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Abstract 

Thanks to advances in the biomedical technology field, Hemodynamic monitoring 

can be carried out with non-invasive methods such as impedance cardiography. This 

technique is reliable, safe, simple, secure, and less expensive; it is used for the diagnosis 

and continuous monitoring of cardiovascular diseases.  

The non- invasive ICG technique comes to solve the complexity problem for 

measurement and analyzing heart diseases based on the thoracic electrical impedance 

change assessment that is due to blood velocity and resistivity changes in order to 

estimate several hemodynamic parameters.  

This type of signal is altered by artefacts’ which distort the significant information of 

the signal. This distortion will cause clinicians to misdiagnose or monitor the 

pathological state of patients, for whom it is important to find techniques to eliminate 

noises without destroying the varied morphology of the signal.  For this reason, the 

signal processing field developed several denoising technique applied to respiratory and 

motion artifacts suppression without corrupting the shape of the signal.  

Our three denoising methodologies are based on several comparative studies between 

different type of adaptive filters and Savitzky-Golay (SG) filtering, singular value 

decomposition (SVD) with least mean squares (LMS), the orthogonal wavelet family: 

Daubechies wavelets (db) and Symlet (sym) with several types of thresholding such as 

Shrinkage, NeighBlock and classical threshold as Rigrsure and Sqtwolog; they are all 

compared with linear filters as well as with the LMS-based adaptive filter. The 

evaluation was done on 10 subjects and the results showed efficiency, where the best 

method in terms of noise reduction is sym8 wavelets at level 5, and the most optimal 

thresholding technique is the Rigrsure technique with a mean error rate (MER) equal to 

0.0001 %.  

The automatic detection of the characteristic points allowed us to calculate the cardiac 

indices and subsequently to extract significant information on the condition of each 

patient. In our work we developed an algorithm under Matlab for the processing and 

identification of characteristic points on the 10 ICG signals. This new algorithm aims to 

detect B, C and X points by using a simple mathematical model based on two bells to 

study ICG signals for 26 cycles; the pre-ejection and the ejection waves. The results 

significantly improve the efficacy and accuracy of LVET estimation for beat-to-beat 

estimation under conditions.  



The detection is realised on ICG signals from 10 healthy subjects. The calculations 

results show effectiveness and accuracy; when compared with the normal range for a 

healthy person. To estimate cardiac indices and time intervals, we are finding a solution 

that is effective and simple. We have developed an application of automatic access to 

help the clinics to analyse ICG and electrocardiogram (ECG) signals, either locally or 

remotely.  

This application aims to make available all necessary information to doctors that help 

them to establish a fast and reliable diagnosis either locally or remotely. This application 

is automatic access to the real-time application used to optimise the quality of care and 

speed of diagnosis, whatever their geographical location. It is performed according to 

two criteria: information storage and data manipulation. This application is based on 

three softwares: Java Netbeans, Matlab, and WAMP / EASYPHP (MySQL) for web 

development.  

Keywords-- ICG, ECG, Hemodynamic monitoring, Non-invasive, Denoising 

concept, Automatic detection, Automatic access application. 



Résumé 

Grâce aux avancées dans le domaine de la technologie biomédicale, la surveillance 

hémodynamique peut être effectuée à l’aide des méthodes non invasives telles que la 

cardiographie par impédance. Cette technique est fiable, sûre, simple, sécurisée et moins 

coûteuse ; elle est utilisé pour le diagnostic et la surveillance continue des maladies 

cardiovasculaires.  

La technique non invasive d’ICG vient pour résoudre le problème de complexité de la 

mesure et de l'analyse des maladies cardiaques, basant sur l'évaluation de changement 

d'impédance électrique thoracique qui est dus aux changements de vitesse et de 

résistivité du sang afin d'estimer plusieurs paramètres hémodynamiques. Ce type de 

signal est altéré par des artefacts qui ruinent l’information significative du signal.  Cette 

distorsion pousse les cliniciens vers un mauvais diagnostic et une mauvaise surveillance 

de l'état pathologique des patients, dans lesquels il est important de trouver des 

techniques pour éliminer les bruits sans détruire la morphologie de notre signal.  

Pour cette raison, le domaine du traitement du signal a développé plusieurs 

techniques de débruitage appliquées à la suppression des bruits respiratoires et de 

mouvement sans déformer la forme du signal. Nos trois méthodologies de débruitage 

sont basées sur plusieurs études comparatives entre différents types de filtres adaptatifs 

et le filtrage Savitzky-Golay (SG), la décomposition en valeurs singulières (SVD) avec 

des carrés moyens maigres (LMS), la famille des ondelettes orthogonales : ondelettes de 

Daubechies (db) et Symlet (sym) avec plusieurs types de seuillage tels que Shrinkage, 

NeighBlock et seuil classique comme Rigrsure et Sqtwolog ; ils sont tous comparés aux 

filtres linéaires ainsi qu'au filtre adaptatif basé sur LMS. L'évaluation a été faite sur 10 

sujets et les résultats ont montré une efficacité, où la meilleure méthode en termes de 

réduction de bruit est les ondelettes sym8 au niveau 5, et la technique de seuillage la plus 

optimale est la technique Rigrsure avec un taux d'erreur moyen (MER) égal à 0,0001 %. 

La détection automatique des points caractéristiques nous a permis de calculer les 

indices cardiaques et par la suite d'extraire des informations significatives sur l'état de 

chaque patient. Dans notre travail, nous avons développé un algorithme sous Matlab 

pour le traitement et l'identification de points caractéristiques sur les 10 signaux ICG. Ce 

nouveau algorithme vise à détecter les points B, C et X en utilisant un modèle 

mathématique simple basé sur deux cloches pour étudier les signaux ICG pendant 26 

cycles ; les ondes de pré-éjection et d'éjection. Les résultats améliorent considérablement 



l'efficacité et la précision de l'estimation LVET pour l'estimation battement par 

battement dans certaines conditions. 

La détection est réalisée sur les signaux ICG de 10 sujets sains. Les résultats des 

calculs montrent une efficacité et une précision ; par rapport à la plage normale d'une 

personne en bonne santé (saine). Pour estimer les indices cardiaques et les intervalles de 

temps, nous trouvons une solution efficace et simple. Nous avons développé une 

application d'accès automatique pour aider les cliniques à analyser les signaux ICG et 

électrocardiogramme (ECG), soit localement, ou à distance.   

Cette application a pour objectif de mettre à disposition des médecins toutes les 

informations nécessaires pour les aider à établir un diagnostic rapide et fiable soit 

localement soit à distance. Cette application est un accès automatique en temps réel 

permettant d'optimiser la qualité des soins et la rapidité du diagnostic, quelle que soit 

leur situation géographique. Elle est réalisée selon deux critères : le stockage de 

l'information et la manipulation des données. Cette application est basée sur trois 

logiciels : Java Netbeans, Matlab, et WAMP/EASYPHP (MySQL) pour le 

développement web. 

Mots clés-- ICG, ECG, Surveillance hémodynamique, Non invasif, Concept de 

débruitage, Détection automatique, Application d'accès automatique. 



 الملخص

بفضل التقدم في التكنولوجیا الطبیة الحیویة ، یمكن إجراء مراقبة الدورة الدمویة باستخدام طرق غیر جراحیة مثل 
تخطیط القلب بالمقاومة. ھذه التقنیة موثوقة وآمنة وبسیطة وآمنة وأقل تكلفة ؛ یتم استخدامھ للتشخیص والمراقبة 

المستمرة لأمراض القلب والأوعیة الدمویة. تأتي تقنیة lCGالسطحیة  لحل مشكلة تعقید قیاس وتحلیل أمراض القلب 
، بالاعتماد على تقییم تغیر المعاوقة الكھربائیة الصدریة والذي یرجع إلى التغیرات في سرعة الدم والمقاومة لتقدیر 

العدید من معاییر الدورة الدمویة. یتم تغییر ھذا النوع من الإشارات من خلال الاثار التي تدمر المعلومات المھمة 
للإشارة. یدفع ھذا التشویھ الأطباء نحو التشخیص الخاطئ والمراقبة السیئ لحالة المرضى ، حیث من المھم إیجاد 
تقنیات للقضاء على الضوضاء دون تدمیر مورفولوجیة إشارتنا. لھذا السبب ، طور مجال معالجة الإشارات العدید 

من تقنیات تقلیل الضوضاء المطبقة على قمع التنفس وضجیج الحركة دون تشویھ شكل الإشارة. تعتمد منھجیاتنا 
 -  Savitzkyالثلاثة لتقلیل الضوضاء على العدید من الدراسات المقارنة بین أنواع مختلفة من المرشحات التكیفیة

(SG) وتصفیة  وتحلل القیمة المفردSVD  مع المربعات المتوسطة الھزیلةLMS والأسرة المویجة 
المتعامدة Daubechies(db) وموجاتletSym مع عدة أنواع من العتبات مثل الانكماش ، والكتلة المجاورة 

والعتبات الكلاسیكیة مثلRigrsure¸ تتم مقارنتھا جمیعًا بالمرشحات الخطیة وكذلك المرشح التكیفي القائم 
 أشخاص وأظھرت النتائج كفاءة ، حیث كانت أفضل طریقة من حیث تقلیل 10علىLMṢ. تم إجراء التقییم على 

Sym مع معدل خطأ متوسط 5عند المستوى 8الضوضاء ھي موجات  Rigrsureوأفضل تقنیة عتبة ھي تقنیة ، 
٪. سمح لنا الاكتشاف التلقائي للنقاط الممیزة بحساب مؤشرات القلب وبالتالي استخراج معلومات 0.0001یساوي 

مھمة عن حالة كل مریض. في عملنا ، قمنا بتطویر خوارزمیة تحتMatlab للعلاج وتحدید النقاط الممیزة في 
إشارات lCGلعشر. تھدف ھذه الخوارزمیة الجدیدة إلى اكتشاف النقاط B¸CX باستخدام نموذج ریاضي بسیط 

 دورة ؛ موجات القذف والقذف. النتائج تحسن بشكل كبیر كفاءة 26یعتمد على جرسین لدراسة إشاراتlCG لمدة 
 ودقة تقديLVET ر نبضة تلو الأخرى في ظل ظروف معینة

 أشخاص أصحاء. تظھر نتائج الحسابات الكفاءة والدقة ؛ مقارنة بالنطاق 10یتم الكشف على إشاراتICG لـ 
الطبیعي للشخص السلیم (السلیم). لتقدیر مؤشرات القلب والفترات الزمنیة ، نجد حلاً فعالاً وبسیطًا. لقد قمنا بتطویر 

تطبیق وصول تلقائي لمساعدة العیادات على تحلیل إشاراتlCG  وتخطیط القلبEGC  إما محلیاً أو عن بعُد. یھدف 
ھذا التطبیق إلى تزوید الأطباء بجمیع المعلومات اللازمة لمساعدتھم على إجراء تشخیص سریع وموثوق سواء 
محلیاً أو عن بعُد. ھذا التطبیق ھو وصول تلقائي في الوقت الحقیقي لتحسین جودة الرعایة وسرعة التشخیص ، 

بغض النظر عن موقعھم الجغرافي. یتم تنفیذه وفقاً لمعیارین: تخزین المعلومات ومعالجة البیانات. یعتمد ھذا التطبیق 
 :على ثلاثة برامج:

Wamp/EasyPHP(MYSQL),Matlab ¸Java Netbeans 

الكلمات الرئیسیة-- GCE ,GCI,  مراقبة الدورة الدمویة ، مفھوم عدم التوغل ، مفھوم تقلیل الضوضاء ، ا لكشف 
 التلقائي ، تطبیق الوصول الت لقائي.
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General Introduction 
 
 
Scientific research progress has led to hemodynamic monitoring techniques from 

invasive to minimally invasive to non-invasive that became the most recommended in 

the field. 

The application of the appropriate type of monitoring depends on the risk rate on 

patients under condition [1].  So, to ensure the safety of patients, an alternative technique 

has been developed called Bioimpedance that is the main purpose of researcher’s 

nowadays, it is applied for cardiovascular monitoring and body composition analysis. 

The bioimpedance is the resistance of biological tissues, where the simulation is made 

by a low intensity current through electrodes.  

The measurement of bioimpedance provides information on anatomy, tissue 

physiology and pathology such as cardiac output, stroke volume, heart rate and blood 

pressure, gender, age, weight and height, the total body water (TBW), bone mineral 

content, fat-free mass (FFM) and others. 

There are multiple non invasive electrical impedance analysis and characterization 

techniques including: 

● Bioelectrical Impedance Analysis (BIA) 

● The electrical impedance spectroscopy (EIS) 

● The electrical impedance plethysmography (IPG) 

● The electrical impedance tomography (EIT)  

● The impedance cardiography (ICG) 

 

The ICG is a novel technique, non invasive, safe, simple, reliable, painless, and 

cheaper method to measure the blood volume variations inside the thorax during each 

cardiac cycle, widely used mainly in clinical for non-invasive cardiac functions, and is 

based on a theoretical model of the thorax.  

 

The ICG signal is an interesting indicator for the monitoring and diagnosis of 

cardiovascular diseases [2], it is based on the application of a low electric current field at 

the level of the thorax [3] using a Tetrapolar ICG electrode configuration system. The 

aortic blood volume and its velocity variations cause changes in impedance which  
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subsequently causes a voltage difference, dZ/dt is the first derivative that presents the 

maximum rate of ICG waveform [4] [5]. Kubicek et al. developed the four-electrode for 

ICG measurement [6]. 

ICG (dZ/ dt) presented in Figure 1 is in the range between 0.8Hz and 20 Hz range 

signal, it is retrieved after acquisition, it presents the first derivative of Z, where its max 

peak presents the ventricular ejection (dZ/dt )max. 

Figure 1: The typical ICG signal. 

The recuperated ICG signal is drastically distorted by some noises due to 

physiological changes and others as respiratory in the range of 0.4 to 2 Hz, motion 

artifacts in the range of 0.1 to 10 Hz [7] that caused baseline drift, power frequency 

interference, and myoelectricity interference [8]. 

These factors make evaluation of cardiac indices calculation inaccurate as well as the 

diagnosis and monitoring of the patient state. 

The signal analysis is necessary for noise removal to have better detection of the 

characteristic A, B, C, X, Y, O points that give us medical information. Where A 

coincides with P of electrocardiogram signal (ECG), B corresponds to the aortic and 

pulmonary valve opening, C the peak maximum in the ICG signal corresponds to the  
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ventricular contraction, X is the aortic valve closing, Y the pulmonary valve closing, and 

O is the opening of the mitral valve. 

It is highly necessary to use artifact suppression methods as filtering, adaptive filter, 

ensemble averaging, coherent ensemble averaging, and wavelet-based methods. These 

approaches are powerful to estimate the constitutive characteristics points and for 

assessment of several hemodynamic parameters such as SV, and CO defined in 

equations (1) and (2) for the diagnosis and monitoring the healthy state of the patient 

with cardiac disorder [9]. 

𝑆𝑆𝑆𝑆 = 𝜌𝜌𝑏𝑏( 𝐿𝐿
𝑍𝑍0

)2(𝑑𝑑𝑍𝑍
𝑑𝑑𝑑𝑑

)𝑚𝑚𝑚𝑚𝑚𝑚 × 𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿 (1) 

𝐶𝐶𝐶𝐶 = 𝑆𝑆𝑆𝑆 × 𝐻𝐻𝐻𝐻 (2) 

 Where 𝜌𝜌𝑏𝑏  is the resistivity, 𝑍𝑍0 is the base impedance, 𝑑𝑑𝑍𝑍|𝑑𝑑𝑑𝑑 is the 1st derivate of ICG, 

LVET is left ventricular ejection time between B point and X point, and the values of 

heart rate (HR) expressed in (L / min) for men and women are respectively 5.6 and 4.9. 

The impedance cardiography can be measured by some systems like BioZ and 

Niccomo, which are the most popular system. 

The acquired signal is altered by artifacts; for this purpose the signal processing field 

is used to overcome the problem of noises that disturb the signals, where our studies are 

establish to solve this problem. 

In the next chapters, we will discuss denoising methodology applied on ICG signals. 

The first method is to find the best method that performs well between adaptive filters 

and Savitzky-Golay (SG) filtering. The second method is based on the application of 

both techniques: singular value decomposition (SVD) and least mean squares (LMS). 

The third denoising tools based on the wavelets concept using several types of 

thresholding such as Shrinkage, NeighBlock as well as classical threshold and compared 

it with and LMS-based adaptive filter and linear filters such as: Butterworth, Elliptical,  
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Bessel, Gaussian, Chebychev1, and Chebychev2. All results are tested and evaluated 

thanks to the hemodynamic parameters calculation. 

 

After that, we will explain the developed detection algorithm for features points’ 

extraction to estimate time intervals as LVET. At the end, we will present our developed 

automatic application for ICG and ECG signals.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
5 



 

General Introduction 
 

 REFERENCES  
 
 

[1] B. Saugel and J.-L. Vincent, ‘Cardiac output monitoring: how to choose the 

optimal method for the individual patient’, Current opinion in critical care, vol. 

24, no. 3, pp. 165–172, 2018. 

[2] R. L. Summers, W. C. Shoemaker, W. F. Peacock, D. S. Ander, and T. G. 

Coleman, ‘Bench to bedside: electrophysiologic and clinical principles of 

noninvasive hemodynamic monitoring using impedance cardiography’, 

Academic emergency medicine, vol. 10, no. 6, pp. 669–680, 2003. 

[3] J. M. Gayes, ‘Transthoracic electrical bioimpedance: a noninvasive 

measurement of cardiac output.’, Journal of Post Anesthesia Nursing, vol. 4, 

no. 5, pp. 300–305, 1989. 

[4] A. P. DeMarzo, R. M. Lang, R. Priemer, and C. E. Korcarz, ‘Computer method 

of predicting the reliability of impedance cardiography stroke volume 

measurements’, in Computers in Cardiology 1995, 1995, pp. 497–500. 

[5] M. Snajdarova, S. Borik, and I. Cap, ‘Features extraction from impedance 

cardiography signal’, in 2017 11th International Conference on Measurement, 

2017, pp. 225–228. 

[6] W. G. Kubicek et al., ‘The Minnesota impedance cardiograph-theory and 

applications’, Bio-Medical Engineering, vol. 9, no. 9, pp. 410–416, 1974. 

[7] V. K. Pandey and P. C. Pandey, ‘Cancellation of respiratory artifact in 

impedance cardiography’, in Proc. 27th Annual Conference on Engineering in 

Medicine and Biology, 2005, pp. 5503–5506. 

[8] S. Liu, K. Yue, H. Yang, L. Liu, X. Duan, and T. Guo, ‘Study on cardiac 

impedance signal feature point extraction’, in 2017 IEEE 3rd Information 

Technology and Mechatronics Engineering Conference (ITOEC), 2017, pp. 

790–793. 

[9] S. Kerai, ‘The impedance cardiography technique in medical diagnosis’, 

Medical Technologies Journal, vol. 2, no. 3, pp. 232–244, 2018. 

 
 
 
 
 

 
6 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Chapter .I 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
7 



 

Chapter I:  Hemodynamic Monitoring 
 

 Introduction  

 

Hemodynamic monitoring is essential for the therapeutic decision and the early 

detection of diseases, especially for patients who suffer from cardiovascular diseases. It 

is confirmed that monitoring is mandatory according to the decree of law n°94-1050 of 

December 5, 1994 [1], even for patients who suffer from less critical diseases, especially 

for normal and critical cases, we find its application simple in anaesthesia and 

increasingly complicated in intensive care and perioperative [2]. 

Its purpose is to ensure the safety of patients who dispose of them at very high risk 

because it reduces the mortality rate. It is used to detect heart rhythm disorders and 

abnormalities. This feature helps doctors to prevent incidents and accidents. The 

hemodynamic monitors are always clinically tested to validate them to acquire the 

accuracy and precision of the measured values. Scientific researchers must always be 

encouraged and funded in order to find alternative methods replacing invasive methods. 

Thanks to advances in the biomedical technology field, monitoring can be carried out 

with non-invasive methods instead of minimally invasive and invasive methods. The 

continuous measurement of hemodynamic parameters such as blood pressure, cardiac 

output, stroke volume, and other cardiac functions pose a great danger to the patient 

because invasive hemodynamic monitors are too complicated in their use [3].  

Thermodilution is the reference method that requires the placement of a central 

venous catheter to extract precise and reliable information; this method is annihilation 

because it presents a real danger to the patient [4].  

The scientific research progress has led to hemodynamic monitoring techniques from 

invasive to minimally invasive to non-invasive, which is nowadays the most 

recommended. Although, the choice of the appropriate method is dependent on factors 

according to setting, cost, comorbidities, and risk rate on patients [5].  

The risk varies from low to medium to high risk. The patient with a low risk can 

benefit from standard monitoring. The patient with a medium risk can benefit from non-

invasive monitoring using contour analysis pulse wave and thoracic bioimpedance 

methods, or benefits from invasive pulse wave analysis as ProAQT/FloTrac or even  
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esophageal Doppler for arterial catheterization that requires a professional acquainted 

with the technique. If the risk increases, it is necessary to use a more appropriate 

technology which is transpulmonary thermodilution [1].  

. 

II. Hemodynamic Monitoring Techniques and Systems 

 

a. Non Invasive 

 

• Oscillometric is the oldest method; its disadvantage includes its low reliability [3].  

 

• Applanation tonometry: (AT) Its implementation is based on a transducer attached to a 

flattened artery which provides the transmural pressure to zero with a bone below. It 

allowed us to measure systolic and diastolic blood pressure and central vascular 

pressure. DMP-Life system utilise AT method and TL-300 system showed reliability 

for the category of patients who had undergone colon surgery. This system can be used 

to monitor Blood pressure (BP)  intraoperatively better than invasive systems [3].  

 

• VC method : volume clamp method [6] used finger cuffs to measure blood pressure 

(BP), it is implemented in two systems: 

 

 Clear-Sight (Edwards Lifesciences, Irvine, CA): ( exist in the hemodynamic 

platform EV1000) is based on the modified Peňáz principle, it uses Nexfin 

technology, it measures blood pressure continuously, heart rate, SV, CO, CI, 

SVI, SVV, SVR, and SVR index. In this system, the calibration is not 

necessary because it does it automatically after 5 to 70 beats.  

 CNAP (CNSystems Medizintechnik, Graz, Autriche) : Used fot PB 

measurements, it provides beat-to-beat blood pressure readings, it has a good 

accuracy for severe cases (Smolle et al.), but it is sensitive to movement, and it 

needs a great device for pulse pressure measurement [3]. It is a type of system 

called finger cuff; it has shown good results in surgery for patients with non-

critical cases [6].  
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● Bioimpedance and bioreactance, carbon error 42% for CO values [4]. Among the 

disadvantages are noises such as respiratory artifacts, skin-electrodes contact, and 

electrocoagulation of the scalpel, Its validity is limited compared to clinical gold 

standard techniques [4] [7]. For example the Niccomo system is based on 

impedancemetry. 

 

 

• Dioxide (CO2)-rebreathing/partial CO2-rebreathing, has an error rate of 40% [4]. The 

carbon dioxide metabolism is calculated with partial rebreathing technology. 

Pulmonary disease can affect the accuracy of measurement. This technique is not 

recommended for pulmonary hypertension or increased intracranial pressure cases. It 

needs an intubated and vented CO2 charge. 

 

• Pulse wave analysis PWA has a pulse transit time PTT this tech has an error of 62%. 

This method is sensitive to noises and has limitations in its application. It can also be 

considered less invasive , systems such as Finapres (FINger Arterial PRESsure) based on 

non-invasive pulse wave analysis. in the CNAP monitor (CNSystems Medizintechnik 

AG, Graz, Austria) the Continuous Noninvasive Arterial Pressure (CNAP®) monitor 

Based on non-invasive pulse wave analysis [4] [7].  

 

• The LIDCO system integrates indicator dilution monitoring system and continuous 

arterial waveform analysing system [3]. The advantage of this system is based on the 

ability to recalibrate every eight hours or to be calibrated if one of the hemodynamic 

parameters has changed as CO, mean arterial pressure (MAP), SVR, SV, SVV, pulse 

pressure variation (PPV). 

 

• LIDCOrapid(LIDCO,London,UK) is considered also minimally invasive, and uses a 

pulse wave analysis algorithm called PulseCOTM, based on a mathematical analysis of 

pulse pressure. 

 

• Pulse contour analysis (PCA) for CO monitoring error of 45%. Considered also as a 

minimally invasive technique [8]. Used an arterial line, Continuous measurement  
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Evaluate SVV/PPV. This technique has developed other parameters to be evaluated as 

Pulse Pressure Variation (PPV) and Stroke Volume Variation (SVV). Its disadvantage 

is Arterial cannulation. (covered by noninvasive continuous finger cuff/tonometoric BP 

technology), there are several PCA based CO monitoring systems as the Nexfin 

monitor monitor (BMEYE, Amsterdam, Netherlands) based on finger arterial pulse 

contour analysis PCA. 

 

● Radionuclide angiography (RNV) or ventriculography (RVG):  is a non invasive 

way of assessing the ventricular function allows estimating the cardiac output by 

applying the dynamic sampling radioactive counts of the left ventricle technique. 

 

• Transthoracic Doppler echocardiography (TTE) is a non-invasive technique [6]. 

 

• Capnography: It allows non-invasive and continuous measurement of CO2 

concentration, indirect measurement of PaCO2, and production and transport of CO2 

(highly indirect measurement of cardiac output (CO)). 

 

• Pulse oximetry: It it has a respiratory and hemodynamic interest. It measures the 

oxygenation rate of the blood by the lung and monitors the transport of oxygen to the 

periphery. Among these systems: Estimated Continuous Cardiac Output (esCCO) 

(from the Japanese firm NIHON KOHDEN (Cacan, France)) is used to measure 

cardiac CO from the transit time of the pulse wave (pulse Wave Transit Time or 

PWTT). 

 

b. Minimillay Invasive or Less_Invasive 

 

• Arterial cannulation can be coupled with systems like FloTrac. Used for direct BP 

measurement [3]. 

 

• Arterial pressure waveform analysis 
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• The oesophageal Doppler ((Cardio Q; Deltex Medical, Chichester, UK) allows us to 

measure the blood flow in the descending aorta by a flexible Doppler probe introduced 

into the esophagus of patients under anesthesia.  

The Doppler transducer at the extremity of a flexible probe allowed the instantaneous 

measurement of the descending aortic flow velocity. It is introduced into the 

oesophagus, preferably orally or nasally, until a characteristic aortic flow signal is 

obtained. 

There are two devices for cardiac output calculating: the first one is called Hemosonic, 

which measures the aortic diameter, and the second is CardioQ which estimates the 

aortic diameter [4].  

 

● The transesophageal echocardiography is for Stroke volume measurement by 

introducing a transducer in the descending aorta. This technique is recommended for 

patients undergoing open-heart and thoracic aortic surgery [5].  
  

•  Doppler-derived blood flow measurement is not recommended for long-term use. 

 

Less invasively systems 

 

● FloTrac (Edwards Lifesciences, Irvine, California) is a system that provides 

hemodynamic values such as different heart functions and blood pressure, often used to 

obtain frequent blood gas specimens. Also used for the calculation of Stroke volume 

that requires the standard deviation of the pulse arterial pressure. Recalibration is not 

necessary for this system. The accuracy of the estimated CO is in the morbidly obese 

category.  It is connected to a general peripheral arterial catheter and a monitor as the 

Vigileo that displays more precise results for SV, CO, and SVV. It gives good results 

in intraoperative chemotherapy. Pairs with Vigileo the EV1000 platform   

 

• Vigileo/ Flotrac: used without calibration, estimates arterial compliance and allows the 

analysis of SV variations according to respiration. This technique is validated for only 

healthy people [3]. 
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● PICCO (Pulsion Medical Systems, Munich, Germany) is a system that combines: 

“pulse contour analysis (PCA)” and “transpulmonary thermodilution” highly 

recommended in severe cases, it measures CV, SV, AP with recalibration.used two 

methods: 

 Transpulmonary thermodilution: The time taken by a cold bolus injected into 

the right atrium to reach the arterial sensor is proportional to cardiac output.   

 The pulse contour: This is the same technology as Vigileo, but the calibration 

factor was determined during the first thermodilutions.  

Allows continuous monitoring of cardiac output and determination of respiratory 

variations in SV and PP presented in the equation below: 

 

                                                       PP=SP-DP                                                     (1) 

 

With systolic blood pressure (SP), diastolic blood pressure (DP) and pulse blood 

pressure (PP) [6].  

 

● ProAQT/PulsioFlex system (Pulsion-Getinge, Feldkirchen, Germany: Minimally 

invasive perioperative cardiac output trend monitoring with ProAQT. Utilize the PCA-

based algorithm of the PICCO system. ProAQT ProAQT technology is integrated into 

the Pulsioflex platform, which can include PiCCO technology. It is a calibration-free 

technology [1].  

 

● LiDCOTM : Used pulse power analysis. Discontinuously cardiac output 

measurement using lithium chloride dilution techniques, where the latter is injected in 

small quantities through a central or peripheral venous catheter. 

 

• the LiDCOTMplus requires calibration using transpulmonary thermodilution by lithium 

injection. 

 

● The ProAQT sensor (Pulsion Medical systems), the FloTrac sensor (Edwards 

LifeSciences), and the Most Care monitor (Vytech Health, Padua, Italy) require no 

calibration and can be adapted to the existing arterial line [1].  
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• Pulsiocath technology (Pulsion Medical Systems) of the VolumeView™ catheter 

(Edwards Life Sciences) and the LiDCOTM system monitor (LiDCO) require 

calibration by thermodilution or lithium injection, allowing an accurate measurement 

of cardiac output [1]. 

  

c. Invasive 

 

● Pulmonary artery catheterization (PAC) is a gold standard method used for years 

in surgery and intensive care units (ICU). A pulmonary artery catheter (PAC) 

with an arterial line is not used in critical cases such as bleeding and infection. 

Used to measure CO Serve as the clinical gold standard for Co measurement [3] 

[7].  

 

• Tanspulmonary thermodilution: Serve as the clinical gold standard for Co and 

SV measurement, based on the insertion of a central venous catheter and an 

arterial thermistor catheter by injection of a cold fluid bolus into the vena cava 

system through the central line to have more precision, it is recommended to 

assess acute circulatory failure. This technique is implemented in PICCO [4]. 

 

• Mixed venous oxygen saturation. 

  

• Pulmonary arterial pressures 

 

● ScvO2: It is the measurement of the Venous Oxygen Saturation of the blood of 

the Superior Vena Cava. It is realised thanks to the Swan-Ganz pulmonary artery 

catheter, which gives the oxygen saturation of the venous blood and the values of 

CvO2 and DAVO2.This technique is useful, especially in monitoring septic shock 

states with associated heart failure.  This method is very complicated, but it 

allows us to determine cardiac output where the measurement is made through a 

central catheter, continuously through a fibre optic catheter, and discontinuously 

by sampling blood gases [9].  
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● Direct Fick: to measure mixed oxygen concentrations of venous blood in order to 

estimate cardiac output. NICOT, Respironics is based on Fick's method but it is 

used in a non-invasive way. 

 

● Indirect Fick: it seems like the direct Fick method, but its specificity is that it 

uses pulse oximetry to evaluate the arterial oxygen content. 

 

III. Discussion and Conclusions  

 

Monitors based on transpulmonary thermodilution technology such as Pulscath with 

the Pulsioflex or PICCO2 monitor, the Volume view sensor with the EV 1000 monitor 

use  Cardiac output calibration. These two technologies are not performant in the case of 

principal intrathoracic volumes determination [10]. For invasive analysis, the FloTRAQ, 

the ProAQT, the VolumeView, and the PulsioCath have the same performance in 

predicting the filling response [11].  

However, these same performances can be obtained from non-invasive monitors such 

as ClearSight, CNAP, and NICOM. In this purpose, the researchers are still ongoing for 

non-invasive technologies. 

The error rate of the comparison between Nexfin and Clearsight with transpulmonary 

thermodilution (TPTD) is 44%. However, CNAP grants the reference values of TPTD 

[4].  

It is important  to choose the best method, whether invasive, minimally invasive, or 

non-invasive, to accurately measure the various hemodynamic parameters such as 

cardiac output. The most appropriate monitoring method is recommended according to 

the indications and limitations of each type. 
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Chapter II: The Electrical Bioimpedance 

 

I. Introduction  
 

Bioelectrical impedance or bioimpedance is a goal of multiple scientific researches of 

different specialities in medicine; it has been progressively improvised for various 

clinical applications. It is inexpensive, easy to use, requiring no specialised personnel, 

applied for cardiovascular monitoring and body composition analysis [1]. 

The biological tissue stimulation is made using a low intensity current through the 

electrodes, the voltage is recuperated and complex electrical impedance is involved that 

depends on the type of tissue, the structure, the tissue composition and its state of health 

as well as the frequency of the alternative signal [2]. The impedance Z is the some of the 

resistance and reactance vectors, it measured in an identified time-varying electric field 

frequency chosen between 20 to 200 KHz, where the instantaneous impedance signal ∆Z 

(t) of a human body segment varying according to physiological processes [3]. 

The measurement of bioimpedance can provide information on anatomy, tissue 

physiology and pathological Bioimpedance is used on living tissues for 60 years ago [4], 

since 1950 multiple bioimpedance-based clinical applications is developed and exploited 

in this field including medical applications such as cancer diagnosis of skin and 

measurement of pulmonary respiratory activity as well as non-invasive cardiac volume 

[5].  

The electrical impedance implementation provides hemodynamic parameters such as 

cardiac output, stroke volume, heart rate and blood pressure, it estimate also the total 

body water (TBW), bone mineral content, body fat (adiposity), fat-free mass (FFM), 

gender, age weight and height that are measured with  several non-invasive electrical 

impedance methods as bioelectrical impedance analysis (BIA), electrical impedance 

spectroscopy (EIS), impedance plethysmography (IPG), impedance cardiography (ICG), 

and electrical impedance tomography (EIT), used for the pathological condition 

diagnosis and monitoring of the patient's tissues, as well as the treatment in different 

clinical situations as operative and post-perioperative, cardiovascular pathologies, and 

pregnant women [6]. 
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In this section, we have discussed the bioimpedance measurement purpose, its 

principle, its applications, its techniques, and multiple models of equivalent circuits of a 

cell. 

II. The Electrical Bioimpedance 
 

1. Definition 

In 1886, the word impedance was invented by Oliver Heaviside, it comes from the 

English word "impede". In the sinusoidal mode, the impedance Z (Ω) is a complex 

number which consists of a real and an imaginary one, it is defined by Ohm's law which 

is the ratio between the voltage V and the current I as in equation 1 [7]: 

 

                                          V=Ζ.Ι                                                                     (1) 

 

Where, 

V expressed in Volt: it is a voltage measured at the terminals of electrodes, 

I expressed in Ampere: it is the current injecting through the body. 

 

It applies to both direct current (DC) and alternating current (AC), the use of the latter 

makes it possible to modify the frequency. The Admittance is the opposite of impedance 

expressed in Siemens (S) defined in equation 2 as follow: 

 

                                    Y= Κ (σ+ jωεrε0)                                                        (2) 

 

It is a complex conductance where G is the conductance and B is the susceptance. 

Immittance is the combined term for impedance and admittance, whilst the better and the 

more generic term than bio-impedance is bio-immittance [7]. In continuous mode as in 

equation 3 as defined follow: 

                                             Ζ=R                                                             (3) 

 

The electrical properties depend on all the physical or chemical parameters which 

determine their concentration or mobility. 
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The temperature, the viscosity, and the conductivity in the biological environment are 

factors that contribute to resistance changes, subsequently to bioimpedance. 

In addition to that, the distance, location, and type of electrodes affect the bioimpedance 

measurement. 

The impedance is a complex depending on the resistance (R) as real part which is 

inversely proportional to conductance, and the reactance (X) as imaginary which is 

inversely proportional to the capacitance [8].  

The latter varies according to the frequency used; it is introduced by capacitors or 

inductors in the circuit. The formula is defined in the Cartesian form and the Polar form 

as in equation 4, where the impedance equation is shown in equation 5, and the phase ϕ 

is presented in equation 6. The impedance is resistive when ϕ equal to 0°, and it is 

capacitive when ϕ is equal to 90° [9].   

  

 

                                          Z= R+jX = |Z|𝑒𝑒jɸ                                                                                   (4) 

 

                              Ζ=�|𝑍𝑍|²  =�𝐻𝐻2 +𝑋𝑋2                                                   (5) 

 

                           ϕ= 𝑚𝑚𝑎𝑎𝑎𝑎𝑑𝑑𝑚𝑚𝑎𝑎(𝑋𝑋|𝐻𝐻)                                                      (6) 

 

 

2. The Biological Tissues 
 

The bioimpedance related to the tissues properties and the geometric dimensions, the 

electrical properties of the tissues are constant so it is possible to measure the size and 

the volume from the detected impedance fluctuations and the data of the electric 

conductors of the known tissues [7].   

The biological tissue groups several cells that have the same function, the whole of a 

specific tissue forming an organ. 
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The living tissue is a set of cells in the body that lives under specific conditions; it can be 

damaged by electrical energy through three mechanisms: thermic injury, electroporation 

or fibrillation [10].  

The tissues are conjunctive when the cells are separated by an inter-cellular medium. 

This is the case of blood, bones, muscles or adipose tissue.The epithelium tissues consist 

of cells such as those of the skin. The cells have a membrane of a thickness of about 7 

nm and contain substructures such as the cell nucleus or mitochondria.From an 

electromagnetic point of view, the biological environment appears as materials at the 

same time: non-magnetic, ionic conductors, and lossy dielectrics. The current flows 

through the cell environment. The cell membrane is composed of a lipid bilayer that 

separates the cell medium and the conductive liquid environment; it has a very poor 

conductance, considered a dielectric. The total structure formed by the intracellular fluid, 

plasma membrane and extracellular fluid (conductive-dielectric conductor) behaviour is 

similar to a capacitor, with an approximate capacity of 0.01 F / m2 [11]. 

Bioparhom's experiments have shown that with a frequency of 100 KHz, the current 

can easily cross certain extracellular environments [12].  

At low frequencies (<1KHz), the ECF is the medium that drives the electrical current 

that cannot penetrate the membrane, and at high frequencies (> 1MHz), the electric 

current flows through the membrane and the measurement of the bioimpedance depends 

on the ECF and the ICF. The extracellular fluid (ECF) contains ions like sodium, 

chloride and bicarbonate; it also contains carbon dioxide, waste, and nutrients such as 

oxygen, glucose, fatty acids and amino acids. The intracellular fluid (ICF) also contains 

ions such as potassium, magnesium and phosphate [13].  

 As shown in Table, if the frequency increases, the charges of the membrane will be 

accumulated and the current passes through the cell membranes, and subsequently the 

intra-extracellular liquids. 
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Table 1:  The ions concentration in living tissue [13]. 

Concentration (meq/L) Body Fluids 

Intracellular Extracellular 

Na+ 10 142 

K+ 140 4 

Ca++ 0.0001 2.4 

Mg++ 58 1.2 

Cl- 4 103 

HCO-
3 10 28 

Protein  40 5 

 

3. The Dielectric Properties of Biological Tissues 
 

The purpose of the electrical characterization of biological tissues is to simplify a 

composite of the characteristics of the constituent cells. The dielectric properties are also 

influenced by the specific tissue structure, any hardware stores a capacitive energy; it 

can be classified as a dielectric, they depend on all the physical or chemical parameters 

that determine their concentration or mobility [14].  

 such as: (1) the temperature which has an important role in ionic conductance, and 

ion mobility, however the mobility increases with increasing temperature and resistance 

decreases, (2) the electrical conductivity of living tissues that is difficult to measure by 

ultrasonic transducer and magnet with a non-invasive method in vitro of biological 

tissue, (3) the cellular electrical conductivity, (4) the impedance of tissue,(5) the 

conduction models of living tissues, (6) electrical permittivity: macroscopic property 

that describes the response of an environment expressed by farad per metre, (7) The 

frequency [15] [16]. 

 

4. The Dispersion windows 
 

Dispersion is a frequency dependence of permittivity and conductivity functions for 

living tissue. It is considered as a dispersive medium [8] [17].  
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Figure 2 : Fricke-Morse model [9]. 
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There are three major dielectric dispersions α, β which appear between 10 Hz and tens of 

MHz and γ, identified and named by HP Schwan in 1957, and the fourth the δ dispersion 

noted by B. Rajewsky & HP Schwan in 1948 [16], identified and named by H. Schwan 

in 1994 [15]. 

a. Α dispersion: is based on the ionic species diffusion process, its range interval is 

varied from 10 Hz to 10 kHz. 

b. β dispersion its range interval varying from 10 kHz to 100 MHz, caused by the 

cellular structure, related to the extracellular and intracellular electrolytes 

interchanges, the dielectric properties,  and the behaviour of the cell membranes. 

The bioimpedance analysis is released in this range with a single frequency of 50 

KHz. 

c. γ dispersion: the dielectric properties are attributed to the high water content of 

the biological species and the presence of small molecules such as proteins and 

amino acids. Water displays a wide dispersion spectrum from hundreds of MHz 

to a few GHz. 

d. δ dispersion: is located between β and γ dispersion, observed around 100 MHz, 

(Pethig, 1984) which is provided thanks to the dipole moments of large 

molecules such as water-bound proteins. 

 

5. The Electric Cellular Models 

a. Fricke-Morse model 

 Frick-Morse model is presented in Figure 2:  
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Figure 3: The Debye circuit with an ideal component [7]. 
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where   

                                               C*m=Cm/2                                                      (7) 

 

According to the Fricke model [19], the equation of Z is defined in equation (8): 

 

Z=
𝐻𝐻ₑ𝐻𝐻ᵢ+ 𝐻𝐻ₑ

𝑗𝑗𝑗𝑗𝐶𝐶𝑗𝑗

𝐻𝐻ₑ+𝐻𝐻ᵢ+ 𝐻𝐻ₑ
𝑗𝑗𝑗𝑗𝐶𝐶𝑗𝑗

                                                   (8) 

 

Where, 

Re is an electrical resistance of the extracellular environment, Ri is a electrical resistance 

of the intracellular environment and Cm is a membrane capacity. 

 

b. Debye model 

The Debye model is presented in Figure 3. 

 

 

 

 
24 



 

 
Figure 4: The Cole circuit [7]. 
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According to the Debye model [20], a phenomena of electrical relaxation is added 

where the impedance Z equation is shown in equation (9): 

 

            Z= 𝐻𝐻∞ + 1
𝐺𝐺ᵥₐᵣ+𝑗𝑗𝑗𝑗𝐶𝐶

    Z= 𝐻𝐻∞ + 1
𝐺𝐺ᵥₐᵣ+𝐺𝐺ᵥₐᵣ𝑗𝑗𝑗𝑗𝑗𝑗 ᴣ

                                         (9) 

 

Where, 

R∞: the environment resistance at very high frequency (Ω); 

 C: supposedly perfect capacity (F);  

Gvar: independent conductance (Siemens S);  

ω: angular frequency (s-1) with ωz = 1 / τz; 

τz = C / Gvar: it is a constant of relaxation time and characteristic of the system 

corresponding to a characteristic angular frequency, τz is expressed in (s). 

 

c. Col model 

The Cole model 1940 [21] as show in Figure 4; it is derived from the Fricke model 

1932 and Debye model 1929. Cole's impedance model was introduced in its final form 

by Kenneth Cole, it took the Debye model, basing on the replacement of the ideal 

capacitance by "a Constant Phase Element CPE" which is a mathematical concept with 

Frequency dependent components. 

 

 

 

 

 

 

 

 

 

 

 

 

 
25 



 

Chapter II: The Electrical Bioimpedance 

The impedance equation is defined equation (10): 

 

    Z= 1
∆𝐺𝐺+∆𝐺𝐺(𝑗𝑗𝑗𝑗𝑗𝑗ᴣ)ᵃ       with   R0 - R∞ = 1/ΔG     So Z =  𝐻𝐻₀−𝐻𝐻∞

1+(𝑗𝑗𝑗𝑗𝑗𝑗 ᴣ)ᵃ
                       (10) 

 

R0: resistance of the environment at very low frequency; 

R∞: resistance of the environment to very high frequency; 

α: constant such that: α = φCPE / 90 ° according to Fricke's law. 

 

III. The Bioimpedance Measurement Methods 
 

The measurement is based on the electrode contact as shown in Figure 5. 

 
Figure 5: The principal of Bioimpedance measurement. 

 
The methods are as follows: 

a. The two electrode method or the bipolar method 

 

It is injecting a known current into the device under test (DUT) through two electrical 

contacts and measuring the resulting voltage drop between these two contacts from the 

same electrodes. The bipolar method is used in several applications such as skin [22] or 

dental in which the impedance of the sample used is much higher than that of the  
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electrode. The two-electrode method works if the impedance of the test material is 

greater than the impedance of the electrode contacts at the working frequency. This 

method is dysfunctional if a BIS device is used because the impedance at the electrode-

electrolyte interface is vulnerable to frequency variations [23].  

 

b. The three electrode method 

 

Used for the measurement of skin resistance at the volume of transdermally extracted 

interstitial fluid (ISF) extraction point. If the surface of the electrode is sufficient, its 

interface impedance can be reduced in order to make the electrode unnecessary, and 

simplify the configuration of the measurement [24]. 

 

 

c. The four-electrode method or the four-pole or Kelvin method 

 

Separate Separate electrode pairs are used to inject current and measure voltage. This 

method has been used for more than a century. In the late 1800s the four-pole method 

was used to measure the resistivity of materials, and also used to measure cardiac 

bioimpedance as well as in electrical impedance tomography (EIT). The electrode-

electrolyte interface impedance has no influence on the measurement and if it exists it 

will be in the low frequencies where their amplitude can be very large; it is in the case 

where no current passes through the voltmeter which has infinite impedance [25].  

The electrode-electrolyte interface impedances are in series with the impedance of the 

sample, and the measured impedance is the sum of the three impedances. At high 

frequencies, the parasitic impedances influence on the quality of the results by causing 

errors that can be studied analytically; we conclude that the purpose is the manner for 

estimating the error and especially in the case of living tissues. The parasitic 

capacitances are in the form of capacitances between the electrode wires and input 

capacitances of the instrumentation. In some cases it is necessary to accept the 

measurement with two electrodes which makes it necessary to have a large surface (> 

1cm2) and of high frequencies (> 10 KHz) because the impedance of electrode is 

negligible than the impedance under test [9]. The kelvin method is the most used  
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nowadays for the measurement of the bio impedance because if the voltmeter is ideal, 

the result of the measurement will be the impedance of the tested material [23].  

 

d. The five electrode method 

 

It’s a new measurement method based on five electrodes presented and analysed. It 

serves to minimise errors at low frequencies caused by high electrode-electrolyte 

interface impedances. This method works, but some limitations are found, therefore, it 

almost impossible to implement it for live tissue measurements. 

 

IV. The Bioimpedance in Diagnosis  
 

We quote some examples of research: (1) the application of an alternating current 

(AC) of very low intensity through the thorax, the electrodes of the bioimpedance 

capture the signal of respiration. This methodology spread during the year 1950 [5]. In 

1940, the beginning of research of the thoracic electrical bioimpedance by the National 

Administration of Aeronautics and Space, (NASA). In 1960, the appearance of the first 

cardiovascular monitors. In 1962, Thomasett discovered the relationship between the 

total body water and the bioimpedance. In 1966 the invention of the 1st impedance 

cardiography monitoring device (thoracic electrical bioimpedance). In the same year, 

Kubicek replaced the notion of first derivative dZ / dt usable in the ICG method, it 

represents the rate of the impedance variation, he tested a systolic ejection volume 

equation according to the bioimpedance. In 1970, the proposition of impedance imaging 

idea by B.Pullen.  In 1978 Henderson applied a voltage and recovered a current by 

developing an impedance imaging data acquisition system using 144 electrodes. In 1981, 

Smarek developed a new equation in hemodynamic based on variations in thoracic 

impedance. In 1983, Barber, Brown and Nyboer, experienced in vivo the first impedance 

image. In 1987, Kim developed a data acquisition system of 192 electrodes in 

Impedance Imaging. The Impedance imaging has evolved significantly with Brown in 

developing a host of clinical applications such as: pulmonary perfusion, blood vessel 

distension, pelvic congestion, measurement of chest fluids, pulmonary oedema [26]..  
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E. De Roux et al.  developed a new method called the Continuous chronic detection of 

fibrosis(characterization of tissue modifications) induced by the electrodes of cardiac 

implants, using Electrical Impedance Spectroscopy (EIS) [27]. 

M.Gutierrez-Lopez et al. the authors prevent the breast cancer for early diagnosis, the 

purpose study is to identify carcinoma emulators in preclinical state in breast agar 

phantoms, and it is based on bioimpedance measurements through eight Ag/AgCl 

electrodes. They released several experimental clinical trials that show a great promise 

[28].  

A. Hadif et al. the authors used electrical impedance to simultaneously record 

impedance cardiography and electrocardiogram with five electrodes using Z-RPI device 

functions; it aimed to extract the characteristics points to hemodynamic parameters 

calculation [29]. 

D. Naranjo-Hernandez et ´ al. the authors present a review paper about the 

Bioimpedance in medical applications, their measurement, concepts, limitations and the 

most important future challenges for biomedical devices [8]. 

 

There are multiple non invasive electrical impedance analysis and characterization 

techniques including: 

 

a. Bioelectrical Impedance Analysis (BIA) 

 

In 1969, Hoffer et al. [30] used the BIA technique of total body walk to predict body 

water. Lukaski et al. [31] at the USDA in Grand Forks, ND, is the first whose published 

an article on body composition and BIA.this technique is non-invasive technique, 

simple, reliable, safe, painless, acceptable cost, manipulable, fast, secure no danger on 

the subject, can calculate body cell mass (BCM), total body water (TBW), intracellular 

water (ICW) and The extracellular water (ECW).There are multiple BIA devices. 

 

b. The electrical impedance spectroscopy (EIS) 

 

Applied to characterise tissues and cells using a pulsed signal based on EIS 

instrumentation. This technique estimates the complex impedance (𝑍𝑍 (𝑓𝑓)) and its angle  
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(θ (𝑓𝑓)) of a subject under test '' SUT '', based on the measurement of the surface tension 

recovered after a current injection. It is used in several fields including biomedical 

engineering [32].  

 

c. The electrical impedance plethysmography (IPG) 

 

In 1940, it was introduced by Nyboer [33]. IPG  is a non-invasive method that 

measures the change in blood volume for a body segment in terms of electrical 

impedance e.g. chest, calf . Several researchers studied IPG for digital including 

instrumentation, systems led by recent software. This technique is non invasive, simple, 

portable, easy to perform, comprehensive...etc. 

 

 

 

d. The impedance cardiography (ICG) 

 

New methods of exploration and medical treatments such as impedance cardiography, 

abbreviated ICG or ZCG (Impedance Cardiography), it serves to observe the continuity 

of the left ventricular volume variation and other hemodynamic parameters such as: 

Stroke Volume (SV), Continuous Cardiac Output (CO), Total Peripheral Resistance 

(TPR), Ventricular Ejection Time (VET), Pre-ejection Period (PEP), heart rate (HR), 

and heart rate variability (HRV) that used for the autonomic nervous system assessment. 

Kubiceket. Al developed the four-electrode method for measuring cardiac impedance 

[34]. 

 

This technique is a non-invasive technique, simple, reliable, safe, painless, low cost, 

and fast, secure no danger on the subject. It is studied to evaluate transthoracic 

parameters for cardiac monitoring either ambulatory or continuous long-term in 

intensive care unit ICU, it is a more advantageous technique than conventional invasive 

methods. The ICG signal presented in Figure 6 is measured by some systems like BioZ, 

Niccomo, Osypka, Analogic, CardioScreen 2000 and CardioScreen 1000. 
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e. The electrical impedance tomography (EIT)  

 

It is a non-invasive technique of tomography image reconstruction used to obtain 

medical images inside the human body; it is applied in several fields of research such as 

medical imaging diagnosis. It is inexpensive, portable and easy, fast in data acquisition, 

non-ionizing and without radiation, an important temporal resolution [35]. 

 

 

V. Materials used for Bioimpedance Measurement 

 

An electrical impedance analyzer from the quantum RJL sciences series called 

BIA [36] allows us to quickly identify parameters such as Pregnancy, Fat-free mass, 

Total body water, Lean dry mass, BMR (basal metabolic rate), and DEE (daily energy 

expenditure). The last intervention of the RJL company is Quantum V Segmental 

without forgetting the old analyzers of the company: Quantum II, Quantum X, Quantum 

Desktop, Quantum III, Quantum IV, and Quantum V. 

 

 
 

Figure 6:  The typical ICG signal [6]. 
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BIO|ANALOGICS' [37] Health Management System (HMS1000) software and 

the ElectroLipoGraph Body Composition Analyzer (ELGIII) is a body composition 

analyzer, it allows making several functions: 

● Evaluation of body fat and lean mass 

● Have an accuracy normal fat range in percentage and weight 

● The fat objective in percentage and weight 

● The Body Composition Pie Chart 

● Body composition history tracking 

● Optional anthropometric measurements 

BIA 450 [38] analyzer calculates resistance (R), reactance (X), phase angle (α), 

body capacitance (C), fat-free mass (FFM), body cell mass ( BCM), extracellular mass 

(ECM), fat mass (FM), ECM/BCM, body mass index (BMI), basal metabolic rate 

(BMR), total body water (TBW), intracellular water (ICW), extracellular water (ECW), 

TBW/fat-free mass and TBW/total weight. 

The BIA 310 [38]  Bioimpedance Analyzer calculates: resistance (R), reactance 

(X), fat-free mass (or lean body weight), fat mass (or fat body mass), body mass index ( 

BMI), Basal Metabolic Rate (BMR), Total Body Water (TBW), TBW/Body Weight, and 

TBW/Fat Free Mass. 

Bodystat500 [39] is a device that measures at a fixed frequency equal to 50 kHz 

the following parameters: Impedance, resistance, reactance, and phase angle. There are 

also devices of the same brand but more sophisticated: the Bodystat1500, the 

Bodystat1500 touch screen, the Bodystat1500 MDD, the Bodystat Quadscan4000, the 

Bodystat multiscan5000 used mainly in dialysis were the frequency variance is on a 

spectrum ranging from 5 kHz to 500 kHz.   

BioZ System [40] used to extract features detection and hemodynamic parameters 

calculation of  ECG signal, it  also allowed to measure the impedance cardiography 

changes. 

Steorra and CIC-1000 developed by Sorba Medical Systems for cardiology, 

anesthesiology and research applications. 
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Tanita BIA Technology [41]: body composition monitors for electrical impedance 

analysis. The advantage of this technology is the possibility to analyse the signals at 

different frequencies. 

There are two types of devices [42]: the first is Single frequency devices that 

measure only overall water and lean mass (tissues containing water with a significant 

amount), and the second is Multifrequency which allows dry, water, muscle mass, and 

bone calculation. 

● Feet by foot (single frequency) to measure human lower body and overall water 

lean mass (tissues containing water with a significant amount of 73%);  

● hand feet (single or multifrequency) to measure the entire human body; it allows 

us to calculate and control the level of hydration, dry monitoring, muscle, and 

bone mass; which makes it more effective and relevant in the case of an obese 

person, example: Aminostats BIO-ZM II is a multi-frequency device  

● hand to hand (single frequency) 

 

A range of BIA products [43]:  

● X-Scan Plus II: with frequencies of 1-5-50-250-550-1000 KHz  

● IOI 353: with frequencies of 5-50-250 KHz 

● Gaia359 Plus: with frequencies of 5-50-250 KHz  

● Plusavis 333: with frequencies of 5-50-250 KHz  

● Easybody 205: with a frequency of 50 KHz  

● Quadscan4000: with frequencies of 5-50-100-200 KHz  

● 1500 MDD: with frequencies of 5-50 KHz. 

 

Tanita BC 545 N body composition analyzer: measures body fat and muscle mass. 

Tanita BC601 body analysis scale is working as  Tanita BC 545 N [44]. 

Soehnle Professional 7850 balance [45]: allows you to measure impedance by hand 

contact (and not bare feet) 

Tanita RD901/ RD953 body composition analyzer (Bluetooth compatibility): this is the 

first analyzer from the Tanita brand. Tanita body analysis scales MC 780 MA. Tanita 

BC587 Body Analysis Scale, Silver [46] 
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Garmin Index body fat scale: connected with wifi, allows you to measure weight, body 

mass index, body fat, muscle mass and others [47]. 

Soehnle Professional Design 7830 personal scale [48]. 

FitBit body fat scale Aria 2 [49] 

Tanita Professional Scales [50]: 

● Tanita SC 240 MA body composition analyzer  

● Tanita DC-360 S body composition analyzer  

● Tanita DC-360 P body composition analyzer  

● Tanita DC-430 MA S Body Composition Analyzer - Class III  

● Tanita DC-430 MA P Body Composition Analyzer - Class III  

● Tanita MC 980 MA Body Constitution Analyzer 

 

Table 2 presents a comparison between ANALYCOR and XITRON that uses a 

technique with four silver electrodes, where the first pair is for injecting the current and 

the other pair is for measuring the potential difference. 

 
Table 2: Comparison between ANALYCOR and XITRON. 

UTC study of two devices ANALYCOR(France) XITRON 4000B(USA) 

Alternating current (mA) 0.5 mA 0.25 mA 

Frequency 5, 50, 100 KHz 5 and 1 MHZ 

 

Z-Metrix is a multifrequency device (foot-to-hand) from the French company 

Bioparhom which works on impedancemetry conception. It has carried out training on 

bioimpedance which is used to measure the water level and the different body 

compositions [51]. 
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VI. conclusion 
 

The studies aim to have non-invasive methods with less risk and to have results with 

the same precision or more with the invasive methods, which will be very useful in 

diagnosis and monitoring. 

The difference between the invasive method (e.g. cardiac catheterization) and non-

invasive is low risk of danger, easy to use, less expensive and requires less training. 

Another disadvantage of invasive techniques is that they are not practical in an 

outpatient setting for this reason the researchers work on new alternative methods.  

The Bioimpedance is one of the non invasive technique analyses that offers valuable 

information about the tissues' anatomy and physiology. Several studies were about the 

analysis of the electrical impedance of biological tissues in order to diagnose and study 

the physiological and pathological state with the non-invasive method.   

Nowadays, Bioimpedance is becoming the basis of new non-invasive medical 

diagnostic devices. For this purpose, we are focused in this party on the principal and the 

different characterization and analysis techniques of the bioimpedance that use non-

invasive techniques, and the different applications applied on the biological tissues in the 

medical field that assist in the diagnosis and monitoring of pathological state of patients. 

Current studies of bio-impedance emphasise instrumentation are already implemented 

and that can be conducted in the near future by wireless techniques such as Bluetooth. 

Several obstacles in this area of research must be overcome such as non-linearity, 

measurement errors and modelling, errors due to patient positioning or electrodes, the 

poor performance of the electrodes, the modelling of the system especially in EIT, it 

must be more precise. 
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I. Introduction 

In recent years, cardiovascular disease has increased; consequently the mortality rate 

also increases. The American Heart Association report has suggested that for near 

incoming years we will witness an alarming increase [1]. 

 For this reason the researchers are developing new methods to overcome the causes 

of mortality with less harm. Impedance cardiography ICG known also as transthoracic 

electrical bioimpedance cardiography based on the intra-thoracic changes of blood 

volume and measuring changes in electrical resistance during the cardiac cycle [2].  

This method is reliable, safe, and does not present any danger to patients because 

their measurements are released in a non-invasive way and requires four patches 

attached to the skin of the neck and thoracic wall. It helps to provide information about 

the physiological activity and pathological changes in the heart and chest. 

It is used for hemodynamic metrics extractions that help in the cardiovascular 

diseases prevention, diagnosis and cardiac monitoring whether ambulatory or continuous 

long-term in intensive care units and perioperative. The ICG method is an alternative 

technique to invasive techniques such as thermodilution, pulmonary artery catheter 

(PAC), and Doppler [3]. 

 Kubicek et al. have developed a model based on the four-electrode method for 

impedance cardiography measurement. It aims to calculate Stroke volume that includes 

also the left ventricle ejection time [4].  

The electrical impedance has parameters that can be used for the diagnosis and 

monitoring of the pathological condition of the patient's tissues. Among these 

parameters: stroke volume, stroke volume index (SV/SVI), cardiac output, cardiac index 

(CO/CI), left ventricular ejection time (LVET), the preejection period (PEP), thoracic 

fluid content (TFC) and heart rate variability (HRV). 

In 1940, studies using the ICG technique emerged. In 1960, the National 

Administration of Aeronautics and Space began the research of the thoracic electrical 

bio-impedance using heart index record [5]. 

In 1966, Kubicek tested a systolic ejection volume (SV) equation according to the 

bio-impedance using an electrode location that measured thanks to the four-electrode  
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method developed by Kubicek et al. He is the first who used the principal of the first 

derivative dZ/dt (ICG) of the impedance Z [4].  

In the same year, The 1st impedance cardiography monitoring device was developed. 

Granerus used the ICG signal for the left ventricular ejection volume computation in 

1981 [6], where Sramek developed a new equation in hemodynamic based on the cardiac 

impedance changes.  

In 1986, also Sramek used 8 spot electrodes like standard ECG electrodes. The first pair 

of electrodes is placed at the beginning of the thorax and the second one at the end of the 

thorax (the level of the xiphoid process) [7].  

In this chapter, aims to review the various studies carried out on this signal type, and 

to present the multiple methods used for the ICG signal measurement, its shape, , as well 

as its characteristics which make it possible to calculate hemodynamic parameters for 

the cardiovascular diseases’ diagnosis and a correct analysis  

.  

II. Principal Methodology 

 

1. Definition  

 

Impedance Cardiography is the study of the cardiac function by means of thorax 

electrical impedance measurements with The Tetrapolar electrode system using four-

band electrodes or 8 spot electrodes. High frequency (50-100 kHz) is used and in others 

studies they used a frequency range varying from 20 to 100 KHz, low-intensity current 

across an outer pair of electrode (0.2-5 mA) is injected through the thorax and 

recuperated the potential of the impedance change with the sensing inner pair electrodes 

[8].  

There is No risk of physiological effects because various tissues of the human body 

are not excitable at this frequency and at this low current level (Patterson, 1989). 

 However, it presents any danger to the patient according to the report of the 

Association of Advancement of Medical Instrumentation in 2005 and it is applicable 

without any specialised knowledge. 
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2. ICG Features Extraction 

 

The measurement (see Figure 7) is based on the skin electrodes contact that generates 

impedance. In order to eliminate it, the application of pre-gelled highly conductive 

electrodes is required.  

 Furthermore, the appearance of electrode-electrolyte impedance can be greater than the 

impedance tested especially at low frequencies, which are too unstable and unpredictable 

to think about the measurement [9].   

 

  
Figure 7: The Electrode configuration for ICG signal measurement [9] [10]. 

 

Figure 8 and 9 present the composition of the recuperated ICG waveform, where Z0: 

baseline impedance; where A is the atrial wave coincides with P of the ECG waveform; 

the point B coincides with the opening of the aortic and pulmonary valves. The point C 

corresponds to the maximum peak of the dZ/dt (ICG) signal on a heartbeat. It presents 

the blood ejection rate by the ventricles, which corresponds to the ventricular 

contraction. The point X is the lowest point after peak C and is associated with the 

closure of the aortic valve. The point Y: corresponds to the closure of the pulmonary 

valve. The wave O occurs during the diastole (the passive blood passage between the 

atriums and the ventricles), its peak is the moment of the mitral valve opening.  PEP 

presents the pre-ejection period. VET is the ventricular ejection time. IVRT is the 

isovolumic relaxation time, and FT is the ventricular filling time [9]. 
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Figure 8: The characteristic extraction of the ICG waveform [5]. 

 

 

 

 
Figure 9: The typical ICG and ECG waveform [10]. 

 

The Bioimpedance variation can be used for diagnostic information and for Stroke 

Volume (SV) and Cardiac output (CO) estimation as well as time intervals 

measurement. 
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● The term SV indicates the amount of blood pumped by the heart left ventricle in 

one contraction. The SV equations are for the systolic ejection volume depending 

on the thoracic impedance variation. 

 

SV = 𝜌𝜌× (𝐿𝐿|𝑍𝑍𝑜𝑜)2 × Δ𝑍𝑍 .(Nyboer)                                (1) 

 

SV= ρb(𝐿𝐿 |𝑍𝑍ₒ)²(𝑑𝑑𝑍𝑍|𝑑𝑑𝑑𝑑)max LVET. (Kubicek [4])                           (2) 

 

SV= (0.17 𝐻𝐻)³
4.25

1
𝑍𝑍ₒ

 (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

)max LVET (Sramek [7])                               (3) 

 

SV= σ(0.17 𝐻𝐻)ᶟ
4.25

1
𝑍𝑍ₒ

 (𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

)max LVET  (D.P. Bernstein and Sramek)            (4) 

with   𝜎𝜎 = �𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚𝑑𝑑𝐵𝐵𝑒𝑒𝑎𝑎𝑑𝑑/24, 

 

And the new Bernstein equation is defined as follow: 

SV=Vc�
1
𝑍𝑍ₒ

(𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

)  max LVET,                                         (5) 

 

Where,  

𝜌𝜌: is a constant specific of the resistivity of blood and variable to person from another 

person; 

ρb: is the static specific resistance of blood Ω (cm)= 135 Ω cm [11];  

𝑍𝑍𝑜𝑜 : is the basic impedance of the thorax (Ω) ;  

LVET: is the left ventricular ejection time; 

BMI: is the body mass index; 

24: is the ideal BMI value assumed by Bernstein (kg.m-2);  

δ: is the  Bernstein Correction Factor [12];  

L is the transthoracic length; 

Vc is the intrathoracic blood volume (mL); 

H is its size in (m). 
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• The cardiac output is the blood ejected by left ventricle at each heart beat; it 

defined in the equation below: 

CO (L / min or mL / min) = stroke volume × heart rate(HR)                      (6) 

  

The normal range is approximately 5.6 L / min for the man and 4.9L / min for the 

woman. 

 

 

3. Signal Processing 

 

The ICG analysis aims to provide a correct diagnosis for cardiovascular disorder 

thanks to the hemodynamic parameters calculations. For this reason, several algorithms 

are used to analyse the recuperated ICG signal with range of 0.8 and 20 Hz that is altered 

by artefacts with low frequencies cause distortions due to multiple causes such as: 

respiratory and motion artifacts due to patient movement during acquisition, poor 

electrode placement and electrode material, it caused baseline drift, power frequency 

interference, myoelectricity interference. 

To not erroneously analyse the signal analysis and to not make the analysis inaccurate 

and very difficult for finding the correct diagnosis, many studies have been done to 

obtain a better approach to signal segmentation and especially of the highly variable 

signals. 

 

The noise that reaches the signal pushes towards a bad diagnosis, that is why the 

Wavelets come to solve this problem, some studies use filters as that of Sarah 

Ostadabbas 2017.  Several models have been created such as that developed by Pinheiro 

Eduardo et al. in 2011 [13].  

The study is based on a heartbeat segmentation method for cardiovascular signals. It 

uses four parameters that relies on a sliding power window without needing the 

hypothesis formula including the patient's heartbeat shape or a reference signal to 

synchronise the points of segmentation.  

Its purpose is to transform the cardiac signal and obtain the fundamental frequency of 

heartbeat oscillation. This model segments highly variable signals as ballistocardiogram  
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(BCG) and ICG, using wavelet filtering and peaks detection. The freely seated 

wheelchair with a motionless subject is the test condition required to acquire this type of 

physiological signals in the Pinheiro study.  

The second model used a mathematical model based on a process summation effect, 

the first of which refer to the WpE pre-injection wave and the second referring to the 

ejection wave WEj. 

The important points to detect are the maximum of wave C and the maximum peak of 

the second derivative is point B [14].  

In 2016, Chabchoub et al. use wavelets to denoise the signal, they found that the 

Daubechies wavelet family (db8) perform better in terms of noise cancellation; it gives 

better separation between artifact and signal. It allows us to determine the cardiovascular 

parameters and to diagnose cardiovascular diseases [15].  

In 2017, Souhir Chabchoub used the ICG signal to detect mitral insufficiency, heart 

failure, myocardial infarction, and mitral insufficiency. Their study has an accuracy rate 

of 98.94% [16].  

To reduce noises from ICG waveform, other denoising methods are used as the 

Savitzky–Golay filter, the median filter; an adaptive filtering based least mean squares 

(LMS) [17],and others wavelets as Meyer wavelet [18].  

The ICG technique accuracy is evaluated and significantly shows the good correlation 

using the bioimpedance correlation coefficient calculations that are compared with other 

techniques as conventional invasive methods like Fick, Thermodilution, and aortic 

Doppler techniques. 

In 1996, DeMarzo AP. et al. compared ICG with Aortic Doppler for aortic valve 

opening detection and found a high correlation equal to 0.996 [19].  

In 1996, Belardinelli et al. compared ICG with thermodilution (TD) where he found a 

good correlation with rate among 0.89 [20].  

In 2003, Faddy.S et al. made a comparison between TEB and TD for the population 

of patients with a right heart catheterization. The results show a good correlation equal 

to 0.91 [21].  

In 2004, Cotter et al.  found a good correlation when comparing ICG with 

thermodilution (TD) in the population of patients suffering with heart failure [22].  
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In 2004, Yung GL et al. found a correlation rate equal to 0.8 when comparing three 

types of techniques: TD vs ICG and Fick [23].  

In 2011, Sharma et al. compared TEB with thermodilution, he found a good 

correlation [24].  

In 2012, Deepak et al. made a comparison between thoracic electrical bioimpedance 

(TEB), he found a correlation rate equal to 0.9 [25].  

Studies have been done to measure the reliability of non-invasive bio-impedance 

techniques by measuring different hemodynamic parameters that are already calculated 

by invasive techniques [26].  

However, the measurement of this type of physiological signal is influenced by some 

wave’s variations as that contact electrodes with tissue and their positioning on skin, 

patient weight, pulmonary oedema, biological composition, respiration, noise due to 

movement or equipment, blood circulation, volume blood from the transthoracic region, 

tissue fluid volume, sweating skin, and myocardial tissue contraction.  

Despite  the  several advantages of the ICG technique, such as  the continuous and 

real-time hemodynamic monitoring principle in a non-invasive way. It is flexible, 

simple, reliable, safe, and painless, at low cost, easy and fast. Also it ensures the 

diagnosis of cardiovascular diseases such as mitral insufficiency and heart failure, it is 

limited in the field of the valvular heart disease detection as shown in the study of 

Chabchoub in 2017 [16]. 

 

III. Conclusion 

Cardiovascular disease is the most popular disorder in the world, for this reason, the 

ICG study comes to solve the problem of early detection of diseases thanks to the 

continuous monitoring that the ICG ensures. 

The Impedance cardiography (ICG) technique allows obtaining continuous and real-

time hemodynamic data measurements as well as the diagnosis and monitoring of 

cardiovascular diseases, it is advantageous in medical field, it provides a better 

distribution but is affected by several conditions as the respiration, equipment 

movements, electrodes emplacement and others. It is a method to obtain the cardiac 

indexes including cardiac output.  
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This method has many advantages that are non-invasiveness, low cost, and ease of 

use. However, it has limitations that prevent its implementation in medical practice 

especially for patients’ with critical cases.  

Several studies were about the analysis of the electrical impedance of biological 

tissues in order to diagnose and study the physiological and pathological state with the 

non-invasive method.  

The purpose of the impedance cardiography analysis is the possibility of obtaining 

important information about the anatomy and tissue physiology. 
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Chapter IV: Denoising methods Applied for ICG signal 
Analysis 

 

I. Introduction 

 

Bioimpedance is a scientifically relevant research area of many researchers which is 

an alternative method of invasive methods that are painful and very expensive. Through 

biological tissue stimulation with a low-intensity current through electrodes, the voltage 

is recuperated and complex electrical impedance is involved that depends on biological 

tissues.  

The different variation in blood volume and low velocity of the ascending aorta 

during systole and diastole generate the variations of impedance (Z) among their 

different applications, there are thoracic bioimpedance or impedance cardiography (ICG) 

technique which is reliable, non invasive and practical method that is widely used in 

clinical practice for the measurement of multitude hemodynamic parameters and it is a 

new way for cardiovascular diseases diagnostics and continuous monitoring.  

The advantage of this technique is its simplicity of realisation, the speediness of its 

temporal response, it is cheaper, non-invasive, and safer, it makes continuous monitoring 

in real-time [1].  

The research of ICG [2] is widely used in clinical applications as Hypertension, 

Surgery, Cardiovascular Diseases, Pregnancy women [3] and others. It emerged in 1940, 

it is simple, safe, easy to apply, cost-effective and a non-invasive method of diagnostic 

and medical monitoring that measures the change in blood volume due to impedance 

variations inside the chest using the electrode system placed on the patient's skin [4].   

 The result of this measurement is a sensed impedance waveform range between 0.8 

and 20 Hz called ICG signal vulnerable to noises such as respiratory and movement 

artifacts which is due to the motions of patients during the acquisition, the incorrect 

electrodes positioning, and their manufacturing material. These factors make the 

evaluation of cardiac indices calculation inaccurate such as; stroke volume (SV) and 

cardiac output (CO) to diagnose and monitor the patient’s condition. 

One way to derive several significant parameters is the analysis of this waveform type 

by denoising which is an important step in the process. The signal processing field is 

used to overcome the problem of noises that disturb the signals 
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Many researchers devoted their studies on the algorithm's detection of the 

characteristic points, but the problem of this ICG signal acquired is the respiratory and 

motion artefacts which makes its analysis a little delicate, for this purpose, our research 

contributed to solve this problem. 

The samples of the ICG signal (see Figure 10) from 10 participants are recorded with 

the sampling rate equal to 1000Hz. The ICG device is accomplished in three sections 

consisting of Howland current injection stage, lock-in amplifier stage for impedance 

detection and ICG evaluation interface. The bioimpedance measurements were 

conducted in Tetrapolar configuration based on four electrodes. 

In one side, our methodologies based mainly on the denoising process, it is consisted 

to find the best performing denoising method of the ICG signal without distorting the 

shape of ICG signals studies, hence we have proposed some filtering techniques such as 

linear filters, adaptive filters, Savitzky-Golay (SG), singular values decomposition 

(SVD), and wavelets, and then they are all tested to noise removal and to have more 

visibility of the ICG waveform. In the other side, we applied some algorithms of 

detection for features points’ extraction. 

Ten healthy subjects, recorded by BioLab v.3.0.13 software with the sampling rate 

equal to 1000 Hz and the code has been developed under Matlab R2014a. During a time 

period, Figure 10 and 11 present the ten cycles of ICG signal just for subject 1.  

In this chapter, the several denoising methods are applied, explained and presented. 

 
Figure 10 : The ICG signal cycles for subject 1. 
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Figure 11 : The cycles of ICG signal for subject 1 from 1 to 10cycles. 
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II. Method 1 

The first method used in the paper under press in Int. J. Medical Engineering and 

Informatics is based on Adaptive filters and Savitzky-Golay (SG). 

Our first research consisted of comparing several types of denoising methods to find 

that performed well. We used adaptive filter for noise removal of the ICG signal already 

used by Hu in 2014 [5]; and Pandey in 2011[6] as: on least mean squares (LMS), 

normalised LMS (NLMS), leaky LMS, signed LMS (SLMS), signed regressor 

(SRLMS), sign-sign (SSLMS), and recursive least square (RLS), we are also applied 

Savitzky-Golay filter cited by Chabchoub 2016; Salah and Ouni, 2017 [7] [8]. 

The adaptive filters are self learned, relying on a feedback mechanism, it is a digital 

filter employed to reduce or enhance some signal aspects. For cancelling noises that 

altered the signal under study, the filter parameters are set recursively. The adaptive 

algorithm has a transfer function used to adjust the adaptive filter weight coefficients 

W(i) thanks to predefined variable parameters, characterised by filter order M. In our 

case, it serves to reduce error signal or cost function. The adaptive filter shown in Figure 

12 presents a block diagram where x(i) is the input signal throw the adaptive filter that is 

updated with a weight coefficient w(i) to produce the output signal y(i) [5]. 

 

 
 

Figure 12: The adaptive filter structure. 
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LMS based finite impulse response (FIR) filter is the most applied, its 

implementation is simple and advantageous and it has robust operations. The predefined 

step size is based on a gradient descent, which is selected at the beginning of the 

adaptive filter. 

The following equations present the basic LMS algorithm steps [9]: 

 

𝑚𝑚(𝒾𝒾) = [𝑚𝑚(𝒾𝒾), 𝑚𝑚(𝒾𝒾 − 1), 𝑚𝑚(𝒾𝒾 − 2), … 𝑚𝑚(𝒾𝒾 − 𝐵𝐵 − 1)]ᵀ                                           (1) 

𝑚𝑚(𝒾𝒾) = 𝑑𝑑(𝒾𝒾) + 𝑁𝑁(𝒾𝒾)                                                                                              (2) 

𝑊𝑊(𝒾𝒾) = [𝑤𝑤ᵢ(0),𝑤𝑤ᵢ(1), … ,𝑤𝑤ᵢ(𝐵𝐵− 1)]ᵀ                                                                 (3) 

𝑦𝑦(𝒾𝒾) = 𝑊𝑊(𝒾𝒾)ᵀ 𝑚𝑚(𝒾𝒾)                                                                                               (4) 

𝑒𝑒𝑎𝑎𝑎𝑎(𝒾𝒾) = 𝑑𝑑(𝒾𝒾) − 𝑦𝑦(𝒾𝒾)                                                                                           (5) 

𝑊𝑊(𝒾𝒾 + 1) = 𝑊𝑊(𝒾𝒾) + μx(𝒾𝒾)err(𝒾𝒾)                                                                        (6) 

 

Where x (i) is the noisy signal, d (i) is the desired signal, W(i) is weight coefficients, 

W(i+1) is the weight update or the updated filter coefficient, y(i) is the output signal or 

reconstructed, N is the noise added, M is the order filter, err(i) the signal error for the 

convergence rate, µ is the step size (0 < µ < (2/ T-tap FIR filter)) for the algorithm 

convergence, it is varying between 0 and 0.2, where we have selected tree values: 0.004, 

0.008, and 0.01. 

The difference between the several types of LMS is established on the weight update 

for LMS algorithm types defined in equations below: 

 

NLMS equation defined as follow: 

  𝑤𝑤(𝒾𝒾 + 1) = 𝑤𝑤(𝒾𝒾) + 2 𝜇𝜇 𝑒𝑒𝑎𝑎𝑎𝑎(𝒾𝒾) 𝑚𝑚(𝒾𝒾)                                                                        (7) 

 

LLMS equation defined as follow: 

 𝑤𝑤(𝒾𝒾 + 1) = 𝑣𝑣 ∗ 𝑤𝑤(𝒾𝒾) + 𝜇𝜇 𝑒𝑒𝑎𝑎𝑎𝑎(𝒾𝒾) 𝑚𝑚(𝒾𝒾)                                                                       (8) 

 

Where, 𝑣𝑣  is between 0 and 1, the value is equal to 0.99 in our study. 

SLMS equation defined as follow: 
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 𝑤𝑤(𝒾𝒾 + 1) = 𝑤𝑤(𝒾𝒾) + 𝜇𝜇 𝑠𝑠𝐵𝐵𝑠𝑠𝑎𝑎�𝑒𝑒𝑎𝑎𝑎𝑎(𝒾𝒾)� 𝑚𝑚(𝒾𝒾)                                                                 (9) 

SRLMS equation defined as follow: 

  𝑤𝑤(𝒾𝒾 + 1) = 𝑤𝑤(𝒾𝒾) + 𝜇𝜇  𝑒𝑒𝑎𝑎𝑎𝑎(𝒾𝒾)𝑠𝑠𝐵𝐵𝑠𝑠𝑎𝑎(𝑚𝑚(𝒾𝒾))                                                            (10) 

 

SSLMS equation defined as follow: 

 𝑤𝑤(𝒾𝒾 + 1) = 𝑤𝑤(𝒾𝒾) + 𝜇𝜇 𝑠𝑠𝐵𝐵𝑠𝑠𝑎𝑎�𝑒𝑒𝑎𝑎𝑎𝑎(𝒾𝒾)� 𝑠𝑠𝐵𝐵𝑠𝑠𝑎𝑎(𝑚𝑚(𝒾𝒾))                                                 (11) 

 

The Recursive least squares (RLS) converge faster than LMS that find recursively 

finds the coefficients of filter, Which minimise a weighted linear least-squares cost 

function relating to the input signals, the algorithm [10] defined as in the following 

equations: 

 

       𝑤𝑤(𝒾𝒾 + 1) = 𝑤𝑤(𝒾𝒾) +  𝑒𝑒(𝒾𝒾).𝑘𝑘(𝒾𝒾)                                                 (12) 

 

    k (𝒾𝒾) = 𝐵𝐵(𝒾𝒾).𝑢𝑢(𝒾𝒾)
𝜆𝜆+𝑢𝑢ᵀ(𝒾𝒾)𝐵𝐵(𝒾𝒾).𝑢𝑢(𝒾𝒾)

                                                                 (13) 

 

       p (𝒾𝒾) = 𝛿𝛿ˉ¹𝑢𝑢(𝒾𝒾)                                                                         (14) 

 

       p (𝒾𝒾 + 1)= 𝜆𝜆ˉ¹𝐵𝐵(𝒾𝒾) − 𝜆𝜆ˉ¹𝑘𝑘(𝒾𝒾)𝑢𝑢ᵀ(𝒾𝒾)𝐵𝐵(𝒾𝒾)                                 (15) 

 

where i is the iterations, w (i) is the filter coefficient vector, w (i + 1) is the weight 

update, λ is the forgetting factor is between 0 and 1 we choose a value equal to 0.98, δ is 

the regulation factor, k (i) is the gain factor, e (i) is error signal, u (i) is unity matrix, and 

p(i) is the inverse correlation matrix of the input signal. 

 

A SavitzkyGolay (SG) filter is a digital filter with a finite impulse response that 

smoothes the signal data without destroying its shape and makes the information 

provided on the signal more accurate. It has two settings: the window length and the 

filter order. Precisely, it can automatically adjust its settings, according to sampling or 

cut-off frequency [11]. 
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In our work, this method is based on the local least-squares polynomial approach, 

where the polynomial degree is controlled [12].  

After testing the orders (from 1 to 10) and comparing them with the adaptive filters 

simultaneously, we found that the polynomial of degree 9 performs well, which reduces 

noises to the maximum. 

The evaluation criteria step is essenstial  to verify the technique performance. For this 

purpose, four metrics are calculated as defined in the following equations:  

 

The error (Err) equation defined as follow: 

 

Err = �d(𝒾𝒾) − y(𝒾𝒾)�                                                  (16) 

 

The signal to noise ratio output (SNR) expressed in dB, it equation defined as follow: 

 

SNR = 10log₁₀ � ∑ y²(𝒾𝒾)𝒾𝒾
∑ (y(𝒾𝒾)−d(𝒾𝒾))²𝒾𝒾

�                                         (17) 

The signal to noise ratio input (SNRi) expressed in dB which the input noise ranges is 

calculated from 0 dB to 20 dB: 

SNRᵢ = 10log₁₀ � ∑ x²(𝒾𝒾)𝒾𝒾
∑ (noise )²𝒾𝒾

�                                     (18) 

 

The mean square error (MSE) equation defined as follow: 

 

MSE = mean (x(𝒾𝒾) − y(𝒾𝒾))²                               (19) 

 
Where d(i) is the original signal, x(i) is the noisy signal, y(i) is the reconstructed signal. 

 

III. Method 2 

The second method used in the paper published in 2021 IEEE 6th International 

Conference on Computing, Communication and Automation (ICCCA) proceeding. It is 

based on a novel noise-reduction technique of filtering tool called singular value 

decomposition (SVD) Algorithm for ICG signal, where we compared it with LMS based  
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adaptive filter, already explained in the previous method, which is used specially to 

eliminate the breathing artifact. 

To evaluate the technique, a specific performance setting has been calculated: SE, 

RMSE, SNR and SNR improvement. 

Singular value decomposition is a method that enables the factorization of a matrix. It 

provides complete orthogonality to supply a more visible view of a geometric signal 

processing structure based on the number of Singular values other than zero values 

placed on the matrix [13] [14]. 

It is also a noise reduction technique and other undesired signal components that 

recover ICG signals. It is based on the decomposition of the data space as an ICG data 

matrix into orthogonal subspaces.  

The produced ICG signals are settled in a linearly structured matrix as Hankel-form 

matrix, which decomposes it into two subspaces signal and noise components contained 

in the data [15].  
.  

The most advantageous of the SVD technique is the energy-preserving orthogonal 

transformation that allows a high-resolution spectrum estimation and noise anomalies 

detection in the 2.4 GHz band. In point of view, the SVD aims to reduce original data 

using fewer dimensions that give a better approximation. It serves to make relationships 

between the elements that reconstruct the original data. It allows releasing the 

classification of data points according to the largest variation dimensions. 

The LMS algorithm steps are defined above in method 1. 

Our SVD study based on the following algorithm steps: 

• The real matrix A ∈ Rm×n transform to diagonal matrix ∑ with a non-negative real 

numbers via the product of three simple matrices as defined in equation (20) [16] 

[17] :  

 

A=  𝑈𝑈∑𝑆𝑆′ = USVT =  ∑ 𝑆𝑆ᵢ𝑢𝑢ᵢ𝑣𝑣ᵢᵀmin {𝑚𝑚 ,𝑎𝑎}
𝐵𝐵=1                                        (20) 
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Where U and V are an orthogonal matrices; ui and vi are singular vectors, S is the 

diagonal matrix (m × n) with positive real entries, Sᵢ are the non-zero diagonal elements 

organized in descending order. 

• Adding white Gaussian noise to the ICG signal with Signal Noise Ratio input 

(SNRi) with range 0 dB to 20 dB as shown in equation (21): 

 

x (n) = d (n) +N (n)                                                                   (21) 

 

Where x (n) the noisy waveform, d (n) is the ICG waveform, N (n) is the noise added 

• Construct Hankel matrix is represented in equation (22) [15]:      

         𝐻𝐻 = �
𝑢𝑢₁ ⋯ 𝑢𝑢𝑢𝑢
⋮ ⋱ ⋮
𝑢𝑢𝒾𝒾 ⋯ 𝑢𝑢𝒾𝒾˖𝑢𝑢-1

� 𝓲𝓲×𝓳𝓳                                                                          (22) 

 

The dimension of the Hankel matrix is 𝓲𝓲×𝓳𝓳, represents the summation of clean ICG 

signals and random noises. 

• Achieve Uᵢ , Sᵢ  ,Vᵢ through SVD as defined in equation (23): 

H=  𝑈𝑈∑𝑆𝑆′ = USVT =  ∑ 𝑆𝑆ᵢ𝑢𝑢ᵢ𝑣𝑣ᵢᵀmin {𝑚𝑚 ,𝑎𝑎}
𝐵𝐵=1                           (23) 

 

• Make each singular value in a diagonal matrix Sᵢ according to its column index to 

extract the breaking point.  

• The clean Matrix constructed H2’ defined in equation (24) as follows [15]:  

 

𝐻𝐻₂ ̛ = 𝑈𝑈∑ ′ 𝑆𝑆 ᵀ                                                            (24) 

 

• Reconstruct denoise signals. 
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Four metrics parameters are calculated to estimate the quality of the reconstructed 

signal and to evaluate the performance of the algorithm coded. These parameters are 

defined in equations as follows [7]: 

• Square Error (SE): 

SE = �d(n) − y(n)�²                                                  (25) 

• Signal to Noise Ratio (SNR): 

SNR (dB) = 10log₁₀ � ∑ y²(n)n
∑ (y(n)−d(n))²n

�                                      (26) 

• Signal to Noise Ratio Improvement (SNRimp):  

SNRimp(dB) = 10log₁₀ � ∑ |x (n)− d(n)|²n
∑ |(y(n)−d(n))|²n

�                                  (27) 

• Root Mean Square Error (RMSE): 

RMSE = 1
L
∑ (d(n) − y(n))²L

n                                        (28) 

Where d (n) is the original signal, x (n) is the noisy signal, y (n) is the reconstructed ICG 

signal, and L is the length of signal. 

 

IV. Method 3 

The signal processing and denoising methods are necessary for noises removal as 

respiration and motion artifacts, which have very low-frequency ranges of 0.04 Hz to2 

Hz and 0.1 Hz to 10 Hz respectively, to extract signal characteristics and different 

significant information from ICG signal that is employed in the medical field whether in 

earlier diagnosis or patients monitoring. In this study, we are discussed about the 

wavelets denoising concept basing on the scale-dependent thresholding which is used in 

two types of an Orthogonal Wavelet family that are Daubechies wavelets (db); created 

by Ingrid Daubechies6 in 1988; and Symlet (sym), applied on the ICG.  

For this purpose, the wavelet coefficients are thresholded using Sureshrink, 

NeighBlock, and the classic thresholds as Rigrsure and Sqtwolog, they are all compared 

with the linear filters as well as with the LMS-based adaptive filtering algorithm. The 

calculation results of the estimation parameters show that the best denoising technique  
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that performs well on noise reduction is the wavelets sym8 at level 5 and the most 

optimal thresholding method is that of Rigrsure with a mean error rate (MER) equal to 

0.0001 %. This method shown the reliability of results, it is published under journal 

named Traitement du Signal. The following diagram presented in Figure 13 shows our 

processed methodology. 

 
Figure 13: The interpretable diagram of our processed methodology. 

 

The Wavelet analysis is a signal processing tool, despite that its mathematical 

underpinnings return to Joseph Fourier since the nineteenth century; where he made the 

basics of frequency analysis theory. 

It is a method that measures the average fluctuations at different scales that have 

shown a significant decrease in noise and preserve the signal characteristics. In 1909, the 

wavelet was in the thesis of Alfred Haar. Their analysis methods have been developed 

and disseminated by Y. Meyer and others [18]. 

 When the signal is transformed by the wavelet transform, the relevant information is 

extracted thanks to the signal analysis [19]; it came to solve the problem of the signal  
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noises. Among the discrete wavelets, there is the sym26 which is used for the ICG signal 

denoising [20]. 

Five denoising methods were compared using different filters: The Savitzky-Golay 

filter was compared with the median filter, the band-pass filter, wavelet (db8) and the 

moving average filter. The results provide that the first one filter is the best [8]. 

 A comparison between the ensemble empirical mode decomposition (EEMD), the 

optimal FIR filter, and the Symlet wavelet family (sym8) for the ICG denoising where 

this last one is the best [21]. 

The study of Choudhari proved that db4 is the most performing for denoising [22]. 

 Chabchoub states  that the decomposition level is that which gives the more sweet 

separation of signal and noise and he found that the db8 wavelet family is better than 

other wavelet families [7]. 

For the ICG denoising is necessary to pass by the multiscale decomposition, then the 

thresholding coefficients, after that the signal will be reconstructed using the inverse of 

Discrete Wavelet Transform (IDWT). There is no better threshold which is universal for 

a determination technique [23], that why there are multiple thresholds techniques as the 

classic thresholding and others like SureShrink and NeighBlock that are already used for 

ECG signal denoising and them showed reliability in the results and they had never used 

for denoising the ICG signal [24]. 

The used interest of the wavelet denoising is the preservation of signal characteristics 

and noise removal whatever the frequency content which is different from the smoothing 

that is used to remove high frequencies and keep the lower ones [23]. 

The study aims is to investigate the ICG signal denoising using linear filters that are 

tested as well as LMS adaptive filter and various thresholding techniques for wavelets 

such as SureShrink which is proposed by Donoho and Johnstone in 1995 [25], 

NeighBlock; local thresholding; Rigrsure, Sqtwolog; the universal thresholding; in order 

to have signal less noisy. 

The orthogonal wavelets analysis decomposes the signal into shifted and scaled 

versions of the mother wavelet defined in equation (3) [26]. 

The wavelet transformation has two types: continuous wavelet transformation (CWT) 

and discrete wavelet transformation (DWT) that use the filter banks to decompose the 

signal into a coefficient component called Details, and Approximation [27]. 
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Its advantages include the possibility to select scales and dynamic positions to gain 

more reliability. The equation of the DWT is defined in equation (30). 

 

ѱ(𝑚𝑚) = �
1  𝑓𝑓𝑜𝑜𝑎𝑎    0 << 1

2

−1  𝑓𝑓𝑜𝑜𝑎𝑎   1
2

< 𝑚𝑚 < 1
0            𝑜𝑜𝑑𝑑ℎ𝑒𝑒𝑎𝑎𝑤𝑤𝐵𝐵𝑠𝑠𝑒𝑒.

�                                                             (29) 

 

𝑋𝑋 [ɑ, ʙ] = ∑ 𝑚𝑚[𝑎𝑎]ѱ+∞
𝑎𝑎=−∞ ɑ,ʙ[n]                                                         (30) 

 

ѱɑ,ʙ[𝑎𝑎] = 1
√ɑ

[ѱ(n-ʙ)/ɑ]                                                              (31) 

 

Where, ɑ and ʙ are the wavelet location parameters, x[n] is the signal, n is the samples 

number, and ѱ(.) is the mother wavelet [28]. 

 

The Figure 14 presents the DWT for multiscale wavelet decompositions where H0 is 

an HPF output and G0 is an LPF output cj[n] denote the approximation coefficients and 

dj[n] denotes the detail coefficients. 

 
 

Figure 14: The signal wavelet decomposition. 
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The thresholding hypothesis is based on the idea that the no modified coefficients are 

zero or almost zero, so the noise is on all the coefficients with a low level that allows us 

to differentiate between the wavelet coefficients with those that are noisy. The wavelet 

thresholding method was introduced by Donoho in 1993; it serves to threshold the 

wavelet coefficients by eliminating their noisy part [23]. 

The wavelet transform noiseless coefficients are indeed rare and the ones with low 

amplitude are set to zero, the wavelet thresholding name comes from the comparison 

which is made by the coefficient with a threshold to know if it is a part constitutive 

desirable or not of the original signal 

The wavelet decomposes the signal into Approximations cj that present the low 

frequencies where resides the most information of signal and in dj details which 

represent the high frequencies.  

The thresholding draws the significant coefficients from cj, if they are lower than a 

threshold level λ ,they will be equal to zero, this threshold depends on decomposition 

level which is called Sureshrink [25] [29] that is proposed by Donoho and Johnstone 

[25], and an inverse wavelet discrete transformation IDWT that leads to a less noisy 

signal reconstruction [23]. 

Among these other threshold methods, the classical thresholding such as Rigrsure 

which used Stein's unbiased risk principle (SURE), and Sqtwolog which used the 

universal threshold. The methods are respectively defined as follows: 

 

thᵢ=𝜃𝜃ᵢ�2log(𝑁𝑁ᵢ)                                                               (32) 

𝜃𝜃ᵢ = 𝑚𝑚𝑒𝑒𝑑𝑑𝐵𝐵𝑚𝑚𝑎𝑎 |𝑗𝑗 |
0.6745

                                                                   (33) 

 

Where, 

 𝜃𝜃ᵢ is the mean absolute deviation and Nᵢ is the length of the noisy signal, and ω is the 

wavelet coefficient to scale j. 

   thᵢ= 𝜃𝜃ᵢ√𝑗𝑗ₐ                                                                           (34) 

 

Where, 

 𝜃𝜃 is the standard deviation of noisy signal, and 𝑗𝑗ₐ is the coefficient wavelet square. 
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The neighbourhood block method, proposed by Cai and Silverman [30], is based on 

the calculation of the shrinkage factor within blocks of successive coefficients. It is 

applied to the group of adjacent coefficients, and is not applied for each coefficient and 

level. The use of multiple thresholds for all coefficients improves noise reduction 

performance [31]. 

 The choice of the threshold can be chosen according to the local noise levels, this 

technique calculates a threshold value with the neighbourhood [30] [32], and is based on 

the following steps: 

Step 1: Decomposition of the signal in coefficient with the DWT; 

• Step 2: Carry out the coefficients in disjoint block bi,j for each level; 

• Step 3: The shrinkage factor rule is chosen according to the local properties 

of the coefficient. It is defined in equation (35) as follows: 

 

   𝛽𝛽i,j=max(0,(1- 𝜆𝜆𝐿𝐿𝜃𝜃 ²
𝑆𝑆²

))                                                                    (35) 

 
With, 

𝐿𝐿 = 𝐿𝐿₀ + 2𝐿𝐿₁ 

𝐿𝐿₀ =
log(𝑎𝑎)

2
 

𝐿𝐿₁ = max(1,
𝐿𝐿₀
2

) 

S2=∑ 𝜃𝜃𝑗𝑗 ,𝑘𝑘  ∈𝛽𝛽𝐵𝐵 ,𝑗𝑗 i,j 

 

𝐾𝐾 = 1, … 𝐿𝐿₁ 

 

Where, i is the block, j is the level, λ=4.5053, and 𝜃𝜃² is the variance of the extended 

block. 
 

There are two thresholding approaches which are defined as follows [31]: 
 

 

Hard: dᵢ=�𝑑𝑑ᵢ           𝐵𝐵𝑓𝑓 |𝑑𝑑ᵢ| > 𝜆𝜆
0                      𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒

�                                                     (36) 
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Soft: dᵢ= �
𝑑𝑑ᵢ − 𝜆𝜆 𝑓𝑓𝑜𝑜𝑎𝑎 𝑑𝑑ᵢ > 𝜆𝜆
𝑑𝑑ᵢ + 𝜆𝜆 𝑓𝑓𝑜𝑜𝑎𝑎  𝑑𝑑ᵢ < −𝜆𝜆

0             𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒  
�                                                    (37) 

 

Simple wavelet thresholding is the hard thresholding but soft thresholding is more 

efficient, considered as the wavelet denoising (shrinkage) method, i.e., a non-linear 

process integrated in a linear denoising technique.  

According to Donoho, the calculation of λ is based on Stein's unbiased risk principle 

(SURE) as follows [33]: 

    𝜆𝜆 = �2 log𝐵𝐵                                                          (38) 

 

where, M coefficients numbers. 

The linear filters used to denoise the ICG signal of 10 participants are: 

• Butterworth 

•  Elliptical 

•  Bessel 

•  Gaussian 

•  Chebychev1 

•  Chebychev2 

 

The addition of a high frequency component of 600 Hz to the signal was necessary for 

efficiency testing. The filters used a frequency bandwidth for cutoff ranging from 0.1 to 

10 Hz and an order of 3. A comparison was made to identify the best of them. The 

performance of the denoising method was evaluated by calculating specific parameters 

to verify perfect reconstruction. 

The adaptive filter, in particular the fundamental LMS adaptive algorithm, is widely 

applied in denoising biosignals. Hence, it is used for the respiratory elimination artifact. 

The LMS is simple in its implementation and is used to control the finite impulse 

response (FIR) filter at each use. Moreover, it is based on a feedback process to reduce 

the error e(n) of the input signal x(n) and the reconstructed signal y(n) by adjusting its 

parameters: a higher order is chosen, weighting coefficients update w(n+1) defined in  
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equation (39) [2], and a predefined step size μ (0<μ< (2/ FIR filter T-tap)) at the 

beginning of the adaptive filtering process. If μ is too small, the algorithm will converge, 

so we took (0 <μ< 0.2) and we added an HF component with a frequency of 600 Hz to 

the ICG reference signal to also test the efficiency of the filters. 

 

𝑤𝑤(𝑎𝑎 + 1) = 𝑤𝑤(𝑎𝑎) + 𝜇𝜇𝑒𝑒(𝑎𝑎)𝑚𝑚(𝑎𝑎)                                       (39) 

     𝑤𝑤(𝑎𝑎) = [𝑤𝑤₀(𝑎𝑎),𝑤𝑤₁(𝑎𝑎),𝑤𝑤k-1(n)]t                                                         (40) 

 

where, nth is the weight coefficient vector, K is the input sample length, and e(n) is the 

difference between the reference and the output signal. 

Figure 15 shows the overall scheme of the wavelet denoising algorithm applied on ICG 

signal. 

The transform wavelet method of ICG signal defined as follow: we added a high-

frequency component of 600 Hz to ICG waveforms for efficiency testing, then applied 

two types of DWT (db/sym) that split signals into coefficients; Details and 

Approximation; where we used four types of thresholding techniques (Sureshrink, 

NeighBlock, Rigrsure, and Sqtwolog) for each type of DWT (db(2, 4, 6, 8),sym (2, 4, 6, 

8)), also we tested each threshold technique and compared wavelet levels from level 1 to 

level 10. Finally we applied the inverse DWT to reconstruct the final signal. 
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Figure 15: Schematic diagram method. 

 
The study is based on a comparison between linear filters, LMS-based adaptive filter, 

and orthogonal wavelets such as Daubechies (db) and Symlet (sym) with order N (2, 4, 

6, 8), which already used according to literature demonstration citing above the paper. 

The thresholding methods used are the classic threshold, Sureshrink, NeighBlock, which 

have been chosen according to T.T. Cai [34] [35], it has threshold criteria that exceed 

that of Rigrsure and Sqtwolog, we also used the Soft thresholding rule because it 

considered as the wavelet denoising method and “mln” for rescaling that used for noise 

estimation at each wavelet level from 1 to 10. Our method based on the steps presented 

in the following diagram presented in Figure 16: 
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Figure 16:  Interpretable diagram algorithm. 

 

For the evaluation of the results of our comparisons, we based on the following 

parameters[34] [36], to verify the improvement of the reconstructed ICG signal: the 

square error (SE), the signal to noise ratio output (SNR) expressed in dB, the signal to 

noise ratio input (SNRi) expressed in dB which the input noise range calculate thanks to 

equation (43) is from 0 dB to 35 dB, the root mean square error (RMSE), and the percent 

difference root mean square (PRD) expressed in % , their formulas are defined in the 

order as follow: 

 

 

        SE = �x(n) − y(n)�²                                                                        (41) 

 

         SNR = 10log₁₀ � ∑ y²(n)n
∑ (y(n)−x(n))²n

�                                                          (42) 

 

        SNRi = 10log₁₀ � ∑ x ²(n)n
∑ (noise )²n

�                                                                         (43) 
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     RMSE = 1
L
∑ (x(n) − y(n))²L

n                                                           (44) 

          PRD (%) = 100�∑ �x(n)−y(n)�L
n ²
∑ x²(n)L

n
                                                                (45) 

 

Where, x (n) is the original signal, y (n) is the reconstructed signal, and L is the signal 

length. 

 

The best denoising method has the highest SNR, the lowest PRD, the lowest RMSE 

and the lowest reconstructed error. 

 

V. Conclusion 

In this chapter, we have presented the different denoising methods applied on our 

ICG signals to choose the best that perform better in terms of noise reduction. The 

denoising method is the significant step for diagnosis and monitoring of cardiovascular 

diseases, it helps medical persons to extract medical information. These methods are 

used to calculate hemodynamic parameters thanks to the feature point extraction from 

ICG waveform. 

In the next chapter we will present all results obtained from denoising methods. 
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I. Introduction 
 
In this section we have presented and discussed all results obtained from our methods 

that are applied on ICG signals. 

The first method presents the results obtained from the comparison made between 

adaptive filters and Savitzky-Golay (SG) that are applied on ICG signals for noise 

removal. The evaluation criteria step is crucial to verify the technique performance, 

where we use Err,, SNR, SNRi, and MSE. 

The second method presents comparison results of two methods, the first is a novel 

noise-reduction technique called SVD singular value decomposition (SVD) and the 

second is LMS based adaptive filter. To evaluate the technique, specific metric 

parameters have been calculated: SE, RMSE, SNR and SNRimp. 

The third method present a results study that is based on the wavelets denoising 

concept, when we applied two types of an Orthogonal Wavelet family: Daubechies 

wavelets (db); and Symlet (sym); whereas, wavelet coefficients are thresholded using 

Sureshrink, NeighBlock, and the classic thresholds as Rigrsure and Sqtwolog, all are 

compared with the linear filters as well as with the LMS-based adaptive filtering 

algorithm. To verify the improvement of the technique, we are calculating SE, SNR, 

SNRi, RMSE, and PRD.  

 

II. Results of Method 1 
 

The results of our simulations present in table 3 and Figure 19, whereas table 3 

presents the results values of different denoising methods of SNR, and MSE at SNRi 

equal to 10 dB. Figure 17 shows the error between the original and the reconstructed 

signal at different SNRi levels for several denoising methods that applied to 10 subjects. 
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Table 3:  SNR, MSE estimation parameters results after simulation for 10 subjects at SNRi 10 dB. 

Step 
size 

Evaluatio
n 
parameter
s 

Filters Techniques 
LMS RLS NLM

S 
LLM
S 

SLM
S 

SRLM
S 

SSLM
S 

SG 

µ = 
0.00
4 

SNR(db) - 
24.7
8 

 - 
18.73 

- 
24.78 

- 
24.78 

- 24.78 -2.85  

MSE 0.21
7 

 0.198 0.217 0.240 0.205 0.982  

µ = 
0.00
8 

SNR(db) - 
18.7
3 

 - 
12.64 

- 
18.73 

- 
18.73 

- 18.73 - 
0.0785 

 

MSE 0.19
7 

 0.16 0.197 0.187 0.19 0.302  

µ = 
0.01 

SNR(db) - 
16.7
8 

 -10.6 - 
16.78 

- 
16.78 

- 16.78 0.216  

MSE 0.18
9 

 0.16 0.189 0.160 0.191 1.55  

 SNR(db) 
 

 3.022      10.09 

MSE  0.050
2 

     0.007
9 

 
 

The application of filter algorithm methods has been investigated for suppressing 

artifacts from signals of 10 subjects. Our comparative study of the best filter 

performance which effectively reduces the noises from ICG waveforms, although 

adaptive filters decrease the error between original and reconstructed signal (see Figure 

17), however it is not preserved well the information on the signals where their error 

calculated was high. The proposed Savitzky-Golay filter technique provides the 

optimum quality of the corrupted ICG signals, and it did not make any visible distortion 

of the waveform shape (see Figure 18). 
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(a)  µ=0.004 

 
(b) µ=0.008 

 
(c) µ=0.01 

Figure 17: Estimated the error results from the original and reconstructed signal after applying the 
adaptive filters as well as SavitzkyGolay filters on 10 ICG signals at different SNRi, where (a) 
with µ=0.004,(b) with µ=0.008, and (c) with µ=0.01. 
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Figure 18: The reconstructed signal of each denoising technique. 

The reconstructed signal of each denoising technique
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To improve the effectiveness of the technique, we used a specific performance 

parameter for evaluation as Err, MSE, and SNR that measured and compared. We find 

that the best method has the lowest err values (see Figure 17), lowest MSE values, 

highest SNR values (table 3) is the Savitzky-Golay filter. We found that SNR and MSE 

for all 10 subjects are equal to 10.09 dB, 121.01 dB, and 0.0079 respectively. 

The simulation results show that the Savitzky-Golay filter converges better than RLS 

algorithms and LMS types presented in Figure 16, and the NLMS algorithm gives better 

convergence characteristics than the LMS when table 3 informs that LLMS and LMS 

gave the same results. The adaptive filter gets its optimum value when the forgetting 

factor is from 0.98 to, and the step size is from 0 to 0.2 for convergence of the algorithm.  

The Savitzky-Golay filter method is the best denoising technique because it has the 

lowest error, it preserves the signal shape, and thus the information constitutes the 

signal. The morphology of the denoising ICG may be helpful in the medical field for 

diagnostic and continuous monitoring of cardiovascular diseases. The Savitzky-Golay 

filter method facilitates the extraction of cardiovascular indices.  

• Validation step 
The following tables present the mean error rate calculation at different SNRi when 

the mean error is the average of all the cross-validation errors. It should be close to zero. 
Table 4: Estimated MER results from the original and reconstructed signal after applying the adaptive 

filters with μ =0.01, as well as Savitzky-Golay filters on 10 ICG signals at different SNRi. 

Mean 
error 
rate 

(MER) 
% of 
each 

methods 

 
SNRi (dB) 

 

 
0 

 
2 

 
4 

 
6 

 
8 

 
10 

 
15 

 
20 

 

LMS 0.032165 0.032324 0.032378 0.032397 0.032404 0.032407 0.032408 0.032409 

NLMS 0.024433 0.024752 0.024859 0.024897 0.024911 0.024917 0.024919 0.02492 

LLMS 0.032165 0.032324 0.032378 0.032397 0.032404 0.032407 0.032408 0.032409 

SLMS 0.0019094 0.0010087 0.0012842 0.0013816 0.001418 0.001432
6 0.001439 0.001442 

SRLMS 0.030629 0.029472 0.028374 0.028331 0.02864 0.028507 0.028223 0.028001 

SSLMS 0.0076973 0.013639 0.019279 0.019499 0.01791 0.018596 0.020051 0.021193 

RLS 0.0060667 0.0059313 0.0058553 0.0058125 0.005788
4 

0.005774
9 0.0057673 0.005763 

SG 0.0003827
9 

0.0003877
1 

0.0003904
7 

0.0003920
3 

0.000392
9 

0.000393
4 

0.0003936
7 

0.0003938
3 
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Table 5: Estimated MER results from the original and reconstructed signal after applying the adaptive 
filters with μ=0.004, as well as Savitzky-Golay filters on 10 ICG signals at different SNRi. 

 
Mean 
error 
rate 
(MER) 
% of 
each 
methods  

 
SNRi (dB) 

 
 

0 
 

      2 
 

          4 
 

6 
 

        8 
 

        10 
 

       15 
 

20 
 

LMS 0.036804 0.036868 0.036889 0.036897 0.0369 0.036901 0.036901 0.036902 
NLMS 0.033711 0.033839 0.033882 0.033897 0.033903 0.033905 0.033906 0.033906 
LLMS 0.036804 0.036868 0.036889 0.036897 0.0369 0.036901 0.036901 0.036902 
SLMS 0.024015 0.024342 0.024452 0.024491 0.024505 0.024511 0.024514 0.024515 
SRLMS 0.03619 0.035727 0.035288 0.035271 0.035394 0.035341 0.035228 0.035139 
SSLMS 0.020859 0.018482 0.016227 0.016139 0.016774 0.0165 0.015918 0.015461 
RLS 0.0060667 0.0059313 0.0058553 0.0058125 0.005788

4 
0.005774
9 

0.0057673 0.005763 

SG 0.0003827
9 

0.0003877
1 

0.0003904
7 

0.0003920
3 

0.000392
9 

0.000393
4 

0.0003936
7 

0.0003938
3 

 
 
 
Table 6: Estimated MER results from the original and reconstructed signal after applying the adaptive 
filters with μ =0.008, as well as SavitzkyGolay filters on 10 ICG signals at different SNRi. 

Mean 
error 
rate 
(MER) 
% of 
each 
methods 

 
SNRi (dB) 

 
 

0 

 
    

2 

 
           

4 

            
           

 6 

                                            
            

8 

 
          
    10 

 
        

15 

 
         

  20 
 

LMS 0.033711 0.033839 0.033882 0.033897 0.033903 0.033905 0.033906 0.033906 
NLMS 0.027526 0.027781 0.027867 0.027897 0.027908 0.027913 0.027915 0.027916 
LLMS 0.033711 0.033839 0.033882 0.033897 0.033903 0.033905 0.033906 0.033906 
SLMS 0.0081321 0.0087864 0.0090068 0.0090846 0.0091138 0.0091255 0.0091306 0.009133 
SRLMS 0.032483 0.031557 0.030678 0.030644 0.030892 0.030785 0.030558 0.03038 
SSLMS 0.0018215 0.002932 0.0074435 0.0076196 0.006348

4 
0.006897
4 

0.0080611 0.0089753 

RLS 0.0060667 0.0059313 0.0058553 0.0058125 0.0057884 0.0057749 0.0057673 0.005763 
SG 0.0003827

9 
0.0003877
1 

0.0003904
7 

0.0003920
3 

0.0003929 0.0003934 0.0003936
7 

0.0003938
3 

 

We noticed from Table 4, Table 5, and Table 6 that SSLMS did not give us any 

useful information, and LMS and LLMS gave us the same values. However, when 

comparing the LMS types filters results when µ equal to 0.01, 0.004 and 0.008, we 

deduced that the best result is when µ equal to 0.01.  

We observed that the SG denoising method performs better than the other adaptive 

filters for the entire SNRi levels.  
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Souhir Chabchoub [1] found that db8 wavelet has the lowest mean error rate for 

different SNRi compared to the several denoising methods of Ridder [2], it equal to 0.3 

% at 0 dB, 0.1 % at 5 dB, 0.01 % at 10 dB, and 0.14 % at 15 dB. According to our 

results, we find that the mean error rate of the best denoising technique equal to 0.00038 

%. Besides, we saw that our results are more suitable when compared with the literature 

review. 

 

III.  Results of method 2 
 

In this method, we present a comparison between LMS and SVD, whereas the two 

denoising techniques are applied on ICG signals for ten healthy subjects. Figure 19, 

Figure 20, and Figure 21 show the denoising results.  

We see that the SVD preserves to the maximum the shape of the signal with minimal 

distortion, while Figure 22 presents the performance evaluation criteria for all subjects at 

different SNRi. Therefore, we observed that SVD has the minimum SE, RMSE, and 

maximum SNR and SNRimp. 

 
Figure 19: LMS based method for ICG signal denoising. 
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Figure 20: SVD based method for ICG signal denoising. 

 
Figure 21:  Comparison between two methods: SVD and LMS for the denoising of the ICG signal. 
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Figure 22: The estimation parameters evaluation for all 10 subjects. 

 

• Discussion 

We applied two techniques to noise removal from ICG waveforms of 10 participants; 

they did not make any visible distortion of the waveform shape when the first is the 

LMS-based adaptive filtering and the second is the SVD. 

To verify the effectiveness of methods, we calculated and compared between 

performance evaluation criteria as SE, RMSE, SNR and SNRimp, where the better who 

has a minimum of SE, RMSE, and maximum SNR and SNRimp. The results are shown in 

Figure 22.  
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Table 7:  The C Point Coordinates of The Original Signal and The Reconstructed Signals of The LMS and 
The SVD Techniques. 

 
Participants ICG signals Axes 

X  Y (Normalized Amplitudes) 

P1 
Original 0.744 1.219 
SVD 0.76 1.086 
LMS 0.746 0.8439 

P2 
Original 0.577 1.195 
SVD 0.586 0.7994 
LMS 0.582 0.7926 

P3 
Original 0.439 1.19 
SVD 0.455 1.077 
LMS 0.571 0.2512 

P4 
Original 0.597 1.3555 
SVD 0.599 1.151 
LMS 0.593 0.5945 

P5 
Original 0.809 1.274 
SVD 0.824 1.174 
LMS 0.799 0.7974 

P6 
Original 0.558 1.064 
SVD 0.528 0.9329 
LMS 0.571 0.7514 

P7 
Original 0.825 1.471 
SVD 0.833 1.326 
LMS 0.791 1.077 

P8 
Original 0.702 1.737 
SVD 0.719 1.454 
LMS 0.691 0.9627 

P9 
Original 0.548 1.334 
SVD 0.568 1.184 
LMS 0.571 0.7434 

P10 
Original 0.548 1.264 
SVD 0.53 1.11 
LMS 0.573 0.6433 

 

Table 7 presents C Point coordinates (X and Y) of the original signal and the 

reconstructed signals of both techniques. We observe that the SVD preserves better the 

amplitude (Y) of point C than the LMS for all participants. 

According to the simulation results, the SVD method is the best denoising technique 

because it preserves the shape of the signal; it gives a better approximation for data 

reduction compared to the LMS filter (see Table 7 above).  

The results have shown efficiency for the entire data. We conclude that SVD 

performs well and is more reliable than LMS, which is a classical filter and already used in 

state of the art by Pandey [3] and Hu [4]. 
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IV. Results of method 3 
 
In this party, we have presented a comparison between the selected denoising 

techniques, whereas, the first purpose is to apply the linear filters. The second purpose is 

to denoise the ICG signal using LMS-based adaptive filters that had been chosen 

because it has shown reliability in Hu et al. [4] and Rahma et al. [5] studies.  

The third purpose is to choose the best threshold (SureShrink, Neighblock, Rigrsure, 

Sqtwolog) for two types of discrete wavelet families (Daubechies, Symlet). 

Our study used different thresholds to demonstrate that the right choice of 

thresholding affects the obtained results' effectiveness. Hence, Neighblock never applied 

for ICG waveforms. Linear filters were applied to the ICG signals of 10 participants. 

The results are presented in Table 8. 

 
Table 8: Estimation parameters of linear filters applied to 10 subjects. 

Filters SE RMSE PRD SNR 
Butter 46.2660 0.2842 66.9836 4.4693 
Elliptic 50.5032 0.2967 69.1668 3.8837 

Gaussian 5.5373 0.0938 31.2531 13.8792 
Bessel 210.0218 0.7360 185.1752 1.4735 

Chebychev1 51.3537 0.2992 69.7024 3.8104 
Chebychev2 198.89 0.6241 121.1752 2.321 

 
According to the results in Table 8, the filter with the highest performance is the 

Gaussian filter; it has a minimum SE of about 5.5373, a minimum RMSE value of about 

0.0938, a minimum PRD value of about 31.2531 and a maximum SNR of about 

13.8792. Therefore, it did not fulfil the objective of our analysis for assessing accuracy. 

High values were obtained; hence the use of the LMS adaptive filter and discrete 

wavelets is of paramount importance. We added White Gaussian Noise with SNRi 

ranging from 0 to 35 dB to the signals to choose the best threshold technique.  

Figure 23a-d explains exactly the different comparisons made and the results obtained 

for 10 subjects. In addition, Figure 23 shows a comparison between Daubechies (db) and 

Symlet (sym) with the order N (2, 4, 6, 8) in relation to threshold techniques.  

First, we found that db2 is better than db (4, 6, 8) in Sureshrink, db4 is better than db 

(2, 6, 8) in Neighblock, db4 is better than db (2, 6, 8) in Rigrsure, and db8 is better than 

db (2, 4, 6) in Sqtwolog. Second, sym2 is better than sym (4, 6, 8) in Sureshrink, sym4 is  
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better than sym (2, 6, 8) in Neighblock, sym8 is better than sym (2, 4, 6) in Rigrsure, and 

sym8 is better than sym (2, 4, 6) in Sqtwolog. Thirdly, after comparing two types of 

wavelets in each threshold technique, we found that the best are: db4 in Neighblock, 

sym8 in Rigrsure, and sym 8 in Sqtwolog. Next, the results obtained were compared 

with the Gaussian filter and the LMS adaptive filter at different SNRi. The results 

presented in Figure 24 were found using parameter estimation calculations. 

 
(a) 

 
(b) 

 
(c) 

 
 (d) 

Figure 23: Comparison results between different types of thresholds at different SNRi values. 
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Figure 24: Comparison results of performance parameters evaluation for Gaussian filter, LMS adaptive 
filter and various wavelets thresholds at different SNRi values. 
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• Discussion 

 

This study is based on a performance study using linear filters: Bessel; Butterworth, 

Gaussian, Elliptic, Chebychev1, and Chebychev2 with third order; the LMS adaptive 

filter, as well as orthogonal wavelets such as Daubechies (db) and Symlet, used with 

four thresholding techniques such as Sureshrink, NeighBlock, Rigrsure, Sqtwolog. The 

evaluation of all comparison results is a necessary step which was carried out by 

calculating SE, SNR, RMSE, and PRD.  

In a first step, a comparison between several linear filters, the results of which are 

presented in Table 8. In addition, another comparison of orthogonal wavelets of different 

N-order (2, 4, 6, and 8) was performed. 

 

Although the best selected wavelets were taken from the literature, namely db and 

sym, which are the most applied to this type of signal, they were compared with multiple 

thresholding techniques (Figure 23 a-d) such as NeighBlock db4, Rigrsure sym8 and 

Sqtwolog sym8.  

Next, they were also compared with the best linear filter which is the Gaussian filter 

and the LMS adaptive filter. The results show that the best one has a minimum value of 

PRD, RMSE, SE, and it has the maximum value of SNR (Figure 24). 

According to the results obtained in the simulation, the best denoising method for the 

ICG signal that preserves the characteristics of the original waveform is the rigidity at 

level 5 of the sym8 wavelet with minimal degradation of the ICG signal shape. Figures 

25 and Figure 26 show reconstructed samples for subject 1. 
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(a) 

 
(b) 

 

Figure 25: The ICG signal reconstructed after each technique applied for subject 1 for each technique. 
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Figure 26: The ICG signal samples reconstructed after applying the best denoising technique for all 
participants: subjects 1 to 10. 

 
The advantage of this performance study is to reduce the noise and artefacts, which 

cause distortions in the ICG wave, to a maximum and to preserve the shape of our ICG 

signal, i.e. the peak max (dZ/ dt)max of the ICG signal which is present at point C which  
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is important in clinical decision making and monitoring of cardiovascular diseases. The 

peak amplitude C of the original signal and the reconstructed signal after using each 

denoising technique was calculated to evaluate the results. Pan-Tompkins algorithm [6] 

was used to detect the C peak. Table 9 lists the results obtained: 

 
Table 9: Detection of peak amplitudes C (Ohms) from original noise-free ICG signals. 

Participa
nts  

Original 
C peak  

amplitude
s 

 
C peak amplitudes after using denoising methods 

 
 

  Gaussian 
filter 

LMS Neighbl
ock 

(db4) 

Rigrsures 
(sym8) 

  Sqwolog 
  (sym8) 

P1 5021 4999 3429 4433 5001 4047 
P2 4337 4337 4276 4336 4463 4743 
P3 4959 2911 4049 4054 4654 4053 
P4 4351 3357 4127 4353 4112 4357 
P5 5401 4493 5106 4490 5287 4490 
P6 5002 2511 3663 3870 5089 4294 
P7 4756 3609 3383 3382 4665 3606 
P8 4246 3197 4014 4424 4102 4009 
P9 4486 5408 3021 4067 4365 4869 

P10 4596 3395 4942 3447 4623 4396 
Mean 4716 3842 4000 4087 4716 4286 

 
 

According to the results in the above Table 9, the best denoising method is the one that 

preserve the C peak amplitudes with minimal degradation. We observe that the mean C 

peak amplitudes of Rigrsure (sym8) equal to the mean C peak amplitudes of the original 

signal is about 4.716 Ohms. Moreover, for Gaussian filter is about 3.842 Ohms, 4 Ohms 

for LMS, 4.087 Ohms for Neighblock, and 4.286 Ohms for Sqtwolog (sym8). 
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Table 10: Mean error rate (%) of denoising methods for 10 subjects at different SNRi (ranging from 0 to 
35 dB). 

 
Methods 

 
SNRᵢ 

 

 0 5 10 15 20 25 30 35 

LMS 0.02855 0.02855 0.02855 0.02855 0.02855 0.02855 0.02855 0.02855 

Gaussian 0.00352
23 

0.004156
9 

0.004512
7 

0.004713
3 

0.004826
2 

0.004889
4 0.004925 0.004945

2 

Neighblo
ck db4 10.1783 10.1796 10.1801 10.1803 10.1804 10.1804 10.1804 10.1805 

Rigrsure 
sym8 

6.2976e
-05 

8.8323e-
05 

0.000191
18 

0.000241
63 

0.000270
19 0.000285 0.000293

76 
0.000297

96 

Sqtwolo
g sym 8 

9.0362e
-05 

0.000117
34 

0.000212
62 

0.000263
96 

0.000294
01 

0.000310
66 

0.000320
04 

0.000324
41 

 
The results of the mean error rate listed in Table 10 provide better accuracy than the 

Ridder [2] and Chabchoub [1] methods at different SNRi, especially for the best 

thresholding technique, the Rigrsure of sym 8. For an SNRi of 0 dB, the minimum MER 

value for the Chabchoub and Ridder methods is equal to 0.3 % and 7.3 %, respectively. 

For 10 dB, the minimum MER value for the Chabchoub and Ridder methods are equal to 

0.01% and 0.7 %, respectively. In this study, the minimum MER value is equal to 

0.00006 % in 0 dB and 0.0001 % in 10 dB. 
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V. Conclusion 

 

In this chapter, the results of the three methods have discussed several filter 

techniques for denoising, which are used in the biomedical signal processing field for 

artifacts removal from ICG signals. 

The obtained results of method 1 indicate that the Savitzky-Golay filter with the 

polynomial of degree 9 is the most suitable method for ICG signals denoising that 

present better results than adaptive filters described in the simulation results. 

The Savitzky-Golay filter attenuates the strong variations; it can use to remove 

noises making it relevant for medical applications. 

 

The obtained results of method 2 show that the singular values decomposition 

preserves better the shape of waveforms than LMS-based adaptive.  

The two techniques have been evaluated using the denoising performance evaluation 

criteria presented in the simulation results.  

The best method can remove noises that make it relevant for medical applications. 

Thus, the most suitable choice that preserves the signal better is that of SVD that 

facilitates the study of beat-to-beat variation.  

 

The obtained results of method 3 present a comparison between the LMS adaptive 

filter, the Gaussian filter and wavelet families (Daubechies and Symlet) using different 

threshold techniques such as Sureshrink, NeighBlock, Rigrsure and Sqtwolog to find the 

best technique for denoising the ICG signal.   
The calculation results of the performance parameters evaluation show that the best 

denoising technique that performs well on noise reduction is the wavelets of sym8 at 

level 5, and the most optimal thresholding technique is that of Rigrsure with a mean 

error rate equal (MER) to 0.0001%. 
The proposed method has shown the reliability of results more than the other methods 

that can help us later to extract precisely significant information to diagnose earlier and 

monitor cardiovascular disorders. 
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Chapter VI: Feature Point Extraction from ICG waveform  
 

 
I. Introduction 
 
 

The impedance cardiography [1] is widely used, mainly in clinical applications; it is 

devoted for non-invasively cardiac functions. The ICG signal is an interesting indicator 

for the monitoring and diagnosis of cardiovascular diseases [2], it is based on the 

application of an alternative electric field at the level of the thorax [3]. 

 

The aortic blood volume and its velocity variations cause changes in impedance 

which subsequently causes a voltage difference, where the dZ/dt is the first derivative 

that presents the maximum rate of ICG waveform [4] [5]. 

 

 The recuperated ICG signal is affected by noises like respiratory in the range of 0, 4 

to 2 Hz and motion artifacts in the range of 0, 1 to 10 Hz [6] that cause baseline drift, 

power frequency interference, myoelectricity interference [7]. 

 

It is crucial to use artifact suppression methods as filtering, adaptive filtering, 

ensemble averaging, coherent ensemble averaging, and wavelet-based methods [8] [9] 

[10] to estimate the constitutive characteristics points of the waveform in order to 

calculate the hemodynamic parameters such as Stroke volume (SV), and Cardiac Output 

(CO) as and others defined in equations below [1] [6], for the diagnosis and detection of 

cardiovascular diseases. 

 

 

SV= ρb(𝐿𝐿 |𝑍𝑍ₒ)²(𝑑𝑑𝑍𝑍|𝑑𝑑𝑑𝑑)max LVET                                        (1) 

 

CO = stroke volume × heart rate                                        (2) 

 

PEP= |TQ-TB|                                                                (3)                                                      

 

Where ρ is the resistivity, Z0 is the base impedance, (dZ/dt) is the 1st derivate of ICG, 

LVET is the left ventricular ejection time, between B point and X point, PEP is the time  
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interval (T) between Q point of ECG signal and B point of ICG signal, and the values of 

heart rate expressed in (L / min) for man and woman respectively are 5.6 and 4.9. 

 

In this context at the first step, our study presents and describes the background of 

automatic detection methods that are shown to be efficient; they are evaluated using the 

Doppler echocardiography. In the second step, we are based on a new algorithm to 

detect B, C and X points by using a simple mathematical model based on two bells to 

study ICG signals for 26 cycles; the pre-ejection and the ejection waves.  

 

The cycles of ICG signals are recorded from healthy subjects with a sampling 

frequency equal to 1000 Hz. The code is developed under MatLab. The configuration of 

the measurement is based on a Tetrapolar system with four electrodes with contact skin, 

where two inject a signal, and the other recuperate the potential. 

The results significantly improve the efficacy and accuracy of LVET estimation for 

beat-to-beat estimation under conditions. 

 

II. Background of Detection Methods  

 

The detection of the ICG signal characteristic points is a critically step, for that the 

components of the signal have been presented in (Figure 27) where the point A coincides 

with Q of electrocardiogram signal (ECG), the point B corresponds to the opening of the 

aortic valve, the point C represents the maximal velocity of the blood it is the maximum 

point on the curve, corresponding to the ventricular contraction [11], it can be measured 

using the ultrasonic technique [5], the point X is the local minimum, corresponds to the 

2nd sound (B2) of the phonocardiogram signal (PCG) [11] and closing the aortic valve 

[12], the last point is the point O coincides with the mitral valve opening, corresponds to 

the maximum deviation after X and the opening of the mitral valve, when the lowest left 

and right lowest points of C are respectively B and X [8] . 

 

The points A and O no longer provide meaningful information for clinical uses, for 

that reason, the researchers are based only on the B, C, and X detection [8]. 
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Figure 27: The characteristic feature points of the ICG waveform. 

 

DeMarzo and his colleagues [4] have applied the  impedance cardiography method as 

well as the Doppler technique for  Stroke volume computation, where they used HYPER 

GRAPHTM computer-based impedance cardiograph connected with electrodes for ICG 

signal data recovery and echocardiography Model SONOS 1500 (Hewlett-Packard 

Packard Company) for recovering Doppler data, they applied a regression analysis, 

hereafter , they showed that the  electrodes positioning on  thorax and the position of the 

patients during examination affects negatively on  measurement reliability. In another 

Dromer study [13], a more developed SFLC algorithm is applied for the performance 

estimation of the proposed technique for a beat to beat estimation of B, C, X points, they 

used this modified algorithm for both Least Mean Square (LMS) and Recursive Least 

Squares (RLS) algorithm. Gerard Cybulski1 and Piotr Piskulak [14] used a new 

technique for automatic detection called Form Factors (FF) which is a quantitative 

method for evaluating signals. It allows more precision. It performs a classification of 

either artefact (1) normal (0). They discovered that the FF gives very good results for the  
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study of QX segments by contribution to the QQ segments. The different FFs are tested 

in several studies [15] [16] [17], where Q is the point on the electrocardiogram (ECG) 

signal. The previous article of this study was made by Augustyniak in 1997 [15]. 

The several equations of the FF are presented as follows, which it is favourable to 

use more than one for better automatic recognition of the artefacts [4]: 

  

𝐹𝐹𝐹𝐹₁ = 𝐺𝐺𝐺𝐺
𝐿𝐿𝐺𝐺

                                                          (4) 

𝐹𝐹𝐹𝐹₂ = 𝐿𝐿
2√𝑎𝑎𝑆𝑆

− 1                                                          (5) 

𝐹𝐹𝐹𝐹₃ = 𝑆𝑆𝑈𝑈
𝑆𝑆𝐺𝐺

                                                                  (6) 

𝐹𝐹𝐹𝐹₄ = ∑ |𝑚𝑚 ᵢ₊₁−𝑚𝑚 ᵢ|𝑎𝑎
𝑎𝑎=1

𝑎𝑎−1
                                                 (7) 

𝐹𝐹𝐹𝐹₅ = �∑ (𝑚𝑚 ᵢ₊₁−𝑦𝑦 ᵢ )²𝑎𝑎
𝑎𝑎=1

𝑎𝑎−1
                                                    (8) 

 

Where GA is the number of samples that are above average, LA is the number of 

samples that are below average, L is the circumference of the QX segment, S is the 

relative area of the QX segment, SU is the lower surface of the interval (QX), and SA is 

the upper surface of the interval (QX). 

There is a function developed under Matlab by Giuseppe Cardillo [18] based on an area 

under the curve (AUC) calculation. 

 

The various techniques proposed for characteristic points detection of the ICG 

signal are applied on a non-processed signal in order to test the sensitivity and reliability 

of the estimation and the identification of these points on the waveform as the study 

made by Naidu in 2014 [8], he showed that point C is on the ICG segment in the third of 

the R-R interval of the ECG signal, where R is taken as a reference peak to select the 

ICG signal cycles, the max peak is the C point, in case of finding more than one 

maximum point especially in the case of abnormal patients; otherwise cardiac; it is 

enough to pick the highest peak, when the point B is on the ICG segment which is the 

fifth of the C-C interval, the lowest value named valley point where the difference 

between the two-points C and valley point named the peak-to-peak height (Hpp). Point  
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B is the deviation preceding point C, it locates by sweeping back the first difference to '' 

valley point '', looking for a sign change from the point corresponding to 0.32 Hpp below 

the point C, and if the sign is absent, point B is located at 0.72 Hpp below point C. Point 

X locates on the ICG segment that is the third of C-C, scanning from point T, to search 

for the lowest value, where the ECG signal T point is a third party segment of R-R, 

which is localised by sweeping from point R [8]. 

The evaluation technique is done by calculating SV and other indices with the 

Doppler echocardiography method to compare them with those calculated by the ICG 

method.  

Kubicek et al. (1970) proposed to identify the point B from the low line about 15% 

of the max value [19]. 

 Ono et al (2004) proposed to identify the B point from the low line about 40 %, and 

80% of the max value through the baseline-upstroke intersection [20]. 

 Shyu et al. (2004) identified points B and X by the quadratic spline wavelet 

method, which showed that point B is detectable in the 6th level and X in the 4th level 

[21]. 

 Zhao et al. (2006) proposed the wavelet bior3.3 method to identify points B and X 

which are detected in the 4th level [22]. 

 Bartnik and Reynolds (2011) have proposed to identify the point X which is in the 

2nd noise (B2) of the phonocardiogram tracing (PCG) [23]. 

Carvalho et al (2011) have proposed to identify the characteristic points of the first 

four derivatives of the ICG waveform where B is estimated thanks to the baseline-

upstroke intersection, they deduced that the point X is identified in the 1st derivative, 

found in the interval from 0.75 of the R-T interval [24].  

Arbol et al (2016) proposed to identify point B from the 3 rd derivative of the 300 

ms signal before point C [25]. 

 Hu et al (2014) used a quadratic spline wavelet to identify B, C, and X points [26].  

To avoid illusions about point location on ICG signals morphologies; the ECG 

signal measurement in real-time is essential to estimate the cycles correctly. 

The technique proposed in the Bagal study [27] is on wavelet-based scale-dependent 

thresholding described by Pandey (2007) has been used for noises removal due to 

breathing, he showed that in the interval R-C [20-65]%, the point B is found with the  

 
104 



 

Chapter VI: Feature Point Extraction from ICG waveform  
 

min value before point C, in the case of several similar points, it enough to calculate the 

first difference. In the first third of the C-C interval, X and O are located, when the 1st 

point is the lowest and the 2nd is the highest point. 

The wavelet transform of Bior3.3 and Mexican Hat with a new thresholding technique 

used by Liu Shan [7] [28] is defined as following: 

 

ĥij = �𝑆𝑆𝐵𝐵𝑠𝑠𝑎𝑎 (𝑑𝑑 𝐵𝐵𝑗𝑗) ∗ �𝑑𝑑²𝐵𝐵𝑗𝑗 − 𝐿𝐿²𝑗𝑗, |𝑑𝑑 𝐵𝐵𝑗𝑗| ≥ 𝐿𝐿 𝑗𝑗
    0                                       , |𝑑𝑑 𝐵𝐵𝑗𝑗| < 𝐿𝐿 𝑗𝑗

�                                  (9) 

Where Tj : is the value of threshold on the jth scale, dij  is the ith coefficient value on the 

jth scale, and ĥij is the ith coefficient value on the jth scale after threshold. 

They based on the designation of max, all 100 points which are equal to a group; in 

other words, a cycle; the max of every 100 points is point C [29], point B is minimums 

from 40 points of point C, and point X is the first negative point after point C; it 

represents the end of the ventricular ejection. Snajdarova et al.[5] have developed an 

application called the ICG studio software application to clarify and facilitate detection. 

Nicholas et al. [30] dedicated their study to performing a comparison between a peak 

detection algorithm based on phase estimation; where the signals have taken in silico or 

in vivo are filtered through the linear pass-band filter from the 6th onwards to reduce the 

computation time with a bandwidth that is determined to avoid shape distortion; and the 

6th order Morlet wavelet and transformed Hilbert which uses the Fourier transform (FT) 

to produce a 90 ° phase shift of a filter. 

 

• Discussion 

 

The evaluation of the automatic detection technique is with the Sensitivity, Positive 

Predictive, and Detection Error calculation as defined in the following equations [14]: 

 

Sensitivity = TP/(TP+FD)                                                  (10) 

Positive predictivity = TP/ (TP+MD)                                       (11) 

Detection error = (FD+MD)/ (TP+FD)                                     (12) 
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Where FD is the Failure Detection based on the detection of the points for these true 

points. The technique did not allow us to detect a localised point by visual examination, 

MD is the Misdetection that is used to detect the points for these bad points or incorrect 

ones; the points detected by the technique does not correspond to a visually detected 

point, and TP is the True Points that visually detects points for these correct points. As 

well as other parameters as Mean Error, Root Mean Square Error, Correlation 

Coefficient, the Mean Values of the intervals and Standard Deviation of the Error and 

intervals. 

The overall mean method, filter method, template method and wavelet transform 

method are used when the first one improves results of feature extraction are given less 

precision than others [7]. 

 The 6th order Morlet wavelet, Hilbert transforms, and peak detection algorithm was 

considered advantageous in their ability to detect the phase that examines the 

development of oscillation over time [30]. 

The comparison between the new thresholding technique created by Liu Shan, the 

hard-thresholding model and the soft, shows that this method controls the deviation 

between the reconstructed and original signal wavelet coefficients but its disadvantage is 

that it cannot oscillate the signal, and it keeps the amplitude stable before and after 

processing [28]. 

The Bagal method cited above is compared with the Naidu, Kubicek, and Ono 

methods showed reliability. The method of Nicholas et al. [30] sensitive to noises, and 

has a slow calculation time, where Morlet's wavelets gives phase at a known moment, 

thanks to the power of higher frequency computation, as long as Hilbert uses the notion 

of the weighted average using the Fourier transform, then in the case of high noises, the 

technique gives reliable results than standard methods. 

The results of these researches showed good agreement, where the points detection 

techniques are satisfactory for beat-to-beat estimation under conditions, especially for 

modified algorithms that give an accurate estimate of heart rate. 

 

III. A novel algorithm for B C X Points extraction  

Our study is based on the calculation of LVET that presents left ventricular ejection 

time between B point and X point, with normal range varying from around 0.30 to 0.39  
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second. Our purpose is to avoid illusions about points' location on ICG signals that 

negatively affect LVET calculation and subsequently on SV. In this context, our 

algorithm methodology is based on a mathematical model for automatic detection 

methods for LVET measurement. 

To denoise the recuperated ICG signal, we used a butter filter with order 3 and cutOff 

frequency equal to 10 Hz. The detection of the ICG signal characteristic points is a 

critical step. However, to detect the BCX point, we based on a simple mathematical 

model based on the summation effect of the processes on the dZ|dt waveform and the 

associated ICG parameters. The first is the pre-ejection wave, and the second is the 

ejection wave [31]. 

The model uses two bells to study ICG signals. 

The system is based on the time expressed in second (s) of the pic C (tmax) and their 

amplitudes (AmpC), t0 which is the intersection of the signal with the line zero, it is 

tightly halfway from the maximum time (tmax) to the minimum time (tmin), where the first 

one is of the point C and the second for the point X.  

We use the model of Ermishkin and calculate the ejection signal using the following 

equations [30]: 

 

 𝑏𝑏 = [ 𝑑𝑑0
𝑑𝑑0−𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

] 2                                                 (13) 

  𝑎𝑎 = 𝑏𝑏
𝑑𝑑0

                                                              (14) 

  𝐺𝐺 = 𝐺𝐺𝑚𝑚𝐵𝐵𝐶𝐶
e −𝑎𝑎𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ×𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

(𝑏𝑏−1)×�(𝑏𝑏)
                                                    (15) 

 The ejection signal defined in (5)  

 𝑆𝑆1 = 𝐺𝐺 × 𝑒𝑒  −𝑎𝑎𝑑𝑑 × 𝑑𝑑𝑏𝑏 × [𝑏𝑏
𝑑𝑑
− 𝑎𝑎]   (16) 

 with,  

 𝑑𝑑 = [0.001: 1/𝑓𝑓𝑠𝑠: 1] (17) 

 

where, fs is the sampling frequency equal to 1000, S1 is the ejection signal.  
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Our approach based on the calculation of the preejection signal defined in (18) from the 

original x1 (ICG) and the ejection signal, where we use the minimum time of the point X 

defined in (19): 

 
𝑆𝑆 = 𝑚𝑚1 − 𝑆𝑆1                           (18) 

 𝑑𝑑𝑚𝑚𝐵𝐵𝑎𝑎 = 2𝑑𝑑0 − 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚                                                     (19) 

 

To detect the maximum peak C, we used the findpeaks function with MinPeakHeight 

and threshold equal to 0.8. B point presents the local minimum; it identifies before point 

C that we used the findpeaks function with minpeakdistance and threshold equal to 14. 

We applied the index in each little peak and chose the last one on the pre-ejection wave 

that coincided with the point before peak C in the ICG waveform. The point X is the 

local minimum after point C that coincided with the first minimum on the ejection wave 

Table 11 presents t0, the amplitudes and times of point C: 
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Table 11: The ICG parameters used for our algorithm. 

   Number of simples 

  

 𝒕𝒕𝟎𝟎 (s) 

  

Point C  

 Amplitudes (𝑨𝑨𝑨𝑨𝒑𝒑𝑪𝑪)  Times (𝒕𝒕𝑨𝑨𝒎𝒎𝒎𝒎 (s))  

1  0.603 1.2942  0.485 

2 0.615 1.1795  0.486 

3 0.372 1.042 0.242  

4 0.4 1.2994 0.285  

5 0.688   1.1286  0.574  

6 0.426 1.5993  0.294  

7 0.841  1.5756  0.72  

8 0.65 1.3355  0.505 

9 0.442  1.3751  0.298  

10  0.428 1.2156  0.316  

11 0.43 1.3384 0.31  

12 0.824 1.476  0.714  

13  0.596 1.4237  0.482  

14  0.414 1.2473  0.289 

15  0.649  1.3194  0.54 

16  0.489 1.2927 0.362  

17  0.311  1.2567  0.184  

18  0.603 1.2444  0.495  

19  0.367 1.2001  0.244  

20  0.835  1.094  0.706  

21  0.574 1.1539  0.466  

22  0.629  1.2005  0.532  

23  0.68  1.1647  0.549  

24  0.496  1.2762  0.367  

25  0.843  1.295  0.714  

26  0.642  1.0397  0.512 
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• Results and discussion    

Figure 28 presents the location of characteristic points from the ICG signal and the 

two their waves of ejection and pre-ejection for cycles. However, we extracted the point 

C that corresponds to the maximum peak in the ejection and original waveform, X 

presents the lowest peak in ejection waveform after point C, and B is the lowest peak in 

the pre-ejection signal before point C. Our approach is applied for 26 ICG cycles and 

their ejection and pre-ejection waveforms. We follow the same technique to detect the 

features extraction B and X for the other cycles as presented, also we calculate the 

LVET. The results are presented in Table 12. 
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                                   Cycle 1                                                               Cycle 2 

 

  
                              Cycle 3                                                     Cycle 4 

  
                                Cycle 5                                                  Cycles 6 

 
                                                                       Cycle 7 
 

Figure 28: Extraction of the BCX point from ejection, pre-ejection and original signal for cycles from 1 to 
7. 
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Table 12: The LVET calculation for each cycle of ICG signal. 

   Number of 
cycles  

 

 LVET (s) Point B Point X 
 Amplitudes 

(𝑨𝑨𝑨𝑨𝒑𝒑𝑪𝑪) 
 Times (𝒕𝒕𝑨𝑨𝒎𝒎𝒎𝒎 

(s)) 
 Amplitudes 

(𝑨𝑨𝑨𝑨𝒑𝒑𝑪𝑪) 
 Times (𝒕𝒕𝑨𝑨𝒎𝒎𝒎𝒎 

(s))  

1  0.304  -0.72512 0.417 -0.99496  0.721 
2  0.344  -0.66218  0.4 -0.8895  0.744 
3  0.331  -0.34328  0.171 -0.64608  0.502 
4 0.295  -0.40213 0.22 -0.87985  0.515  
5 0.296  -0.49222  0.506  -0.90377 0.802 
6 0.331  -0.88576  0.227 -1.0493  0.558 
7  0.312  -0.81042  0.65 -1.2995  0.962 
8 0.389  -0.69368  0.401 -0.98891  0.79 
9 0.377  -0.68028  0.209 -0.88203  0.586 
10 0.322  -0.43309 0.218 -0.85334 0.54  
11 0.313  -0.56678  0.237 -0.91703  0.55 
12 0.29  -0.54022  0.644  -1.2345  0.934  
13 0.299  -0.5384  0.411  -1.1011  0.71  
14  0.332  -0.46239 0.207  -0.82759 0.539 
15 0.291  -0.37287  0.467  -1.0533  0.758 
16  0.33  -0.58918  0.286  -0.90995   0.616 
17 0.323  -0.47617  0.115 -0.71492  0.438  
18  0.29  -0.37597  0.421  -0.97853  0.711  
19 0.322  -0.21194  0.168  -0.75956  0.49  
20  0.32  -0.40652   0.644  -0.88946  0.964  
21 0.301   -0.35746  0.381   -0.89626  0.682  
22 0.291  -0.23598  0.435  -0.97642  0.726 
23 0.345  -0.61341  0.466  -0.89912  0.811 
24  0.326  -0.51668  0.299  -0.89788  0.625  
25 0.329  -0.76577  0.643 -1.055 0.972 
26 0.362  -0.47478 0.41 -0.79191  0.772 

 

The LVET calculation is used to evaluate our methodology of characteristic point 

extraction of ICG signals. We observe that some LVET values are around 0.29 of a few 

cycles, but if we evaluate the mean of LVET, we find that the LVET is in the normal 

range, wherever the results are satisfactory. 
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IV. Conclusion 

 

The hemodynamic parameters related to the process of heart mechanical activities 

must be calculated thanks to the estimation of the characteristic points on the ICG signal, 

for this purpose, we noted, that it is important to find an effective means to push towards 

a correct detection to not disclose the clinical diagnosis. 

The automatic detection techniques are reliable, but the difference between them is 

the computational complexity, which varies from one method to another. They are 

applicable for the processed or unprocessed signal. Therefore, that will be used to solve 

the ambiguity caused by ICG signal morphology for the diagnosis and monitoring of 

cardiovascular diseases. 

In this paper, the first step based on presentations and descriptions on the possibility 

of evaluating the performance ICG features extraction, which is based on the ECG signal 

simultaneous measurement, because the R wave is the reference peak used by several 

researchers to estimate A, B, C points. 

However, at the second step, we used a model based on two bells; ejection and pre-

ejection wave, and then applied a new algorithm of detection technique to calculate the 

LVET of the ICG signal without needing the R peak. This hybridization technique can 

confirm the calculation of the LVET from the two bells without calculating it from the 

original ICG waveform.  

Our approach can evaluate the performance of the features points’ extraction, and 

predict the typical ICG shape if the error exists, thanks to the early phase of the 

ventricular systole. 

We established a new detection method that identifies precisely the localization of 

the patterns for not disclosing the clinical diagnosis and the monitoring of cardiovascular 

diseases. It allows us to estimate the heart mechanical activities process of the patient. 
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Chapter VII: Telemedicine Application of ICG Signals  

 

I. Introduction  

In this chapter, we aimed to develop a new application automatic access that helps the 

medical person to make a good diagnosis earlier. The Impedance cardiography (ICG) 

technique is applied to measure cardiac function. The ICG is non-invasive, easy to use, 

cheaper and safe, enabling the estimation of time's intervals and cardiac indices.  

The digital processing field used on our signals helps doctors to provide all necessary 

medical information to establish a speed and reliable diagnosis. 

Our plan is based on the optimization care quality and the speediness of diagnosis, 

whatever their geographical location, we carried out to two criteria:  The storage of 

information, and the manipulation of data through an application of automatic access in 

real time.  

In this party, three different environments are used: Matlab, MySQL, and Java 

Netbeans, which allowed the development of a new application, presented in Figure 29 

that is easy, fast, and reliable and helps the clinics to analysed ICG and 

electrocardiogram (ECG) signals and diagnose if there are any abnormalities in heart 

functions, either locally or remotely. This work is presented in 2022 3rd International 

Conference on Electrical and Electronics Engineering ICEEE 2022. 

The work is carried out under a 64-bit win 7. Three softwares are installed on the 

operating system:  

● Java Netbeans IDE 7.3: allows you to deploy the web applications.  The 

OpenSource licence of NetBeans makes it possible to develop and deploy 

Swing graphics applications, Applets, JSP / Servlets, J2EE architectures. It is 

easy to use in an extremely customizable environment. The NetBeans IDE is 

based on a robust kernel. The NetBeans Platform can also be used to develop 

your own Java applications [1]. 

● Matlab: is Matrix laboratory present interactive software developed by Math 

Works Inc. It exists in Dos, Windows, and UNIX environments, aimed for 

digital signal processing. In this study, we have used the Matlab R2014a 

version that allows a speed visualisation of results, modelling, simulation, and 

design of complex digital systems [2]. 
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● WAMP / EASYPHP (MySQL) for web development, it allows you to create 

web applications with Apache2, MySQL database  and PHPMyAdmin to easily 

manage your databases [3] [4]. 

   

 

 
 

Figure 29: The principle of our developed application.  

 

II. Network Background 

Figure 30a presents architecture with a LAN (Local Area Network). It has two 

machines, a remote server, an RJ45 cable, and a modem that acts as an access 

point. Figure 30b presents architecture with an extended topology called WAN (Wide 

Area Network). For the purpose to have remote access to the server; which is located at 

the central hospital, for example, that has a specialised line with a high speediness 

connection; from different clinics located in different places installed our application.   
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(a) 

 
(b) 

Figure 30:  (a) The local area network topology, (b) The wide area network topology. 
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III. Our Developed Application 

● In a treatment room where machine one is available, installed Matlab there is:  

To calculate the hemodynamic parameters and time intervals such as stroke volume 

(SV), thoracic fluid content (TFC), cardiac output (CO), heart rate variability (HRV), 

left ventricle ejection time (LVET), and preejection period (PEP) are defined in the 

following equations [6]: 
 

𝐿𝐿𝐹𝐹𝐶𝐶 = 1
𝑍𝑍₀

                                                                 (1) 

𝑆𝑆𝑆𝑆 = 𝑆𝑆˓�𝐿𝐿𝑆𝑆𝐿𝐿𝐿𝐿 ∗ � 1
𝑍𝑍₀
�   �𝑑𝑑𝑍𝑍

𝑑𝑑𝑑𝑑  
�𝑚𝑚𝑚𝑚𝑚𝑚                                        (2) 

                                              𝐶𝐶𝐶𝐶 = 𝐻𝐻𝐻𝐻 ∗ 𝑆𝑆𝑆𝑆                                                              (3) 

                                                   

                                            PEP= |TQ-TB|                                                              (4) 

 

Where, 𝑆𝑆˓ is the intrathoracic blood volume expressed in mL, LVET is the left 

ventricle ejection time between B and X points of the ICG signals, Z0: basic thoracic 

impedance, (dZ/ dt)max is the maximum on the ICG signal curve, HR is the heart rate, 

and PEP is the time interval (T) between Q point of ECG signal and B point of ICG 

signal. 

 

We must apply a features point extraction algorithm for ICG signal and ECG signal: 

We applied our algorithm on signals of ten healthy subjects, when we recorded and 

analysed ECG and ICG signals with a sampling frequency equal to 1000 Hz. We filtered 

the ECG signal using the low pass filter and high pass filter, we used an algorithm of 

detection of PQRS. It is based on the detection of the point R and the point-by-point 

methods for the other points.   

   

To denoise ICG signal from artifacts due to motion or respiration of subjects, we 

applied butter filter with order three. The Pan-Tompkins algorithm [6] is used to identify  
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point C, whereas B and X are the local minima located before and after C, respectively. 

All results are displayed in the Matlab console and saved directly to the MySQL server 

using a simple program. We are based on two ways, where the first is a small application 

developed under Netbeans to send the figures of the ICG and ECG signals analysis to 

the MySQL server. The second is a Matlab program aimed to send the saved figures to 

the server automatically.  

  

● MySQL server is a remote server that has our database (DB).  

● Java Netbeans: An application under Netbeans installed on the user's 

workstation, allowing access to information.  

 

For a remote server, we used WAMP / EASYPHP to create the database. In our 

project, we adjust the privilege of our database to open a communication with 

another machine (customers). Then, we use PHPMyAdmin MySQL to create the fifth 

table (ecg, icg, icg_signal, results, users). Under Matlab, we have implemented two 

programs: the first for the digital processing of the ICG signal, and the second for 

sending the results (features characteristics points, time intervals, and cardiac indices), 

thanks to the fastinsert function, after their processing, to a table (results) under a 

specific database (database) in the MySQL server under WAMP or ESAYPHP, As 

explained above, a small application is developed to send the ICG/ECG figures to the 

server under a table (icg_signal).   

The Java Netbeans application has five interfaces with its function (login, menu, users, 

signals and results). This part is used to visualise and display the data already processed 

in the treatment room (which contains the Matlab software for the segmentation of ICGs 

signals), and also to enter various information of patients and users, the latter is 

identified by a password and a user ID for confidentiality reasons.   

The purpose of this application is to provide the user with all the necessary 

information, which helps him to establish a fast and reliable estimate. This application is 

a real-time automatic access application used to optimise the quality of care and the 

speed of diagnosis regardless of their geographical location, and is carried out according  
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to two important criteria: the storage of information and the manipulation of data thanks 

to the connection between softwares.  

 

• MySQL connection with Matlab  

 

The fundamental objective set behind this part is to establish a connection between 

two environments: "Matlab and MySQl server" to store the information extracted from 

digital processing of the ICG/ECG signal. Before proceeding with any treatment, 

compatibility between the systems used is mandatory. This compatibility facilitates the 

achievement of the following tasks (see Figure 31):    

  

1. Installation of ODBC driver;    

2. The incorporation of the "database" that has already been created under MySQL in 

Matlab;    

3. Confiscation of information in the MySQL connector window (name, server IP 

address), to test the connection;    

4. Connection of the database.   
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(a)                                                (b) 

   
 (c)                                                     (d) 

 
Figure 31: The connection of Matlab and MySQL. (a) connect to database, (b) enter the IP address and 
port number, (c) test the connection, (d) MySQL database appeared in Matlab. 
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• MySQL connection with Java Netbeans  

 

To establish MySQL & Java Netbeans connection, you must install a "MySQL JDBC 

Driver" compatible with the machine used, and then follow the following steps:     

1. Connect Netbeans with MySQL: determine the server address. (A public but fixed 

address).   

2. Connect Netbeans with the "database" database   

3. Creation of graphical interfaces.   

4. Connect Netbeans with DB tables (so that the content of the tables will be visible in 

the interfaces created using java Netbeans). 

  

IV. Results and Discussions  

Tables below (Table13, Table14 and Table15) present some results of the ICG and ECG 

signals after processing in Matlab.  
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Table 13: Feature points extraction for ECG signal. 

Code of 

patient 

Number 

of cycle 

Times 

(second (s)) 

Amplitudes 

P Q R S P Q R S 

1 7 0.262 0.339 0.304 0.327 0.0088 0.0010 0.4118 -0.4421 

2 1 0.432 0.532 0.471 0.494 0.0043 0.0001 0.4148 -0.4475 

3 1 0.276 0.3851 0.318 0.341 0.0069 -0.0021 0.42100 -0.4579 

4 5 0.315 0.452 0.358 0.381 0.0042 -0.0056 0.4140 -0.4395 

5 6 
0.549 0.638 0.589 0.612 0.0077 -3.6 e-

005 

0.4130 -0.4451 

6 2 0.559 0.663 0.598 0.621 0.0064 0.0010 0.4235 -0.4548 

7 5 0.257 0.431 0.299 0.323 0.0068 -0.0064 0.4301 -0.4448 

8 6 0.506 0.569 0.547 0.57 0.0111 0.0045 0.4026 -0.4309 

9 5 0.314 0.388 0.353 0.376 0.0073 -0.0004 0.4293 -0.4497 

10 1 0.34 0.478 0.383 0.407 0.0096 0.0005 0.4044 -0.4315 

 

 

 
Table 14:  Feature points extraction for ICG signal. 

Code of patient Number of cycle Times 

(s) 

Amplitudes 

B C X B C X 

1 7 0.282 0.431 0.63 -0.1484 0.9576 -0.4985 

2 1 0.482 0.587 0.795 0.0291 0.9033 -0.4306 

3 1 0.317 0.455 0.656 0.0765 1.1106 -0.4501 

4 5 0.362 0.486 0.702 -0.1304 1.1794 -0.4881 

5 6 0.565 0.731 0.869 -0.0235 1.2501 -0.3251 

6 2 0.582 0.735 0.904 -0.1073 1.1986 -0.3129 

7 5 0.31 0.45 0.635 -0.1947 1.2849 -0.6462 

8 6 0.51 0.69 0.82 -0.1631 1.1887 -0.2146 

9 5 0.283 0.495 0.64 -0.2785 1.2444 -0.2432 

10 1 0.368 0.532 0.702 -0.1617 1.2004 -0.4751 
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Table 15: Time intervals and hemodynamic parameters values. 

Code of patient Number of cycle HRV 

(ms) 

LVET 

   (s) 

PEP 

 (s) 

 SV  

(ml) 

 

   TFC 

(s) 

   CO 

(ml/ms) 

 

1 7 835 0.348 0.0570 83.339   1.3525 69.58 

2 1 835 0.313 0.05 102.57   1.3557 85.64 

3 1 801 0.339 0.0681 85.144   1.348 68.20 

4 5 776 0.34 0.090 87.885   1.323 68.19 

5 6 826 0.304 0.073 120.26   1.334 99.33 

6 2 769 0.322 0.081 127.91   1.333 98.36 

7 5 802 0.325 0.0121 75.427   1.303 60.49 

8 6 804 0.31 0.059 114.24   1.326 91.85 

9 5 783 0.35 0.105 94.74   1.328 74.18 

10 1 789 0.334 0.11 96.76   1.338 76.34 

 

Application under netbeans decomposed into interfaces as follow: 

• Login interface  

Security is necessary for any application to assure access to its functions. For this 

purpose, we have created an authentication mechanism (see Figure 32) for the 

user with a correct user ID and password.  

 

• Menu interface  

The user can manage the database as he wants according to their choice (see 

Figure 33) (User, Signals, and Results).  

 

• Users interface  

The bottom users in Figure 34 is a simple mechanism, grouped into a simple 

interface that stores the different user IDs and passwords of users who have the 

right to access medical information and who also have the right to read and write.  
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• The ICG images storage  

A small application developed under Java Netbeans is used to record images 

automatically under the MySQL server in a table (icg_signal). This interface 

presented in Figure 35 allows us to enter the ID, the patient's code, and the 

number of cycles, and then click on the browse button to bring the image. The 

latter will be stored in the table under MySQL.  

 

• Signals interface  

The following interface (see Figure 36) presents the characteristic points of ICG 

and ECG signals for several cycles and patients according to ID, patient code, and 

the number of cycles. As well as the images display different signals after their 

treatments according to the ID.  

 

• Results interface  

The following interface presented in Figure 37 shows the display of the results 

after the processing of the ICGs and ECGs signals from different subjects. The 

doctor can read and print the values presented in the interface. Each value has a 

normal range for a healthy person without suffering from any cardiac disease.  

For example:  

 Left ventricle ejection time (LVET) varying from 0.30 to 0.39 second  

 Preejection period (PEP) varying from 0.05 to 0.12 second  

 Stroke volume (SV)   varying from 70 to 150 ml.  

Thanks to this information that can be print, the doctor or any medical person can 

estimate if the subject has cardiovascular disease or not.  
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Figure 32: Login interface.  

  

 
Figure 33: Menu interface. 
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(a)                                                          (b) 

 
 (c) 

Figure 34: User’s management interface; (a) search according to id, (b) add bottom option from the user 
interface, (c) add option saved to the server under the database.  
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(a)                                                        (b) 

   
 (c)                                                             (d) 

 
Figure 35:  (a), (b), (c) and (d) The images storage interface from Netbeans to the MySQL database in 
table ‘icg_signal’.  
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(a)                                                          (b) 

      
        (c)                                                               (d) 

 
Figure 36: Signals interface. (a) search option with category id, (b) tables in the interface that presents the 
characteristics points of ICG and ECG signal processing in Matlab, (c) ecg table in the server, (d) icg table 
in the server. 

 

 
133 



 

Chapter VII: Telemedicine Application of ICG Signals  

 

 
(a)                                                               (b) 

 
 (c)                                                                    (d) 

 
Figure 37: The Results interface. (a) search with category id, (b) print option, (c) complete impression of 
the results presented in texfields, (d) results table. 
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V. Conclusion  

In this paper, we have presented several parties, where we present characteristic points 

BCX algorithm detection of the cardiography impedance signal (ICG) to measure 

various cardiac indices and calculate the time intervals as SV, CO, LVET and PEP.  

The results obtained seem very satisfactory and help the patient's condition analysis. 

We have also presented another algorithm that allows us to record the values of the ICG 

signal obtained after its processing in the MySQL server, in parallel, a simple 

application that allows the insertion of the ICG images directly into the server.  

This app helps physicians diagnose each patient by cardiac time interval and 

hemodynamic parameters either locally or remotely.  

For future work, we can implement this algorithm and application to develop 

cardiography impedance systems more sophisticated for the non-invasive diagnosis and 

medical monitoring of patients. 
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General Conclusion 

 

In this thesis, we have presented several monitoring methods, and we have shown the 

best choice of the best method according to the risk rate of the patient. Thus, we are 

based on the Bioimpedance that is one of the non invasive techniques. It consists of the 

analysis of the electrical impedance of biological tissues to diagnose and study the 

physiological and pathological state. 

 

Nowadays, the most popular diseases are cardiovascular, for this reason, we are 

focused on impedance cardiography signals (ICG) that helps us to monitor and to detect 

the disorder earlier for diagnosis. It is non-invasive, low cost and simple in its 

implementation in the medical field especially in intensive unit care. The ICG method is 

promising in monitoring cardiac contraction and functional status. 

 

We are presented with several denoising techniques such as SG, linear filter, adaptive 

filter and wavelets  to noise cancellation from ICG signal, and we have chosen the best 

that perform better than others for each party. 

 

To verify the effectiveness of the denoising technique we are based on the calculation 

of the denoising performance evaluation criteria.  

 

We have discussed the possibility of evaluating the performance of ICG features 

extraction, which is based on the ECG signal simultaneous measurement, because the R 

wave is the reference peak used by several researchers to estimate A, B, C, X, and O 

points.  

 

The automatic detection techniques are reliable, but the difference between them is 

the computational complexity, which varies from method to another.  

 

They are applicable for the processed or unprocessed signal. The performance 

evaluation of the characteristic points on ICG waveforms helps us to measure time 

cardiac intervals as LVET.  

Thus it allows us to calculate several cardiac indices as SV and CO cited above that 

are related to the heart mechanical activities process.  
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In our detection algorithm we have based on two bells without using the reference of 

peak R, where it showed efficiency in results. 

 

For this purpose, it is imperative to find an effective means to establish a correct 

detection method that identifies precisely the localization of the patterns for not 

disclosing the clinical diagnosis and the monitoring of cardiovascular diseases for 

patient health. 

 

Finally, we have presented our application for automatic access that helps physicians 

diagnose each patient by cardiac time interval and hemodynamic parameters either 

locally or remotely.  

To conclude we can say that our thesis purpose is the determination of cardiovascular 

parameters from the cardiac impedance signal by a non-invasive method with the 

creation of an application that helps doctors to diagnose and monitor their patients from 

distance via telemedicine. 
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Abstract 
The non-invasive ICG technique comes to solve the complex problem of measurement and analyzing 

heart diseases based on the thoracic electrical impedance change assessment that is due to blood velocity 
and resistivity changes to estimate several hemodynamic monitoring parameters. This type of signal is 
altered by artefacts’ which distort the significant information of the signal. This distortion will cause 
clinicians to misdiagnose or monitor the pathological state of patients, for whom it is important to find 
techniques to eliminate noises without destroying the varied morphology of the signal.  For this reason, 
our three denoising methodologies are based on several comparative studies between different tools of 
denoising concepts that aim to find the best automatic detection technique that is applied to 10 subjects. 
All these algorithms are implemented to develop an application of automatic access that help clinics to 
analyze ICG and electrocardiogram (ECG) signals, either locally or remotely. This application aims to 
make available all necessary information to doctors that help them to establish a fast and reliable diagnosis 
either locally or remotely. This application is automatic access to the real-time application used to 
optimize the quality of care and speed of diagnosis, whatever their geographical location. It is performed 
according to two criteria: information storage and data manipulation. This application is based on three 
softwares: Java Netbeans, Matlab, and WAMP / EASYPHP (MySQL) for web development. 

Keywords-- ICG, ECG, Hemodynamic monitoring, Non-invasive, Denoising concept, Automatic 
detection, Automatic access application. 

Résumé 
La technique non invasive d’ICG vient pour résoudre le problème de la complexité de la mesure et de 

l'analyse des maladies cardiaques, basant sur l'évaluation de changement d'impédance électrique 
thoracique qui est dus aux changements de vitesse et de résistivité du sang afin d'estimer plusieurs 
paramètres de surveillance hémodynamiques. Ce type de signal est altéré par des artefacts qui ruinent 
l’information significative du signal.  Cette distorsion pousse les cliniciens vers un mauvais diagnostic et 
une mauvaise surveillance de l'état pathologique des patients, dans lesquels il est important de trouver des 
techniques pour éliminer les bruits sans détruire la morphologie de notre signal. Pour cette raison, nos trois 
méthodologies de débruitage sont basées sur plusieurs études comparatives entre différents outils de 
concepts de débruitage qui visent essentiellement à trouver la meilleure technique de détection 
automatique appliquée à 10 sujets sains. Tous ces algorithmes sont mis en œuvre pour développer une 
application d'accès automatique qui aide les cliniques à analyser les signaux ICG et électrocardiogramme 
(ECG), soit localement, ou à distance.  Cette application a pour objectif de mettre à disposition des 
médecins toutes les informations nécessaires pour les aider à établir un diagnostic rapide et fiable soit 
localement soit à distance. Cette application est un accès automatique en temps réel permettant d'optimiser 
la qualité des soins et la rapidité du diagnostic, quelle que soit leur situation géographique. Elle est réalisée 
selon deux critères : le stockage de l'information et la manipulation des données. Cette application est 
basée sur trois logiciels : Java Netbeans, Matlab, et WAMP/EASYPHP (MySQL) pour le développement 
web. 

Mots clés-- ICG, ECG, Surveillance hémodynamique, Non invasif, Concept de débruitage, Détection 
automatique, Application d'accès automatique. 

 الملخص

تأتي تقنیة ICG  السطحیة  لحل مشكلة تعقید قیاس وتحلیل أمراض القلب ، بالاعتماد على تقییم التغیرات في المعاوقة الكھربائیة الصدریة 
التي ترجع إلى التغیرات في سرعة ومقاومة الدم من أجل تقدیر عدة مؤشرات مراقبة الدورة الدمویة. یتم تغییر ھذا النوع من الإشارات من 

خلال الاثار التي تدمر المعلومات المھمة للإشارة. یدفع ھذا التشویھ الأطباء نحو التشخیص  الخاطئ والمراقبة السیئة للحالة المرضى ، 
حیث من المھم إیجاد تقنیات للقضاء على الضوضاء دون تدمیر الشكل الخارجي للاشارة. لھذا السبب ، تستند منھجیاتنا الثلاثة لتقلیل 

الضوضاء على العدید من الدراسات المقارنة بین أدوات مفھوم تقلیل الضوضاء المختلفة التي تھدف بشكل أساسي إلى إیجاد أفضل تقنیة 
 أشخاص أصحاء. یتم تنفیذ كل ھذه الخوارزمیات لتطویر تطبیق وصول تلقائي یساعد العیادات على تحلیل 10للكشف التلقائي المطبقة على 

        ICGإما محلیاً أو عن بعُد. یھدف ھذا التطبیق إلى تزوید الأطباء بجمیع المعلومات اللازمة لمساعدتھم  إشار ECGوتخطیط القلب
على إجراء تشخیص سریع وموثوق. ھذا التطبیق ھو وصول تلقائي في الوقت الحقیقي لتحسین جودة الرعایة وسرعة التشخیص، بغض 

 النظر عن موقعھم الجغرافي. یتم تنفیذه وفقاً لمعیارین: تخزین المعلومات ومعالجة البیانات. یعتمد ھذا التطبیق على ثلاثة
 برامج:

--  ECG,ICG,  الكلمات  التلقائي. الوصول تطبیق ، التلقائي الكشف ، الضوضاء تقلیل مفھوم ، التوغل عدم مفھوم ، الدمویة الدورة  مراقبةالرئیسیة  

Wamp/EASYPHP (MYSQL) و Μatlabو ¸Java Netbeans 


	IV.Results and Discussions………………………………………………………..126
	Bioelectrical Impedance Analysis (BIA)
	The electrical impedance spectroscopy (EIS)
	The electrical impedance plethysmography (IPG)
	The electrical impedance tomography (EIT)
	The impedance cardiography (ICG)
	Definition
	Fricke-Morse model
	Frick-Morse model is presented in Figure 2:
	Debye model
	The Debye model is presented in Figure 3.
	Col model
	The Cole model 1940 [21] as show in Figure 4; it is derived from the Fricke model 1932 and Debye model 1929. Cole's impedance model was introduced in its final form by Kenneth Cole, it took the Debye model, basing on the replacement of the ideal capac...
	The two electrode method or the bipolar method
	The three electrode method
	The four-electrode method or the four-pole or Kelvin method
	The five electrode method
	Bioelectrical Impedance Analysis (BIA)
	The electrical impedance spectroscopy (EIS)
	The electrical impedance plethysmography (IPG)
	The impedance cardiography (ICG)
	The electrical impedance tomography (EIT)
	Discussion
	Discussion

	Introduction
	Network Background
	Our Developed Application
	Results and Discussions
	Application under netbeans decomposed into interfaces as follow:

	Conclusion

