République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Abou Bakr Belkaid – Tlemcen

Faculté de Technologie

Département de Génie Civil

Mémoire pour l'obtention du diplôme de MASTER en Génie Civil

Spécialité : Constructions Métalliques et Mixtes

THEME :

ÉTUDE D'UN HALL METALLIQUE À ELSENIA, WILAYA D'ORAN

Réalisé par :

TIARETI WalidCHABANE Mohammed El amineSoutenu le 30 / 07 /2022 à 13 h, devant le jury composé de :

Dr. TALEB Omar

M. BASRI Hamza

Pr. HAMDAOUI Karim

Président

Examinateur

Encadrant

Dr. AL SAMAWI Almoutaz Bellah

Année universitaire 2021-2022

Encadrant

DÉDICACE

C'est grâce à ALLAH seul que j'ai pu achever ce travail, je le dédie à :

- Mes parents et ma grand-mère qui m'ont toujours soutenu le long de mes études et qu'ALLAH les garde pour moi.
- Mes frères et ma sœur, Mohammed, Djawad, et Ikram.
- À mon binôme, CHABANE Mohammed El Amine , qui a contribué à la réalisation de ce travail.
- Mes amis BENDAHOU Azzedine et OURAGHI Ahmed
- Toute la famille TIARETI et HAMMAD.
- À toute la promotion de Génie Civil, en particulier mes collègues et mes amis étudiants de la spécialité construction métallique.

TIARETI Walid

DÉDICACE

C'est grâce à ALLAH seul que j'ai pu achever ce travail, je le dédie à :

- Mes parents qui m'ont toujours soutenu le long de mes études et qu'ALLAH les garde pour moi.
- Mes sœurs, Farida, Zolikha, et Amina.
- À mon binôme, TIARETI Walid, qui a contribué à la réalisation de ce travail.
- Toute la famille CHABANE et MOUMEN.
- A toutes les personnes que je connais de près ou de loin.
- À toute la promotion de Génie Civil 2021, en particulier mes collègues et mes amis étudiants de la spécialité construction métallique.

CHABANE Mohammed El Amine

Remerciement

Nous remercions avant tout ALLAH de nous avoir gardé en bonne santé et qui nous a donné la force, la patience, le courage et la volonté pour élaborer ce travail.

Nous tenons à remercier nos chers parents pour leurs soutiens et leurs sacrifices pour que nous terminions nos études.

Nous tenons à remercier vivement tous ceux qui nous ont aidés à élaborer ce travail et en particulier, Pr. HAMDAOUI Karim et Dr AL SAMAWI Almoutaz Bellah pour leurs aides et leurs orientations précieuses.

Nous tenons également à remercier les membres du jury Dr. TALEB Omar et M. BASRI Hamza, pour l'honneur qu'ils nous ont accordé, en acceptant de juger notre travail.

Nous remercions aussi l'ensemble des enseignants du département de Génie Civil qui ont contribué à notre formation.

Que tous ceux ou celles qui nous ont apporté leur soutien et qui nous ont aidés de près ou de loin pour l'achèvement de ce projet trouvent ici l'expression de notre vive et sincère reconnaissance,

ملخص

المشروع النهائي لدراستنا هو دراسة لقاعة معدنية ذو شكل منتظم في السانيا (وهران). هذا المبنى الصناعي مخصص لتصنيع وتخزين مواد التنظيف. يتكون هذا المشروع من عدة مراحل، أولاً عرض العمل والعموميات، ثم تقييم الاحمال و الاحمال الزائدة و كذلك التأثيرات المناخية (الثلوج و الرياح) حسب القواعد « RNV99 RNV93 »، ثم أبعاد العناصر الثانوية حسب القواعد « CCM97 » ، الدراسة الديناميكية حسب القواعد «RPA99 V2003 » للزلازل، دراسة أبعاد العناصر الرئيسية وحساب كيفية تجميع و ربط العناصر الضرورية حسب القواعد « RPA99 V2003 » واخيرا دراسة البنية التحتية وفق المعايير « BAEL91 » والمعايير RPA99 » « V2013 كان برنامج ROBOT » واخيرا دراسة البنية التحتية وفق المعايير « RPA91 » والمعايير RPA99 » الكلمات المفتاحية : قاعة معدنية، مبنى صناعي، .

Résumé

Notre projet de fin d'études consiste à faire une étude d'un hall métallique se trouvant à **El-senia** (**Oran**), ce hall destiné à la fabrication et au stockage des produits de nettoyage (détergents)... Ce projet comporte plusieurs parties, en premier lieu la présentation de l'ouvrage et généralités, ensuite l'évaluation des charges et surcharges ainsi que les effets des actions climatiques selon le règlement « RNV99 V2013 », puis le dimensionnement des éléments secondaires selon le règlement « CCM97 », l'étude sismique selon le règlement « CCM97 », le calcul des assemblages des différents éléments importants selon le règlement « CCM97 » et enfin l'étude de l'infrastructure selon les normes « BAEL91 » et « RPA99V2003 ». Le logiciel ROBOT a été l'outil informatique utilisé dans l'analyse de notre étude.

Mots-clés : hall métallique - Bâtiment industriel -

Abstract

Our end-of-study project consists of carrying out a study of an industrial building in a metal hall located in **El-senia** (**Oran**), this building has a traveling crane intended for the manufacture and storage of cleaning products (detergents).. This project includes several parts, first the presentation of the work and generalities, then the evaluation of loads and overloads as well as the effects of climatic actions according to the « RNV99 V2013 » regulation, then the sizing of the secondary elements according to the « CCM97 » regulation, the seismic study according to the « RPA99 V2003 » regulation, the sizing of the main elements according to the « CCM97 » regulation of the assemblies of various important elements according to the « CCM97 » regulation and finally the study of the infrastructure according to the « BAEL91» and « RPA99V2003 » standards. ROBOT software was the computer tool used in the analysis of our study.

Keywords: metal hall - Industrial building -.

TABLE DES MATIÈRES

INTRODUCTION GÉNÉRALE	1
Chapitre I : Généralités sur la conception de l'ouvrage	2
I.1 Presentation de projet	3
I.2 Caractéristiques géométriques du projet	3
I.3 Localisation et données concernant le site	3
I.4 Règlements et documents techniques utilisés	4
I.5 Logiciel utilisé	4
I.6 Matériaux	4
I.6.1 L'acier de construction métallique (profilé)	4
I.6.2 Couverture	4
I.6.3 Le béton	5
I.7 Les assemblages	5
I.7.1 Le soudage	5
I.7.2 Le boulounage	6
Chapitre II : Évaluation des charges et surcharge	7
II.1 Introduction	7
II.2 Charges permanentes	7
II.3 Surcharges d'exploitation de la toiture	7
II.4 Surcharge climatique	8
II.4.1 Neige	8
II.4.1.1 Charge de neige au sol	8
II.4.1.2 Coefficiant d ajustement(µ)	9
II.4.1.3 Charge de neige	9
II.4.2 charge de vent	8
A / Données relatives au sites	10
B / Détermination de la pression due au vent	
C/ Détermination des forces de frottement du vent	22
II.5 Conclusion	

Chapitre	III:	Dimensionnement	des	éléments	secondaires	de	la
structure.							.23
III.1 Introd	uction						.24
III.2 Étude	des élén	nents secondaires				••••	24
III.2.1 C	alcul des	s chéneaux				•••••	24
III.2.2 C	alcul des	s pannes	•••••			••••	25
III.2.3 C	alcul des	s liernes	•••••				.32
III.2.4 C	alcul de	l'echtignole	•••••				.35
III.2.5 D	imensio	nnement des lisses de ba	ardage			•••••	37
III.2.6 D	imensio	nnement des potelets					.40
III.3 Concl	usion		•••••	•••••			.45
<u>Chapitre</u>	I <u>V : É</u> t	tude sismique					.47
IV.1 Introd	uction					•••••	48
IV.2 Princi	pe de la	méthode	•••••				48
IV.3 Critère	es de cla	ssification de l'ouvrage	par le	RPA/V2003			.48
IV.4 Analy	se dynar	nique de la structure	•••••				48
IV.4.1 M	odélisati	on de la structure					49
IV.4.2 Sp	ectre de	réponse de calcul				••••	49
IV.4.3 Ar	nalyse m	odale spectrale					.50
IV.5 Vérifie	cation de	e la structure					51
I V.5.1 Ve	érificatio	on de la période fondame	entale	de la structu	re		51
I V.5.2 Vé	érificatio	on de l'effort tranchant à	ı la bas	se			52
I V.5.3 Ve	érificatio	on des déplacements	•••••				52
IV.6 Conclu	usion		•••••				53
<u>Chapitre</u>	V:Di	mensionnement des	éléme	ents princip	aux de la stru	ctur	<u>e</u> 54
V.1 Introdu	ction						55
V.2 Justific	ation de	s traverses	•••••				55
V.2.1 Car	ractéristi	iques de la traverse	•••••				55
V.2.2 Eff	fort solli	citant	•••••				55
V.2.3 Cla	asse de s	ection transversale de la	trave	rse			55
V.2.4 Vé	rification	n de le flèche		••••••			56

V.2.5 Vérification de la résistance à la flexion composée (éléments co fléchis)	mprimés et 56
V.3 Vérification des poteaux	58
V.3.1 Classe de section transversale du poteau	58
V.3.3 Vérification de la résistance à la flexion composée (éléments co fléchis)	mprimés et 59
V.3.4 Vérification des déplacements	62
V.5 Vérification des contreventements(2×L×90×90×10)	62
V.5.1 Vérification à la traction	63
V.6 Vérification de la sablière	63
V.6.1 Efforts sollicitant	64
V.6.2 Classe de la section transversale du profilé HEA 140	64
V.6.3 Vérification de la résistance à la flexion composée (éléments co fléchis)	mprimés et 64
V.7 Conclusion	68
Chapitre VI : Calcul des assemblages	69
VI.1 Introduction	70
VI.2 Calcul des assemblages	70
VI.2.1 Assemblage poteau-traverse (HEA 280 – IPE 400)	70
VI.2.2 Assemblage traverse –traverse (IPE 400 – IPE 400)	75
VI.2.3 Assemblage de contreventement (2×L×90×90×10)	77
VI.2.4 Pied de poteaux	80
VI.2.4.1 Introduction	80
VI.2.4.2 Efforts et sollicitations	80
VI.2.4.3 Résistance de calcul à l'écrasement du matériau de scellement	81
VI.2.4.4 demensionement de la platine	81
VI.2.4.5 Vérification de la résistance à la flexion de pied de poteau présence de l'effort axial	encastré en 82
VI.2.4.6 Résistance au cisaillement de l'assemblage	83
VI.3 Conclusion	
Chapitre VII : Dimensionement des éléments de fondation	
VII.1 Introduction	
VII.2 Choix du type de fondation	

VII.3 Caractéristiques géotechniques du sol	
VII.4 Détermination des sollicitations	
VII.4.1 Dimensionnement de la semelle	
VII.4.2 Calcul du ferraillage	91
VII.5 Dimensionnement des fûts	93
VII.5.1 Calcul ferraillage longitudinal	
VII.6 Calcul des longrines	94
VII.6.1 Dimensionnement des longrines	94
VII.6.2 Calcul des ferraillages longitudinaux	94
VII.7 Conclusion	95
CONCLUSION GÉNÉRALE	96
<u>Référence bibliographiques</u>	97
ANNEXES	
ANNEXE A Chapitre II : ÉVALUATION DES CHARGES (selon RNV	2013)99
ANNEXE B Chapitre III : Dimensionnement des éléments secondaires	s (CCM97) 104
ANNEXE C Chapitre IV : Étude sismique (RPA99/V2003)	113
ANNEXE D Chapitre VI : Vérification des éléments structuraux	117
ANNEXE E Chapitre VI : Calcul des assemblages	121
ANNEXE F Chapitre VII : Étude de l'infrastructure	

LISTE DES FIGURES

Figure I. 1 : Vue 3D de l'ouvrage	3
Figure I. 1 : Données géométriques de l'ouvrage	4
FigureII. 1 : Charges ponctuelles d'entretien	7
Figure II. 2 : Coefficient de forme – Toitures à deux versants.	8
Figure II. 3 : Action due au vent sur la structure en 3D	.12
Figure II. 4 : Division de la paroi verticale selon le chargement du vent direction (V1,
V3).	.14
Figure II. 5 : Valeur de C_{pe10} pour les zones de la paroi verticale directions (V1, V	/3).
Figure II 6 : Valour de C pour les zones de la toiture directions (V1 V2)	14
Figure II. 0. Valeur de la parei verticale color la chargement du vert directions (v_1 , v_3)	.13 W2
Figure II. 7 : Division de la paroi verticale selon le chargement du vent directions (۷2, ۱6
V_{4}	.10 74)
Figure 11.8. Valeur de c $_{pe10}$ pour les zones de la paror verticale directions (V2, V	1. 1.
Evenue III 0 · Malaur de C , a cour les acres de la traiture directions (N2 MA)	.10
Figure II. 9: valeur de C $_{pe10}$ pour les zones de la toiture directions (v2, v4)	.1/
Figure II. 10 : Pression pour la paroi verticale direction du vent V1.V3	.18
Figure II. II : Pression pour la toiture direction du vent V1.V3	.20
Figure II. 12 : Pression pour la paroi verticale direction du vent V2.V4	.21
Figure II. 13 : Pression pour la toiture direction du vent V2.V4	.22
FigureIII.1 : Chéneau et sa coupe transversale	.25
Figure III. 2 : Moignon cylindrique.	.26
Figure III. 3 : Diagramme des moments maximum.	.27
Figure III. 4 : Cas de l'effet de neige et neige	.27
Figure III. 5 : Cas de l'effet de neige et vent.	.27
Figure III. 6 : Répartition de la charge suivant l' axe y-y	.29
Figure III. 7 : Répartition de la charge suivant l' axe z-z.	.29
Figure III. 8 : Position des liernes	.35
Figure III. 9 : Vue de l'échantignole	.37
Figure IV. 1 : Modèle de la structure en 3D	.49
FigureVI. 1 : Vue 3D de l'assemblage poteau-traverse	.70
Figure VI. 2 : Vue 3D de l'assemblage traverse - traverse	.76
Figure VI. 3 : Vue 3D de l'assemblage de contreventement	.78
FigureVI. 4 : Vue 3D de l'assemblage pied de poteaux	.80
Figure VI. 5 : Illustration de la partie comprimée du pied de poteau	.82
Figure VI. 6 : Illustration moment + effort normal.	.86
Figure VII. 1 : Les dimensions de la semelle	.90
Figure VII. 2 : Vue élévation du ferraillage des semelles isolées	.92
Figure VII. 3 : Ferrailllage de la semelle	.93
Figure VII. 4 : Coupe transversale de la longrine	.95

LISTE DES TABLEAUX

Tableau II. 1. Les valeurs de la catégorie du terain II.	9
Tableau II. 2. Valeurs de Ce(z) pour les parois vertical et toiture	12
Tableau II. 3. Valeurs de C_{pe10} pour les zones de la paroi verticale directions (V1,
V3)	13
Tableau II.4. Valeurs de Cpe10 pour les zones de la paroi verticale directions (V2,	V4)
	16
Tableau II. 5. Pressions pour les parois verticales directions du vent (V1,V3)	18
Tableau II. 6. Pressions pour la toiture directions du vent (V1,V3)	19
Tableau II. 7. Pressions pour les parois verticales directions du vent (V2,V4).	20
Tableau II. 8. Pressions pour la toiture directions du vent (V2,V4)	29
Tableau III. 1. Caractéristiques du profiléIPE140	30
Tableau III. 2. Caractéristiques du profilé UPN160	39
Tableau III. 3. Caractéristiques du profilé IPE 270	42
Tableau III. 5. Facteur d'imperfection α pour IPE 270	45
Tableau IV. 1. Facteur de qualité suivant les deux sens	50
Tableau IV. 2. Les 3 modes de vibration lors du séisme	.51
Tableau IV. 3. Cractéristiques du 2 CAE (90*90*10)	62
Tableau IV.4.Caractéristiquesdu profilé IPE 140	63
Tableau IV.5. Facteur d'imperfection α pour HEA 140	65

Liste des notations

Majuscules latines

- A : Section brute d'une pièce.
- A_{net} : Section nette d'une pièce.
- A_w : Section de l'âme.
- A_v : Aire de cisaillement.
- W : Surcharge climatique du vent.
- C_t : Coefficient de topographie.
- C_r : Coefficient de rugosité.
- C_e : Coefficient d'exposition.
- C_d : Coefficient dynamique.
- C_{pe} : Coefficient de pression extérieur.
- C_{pi} : Coefficient de pression intérieur.
- E : Module d'élasticité longitudinale de l'acier (E = $2,1 \times 10^5$ MPa).
- F : Force en générale.
- G : Module d'élasticité transversale de l'acier (G = 81000 MPa).
- G : Charge permanente.
- I : Moment d'inertie.
- I_V : Intensité de turbulence.
- K₀ : Coefficient de flambement.
- K_t : Facteur de terrain.
- L : Longueur.
- M : Moment de flexion.
- M_{crd} : Moment résistant de la section transversale à la flexion.
- M_{Sd} : Moment fléchissant sollicitant.
- M_{Rd} : Moment résistant par unité de longueur dans la plaque d'assise.

- M_{Pl} : Moment plastique.
- M_{b,Rd} : Moment de la résistance au déversement.
- N_{pl,Rd} : Effort normal de la résistance plastique de la section transversale brute.
- N_{b,Rd} : Effort normal d'un élément comprimé au flambement.
- N_{Sd} : Effort normal sollicitant.
- N_{t Sd} : Effort normal de traction.
- $N_{c Sd}$: Effort normal de compression.
- $N_{c\,Rd}$: Valeur de calcul de la résistance de la section transversale à la compression.
- Q : Charge d'exploitation.
- T : La période propre.
- R : Coefficient de comportement de la structure.
- S : La charge de la neige.
- S_K : La charge de la neige sur sol.
- V_{Sd} : Valeur de calcul de l'effort tranchant.
- V_{réf} : Vitesse de référence du vent.
- W_{pl} : Module de résistance plastique.
- W : Poids de la structure.
- Z : Hauteur au-dessus du sol.
- Z_0 : Paramètre de rugosité.
- Z_{eq} : Hauteur équivalente.

Minuscules latines

- a_{min} : Distance entre l'extrémité du pont roulant et la position d'arrêt du chariot.
- b : Distance entre l'extrémité du pont roulant et le poteau.
- e : L'empâtement entre les poutres du pont roulant.
- f : La flèche.
- f_y : Limite d'élasticité.
- h : Hauteur d'une pièce.

- l_f : Longueur de flambement.
- t : Épaisseur d'une pièce.
- t_f : Épaisseur d'une semelle de profilé.
- t_w : Épaisseur de l'âme de profilé.
- h : Hauteur du profilé.
- b : Longueur de la semelle.
- d : Hauteur de l'âme.
- d_m : diamètre moyen.
- $q_{réf}$: Pression dynamique moyenne de référence.

Minuscules grecques

- χ : Coefficient de réduction pour le mode de flambement approprié.
- β_w : Facteur de corrélation.
- γ_M : Coefficient de sécurité.
- λ : Élancement.
- λ_{LT} : Élancement de déversement.
- α : Facteur d'imperfection.
- τ : Contrainte limite de cisaillement en élasticité.
- ϵ : Coefficient de réduction élastique de l'acier.
- σ_a : Contrainte de l'acier.
- σ_b : Contrainte du béton.
- ξ : Pourcentage d'amortissement critique.
- $\boldsymbol{\eta}$: Facteur de correction d'amortissements.
- δ_{ek} : Déplacement dû aux forces sismique.
- μ : Coefficient de forme de la charge de neige.

Introduction générale

Pour n'importe quel projet de construction, il existe divers procédés de conception et de réalisation selon les besoins et les capacités : constructions en béton armé, en béton précontraint, charpente en bois ou charpente métallique. Ces procédés sont réglementés par des normes, des codes et des règlements soit nationaux ou internationaux.

Notre projet de fin d'étude a pour thème la réalisation d'une halle métallique dont l'ossature est réalisée en charpente métallique dans la commune de **EL-SENIA** à la wilaya de **ORAN**, atelier de fabrication et stockage des produits de nettoyage (détergents)., en utilisant les règlements (**RPA99/V2003, RNV2013, CCM97, EUROCODE3, DTR BC.2.2**).

Notre travail est structuré de la manière suivante. Dans un premier temps, on présentera notre ouvrage dans le premier chapitre, puis une étude climatique sera détaillée en chapitre 2. le dimensionnement des éléments secondaires seront abordés respectivement aux chapitres 3 . Le quatrième chapitre portera l'étude sismique puis la vérification des éléments structuraux est faite au chapitre 5. Par la suite, le calcul des assemblages sera traité dans le chapitre 6. On finit notre travail par le calcul des fondations au chapitres 7.

Ce choix de thème est motivé par le fait que l'acier offre des avantages indéniables tels que : la légèreté qui favorise une rapidité dans le montage sur le chantier, la possibilité et l'avantage de franchir de longues portées, ainsi que la facilité de la modification. En contrepartie, il présente certains inconvénients tels que le coût, la corrosion et la faible résistance au feu.

CHAPITREI

Généralités sur la conception de l'ouvrage

I.1 Présentation du projet :

La présente étude consiste à dimensionner par calcul et vérification, la stabilité d'une halle industrielle en charpente métallique. L'ouvrage est implanté dans un terrain plat avec une surface de **1152 m²**, à la sortie de **EL-SENIA**, dans la wilaya de **ORAN**, Zone II moyenne sismicité selon le règlement parasismique algérien **RPA 99/version 2003**.[3]

Cette halle comporte deux versants destinés au stockage des produits de nettoyage (détergents). Elle a une ouverture dans chaque pignon, chaqu'une a une dimension de (4×4) m, et quatre ouvertures dans chaque long pan chaqu'une a une dimension de (2×1) m.

Figure I.1 : Vue 3D de l'ouvrage.

I.2 Les caractéristiques géométriques de l'ouvrage :

I.2.1 La géométrie de l'ouvrage :

- Largeur de la structure (pignon) : 24 m.
- Longueur de la structure (long pan) : 48m
- Surface occupée : 1152 m².
- Hauteur au poteau : 8 m.
- Hauteur au faîtage : 9,5 m

Figure I.2 : Données géométriques et vue en perspective de l'ouvrage.

I.3 Localisation et données concernant le site :

Notre structure est localisée au niveau de la DAÏRA DE EL-SENIA, Wilaya ORAN. Elle a les caractéristiques suivantes :

- ✓ Altitude : 90 m.
- ✓ Zone de neige par commune : Zone B.
- ✓ Zone du vent : Zone II
- ✓ Zone sismique : Zone II_a (région de moyenne sismicité)
- ✓ Contrainte admissible du sol est : $\sigma_{sol} = 1,86$ bars (Annexe G G.2)

I.4 Règlements utilisés :

Le dimensionnement a été effectué en respectant les règlements suivants :

- RNV99-V2013 « Règles définissant les effets de la neige et du vent »
- DTR-C2.2 « Document technique règlementaire charges permanentes et charges d'exploitations »
- RPA99-Version 2003 « Règles parasismiques algériennes RPA99 version 2003 »
- CCM97 « Règles de calcul des constructions métalliques »

- EUROCODE 3 « Calcul des structures en acier »
- **BAEL91** « Béton armé aux états limites »

I.5 Logiciels utilisés :

L'étude a été effectuée en utilisant le logiciel Robot Structural Analysis Professional 2019

I.6 Matériaux :

Pour la réalisation de notre ouvrage, les matériaux suivants ont été utilisés :

I.6.1 L'acier de construction métallique (profilé) :

Dans ce projet l'acier utilisé est de nuance Fe360 dont :

- \circ La limite élastique : $f_y = 235$ MPa
- La résistance à la traction : f_u = 360 MPa
- La masse volumique : $\rho = 7850 \text{ Kg/m}^3$
- Module d'élasticité longitudinale : E = 210000 MPa
- Module d'élasticité transversale : G = 81000 MPa

I.6.2 Couverture :

- Bardage : panneau sandwich LL35
- Toiture : panneau sandwich TL75

I.6.3 Béton :

C'est un matériau constitué par le mélange de ciment avec granulats (sable et graviers) et

de l'eau, il est très économique et qui résiste bien à la compression.

- \circ La résistance caractéristique à la compression a l'âge de 28 jours : $f_{c28} = 25$ MPa
- \circ La résistance caractéristique à la traction à l'âge de 28 jours : $f_{t28} = 0,06 \ f_{c28}$ +0,6= 2,1 MPa
- Module d'élasticité longitudinale : E= 30000 MPa
- La masse volumique : $\rho = (2200 \text{ Kg/m}^3 \text{ à } 2500 \text{ Kg/m}^3)$

I.7 Les assemblages :

Les moyens d'assemblages sont trois modes ; soudure, mécanique (boulons, rivets, clous, Crous...) et chimique. Actuellement, les moyens d'assemblage les plus utilisés dans la plupart des pays industrialisés sont les boulons et la soudure

I.7.1 Le soudage :

Le soudage est une opération qui consiste à joindre deux parties d'un même matériau avec un cordon de soudure constitué d'un métal d'apport, ce dernier sert de liant entre les deux pièces à assembler.

I.7.2 Le boulonnage :

Le boulonnage est un moyen d'assemblage mécanique démontable, qui sert à créer une liaison de continuité entre les éléments. Il est souvent le plus utilisé en construction métallique du fait de sa facilité de mise en œuvre et des possibilités de réglage qu'il permet sur site, pour notre cas, on utilise :

- Les boulons de haute résistance (HR) pour les assemblages rigides (ex : poteautraverse).
- Les boulons ordinaires pour les assemblages articulés (ex : contreventement).

CHAPITRE II

Evaluation des charges et surcharges

II.1 Introduction :

Ce chapitre fournit les principes généraux et procédures pour la détermination des différentes charges agissantes sur notre structure. Ces charges sont définies par la charge permanente (structure porteuse et éléments non porteurs), d'exploitation (équipements, foules de personne...), sans oublier les actions climatiques (neige, vent et température) et accidentelles (séisme, chocs...). Ces dernières ont une grande influence sur la stabilité de l'ouvrage. Pour cela, une étude approfondie doit être élaborée pour la détermination de ces différentes actions.

II.2 Charges Permanentes :

Les charges permanentes notées « G » sont des charges qui ne varient pas dans le temps. Il s'agit du poids propre de la structure elle-même, ainsi l'équipement de l'ouvrage tel que (la couverture, ...). Elles sont données dans les documents techniques réglementaires (DTR BC 2.2) ou sont fournis par le fournisseur.

Bardage panneau sandwich LL35 10,9 daN/m² (Annexe C-C.7) Toiture panneau sandwich TL75 14,2 daN/m² (Annexe C-C.8)

II.3 Charges d'exploitation de la toiture :

Les charges d'exploitation notées « Q », sont déterminées suivant le document technique réglementaire charges et surcharges d'exploitations (D.T.R-B.C-2.2). [2]

Pour la toiture sans accès autre que le nettoyage et l'entretien nécessaire, les charges d'entretien sont conventionnellement assimilées à deux charges concentrées de 1kN appliquées au 1/3 et aux 2/3 des portées.

Figure II.1 : Charge d'entretien sur une panne.

II.4 Charges climatiques :

Le but de cette partie est de déterminer les différentes sollicitations climatiques produites par les charges du vent et de la neige, agissant sur l'ensemble de l'ouvrage et sur ses différentes parties. Cette étude sera réalisée conformément au règlement neige et vent (RNV version 2013). [1]

Le règlement RNV99-2013[1] s'applique à l'ensemble des constructions en Algérie, situées à une altitude inférieure à 2000 mètres, cette structure se trouve à une altitude d'environ 90 m.

II.4.1 La charge de neige :

Le calcul des charges de neige se fait conformément à la réglementation « Règlement Neige et Vent » (RNV version 2013) [1]. La charge caractéristique de neige S par unité de surface en projection horizontale de toitures ou de toute autre surface soumise à l'accumulation de la neige s'obtient par la formule suivante :

$$S = \mu . S_k [kN/m^2]$$
 [1].

• S : Charge caractéristique de la neige par unité de surface

• S_k : en (kN/m²) est la charge de neige sur le sol, donnée au [1], en fonction de l'altitude et la zone de neige

 $\bullet\,\mu$: est un coefficient d'ajustement des charges, en fonction de la forme de la toiture, appelé coefficient de forme.

II.4.1.1 Charge de neige au sol (S_k) :

La structure se trouve à El-senia dans la wilaya de Oran classée en zone B dont l'altitude (H) est de 90 m. [1].

$$S_{k=\frac{0.04*H+15}{100}=\frac{0.04*90+15}{100}=18.6 \ daN/m^2}$$

II.4.1.2Coefficient d'ajustement (µ) :

Figure II.2 : L'inclinaison des versants.

Notre cas : $\alpha = \beta = \tan^{-1} (\frac{1.5}{12}) = 7.12^{\circ}$ Et d'après [1] on a :

 $0^{\circ} \le \alpha = \beta \le 30^{\circ} \longrightarrow \mu = 0.8$ (Annexe A - A.1)

II.4.1.3 Charge de neige (S) :

S = 0,8×18.6=14.88 daN/m^2 II.4.2 Charge du vent :

Un ouvrage en construction métallique doit résister à différentes actions horizontales et verticales notamment le vent, ce dernier a une grande influence sur la stabilité de la construction. Donc, une étude bien précisée doit être effectuée et élaborée pour la détermination des différentes actions dues au vent et ceci dans toutes les directions possibles. La réglementation neige & vent (RNV99-version 2013) [1] fournit les procédures et principes généraux pour la détermination des actions du vent sur l'ensemble de l'ouvrage.

Les actions du vent appliquées aux parois dépendent de :

- 1. La direction.
- 2. L'intensité.
- 3. La région.
- 4. Le site d'implantation de la structure et leur environnement.
- 5. La forme géométrique et les ouvertures de la structure.

A/ Données relatives au site :

Le site du projet se trouve à El-senia, la wilaya d'Oran dont les caractéristiques :

✓ Zone de vent II [1]

 $q_{téf} = 43,5 \text{ daN/m}^2$ (Annexe A - A.2)

✓ Nature du site plat (Ct = 1) [1]

[✓] Catégorie du terrain II : (Annexe A - A.3)

	Kτ	Zo	Z _{min} (m)	3
Catégorie II	0,190	0,05	2	0,52

Tableau II.1 : Les valeurs de la catégorie du terrain II.

B/ Détermination de la pression due au vent :

Selon le RNV99 version 2013, la pression due au vent est calculée par la formule :

 $q_{j}=C_{d}\times q_{dyn}\left(z\right)\times\left(C_{pe}\text{ - }C_{pi}\right) \ \left[daN/m^{2}\right]$

 \checkmark C_d: Coefficient dynamique.

- ✓ q_{dyn} : Pression dynamique du vent calculée à la hauteur z_j .
- ✓ C_{pe}: Coefficient de pression extérieure.
- ✓ C_{pi}: Coefficient de pression intérieure.

B.1. Coefficient dynamique (C_d) :

Le coefficient dynamique *Cd* dépend de la hauteur et du type de la structure.

La structure du bâtiment étant une structure métallique, dont la hauteur est inférieure à 15m. On prend : $C_d=1$

B.2. Pression dynamique (q_{dyn}) :

La pression dynamique q_{dyn} à la hauteur de référence z_e est donnée par :

 $q_{dyn}(z_e) = q_{ref} \times C_e(z_e)$ [daN/m²]

 $q_{réf}$: La pression dynamique de référence pour les constructions permanentes est donnée en fonction de la zone du vent.

 $q_{réf} = 43,5$ (Zone II)

Ce: Coefficient d'exposition au vent.

Coefficient d'exposition du vent (Ce) :

Le coefficient d'exposition du vent Ce(z) tient compte des effets de la rugosité du terrain, de la topographie du site et de la hauteur au-dessus du sol.

Ce(z) est donné par :

 $C_e(z) = C_t^2(z) \times C_r^2(z) \times [1+7I_v(z)]$

Ct: Coefficient de topographie.

Cr: Coefficient de rugosité.

Iv: Intensité de la turbulence.

z(m): Hauteur considérée.

a) Coefficient de topographie $C_t(z)$:

Le coefficient de topographie Ct(z) prend en compte l'accroissement de la vitesse du vent lorsque celui-ci sur des obstacles tels que les collines, les dénivellations isolées $C_t(z)=1$ Site plat.

b) Coefficient de rugosité $C_r(z)$:

Le coefficient de rugosité $C_r(z)$ traduit l'influence de la rugosité et de la hauteur sur la vitesse moyenne du vent. Il est défini par la loi logarithmique (logarithme népérien) :

$$\begin{cases} C_r = K_T \times Ln\left(\frac{z}{z_0}\right) \\ C_r = K_T \times Ln\left(\frac{z_{min}}{z_0}\right) \end{cases} \xrightarrow{\text{Pour}: z \le 200} \\ \text{Pour}: z < z_{min} \end{cases}$$

On a Z=9.5 m et
$$z_{min} = 2 \text{ m}$$
; Alors :
 $z_{min} = 2m < z = 9.5 \text{ m} < 200 \text{ m}$
 $C_r = K_T \times Ln\left(\frac{z}{z_0}\right)$

Pour la paroi verticale : z = 8 m :

$$C_r = 0.190 \times Ln\left(\frac{8}{0.05}\right) = 0.964$$

Pour la toiture : z = 9.5 m :

$$C_r = 0.190 \times Ln\left(\frac{9.5}{0.05}\right) = 0.996$$

c) Intensité de la turbulence :

Elle est donnée par la formule suivante :

$$\begin{cases} I_v(z) = \frac{1}{C_t(z) \times \ln\left(\frac{z}{z_0}\right)} & \text{Pour}: z > z_{\min} \\ I_v(z) = \frac{1}{C_t(z) \times \ln\left(\frac{z_{\min}}{z_0}\right)} & \text{Pour}: z \le z_{\min} \end{cases}$$

On a $z = 9.5 \text{ m} > z_{\min} = 2 \text{ m}$

Alors

Pour la paroi verticale : z = 8 m

$$I_{v}(z) = \frac{1}{1 \times \ln\left(\frac{8}{0,05}\right)} = 0,197$$

Pour la toiture : z = 9.5 m :

$$I_{v}(z) = \frac{1}{1 \times \ln\left(\frac{9.5}{0.05}\right)} = 0,190$$

$$Ce(z) = Ct^2(z) \times C_r^2(z) \times [1{+}7I_v(z)]$$

	Ct	Cr	I_v	$C_{e}(z)$
Parois verticals	1	0,964	0,197	2.210
Toiture	1	0,996	0,190	2.311

Tableau II.2. Valeurs de Ce(z) pour les parois verticales et toiture.

B.3. Les coefficients de pressions :

Figure II.3: Actions dues au vent.

• Directions du vent

V1 et V3 : Vent sur pignon.

V2 et V4 : Vent sur long pan.

a) Coefficient de pression extérieure (C_{pe}) :

Le coefficient de pression extérieure C_{pe} dépend de la forme géométrique de la base de la structure et de la dimension de la surface chargée.

Avec :

b: Dimension perpendiculaire à la direction du vent.

d: Dimension parallèle à la direction du vent.

On détermine le coefficient à partir des conditions suivantes :

✓ $C_{pe} = C_{pe,1} + (C_{pe,10} - C_{pe,1}) \times \log_{10} S \dots si : 1m^2 \le S \le 10m^2$

Avec :

S: désigne la surface chargée de la paroi considérée.

Pour notre cas : $S \ge 10 \text{ m}^2$ Cpe =Cpe10

1) Vent sur pignon sens (V1, V3) :

Pour un vent suivant la direction V1 et V3, les coefficients de pression du vent sont présentés dans le tableau II..

А	В	С	(Au vent) D	(Sous le vent) E
Cpe.10	C _{pe,10}	C _{pe,10}	C _{pe,10}	C _{pe,10}
-1,0	-0,8	-0,5	+0,8	-0,3

Tableau II.3. Valeurs de Cpe10 pour les zones de la paroi verticale directions (V1, V3).

✓ Parois verticales

 $\begin{cases} b = 24 \text{ m} \\ d = 48 \text{ m} \\ h = 8 \text{ m} \end{cases}$ $e = \min (b, 2h) = \min (24 \text{ m}; 2 \times 8 \text{ m}) \text{ (Annexe A - A.4)}$ e = 16 m d=48 m > e = 16 mPour notre cas: $S \ge 10 \text{ m}^2 \Rightarrow C_{pe} = C_{pe10}$

Figure II.4: Division de la paroi verticale selon le chargement du vent directions (V1,V3).

Figure II.5: Valeurs de C_{pe10} pour les zones de la paroi verticale directions (V1, V3).

```
✓ Toiture
```

$$\begin{cases} b = 24 m \\ d = 48 m \\ h = 9.5 m \end{cases}$$

e =min (b ; 2h)= min (24 m ; 2×9.5 m) (Annexe A - A.4)
e = 19 m

(Annexe A - A.6)

2) Vent sur long pan sens (V2, V4) :

Pour un vent suivant la direction V2 et V4, les coefficients de pression du vent sont présentés dans le tableau II.3.

✓ Parois verticales

$$\begin{cases} b = 48 m \\ d = 24 m \\ h = 8 m \end{cases}$$

e =min (b ; 2h) = min (48 m ; 2×8 m)
e = 16 m
d = 24 m > e = 16m

Figure II.7: Division de la paroi verticale selon le chargement du vent directions (V2, V4).

Pour notre cas : S $\geq 10~m^{\text{2}} \Rightarrow$ Cpe = C_{pe10}

А	В	С	(Au vent) D	(Sous le vent) E
$C_{pe.10}$	$C_{pe.10}$	$C_{pe.10}$	$C_{pe.10}$	$C_{pe.10}$
-1,0	-0,8	-0,5	+0,8	-0,3

Tableau II.4. Valeurs de C_{pe10} pour les zones de la paroi verticale directions (V2, V4).

(Annexe A - A.5)

Figure II.8: Valeurs de C_{pe10} pour les zones de la paroi verticale directions (V2, V4).

```
✓ Toiture :
```

b = 48 m d = 24 mh = 9.5 m

 $e = min (b; 2h) = min (48 m; 2 \times 9.5 m)$

e = 19 m

		1.9 m	10.1 m	-	12 m	
	4.75 m	F - 1.53 +0.04				
Vent	38.5m	G	H - 0.53	J - 0.05	I - 0.55	b=48 m
	4.75m	+0.04 F	+ 0.04	0.177	- 0.47	
	Ţ	+ 0.04				Ļ

b) Coefficient de pression intérieur (C_{pi}) :

Le coefficient de pression intérieur C_{pi} prend en considération l'influence des ouvertures sur La charge du vent appliqué sur la structure, il est fonction de l'indice de perméabilité μ_p et du rapport h/d.

L'indice de perméabilité μ_p est défini comme suite :

 $\mu_p = \frac{\sum \text{des surfaces des ouvertures sous le vent } CPe \leq 0}{\sum \text{des surfaces de toutes les ouvertures}}$

1/ Sens V1 et V3 :

$$\mu_p = \frac{8 \times (2 \times 1) + (4 \times 4)}{2 \times (4 \times 4) + 8 \times (2 \times 1)} = 0.66$$

 $\begin{cases} \frac{h}{d} = 0,16 \\ \mu p = 0,66 \end{cases}$ (Annexe A. A-8)

D'après le graphe (Figure 5.14. RNV 2013), on obtient : $C_{pi} = -0.04$ voir (ANNEXE A).

2/ Sens V2 et V4 :

$$\mu_p = \frac{4 \times (2 \times 1) + 2 \times (4 \times 4)}{2 \times (4 \times 4) + 8 \times (2 \times 1)} = 0.83$$

$$\begin{cases} \frac{h}{d} = 0.33\\ \mu_{p} = 0.83 \end{cases}$$

D'après le graphe (Figure 5.14 RNV 2013) on obtient : $C_{pi} = -0,25$ (Annexe A. A-8)

B.4. Valeurs de la pression due au vent (q_j) :

Après avoir défini tous les coefficients, c'est possible de calculer la pression due au vent

1/Vent sur le pignon sens (V1, V3) :

✓ Parois verticales :

Zones	C _d	C _e (z)	q _{dyn}	C _{pe}	C _{pi}	C _{pe} - C _{pi}	q réf	q _j [daN/m²]
А	1	2,210	96.135	-1,0	-0.04	-0.96	43,5	-92.28
В	1	2,210	96.135	-0,8	-0.04	-0.76	43,5	-73.06
С	1	2,210	96.135	-0,5	-0.04	-0.46	43,5	-44.22
D	1	2,210	96.135	+0,8	-0.04	+0,84	43,5	+80.75
E	1	2,210	96.135	-0,3	-0.04	-0.26	43,5	-24.99

Tableau II.5. Pressions pour les parois verticales directions du vent (V1, V3) $[daN/m^2]$.

Figure II.10: Pressions sur les parois verticales directions du vent (V1, V3) [daN/m²].

Zones	Cd	Q _{dyn}	Ce(z)	Cpe	C _{pi}	Cpe- Cpi	q réf	q _j [daN/m²]
F	1	100.52	2.311	-1,53	-0.04	-1,49	43,5	-149.77
G	1	100.52	2.311	-1,3	-0.04	-1,26	43,5	-126.65
Н	1	100.52	2.311	-0,67	-0.04	-0,63	43,5	-63.32
Ι	1	100.52	2.311	-0,58	-0.04	-0,54	43,5	-54.28

✓ Toiture :

Tableau II.6. Pressions pour la toiture directions du vent (V1, V3) [daN/m²].

Figure II.11: Pressions sur la toiture directions du vent (V1, V3) [daN/m²].

2/Vent sur le long pan sens (V2, V4) :

✓ Parois verticales :

Zone	\mathcal{C}_d	C _e	q_{dyn}	C_{pe}	C_{pi}	C _{pe} -C _{pi}	$q_{j}(\mathrm{daN/m^{2}})$
А	1	2.210	96.135	-1	-0,25	-0,75	- 72.10
В	1	2.210	96.135	-0,8	-0,25	-0,55	- 52.87
С	1	2.210	96.135	-0,5	-0,25	-0,25	- 24.03
D	1	2.210	96.135	+0,8	-0,25	+1,05	+ 100.94
Е	1	2.210	96.135	-0,3	-0,25	-0.05	- 4.80

Tableau II.7. Pressions pour les parois verticales directions du vent (V2, V4) [daN/n	n ²].
---	-------------------

Figure II.12: Pressions sur les parois verticales directions du vent (V2, V4) [daN/m²].

Zones	C_d	Q _{dyn}	C _e (z)	C _{pe}	C _{pi}	C _{pe} - C _{pi}	q _{réf}	q _j [daN/m²]
F	1	100.52	2.311	-1,53	-0,25	-1.28	43,5	-128.66
				+0,04		+0.29	, , , , , , , , , , , , , , , , , , ,	+29.15
G	1	100.52	2.311	-1.11	-0,25	-0,86	43,5	-86.44
				+0,04		+0,29		+29.15
Н	1	100.52	2.311	-0,53	-0,25	-0,28	43,5	-28.14
				+0,04		+0,29		+29.15
J	1	100.52	2.311	-0,05	-0,25	+0.2	13.5	+20.10
				-0.47		-0.22	45,5	-22.11
Ι	1	100.52	2.311	-0,55	-0,25	+0,30	13.5	+30.15
				-0.47		-0.22	43,3	-22.11

✓ Toiture :

Tableau II.8. Pressions pour la toiture directions du vent (V2, V4) [daN/m²].

Figure II.13: Pressions sur la toiture directions du vent (V2, V4) [daN/m²].
C. Détermination des forces de frottement du vent :

Les effets de frottement du vent sur la surface peuvent être négligés lorsque l'aire totale de toutes les surfaces parallèles au vent (ou faiblement inclinées par rapport à la direction du vent) est inférieure ou égale à 4 fois l'aire totale de toutes les surfaces extérieures perpendiculaires au vent et sous le vent.

Condition à vérifier :

 $2 (d \times h) \le 4 (2b \times h)$

Directions (V1, V3):
 2× (48 × 8) <4× (2 × 24 × 8)

 $768 \text{ m}^2 < 1536 \text{ m}^2$

Condition vérifiée.

➢ Directions (V2, V4) :

 $384\ m^2 < 3072\ m^2$

Condition vérifiée.

Donc il n'y a pas des forces de frottement sur les parois

III.3 Conclusion :

Dans ce chapitre, nous avons défini les principes généraux et procédures pour déterminer les charges agissantes sur notre structure (charges permanentes, surcharges d'exploitations et surcharges climatiques). Les résultats trouvés seront utilisés dans les chapitres prochains qui concernent le dimensionnement des éléments de la structure (pannes, potelets...).

CHAPITRE III

Dimensionnement

Des éléments secondaires

III.1. INTRODUCTION :

Ce chapitre consiste à dimensionner les éléments secondaires de la structure. Les éléments secondaires représentent l'ossature nécessaire au support de la couverture et du bardage :

- Les chéneaux d'eau.
- Les pannes.
- Les lisses de bardage.
- L'échantignole.
- Les potelets.

III.2. ÉTUDE DES ÉLÉMENTS SECONDAIRE :

III.2.1. Calcul des chéneaux :

Le chéneau est une conduite généralement en métal qui collecte les eaux pluviales à la base de la toiture ou entre deux versants pour permettre l'évacuation vers les tuyaux de descente.

III.2.1.1. Calcul de la section et du diamètre du chéneau :

$$\frac{s}{s} \ge \frac{63}{\sqrt{\frac{s}{d} \times P}}$$

Figure III. 2 : Moignon cylindrique.

Avec :

- s : Section transversale du chéneau en cm².
- S : Surface couverte du versant en m²
- d : Périmètre de la section mouillée du chéneau en cm.
- p : Pente du chéneau. P=2 mm /m.
- $S = 48 \text{ m} \times 12 \text{ m} = 576 \text{ m}^2$

d =20 cm (Annexe B. B-1)

 $s = 500 \text{ cm}^2$ (Annexe B. B-2)

Pour un chéneau moignon cylindrique et sans trop-plein.

III.2.2 Calcul des pannes :

Les pannes de couverture sont des poutrelles laminées généralement en « I, ou en U ». Elles sont destinées à supporter la couverture tout en assurant une bonne transmission des charges et surcharges qui s'appliquent sur cette dernière à la traverse ou bien la ferme. Elles sont soumises à la flexion déviée sous l'effet du poids propre de la couverture, aux actions climatiques et à la surcharge d'entretien. Elles sont disposées perpendiculairement aux traverses des portiques[CCM97]. [4].

Dans notre structure nous utilisons des IPE.

III.2.2.1 Espacement entre pannes :

L'espacement entre pannes est déterminé en fonction de la portée admissible de la couverture. L'espacement entre les pannes est de 1m

III.2.2.1.1 Charges à prendre en considération :

Charges permanentes :

Poids propre de la couverture en panneau sandwich $G = 14,2 \text{ daN/m}^2 \text{ voir (ANNEXE B.B-8)}.$

Charges d'entretien :

La charge d'entretien est égale aux poids d'un ouvrier et son matériel Q=1 KN/m²

Figure III. 3 : Diagramme des moments maximum.

$$q_{eq} = \frac{8 \times q}{3 \times l} = \frac{8 \times 100}{3 \times 6} = 44,44 \text{ daN/ml}$$

- > Action du vent : $W = -149,77 \text{ daN/m}^2$ (toiture V1, V3)
- > Action de la neige : $S = 17,04 \text{ daN/m}^2$

Figure III. 4 : Cas de l'effet de neige

Figure III. 5 : Cas de l'effet de vent

III.2.2.1.2 Combinaison des charges :

• $q_1=1,35 \text{ G} + 1,5 \text{ Q} = 1,35 \times (14,2 \times 1) + 1,5 \times (44,44) = 85,83 \text{ daN/ml}$ Plan (y-y) :

• $q_2 = [1,35 \text{ G} + 1,5 \text{ S}]\cos \alpha = 44.38 \text{ daN/ml}$

<u>Plan (z-z) :</u>

• $q_2 = [1,35 \text{ G} + 1,5 \text{ S}]\sin \alpha = [1,35 \times (14.2 \times 1) + 1,5 \times (17.04 \times 1 \times \sin 7.12)]$ $q_2 = 5.54 \text{ daN/ml}$

<u>Plan (y-y) :</u>

TIARETI W/CHABANE A

- $q_3 = G\cos \alpha = 1 \times 14.2\cos 7.12 = 14.09 \text{ daN/ml}$
- $q_4 = 1,35 \times G\cos \alpha = 1,35 \times (1 \times 14.2)\cos 7.12 = 19.02 \text{ daN/m}^2$

<u>Plan (z-z) :</u>

• $q_2 = Gsin \alpha - 1,5. W = 14.2 \times 1sin 7.12 - 1,5 \times (1 \times 149.77)$ $q_2 = -222.89 \text{ daN/ml}$

• $q_{max} = max (q_1, q_2, q_3, q_4) = -222.89 \text{ daN/ml}$

III.2.2.1.3 Vérification de la flèche de la toiture :

La flèche doit satisfaire la condition suivante : $f \leq f_{vmax}$

Avec :

$$F_{\text{Vmax}} = \frac{L}{200} = \frac{600}{200} = 3$$
cm.

Condition de la flèche :

• <u>Plan (y-y) :</u>

$$Fy = \frac{5 \times qy \times l^4}{384 \times E \times ly}$$
$$Fy = \frac{5 \times 5.54 \times 10^{-2} \times 600^4}{384 \times 21 \times 10^5 \times 541}$$
$$Fy = 0.822 \text{ cm}$$

• <u>Plan (z-z) :</u>

$$Fz = \frac{5 \times qz \times (\frac{IZ}{2})^4}{384 \times E \times Iz}$$
$$Fz = \frac{5 \times 222.89 \times 10^{-2} \times (\frac{600}{2})^4}{384 \times 21 \times 10^5 \times 44.9}$$
$$Fz = 1.49 \text{ cm}$$

La flèche résultante :

$$F_{max} = \sqrt{Fzmax^2} + \sqrt{Fymax^2}$$

 $F_{max} = \sqrt{2.49^2} + \sqrt{0.822^2}$
 $F_{max} = 2.31 \text{ cm} < F_{umax} = 3,38 \text{ cm}$

La flèche est vérifiée suivant l'axe (y-y) et (z-z), donc le profilé en IPE140 satisfait la condition de la flèche.

III.2.2.2 Prédimensionnement des pannes :

Calcul des moments sollicitant à l'ELU

<u>Plan (y-y) :</u>

Figure III. 6 : Répartition de la charge suivant l'axe y-y.

$$M_{y, sd} = \frac{qy \times l^2}{8} = \frac{5.54 \times 6^2}{8}$$

 $M_{y, sd} = 24.43 \text{ daN.m}$

On suppose que le profilé est de classe 1 ou 2 :

$$W_{ply} \ge \frac{Mysd}{Fy} \times \gamma_{mo}$$
$$W_{ply} \ge \frac{0.24 \times 10^6}{235} \times 1.5$$

 $W_{ply} \equiv 15.31 \ cm^3$

Plan (z-z):

Figure III. 7 : Répartition de la charge suivant l'axe z-z

$$M_{z, sd} = \frac{qz \times l^2}{8} = \frac{222.89 \times 3^2}{8}$$

TIARETI W/CHABANE A

 $M_{z, sd} = 250.75 \text{ daN.m}$

On suppose que le profilé est de classe 1 ou 2 :

$$W_{\text{plz} \ge} \frac{Mzsd}{Fy} \times \gamma_{\text{mo}}$$
$$W_{\text{plz}} \ge \frac{2.50 \times 10^6}{235} \times 1.5$$

 $W_{plz} = 15.95 \ cm^3$

Nous optons pour un IPE140

Profilé	Poids	Section]	Dimensio	ons		C	aractérist	tiques	
	Р	А	h	В	t _f	$t_{\rm w}$	d	I_y	Iz	W _{pl,y}	W _{pl,z}
	Kg/m	cm²	mm	Mm	Mm	mm	Mm	cm^4	cm^4	cm ³	cm ³
IPE140	12,9	16,4	140	73	6,9	4,7	112,2	541	44,92	88,3	19,3

III.2.2.2.1 Choix du profilé :

Tableau III. 1 : Caractéristiques du profilé IPE140

III.2.2.3Dimensionnement des pannes :

➢ G : Charge permanente

Poids de la couverture $g_p = 14.2 \text{ daN/m}^2$ (TL75) (ANNEXE B-7).

Poids de la panne (estimé IPE140) : $g_p = 12,9 \text{ daN/m}^2$

Q : Charge d'entretien

Q=100 daN 2 charges ponctuelles de 100 daN au 1/3 et 2/3 de la portée de la panne (sur deux appuis simples).

Action climatique

Neige (s) =17,04 daN/m² Vent (w) = -149.77 daN/m²

III.2.2.3.1 Détermination des sollicitations

La pente du versant : $\alpha = 7.12^{\circ}$

Espacement entre pannes : e = 1 m

III.2.2.3.2 Combinaison des charges avec poids propre inclus :

$$\begin{array}{l} \underline{Plan} \ (y-y) \\ & \bullet q_1 = (1,35G+1,5Q) \textbf{cos} \ \alpha \\ & \bullet q_1 = [(1,35 \times 1 \times 14.2) + (1,35 \times 12.9) + 1,5 \times 44.44] \textbf{cos} \ \textbf{7}. \ \textbf{12}^\circ \\ & \bullet q_1 = 102.44 \ \textbf{daN/ml} \\ & \bullet q_2 = (1,35G+1,5S) \textbf{cos} \ \alpha \\ & \bullet q_2 = [1,35 \times (1 \times 14.2 + 12,9) + (1,5 \times 1 \times 17,04)] \textbf{cos} \ \textbf{7}. \ \textbf{12}^\circ = 61.94 \ \textbf{daN/ml} \\ & \bullet q_3 = G \ \textbf{cos} \ \alpha \\ & \bullet q_3 = (1 \times 14.2 + 12,9) \ \textbf{cos} \ \textbf{7}.12^\circ = 26.89 \ \textbf{daN/ml} \\ & \bullet q_4 = 1,35G \ \textbf{cos} \ \alpha \\ & \bullet q_4 = [1,35 \times (1 \times 14.2 + 12,9)] \ \textbf{cos} \ \textbf{7}.12^\circ = 36.30 \ \textbf{daN/ml} \\ \hline \underline{Plan} \ (\textbf{z}-\textbf{z}): \\ & \bullet q_1 = (1,35G+1,5Q) \ \textbf{sin} \ \alpha \end{array}$$

- $q_1 = [(1,35 \times 1 \times 14.2) + (1,35 \times 12,9) + 1,5 \times 44.44] \sin 7.12^\circ = 12.79$ daN/ml
- $q_2 = (1,35G+1,5S) \sin \alpha$
- $q_2 = [1,35 \times (1 \times 14.2 + 12.9) + (1,5 \times 1 \times 17.04)] \sin 7.12^\circ = 39.75 \text{ daN/ml}$

•
$$q_3 = Gsin \alpha - 1,5W$$

• q₃₌ [(1 × 14.2 + 12,9)sin 7.12° - (1,5 × 1 × 149.77)] = -208.85daN/ml

III.2.2.3.3 Calcul des moments sollicitant à l'ELU :

$$M_{y, sd} = \frac{qy \times l^2}{8} = \frac{102.44 \times 6^2}{8}$$

$$M_{y, sd} = 460.98 \ daN.m$$

$$M_{z, sd} = \frac{qz \times (l/2)^2}{8} = \frac{208.85 \times 3^2}{8}$$

 $M_{z, sd} = 234.95 \text{ daN.m}$

III.2.2.3.4 Classe du profilé :

Classe de la semelle comprimée :

$$\frac{c}{tf} = \frac{b/2}{tf} = \frac{73/2}{6,9} = 5,9 < 10\varepsilon$$

condition vérifiée.

Classe de l'âme fléchie :

$$\frac{d}{tw} = \frac{112,2}{4,7} = 23,87 < 72\varepsilon \qquad \text{condition vérifiée.}$$

Donc le profilé est de classe 1.

Avec:
$$\mathcal{E} = \sqrt{\frac{235}{235}}$$
$$\mathcal{E} = 1$$

III.2.2.4 Vérification de la panne :

III.2.2.4.1 Vérification au cisaillement :

$$V_{y, sd} \le V_{ply, rd} = \frac{Avy \times \frac{fy}{\sqrt{3}}}{\pi mo}$$

Avec :

- $A = 16,4 \times 10^2 \text{ mm}^2$
- $A_{vz} = 9,66 \times 10^2 \text{ mm}^2$

•
$$A_{vy} = 2.bt_f = 2 \times 73 \times 6.9 = 1007.4 \text{ mm}^2$$

• $V_{ply, rd} = \frac{1007.4 \times \frac{2350}{\sqrt{3}}}{1.1} = 1242557.507 \text{ daN}$
• $V_{plz, rd} = \frac{9.66 \times \frac{2350}{\sqrt{3}}}{1.1} = 11914.93 \text{ daN}$
 $qz, sd \times l = 208.85 \times 12$

•
$$V_{z, sd} = \frac{qz, su \times t}{2} = \frac{208.85 \times 12}{2} = 1253,1 \text{ daN}$$

•
$$V_{y, sd} = \frac{qy, sd \times l}{2} = \frac{102.44 \times 12}{2} = 614.64 \text{ daN}$$

$$V_{y, sd} \le V_{ply, rd}$$
 condition vérifiée.

 $V_{z,\;sd} \leq 0,5.\; Vplz_{,\;sd} \quad \text{condition vérifié}$

III.2.2.4.2 Vérification des contraintes :

Les pannes travaillent à la flexion déviée, il faut donc vérifier :

$$\left(\frac{Mysd}{Myrd}\right)^{\alpha} + \left(\frac{Mzsd}{Mzrd}\right)^{\beta} \le 1$$
 (1) (5.35 page 68 CCM97)

Pour les profilés laminés en I : $\alpha = 2$; $\beta = 1$ Avec :

$$M_{y,pl,rd} = W_{pl,y} \times \frac{fy}{r} = 88,3 \times \frac{2350}{1,1} = 188726,36 da N.cm$$

$$M_{z, pl Rd} = W_{pl, z} \times \frac{fy}{\gamma} = 19.3 \times \frac{2350}{1,1} = 41125 \text{ daN.Cm}$$

AN :

(1)
$$\rightarrow (\frac{460.98 \times 10^2}{188726,36})^2 + (\frac{234.95 \times 10^2}{41125})^1 = 0,63 < 1$$
 condition vérifiée.

Donc, les pannes en IPE140 vérifient les contraintes de la flexion déviée

III.2.2.4.3 Vérification de la flèche :

Les combinaisons des charges à (ELS) avec poids propre inclus :

On prend la combinaison la plus défavorable :

<u>Plan (y-y) :</u>

- $q_3 = (G+Q)\cos \alpha$
- $q_3 = [(14.2 + 12.9) + 44.44] \cos 7.12^\circ$
- $q_3 = 70.98 \text{ daN/ml}$

<u>Plan (z-z) :</u>

- $q_3 = Gsin \alpha 1,5W$
- $q_3 = (1 \times 14.2 + 12.9) \sin 7.12^{\circ} 1.5 \times 149.77$
- $q_3 = -208.85 \text{ daN/ml}$

$$f_{ud} = \frac{l}{200} = \frac{600}{200} = 3 \text{ cm}$$

 $f_y = \frac{5 \times 70.98 \times 10^{-2} \times 600^4}{384 \times 21 \times 10^5 \times 541} = 1,05 < fud \quad \text{condition vérifiée.}$

$$fz = \frac{5 \times 208.85 \times 10^{-2} \times 600/2^4}{384 \times 21 \times 10^5 \times 44.9} = 2.33 < fud$$
 condition vérifiée.

III.2.2.4.4 Vérification de la panne vis-à-vis du déversement :

Il n'ya pas lieu de vérifier la panne vis-à-vis du déversement puisque la panne est prémunie contre le déversement par utilisation des liernes.

III.2.2.5 Conclusion :

La section en **IPE140** assure une bonne résistance vis-à-vis du différent cas d'instabilités. Donc il est convenable d'assurer le rôle des pannes.

III.2.3 Calcul des liernes :

Les liernes sont des tirants qui fonctionnent en traction. Ils sont généralement formés de barres rondes (voir des câbles) ou de petites cornières. Elles ont pour rôle principal d'éviter la déformation latérale des pannes ; c'est-à-dire, le déversement elles réduisent indirectement la flèche « fz ».

III.2.3.1 Effort de traction dans le tronçon de lierne L₁ provenant de la panne sablière :

R = 1 ,25. qy $\times \frac{l}{2}$ = 1.25

$$T_1 = \frac{R}{2} = \frac{47.96}{2} = 23.98 \text{ daN}$$

Effort de traction dans les autres tronçons :

- Effort dans le tronçon L2 : $T_2 = R + T_1 = 47.96 + 23.98 = 71.94$
- Effort dans le tronçon L3 : $T3 = R+T_2 = 47.96 + 71.94 = 119.9$
- Effort dans le tronçon L4 : $T4 = R+T_3 = 47.96 + 119.94 = 167.86$
- Effort dans le tronçon L5 : $T_5 = R + T_4 = 47.96 + 167.86 = 215.52$
- Effort dans le tronçon L6 : $T_6 = R + T_5 = 47.96 + 215.52 = 299.48$
- Effort dans le tronçon L7 : $T_7 = R + T_6 = 47.96 + 299.48 = 347.44$
- Effort dans le tronçon L8 : $T_8 = R + T_7 = 47.96 + 347.44 = 395.23$

- Effort dans le tronçon L9 : $T_9 = R + T_8 = 47.96 + 395.23 = 443.19$
- Effort dans le tronçon L10 : $T_{10} = R + T_9 = 47.96 + 443.19 = 491.15$
- Effort dans le tronçon L11 : $T_{11} = R + T_{10} = 47.96 + 491.15 = 539.11$

Effort dans les diagonales L₁₁:

 $2T_{12}\sin\theta = T_{11}$

 $\theta = \tan^{-1} \frac{1}{3} = 18.43 \circ$ $T_{12} = \frac{T11}{2\sin\theta} = \frac{539.11}{2\sin(18.43)} = 852.62 \text{ daN}$

III.2.3.2 Dimensionnement des liernes :

Pour le dimensionnement des liernes tendus, les règles du CCM97 imposent la vérification suivante :

$$N_{\rm sd} < N_{\rm plrd} = \frac{A \times fy}{\gamma m0}$$

Avec :

N_{sd} = Effort normal sollicitant N_{sd} = T_{max} = 852.62 daN N_{pl,Rd} = Effort normal résistant. Le tronçon le plus sollicité est : L₁₂ N_{sd} = T₁₂ = 852.62 daN N_{sd} = T₁₂ < $\frac{A \times fy}{\gamma m 0}$ A > $\frac{T12 \times \gamma m 0}{fy} = \frac{852.62 \times 1.1}{2350} = 0,39 \text{ cm}^2$ A = $\frac{\pi \times \emptyset^2}{4}$ $\emptyset = \sqrt{\frac{4 \times A}{\pi}} = \frac{4 \times 0.39}{\pi}$ $\Rightarrow \emptyset = 0,70 \text{ cm}$

Soit une barre tendue de diamètre $\emptyset = 8 mm$

III.2.3.3 Conclusion :

Pour plus de sécurité on opte pour une barre ronde de diamètre $\emptyset = 10mm$

III.2.4 Calcul de l'échantignole :

L'échantignole est un dispositif de fixation qui permet d'attacher les pannes aux traverses, elle est dimensionnée en flexion sous l'effet de l'effort de soulèvement du vent et de l'effort suivant le versant.

Figure III.9 : Vue de l'échantignole

III.2.4.1 Dimensionnement de l'échantignole :

L'excentricité « t » :

« t » est limité par la condition suivante :

$$2 \times (\frac{bf}{2}) < t < 3 \times (\frac{bf}{2})$$

Pour un IPE140 on a :

 $\begin{cases} b=73 \text{ mm} \\ h=140 \text{ mm} \\ 73 \leq t \leq 140 \end{cases}$

On prend t = 80mm = 8cm

> Calcul du moment du renversement « Mr » :

(Mr) sera déterminé par rapport à la section d'encastrement

$$\begin{cases} M_r = R_y \times t + R_z + \frac{h}{2} \\ R_y = q_{ysd} \times \frac{l}{2} \\ R_z = q_{zsd} \times \frac{l}{2} \\ Q_{ysd} = 1,35Gsin \alpha = 4.53 \text{ daN/ml} \\ Q_{zsd} = Gcos \alpha - 1,5W = -197.76 \text{ daN/ml} \\ R_y = 13.59 \text{ daN} \\ R_z = -593.28 \text{ daN} \end{cases}$$

Echantignole de rive :

$$R_{ya} = 13.59 \text{ daN}$$

 $R_{ya} = -593.28 \text{ daN}$

$$\Rightarrow$$
 M_r = R_{ya}×t + R_{zr}× $\frac{h}{2}$ = 13.59×8 + 593.28×7

 $M_r = 4261.68 \text{ daN.cm}$

Echantignole intermédiaire :

$$R_y = 2R_{yr} = 2(13.59) = 27.18 \text{ daN}$$

$$R_z = 2R_{zr} = 2(-593.28) = -1186.56 \text{ daN}$$

$$\Rightarrow \qquad M_r = 27.18 \times 8 + 1186.56 \times 7$$

 $M_r = 8523.36 \text{ daN.cm}$

Calcul de l'épaisseur de l'échantignole :

Généralement les échantignoles sont des tôles pliés à froid, de la classe minimale.

⇔ (classe 3)

$$\begin{split} \mathbf{M}_{sd} &\leq \mathbf{M}_{rd} \\ \mathbf{M}_{sd} &= \mathbf{M}_{r} \leq \frac{wel \times fy}{\gamma m 0} \\ \mathbf{W}_{el} &> \frac{Mr \times \gamma m 0}{fy} = \frac{4261.68 \times 1.1}{2350} \\ \mathbf{W}_{el} &\geq 1,99 \text{ cm}^{3} \end{split}$$

Pour les sections rectangulaires :

→ W_{el} =
$$\frac{b \times e^2}{6}$$

 $e \ge \sqrt{\frac{6 \times e^2}{b}} = \sqrt{\frac{6 \times 1,99}{14}} = 0,92 \text{ cm}$

Avec :

. .

b = 14cm

Donc on prend un échantignole d'épaisseur e=10 mm.

III.2.5 Calcul des lisses de bardage :

Les lisses de bardage sont des éléments secondaires de profilé laminé qui sont constituées de poutrelles (IPE, UAP, UPN) ou de profils minces pliés (C, Z). Les lisses de bardage sont généralement des U voire des profilés en tôle mince à froid. Disposées horizontalement, elles portent sur les poteaux de portiques ou éventuellement sur des potelets intermédiaires. Les lisses de bardage permettent de transférer les charges de vent pression où dépressions subies par le bardage aux poteaux (ou potelets).

L'entre axe des lisses est déterminé par la portée admissible des bacs de bardage.

• Espacement des lisses :

Espacement des lisses : e = 1m.

Espacement des lisses
$$\begin{cases} \text{Long-pan} \rightarrow 1 \text{ m} \\ \\ \text{Pignon} \rightarrow 1 \text{ m} \end{cases}$$

Nombre de lisse

 $\begin{cases} \text{Long-pan} \rightarrow n = 7\\ \text{Pignon} \rightarrow n = 8 \end{cases}$

III.2.5.1 Dimensionnement des lisses :

III.2.5.1.1 Evaluation des charges et surcharges :

Charge permanentes « G » :

P₀: poids propre du bardage (panneau sandwich)

Poids du bardage : LL35 \rightarrow g_e = 10,9 daN/m² (ANNEXE B-8)

Poids de la lisse (estimée) \rightarrow g_p = 18.8 Kg/m (UPN160)

D	Poids Section Dimensions								Caractéristiques				
Prome	Р	А	Н	b	t _f	$t_{\rm w}$	d	Iy	Iz	W _{el-y}	W _{el-z}		
	Kg/m	cm ²	Mm	mm	mm	mm	mm	cm^4	cm^4	cm ³	cm ³		
UPN 160	18.8	24	160	65	10.5	7.5	115	925	85.3	116	18.3		

Tableau III. 2: Caractéristiques du profilé UPN 160

> Surcharges climatiques (dans le plan de l'âme)

Pression du vent \rightarrow W = 100.94 daN/m (parois vertical V₁, V3)

III.2.5.2 Vérification de lisse de bardage :

III.2.5.2.1 Verification à l'effort tranchant :

On doit vérifier la condition suivante :

$$V_{y,sd} < V_{plz,rd}$$

$$V_{z,sd} < 0.5 V_{plz,rd}$$

• Suivant l'axe (y-y) : Q_y = 40.09 daN $V_{y, sd} = \frac{qy \times l}{2} = \frac{40.09 \times 6}{2} = 120.27 \text{ daN}$ A = 24 cm² A_{vy} = 2bt_f= 13.65 cm² A_{vz} = 12.6cm² ⇒ V_{ply, rd} = 0,58 × $\frac{Avy \times fy}{\gamma mo} = 0,58 \times \frac{13.65 \times 235}{1,1} = 2916.13 \text{ daN}$ V_{ply, rd} = 2916.13 daN > V_{y, sd} = 120.27 daN. condition vérifiée. • Suivant l'axe (z-z): Q_z = 151.41 daN A_{vz}= 12.6 cm² V_{z, sd} = $\frac{qz \times l}{2} = \frac{151.41 \times 6}{2} = 454.23 \text{ daN}$ ⇒ V_{plz, rd} = 0,58 × $\frac{Avz \times fy}{\gamma mo} = 0,58 \times \frac{12.6 \times 235}{1,1} = 1561.25 \text{ daN}$ 0,5 × V_{plz, rd} = 780.62 daN > V_{z, sd} = 454.23 daN condition vérifiée.

III.2.5.2.2 Vérification à la flexion déviée :

• Flexion suivant l'axe (y-y)

$$- Q_y = 1,35(g_e \times e + g_p)$$

 $Q_y = 1,35(10,9 \times 1 + 18.8)$

 $Q_y = 40.09 \text{ daN/ml}$

-
$$M_{z,sd} = q_y \times \frac{l^2}{8} = 40.09 \times \frac{6^2}{8}$$

 $M_{z,sd} = 180.40 \ daN.m$

• Flexion suivant l'axe (z-z)

 $Q_z = 1,5 \times (w \times e) = 1,5 \times (100.94 \times 1) = 151,41 daN/ml$

$$M_{y,\,sd} = q_z \times \frac{l^2}{8} = 151,\!41 \times \frac{6^2}{8}$$

 $M_{y, sd} = 681.34 \text{ daN.m}$

La lisse travaille à la flexion déviée (dans les deux plans) et la formule de vérification est donnée comme suit :

$$\left(\frac{My,sd}{Wy,el,rd}\right)^{\alpha} + \left(\frac{Mz,sd}{Wz,el,Rd}\right)^{\beta} \leq \frac{fy}{\gamma m1}$$

Pour les profilés en U : $\alpha = \beta = 1$

$$\left(\frac{681.34 \times 10^2}{138}\right) + \left(\frac{180.40 \times 10^2}{35.2}\right) \le \frac{2350}{1,1}$$

1006.22 daN/m² < 2136,36 daN/cm²

condition vérifiée.

III.2.5.2.3 Vérification de la flèche UPN160 avec le poids propre inclus à l'ELS :

• **Plan** (**z**-**z**) :

$$fz = \frac{5 \times qz \times l^4}{384 \times E \times Iy}$$

$$q_z = g_i + (g_h \times 1) = 18.8 + (10.9 \times 1)$$

$$q_z = 29.7 \text{ daN/ml}$$

$$Fz = \frac{5 \times 29.7 \times 600^4}{384 \times 21 \times 10^5 \times 925}$$

$$Fz = 2.58 \text{ cm}$$

$$\frac{l}{200} = \frac{600}{200} = 3 \text{ cm}$$

 $F_z = 2.79 \text{ cm} < 3 \text{cm}$ condition vérifiée.

• **Plan (y-y) :**

$$Fy = \frac{5 \times qy \times l^4}{384 \times E \times Iz}$$

$$q_y = W \times e = 100.94 \ 1$$

$$q_y = 100.94 \ daN/ml$$

$$Fy = \frac{5 \times 100.94 \times 10^{-2} \times 600^4}{384 \times 21 \times 10^5 \times 85.3}$$

 $F_{y}{=}~0.95 cm < 3~cm ~~condition~v\acute{e}rifi\acute{e}.$

III.2.5.3 Conclusion :

Le profilé UPN160 convient pour la lisse de bardage.

III.2.6 Les potelets :

Les potelets sont des montants souvent en profilés laminés I ou H destinés à rigidifier le bardage sur pignon ou long-pon, ayant pour but de transmettre les différents efforts horizontaux dus au vent.

Les potelets travaillent à la flexion sous l'action du vent découlant du bardage et des lisses, et également à la compression sous l'effet de leur poids propre, de celui du bardage et des lisses. Ils sont considérés articulés en leurs extrémités.

III.2.6.1 Pré dimensionnement des potelets :

Le pré dimensionnement des potelets se fait par la condition de flèche :

$$F_{\max} = \frac{l}{200} > F = \frac{5 \times qz \times h^4}{384 \times E \times Iy}$$

Avec:

 $q_z = w \times e$

-w: pression du vent (la charge du vent la plus défavorable lorsque le vent frappe les parois verticales). (w = 80.75daN/m^2)

-e: la largeur de la surface solliciter le potelet le plus élancé (e = 6m)

 $q_z = w \times e \rightarrow 80.75 \times 6 = 484.5 \text{ daN/ml}$

-h: la hauteur maximal de potelet le plus sollicité (h= 9.5m).

$$I_{y} = \frac{200 \times 5 \times qz \times h^{4}}{384 \times E \times l} = \frac{200 \times 5 \times 484.5 \times 10^{-2} \times 950^{3}}{384 \times 21 \times 10^{5}}$$
$$I_{y} > 5151.26 \ cm^{4}$$

On choisit la section d u profilé dans les tableaux ayant au moins la valeur d'Iy supérieur ou égale à la valeur trouvée.

Ce qui correspond à un profilé IPE270.

D	Poids	Section		Din	nension	S	Caractéristiques				
Prome	Р	А	Н	b	$t_{\rm f}$	tw	d	Iy	Iz	W _{el-y}	W _{el-z}
	Kg/m	cm ²	mm	mm	mm	mm	mm	cm^4	cm^4	cm ³	cm ³
IPE270	36.1	45.9	270	135	10.2	6.6	219.6	5790	420	429	62.2

Tableau III. 3 : Caractéristiques du profilé IPE270

III.2.6.2 Détermination des sollicitations :

Le potelet travaille à la flexion sous l'action de l'effort du vent provenant du bardage et des lisses, et à la compression sous l'effet de son poids propre, du poids du bardage et des lisses qui lui est associé, et de ce fait fonctionne à la flexion composée.

III.2.6.2.1 Evaluation des charges et surcharges

• Charge permanente (G) :

G = poids propre du potelet + poids propres des lisses + poids propre du bardage

Poids propre du bardage \rightarrow G = 10,9 daN/m²

Poids propre des lisses (UPN160) \rightarrow G = 18.8 daN/<ml

Nombre de lisse supporté par les potelets \Rightarrow n = 8 (nombre maximum sur la ferme)

 $\Rightarrow G = (18.8 \times 9.5 \times 6) + (10,9 \times 6 \times 9.5) + (36.1 \times 9.5)$ G = 2035.85 daN

• Surcharge climatique du vent (suivant le plan d'âme)

 $q_z = w \times e \twoheadrightarrow 80.75 \times 6$

 $q_z = 484.5 \text{ daN/ml}$

III.2.6.2.2 Combinaison des charges :

A l'ELU :

$$-N_{sd} = 1,35G = 1,35 \times 2035.85 = 2748.39$$

- $q_z = 1,5w = 1,5 \times 484.5 = 726.75 \text{ daN/ml}$

III.2.6.3 Vérification de la stabilité de potelet :

III.2.6.3.1Vérification de la résistance à la flexion composée :

$$M_{sd} \le M_{Ny,rd} = M_{pl,y} \left[\frac{1-n}{1-0.5a} \right]$$

Où :

$$n = \frac{Nsd}{Npl,Rd} = \frac{2748.39}{98059.09} = 0,028$$

Avec :

$$\begin{cases} N_{sd} = 2748.29 \text{ daN} \\ N_{pl,Rd} = \frac{A \times fy}{\gamma mo} = \frac{45.9 \times 2350}{1,1} = 98059.09 \text{ daN} \end{cases}$$

Et :
$$a = \frac{A-2btf}{A} = \frac{4590-2 \times 135 \times 10.2}{4590} = 0,4 < 0,5$$

 $M_{pl,y} = \frac{Wpl, y \times fy}{\gamma mo} = \frac{484 \times 2350}{1,1} = 1034000 \text{ daN.cm} = 10340 \text{ daN.m}$
 $M_{sd} = \frac{qz \times l^2}{8} = \frac{726.65 \times 9.5^2}{8} = 8197.52 \text{ daN.m}$
 $M_{Ny,rd} = 10340 \times \left[\frac{1-0,028}{1-0,5 \times 0,4}\right] = 12563.10 \text{ daN}$

Donc :

$$M_{sd} = 8197.52 \ \text{daN.m} \leq M_{Ny,rd} = 12563.10 \ \text{daN.m} \quad \text{condition vérifiée.}$$

III.2.6.3.2Vérification de la résistance à la flexion composée (éléments comprimés et fléchis) :

a- La longueur de flambement

• Autour de l'axe z-z (dans le plan de l'âme) : encastrer- articulé

$$L_{f.v} = 0.7 \times L = 0.7 \times 9.5 = 6.65 \text{ m}$$

• Autour de l'axe y-y (perpendiculaire à l'âme) : articulé-articule

$$L_{f,z} = L = 1$$

b- Calcul des élancements

$$\begin{cases} \lambda_y = \frac{L_y}{i_y} = \frac{665}{11.2} = 59.37\\ \lambda_z = \frac{L_z}{i_z} = \frac{100}{3.02} = 31.25 \end{cases}$$

c- Calcul de l'élancement critique

La nuance d'acier S235 ($f_y = 235MPa$).

$$\lambda_1 = \pi \sqrt{\frac{E}{235}} = 3,14 \times \sqrt{\frac{21 \times 10^4}{235}} = 93,9$$

d-Calcul des élancements réduits

$$\begin{cases} \overline{\lambda_y} = \frac{\lambda_y}{\lambda_1} = \frac{59.37}{93.9} = 0.63\\ \overline{\lambda_z} = \frac{\lambda_z}{\lambda_1} = \frac{31.25}{93.9} = 0.33 \end{cases}$$

e- Calcul du coefficient de réduction χ_{min}

$$\begin{cases} \emptyset_{y} = 0.5 \times [1 + \alpha_{y} \times (\overline{\lambda_{y}} - 0.2) + \overline{\lambda_{y}^{2}}] \\ \emptyset_{z} = 0.5 \times [1 + \alpha_{z} \times (\overline{\lambda_{z}} - 0.2) + \overline{\lambda_{z}^{2}}] \end{cases}$$

Pour IPE270:

$$\frac{h}{b} = \frac{270}{135} = 2 > 1,2$$

t_f = 10.2 mm < 40 mm

Axe de flambement	Courbe de flambement	Facteur d'imperfection α
у-у	А	0,21
Z-Z	В	0,34

Tableau III. 1. Facteur d'imperfection α pour IPE400.

$$\phi_{y} = 0.5 \times [1 + 0.21 \times (0.63 - 0.2) + 0.63^{2}] = 0.74$$

$$\phi_{z} = 0.5 \times [1 + 0.34 \times (0.33 - 0.2) + 0.33^{2}] = 0.57$$

$$\begin{cases} \chi_{y} = \frac{1}{\phi_{y} + \sqrt{\phi_{y}^{2} - \overline{\lambda_{y}}^{2}}} = \frac{1}{0.74 + \sqrt{0.74^{2} - 0.63^{2}}} = 0.88$$

$$\chi_{z} = \frac{1}{\phi_{z} + \sqrt{\phi_{z}^{2} - \overline{\lambda_{z}}^{2}}} = \frac{1}{0.57 + \sqrt{0.57^{2} - 0.33^{2}}} = 1$$

h- Calcul $\overline{\lambda_{LT}}$

$$\overline{\lambda_{lt}} = \sqrt{\frac{\beta_w \times W_{pl.y} \times f_y}{M_{cr}}}$$

 M_{cr} : Moment critique élastique de déversement donné par la formule suivante :

$$M_{cr} = C_1 \cdot \frac{\pi^2 \cdot E \cdot I_z}{L^2} \sqrt{\frac{I_w}{I_z} + \frac{L^2 \cdot G \cdot I_t}{\pi^2 \cdot E \cdot I_z}}$$

Avec :

$$K = 0.5 \text{ donc } C = 2.092 \quad (\text{Annexe } D - D1)$$

$$G = \frac{E}{2(1-\vartheta)} \implies \begin{cases} E = 21.10^6 N/cm^2 \\ \vartheta = 0.3 \end{cases} \implies G = 8.08.10^6 N/cm^2$$

$$I_t : \text{Moment d'inertie de torsion } (I_t = 15.9 \ cm^4)$$

$$I_w: \text{Moment d'inertie de gauchissement } (I_w = 70.6 \times 10^3 \ cm^6)$$

> I_z : Moment d'inertie de flexion suivant l'axe faible inertie ($I_z = 420 \ cm^4$)

$$M_{cr} = 2.092 \times \frac{3,14^2 \times 21 \times 10^6 \times 420}{950^2} \sqrt{\frac{70.6 \times 10^3}{420} + \frac{950^2 \times 8,08 \times 15.9}{3,14^2 \times 21 \times 420}}$$

$$Mcr = 7631795.91 N. cm$$

$$\overline{\lambda_{lt}} = \sqrt{\frac{1 \times 484 \times 235 \times 10^2}{7631795.91}} = 1.22 > 0.4$$

Donc : il y a un risque de déversement. La formule de vérification de la section sera comme suit :

$$\frac{N_{sd}}{\chi_{z} \times \frac{A \times f_{y}}{\gamma_{M_{1}}}} + \frac{K_{LT} \times M_{y,sd}}{\chi_{LT} \times \frac{W_{pl,y} \times f_{y}}{\gamma_{M_{1}}}} + \frac{K_{z} \times M_{z,sd}}{\frac{W_{pl,z} \times f_{y}}{\gamma_{M_{1}}}} \leq 1 \quad (\S 5.5.4(2)(a)/CCM97)$$

i- Calcul K_{LT} :

$$k_{LT} = 1 - \frac{\mu_{LT} \times N_{sd}}{\chi_z \times A \times f_v}$$

Avec :

 $\chi_{z} = 1$ $\mu_{LT} = 0.15 \times \overline{\lambda_{z}} \times \beta_{MLT} - 0.15$ $\beta_{MLT} = 1.1$ $\mu_{LT} = 0.15 \times 0.33 \times 1.1 - 0.15 = 0.09 < 0.9$

Alors :

$$k_{LT} = 1 - \frac{0.09 \times 2748.29}{0.38 \times 45.9 \times 2350} = 0.99$$

j- Calcul de $\chi_{\,LT}$:

On calcul :

$$\chi_{lt} = \frac{1}{\left(\phi_{lt} + \sqrt{\phi_{lt}^2 - \overline{\lambda}_{lt}^2}\right)} \le 1$$

Avec :

 $\alpha_{lt} = 0.21$ Pour les profiles laminés

$$\emptyset_{lt} = 0.5 \times [1 + 0.21(1.22 - 0.2) + 1.22] = 1.35$$

TIARETI W/CHABANE A

1

Donc :

$$\chi_{lt} = \frac{1}{\left(1,35 + \sqrt{1,35^2 - 1,22^2}\right)} = 0.51 < 1$$

$$\frac{N_{sd}}{\chi_z \times \frac{A \times f_y}{\gamma_{M_1}}} + \frac{K_{LT} \times M_{y,sd}}{\chi_{LT} \times \frac{W_{pl,y} \times f_y}{\gamma_{M_1}}} + \frac{K_z \times M_{z,sd}}{\frac{W_{pl,z} \times f_y}{\gamma_{M_1}}}$$

$$\frac{2748.29}{1 \times \frac{45.9 \times 2350}{1,1}} + \frac{0.99 \times 8197.52 \times 10^2}{0,51 \times \frac{484 \times 2350}{1,1}} = 0.84 < 0.84 < 0.84 \times 10^{-1}$$

Condition vérifiée.

Le profilé IPE270 répond à toutes les conditions CCM97 concernant la vérification de résistance

III.3 conclusion :

On conclut d'après les calculs faits que tous les profilés (pannes, lisse, potelets) assurant le bon fonctionnement et vérifiant les conditions de résistance.

CHAPITRE IV

Étude sismique

IV.1. INTRODUCTION :

Les actions dynamiques les plus complexes appliqués sur un bâtiment sont généralement des actions dues au séisme.

Ces actions sismiques induisent au niveau de la fondation des mouvements essentiellement Horizontaux. Et à la superstructure des forces d'inertie qui s'oppose aux mouvements du sol, qui donnent des déplacements assez importants.

L'objectif est de déterminer tout d'abord des efforts sismiques sollicitant la structure, et de vérifier après plusieurs paramètres.

Le calcul sismique se fait selon le règlement parasismique algérien RPA99/version 2003 (D.T.R-B.C-2.48), qui met à notre disposition trois méthodes de calcul :

- La méthode statique équivalente.
- La méthode d'analyse modale spectrale (Spectre de réponse).
- La méthode d'analyse dynamique par accélérogramme.

IV.2. PRINCIPE DE LA MÉTHODE MODALE SPECTRALE

Le principe de cette méthode réside dans la détermination des modes propres de vibrations de la structure et le maximum des effets engendrés par l'action sismique, celle-ci étant représentée par un spectre de réponse de calcul. Les modes propres dépendent de la masse de la structure.

IV.3. CRITÈRES DE CLASSIFICATION PAR LE RPA99/V 2003

Pour ce cas, la structure se trouve dans la wilaya d'Oran qui se situe dans une zone de moyenne sismicité zone IIa . Cet ouvrage représente un hall industriel, il est considéré comme groupe d'usage 2 ouvrages d'importance moyenne. Le site est meuble donc il est classé en catégorie S3.

IV.4. ANALYSE DYNAMIQUE DE LA STRUCTURE :

L'objectif de l'étude dynamique d'une structure est la détermination de ses caractéristiques dynamiques propres. Ceci est obtenu en considérant son comportement en vibration libre non amorti. Cela nous permet de calculer les efforts et les déplacements maximaux lors d'un séisme.

Chapitre IV

IV.4.1. Modélisation de la structure :

La modélisation est l'établissement d'un modèle numérique à partir de la structure réelle, ceci sera suivi par certaines modifications afin de se rapprocher du comportement réel de la structure.

Figure IV.1:Modèle de la structure en 3D.

IV.4.2. Spectre de réponse de calcul :

L'action sismique est représentée par le spectre de calcul suivant :(4.3.3 RPA99/V2003).

$$\frac{S_a}{g} \begin{cases} 1,25A \left(1 + \frac{T}{T_1} \left(2,5\eta \frac{Q}{R} - 1\right)\right) & 0 < T < T_1 \\ 2,5\eta(1,25A) \left(\frac{Q}{R} - 1\right) & T_1 < T < T_2 \\ 2,5\eta(1,25A) \left(\frac{Q}{R}\right) \left(\frac{T_2}{T}\right)^{2/3} & T_1 < T < 0,3 \\ 2,5\eta(1,25A) \left(\frac{T_2}{3}\right)^{2/3} \left(\frac{3}{T}\right)^{5/3} \left(\frac{Q}{R}\right) & T > 0,3 \end{cases}$$

Avec :

• A : coefficient d'accélération de zone, donné suivant la zone sismique et le groupe d'usage du bâtiment.

A=0,15 (Tableau 4.1 RPA99/V2003)

- η : facteur de correction d'amortissement (Tableau 4.2 RPA99/V2003)
- T1 et T2 Périodes caractéristiques associées à la catégorie du site :

Site meuble S3 : $\begin{cases} T_1 = 0.15 \ s \\ T_2 = 0.50 \ s \end{cases}$ (Tableau 4.7 RPA99/V2003)

- R : Coefficient de comportement global de la structure donnée en fonction du Système • de contreventement : Ossature contreventée par palée triangulée en V et en X. (Tableau 4.1 RPA99/V2003)
- Q : Facteur de qualité donné par la formule suivante : $Q = 1 + \sum_{1}^{5} P_q$ (Tableau 4.4 RPA99/V2003)

]	Pq
Critère q	Suivant X	Suivant Y
1. Conditions minimales sur les files de Contreventement	0	0,05
2. Redondance en plan	0	0,05
3. Régularité en plan	0	0
4. Régularité en elevation	0	0
5. Contrôle de la qualité des matériaux	0,05	0,05
6. Contrôle de la qualité de l'exécution	0,10	0,10
Tableau IV.1.Facteur de qualité suivant les deux sens.	Qx = 1,15	Qy = 1,25

IV.4.3. Analyse modale spectrale :

L'analyse modale spectrale désigne la méthode de calcul des effets maximaux d'un séisme sur une structure. Elle est caractérisée par une sollicitation sismique décrite sous forme d'un spectre de réponse.

Ce type d'analyse peut être appliqué à tous types de structure avec des résultats plus exacts et souvent satisfaisants à condition d'avoir fait une bonne modélisation.

Le spectre est caractérisé par les données suivantes :

- Zone sismique IIa (wilaya d'Oran). •
- Groupe d'usage 2 (ouvrages d'importance moyenne). •

- Site meuble (S3).
- Pourcentage d'amortissement ($\xi = 5$ %).
- Coefficient de comportement (R = 4).
- Facteur de qualité suivant $X(Q_x = 1,15)$.
- Facteur de qualité suivant Y ($Q_y = 1,25$).

IV.5. VERIFICATION DE LA STRUCTURE :

IV.5.1. Vérification de la période fondamentale de la structure :

La valeur de T, calculée par le logiciel ROBOT ne doit pas dépasser celle estimée à partir de la formule empirique appropriée de plus de 30%.

La période fondamentale obtenue par le logiciel ROBOT : T = 0,36s.

Mode	Période (sec)
1	0.36
2	0.32
3	0.22

Figure IV.2: Les 3 premiers modes de vibration lors du séisme.

La période empirique est donnée par la formule suivante : T = $C_t \times h_N^{3/4}$ (§4.2.4/RPA99 version 2003)

Avec :

- C_t : Coefficient donné en fonction du système de contreventement et du type de remplissage, pour des contreventements assurés par des palées triangulées $C_t = 0,085$
- h_N: Hauteur mesurée en mètres à partir de la base de la structure jusqu'au dernier niveau
 (N) :

$$h_{N} = 9.5m$$

D'où : $T=0,085\times9.5^{3/4}=0,45 \ s$

Donc

 $T = 0,36 \text{ s} < 1,3 \times T = 1,3 \times 0,45 = 0,585 \text{ s} \rightarrow \text{Condition vérifiée.}$

IV.5.2. Vérification de l'effort tranchent à la base :

La résultante des forces sismiques à la base V_t obtenue par combinaison des valeurs modales ne doit pas être inférieure à 80% de la résultante des forces sismiques déterminée par la méthode statique équivalente V pour une valeur de la période fondamentale donnée par la formule empirique appropriée .

$$V_t > 0.8$$
 (§ 4.3.6 RPA99/V2003)

La force sismique totale V est donnée par la formule suivante :

$$V = \frac{A \times D \times Q}{R} \times W$$

Avec:

- A: Coefficient d'accélération de zone A = 0,15.
- D: Facteur d'amplification dynamique moyen D = 2,5 ($0 < T < T_2$).
- Q_x : Facteur de qualité suivant X ($Q_x = 1,15$).
- Q_{y} : Facteur de qualité suivant Y ($Q_y = 1,25$).
- Coefficient de comportement (R = 4).
- W: Poids total de la structure (calculée par ROBOT) W = 20654.45daN.

Donc :

$$V_x = \frac{0.15 \times 2.5 \times 1.15}{4} \times 20654.45 = 2226.80 \text{ daN}$$

$$V_{y} = \frac{0.15 \times 2.5 \times 1.25}{4} \times 20654.45 = 2420.44 \text{ daN}$$

	$V_t(KN)$	V(KN)	80% V (KN)	Vt>80% V
V_x	21.65	22.26	17.808	Vérifiée
Vy	22.56	24.20	19.36	Vérifiée

TableauIV.3. Résultante des forces sismiques à la base.

IV.5.3. Vérification des déplacements:

Le **RPA99/V2003** précise que le déplacement horizontal est calculé sous les forces sismiques seul dans l'article **4.4.3**, il préconise de limiter les déplacements relatifs latéraux d'un étage par rapport aux étages qui lui sont adjacent à **1%** de la hauteur d'étage ($\delta_k < 1\%$. \hbar_k) suivant article **5.10**.

Le déplacement horizontal à chaque niveau (k) est calculé par la formule suivante :

- $\delta_k = R \times \delta_e(4.43 \text{ RPA99/V2003}).$
- *R*: Coefficient de comportement
- δ_{ek} : Déplacement dû aux forces sismiques

Au niveau de la	δe _k	р	δ _k	1%. <i>ћ</i> к	Condition:	
toiture	(c m)	ĸ	(c m)	(cm)	δ<1%. <i>h</i> k	
Déplacement résultant	12	4	48	95	Vérifiée	
suivant X	1,2	•	1,0	,,5	,	
Déplacement résultant suivant Y	0,22	4	0.88	9,5	Vérifiée	

Tableau IV.4. Déplacements relatifs

IV.6. Conclusion :

A fin de determiner les caractéristiques dynamiques de la hall dans la wilaya d **Oran**, un modèle **3D** en éléments finis a été développé. Ce modèle a servi de base pour élaborer le calcul sismiques.

Après les calculs notre structure est stable vis-à-vis de l'effet de séisme car les trois conditions (période fondamentale ; effort tranchant à la base ; déplacement) selon RPA99/V2003 sont vérifiées.

Aprés l'analyse dynamique de la structure on peut dire que les effets du vent sur la structure suivant toutes les directions sont les plus défavorables par rapport aux efforts tranchants à la base de la structure dûs au séisme.

CHAPITRE V

Vérification des éléments structuraux

V. DIMENSIONNEMENT DES ELEMENTS PRINCIPAUX DE HALLE :

V.1 Introduction :

Ce chapitre consiste à dimensionner et vérifier les différents éléments de la structure principale tel que les traverses, les poteaux, les contreventements, les stabilités en X, et les sablières

V.2 Justification de la traverse (IPE 400) :

V.2.1 Caractéristiques de la traverse (IPE 400) :

Profil	Poids	Section	Dime	Dimensions			Caractéristiques						
	G Kg/m	A cm ²	h mm	b mm	t _f mm	t _w mm	d mm	Iy cm ⁴	Iz cm ⁴	W _{ply} cm ³	W _{plz} cm ³	i _y cm	iz cm
IPE400	66.3	84.5	400	180	13.5	8.6	331	23130	1318	1307	229	16.6	3.95

Tab.V.1 : Caractéristiques du profilé IPE 400

V.2.2 Efforts sollicitant : 1.35G+1.5V2

- > $My_{sd} = 131.69 \ kN.m$
- ≻ Mz.sd=0.29 kN.m
- ▶ $V_{sd} = 39.92 \, kN$
- > $N_{sd} = 45.14 \, kN$

V.2.3 Classe de la section transversale :

a/ Classe de l'âme :

$$\frac{d}{t_w} \leq 72\varepsilon$$

Avec:

$$\varepsilon = \sqrt{\frac{235}{f_y}}$$

$$d = 331 mm$$

$$t_w = 8.6 mm$$

$$\left\{ \begin{array}{l} \frac{d}{t_w} = \frac{331}{8.6} = 38.48\\ 72\varepsilon = 72\sqrt{\frac{235}{235}} = 72 \end{array} \quad \Rightarrow \ \frac{d}{t_w} \le 72 \quad \text{Donc l'âme est de classe l} \end{array} \right.$$

b/ Classe de la semelle :

$$C = \frac{b}{2} = 90 \ mm$$

$$t_f = 13.5 \ mm$$

$$\begin{cases} \frac{c}{t_f} = \frac{90}{13.5} = 6.66 \\ 10\varepsilon = 10\sqrt{\frac{235}{235}} = 10 \end{cases} \implies \frac{c}{t_f} \le 10\varepsilon \text{ Donc la semelle est de classe 1}$$

Conclusion : la section globale est de classe 1

V.2.4 Vérification de la flèche :

La flèche admissible de la traverse est calculée par le logiciel **ROBOT** : $\delta_r = 3.2 \ cm$

$$\delta_{max} = \frac{l}{200} = \frac{1200}{200} = 6 \ cm$$

 $\delta r = 3.2 \ cm \le \delta max = 6 \ cm$ Condition vérifiée

V.2.5 Cisaillement :

$$V_{sd} \le 0.5 V_{pl.Rd}$$
$$V_{pl.Rd} = \frac{A_v (f_y / \sqrt{3})}{\gamma_{M_0}}$$

$$A_{v} = A - 2b \times t_{f} + (t_{w} + 2r)t_{f}$$

 $A_v = 8450 - 2(180 \times 13.5) + (8.6 + (2 \times 21)) \times 13.5 = 4273.10 \ mm^2$

Donc :

$$V_{pl.Rd} = \frac{4273.10 \times (235 \times 10^{-3} / \sqrt{3})}{1.1} = 523.35 \ kN$$

Alors :

$$V_{sd} = 39.92 \ kN \ll 50\% \ V_{pl.Rd} = 261.675 \ kN$$
 Condition vérifiée

V.2.6 Vérification de la résistance à la flexion composée (éléments comprimés et fléchis) :

a- La longueur de flambement :

Autour de l'axe z-z (dans le plan de l'âme), risque de flamber la traverse sur la longueur entre les pannes, donc :

$$L_{f,z} = L$$

Autour de l'axe y-y (perpendiculaire à l'âme), la traverse ne flamber pas sur toute langeur, donc :

$$L_{f,y} = L/2$$

b- Calcul des élancements :

• La longueur de flambement :

La traverse autour de l'axe z-z est doublement articulé, donc :

 $L_{z} = 1 m$

La traverse autour de l'axe y-y est encastré dans les deux appuis, donc :

 $L_v = 5.45 \text{ m}.$

$$\begin{cases} \lambda_y = \frac{L_y}{i_y} = \frac{545}{16.6} = 32,83\\ \lambda_z = \frac{L_z}{i_z} = \frac{100}{3.95} = 25.31 \end{cases}$$

c- Calcul de l'élancement critique :

La nuance d'acier S235 ($f_y = 235$ MPa).

$$\lambda_1 = \pi \sqrt{\frac{E}{235}} = 3,14 \times \sqrt{\frac{21 \times 10^4}{235}} = 93,9$$

d-Calcul des élancements réduits :

$$\begin{cases} \overline{\lambda_y} = \frac{\lambda_y}{\lambda_1} = \frac{32,83}{93,9} = 0,34\\ \overline{\lambda_z} = \frac{\lambda_z}{\lambda_1} = \frac{25.31}{93,9} = 0.27 \end{cases}$$

e- Calcul du coefficient de réduction χ_{min} :

$$\begin{cases} \phi_{y} = 0.5 \times [1 + \alpha_{y} \times (\overline{\lambda_{y}} - 0.2) + \overline{\lambda_{y}^{2}}] \\ \phi_{z} = 0.5 \times [1 + \alpha_{z} \times (\overline{\lambda_{z}} - 0.2) + \overline{\lambda_{z}^{2}}] \end{cases}$$

Pour IPE400:

$$\frac{h}{b} = \frac{400}{180} = 2,22 > 1,2$$

 $t_{\rm f} = 13,5~{\rm mm} < 40~{\rm mm}$

Axe de flambement	Courbe de flambement	Facteur d'imperfection a
y-y	a	0,21
Z-Z	b	0,34

Tableau V. 2 Facteur d'imperfection α pour IPE400

$$\phi_{y} = 0.5 \times [1 + 0.21 \times (0.34 - 0.2) + 0.34^{2}] = 0.57$$

 $\phi_{z} = 0.5 \times [1 + 0.34 \times (0.27 - 0.2) + 0.27^{2}] = 0.54$
$$\begin{cases} \chi_{y} = \frac{1}{\varphi_{y} + \sqrt{\varphi_{y}^{2} - \overline{\lambda_{y}}^{2}}} = \frac{1}{0.57 + \sqrt{0.57^{2} - 0.34^{2}}} = 0.97\\ \chi_{z} = \frac{1}{\varphi_{z} + \sqrt{\varphi_{z}^{2} - \overline{\lambda_{z}}^{2}}} = \frac{1}{0.54 + \sqrt{0.54^{2} - 0.27}} = 0.99\\ \chi_{min} = \min(\chi_{y}; \chi_{z}) = 0.97 \end{cases}$$

Le déversement est pris en considération que si $\overline{\lambda_{LT}} > 0,4$

h- Calcul $\overline{\lambda_{LT}}$

Avec :

- B_w= 1 section de classe I
- > χ_{lt} : est le facteur de réduction pour le déversement.
- ➢ F_y= 235 N/mm²
- \succ γ_{M₁} = 1,1

$$\overline{\lambda_{lt}} = \sqrt{\frac{\beta_w \times W_{pl,y} \times f_y}{M_{cr}}}$$

 M_{cr} : Moment critique élastique de déversement donné par la formule suivante :

$$M_{cr} = C_1 \cdot \frac{\pi^2 \cdot E \cdot I_z}{L^2} \sqrt{\frac{I_w}{I_z} + \frac{L^2 \cdot G \cdot I_t}{\pi^2 \cdot E \cdot I_z}}$$

Avec :

- > K = 0.5 donc C = 2.609 (AnnexeE E.2)
- $\succ \quad G = \frac{E}{2(1-\vartheta)} \mapsto \begin{cases} E = 21.10^6 N/cm^2 \\ \vartheta = 0.3 \end{cases} \Rightarrow G = 8,08.10^6 N/cm^2$
- > I_t : Moment d'inertie de torsion ($I_t = 51.1 \ cm^4$)
- > I_w : Moment d'inertie de gauchissement ($I_w = 490.10^3 cm^6$)
- > I_z : Moment d'inertie de flexion suivant l'axe faible inertie ($I_z = 1318 \ cm^4$)

$$M_{cr} = 2.609. \frac{3.14^2 \times 21 \times 10^6 \times 1318}{1200^2} \sqrt{\frac{490 \times 10^3}{1318} + \frac{1200^2 \times 8.08 \times 51.1}{3.14^2 \times 21 \times 1318}}$$

$$Mcr = 980872344.112 N.cm$$

$$\overline{\lambda_{lt}} = \sqrt{\frac{1 \times 1307 \times 235 \times 10^2}{980872344.112}} = 0.176$$

Vérification de l'élément (sans risque de déversement) est :

$$\frac{N_{sd}}{\chi_{\min} \times \frac{A \times f_{y}}{\gamma_{M_{1}}}} + \frac{K_{y} \times M_{y,sd}}{W_{pl,y} \times \frac{f_{y}}{\gamma_{M_{1}}}} + \frac{K_{Z} \times M_{Z,sd}}{W_{pl,Z} \times \frac{f_{y}}{\gamma_{M_{1}}}} \le 1$$

j- Calcul K $_{\rm y}$:

$$k_{y} = 1 - \frac{\mu_{y} \times N_{sd}}{\chi_{y} \times A \times f_{y}}$$
$$\mu_{y} = \overline{\lambda_{y}} \left(2 \times \beta_{My} - 4 \right) + \frac{W_{pl,y} - W_{el,y}}{W_{el,y}}$$
$$\mu_{y} = 0.34 \times (2 \times 1.8 - 4) + \frac{1307 - 1160}{1160} = -0.009 < 0.9$$

Avec :

 $\beta_{My} = 1.8 - 0.7\psi = 1.8$

D'où :

$$k_y = 1 - \frac{-0,009 \times 45140}{0.97 \times 84.5 \times 2350} = 1,002 < 1,5$$

h- Calcul K_z

$$k_{z} = 1 - \frac{\mu_{z} \times N_{sd}}{\chi_{z} \times A \times f_{y}}$$
$$\mu_{z} = \overline{\lambda_{z}} (2 \times \beta_{Mz} - 4) + \frac{W_{pl,z} - W_{el,z}}{W_{el,z}}$$
$$\mu_{z} = 0.27 \times (2 \times 1.8 - 4) + \frac{253 - 149}{149} = 0.46 < 0.9$$

Avec :

$$\beta_{Mz} = 1.8 - 0.7\psi = 1.8$$

D'où :

$$k_z = 1 - \frac{0,11 \times 4514}{0,99 \times 84,5 \times 2350} = 0,99 < 1,5$$

Donc : La vérification de l'élément (sans risque de déversement) est :

$$\frac{N_{sd}}{\chi_{\min} \times \frac{A \times f_{y}}{\gamma_{M_{1}}}} + \frac{K_{y} \times M_{y,sd}}{W_{pl,y} \times \frac{f_{y}}{\gamma_{M_{1}}}} + \frac{K_{z} \times M_{z,sd}}{W_{pl,z} \times \frac{f_{y}}{\gamma_{M_{1}}}} \leq 1$$

$$\frac{4514}{0,97 \times \frac{84.5 \times 2350}{1,1}} + \frac{1,002 \times 13169 \times 10^2}{1307 \times \frac{2350}{1,1}} + \frac{0,99 \times 29 \times 10^2}{253 \times \frac{2350}{1,1}}$$

= 0,79 < 1 Condition vérifiée.

Le profilé IPE400 répond à toutes les conditions CCM97 concernant la vérification de résistance.

V.3 CALCUL POTEAUX :

Ce sont des éléments utilisés comme support d'ossature qui supportent les charges et surcharges, et transmettent ces derniers aux fondations. Ils travaillent à la flexion composée.

V.3.1 Classe de la section transversale du profilé HEA 280 :

	Poids	Section	Dimensions				Caractéristiques						
Profil	G Kg/m	A cm ²	H mm	b m m	t _f mm	t _w m m	d m m	Iy cm ⁴	Iz cm ⁴	W _{ply} cm ³	W _{plz} cm ³	i _y cm	iz cm
HEA 280	76.4	97.3	270	280	13	8	19 6	13670	4763	1112	518.1	11.86	7

Tableau V. 3 : Caractéristique du profilé HEA 280.

• Classe de la semelle comprimée :

$$\frac{c}{t_f} = \frac{b/2}{t_f} = \frac{280}{2 \times 13} = 10.76 \le 11 \text{ \&} \rightarrow \text{ semelle de classe 2}$$

Avec :

$$\varepsilon = \sqrt{\frac{235}{235}} = 1$$

• Classe de l'âme fléchie et comprimé :

$$\frac{d}{t_w} = \frac{196}{8} = 24.5 \le 72 \ \varepsilon \quad \rightarrow l' \hat{a}me \ de \ classe \ 1$$

Donc : la section est de classe 2

V.3.2 Vérification au cisaillement :

La résistance de la section transversale est réduite par la présence de l'effort tranchant s'il dépasse la moitié de la résistance plastique de calcul.

$$\mathbf{V}_{\mathrm{pl,rd}} = \frac{0.58 \times Av \times fy}{\gamma mo}$$

 $M_{y, sd} = 77.72 \text{ kN.m}$ $M_{z, sd} = -2.09 \text{ kN.m}$ $N_{sd} = 118.77 \text{ kN}$ $V_{sd} = 31.27 \text{ kN}$ On doit várifice avec

On doit vérifier que :

$$V_{sd} \leq 0,5 \times V_{pl, rd}$$

 $A_{vz} = 31.74 \text{ cm}^2$

D'où:

$$V_{pl, rd} = 0.58 \times \frac{2350 \times 31.78}{1.1} = 39378.30 \text{ daN}$$

 $A_v = A - 2bt_f + (t_w + 2r) \times t_f = 31.78 \ cm^2$

 $V_{sd} = 3127 \ daN \leq 0.5 \times \ V_{pl, \, rd} = 19689.15 \ daN \qquad \mbox{condition vérifiée}. \label{eq:Vsd}$

V.3.3 Vérification de la résistance à la flexion composée (éléments comprimés et fléchis) :

a- La longueur de flambement :

• Autour de l'axe y-y (perpendiculaire à l'âme) : doublement encastrer

$$L_{f,y} = L/2 = \frac{800}{2} = 400 \text{ cm}$$

• Autour de l'axe z-z (dans le plan de l'âme) : articulé-articule

$$L_{f,z} = L = 100 \text{ cm}$$

b- Calcul des élancements

$$\begin{cases} \lambda_y = \frac{L_y}{i_y} = \frac{400}{11.86} = 33,72\\ \lambda_z = \frac{L_z}{i_z} = \frac{100}{7} = 14,28 \end{cases}$$

c- Calcul de l'élancement critique :

La nuance d'acier S235 ($f_v = 235MPa$).

$$\lambda_1 = \pi \sqrt{\frac{E}{235}} = 3,14 \times \sqrt{\frac{21 \times 10^4}{235}} = 93,9$$

d-Calcul des élancements réduits :

TIARETI W/CHABANE A

$$\begin{cases} \overline{\lambda_y} = \frac{\lambda_y}{\lambda_1} = \frac{33,92}{93,9} = 0,36\\ \overline{\lambda_z} = \frac{\lambda_z}{\lambda_1} = \frac{14,28}{93,9} = 0,15 \end{cases}$$

e- Calcul du coefficient de réduction χ_{min} :

$$\begin{cases} \emptyset_{y} = 0.5 \times [1 + \alpha_{y} \times (\overline{\lambda_{y}} - 0.2) + \overline{\lambda_{y}^{2}}] \\ \emptyset_{z} = 0.5 \times [1 + \alpha_{z} \times (\overline{\lambda_{z}} - 0.2) + \overline{\lambda_{z}^{2}}] \end{cases}$$

Axe de flambement	Courbe de flambement	Facteur d'imperfection α		
у-у	а	0,34		
Z-Z	b	0,49		

Tableau V. 3. Facteur d'imperfection α pour IPE400.

$$\phi_{y} = 0.5 \times [1 + 0.34 \times (0.36 - 0.2) + 0.36^{2}] = 0.59$$

$$\phi_{z} = 0.5 \times [1 + 0.49 \times (0.15 - 0.2) + 0.15^{2}] = 0.49$$

$$\begin{cases} \chi_{y} = \frac{1}{\phi_{y} + \sqrt{\phi_{y}^{2} - \overline{\lambda_{y}}^{2}}} = \frac{1}{0.59 + \sqrt{0.59^{2} - 0.36^{2}}} = 0.94$$

$$\chi_{z} = \frac{1}{\phi_{z} + \sqrt{\phi_{z}^{2} - \overline{\lambda_{z}}^{2}}} = \frac{1}{0.49 + \sqrt{0.49^{2} - 0.15^{2}}} = 0.98$$

f- Calcul $\overline{\lambda_{LT}}$

$$\overline{\lambda_{lt}} = \sqrt{\frac{\beta_w \times W_{pl.y} \times f_y}{M_{cr}}}$$

 M_{cr} : Moment critique élastique de déversement donné par la formule suivante :

$$M_{cr} = C_1 \cdot \frac{\pi^2 \cdot E \cdot I_z}{L^2} \sqrt{\frac{I_w}{I_z} + \frac{L^2 \cdot G \cdot I_t}{\pi^2 \cdot E \cdot I_z}}$$

Avec :

$$K = 0.5 \text{ donc } C = 2.092 \quad (\text{Annexe } D - D1)$$

$$G = \frac{E}{2(1-\vartheta)} \quad \Leftrightarrow \quad \begin{cases} E = 21.10^6 N/cm^2 \\ \vartheta = 0.3 \end{cases} \quad \Leftrightarrow \quad G = 8.08.10^6 N/cm^2$$

$$F_t : \text{Moment d'inertie de torsion } (I_t = 62.10 \ cm^4)$$

- > I_w : Moment d'inertie de gauchissement ($I_w = 785.4 \times 10^3 cm^6$)
- > I_z : Moment d'inertie de flexion suivant l'axe faible inertie ($I_z = 4763 \ cm^4$)

$$M_{cr} = 2.092 \times \frac{3,14^2 \times 21 \times 10^6 \times 4763}{800^2} \sqrt{\frac{785.4 \times 10^3}{4763} + \frac{800^2 \times 8,08 \times 62.10}{3,14^2 \times 21 \times 4763}}$$
$$M_{cr} = 66729713.16 N.cm$$

$$\overline{\lambda_{lt}} = \sqrt{\frac{1 \times 1112 \times 235 \times 10^2}{66729713.16}} = 0.625$$

Donc : il y a un risque de déversement.

La formule de vérification de la section sera comme suit :

$$\frac{N_{sd}}{\chi_z \times \frac{A \times f_y}{\gamma_{M_1}}} + \frac{K_{LT} \times M_{y,sd}}{\chi_{LT} \times \frac{W_{pl,y} \times f_y}{\gamma_{M_1}}} + \frac{K_z \times M_{z,sd}}{\frac{W_{pl,z} \times f_y}{\gamma_{M_1}}} \le 1 \quad (\S 5.5.4(2)(a)/CCM97)$$

j-Calcul K_z

$$k_{z} = 1 - \frac{\mu_{z} \times N_{sd}}{\chi_{z} \times A \times f_{y}}$$
$$\mu_{z} = \overline{\lambda_{z}} (2 \times \beta_{Mz} - 4) + \frac{W_{pl,z} - W_{el,z}}{W_{el,z}}$$
$$\mu_{z} = 0.15 \times (2 \times 1.8 - 4) + \frac{518.1 - 340.2}{340.2} = 0.46 < 0.9$$

Avec :

$$\beta_{Mz} = 1.8 - 0.7 \psi = 1.8$$

D'où :

$$k_z = 1 - \frac{0,46 \times 118.77}{0,98 \times 97.3 \times 2350} = 0,99 < 1,5$$

h- Calcul K_{LT} :

$$k_{LT} = 1 - \frac{\mu_{LT} \times N_{sd}}{\chi_z \times A \times f_y}$$

Avec :

 $\chi_z = 0,23$

 $\mu_{LT} = 0.15 \times \overline{\lambda_z} \times \beta_{MLT} - 0.15$

$\beta_{MLT} = 1,1$

$$\mu_{LT} = 0.15 \times 1.46 \times 1.1 - 0.15 = 0.09 < 0.9$$

Alors :

$$k_{LT} = 1 - \frac{0.09 \times 118.77}{0.38 \times 97.3 \times 2350} = 0.99$$

i- Calcul de $\chi_{\,LT}$:

On calcul :

$$\chi_{lt} = \frac{1}{\left(\phi_{lt} + \sqrt{\phi_{lt}^2 - \overline{\lambda}_{lt}^2}\right)} \le 1$$

Avec :

 $\alpha_{lt} = 0,21$ Pour les profiles laminés

$$\phi_{lt} = 0.5 \times [1 + 0.21(0.625 - 0.2) + 0.625^2] = 0.73$$

Donc:

$$\chi_{lt} = \frac{1}{\left(0,73 + \sqrt{0,73^2 - 0,625^2}\right)} = 0.90$$
$$\frac{N_{sd}}{\chi_z \times \frac{A \times f_y}{\gamma_{M_1}}} + \frac{K_{LT} \times M_{y,sd}}{\chi_{LT} \times \frac{W_{pl,y} \times f_y}{\gamma_{M_1}}} + \frac{K_z \times M_{z,sd}}{\frac{W_{pl,z} \times f_y}{\gamma_{M_1}}}$$

$$\frac{118.77 \times 10^2}{0.98 \times \frac{97.3 \times 2350}{1,1}} + \frac{0.99 \times 77.72 \times 10^2}{0.90 \times \frac{1112 \times 2350}{1,1}} + \frac{0.99 \times (-2.09) \times 10^2}{518.1 \times \frac{2350}{1,1}} = 0.89 < 1$$

Condition vérifiée.

V.3.4 Vérification des déplacements :

 $\delta \leq \delta max$

La flèche admissible de la traverse est calculée par le logiciel ROBOT : $\delta = 2.5$ cm $\delta \max = L/125 = 800/125 = 6.4$ cm

Avec : L : la longueur du poteau (L = 8 m).

Alors : $\delta = 2.5 \text{ cm} \le \delta \text{max} = 6.4 \text{ cm}$ condition vérifiée

Donc : les poteaux en HEA 280 vérifient le déplacement (ELS).

V3.5 conclusion :

On peut conclure que la section HEA 280 répond à toutes les conditions des règles de CCM97 concernant la vérification de résistance.

V.4 CONTREVENTEMENTS :

Les contreventements sont des pièces qui ont pour but d'assurer la stabilité de la structure.

V.4.1 Vérification de la section diagonale du palais de stabilité à la résistance :

Pour les contreventements nous avons opté des profilés en cornière 2L 90×90×9

L : longueur de flambement = 6.12 m (obtenu par le logiciel ROBOT)

Profilé	Poids	Section	Dimensions		Caractéristiques				
	G	A	h	b	t	Iy	Iz	Wel,y	Wel.y
	kg/m	cm ²	mm	mm	mm	cm ⁴	cm ⁴	cm ³	cm ³
CAE90×9	12.2	15.5	90	90	9	115.8	115.8	17.93	17.93

Tableau V. 4 : Caractéristiques du CAE 90×9.

Puisque c'est un contreventement en X l'assemblage se fera au milieu, donc le calcul se fera avec :

 $L = \frac{L}{2} = 3.06 \text{ m}$

L'effort maximal sollicitant :

 $N_{sd}=96.69\ KN$

V.4.2 Vérification à la traction :

Les diagonales sont attachées dans chaque extrémité avec un fil de boulon ordinaire de diamètre

20 mm

La vérification se fera par la formule suivante :

 $N_{sd} \leq \min(N_{pl, rd;} N_{u, rd}; N_{net, rd})$

Avec :

- \triangleright N_{pl, rd} : la résistance plastique de la section brute.
- \triangleright N_{u, rd}: la résistance ultime de la section nette.
- ➢ N_{net, rd} : la résistance de la section nette

$$N_{pl, rd} = \frac{A \times f_y}{\gamma_{M0}} = \frac{15.5 \times 23.5}{1.1} = 331.13 \text{ kN}$$

$$N_{u, rd} = \frac{0.9 \times A_{net} \times f_u}{\gamma_{M2}} = \frac{0.9 \times 12.2 \times 3600}{1.25} = 316.22 \text{ KN}$$

$$N_{net,Rd} = \frac{A_{net} \times f_y}{\gamma_{M2}} = \frac{12.2 \times 2350}{1.25} = 229.36 \text{ kN Donc}:$$

$$\Rightarrow N_{sd} = 96.69 \text{KN} < N_{net,Rd} = 229.36 \text{ KN} \quad \text{condition vérifiée.}$$

On peut conclure que les contreventements en CEA90×9 résistent aux phénomènes d'instabilité.

V.5 Vérification de la sablière :

Pour les sablières nous avons opté des profilés HEA140.

	Poids	Section		Di	imensio	ons	Caractéristiques				
Profilé	Р	А	Η	b	t_{f}	tw	d	Iy	I_Z	$W_{\text{pl},y}$	$W_{\text{pl},z}$
	Kg/m	cm ²	mm	mm	Mm	mm	mm	cm^4	cm^4	cm ³	cm ³
HEA 140	24,7	31,4	133	140	8.5	5.5	92	1033	389,3	173,5	84,85

Tableau V.5. Caractéristiques du profilé HEA140.

D'après le Logiciel Autodesk Robot, on prend les valeurs de charges les plus importantes avec combinaison : 1.35G+1.5V1

V.5.1 Effort sollicitant :

Avec :	M _{y.sd} =197.71 daN.m	$N_{sd}=139.70\ daN$
	$M_{z.sd} = 23.75 \text{ daN.m}$	V _{sd} =238.01 daN

V.5.2 Classe de la section transversale du profilé HEA 140

• Classe de l'âme fléchie :

$$\frac{d}{t_w} \le 72.\xi$$
 avec : $\xi = \sqrt{\frac{235}{f_y}} = 1$
 $\frac{d}{t_w} = \frac{92}{5.5} = 16,727 < 72$ L'âme est de classe 1.

• Classe de la semelle comprimée et fléchie : $\frac{c}{t_f} \leq 10.\,\xi \label{eq:chi}$

$$\frac{c}{t_f} = \frac{\frac{b}{2}}{t_f} = \frac{\frac{140}{2}}{8.5} = 8,235 < 10$$
 La semelle est de classe 1.

Donc : la section du profilé globale est de classe 1.

V.5.3 Vérification de la résistance à la flexion composée (éléments comprimés

et fléchis) :

a- La longueur de flambement :

La sablière autour de l'axe z-z est articulée dans les deux appuis, donc :

$$L_{f,z} = L$$

La sablière autour de l'axe y-y est articulée dans les deux appuis, donc :

$$L_{f,y} = I$$

b- Calcul des élancements :

$$\begin{cases} \lambda_y = \frac{L_y}{i_y} = \frac{600}{5.73} = 104.71 \\ \lambda_z = \frac{L_z}{i_z} = \frac{600}{3.52} = 170.45 \end{cases}$$

c- Calcul de l'élancement critique

La nuance d'acier S235 ($f_y = 235MPa$).

$$\lambda_1 = \pi \sqrt{\frac{E}{235}} = 3,14 \times \sqrt{\frac{21 \times 10^4}{235}} = 93,9$$

d-Calcul des élancements réduits :

$$\begin{cases} \overline{\lambda_y} = \frac{\lambda_y}{\lambda_1} = \frac{104.71}{93.9} = 1.115\\ \overline{\lambda_z} = \frac{\lambda_z}{\lambda_1} = \frac{170.45}{93.9} = 1.815 \end{cases}$$

e- Calcul du coefficient de réduction χ_{min} :

$$\begin{cases} \emptyset_{y} = 0.5 \times [1 + \alpha_{y} \times (\overline{\lambda_{y}} - 0.2) + \overline{\lambda_{y}^{2}}] \\ \emptyset_{z} = 0.5 \times [1 + \alpha_{z} \times (\overline{\lambda_{z}} - 0.2) + \overline{\lambda_{z}^{2}}] \end{cases}$$

Pour HEA 140 :

$$\frac{h}{b} = \frac{140}{133} = 1.05 < 1.2$$

t_f = 8.5 mm < 100 mm

Axe de flambement	Courbe de flambement	Facteur d'imperfection a
у-у	b	0,34
Z-Z	С	0,49

	Tableau V.	6. Facteur	d'imperfection	α pour HEA140.
--	------------	------------	----------------	----------------

$$\phi_{y} = 0.5 \times [1 + 0.34 \times (1.115 - 0.2) + 1.115^{2}] = 1.27$$

$$\phi_{z} = 0.5 \times [1 + 0.49 \times (1.815 - 0.2) + 1.815^{2}] = 2.54$$

$$\begin{cases} \chi_{y} = \frac{1}{\phi_{y} + \sqrt{\phi_{y}^{2} - \overline{\lambda_{y}^{2}}}} = \frac{1}{1.27 + \sqrt{1.27^{2} - 1.115^{2}}} = 0.53$$

$$\chi_{z} = \frac{1}{\phi_{z} + \sqrt{\phi_{z}^{2} - \overline{\lambda_{z}^{2}}}} = \frac{1}{2.54 + \sqrt{2.54^{2} - 1.815^{2}}} = 0.23$$

$$\chi_{\min} = \min(\chi_y; \chi_z) = 0.23$$

f- Calcul K_y :

$$k_{y} = 1 - \frac{\mu_{y} \times N_{sd}}{\chi_{y} \times A \times f_{y}}$$
$$\mu_{y} = \overline{\lambda_{y}} (2 \times \beta_{My} - 4) + \frac{W_{pl,y} - W_{el,y}}{W_{el,y}}$$
$$\mu_{y} = 1.115 \times (2 \times 1.1 - 4) + \frac{173.5 - 155.4}{155.4} = -1.89 < 0.9$$

Avec $\beta_{My} = 1.8 - 0.7$. $\psi = 1.8 - 0.7(1) = 1.1$

D'où :

$$k_y = 1 - \frac{-1,89 \times 139.70}{0,53 \times 31.4 \times 2350} = 1.007 < 1,5$$

g- Calcul K_z :

$$k_{z} = 1 - \frac{\mu_{z} \times N_{sd}}{\chi_{z} \times A \times f_{y}}$$
$$\mu_{z} = \overline{\lambda_{z}} (2 \times \beta_{Mz} - 4) + \frac{W_{pl,z} - W_{el,z}}{W_{el,z}}$$

TIARETI W/CHABANE A

$$\mu_z = 1.815 \times (2 \times 1, 1 - 4) + \frac{84.85 - 55.62}{55.62} = -2.74 < 0.9$$

Avec :

$$\beta_{Mz} = 1.8 - 0.7. \psi = 1.8 - 0.7(1) = 1.1$$

D'où :

$$k_{z} = 1 - \frac{-2.74 \times 139.70}{0.23 \times 31.4 \times 2350} = 1.02 < 1.5$$

Les sablières sont sollicitées à la flexion composée, donc il y a un risque de déversement à vérifier.

Calcul $\overline{\lambda_{LT}}$

$$\overline{\lambda_{lt}} = \sqrt{\frac{\beta_w \times W_{pl.y} \times f_y}{M_{cr}}}$$

 M_{cr} : Moment critique élastique de déversement donné par la formule suivante :

$$M_{cr} = C_1 \cdot \frac{\pi^2 \cdot E \cdot I_z}{L^2} \sqrt{\frac{I_w}{I_z} + \frac{L^2 \cdot G \cdot I_t}{\pi^2 \cdot E \cdot I_z}}$$

Avec :

$$K = 0.5 \text{ donc } C = 2.092 \quad (\text{Annexe } D - D1)$$

$$G = \frac{E}{2(1-\vartheta)} \quad \mapsto \quad \begin{cases} E = 21.10^6 N/cm^2 \\ \vartheta = 0.3 \end{cases} \quad \mapsto \quad G = 8,08.10^6 N/cm^2$$

> I_t : Moment d'inertie de torsion ($I_t = 8.13 \ cm^4$)

- > I_w : Moment d'inertie de gauchissement ($I_w = 15.06 \times 10^3 cm^6$)
- > I_z : Moment d'inertie de flexion suivant l'axe faible inertie ($I_z = 389.3 \ cm^4$)

$$M_{cr} = 2.092 \times \frac{3.14^2 \times 21 \times 10^6 \times 389.3}{600^2} \sqrt{\frac{15.06 \times 10^3}{389.3} + \frac{600^2 \times 8.08 \times 8.13}{3.14^2 \times 21 \times 389.3}}$$

$$Mcr = 8535685.90 N. cm$$

$$\overline{\lambda_{lt}} = \sqrt{\frac{1 \times 173.5 \times 235 \times 10^2}{8535685.90}} = 0.625 > 0.4$$

Donc : il y a un risque de déversement.

TIARETI W/CHABANE A

La formule de vérification de la section sera comme suit :

$$\frac{N_{sd}}{\chi_{z} \times \frac{A \times f_{y}}{\gamma_{M_{1}}}} + \frac{K_{LT} \times M_{y,sd}}{\chi_{LT} \times \frac{W_{pl,y} \times f_{y}}{\gamma_{M_{1}}}} + \frac{K_{z} \times M_{z,sd}}{\frac{W_{pl,z} \times f_{y}}{\gamma_{M_{1}}}} \le 1 \quad (\S \ 5.5.4(2)(a)/CCM97)$$

i- Calcul K_{LT}

$$k_{LT} = 1 - \frac{\mu_{LT} \times N_{sd}}{\chi_z \times A \times f_y}$$

Avec :

$$\begin{split} \chi_z &= 0,23 \\ \mu_{LT} &= 0,15 \times \overline{\lambda_z} \times \beta_{MLT} - 0,15 \\ \beta_{MLT} &= 1,1 \\ \mu_{LT} &= 0,15 \times 1.815 \times 1,1 - 0,15 = 0.14 < 0,9 \\ \text{Alors}: \end{split}$$

$$k_{LT} = 1 - \frac{0.14 \times 139.70}{0.23 \times 31.4 \times 2350} = 0.99$$

j- Calcul de χ_{LT} :

$$\chi_{LT} = \frac{1}{\emptyset_{LT} + \sqrt{\emptyset_{LT}^2 - \overline{\lambda_{LT}}^2}}$$
$$\emptyset_{LT} = 0.5 \times [1 + \alpha_{LT} \times (\overline{\lambda_{LT}} - 0.2) + \overline{\lambda_{LT}^2}]$$

$$\alpha_{LT} = 0,21$$
 (pour les profilés laminés)

$$\emptyset_{LT} = 0.5 \times [1 + 0.21 \times (1.05 - 0.2) + 1.05^2] = 1.14$$

Alors :

$$\chi_{LT} = \frac{1}{1.14 + \sqrt{1.14^2 - 1.05^2}} = 0.63$$
$$\frac{139.70}{0.23 \times \frac{31.4 \times 2350}{1,1}} + \frac{0.99 \times 197.71 \times 10^2}{0.63 \times \frac{173.5 \times 2350}{1,1}} + \frac{1.02 \times 23.75 \times 10^2}{84.85 \times \frac{2350}{1,1}} = 0.91 < 100$$

Condition vérifiée.

Le profilé HEA140 répond à toutes les conditions CCM97 concernant la vérification de résistance à la flexion composée et le flambement.

V.6 Conclusion :

Tous les éléments structuraux assurent la stabilité de la structure.

CHAPITRE VI

CALCUL DES ASSEMBLAGE

VI.1. INTRODUCTION :

La conception et le calcul des assemblages ont une importance équivalente à celle du dimensionnement des pièces constituant la structure.

En effet, les assemblages constituent un dispositif qui permet de réunir et de solidariser les pièces entre elles, en assurant la transmission et la répartition des diverses sollicitations régnant dans les différents composants structuraux, en cas de défaillance d'un assemblage, c'est bien le fonctionnement global de la structure qui est remis en cause.

VI.2. CALCUL DES ASSEMBLAGES :

VI.2.1. Assemblage poteau - traverse (HEA 280 - IPE 400) :

Cette opération consiste à fixer par soudure une platine à l'extrémité d'une traverse pour permettre son assemblage sur l'aile d'un poteau.

Figure VI.4: Assemblage poteau-traverse.

VI.2.1.1 Efforts sollicitant :

Les efforts sollicitant de l'assemblage sous la combinaison 1,35.G+1,5.V2 :

 $V_{sd} = 7672.99 \text{ daN}$

 $M_{sd} = 22301.21 \text{ daN.m}$

VI.2.1.2 Soudure de la platine :

Cordon de soudure

- Epaisseur de la platine : $e^{p} = 20 \text{ mm}$.
- Épaisseur de la semelle IPE 400 : $t_f = 13.5 \text{ mm}$.
- Epaisseur de l'âme IPE 400: $t_w = 8.6 \text{ mm}$.
- > Soudure de la semelle de la poutre sur la platine

$$a_{f} \ge t_{fb} \times \left(\frac{f_{y}}{\gamma_{m0}}\right) \times \left(\frac{\beta_{w} \times \gamma_{m2}}{f_{u} \times \sqrt{2}}\right) = 13.5 \times \left(\frac{235}{1,1}\right) \times \left(\frac{0.8 \times 1.25}{360 \times \sqrt{2}}\right) = 5.66 \text{ mm}$$

> Soudure de l'âme de la poutre sur la platine

$$a_{w} \ge t_{wb} \times \left(\frac{f_{y}}{\gamma_{m0}}\right) \times \left(\frac{\beta_{w} \times \gamma_{m2}}{f_{u} \times \sqrt{2}}\right) = 8.6 \times \left(\frac{235}{1,1}\right) \times \left(\frac{0.8 \times 1.25}{360 \times \sqrt{2}}\right) = 3.60 \text{ mm}$$

- On prend : $\begin{cases} a_f = 6 \text{ mm} \\ a_w = 5 \text{ mm} \end{cases}$
- > Vérification de la soudure de la semelle à la traction

$$N_{sd} \le F_{w,Rd}$$

$$N_{sd} = \frac{M_{sd}}{h} = \frac{22301.21}{0.735} = 30341.78 \text{ daN}$$
$$F_{w,Rd} = \frac{a \times \sum l \times f_u}{\sqrt{2} \times \beta_w \times \gamma_{mw}}$$

- La nuance d'acier utilisé est S 235 donc $\begin{cases}
 \beta_w = 0.8 \\
 \gamma_{mw} = 1.25
 \end{cases}$
- La longueur totale des cordons de soudure de la semelle $\sum l = 233,4$ mm

$$F_{w,Rd} = \frac{6 \times 233, 4 \times 360}{\sqrt{2} \times 0, 8 \times 1, 25} = 35648, 36 \text{daN} \text{ daN}$$

 $N_{sd} = 30341.78 \text{ daN} < F_{w,Rd} = 35648,36 \text{ daN}$ Condition vérifiée.

➢ Vérification de la soudure de l'âme au cisaillement $V_{sd} ≤ F_{v,Rd}$

$$F_{v,Rd} = \frac{a \times \sum l \times f_u}{\sqrt{3} \times \beta_w \times \gamma_{mw}}$$

- La nuance d'acier utilisé est S 235 donc $\begin{cases} \beta_w = 0.8\\ \gamma_{mw} = 1.25 \end{cases}$
- La longueur totale des cordons de soudure de l'âme
- $\sum l = 3 \times b + 2 \times (b t_w 2 \times r) = 3 \times 180 + 2 \times (180 8.6 2 \times 21)$
- $\sum l = 798.8 \text{ mm}$

$$F_{v,Rd} = \frac{5 \times 798.8 \times 360}{\sqrt{3} \times 0.8 \times 1.25} = 83013.7 \text{ daN}$$

 $V_{sd} = 7672.99 \text{ daN} < F_{v,Rd} = 83013.7 \text{ daN}$ Condition vérifiée.

VI.2.1.3 Disposition constructive :

Pour des raisons pratiques, on évite toujours la mise en œuvre dans un même assemblage des boulons de diamètres différents.

On prend deux files de 5 boulons Ø20 classe HR 10.9.

L'épaisseur la plus mince : $t = min(t_f ; t_{platine}) = min (13.5 ; 20) = 13.5 mm$ $d_0 = \emptyset + 2 = 22 mm$

Entraxes (p₁, p₂)

 $2,2 \ d_0 \leq p_1 \leq 14t \quad \text{alors on prend} \ p_1 = 120 \ mm$

 $3 \ d_0 \leq p_2 \leq 14t \quad \ \ Alors \ on \ prend \ p_2 = 70 \ mm$

- **> Pinces** (e₁, e₂)
 - $1,2 \ d_0 \leq e_1 \leq 12t \quad \text{ Alors on prend } e_1 = 80 \ \text{mm}$
 - $1,5 \ d_0 \leq e_2 \leq 12t \quad \text{ Alors on prend } e_2 = 55 \ \text{mm}$

VI.2.1.4 Calcul de la hauteur de la partie comprimée :

$$x = t_f \times \sqrt{\frac{b}{t_w}} = 13.5 \times \sqrt{\frac{180}{8,6}} = 61.76 \text{ mm}$$

L'âme neutre se trouve au-dessous de la dernière rangée Tous les boulons sont tractés.

VI.2.1.5 Vérification à la traction :

$$F_{t.Sd} \le F_{t.Rd}$$
 (Tableau 65.3/CCM97)

Avec:

F_{t.Sd} : L'effort de traction du boulon le plus sollicité.

$$F_{t,Sd} = \frac{M_{sd} \times h_1}{2 \times \sum h_i^2} = \frac{22301.21 \times 0.093}{2 \times (0.093^2 + 0.203^2 + 0.353^2 + 0.473^2 + 0.593^2)}$$

 $F_{t,Sd} = 1382.94 \text{ daN}$

$$\begin{split} F_{t,Rd} &= 0.9 \times \frac{A_s \times f_{ub}}{\gamma_{mb}} = 0.9 \times \frac{245 \times 1000}{1.25} = 17640 \text{ daN} \\ F_{t,Sd} &= 1382.94 \text{ daN} < F_{t,Rd} = 17640 \text{ daN} \end{split}$$
 Condition vérifiée.

VI.2.1.6 Vérification au glissement :

 $V_{sd} \le n F_{s,Rd}$

Avec: n le nombre de boulons n = 10

$$F_{s,Rd} = \frac{k_s \times n \times \mu \times F_{P,Cd}}{\gamma_{ms}}$$
(§6.5.6 (1)/CCM97)

Avec :

$$\begin{cases} k_s = 1 & \text{trou nominal} \\ n = 1 & \text{un plan de glissement} \\ \mu = 0,3 & \text{coefficient de frottement (brossé)} \end{cases}$$

$$\begin{split} F_{P,Cd} &= 0.7 \times f_{ub} \times A_s \quad (\$6.5.6.2(1)/CCM97) \\ F_{P,Cd} &= 0.7 \times 1000 \times 245 = 17150 \text{ daN} \\ F_{s,Rd} &= \frac{1 \times 1 \times 0.3 \times 17150}{1.1} = 4677.27 \text{ daN} \\ V_{sd} &= \frac{7672.99}{10} = 767.29 \text{ daN} < F_{s,Rd} = 4677.27 \text{ daN} \end{split}$$

VI.2.1.7 Vérification de la résistance de l'âme du poteau dans la zone tendue :

$$\begin{split} F_V &\leq F_{t,Rd} \\ F_{t,Rd} = t_w \times p_1 \ \times \frac{f_y}{\gamma_{m0}} = 8 \times 120 \times \frac{235}{1,1} = 20509.09 \ \text{daN} \\ F_v &= \frac{M_{sd}}{h-t_f} = \frac{22301.21}{0,735-0.013} = 30888.10 \ \text{daN} \\ F_V &= 30888.10 \ \text{daN} \ > \ F_{t,Rd} = 20509.09 \ \text{daN} \quad \text{Condition non vérifiée.} \end{split}$$

Donc : on prévoit un raidisseur d'épaisseur 10 mm

VI.2.1.8 Vérification de la résistance de l'âme du poteau dans la zone comprimée :

$$N_{sd} \leq F_{c,Rd}$$

$$F_{c,Rd} = \frac{k_c \times b_{eff} \times \rho \times t_{wc} \times f_y}{\gamma_{m1} \times \sqrt{\left(1 + 1.3 \times \frac{b_{eff}}{h}\right)^2}}$$
$$b_{eff} = t_{fb} + 2a_p \times \sqrt{2} + 5(t_{fc} + r_c) + 2t_p$$

Avec : $t_{fb} : \text{Épaisseur semelle poutre,}$ $t_{fc} : \text{Épaisseur semelle poteau,}$ $t_{p} : \text{Épaisseur platine,}$ $r_{c} : \text{Rayon de raccordement âme-semelle du poteau,}$ $a_{p} : \text{Épaisseur de la gorge de la soudure}$ $b_{eff} = 13.5 + 2 \times 6 \times \sqrt{2} + 5 \times (13 + 24) + 2 \times 20 = 255.47 \text{ mm}$

$$\sigma_{c,Sd} ~\leq~ 0.7 \; f_y ~~ \rightarrow ~~ k_c \;=\; 1$$

$$\sigma_{c,Sd} > 0.7 f_y \rightarrow k_c = 1.7 - \sigma_{c,Sd} / f_y$$

 $\sigma_{c,Sd}$: Contrainte normale de compression ans l'âme du poteau dû à l'effort

de compression et au moment fléchissant.

$$\sigma_{c,Sd} = \frac{V_{sd}}{A_c} + \frac{M_{sd} \times z_{max}}{I_y} = \frac{7672.99}{9730} + \frac{22301.21 \times 10^3 \times 135}{13670 \times 10^4} = 228.1 \text{ MPa}$$

$$\begin{split} \sigma_{c,Sd} &= 228.1 \text{ Mpa} > 0.7 \text{ f}_y = 164,5 \text{ Mpa} \\ &\rightarrow k_c = 1,7 - \sigma_{c,Sd} \ /\text{f}_y = 1,7 - 228.1 \ /235 = 0.72 \\ \hline \overline{\lambda_P} &\leq 0,72 \quad \rightarrow \quad \rho = 1 \\ \hline \overline{\lambda p} &> 0,72 \quad \rightarrow \quad \rho = (\overline{\lambda_p} - 0,2) / \overline{\lambda_p}^2 \\ \hline \overline{\lambda p} &= 0,0932 \times \sqrt{\frac{b_{eff} \times d_{wc} \times f_y}{E \times t_{wc}^2}} = 0,0932 \times \sqrt{\frac{255.47 \times 196 \times 235}{210000 \times 8^2}} = 0,087 \\ \hline \overline{\lambda p} &= 0,087 \leq 0,72 \quad \rightarrow \quad \rho = 1 \end{split}$$

$$F_{c,Rd} = \frac{0.72 \times 255.47 \times 1 \times 8 \times 235}{1.1 \times \sqrt{\left(1 + 1.3 \times (\frac{255.47}{270})^2\right)}} = 21370.97 \text{ daN}$$
$$N_{sd} = \sum_{i=1}^{5} N_i$$

- $h_1 = 555mm$
- $h_2 = 435 mm$
- $h_3 = 315$ mm
- $h_4 = 265mm$
- $h_5 = 155mm$

$$\begin{split} N_{1} &= \frac{M_{sd} \times h_{1}}{\Sigma h_{i}^{2}} = \frac{22301,21 \times 0,555}{2.95} = 4778,82 \text{daN} \\ N_{2} &= \frac{M_{sd} \times h_{2}}{\Sigma h_{i}^{2}} = \frac{22301,21 \times 0,435}{2.95} = 3745,57 \text{ daN} \\ N_{3} &= \frac{M_{sd} \times h_{3}}{\Sigma h_{i}^{2}} = \frac{22301,21 \times 0,315}{2.95} = 2712,30 \text{ daN} \\ N_{4} &= \frac{M_{sd} \times h_{4}}{\Sigma h_{i}^{2}} = \frac{22301,21 \times 0,265}{2.95} = 2281.78 \text{ daN} \\ N_{5} &= \frac{M_{sd} \times h_{5}}{\Sigma h_{i}^{2}} = \frac{22301,21 \times 0,155}{2.95} = 1334,62 \text{ daN} \\ N_{sd} &= 14853.09 \text{ daN} < F_{c,Rd} = 21370.97 \text{ daN} \end{split}$$

VI.2.1.9 Vérification de la résistance de l'âme du poteau dans la zone cisaillée :

 $F_V \leq V_{Rd}$

$$V_{Rd} = 0,58 \times \frac{f_y \times A_v}{\gamma_{m0}}$$

$$A_v = A - 2 \times b \times t_f + (t_w + 2r) \times t_f = 31,78 \text{ cm}^2$$

$$F_v = \frac{M_{sd}}{h - t_f} = \frac{22301.21}{0,735 - 0.013} = 30888.10 \text{ daN}$$

$$\begin{split} V_{Rd} &= 0{,}58 \times \frac{2350 \times 31{,}78}{1{,}1} = 39378{,}3 \text{ daN} \\ F_v &= 30888.10 \ 33211.03 \ \text{daN} \ < \ V_{Rd} \ = 39378{,}3 \ \text{daN} \ \text{Condition vérifiée.} \end{split}$$

VI.2.2. Assemblage traverse – traverse (IPE400 – IPE400) :

Le principe de l'assemblage est de souder une platine en bout de traverse, elle est percée symétriquement de part et d'autre de l'âme de la traverse. Les mêmes perçages qui sont effectués sur la platine soudée en bout de l'autre traverse.

Figure VI.5: Assemblage traverse-traverse.

VI.2.2.1 Efforts sollicitant :

Les efforts sollicitant de l'assemblage sous la combinaison 1,35. G+1,5. V₂:

 \succ $M_{sd} = 13169 \ daN.m$

$$\succ$$
 $V_{sd} = 3992 \ daN$

VI.2.2.2 Disposition constructive :

Pour des raisons pratiques, on évite toujours la mise en œuvre dans un même assemblage des boulons de diamètres différents.

On prend deux files de 5 boulons Ø18classe HR 10.9

L'épaisseur la plus mince : $t = min(t_f; t_{platine}) = min(13.5; 12) = 12 mm$

 $d_0 = \emptyset + 2 = 20 \text{ mm}$

> Entraxes (p_1, p_2)

 $2,2 \ d_0 \leq p_1 \leq 14t \ \text{ alors on prend } p_1 = 130 \ \text{mm}$

 $3 \ d_0 \leq p_2 \leq 14t \quad \ \ Alors \ on \ prend \ p_2 = 100 \ mm$

- $\succ \text{ Pinces } (e_1, e_2)$
- $1,2 \ d_0 \leq e_1 \leq 12t \quad \ \ Alors \ on \ prend \ e_1 = 80 \ mm$
- $1,5 \ d_0 \leq e_2 \leq 12t \quad \text{ Alors on prend } e_2 = 40 \ \text{mm}$

VI.2.2.3 Vérification de moment résistant effectif de l'assemblage :

$$\begin{split} M_{sd} &\leq M_{Rd} \\ M_{Rd} &= \frac{n \times F_{p,cd} \times \sum h_i^2}{h_1} \\ \sum h_i^2 &= (80^2 + 120^2 + 240^2 + 320^2 + 400^2) = 340800 \text{ mm}^2 = 0,3408 \text{ m}^2 \end{split}$$

$$\begin{split} F_{p,cd} &= 0.7 \times f_{ub} \times A_s = 0.7 \times 1000 \times 192 = 13440 \text{ daN} \\ M_{Rd} &= \frac{2 \times 13440 \times 0.3408}{0.4} = 22731.36 \text{ daN. m} \\ M_{sd} &= 13169 \text{ daN. m} < M_{Rd} = 22731.36 \text{ daN. m} \end{split}$$

VI.2.2.4 Vérification de l'assemblage sous l'effort tranchant :

$$V_{t,sd} \le n \cdot F_{s,Rd}$$
$$F_{s,Rd} = \frac{k_s \times m \times \mu}{\gamma_{m2}} \times F_{p,cd}$$

• F_{p,cd}: la précontrainte de calcul

 $F_{p,cd} = 0.7 \times f_{ub} \times A_s = 0.7 \times 1000 \times 192 = 13440 \text{ daN}$ (§6.5.6.2 (1)/CCM97)

- V_{t,sd}: Effort de calcul par boulon
- m : le nombre de surfaces de frottements (m = 1)
- μ : le coefficient de frottement dépendant de la classe de traitement de surface (μ =0,3)
- $k_s = 1$ pour les trous à tolérances normales.

$$F_{s,Rd} = \frac{1 \times 1 \times 0.3}{1,25} \times 13440 = 3225.6 \text{ daN}$$

$$F_{v,sd} = \frac{3992}{10} = 399.2 \text{ daN} < F_{s,Rd} = 3225.6 \text{ daN}$$
 Condition vérifiée.

VI.2.3. Assemblage des contreventements (2*CAE90×90) :

Cet assemblage est réalisé avec boulonnage de la barre de la stabilité avec le gousset soudé avec la semelle de poteau.

Les deux barres qui forment un X sont boulonnées avec un gousset au milieu.

Figure VI.6: Assemblage stabilité en X.

VI.2.3.1 Efforts sollicitant :

Les efforts sollicitant de l'assemblage sous la combinaison 1.35.G + 1.5.Q :

 $N_{sd} = 2166.17 \text{ daN}$

VI.2.3.2 Caractéristiques du gousset :

- La dimension du gousset : 660×660 mm²
- Le diamètre de trou $d_0 = 18 \text{ mm}$
- On suppose t = 10 mm

VI.2.3.3 Disposition constructive :

L'assemblage est réalisé avec une file de 3 boulons Ø16 classe 8.8 dans chaque côté de la barre.

 $t = min(t_w; t_{gousset}) = min(9; 10) = 9 mm$

- $d_0 = \emptyset + 2 = 18 \text{ mm}$
- > Entraxes (p1)

2,2 $d_0 \leq p_1 \leq 14t$ alors on prend $p_1 = 80 \mbox{ mm}$

Pinces (e1)

1,2 $d_0 \le e_1 \le 12t$ alors on prend $e_1 = 40 \text{ mm}$

VI.2.3.4 Vérification au cisaillement :

$$V_{sd} \le n F_{v.Rd}$$

Avec : n le nombre des boulons n = 3

$$F_{v.Rd} = 0.5 \times \frac{A_s \times f_{ub}}{\gamma_{mb}} \quad \text{(Tableau 65.3/CCM97)}$$

$$F_{v.Rd} = 0.5 \times \frac{157 \times 800}{1.25} = 10048 \text{ daN}$$

$$F_{v.sd} = \frac{N_{sd}}{3} = 722.05 \text{ daN} < F_{v,Rd} = 10048 \text{ daN}$$

Condition vérifiée.

VI.2.3.5 Vérification de la pression diamétrale :

$$\frac{N_{sd}}{n} \le F_{b,Rd}$$

$$F_{b,Rd} = \frac{2.5 \times \alpha \times f_u \times d \times t}{\gamma_{mb}}$$
(Tableau 65.3/CCM97)
$$Avec: \alpha = \min\left(\frac{e_1}{3d_0}; \frac{p_1}{3d_0} - \frac{1}{4}; \frac{f_{ub}}{f_u}; 1\right) = \min(0.74; 1.23; 2.23; 1) = 0.74$$

$$F_{b,Rd} = \frac{2.5 \times 0.74 \times 360 \times 16 \times 9}{1.25} = 7672.3 \text{ daN}$$

$$F_{v.sd} = \frac{N_{sd}}{3} = 722.05 \text{ daN} < F_{b,Rd} = 7672.3 \text{ daN}$$

Condition vérifiée.

VI.2.4. Ancrage pied de poteau :

Figure VI.11: Ancrage pied de poteau.

VI.2.4.1 Effort sollicitant :

Le dimensionnement de la plaque d'assisse d'un HEA 280 se fait sous l'action des charges suivantes :

$$N_{sd} = 16169.52 \text{ daN}$$

 $V_{sd} = 3231.81 \text{daN}$
 $M_{sd} = 7772.39 \text{ daN. m}$

VI.2.4.2 Dimensionnement de la plaque d'assise :

• Resistance du béton à la compression :

$$f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_c$$

$$\gamma_c = 1.5$$
; $\alpha_{cc} = 1$ $\implies f_{cd} = 1 \times 25/1.5 = 16.7 \text{ N/mm}^2$

• Resistance de calcul à l'écrasement du matériau de scellement :

$$f_{jd} = \alpha . \beta j . f_{cd}$$

 $\beta j = 2/3$: La valeur du coefficient du matériau de scellement

 $\alpha = 1,5$: Les dimensions de la fondation étant inconnues

$$f_{jd} = \alpha. \beta j. f_{cd} = 16,7 \text{ N/mm}^2$$

• Estimation de l'aire de la plaque d'assise :

$$A_{co} = \max\left(\frac{1}{h.b} \times \left(\frac{N_{sd}}{f_{cd}}\right)^2; \frac{N_{sd}}{f_{cd}}\right)$$
$$A_{co} = \max\left(\frac{1}{270 \times 280} \times \left(\frac{161695.2}{16,7}\right)^2; \frac{161695.2}{16,7}\right)$$
$$A_{co} = \max\left(1240.05; 9682.34\right) = 9682.34 \ mm^2$$

• Choix du type de la plaque d'assise :

 $A_{co} = 9682.34 < 0.95 h.b = 0.95 \times 270 \times 280 = 71820 mm^2$

 \rightarrow Une plaque à projection courte est satisfaisante Les dimensions de la plaque d'acier :

$$b_p \ge b + 2t_f = 280 + 2 \times 13 = 306 mm$$

 $h_p \ge h + 2t_f = 270 + 2 \times 13 = 296 mm$

On prend : $b_p = 560 mm$; $h_p = 540 mm$

Ce qui donne : $A_{co} = 560 \times 540 = 302400 \ mm^2 > 9682.34 \ mm^2$

• Calcul de la largeur d'appui additionnelle C :

En posant : t = 25 mm comme épaisseur de la platine.

$$C = t \left(\frac{f_{yp}}{3.f_{jd}.\gamma_{m0}}\right)^{0.5} = 25 \times \left(\frac{235}{3 \times 16.7 \times 1.1}\right)^{0.5} = 51.62 \ mm$$
$$C = 51.62 < \frac{h - 2t_f}{2} = 122 \ mm$$

 \rightarrow Il n'y a pas de recouvrement des ails en compression pour les tronçons des deux semelles.

• Détermination de l'épaisseur de la plaque d'assise :

L'épaisseur de la plaque devra satisfaire aux conditions suivantes :

$$t_p \ge t_{p.min} = c \sqrt{\frac{3 \times f_j \times \gamma_{m0}}{f_y}} = 51.62 \times \sqrt{\frac{3 \times 16,67 \times 1,1}{235}} = 24.97 \ mm$$

 \rightarrow On adopte une épaisseur de la plaque d'assise de : $t_p = 25 mm$

• Cordon de soudure :

On choisit le cordon de soudure platine-poteau à l'aide de l'abaque de pré- dimensionnement de la gorge :

HEA 280 : $t_w = 8 mm$; $t_f = 13 mm$ $a_{min} = 2.6 mm \le a_w \le a_{max} = 7.2 mm$ $a_{min} = 3.8 mm \le a_f \le a_{max} = 9.4 mm$

On choisit un cordon de soudure de 5 mm

Calcul de la résistance à la flexion en présence de l'effort axial :
 > Resistance en compression d'un tronçon en T de la semelle :

 $F_{c.Rd} = f_{id} \times b_{eff} \times l_{eff}$

Fig. VI.6 Illustration de la partie comprimée du pied de poteau

 $l_{eff} = \min(b_p; b_{fc} + 2c) = \min(560; 280 + 2(51.62)) = 383,24 \, mm$ $b_{eff} = \min\left(c; \frac{h}{2} - t_{fc}\right) + t_{fc} + \min\left(c; \frac{h_p - h_c}{2}\right)$ $b_{eff} = \min\left(51,62; \frac{270}{2} - 13\right) + 13 + \min\left(51,62; \frac{540 - 270}{2}\right) = 116,24 \, mm$

 $\rightarrow F_{c.Rd} = 16,7 \times 383,24 \times 116,24 = 74394.85 \, daN$

Resistance au cisaillement de l'assemblage :

$$F_{v.sd} < F_{w.Rd} = F_{f.Rd} + n_b \times F_{vb.Rd}$$

Résistance par frottement en présence d'un effort axial de compression:

$$F_{f.Rd} = 0.2$$
. $N_{sd} = 0.2 \times 16169.52 = 3233.904 \, daN$

Pour 4 tiges M30 de classe 8.8 : le choix est justifié par le logiciel ROBOT

 $A_{S} = 561 \ mm^{2}$

$$F_{vb,Rd} = \frac{\alpha_{cb} \times A_s \times f_{ub}}{\gamma_{m2}}$$

 $\alpha_{cb} = 0.44 - 0.0003. f_{yb} = 0.44 - 0.0003 \times 640 = 0.248$

$$F_{vb,Rd} = \frac{0,248 \times 561 \times 800}{1.25} = 8904.19 \ daN$$

 $F_{w,Rd} = 3233.904 + 8904.19 \times 4 = 38850.664 \ daN > F_{v,sd} = V_{sd} = 3231.81 \ daN$ Condition vérifiée

Résistance au cisaillement de la soudure :

$$V_{sd} \le F_{v,Rd} = \frac{a_w \times \sum l \times f_u}{\sqrt{3} \times \beta_w \times \gamma_{mw}}$$

Avec : $\beta_w = 0.8$; $\gamma_{mw} = 1.25$; $a_w = 5 mm$

La longueur totale des cordons de soudure de l'âme :

$$\sum l = 2 \times (h - 2.t_{f} - 2.r) = 2 \times (270 - 2 \times 13 - 2 \times 24) = 392 mm$$

$$F_{v,Rd} = \frac{5 \times 392 \times 360}{\sqrt{3} \times 0.8 \times 1.25} = 40737.83 daN$$

$$V_{sd} = 3231.81 daN < F_{v,Rd} = 40737.83 daN$$
Condition vérifiée

Donc : la soudure de l'âme résiste au cisaillement.

> Longueurs participantes du tronçon en T équivalent tendu :

Calcul de Longueurs efficaces du tronçon en T :

W = 320 mm; e = 60 mm; ex = 70 mm; mx = 75 mm

• Mécanisme circulaire :

$$l_{eff,cp} = \min \begin{cases} 2 \pi mx = 471,23 \ mm \\ \pi mx + w = 555,61 \ mm \rightarrow l_{eff,cp} = 355,61 \ mm \\ \pi mx + 2e = 355,61 \ mm \end{cases}$$

• Mécanisme non circulaire :

$$l_{eff,np} = \min \begin{cases} 4 mx + 1,25ex = 387,5 mm \\ 2 mx + 0,625ex + \frac{w}{2} = 353,75 mm \\ 2 mx + 0,625ex + e = 253,75 mm \rightarrow l_{eff,np} = 253.75 mm \\ \frac{bp}{2} = 280 mm \end{cases}$$

• Vérification de la résistance de tiges d'ancrage :

$$F_{t,anc,Rd} = min[f_{t,bond,Rd}; f_{t,Rd}]$$

Résistance du boulon d'ancrage a la traction :

$$F_{t,Rd} = \frac{0.9 \times A_s \times f_{ub}}{\gamma_{mb}} = \frac{0.9 \times 561 \times 800}{1.25} = 32313.6 \, daN$$

Calcul de la contrainte d'adhérence:

On a : $d \le 32 mm$

$$F_{bd} = \frac{0.36\sqrt{f_{ck}}}{\gamma_c} = \frac{0.36 \times \sqrt{25}}{1.25} = 1.2 MPa$$

Résistance de calcul par adhérence entre le béton et le boulon d'ancrage :

$$F_{t,bond,Rd} = \frac{\pi \times d \times l_b \times f_{bd}}{\alpha}$$

d : Diamètre de la tige d = 30 mm l_b : L'encrage dans le béton $l_b = 640 mm$ f_{ck} : Résistance du béton : $f_{ck} = 25 MPa$ α : Facteur tenant en compte la forme de la tige : crochet $\rightarrow \alpha = 0.7$

$$F_{t,bond,Rd} = \frac{\pi \times 30 \times 640 \times 1.2}{0.7} = 10340.32 \text{ daN}$$

$$F_{t,anc,Rd} = min \left[F_{t,bond,Rd}; F_{t,Rd} \right] = min \left[10340.32; 32313.6 \right] = 10340.320 \ daN_{t,anc,Rd} = 10340.320 \ daN_{t,a$$

• Résistance de la partie tendue de l'assemblage :

Vérification de la présence de l'effet de levier

L^b : Longueur d'allongement du boulon d'ancrage

$$L_b = 8.d + e_m + t_p + t_{wa} + 0.5.k$$

 t_{wa} : Épaisseur de la rondelle $t_{wa} = 5 mm$

k : Épaisseur de l'écrou $k = 0.8 d = 0.8 \times 30 = 24 \text{ mm}$

 e_m : Épaisseur de mortier de calage : $e_m = 30 \ mm$

$$L_b = 8 \times 30 + 30 + 25 + 5 + 0.5 \times 24 = 312 mm$$

 L_b^* : Longueur limite d'allongement du boulon d'ancrage :

$$l_{eff,1} = \min(l_{eff,nc}; l_{eff,np}) = 253.75mm$$

$$L_b^* = \frac{8.8 \times mx^3 \times A_s}{l_{eff,1} t_p^3} = \frac{8.8 \times 75^3 \times 561}{253.75 \times 25^3} = 276.08mm$$

 $\rightarrow L_b^* = 276.08 \ mm \ < L_b = 312 \ mm$ Condition vérifiée

• Résistance à la flexion de la plaque d'assise (par unité de longueur)

$$m_{pl,Rd} = \frac{t_p^2 f_{yp}}{4 \times \gamma_{m0}} = \frac{25^2 \times 235}{4 \times 1,1} = 3338.06 \ daN$$

Résistances à la flexion de la plaque d'assise :

Mode1 : $M_{pl,1,Rd} = m_{pl,Rd} \times l_{eff;1} = 847.03 \ daN.m$ $l_{eff,1} = \min(l_{eff,nc}; l_{eff,np}) = 253.75 \ mm$

• Calcul de la résistance de l'assemblage à la traction

La résistance finale de l'assemblage d'un tronçon en T équivalent tendu pris égale à la valeur de résistance la plus petite des modes de ruine.

$$F_{T,Rd} = \min(F_{t,1-2,Rd}; F_{t,3,Rd}; F_{t,4,Rd})$$

✓ Mode 1-2:

$$F_{t,1-2,Rd} = \frac{2.M_{pl,1,Rd}}{m_x} = \frac{2 \times 847.03}{0.075} = 22587.46 \, daN$$

✓ Mode 3:

$$F_{t,3,Rd} = 2.F_{t,Rd,anchor} = 2 \times 10340.320 = 20680.640 \, daN$$

✓ Mode 4:

$$F_{t,4,Rd} = \frac{b_{eff,t.}t_w.f_y}{\gamma_{m0}} = \frac{253.75 \times 8 \times 235}{1.1} = 40291.81 \ daN$$

Avec :

 $b_{eff,t} = l_{eff,1} = 253.75 mm$

$$F_{T,Rd} = \min(F_{t,1-2,Rd}; F_{t,3,Rd}; F_{t,4,Rd}) = 20680.64 \, daN$$

TIARETI W/CHABANE A

• Vérification à la résistance en flexion :

Moment de flexion dominant:

$$M_{sd} \le M_{Rd} = min\left[\frac{-F_{C,Rd} \times Z}{\frac{Z_T}{e_N} - 1}; \frac{F_{T,Rd} \times Z}{\frac{Z_c}{e_N} + 1}\right]$$
$$Z = Z_T + Z_c = 210 + 128.5 = 288.5 mm$$
$$e_N = \frac{Msd}{Nsd} = \frac{7772.39}{16169.52} = 0.48$$

$$Z_T = 210 \text{ mm}$$

 $Z_T = \frac{h}{2} - \frac{tf}{2} = \frac{270}{2} - \frac{13}{2} = 128.5 mm$

Fig VI.7 Illustration moment+effort normal

$$M_{Rd} = min\left(\frac{-74394.85 \times 0.2885}{\frac{0,21}{0,48} - 1}; \frac{20680.64 \times 0.2885}{\frac{0,1285}{0,48} + 1}\right)$$
$$M_{Rd} = min(38156.29; 8706.27) = 8706.27 daN$$
$$M_{sd} = 7772.39 \le M_{Rd} = 8706.27$$
Condition vérifiée

VI.3. Conclusion :

Ce chapitre traite l'étude des assemblages entre les différents éléments de la structure pour assurer la stabilité et la sécurité de cette dernière, ces éléments sont (poteau- traverse ; traversetraverse ; contreventements et pied de poteau)

Chapitre VII

Dimensionnement des éléments de fondation

VII.1. INTRODUCTION :

Les fondations d'une construction sont faites pour transmettre toutes les sollicitations de la superstructure au sol, elles constituent donc la partie essentielle de l'ouvrage car elle assure la stabilité générale de la structure.

Le calcul va se faire au début sur les pieds de poteaux en déterminant toutes les dimensions et paramètres, ensuite l'étude de l'infrastructure qui demande la reconnaissance géologique et géotechnique du terrain, car l'étude des fondations et leurs dimensions dépendent des caractéristiques physiques et mécaniques du sol.

VII.2. CHOIX DU TYPE DE FONDATION :

Le choix du type de fondation s'effectue en respectant les critères essentiels à savoir :

- Stabilité totale de la structure.
- Solution économique et facile à réaliser.
- Type de construction.
- Caractéristiques du sol.
- Charges apportées par la structure.

VII.3. Caractéristiques géotechniques :

Absence de rapport géotechnique on suppose la contrainte de sol :

 $\overline{\sigma_{sol}} = 2$ bars

VII.4. Dimensionnement des semelles :

On va dimensionner pour des semelles isolées sollicitées à un effort normal et on prend les valeurs de charges les plus importantes sous la combinaison la plus défavorable qui est :

1.35.G + 1.5.Q = 2307.30 daN

Avec : $N_{sd} = 2307.30 \text{ d}a\text{N}$

VII.4.1. Dimensionnement des semelles :

Dimensions de la plaque d'assise $\begin{cases} a = 560 \ mm \\ b = 540 \ mm \end{cases}$

$$\frac{A}{B} = \frac{a}{b} \rightarrow A = 1.03 \times B$$

On doit vérifiée que: $\sigma_{cal} \leq \overline{\sigma_{sol}}$

Avec :

$$\overline{\sigma_{sol}} = \frac{N_s}{A \times B}$$
$$A \times B \le \frac{N_s}{\overline{\sigma_{sol}}}$$
$$1.03 \times B \ge \sqrt{\frac{N_s}{\overline{\sigma_{sol}}}}$$

$$B \ge \sqrt{\frac{23073}{20000}} \times \frac{1}{1.03} = 1.04 \ m$$

On prend : $\begin{cases} A = 2.5 m \\ B = 2 m \end{cases}$

Hauteur de la semelle :

$$d \ge \frac{A-a}{4} = \frac{250-56}{4} = 48.5 \text{ cm}$$

On prend : d = 50 cm

Alors : h = d + 5 = 50 + 5 = 55 cm

Figure VII.1: Dimensions de la semelle.

> Calcul Ferraillage :

Par la méthode des bielles

• Calcul de A_a :

ELU : 1,35. G +1,5. Q

 $N_{sd}=2307.30\ daN$

$$A_u = \frac{N_U \times (A - a)}{8 \times d \times \sigma_{st}}$$

Avec :

$$\sigma_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 347.826 \text{ MPa}$$
$$A_u = \frac{2307.30 \times (2.5 - 0.56)}{8 \times 0.50 \times 347.826 \times 10^5} = 0.32 \text{ cm}^2$$

ELS : G + Q :

 $\mathrm{N_{sd}~=1722.68~daN}$

$$A_{s} = \frac{N_{s} \times (A - a)}{8 \times d \times \overline{\sigma_{sol}}}$$

Avec :

$$\overline{\sigma_{sol}} = \min\left(\frac{2}{3}f_e; 110\sqrt{\eta \times f_{t28}}\right) = 201,63 \text{ MPa}$$

$$A_{s} = \frac{1722.68 \times (2.5 - 0.56)}{8 \times 0.50 \times 201.63 \times 10^{5}} = 4.14 \text{ cm}^{2}$$

• Calcul de Ab:

ELU : 1,35. G + 1,5. Q

 $N_{sd}=2307.30\ daN$

$$A_{u} = \frac{N_{U} \times (B - b)}{8 \times d \times \sigma_{st}}$$

Avec

$$\sigma_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 347.826 \text{ MPa}$$
$$A_u = \frac{2307.30 \times (2 - 0.54)}{8 \times 0.50 \times 347.826 \times 10^5} = 0.24 \text{ cm}^2$$

ELS: G + Q

$$\begin{split} N_{sd} &= 1722.68 \text{ daN} \\ A_s &= \frac{N_s \times (B-b)}{8 \times d \times \overline{\sigma_{sol}}} \\ \text{Avec}: \\ \overline{\sigma_{sol}} &= \min\left(\frac{2}{3} \text{f}_e; 110 \sqrt{\eta \times f_{t28}}\right) = 201,63 \text{ MPa} \\ A_s &= \frac{1722.68 \times (2-0.54)}{8 \times 0.50 \times 201,63 \times 10^5} = 3.11 \text{ cm}^2 \end{split}$$

TIARETI W/CHABANE A

:
On prend : 10T14 avec : $A_{st} = 15.39 \text{ cm}^2$ pour les deux directions.

Vérification de condition de non-fragilité :

$$A_{st} \ge 0,23 \times B \times d \times \frac{f_{t28}}{f_e}$$

Avec :

$$\begin{aligned} A_{st} &= 15.39 \text{ cm}^2 \\ 0.23 \times 2 \times 0.50 \times \frac{(0.06 \times 25 + 0.6)'}{400} = 12.07 \text{ cm}^2 < A_{st} = 15.39 \text{ cm}^2 \\ A_{st} &= 15.39 \text{ cm}^2 > 12.07 \text{ cm}^2 \quad \text{condition vérifiée.} \end{aligned}$$

Calcul de l'espacement :

 $S_t \le min(15. \phi_{lmin}; 40 \text{ cm}) = min(1.5 \times 1.4; 40 \text{ cm}) = 21 \text{ cm}$ (A.8.1, 3/BAEL91).

Figure VII.2: Vue en élévation du ferraillage.

VII.4.2. Dimensionnement des fûts :

Ce type de fondations est utilisé lorsque la couche de mauvais sol a une épaisseur inférieure à 5 m ou dans le cas des sols gonflants.

Les fondations sont ancrées à A = 2.5 m ; l'assemblage platine massif doit être au-dessous du sol. Donc on prévoit un poteau en BA (fut) de dimension (60×60) cm².

Calcul ferraillage :

D'après le RPA99/Version 2003 (article 7.4.2.1) la section minimale d'armateur longitudinale est : $A_{min} = 0.8\%$. B

Alors : $A_{min} = 0.8\% \times (60 \times 60) = 28.8 \text{ cm}^2$

On prend : 15T16 avec : A = 30,16 cm².

Avec des Cadres Ø8

Figure VII.3: Ferraillage de la semelle.

VII.5. CALCUL DES LONGRINES :

Les longrines sont pour rôle de relier les semelles entres elles, elles sont soumises a un effort de traction.

Dimensionnement des longrines :

Selon le RPA99/Version 2003, pour un sol de type $S_{3,}$ les dimensions minimales de la section transversale des longrines sont : 30 cm \times 40 cm

> Calcul de ferraillage :

Les longrines doivent être calculées pour résister à la traction sous l'action d'une force égale à :

$$F = \frac{N_{sd}}{\alpha} \ge 20 \text{ kN}$$
 (RPA99 version 2003. Article. 10.1.1.b)

Avec :

 $N_{sd} = 2307.30 \text{ daN}$ (calculée par ROBOT sous le combinaison 1.35. G + 1.5. Q). $\alpha = \text{Coeficient fonction de la zone et de la catégorie de site.}$

Pour notre cas : zone sismique IIa et catégorie de site S3 $\rightarrow \alpha = 12$

• L'ELU: $F = \frac{N_U}{\alpha} = \frac{2307.30}{12} = 192.27 \text{ daN} < 2000 \text{ daN Condition non vérifiée.}$

$$\rightarrow A_{\rm u} = \frac{F}{\sigma_{\rm stu}} = \frac{192.27}{347.826 \times 10} = 0.055 \,{\rm cm}^2$$

• L'ELS :

 $F = \frac{Ns}{\alpha} = \frac{1722.68}{12} = 143.55 \text{ daN} < 2000 \text{ daN} \text{ Condition non vérifiée.}$ $\rightarrow A_u = \frac{F}{\sigma_{stu}} = \frac{143.55}{201.63 \times 10} = 0.07 \text{ cm}^2$

Le RPA99/V2003 exige une section minimale :

 $A_{min} = 0.6\%$. B = 0.6 % × (30 × 40) cm² = 7.2 cm²

Donc : on prend 6T14 avec : $A_{st} = 9,24 \text{ cm}^2$

• Vérification de condition de non-fragilité

$$A_{st} \ge 0,23 \times b \times d \times \frac{f_{t28}}{f_e}$$

Avec :

$$A_{st} = 9,24 \text{ cm}^2$$
; $f_{t28} = 2,1 \text{MPa}$

 $0,23 \times 0,30 \times 0,40 \times \frac{2,1}{400} = 1,449 \text{ cm}^2 < A_{st} = 9,24 \text{ cm}^2$ Condition vérifiée.

• Calcul des armatures transversales $\phi_{\min} \le \min\left(\frac{h}{35}; \phi_{\min}; \frac{b}{10}\right) = \min(11,4; 14; 30) = 11,4 \text{ mm}$

On prend : $\phi_t = 8$ mm.

• Calcul d'espacement des cadres : Le RPA99/V2003 exige des cadres dont l'espacement ne doit pas dépasser :

$$S_t < min(20 \text{ cm}; 15. \phi_t) = min(20 \text{ cm}; 15 \times 0.8) = 12 \text{ cm} \rightarrow \text{on prend} : S_t = 10 \text{ cm}$$
.

Figure VII.4: Coupe transversale de la longrine.

VII.6. CONCLUSION :

Ce chapitre résume l'étude des éléments de fondations reportent les charges permanentes G (poids propre) et les charges d'exploitation Q à un niveau convenable en assurant la stabilité et la sécurité de la structure et la bonne transmission des charges.

CONCLUSION GÉNÉRALE

Cette étude nous a permis d'arriver à certaines conclusions :

L'utilisation du logiciel **ROBOT** dans notre étude a pour but de faciliter les calculs et d'être proche que possible de la réalité pour obtenir des meilleurs résultats.

Dans la structure métallique étudiée, les actions du vent sont les plus défavorables par rapport à l'action sismique.

Le règlement **CCM97** a été utilisé dans ce projet afin de vérifier la stabilité des éléments de la structure cisaillement au déversement. Ces vérifications ont montré que le système structural de l'ouvrage est stable.

La disposition des contreventements a été judicieuse pour assurer le bon comportement global de structure.

La conception des assemblages et l'étude de l'infrastructure a été réfléchie pour assurer la stabilité et la sécurité de la structure.

Enfin, nous souhaitons que ce travail, bien qu'il fût une première expérience dans ce vaste domaine, soit bénéfique et comme référence pour les promotions à venir.

Références bibliographiques :

1. Document Technique Réglementaire D.T.R-BC-2.2 ; CHARGE PERMANENTE ET CHARGE D'EXPLOITATION, centre national de recherche appliquée en génie parasismique (Algérie).

2. Document Technique Réglementaire D.T.R-C-2-47 ; RÈGLEMENT NEIGE ET VENT RNV 99/version 2013, CNERIB

3. Document Technique Réglementaire D.T.R-BC-2-44 ; RÈGLES DE CONCEPTION ET DE CALCUL DES STRUCTURES EN ACIER « CCM 97 » centre national algérien de recherche appliquée en génie parasismique, 1997 (Algérie).

4. Document Technique Réglementaire D.T.R-BC-2-48 ; RÈGLES PARASISMIQUES ALGÉRIENNES « RPA 99/ VERSION 2003 » par le centre national algérien de recherche appliquée en génie parasismique, 2003 (Algérie).

5. Règles techniques de conception et de calcul des ouvrages et des constructions en béton armé suivant la méthode des états limites « BAEL 91 révisée 99 » MINISTÈRES DE L'HABITAT ET DE L'URBANISME, Ed : CSTB 2000 (France).

6. Eurocodes 3et 4.

7. Lahlou Dahmani « CALCUL DES ÉLÉMENTS DE CONSTRUCTION MÉTALLIQUE SELON L'EUROCODE 3 ».

8. Mr. Rais Youcef et Mr. Basri Hamza : « ETUDE D'UNE HALLE INDUSTRIELLE EN CHARPENTE MÉTALLIQUE À HASSI AMEUR, WILAYA D'ORAN », PFE Master, Université Abou Bekr Belkaid de Tlemcen , 2017 - 2018.

9. Mr. Derfouf Abdelillah et Mr. Bendahou Azzedine : « ETUDE D'UNE HALLE INDUSTRIELLE EN CHARPENTE MÉTALLIQUE AVEC PONT ROLLANT À HASSI AMEUR, WILAYA DE TLEMCEN », PFE Master, Université Abou Bekr Belkaid de Tlemcen, 2018 - 2019.

ANNEXES

Annexe A

Chapitre II: Evaluation des charges et surcharges

(Selon RNV - Version2013)

A.1 Coefficient de forme μ – Toiture à un deux versants

A.2 Valeurs de la pression dynamique de référence qréf

Zone	qréf (N/m ³)	
I	375	
П	435	
III	500	
IV	575	

A.3 Définition des catégories de terrain

Catégories de terrain	Kr	ze (m)	Zania (m)	ε
0 Mer ou zone côtière exposée aux vents de mer	0.156	0.003	1	0.38
I Lacs ou zone plate et horizontale à végétation négligeable et libre de tous obstacles.	0.170	0,01	1	0,44
II Zone à végétation basse telle que l'herbe, avec ou non quelques obstacles isolés (arbres, bâtiments) séparés les uns des autres d'au moins 20 fois leur hauteur.	0,190	0,05	2	0,52
III Zone à couverture végétale régulière ou des bâtiments, ou avec des obstacles isolés séparés d'au plus 20 fois leur hauteur (par exemple des villages, des zones suburbaines, des forêts permanentes).	0,215	0,3	5	0,61
IV Zones dont au moins 15% de la surface est occupée par des bâtiments de hauteur moyenne supérieure à 15 m.	0,234	1	10	0,67

A.4 Légende pour les parois verticals

A.5 pour les parois verticais de batiment à base rectangulair

Paroi latérale					Paroi au vent		paroi sous le vent		
А,	A, A' B, B'		B	С		D		E	
C _{pc,10}	Cpc.i	C _{pt,10}	Cps.1	Cpc.Ht	C _{pc,1}	C _{27,10}	C _{pt.1}	C _{pt,10}	Cpc1
- 1,0	-13	- 0.8	- 1,0	- 0	5	+0.8	1,0		0,3

A.6 Légende pour les toitures à deux versants:

Angle de	-			Zones pe	sur vent de	direction ($) = 0^{\alpha}$				
pente	F	-	G		H	Н		I		1	
41	C _{pc.30}	Cpt.1	$C_{ps,10}$	Cpc3	C _{26,10}	Cpi.)	C _{pst,10}	Cpi.1	C _{pt.30}	Cpc	
-45°	-0,0	6	-0	.6	-0,	8	-0,	7	-1.0	-1.5	
+30"	-1,1	-2,0	-0,8	-1.5	-0,	8	-0,	6	-0,8	-1,4	
- 15"	-2.5	-2.8	-1,3	-2,0	-0,9	-1.2	-0,	5	-0.7	-1,2	
.41			12	20			+0	.2	+0,2		
	-440	-4+3	194	-4,0	-0,8	-1,2	-0,	6	-0,	.6	
	-1.7	-2.5	-1,2	-2,0	-0,6	-1.2			+0	2	
	+0.	0	+0	.0.	+0.	0	-0,	0	-0,6		
150	-0,9	-2,0	-0,8	-1,5	-0,	3	-0,	4	-1,0	-1,5	
	+ 0,	2	+ 0	,2	+ 0	.2	+0	0	0.0	0.0	
-0,5		-1,5	-0,5	-1,5	-0,	2	-0,	-0,4		-0,5	
	0,7		0,7		0,4	0,4		0,0		0,0	
450	0,0		0,	0,0)	-0,	2	-0.3		
42	+0,1	+0.7		+0,7		+0,6		0,0		0,0	
60"	+0,	7	+0.7		+0,7		-0,	-0,2		-0,3	
750	+0,1	8	+0,8		+0,8		-0,	-0,2		-0,3	
Angle	de e	F		Zones	pour vent d G	e direction	18 = 90° 11		1		
α	-	C _{26,10}	C _{pc1}	C _{pr.m}	Cpc.7	C _{pt})	C _{pt}	C,	.10	Pid	
-45		-1,4	-2,0	-1,2	-2.0	-1,0	-1,3	-0	.9 -	1.2	
-30		-1,5	-2.1	-1,2	-2.0	-1.0	-1.3	-0	.9 -	1.2	
-15		-1,9	-2.5	-1.2	-2.0	-0.8	-1,2	-0	.8 -	1.2	
-5"		-1.8	-2,5	-1,2	-2,0	-0.7	-1,2	-0	.6 -	1,2	
5°		-1,6	-2.2	-1.3	-2.0	-0.7	-1,2		-0,6		
15*		-1,3	-2,0	-1,3	-2,0	-0,6	-1,2		-0,5		
30*		-1,1	-1.5	-1,4	-2,0	-0,8	+1,2		-0,5		
45°		-1,1	-1,5	-1.4	-2,0	-0,9	-1,2		-0.5		
60°		-1,1	-1,5	-1,2	-2,0	-0,8	~1.0		-0,5		
750		-1,1	-1,5	-1,2	-2.0	-0,8	-1.0		-0.5		

A.7 Coefficient de pression extérieure C_{pe} pour la toiture à deux versants:

A.8 Coefficient de pression intérieure des bâtiments sans face dominante

A.9 Aire de frottement

Type de parol	Schéma	Ap ou Ap / (en m2)
Paroi verticale	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{l} A_{hej} = d \times h_{c} \\ A_{he} = d \times h \end{array}$
Toiture plate ou couverture	d Fr	$A_{\mu} = d \times b$
Toiture à deux versants Vent parallèle aux génératrices	Vent A C	An = (longueur ABC du développé) × d
Toiture à versants multiples - Toiture en sheds Vent parallèle aux génératrices		A ₁₀ = (somme des longueurs des développés de la toiture) × d
Toiture à versants multiples - Toiture en sheds Vent perpendiculaire aux génératrices	Vent A B	$ \begin{array}{c} \mathcal{A}_{\mu} = (\text{longueur AB}) \times \\ d \\ \\ \mathcal{AB} \text{ est la longueur} \\ \text{projetée en plan de la} \\ \text{toiture sans} \\ \text{considérer le premier} \\ \text{et le dernier versant} \end{array} $
Toiture en forme de voûte Vent parallèle aux génératrices		Ap = (longueur de Farc AB) = d

ANNEXE B

Chapitre III : Dimensionnement des éléments secondaires et principaux (CCM 97)

B-1) calcul des chéneaux (selon le calcul pratique des ossatures métalliques -par C.G.S).

Abaque B2

B-2) Coefficient C1 :

Chargement at	Diagramme de	Valeur de		Coefficients	
conditions d'appuis	moment de flexion	k	Ć,	C ₂	O ₃
¥	WIIIIIII	1,0	1,132	0,459	0,525
+	Alith	0,5	0,972	0,804	0,980
*	N 1	1,0	1,285	1,552	0,753
J		0,5	6,712	0,652	1.070
1F		1,0	1,365	0,553	1,730
· · · · ·		0,5	1,070	0,432	3,050
		1,0	1,565	1,267	2,640
k t h	4	0,5	0,938	0,715	4,000
£		1,0	1,048	0,430	1,120
- L	שווווווווע	0,5	1,010	0,410	1,805

C.7 Poids du bardage en Panneau Sandwich (LL35)

an lital	HATICOMPOSI	
Ce illul spa	BATECOMPOS See	25
800 D. N°6 2740N Gandi 8 – Koute – Alger Tete - (213) 21 56 36 10 a 85	Social de Composants Industrialisés DIRECTION GENERALE BP 75 Búní - Mançour WIBEJAIA	
Fas. + (213) 21 56 36 20	T4L := (213) 034 34 01 52/74/76/77 / Fax := (213) 034 34 01 49 -	
FICHE TEC	CHNIQUE	
PANNEAU SAND	WICH BARDAGE	
(LL35, LL40, LL60, LL80), LL100, LL150, LL200)	
Description		
1. Belevier		
1. Principe	ert un nach it annachte fabrioui industriallement	
en continu, comportant un parement extérieur mét	allique, une âme isolante et un parement intérieur	
constituent ainsi qu'un seul élément autoportant pré	sentant différents niveaux de résistance mécanique,	
de réaction et de résistance au teu, d'isolation therma la vapeur d'eau et d'esthétique architecturale	ique et acoustique, d'étancheite à l'air, à l'eau et a	
2. Matériaux		
2.1 Tôle d'acier		
Parements interne et externe en tôle d'acier d'épi à chaud en continu selon les normes NF EN 10326 ;	aisseur nominale minimum 0,4 mm, galvanisé : NF EN 10142 et NF EN 10143 :	
Nuance d'acier : DX51D ou S280GD	lane fana	
Epaisseur de la couche de 2n 1 150 g/m2 pour les d	eux races	
 -Recto : 25 m nominal polyester selon EN 1016 	59 (dont primaire 5 µm).	
-Verso: 7 m nominal polyester selon EN 1016	9 (dont primaire 5 µm).	
Les parois ont pour épaisseur		
Bardage LL : - 0,55 mm à l'intérieur, - 0,55 mm à l'extérieur.		
2.2 Mousse isolante		
L'isolant est constitué de mousse rigide de poly	uréthane expansée, obtenue par injection en	
continu d'un mélange de polyof, isocyanate, catalys caractéristiques sont indiquées ci-après :	eur et agent d'expansion de type Pentane, dont les	
	1.	
	7	

Tableau I - Caractéristiques de la formulation

Caractéristiques	Spécifications
Masse volumique selon NF EN1602	40 kg/m3 ± 2 kg/m3
Traction perpendiculaire (adhérence sur parement) selon NF EN 1607	80 kPa
Compression sous 10 % d'écrasement selon NF EN 826	100 kPa
Flexion quatre points selon Pr EN 14509	100 kPa
Stabilité dimensionnelle (48 h à 70 °C)	2%
Stabilité dimensionnelle (48 h à -20 °C)	1 %

3. Caractéristiques dimensionnelles

Tableau 2 : Dimensions et tolérances

Dimensions (mm)		Tolérances (mm)
Largeur hors tout	1000 à 2000	7,5
Largeur utile du panneau	Bardage :1000	#2
Longueur du panneau	< 1000 1000 à 2000 2001 à 4000 4000	5 7,5 10 15
Epaisseurs nominales	35 - 40-60-80-100-150-200	±2
Défaut d'équerrage		6
Défaut de planéité (en fonction de la longueur mesurée L)	L = 200 mm L = 400 mm L > 700 mm	 Défaut de planéité 0,6 mm Défaut de planéité 1,0 mm Défaut de planéité 1,5 mm

4. Poids spécifique (kg/m2) :

Type de panneau	LL35	LL40	LL60	LL.80	LL100	LL150	LL200
Poids specifique	10.9	11.2	11.84	12.75	13.64	15.4	17.3

5. Autres informations techniques

5.1 Isolation thermique :

Pour le noyau de mousse qui est recouvert des 2 cotés de peaux étanches à la diffusion, le coefficient de conduction thermique (λ) = 0.026 w/m.k

Panneau	LL35	LL60	LL80	LL100	LL 40	LL150	LL200
Coefficient de transmission thermique (w/m ² .K)	0.53	0.32	0.24	0.19	0.5	0.18	0.135

5.2 Isolation phonique: LL 35 = 26 dB

.

	0
× .	1
- 1	4
- 1	

5

ce (ital spa BATICOMPOS (III, OMPON 399 (2016) dr. Camposants Tedustrialisés RECTION GENERALE BP 75 Bérl – Manqour W/DEJAIA Tál. := (213) 034-34-01 73/74/76/77/ Fax.1 = (213) 034-34-01 69 Int D. N°6 2HUN Gand II + Koute - Alger Tel + (213) 21 56 38 10 8 80 Fax I + (213) 21 86 38 20 FICHE TECHNIOUE PANNEAU SANDWICH TOITURE (TL75) Description 1. Principe Le panneau sandwich d'enveloppe de bâtiment, est un produit composite, fabriqué Industriellement en continu, comportant un parement extérieur métallique, une âme isolante et un parement intérieur métallique solidarisés par adhérence à l'âme isolante. Ces composants travaillent ensemble et ne constituent ainsi qu'un seul élément autoportant présentant différents niveaux de résistance mécanique, de réaction et de résistance au feu, d'isolation thermique et acoustique, d'étanchéité à l'air, à l'eau et à la vapeur d'eau et d'esthétique architecturale. 2. Matériaux 2.1 Tôle d'acier Parements interne et externe en tôle d'acier d'épaisseur nominale minimum 0,4 mm, galvanisé à chaud en continu selon les normes NF EN 10326 ; NF EN 10142 et NF EN 10143 : Nuance d'acier : DX51D ou S280GD Epaisseur de la couche de Zn : 150 g/m2 pour les deux faces Nature et épaisseur du revêtement organique -Recto : 25 m nominal polyester selon EN 10169 (dont primaire 5 µm). -Verso : 7 m nominal polyester selon EN 10169 (dont primaire 5 µm). Les parois ont pour épaisseur Toiture TL 75 : - 0,55 mm à l'intérieur, - 0,75 mm à l'extérieur -0,4 mm à l'intérieur -0,6 mm à l'extérieur 2.2 Mousse isolante L'isolant est constitué de mousse rigide de polyuréthane expansée, obtenue par injection en continu d'un mélange de polyol, isocyanate, catalyseur et agent d'expansion de type Pentane, dont les caractéristiques sont indiquées ci-après : 6

C.8 Poids de la toiture en Panneau Sandwich (TL75)

Tableau 1 - Caractéristiques de la formulation

Caractéristiques	Spécifications
Masse volumique selon NF EN1602	40 kg/m3 ± 2 kg/m3
Traction perpendiculaire (adhérence sur parement) selon NF EN 1607	80 kPa
Compression sous 10 % d'écrasement selon NF EN 826	100 kPa
Flexion quatre points selon Pr EN 14509	100 kPa
Stabilité dimensionnelle (48 h à 70 °C)	2 %
Stabilité dimensionnelle (48 h à -20 °C)	1 %

3. Caractéristiques dimensionnelles

Tableau 2 : Dimensions et tolérances

Dimensions (mm)		Tolérances (mm)
Largeur hors tout	1000 à 2000	7,5
Largeur utile du panneau	Toiture :1035	±2
Longueur du panneau	< 1000 1000 à 2000 2001 à 4000 4000	5 7,5 10 15
Epaisseurs nominales	53	±2
Défaut d'équerrage		6,21
Défaut de planéité (en fonction de la longueur mesurée L)	L = 200 mm L = 400 mm L > 700 mm	 Défaut de planéité 0,6 mm Défaut de planéité 1,0 mm Défaut de planéité 1,5 mm

Poids spécifique (kg/m²) : 14.2

4. Autres informations techniques

4.1 Isolation thermique :

Pour le noyau de mousse qui est recouvert des 2 cotés de peaux étanches à la diffusion,

le coefficient de conduction thermique (λ) = 0.026 w/m.k

Panneau	TL75	
Coefficient de transmission thermique (w/m ² .K)	0.40	

4.2 Isolation phonique : TL75 : 26dB

7

C.9 W en cm³ et I_y en cm⁴ selon l'épaisseur nominale (mm)

(PAISSEU)	P9805	¥8	208-07	VALCUR	ar.	MOMENT DE	N	OMENT	10	w	REACTIO
-						10.11					-
10	11.71		0.52	1.92		276		271	78.1	.28	1320
50	12.51		0.28	2,77		371		371	150.0	38	1485
80	13.30		0.29	1.62		475		471	217,7	49	1650
100	14,10		0.75	4,48		568		571	365.7	58	1815
TROLEA	U DES POI	ITÉES (0'WTILI	SATION			_	_			
CRIMPSE	EPHIESEUR	1.0	PORTEE MA	COMALE			IN TEX N	AXMALE			
	0.000	1.710	LINE	1/200	1.000	LINA	LINE	1000	1.000		
80	45	3.54	3.21	2 00	2.81	3.54	3.04	1.04	3.77		
1.0	10	4.40	4.00	3.71	140	4.57	4.17	4.57	4.57		
	80	5.15	4.73	4.38	4.13	\$ 15	5.15	5.15	616		
	100	5.55	5.13	4.78	1.55	643	5.55	5.55	5.65		
100	40	3.79	2.99	2.77	2.60	153	1.53	3.57	1.50		
	60	4.08	3.71	3.44	3.24	4.00	4.00	4.00	4.09		
	80	4.61	4.38	4.07	1.83	4.65	4.51	4.61	4.61		
	100	5.01	4.78	4.47	4.13	5.01	5.01	5.01	5.01		
120	40 -	3.09	2.81	2.60	2.45	3.22	3.72	3.72	3.22		
	05	3.73	1.49.	1.24	1.05	1.73	171	3.73	1.72		
	80	4,70	4,13	3.83	1.60	4,20	4.20	4.20	4.20		
	100	4.60	4.53	4.23	4.00	4.60	4.60	4.50	4.60		
140	40	2.93	2.67	2,48	2.33	2.98	2.98	2.98	2.98		
	80	3,45	1.12	1.08	7.90	1.45	1.45	1.65	1,45		
	80	1.89	3.89	3.64	1.0	3.89	1.89	3.59	1.89		
		4.70	4.20	100	1.42	4.95	4.70	4.70	4.75		

commander les panneaux avec un recouvrement non mousse plus important. Dans ce cas, il faut préciser la longueur de la tole et de l'isolant. Plus d'info voyez p98.

5

10

l

la panne et le panneau.

Les panneaux sont livres avec un recouvrement tongitudinal droit et un recouvrement transversal non moussé de 50mm. Il est possible de

Page 114

Annexe C Chapitre V : étude sismique (RPA99/V2003)

Groupe			ZONE	
d'usage	1	lla	llb	ш
1 A	0,15	0,25	0,30	0,40
1 B	0,12	0,20	0,25	0,30
2	0,10	0,15	0,20	0,25
3	0.07	0.10	0.14	0.18

Tableau 4.1. : coefficient d'accélération de zone A.

Tableau 4.2	:	Valeurs	de	ξ	(%)	ŀ
-------------	---	---------	----	---	-----	---

	Portique	s	Voiles ou murs
Remplissage	Béton armé	Acier	Béton armé/maçonnerie
Léger	6	4	10
Dense	7	5	

Cat	Description du système de contreventement (voir chapitre III § 3.4)	Valeur de R
Α	Béton armé	
1a	Portiques autostables sans remplissages en maçonnerle rigide	5
1b	Portiques autostables avec remplissages en maçonnerie rigide	3,5
2	Voiles porteurs	3,5
3	Noyau	3,5
4a	Mixte portiques/volles avec interaction	5
4b	Portiques contreventés par des voiles	4
5	Console verticale à masses réparties	2
6	Pendule inverse	5
в	Acier	
7	Portiques autostables ductiles	6
8	Portiques autostables ordinaires	4
98	Ossature contreventée par palées triangulées en X	4
9b	Ossature contreventée par palées triangulées en V	3
10a	Mixte portiques/palées triangulées en X	5
10b	Mixte portiques/palées triangulées en V	4
11	Portigues en console verticale	2
с	Maçonnerie	
12	Maçonnerie porteuse chaînée	2.5
D	Autres systèmes	
13	Ossature métallique contreventée par diaphragme	2
14	Ossature métallique contreventée par noyau en béton armé	3
15	Ossature métallique contreventée par voiles en béton armé	3,5
16	Ossature métallique avec contreventement mixte comportant un	4
	noyau en béton armé et palées ou portigues métalliques en façades	1
17	Systèmes comportant des transparences (étages souples)	2

Tableau 4.3 : valeurs du coefficient de comportement R

Tableau 4.4. : valeurs des pénalités P_q

	Pq			
Critère "q"	Observé	N/observé		
1. Conditions minimales sur les files de contreventement	0	0,05		
2. Redondance en plan	0	0,05		
3. Régularité en plan	0	0,05		
4. Régularité en élévation	0	0,05		
5. Contrôle de la qualité des matériaux	0	0,05		
6. Contrôle de la qualité de l'exécution	0	0,10		

Cas	Type d'ouvrage	β
1	Bâtiments d'habitation, bureaux ou assimilés	0,20
2	 Bâtiments recevant du public temporairement : Salles d'exposition, de sport, lieux de culte, salles de réunions avec places debout. salles de classes, restaurants, dortoirs, salles de réunions avec places assises 	0,30
3	Entrepôts, hangars	0,40
4	Archives, bibliothèques, réservoirs et ouvrages assimilés	1,00
5	Autres locaux non visés ci-dessus	0,60

Tableau 4.5 : valeurs du coefficient de pondération $\boldsymbol{\beta}$

Tableau 4.6 : valeurs du coefficient C_{T}

Cas n°	Système de contreventement	CT
1	Portiques autostables en béton armé sans remplissage en maçonnerie	0.075
2	Portiques autostables en acier sans remplissage en maçonnerie	0,085
3	Portiques autostables en béton armé ou en acier avec remplissage en	
	maçonnerie	0,050
4	Contreventement assuré partiellement ou totalement par des voiles	
	en béton armé, des palées triangulées et des murs en maçonnerie	0,050

Tableau 4.7 : Valeurs de T₁ et T₂

Site	S ₁	S ₂	S3	S4
T ₁ (sec)	0,15	0,15	0,15	0,15
T ₂ (sec)	0,30	0,40	0,50	0,70

Fig. 3.2 : Limites des décrochements en plan

Fig. 3.3 : Limites des décrochements en élévation

	dans le cas de moment	d'extrémités		-	
Chargement et	Diagramme de	Valeur de	Coefficients		
conditions d'appuis	moment de flexion	k	C1	C2.	C3
	**** -	1,0	1,000		1,00
	(TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	0,7	1,000		1,11
		0,5	1,000	-	1.14
	¥ - + 3/4	1,0	1,141		0,99
	(TITTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	0,7	1,270		1,56
		0,5	1,305	-	2,28
	¥ - + 1/2	1,0	1,323		0,99
	TTTTTTTTTTTT	0,7	1,473		1,55
	mmmmm	0,5	1,514	•	2,27
	¥ 14	1,0	1,563		0,97
		0,7	1,739		1,53
	unnunn	0,5	1,768	•	2,23
M +H)	¥ -··•	1,0	1,879	-	0,93
1	IIIII	0,7	2,092		1,47
		0,5	2,150		2,15
	¥ = - 1/4	1,0	2,281		0,85
	() TTTTTTT	0,7	2,538		1,34
		0,5	2,609	-	1,95
	¥ = - 1/1	1,0	2,704		0,67
	11111	0,7	3,009		1,05
		0,5	3,093	-	1,54
	¥ = -3/4	1,0	2,927		0,36
	1111	0,7	3,258		0,57
		0,5	3,348		0,83
	# 1	1,0	2,752		0,00
	TT-	0,7	3,063		0,00
	UULT STITLE	0,5	3,149	•	0,00

Annexe D Chapitre V : Dimensionnement des éléments

	Smites	tambament	courbe de
Sections en I laminées			diamon and a
4	h/b>1,2:		1
1 1	4 5 40 mm	y-y	a
TI	1	2-2	ь
T	40 mm < 1 < 100 mm		6
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Z-Z	i i
	1	1 · · · · · · · · · · · · · · · · · · ·	
	1/051,2:		
	4 - 100 milli	y-y	Ь
h a		z-z	°
	4 > 100 mm	V.V	d
		z-z	d
Sections en I soudées			
and and	1 5 40 mm		
	4 - 40 man	y-y	Б
·			
	4 > 40 mm	· y-y	c
		z · z	d
ections creuses	laminées à choud		
	ianinious a chaud	quel qu'i soit	<u>a</u>
ODI	formées à froid	quel qu'il solt	ь
	• en utilisant (yb *)	· · · · · ·	
	formées à froid	fice I'up leup	c
	- en utilisarit fya *)		
alssons soudés	d'une manière générale	quel qu'il soit	b
	Soudures épaisses et		
·	b/4<30	y-y	c
	h/1w<30	z-z	c
-1			
ections en U, L, T et sections plaines			
de la la			
	· • ·	quel qu'il soit	c
4- 4 ¥ ¥	Ψ		

Courbe de flambement	a	b	с	d
Facteur d'imperfection α	0.21	0.34	0.49	0.76

Tableau 55	.1 : Facteur	d'imperfection	α
			and the second se

- 3

ţ.

Nombre de goujons par nervure	Epaisseur t de la plaque (mm)	Goujons d'un diamètre n'excédant pas 20 mm et soudés à travers la plaque nervurée en acier	Plaques nervurées avec trous et goujons d'un diamètre de 19mm ou 22mm
	≤ 1,0	0,85	0,75
$n_{\Gamma} = 1$	> 1,0	1,0	0,75
2 - 2	≤ 1,0	0,70	0,60
$n_{\rm f} = 2$	> 1,0	0,8	0,60

Figure 4.3 : Valeurs limites de flèches horizontales de bâtiments industriels

Annexe E Chapitre VI : Étude des assemblages

Dia			Pitt A	egeldmeet
Fince longitudinele et		1.	1.2d (I)	Plat Intériour
Pin	Ce tracerete	1	121 ou 150 mm (2) /mm	1,20 (1)
	and an average se	2	1.5 d_ (3)	12t ou 150 mm (2) (m
Entraxe p.		3	121 ou 150 mm (2)	1,5 0 [1]
	Pile extériéure	12	2.2 d. (4)	121 ou 150 mm (2) (m
	Elément comprimé	×	141 00 000 - 100	2,2 d _o ⁽⁴⁾ 14i ou 200 mm ⁽⁶⁾ fm
	File Intérieute	12	2.2 d _o ⁽⁴⁾ 141 ou 200 mm ⁽⁵⁾ (min) 2.2 d _o ⁽⁴⁾ 141 ou 200 mm ⁽⁵⁾ (min) 2.2 d _o ⁽⁴⁾ 141 ou 200 mm ⁽⁵⁾ (min)	
	Elément comprimé	1		2,2 d (4)
	File existieure	×		14t ou 200 mm (6) (m 2,2 do (4)
	Elément lendu	1		
	File Intérieure	2		14t ou 200 mm (5) (mlr
de la companya de la	Eliment lendu	1		2,2 do (4)
P2	Elément comprimé	1.	2 d (7)	26t pu 400 mm (5) (min
		15	30,01	34,0)
	Elément lendu	12	141 ou 200 mm (0) (min)	14t ou 200 mm (6) (min
- 0	diamètre du trou		500 **	3d (7)

Tableau 65.1 : Valeurs limites des pinces et entraxes

3.3.2. Boulons

3.3.2.1.Boulons ordinaires non précontraints

(1) Les valeurs nominales de la résistance limite d'élasticité f_{yb} ainsi que celles d la résistance à la traction f_{ub} des différentes classes de boulons sont indiquée dans le tableau 3.3.

Classe	4.6	4.8	5.6	5.8	6.6	6.8	8.8	10.9
f _{yb} (N/mm²)	240	320	300	400	360	480	640	900
f _{ub} (N/mm²)	400	400	500	500 ·	600 [°]	600	800	1000 ·

Tableau 3.3 : Valeurs nominales de fyb et fub des boulons

Diamètre nominal d	Pas P	Clef	Diamètre du noyau de la vis d3	Diamètre intérieur de l'écrou d1	Diamètre de la rondelle	Section résistante As	Diamètre moyen dm	Tóle usuelle	Cornière usuelle
8	1.25	13	6.466	6.647	16	36.6	14	2	30
10	1.5	17	8.160	8.376	20	58.0	18.3	3	35
12	1.75	19	9.853	10.106	24	84.3	20.5	4	40
14	2	22	11.546	11.835	27	115	23.7	5	50
16	2	24	13.546	13.835	30	157	24.58	6	60
18	2.5	27	14.933	15.294	34	192	29.1	7	70
20	2.5	30	16.933	17.294	36	245	32.4	8	80
22	2.5	32	18.933	19.294	40	303	34.5	10.14	120
24	3	36	20.319	20.752	44	353	38.8	>14	>120
27	3	41	23.319	23.752	50	459	44.2	-	-
30	3.5	46	25.706	26.211	52	561	49.6	-	-
33	3.5	50	28.706	29.211		694			-
36	4		31.093	31.670		817			-

Tableau 1 : Principales caractéristiques géométriques

Acier f _u (MPa)		βw	γ _{Mw}	
S 235	360	0,8	1,25	
S 275	430	0,85	1,30	
S 355	510	0,9	1,35	

 $\beta_w \; \gamma_{mw} \;$ variables selon la nuance d'acier

Coefficients	trou nominal	trou surdimensionné	trou oblong
ks	1	0.85	0.7
YMs.ser ELS	1.20	1.20	1.20
YMs.uh ELU	1.10	1.25	1.25

Classe de surface	μ coefficient de frottement	état de surface
A	0.5	Grenaillé ou sablé
В	0.4	Grenaillé, sablé et peint
С	0.3	Brossé
D	0.2	Non traité

Annexe F

Chapitre VII : Dimensionnement des éléments de fondation

Nbr barr	5	6	8	10	12	14	16	20	25	32	40
1	0,20	0,28	0,50	0,79	1,13	1,54	2,01	3,14	4,91	8,04	12,57
2	0,39	0,57	1,01	1,57	2,26	3,08	4,02	6,28	9,82	16,08	25,13
3	0,59	0,85	1,51	2,36	3,39	4,62	6,03	9,42	14,73	24,13	37,7
4	0,79	1,13	2,01	3,14	4,52	6,16	8,04	12,57	19,64	32,17	50,27
5	0,98	1,41	2,51	3,93	5,65	7,72	10,05	15,71	24,54	40,21	62,83
6	1,18	1,70	3,02	4,71	6,79	9,24	12,06	18,85	29,45	48,25	75,40
7	1,37	1,98	3,52	5,50	7,92	10,78	14,07	21,99	34,36	56,30	87,96
8	1,57	2,26	4,02	6,28	9,05	12,32	16,08	25,13	39,27	64,34	100,53
9	1,77	2,54	4,52	7,07	10,18	13,85	18,10	28,27	44,18	72,38	113,10
10	1,96	2,83	5,03	7,85	11,31	15,39	20,11	31,42	49,09	80,42	125,66
11	2,16	3,11	5,53	8,64	12,44	16,93	22,12	34,56	54,00	88,47	138,23
12	2,36	3,39	6,03	9,42	13,57	18,47	24,13	37,70	58,91	96,51	150,80
13	2,55	3,68	6,53	10,21	14,70	20,01	26,14	40,84	63,81	104,55	163,36
14	2,75	3,96	7,04	11,00	15,38	21,55	28,15	43,98	68,72	112,59	175,93
15	2,95	4,24	7,54	11,78	16,96	23,09	30,16	47,12	73,63	120,64	188,50
16	3,14	4,52	8,04	12,57	18,10	24,63	32,17	50,27	78,54	128,68	201,06
17	3,34	4,81	8,55	13,35	19,23	26,17	34,18	53,41	83,45	136,72	213,63
18	3,53	5,09	9,05	14,14	20,36	27,71	36,19	56,55	88,36	144,76	226,20
19	3,73	5,37	9,55	14,92	21,49	29,25	38,20	59,69	93,27	152,81	238,76
20	3,93	5,65	10,05	15,71	22,62	30,79	40,21	62,83	98,17	160,85	251,33

Tableau des armatures (1)

Section en cm² de N armatures de diamétre ∞ (mm)