1	35000	35000	1
74.6	75.6	1	35000	35000	2
75.6	76.6	1	35000	35000	0.2
82.6	83.6	1	35000	35000	2
78.6	79.6	1	30000	30000	2
80.6	81.6	1	30000	30000	1
84.6	85.5	0.9	30000	27000	1.5
65.7	66.6	0.9	27500	24750	2
69.6	70.6	1	27500	27500	0.1
79.6	80.6	1	27500	27500	2
68.6	69.6	1	25000	25000	1
81.6	82.6	1	23800	23800	1.5
83.6	84.6	1	23300	23300	2
73.6	74.6	1	22000	22000	2
112.7	113.7	1	19500	19500	
14	15	1	16500	16500	2
109.7	110.7	1	16000	16000	1
70.6	71.6	1	15800	15800	2
85.5	86.2	0.7	11500	8050	1
134	135	1	10800	10800	1
53.1	54.4	1.3	10500	13650	
113.7	114.7	1	10500	10500	
129	130	1	10500	10500	0.5
27	28	1	10000	10000	0.5
71.6	72.6	1	9800	9800	0.1
132	133	1	9800	9800	0.3
28	29	1	9300	9300	1
128	129	1	8800	8800	0.1
19	20	1	8500	8500	0.8
26	27	1	8500	8500	1
107.7	108.7	1	8500	8500	0.5
25	26	1	8300	8300	0.5
110.7	111.7	1	8000	8000	
106.7	107.7	1	7500	7500	
126	127	1	7500	7500	0.8
133	134	1	7500	7500	0.8
9.8	10.9	1.1	7000	7700	0.5
		1	1		1

-°°------- _____%____%__

_%__ _%__ _%__ _% _%_ -°°-- _%_ -%°--% -00 _% _%

~

00 00 00

°°° °°°

So So So So So So

L______

-00 -°°--%-_% _% -°° -v°----% _°° _°°--%°--

~ ~ ~ ~ ~

~

~ ~ ~

~

°° °° °°

~~ ~ ~

~ ~ ~

°°

17	18	1	7000	7000	0.5
64.7	65.7	1	6500	6500	0.8
108.7	109.7	1	6500	6500	0.5
131	132	1	6500	6500	0.3
24	25	1	6000	6000	0.2
111.7	112.7	1	6000	6000	
130	131	1	6000	6000	0.61
135	136	1	5800	5800	0.8
16	17	1	5500	5500	0.5
29	30	1	5500	5500	0.05
344	345.1	1.1	5500	6050	0.1
348.4	349.5	1.1	5500	6050	0.05
12	13	1	5300	5300	0.8
13	14	1	5300	5300	0.5
125.1	126	0.9	5300	4770	0.2
359	360	1	5300	5300	
10.9	12	1.1	5000	5500	0.1
63.7	64.7	1	5000	5000	0.2
366	367	1	5000	5000	
45.4	46.3	0.9	4800	4320	0.05
162.3	163.3	1	4800	4800	0.8
347.3	348.4	1.1	4800	5280	0.05
15	16	1	4500	4500	0.1
23	24	1	4500	4500	0.5
140.9	141.9	1	4500	4500	0.5
386	387	1	4500	4500	
127	128	1	4300	4300	0.5
20	21	1	4000	4000	0.1
22	23	1	4000	4000	0.2
61.7	62.7	1	4000	4000	0.5
97.5	98.5	1	4000	4000	
98.5	99.5	1	4000	4000	
156.2	157.2	1	4000	4000	
367	368	1	4000	4000	
		73.1	12505.47945	908620	
				12429.82216	

-°°-------_____%____%__ _%__ _____%____% _%_ _%_ -%°--% -00 _% _%

~ ~ ~ ~ ~ ~ ~

°°° °°°

°°° °°°

So So So So So So

L______

-00 ~ -%°---_°° -%°-°°--~° -% _%--00 -%°--

~ ~ ~

~

°° °° °°

~~

°. °.

TifS18

~

°° °° °°

°°

, .,

°°°

°° °° °°

°°° °°°

00000

°° °° °°

00000

0

°°

00000

00000

°°

00000

°,

L______

 ° ° °

			Teneur enCu	
DE	Α	Epaisseur	(ppm)	Teneur pondérée(ppm)
419	420	1	7000	7000
410	411	1	6500	6500
496	497	1	5000	5000
495	496	1	4500	4500
		4	5750	23000
				5750

°. °.

° ° ° °

~

°.

~ ~

 ~

TifS20

DE	Α	Epaisseur m	Teneur en Cu(ppm)	Teneur pondérée(ppm)
172.1	173.2	1.1	15500	17050
171	172.1	1.1	14300	15730
174.5	175.3	0.8	14300	11440
175.3	176.1	0.8	12300	9840
178	179	1	6300	6300
		4.8	12540	60360
				12575

TifS22

DE	Α	Epaisseur m	Teneur en Cu(ppm)	Teneur pondérée(ppm)
10.0	11.0	1	20500	20500
25	26	1	20500	20500
24	25	1	19300	19300
110	110.8	0.8	17000	13600
22	23	1	16500	16500
97	98	1	14500	14500
23	24	1	14000	14000
109	110	1	13300	13300
95.7	97	1.3	11000	14300
57	58	1	9000	9000
110.8	111.6	0.8	8800	7040
108	109	1	7000	7000
27	28	1	6800	6800
58	59	1	6300	6300
21	22	1	5800	5800
14	15	1	5500	5500

 -00

_%___%___%___%___%___%___%

~

° °

°.

°.

~

18	19	1	5500	5500
26	27	1	5300	5300
20	21	1	5200	5200
106	106.9	0.9	5000	4500
49	50	1	4800	4800
98	99	1	4500	4500
19	20	1	4300	4300
106.9	108	1.1	4300	4730
225.4	226.4	1	4300	4300
226.4	227.4	1	4300	4300
104	105	1	4000	4000
		26.9	9159.259259	245370
				9121.561338

°.

Tif S6

~

00000

%

°°

°°° °°°

00 00 00

000

°°°

°°° °°°

00 00 00

~~ _____

De	А	Cu (ppm)	Epaisseur m	Teneur en Au g/t	Teneur pndérée g/t
26.7	27.8	1100	1.1	0.2	0.22
28.9	30	1000	1.1	0.2	0.22
			2.2	0.2	0.22
					0.22

Tif S8

DE	А	Epaisseur m	Teneur en Au g/t	Teneur pondérée g/t
258	260	2	0.2	0.4
262	264	2	0.2	0.4
		4	0.2	0.8
				0.2

S10

				Teneur en Au	
DE	Α	Cu (ppm)	Epaisseur m	g/t	Teneur pondérée(g/t)
210	212	450	2	1	2
294	296	380	2	1	2
76	78	0	2	1	2
80	82	0	2	1	2
98	100	0	2	1	2
102	104	0	2	1	2

~

~ ~

°°

386	388	0	2	1	2	
278	279	11000	1	0.8	0.8	
196	198	380	2	0.8	1.6	
128	130	0	2	0.8	1.6	
279	280	17500	1	0.5	0.5	
229.3	230.1	17300	0.8	0.5	0.4	
249	250	10300	1	0.5	0.5	
275	276	8800	1	0.5	0.5	
282	284	7500	2	0.5	1	
247	248	5500	1	0.5	0.5	
269	271	5000	2	0.5	1	
52	54	3000	2	0.5	1	
26	28	350	2	0.5	1	
433	434	330	1	0.5	0.5	
190	192	230	2	0.5	1	
436	437	200	1	0.5	0.5	
68	70	0	2	0.5	1	
78	80	0	2	0.5	1	
82	84	0	2	0.5	1	
84	86	0	2	0.5	1	
88	90	0	2	0.5	1	
90	92	0	2	0.5	1	
94	96	0	2	0.5	1	
96	98	0	2	0.5	1	
104	106	0	2	0.5	1	
388	390	0	2	0.5	1	
406	408	0	2	0.5	1	
384	386	0	2	0.5	0.8	
251.6	253	8800	1.4	0.2	0.28	
4	6	6800	2	0.2	0.20	
276	277	6500	1	0.2	0.2	
243	244	4000	1	0.2	0.2	
244	245	3800	1	0.2	0.2	
431	432	750	1	0.2	0.2	
0	2	680	2	0.2	0.4	
200	202	650	2	0.2	0.4	
435	436	650	1	0.2	0.2	
218	220	580	2	0.2	0.4	
56	58	400	2	0.2	0.4	
186	188	350	2	0.2	0.4	
214	216	350	2	0.2	0.4	
206	210	280	2	0.2	0.4	
292	294	150	2	0.2	0.4	
86	88	0	2	0.2	0.1	
92	94	0	2	0.2	0.1	
	· ·	5	-	0.2		

~ ~

°°° °°°

°°° °°°

So So So So So So

°°

-00 ~ _~°°--00 -~° _% _%_ _°°-- _____%____%__

% ~ <u>~</u>%__

_~~ _%_ _% _%_ ~

~ ~ ~ ~ °° ~ °° °°

~

~~

<mark>∾ _</mark>|

~

° ° °

~

°° °°

130	132	0	2	0.2	0.4
176	178	0	2	0.2	0.4
332	334	0	2	0.2	0.4
370	372	0	2	0.2	0.4
372	374	0	2	0.2	0.4
408	410	0	2	0.2	0.4
412	414	0	2	0.2	0.4
414	416	0	2	0.2	0.4
416	418	0	2	0.2	0.4
418	420.4	0	2.4	0.2	0.48
423.4	425	0	1.6	0.2	0.32
425	427	0	2	0.2	0.4
427	428.5	0	1.5	0.2	0.3
428.5	430	0	1.5	0.2	0.3
439	441	0	2	0.2	0.4
			117.2	0.41969697	49.68
					0.423890785

° °

~

°.

° °

TifS11

°° % % 000 **"** °° **"** 000 **"** 0 ļ **|**| °° 0.0

000

000

°°° °°

°° °° °°

°° °° °° °° °° °° °° °° °° °° °°

°,

L. 000

DE	Α	Epaisseur	Cu (ppm)	Epaisseur m	Teneur en Au (g/t)	Teneur pondérée (g/t)
54	55	1	8800	1	2	2
56	57	1	3300	1	1	1
185.4	186.5	1.1	4800	1.1	1	1.1
55	56	1	8300	1	0.5	0.5
159.6	160.6	1	4300	1	0.5	0.5
44	45	1	2800	1	0.2	0.2
50	51	1	3000	1	0.2	0.2
184.3	185.4	1.1	3000	1.1	0.2	0.22
				8.2	0.7	5.72
						0.697560976

Tif S12

DE	Α	Cu ppm	Epaisseur m	Teneur en Au (g/t)	Teneur pondérée (g/t)
47.7	48.7	950	1	0.0025	0.0025
80.2	81.2	15000	1	4	4
93	94	4800	1	2	2
92	93	3300	1	1	1
94	95	5300	1	1	1
173	174	4500	1	1	1
174	175	7300	1	1	1

43

-%

°. °.

184	186		2	1	2
189.2	190.2	3800	1	0.8	0.8
14	16	0	2	0.5	1
46	47.7	0	1.7	0.5	0.85
48.7	49.7	1100	1	0.5	0.5
50.7	51.7	1000	1	0.5	0.5
180	182		2	0.5	1
188.2	189.2	3300	1	0.5	0.5
36	38	0	2	0.2	0.4
38	40	0	2	0.2	0.4
40	42	0	2	0.2	0.4
42	44	0	2	0.2	0.4
44	46	0	2	0.2	0.4
49.7	50.7	800	1	0.2	0.2
81.2	82.0	3000	0.8	0.2	0.16
95	96	2500	1	0.2	0.2
175	176	2500	1	0.2	0.2
176	177	1900	1	0.2	0.2
186	188.2		2.2	0.2	0.44
			35.7	0.68	20.5525
					0.57570028

°.

 ~ ~

~ ~ ~

~

°°

°. °.

a a a a a a a

TifS14

a a a a a a a a a a

°° °° °°

°°

00000

°° °° °° °°

°°°

°°

000000

~

00000

°°

°°

°°°

00000

°°°

000000

"

°°

°°°

%

°°

-%

-00

-%---%

~°°____°°

DE	A	Cu(ppm)	Epaisseur m	Teneur en Au (g/t)	Teneur pondérée (g/t)
398	399		1	1	1
393	394		1	0.8	0.8
389	390		1	0.5	0.5
401	402	1200	1	0.5	0.5
402	403	2200	1	0.5	0.5
412.2	413.2	250	1	0.5	0.5
413.2	414.2	280	1	0.5	0.5
414.2	415.2	650	1	0.5	0.5
415.2	416.2	850	1	0.5	0.5
416.2	417.2	650	1	0.5	0.5
417.2	418.2	830	1	0.5	0.5
418.2	419.2	950	1	0.5	0.5
419.2	420.2	550	1	0.5	0.5
420.2	421.2	530	1	0.5	0.5
421.2	422.2	130	1	0.5	0.5
515.7	516.7	2600	1	0.5	0.5

_%___%___%

.00 ____00 ____00 ____00 ____00 ____00 ____00

-06

°. °.

°. °.

°°

°.

° ° °

548	549	2100	1	0.5	0.5
281.6	282.6		1	0.2	0.2
347	348		1	0.2	0.2
351	352		1	0.2	0.2
381	382		1	0.2	0.2
386	387		1	0.2	0.2
390	391		1	0.2	0.2
506.7	507.7	6000	1	0.2	0.2
509.7	510.7	2000	1	0.2	0.2
513.7	514.7	2300	1	0.2	0.2
528.7	529.7	1900	1	0.2	0.2
547	548	2400	1	0.2	0.2
			28	0.410714286	11.5
					0.410714286

~

Tif S15

a a a a a a a a a a

°° °°

°° °°

oo oo oo oo oo oo oo oo

°°

0.0

°°

\$° \$° \$° \$° \$° \$° \$° \$° \$° \$° \$° \$°

°°

00000

000

°°°

°°°

00000

°°°

°°°

°°

~~ _____

·~?

DE	A	Cu ppm	Epaisseur m	Teneur en Au (g/t)	teneur pondérée (g/t)
14	15	16500	1	2	2
65.7	66.6	27500	0.9	2	1.8
70.6	71.6	15800	1	2	2
73.6	74.6	22000	1	2	2
74.6	75.6	35000	1	2	2
77.6	78.6	42500	1	2	2
78.6	79.6	30000	1	2	2
79.6	80.6	27500	1	2	2
82.6	83.6	35000	1	2	2
83.6	84.6	23300	1	2	2
81.6	82.6	23800	1	1.5	1.5
84.6	85.5	30000	0.9	1.5	1.35
26	27	8500	1	1	1
28	29	9300	1	1	1
30	31	3500	1	1	1
68.6	69.6	25000	1	1	1
72.6	73.6	35000	1	1	1
76.6	77.6	50000	1	1	1
80.6	81.6	30000	1	1	1
85.5	86.2	11500	0.7	1	0.7
109.7	110.7	16000	1	1	1
134	135	10800	1	1	1
12	13	5300	1	0.8	0.8
19	20	8500	1	0.8	0.8
64.7	65.7	6500	1	0.8	0.8

_%___%___%

 45

-%

°. Annexes

~ ~ °° -

°°

~

~

126	127	7500	1	0.8	0.8
133	134	7500	1	0.8	0.8
135	136	5800	1	0.8	0.8
136	136.9	2800	0.9	0.8	0.72
146.6	147.7	2000	1.1	0.8	0.88
162.3	163.3	4800	1	0.8	0.8
130	131	6000	1	0.61	0.61
9.8	10.9	7000	1.1	0.5	0.55
13	14	5300	1	0.5	0.5
16	17	5500	1	0.5	0.5
17	18	7000	1	0.5	0.5
18	19	2600	1	0.5	0.5
23	24	4500	1	0.5	0.5
25	26	8300	1	0.5	0.5
27	28	10000	1	0.5	0.5
31	32	3500	1	0.5	0.5
32	33	2400	1	0.5	0.5
33	34	3000	1	0.5	0.5
34	35	3300	1	0.5	0.5
54.4	55.2	3300	0.8	0.5	0.4
59.7	60.7	2100	1	0.5	0.5
60.7	61.7	2500	1	0.5	0.5
61.7	62.7	4000	1	0.5	0.5
107.7	108.7	8500	1	0.5	0.5
108.7	109.7	6500	1	0.5	0.5
124.2	125.1	3500	0.9	0.5	0.45
127	128	4300	1	0.5	0.5
129	130	10500	1	0.5	0.5
139.9	140.9	3000	1	0.5	0.5
140.9	141.9	4500	1	0.5	0.5
141.9	142.9	1400	1	0.5	0.5
142.9	143.8	3000	0.9	0.5	0.45
148.6	149.6	1300	1	0.5	0.5
161.2	162.3	3300	1.1	0.5	0.55
318.5	319.5	300	1	0.5	0.5
131	132	6500	1	0.3	0.3
132	133	9800	1	0.3	0.3
22	23	4000	1	0.2	0.2
24	25	6000	1	0.2	0.2
63.7	64.7	5000	1	0.2	0.2
75.6	76.6	35000	1	0.2	0.2
125.1	126	5300	0.9	0.2	0.18
315.5	316.5	2100	1	0.2	0.2
			67.2	0.8325	55.84
					0.830952381

_____%____%_

~ _____%____%____%

<u>~</u>%__

% _% -00 _°°-~

~ ~ ~ ~ ~ ~ ~ ~

°°° °°°

°°° °°°

So So So So So So

L. 000

-00 ~ _% _% * -~° _% _%--% _°°--

°° °°

~

~~

°° Annexes

~ *

°°

~

~

~ ~

~

00 00 00

°°° °°°

°° °° °°

So So So So So So

L______

-00 ~ _%___%

_% °°--~° _% _%--00 _°°-- _____%____%_

°° _____%____%____%

%

______%_____%____%_____

% _%_ _%_ _% _%_ ~

°° °° ~ ~ ~ ~ ~

~

~

-Bibliographie:

BAKHNEVA. D. (1995). Rapport annuel sur les études des phénomènes d'altérations hydrothermales du volcanisme miocène du littoral Algérien. ORGM. 17p.

BELMOUHOUB. A. (1995). Rapport sur l'évaluation géochimique de la potentialité de quelques manifestations ferrugineuses du massif des M'sirda (Algérie Nord occidentale). Rapport de fin de cycle C.E.S.E.V Nancy. ORGM. 57p.

BELMOUHOUB. A; et TITOV. E. (1995). Projet d'inventaire régional des polymétaux liés au volcanime du littoral oranais. ORGM. 7p.

HADDAD. M. (189). Prospection géochimique stratégique du massif de M'sirdaFouaga (Algérie Nord Occidentale). traitement informatique des données géochimiques. Rapport de fin de cycle C.E.S.E.V Nancy. EREM 55p.

STRZELECKI. R. (1989). Rapport sur les résultats des travaux de prospection des polymétaux associés au volcanisme Nord-Ouest Algérien (Région de M'sirda). EREM 43p.

Semroud. B. Ouabadi. A. &belanteur. O. (1992). Typologie des granites miocènes de la marge algérienne par la cristallochimie des micas. 14e Réun. ann. Sci. Terre. clermont. France.

Smirnov. V. (1988). Géologie des minéraux utiles. Edition Mir. Moscou. 320 p

Louni-Hacini A., Bellon, H., Maury R. C., Megartsi, M., Coulon, C., Semroud, B., Cotten, J., Coutelle, A. 1995. Datation 40K-40Ar de la transition du volcanisme calco-alcalin en Oranie au Miocène supérieur. Compte rendu de l'académie des sciences. Paris. Série IIa 975-982.

Coulon. C. Megartsi. M. Fourcade. S. Maury. R. C. Bellon. H. Louni-Hacini. A. Cotton. I. Coutelle. A. et Hermitte. D. (1995).Post collisional transition from calc-alkaline to alkaline volcanism during the Neogene in Oranie (Algeria): magmatic expression of a slab breakoff..Lithos 62. 87-110.

Obert. D. 1981 Géologie des Babor (Algérie) ; importance de la paléotectonique alpine dans l'orogene alpine. Revue de géol. Dynamique et de géographie physique. Vol. 25. Fasc. 2. pp 99-117. Paris. 81.

°° °° °°

000

ļ

000

°°

Guardia. P. (1975). Géodynamique de la marge alpinedu continent africain d'aprés l'étude de l'Oranie Nord Occidentale. Relations structurales structurales et paléogéographiques entre le Rif externe. le Tell et l'avant-pays atlasique. Thèse Sc. Univ. Nice. 286p.

°°

°°

°°° °°°

°°

ļ

°°

°°°

°° °° °° °° °° °° °° °° °° °°

0,00

000

°° °° °° °°

°°

00000

000

°°