Phase Properties of Interpenetrating Polymer Networks and Liquid Crystals

KAMEL BOUDRAA,1 TEWFIK BOUCHAOUR,1 AND ULRICH MASCHKE2

1Laboratoire de Recherche sur les Macromolécules, Département de Physique, Faculté des Sciences, Université Abou bakr Belkaïd de Tlemcen, Tlemcen, Algeria
2Unité Matériaux et Transformations UMET, Bâtiment, Université de Lille 1 - Sciences et Technologies, Villeneuve d'Ascq Cedex, France

The phase behavior of interpenetrating acrylic polymer network/liquid crystal systems was investigated. The crosslinked polymers were obtained by UV-curing of initial solutions containing a reactive monomer, a crosslinker and a photoinitiator. Experimental phase diagrams were established using polarizing optical microscopy observations of the variation of equilibrium swelling of polymer/liquid crystal systems with temperature. The experimental data were rationalized within a combination of the Flory-Rehner theory of isotropic mixing and the Maier-Saupe theory of nematic ordering.

Keywords Interpenetrating polymer networks; liquid crystal; phase diagrams; swelling behavior

1. Introduction

The phase behavior of polymer-solvent systems has important applications in industry for production and processing of many kinds of plastic materials [1–4]. From a fundamental point of view, it raises basic questions concerning the phase properties of multi-component systems with widely different characteristics. From the point of view of their applications, these systems are useful in various fields such as display technology and privacy windows [5,6].

The phase diagram provides information about the thermodynamic stability of the coexisting phases as a function of temperature and composition. Establishment of phase diagrams is thus the beginning point in any kind of research on blends of LC and polymer (linear or cross-linked).

There have been many reported theoretical studies on equilibrium phase behavior of LC/polymer blends [7–11]. Benmouna et al. [12–14] performed a study on the theoretical phase diagrams of mixtures of cross-linked polymers and the

Address correspondence to Ulrich Maschke, Unité Matériaux et Transformations UMET (UMR CNRS N°8207), Bâtiment C6, Université de Lille 1 - Sciences et Technologies, F-59655 Villeneuve d'Ascq Cedex, France. Tel.: 0033 3 20 33 63 81; Fax: 0033 3 20 43 43 45; E-mail: ulrich.maschke@univ-lille1.fr

220/[1444]