REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Aboubakr Belkaïd– Tlemcen –

Faculté de TECHNOLOGIE

MEMOIRE

Présenté pour l'obtention du diplôme de MASTER

En : Génie Civile

Spécialité : Structures

Par :

MAJONI EMILY FUNGAI

Sujet

ETUDE D'UNE STRUCTURE METALLIQUE DE TYPE HALL SELON LE REGLEMENT EUROCODE 3

Soutenu publiquement, le 28 / 06 /2022, devant le jury :

M BOUMECHRA Nadir	Professeur	Université de Tlemcen	Président
M TABET-Derraz Moulay Idriss	Professeur	Université de Tlemcen	Examinateur
M MISSOUM Abdelghani	Professeur	Université de Tlemcen	Encadrant

Année Universitaire 2021/2022

Remerciements

- Avant tout, je tiens à remercier Dieu de m'avoir donné la force et le courage de mener à bien ce programme.
- Deuxièmement, je voudrais remercier ma famille pour tous les sacrifices qu'ils ont consentis et les encouragements qu'ils m'ont donnés pour pouvoir terminer ce travail.
- Je tiens également à remercier énormément mon superviseur pour son apport massif et son encadrement

Mr. Abdelghani MISSOUM

Que tous les membres du Jury trouvent ici l'expression de mon plus profond respect pour avoir pris le temps d'examiner ce mémoire.

Dédicaces

A mes parents, pour avoir toujours cru en moi depuis le début

A ma grande sœur Elizabeth, qui m'a beaucoup encouragée

A mes petits frères et sœur, Chakoma, Mphatso et Tadiwa Scarlette. Je veux que vous sachiez que vous pouvez réaliser tout ce que vous avez en tête.

A mes familles proches

A mes proches amis

A l'Université de Tlemcen

Résumé

Ce projet consiste en l'étude et la conception structurelle d'un hangar métallique destine à accueillir des véhicules de karting, situe dans la ville d'Oran en Algérie.

Nous étudions et déterminons différentes charges climatiques telles que la neige et le vent, les combinaisons de charges, le dimensionnement des éléments primaires et secondaires qui composent notre structure selon l'EUROCODE 3 en utilisant la logiciel ROBOT STRUCTURAL ANALYSIS pour notre analyse et conception structurelle.

Nous vérifions également la stabilité des éléments et des assemblages de ces différents éléments.

Mots clés : Hangar métallique, Eurocode, Robot Structural Analysis

Abstract

This project consists of the study and structural design of a steel warehouse designed to accommodate karting vehicles and is situated in Oran town in Algeria.

We study and determine climatic charges such as snow and wind, combinations of loads, dimensioning of primary and secondary elements that make up our structure according to EUROCODE 3 using the software ROBOT STRUCTURAL ANALYSIS for our analysis and structural design.

We also verify stability of elements and assemblies of these different elements.

Key words: Steel warehouse, Eurocode, Robot Structural Analysis

فهرس

يتكونهذاالمشر وعمنالدر اسةو التصميمالإنشائيلهنجر معدنيمخصصلاستيعابعر باتالكار تينج،ويقعفيمدينةو هر انبالجز ائر

نحنندر سونحددالأحمالالمناخيةالمختلفةمثلالثلجو الرياحومجمو عاتالأحمالو تحجيمالعناصر الأوليةو الثانوية التيتشكلهيكلناو فقًالـ لتحليلناو تصميمناالهيكلي ROBOT STRUCTURAL ANALYSIS باستخدامبر نامج BUROCODE 3.

بنتحققأ يضامنا ستقرار العناصر وتجميعاتهذهالعناصر المختلفة

حظير ةالمعادن، الكودالأوروبي، التحليلا لإنشائيللروبوت : الكلماتالمفتاحية

Table des matières

Remere	ciements i
Dédica	cesii
Résum	éiii
Abstrac	ctiv
فهرس	v
Liste d	e figuresx
Liste d	e tableauxxi
Liste d	e symboles et abréviationsxii
Liste d	es annexesxvi
Introdu	ction générale1
Structu	re du document 2
Chapit	re 1: Introduction au projet et hypothèses de calculs
I.1	Introduction
I.2	Présentation de l'ouvrage
I.3	Hypothèses de calculs
I.4	Charges et combinaison
I.5. Ac	er utilisé
I.6. Co	nclusion
Chapit	re 2 : Calcul du vent et de la neige selon RNV999
II.1	Introduction
II.2	Donnes concernant le site
II.3	Surcharges climatique
II.3.1	La charge de la neige sur le sol Sk 10
II.3.2	L'effet du vent
II.3.3	Coefficient dynamique <i>Cd</i> 10
II.3.4	Pression dynamique <i>qdyn</i> 11
II.3.5	Coefficient de rugosité (<i>Cr</i>)11
II.3.6	Intensité de turbulence <i>Izz</i> 11
II.3.7	Coefficient d'exposition (<i>Ce</i>)12
II.3.8	Coefficient de pression extérieur <i>Cpe</i> 12
II.3.9	Coefficient de pression extérieur <i>Cpe</i> 13
II.3.10	Coefficient de pression 15
II.3.11	Calculs de la pression du au vent <i>qj</i> 16

II.4	Conclusion
Chapit	re 3 : Calculs Sismiques
III.1	Introduction
III.2	Principe et modélisation de méthode statique équivalente
II.3	Caracteristique sismique de l'ouvrage
III.3.1	Coefficient du comportement global de la structure R 20
III.3.2	Facteur de qualité 20
III.4	Conclusion
Chapit	re 4 : Dimensionnement des éléments secondaires 23
IV.1.	Introduction
IV.2.	Dimensionnement des pannes 23
IV.2.1	Modélisation des charges d'entretien 24
IV.2.2	Pannes sur 2 appuis
IV.2.2.	a Classification de la section
IV.2.2.	b Vérification de la flèche
IV.2.2.	c Vérification de l'effort tranchant
IV.2.2.	d. Vérification résistance avec instabilité
IV.2.2.	e Vérification de la résistance avec risque de déversement et flambement
IV.2.2.	f Vérification résistance au voilement par cisaillement de l'âme
IV.2.2.	g Vérification de la capacité de la tôle de la toiture à maintenir la panne contre le
déverse	ement
IV.2.3	Dimensionnement des liernes
IV.2.4	Dimensionnement des échantignoles
IV.3	Lisses de bardages
IV.3.1	Lisses sur 2 appuis 6m
IV.3.1.	a Classification de la section
IV.3.1.	b Vérification de la flèche
IV.3.1.	c Vérification de l'effort tranchant
IV.3.1.	d Vérification résistance avec instabilité
IV.3.1.	e Vérification de la résistance avec risque de déversement et flambement
IV.3.2	Lisses sur 4 appuis 18m 42
IV.3.2.	a Classification de la section
IV.3.2.	b Vérification de la flèche 42
IV.3.2.	c Vérification de l'effort tranchant

IV.3.2	d Vérification résistance avec instabilité	. 44
IV.3.2	.e Vérification de la résistance avec risque de déversement et flambement	. 46
IV.3.3	Lisses sur 8 appuis 42m	. 46
IV.3.3	a Classification de la section	. 47
IV.3.3	b Vérification de la flèche	. 48
IV.3.3	c Vérification de l'effort tranchant	. 48
IV.3.3	d Vérification résistance avec instabilité	. 48
IV.3.3	.e Vérification de la résistance avec risque de déversement et flambement	. 51
IV.4	Calculs des potelets	. 52
IV.4.1	Evaluation des charges	. 52
IV.4.2	Vérification de la flèche à l'ELS	. 53
IV.4.3	Classification de la section	. 53
IV.4.4	Incidence de l'effort tranchant	. 54
IV.4.5	Incidence de l'effort normale	. 54
IV.4.6	Vérification du moment	. 55
IV.4.7	Vérification résistance avec instabilité	. 55
IV.4.8	Vérification de la résistance avec risque de déversement et flambement	. 57
IV.5	Conclusion	. 58
Chapit	re 5 : Dimensionnement des éléments principaux	. 59
V .1	Introduction	. 59
V.2	Dimensionnement des poteaux	. 59
V.2.1	Choix du profilé	. 59
V.2.2	Classification du profilé	. 60
V.2.3	Classe de l'âme	. 60
V.2.4	Classe de semelle	. 60
V.2.5	Vérification à l'effort tranchant	. 61
V.2.6	Vérification d'inéquation (flexion composée avec risque de déversement	. 61
V.3	Dimensionnement des traverses	. 67
V.3.1	Choix du profilé	. 67
V.3.2	Classification du profilé	. 68
V.3.3	Classe de l'âme	. 68
V.3.4	Vérification à l'effort tranchant	. 69
V.3.5	Vérification d'inéquation (flexion composée avec risque de déversement	. 69
V.4	Conclusion	. 72

Chapit	re 6 : Assemblages
VI.1	Introduction
VI.2	Assemblage Pieds de poteau
VI.3	Vérification Compression-Cisaillement
VI.3.1	Vérification à la compression76
VI.3.2	Vérification de la Résistance au cisaillement76
VI.3.3	Vérification Traction-cisaillement77
VI.3.4	Résistance de la plaque à la flexion78
VI.3.5	Résistance de l'âme du poteau à la traction79
VI.3.6	Résistance de la zone tendue 79
VI.3.7	Résistance à la traction de l'assemblage79
VI.3.8	Ferraillage De La Semelle Du Pied De Poteau79
VI.3.9	Vérification des boulons au cisaillement84
VI.3.10	0 Vérification des cornières à la traction
VI.3.1	Vérification à la pression diamétrale des pièces assemblées
VI.3.12	2 Vérification de la soudure du gousset au poteau 86
VI.4	Conclusion
Conclu	sion générale et perspective
Référe	nces
ANNE	XES 89

Liste de figures

Figure I - 1 : Vue aérienne de la zone du projet	3
Figure I - 2 : Terrain concerné par le projet	4
Figure I - 3 : Squelette de la structure étudiée	4
Figure I - 4 : Dimensions principales de la structure	5
Figure I - 5 : Dimensions principales de la structure	6

Figure II - 1 : Répartition du coefficient de pression extérieur sur les parois verticales	13
Figure II - 2 : Répartition de coefficient de pression extérieur sur les parois verticales (V1 et V3)	14
Figure II - 3 : Répartition de coefficient de pression extérieur sur les parois verticales	14
Figure II - 4 : Répartition de coefficient de pression extérieur sur les parois verticales	15
Figure II - 5 : Direction du vent sur la structure	16

Figure III - 1 : Parametres sismiques	18
Figure III - 2 : Carte de zonage sismique du territoire national-RPA99	19

Figure IV - 1 : Disposition en alternance des pannes sur les portiques	23
Figure IV - 2 : Réactions d'appui d'un système de pannes à une et deux travées	24
Figure IV - 3 : Emplacement et distribution des efforts dans les pannes	34
Figure IV - 4 : Barre pleine avec manchons emplacement de la panne sur l'âme du profilé	35
Figure IV - 5 : Attache boulonnée par échantignole pour 2 pannes	35
Figure IV - 6 : Excentrement Echantignole	36
Figure IV - 7 : Potelet la plus sollicité	52

-igure VI - 1 : Vues assemblage pied de poteau en 3D	. 74
-igure VI - 2 : Vue assemblage pied de poteau en 2D	. 75
-igure VI - 3 : Vérification a la compression	. 76
-igure VI - 4 : Vérification Traction-cisaillement	. 77
-igure VI - 5 : Assemblage Poteau Traverse en 3D	. 80
-igure VI - 6 : Assemblage Poteau Traverse en 2D	. 80
-igure VI - 7 : Assemblage satisfaisant vis à vis de la Norme : Ratio 0,96	. 82
-igure VI - 8 : Assemblage d'une diagonale de contreventement	. 83
Figure VI - 9 : Sections nettes de la cornière	. 84

Liste de tableaux

Tableau II - 1 : Coefficients de pression extérieur	13
Tableau II - 2 : Pressions sur les parois verticales – direction V1 et V3 du vent (Pignon)	16
Tableau II - 3 : Pressions sur les parois verticales – direction V2 et V4 du vent (Long pan)	16
Tableau II - 4 : Pressions sur les toitures – direction V1 et V3 du vent (Pignon)	17
Tableau II - 5 : Pressions sur les toitures – direction V2 et V4 du vent (Long pan)	17
Tableau II - 6 : Calcul de la force de frottement	17

Tableau III - 1 : Valeurs du coefficient d'acceleration RPA99v2003	19
Tableau III - 2 : Valeur de T1 , T2 selon RPA2003	19
Tableau III - 3 : Valeurs des pénalités	20
Tableau III - 4 : Périodes de ROBOT	21
Tableau III - 5 : Effort Sismique	22
Tableau III - 3 : Valeurs des pénalités Tableau III - 4 : Périodes de ROBOT Tableau III - 5 : Effort Sismique	20 21 22

Tableau VI - 1 : Valeurs des efforts sollicitant le pied de poteau le plus chargé	. 73
Tableau VI - 2 : Résistance d'un boulon d'ancrage en traction	. 78
Tableau VI - 3 : Récapitulatif des efforts	. 82

Liste de symboles et abréviations

Majuscules latines

- A : Section brute d'une pièce
- A_{net} : Section nette d'une pièce
- A_w : Section de l'âme
- C_d : Coefficient dynamique
- C_e : Coefficient d'exposition au vent
- C_{pe} : Coefficient de pression extérieur
- C_{pi} : Coefficient de pression intérieure
- $C_{p,net}$: Coefficient de pression nette
- C_r : Coefficient de rugosité
- Ct : Coefficient de topographie
- C_T : Nature du site
- E : Module d'élasticité longitudinale de l'acier (E=2,1×10⁵ MPa)
- F : force en générale
- G : Module d'élasticité transversale de l'acier (G=81000MPa)
- G : Charge Permanant
- I : Module d'inertie
- I_v : Intensité de turbulence
- $I_z(z)$ Intensité de la turbulence
- K_0 : Coefficient de flambement
- K_t : Facteur de terrain
- L : Longueur
- M : Moment de flexion
- M_{sd} : Moment fléchissant sollicitant

 M_{Rd} : Moment résistant par unité de longueur dans la plaque d'assise

 M_{pl} : Moment Plastique

- M_{b,Rd} : Moment de la résistance au déversement
- N : Charge climatique due à la Neige ;
- $N_{pl,Rd}$: Effort normale de la résistance plastique de la section transversale brute
- $N_{pl,Rd}$: Effort normale d'un élément comprime au flambement
- N_{sd} : Effort normale sollicitant
- $N_{t.Sd}$: Effort normale de traction
- $N_{c,Sd}$: Effort normale de traction
- $N_{c,Rd}$: Valeur de calcul de la résistance de la transversale à la compression
- Q : Charge d'exploitation
- P : poids de la structure
- R : Coefficient de comportement de la structure
- S : La charge de la neige
- S : Charge caractéristique de la neige par unité de surface
- S_k : Charge de neige sur le sol
- V_{Sd} : Valeur de calcul de l'effort tranchant
- V_{ref} : Vitesse de référence du vent
- W_{pl} : Module de résistance plastique
- W : Poids de la structure
- V : Charge climatique due au Vent (V1 sur pignon et V2 sur long pan)

Minuscules latines

- b : dimension per pendulaire à la direction du vent
- d : dimension parallèle à la direction du vent
- f : la flèche
- f_y : Limite d'élasticité
- h : Hauteur d'une pièce
- 1 : Longueur d'une pièce (Poutre, Poteau)
- l_f : Longueur de flambement
- q_{dvn} Pression dynamique du vent

- q_{ref} : Pression dynamique moyenne de référence
- q_p : Pression dynamique de pointe
- t : Epaisseur d'une pièce
- t_f : Epaisseur d'une semelle de poutre
- t_w : Epaisseur de l'âme de poutre
- z : Hauteur au-dessus du sol
- z_0 : Paramètre de rugosité
- z_{eq} : Hauteur équivalente
- z_i : Hauteur de référence

Minuscules grecques

- x: coefficient de réduction pour le mode de flambement approprie
- β_w : Facteur de correction
- γ_M : Coefficient
- λ : Elancement
- λ_{LT} : Elancement de déversement
- α : Pente versante
- α : Facteur d'imperfection
- $Ø_{LT}$: Rotation de déversement
- µ : Coefficient d'ajustement des charges, en fonction de la forme de la toiture appelé coefficient de forme
- τ : Coefficient de réduction élastique de l'acier
- ε : Coefficient de réduction élastique de l'acier
- σ_a : Contrainte de l'acier
- σ_b : Contrainte du béton
- ξ : Pourcentage d'amortissement critique
- $\boldsymbol{\eta}:$ Facteur de correction d'amortissement
- M_r : Moment résistant pondérée d'un membre
- M_u : Moment de flexion ultime dans un membre

Z : Module de section plastique

 λ : Rapport d'élancement non dimensionnel dans formule de colonne

Ø : Facteur de résistance pour l'acier de construction

 C_f : Force de compression dans un élément ou un composant sous une charge pondérée charge axial pondérée

 C_r : Résistance à la compression pondérée d'un élément ou d'un composant ; résistance à la compression pondérée d'acier agissant au centre de gravité de cette partie de la zone d'acier en compression

Liste des annexes

Annexe I : Tableau β_M

Annexe II : Tableaux des sections

Annexe III : Tableau de C1 et C2

Annexe IV : Tableaux des sections transversales

Introduction générale

L'ensemble des règles de conception et de dimensionnement des structures en acier définissant les exigences de résistance, d'aptitude au service et de durabilité est l'Eurocode 3. Ce projet de fin d'études est la mise en pratique de ces règles « Eurocode 3 » pour une structure en acier.

Les ossatures métalliques se distinguent par certains avantages tel que : la légèreté, le montage rapide et la facilité des transformations, c'est la raison pour laquelle ce hall a été conçu en charpente métallique. Ce pendant ce matériau présente aussi quelques inconvénients qui sont principalement la corrosion et sa faible résistance au feu qui ne seront pas malheureusement abordés dans cette étude.

Notre travail contient plusieurs chapitres. Après l'introduction, nous présenterons l'ouvrage, puis nous évaluerons les charges permanentes, climatiques et d'exploitations selon le règlement Algérien « RNV99 »

Le dimensionnement des éléments de la structure secondaire et porteurs selon l'Eurocode 3 tout en optimisant les profilés composant les éléments de notre structure en acier.

L'étude sismique du bâtiment sera faite selon le « RPA99 » pour choisir le système de contreventement assurant la stabilité de la structure.

En fin, nous dimensionnerons le principal assemblage tel que les pieds de poteaux, poutrepoteaux et les goussets des contreventements et nous terminerons par une conclusion et perspectif.

Structure du document

Chapitre 1 : Introduction au projet et hypothèses de calculs

Chapitre 2 : Calcul du vent et de la neige selon RNV99

Chapitre 3 : Dimensionnement et calcul des pannes

Chapitre 4 : Lisses de bardages

Chapitre 5 : Calculs des potelets

Chapitre 6 : Dimensionnement des poteaux

Chapitre 7 : Dimensionnement des traverses

Chapitre 8 : Assemblages

Chapitre 9 : Calcul Sismiques

Chapitre 1: Introduction au projet et hypothèses de calculs

I.1 Introduction

La structure étudiée dans ce projet de fin d'études est un centre de karting, une discipline du sport automobile qui se pratique sur des circuits fermés (*Le projet a été imaginé avec mon encadreur*). La structure en acier à simple rez-de-chaussée se situe dans la zone industrielle d'Es Sénia, (appelée aussi El Karma) Wilaya d'Oran. Cette dernière est composée de portiques, pannes, lisses, contreventements, toiture et de bardage en acier.

Après une présentation du projet, nous fixeront les hypothèses de modélisation, de calculs et combinaisons de charges adoptées.

I.2 Présentation de l'ouvrage

La structure étudiée est un hangar en acier se situant dans la zone industrielle et d'activités d'Es-Sénia. Elle est au sud de la zone à côté de l'aéroport et très proche de sebkha d'Oran, un lac salé (voir figures 1a et 1b).

Figure I - 1 : Vue aérienne de la zone du projet

Figure I - 2 : Terrain concerné par le projet

La structure métallique est composée de portiques auto stables, de pannes et lisses (voir figure 2). L'enveloppe est réalisée par de tôles type TN40 étant donné que le hangar est destiné à une activité sportive qui n'exige pas de contraintes vis-à-vis du confort thermique des personnes.

Figure I - 3 : Squelette de la structure étudiée

I.3 Hypothèses de calculs

Pour réaliser des structures à simple rez-de-chaussée, les portiques métalliques sont très efficaces et très économiques sous condition que certains détails de conception ne soient pas trop coûteux et que les paramètres et hypothèses de calcul soient bien choisis. Dans les pays où cette technologie est vigoureusement développée, les portiques en acier représentent le concept dominant pour les bâtiments industriels à un seul niveau. Il est devenu le système

porteur le plus fréquent pour les hangars en raison de son faible coût et de sa souplesse d'utilisation associés à une large gamme de portées.

L'infiltration des eaux sulfatées de la sebkha génèrent la dissolution du gypse présent dans cette localité **[1]**. Par conséquent, le choix des assemblages articulés au niveau des pieds de poteaux afin de réduire les sollicitations à ce niveau. La qualité du sol ne peut transmettre des efforts importants et plus particulièrement des moments conséquents, d'où le choix d'une articulation.

Un portique bi-articulé en pieds est hyperstatique de degré un. Il faut donc deux rotules pour créer un mécanisme, d'où le ce choix pour notre structure.

La structure de base rectangulaire (42 m x 18 m), présente une hauteur de faitage de 7.53 m et des poteaux de 5.6 m (figure 3). Ces derniers sont posés sur des semelles isolées en béton armé.

Figure I - 4 : Dimensions principales de la structure

I.4 Charges et combinaison

Afin de dimensionner une structure, il faut identifier et évaluer les charges que devra supporter cette dernière.

Les charges sont principalement des forces (poids propre des éléments, Neige et Vent, des déformations (tassements) ou des accélérations (séisme) qui s'appliquent sur la structure ou ses composantes. Elles occasionnent des contraintes, des déformations ou des déplacements sur les structures. L'étude des charges est appelée l'analyse structurale.

La structure est soumise non seulement à son poids propre mais aussi aux charges climatiques (Vent et Neige) et séismiques (zone IIa – figure 4).

Figure I - 5 : Dimensions principales de la structure

En général, pour calculer une structure, un très grand nombre de combinaisons de charges doit être étudié. Les combinaisons de charges sont un aspect critique de la conception. Il est important de s'assurer que nous appliquons correctement ces combinaisons. Aujourd'hui, il existe des logiciels, capables de vérifier les éléments structuraux d'un ouvrage pour toutes ces combinaisons tout en réduisant considérablement le processus de calcul. L'utilisation de logiciels adaptés est recommandée bien que qu'un calcul manuel est nécessaire pour le prédimensionnement des éléments et qu'une compréhension approfondie de toute la démarche de calcul soit très utile.

L'Eurocode1 fourni une méthodologie pour les combinaisons aux états limites ultimes et de service **[2].**

Les combinaisons retenues dans notre projet sont composées de :

- G : Poids Propre des éléments structuraux et couverture ;
- **Q** : Charges d'entretien (poids de propre de deux hommes) ;
- N : Charge climatique due à la Neige ;
- V : Charge climatique due au Vent (V1 sur pignon et V2 sur long pan)

I.4.1. Etat Limite Ultime « E.L.U »

Combinaisons d'actions fondamentales :

$$\sum_{j} \gamma_{g,j} G_j + \gamma_{q,1} Q_1 + \sum_{i>1} \gamma_{q,i} \psi_{0,i} Q_i$$

 $\gamma_{\text{g}}=1.35$ pour les actions permanentes défavorables et 1.0 pour les actions permanentes favorable

 $\gamma_q = 1.5$

Combinaisons d'actions accidentelles :

$$\sum_{j} G_{j} + A + \psi_{1,1}Q_{1} + \sum_{i>1} \gamma_{q,i}\psi_{2,i}Q_{i}$$

A l'état limites ultime, on retient :

I.4.2. Etat Limite Ultime « E.L.S »

Combinaisons rares :

$$\sum_{j} G_j + Q_1 + \sum_{i>1} \psi_{0,i} Q_i$$

Combinaisons fréquentes :

$$\sum_{j} G_{j} + \psi_{1,1} Q_{1} + \sum_{i>1} \psi_{2,i} Q_{i}$$

Combinaisons quasi permanentes :

$$\sum\nolimits_{j}G_{j}+\sum\nolimits_{i>0}\psi_{2.i}Q_{i}$$

A l'état limites de service, on retient :

G+Q G+N G+V1 G+V2 G+Q+N G+Q+V1 G+Q+V2 G+N+V1G+N+V2

I.5. Acier utilisé

Les aciers de construction métalliques utilisés se présentent sous diverses nuances et formes. Il est nécessaire de connaître propriétés mécaniques et plus particulièrement les limites élastiques et de rupture de l'acier utilisé pour de mener les vérifications de résistance et d'instabilités.

Le choix s'est porté sur l'acier S275 (limite élastique $f_y = 275$ MPa; limite de rupture $f_u = 430$ MPa). Ce choix est fait pour réduire les dimensions des éléments pour un prix résistance optimal.

I.6. Conclusion

La structure étudiée composée d'un versant se trouve sur un terrain près du marécage d'où le choix de pieds de poteaux articulés. Les éléments structuraux sont en acier S275 avec des résistances mécaniques supérieures à ceux de l'acier S235 afin d'avoir un ouvrage léger. Une panoplie de combinaisons à l'ELU et à l'ELS sont retenus afin d'avoir une étude complète.

Cette structure métallique est aussi un choix économique pour le stockage des différents éléments. Elle est soumise aux charges climatiques, le séisme et le poids propre de différents éléments qui le constitue.

Chapitre 2 : Calcul du vent et de la neige selon RNV99

II.1 Introduction

Le présent document technique réglementaire (DTR) à pour objet de définir les valeurs représentatives de la charge statique de neige sur toute surface située au-dessus du sol et soumise à l'accumulation de la neige et notamment sur les toitures. Il fournit les procédures et principes généraux pour la détermination des actions du vent sur l'ensemble d'une construction et sur ses différentes parties. [3]

II.2 Donnes concernant le site

La zone est implantée dans le Wilaya d'Oran ; où la zone de neige est B, la zone de vent est 1 et son altitude est 0m.

Données relatives au site

Le site se trouve à wilaya d'Oran

Zone I $q_{ref} = 37,5 daN/m^2$

Catégorie I de terrain $K_t = 0, 17Z_0 = 0, 01Z_{min} = 2$ $\xi = 0,11$

Nature du site, plat $C_T = 1$

II.3 Surcharges climatique

Le calcul de la surcharge climatique de la neige est en fonction de la localisation géographique et de l'altitude du lieu.

Il se fait conformément à la réglementation « Règlement Neige et Vent » RNV99-version 2013. La charge caractéristique de la neige par unité de surface est donnée par la formule suivante :

 $S = \mu \times S_k$

Avec

S: charge caractéristique de la neige par unité de surface

 μ : coefficient d'ajustement des charges, en fonction de la forme de la toiture appelé coefficient de forme

 S_k : Charge de neige sur le sol

II.3.1 La charge de la neige sur le sol S_k

La zone est implantée dans le Wilaya d'Oran, Zone de neige B et L'altitude 0 car le site est près du marécage.

$$S_K = \frac{0.04H + 10}{10} = \frac{10}{100}$$
$$S_K = 0.1KN/m^2$$

 α : pente versante = 12°

 $0\leq\alpha\leq30,\,\mu=0.8$

 $\mathbf{S} = \boldsymbol{\mu} \times S_k = 0.8 \times 0.1 = 8 daN/m^2$

II.3.2 L'effet du vent

Les effets du vent sont étudiés à la réglementation « Règlement Neige et Vent » RNV99version 2013. L'effet du vent par unité de surface est donné par :

$$q_j = q_{dyn} \cdot C_d [C_{pe} - C_{pi}] \qquad [daN/m^2]$$

Avec : q_{dyn} : Pression dynamique du vent

 C_d : Coefficient dynamique

*C*_{pe} : Coefficient de pression extérieur

 C_{pi} : Coefficient de pression intérieure

II.3.3 Coefficient dynamique C_d

Le coefficient dynamique C_d tient compte des effets de réduction dus q l'imparfaite corrélation des pressions exercées sur les parois ainsi que des effets d'amplification dus a la partie de turbulence ayant une fréquence proche de la fréquence fondamentale d'oscillation de la structure.

Il dépend de la hauteur et largeur de structure et du matériau de la structure. La structure est une structure métallique

Apres figure 3,2 dans le RNV, on trouve les valeurs de C_d pour la direction V1 est 0,94 et la direction V2 est 0,91.

II.3.4 Pression dynamique q_{dyn}

$$q_{dyn}(z_j) = q_{ref} \times C_e(z_j) \ [daN/m^2]$$

Avec :

 q_{ref} : La pression dynamique de référence pour les constructions pérennantes, donnée en fonction de la zone du vent

$$q_{ref} = 37,5 daN/m^2$$

 C_e : Coefficient d'exposition au vent, en fonction du coefficient de rugosite (C_r), et du Coefficient de topographie (Ct)

 z_i :Hauter de référence

 $z_i = 7.534$ m

II.3.5 Coefficient de rugosité (C_r)

Le coefficient de rugosité traduit l'influence de la rugosité et de la hauteur sur la vitesse moyenne du vent.

$$C_{r}(z) \begin{cases} K_{T} \times Ln\left(\frac{z}{z_{0}}\right) pour z_{min} \leq z \leq 200m \\ K_{T} \times Ln(z_{min}/z_{0}) pour z < z_{min} \end{cases}$$

z=5,6m pour paroi vertical

 $z_{min} = 2$

 $C_r(z) = 0.17 \times Ln\left(\frac{5.6}{0.01}\right) = 1.075$

II.3.6 Intensité de turbulence $I_z(z)$

L'intensité de la turbulence est définie comme étant l'écart type de la turbulence divise par la vitesse moyenne du vent :

$$I_{z}(z) = \frac{1}{C_{t}(z) + Ln\frac{z}{z_{0}}} = \frac{1}{1 + Ln\frac{5.6}{0.01}}$$
$$I_{z}(z) = 0.1364$$

II.3.7 Coefficient d'exposition (C_e)

Le coefficient d'exposition au vent $C_e(z)$ tient compte des effets de la rugosite du terrain, de la topographie du site et de la hauteur au-dessus du sol. En outre, il tient compte de la nature turbulente du vent $C_e(z)$ est donnée par :

$$C_e(z) = Ct^2(z) \times Cr^2(z) + [1 + 7I_z(z)]$$

= 1² × 1,075² + [1 + 7(0,1364)] = 4,1104

Pression dynamique q_{dyn} :

$$q_{dyn} = q_{ref} C_e(z)$$

$$q_{dyn}=$$
 37, 5 $imes$ 4, 1104 $=$ 154, 14 daN/m^2

z=7,534m pour les toitures

$$z_{min} = 2$$

$$C_r(z) = 0.17 \times Ln\left(\frac{7.534}{0.01}\right) = 1.126$$

$$I_z(z) = \frac{1}{C_t(z) + Ln\frac{z}{z_0}} = \frac{1}{1 + Ln\frac{7.534}{0.01}}$$

$$I_z(z) = 0.1311$$

$$C_e(z) = Ct^2(z) \times Cr^2(z) + [1 + 7I_v(z)]$$

$$= 1^2 \times 1.126^2 + [1 + 7(0.1311)] = 4.1855$$

II.3.8 Coefficient de pression extérieur *C*_{pe}

Le coefficient de pression extérieur C_{pe} dépend de la forme géométrique de la base de la structure, et de la surface chargée

Avec :

b : la dimension per pendulaire à la direction du vent

d : la dimension parallèle à la direction du vent

$$C_{pe} = C_{pe,1} \qquad si S \le 1m^2$$

$$C_{pe} = C_{pe,1} + (C_{pe,10} - C_{pe,1}) \times log_{10}(S) \qquad si 1m^2 < S < 10m^2$$

$$C_{pe} = C_{pe,10} \qquad si S \ge 10m^2$$

Ou S (en m^2) désigne la surface chargée de la paroi considérée

Dans notre cas, $S \ge 10m^2 C_{pe} = C_{pe,10}$

Tableau II - 1 : Coefficients de pre	ession extérieur
--------------------------------------	------------------

	C_t	C_r	I_v	C _e	$q_{dyn}(daN)$
					$/m^{2})$
Parois	1	1,075	0,1364	4,1104	1
vertical					
Toiture	1	1,126	0,1311	4,1855	1

II.3.9 Coefficient de pression extérieur *C*_{pe}

Pour la direction V1 et V3 (pignon) parois verticales

$$b = 18m$$

 $d = 42m \{e = min[b: 2h] = 11, 2m$
 $h = 5, 6m$

Figure II - 1 : Répartition du coefficient de pression extérieur sur les parois verticales

(V1 et V3)

Toiture :

Direction du vent $\theta = 0$

Figure II - 2 : Répartition de coefficient de pression extérieur sur les parois verticales (V1 et V3)

Pour la direction V2 et V4 (long pan) parois verticales

Figure II - 3 : Répartition de coefficient de pression extérieur sur les parois verticales

(V2 et V4)

Toiture

Direction du vent $\theta = 90$

Figure II - 4 : Répartition de coefficient de pression extérieur sur les parois verticales

(V2 et V4)

II.3.10 Coefficient de pression

Le coefficient de pression intérieure C_{pi} est fonction du pourcentage des ouvertures dans la structure considérée, et en fonction de l'indice de perméabilité μ_p qui est définie comme suit :

$$\mu_p = \frac{\sum des \ surfaces \ des \ ouvertures \ sous \ le \ vent \ et \ parallele \ au \ vent}{\sum des \ surfaces \ des \ toutes \ les \ ouvertures}$$

$$\sum des \ surfaces \ des \ toutes \ les \ ouvertures = \left[(2 \times 14) + (2 \times (5 \times 4))\right] = 68m^2$$

V1 -
$$\mu_p = \frac{48}{68} = 0,70 \longrightarrow C_{pi} = -0,20$$

V2 - $\mu_p = \frac{54}{68} = 0,79 \longrightarrow C_{pi} = -0,30$

Figure II - 5 : Direction du vent sur la structure

II.3.11 Calculs de la pression du au vent q_i

$$q_j = q_{dyn}. C_d. \left[C_{pe} - C_{pi}\right]$$

Tableau II - 2 : Pressions sur les parois verticales – direction V1 et V3 du vent (Pig	gnon)
--	-------

Zone	C_d	q_{dyn}	C_{pe}	C_{pi}	$q_j(daN/m^2)$
Α	0,94	154,14	-1	-0,30	-101,42
В	0,94	154,14	-0,8	-0,30	-72,45
С	0,94	154,14	-0,5	-0,30	-28,97
D	0,94	154,14	0,8	-0,30	159,38
Е	0,94	154,14	-0,3	-0,30	0

Tableau II - 3: Pressions sur les parois verticales – direction V2 et V4 du vent (Long pan)

Zone	C_d	q_{dyn}	C_{pe}	C_{pi}	$q_j(daN/m^2)$
А	0,91	154,14	-1	-0.20	112,21
В	0,91	154,14	-0,8	-0.20	-84,16
С	0,91	154,14	-0,5	-0.20	-42,08
D	0,91	154,14	0,8	-0.20	140,26
Е	0,91	154,14	-0,3	-0.20	-14,02

Zone	C _d	q_{dyn}	C_{pe}	C_{pi}	$q_{dyn}(daN/m^2)$
F	0,94	156,956	-1,14	-0,30	-123,93
G	0,94	156,956	-0,92	-0,30	-91,47
Н	0,94	156,956	-0,39	-0,30	-13,27
Ι	0,94	156,956	-0,37	-0,30	-10,32
J	0,94	156,956	-0,79	-0,30	-72,29

Tableau II - 4 : Pressions sur les toitures – direction V1 et V3 du vent (Pignon)

Tableau II - 5: Pressions sur les toitures – direction V2 et V4 du vent (Long pan)

Zone	C _d	q_{dyn}	C_{pe}	C_{pi}	$q_{dyn}(daN/m^2)$
F	0,91	156,956	-1,14	-0,20	-134,26
G	0,91	156,956	-0,92	-0,20	-102,83
Н	0,91	156,956	-0,39	-0,20	-27,13
Ι	0,91	156,956	-0,37	-0,20	24,28
J	0,91	156,956	-0,79	-0,20	-84,26

Tableau II - 6 : Calcul de la force de frottement

Surface	$q_{dyn}(daN/m^2)$	C_{fr}	$S_{fr}(m^2)$	$F_{fr}(daN)$
Toiture	156,956	0,01	772,8	1212,955
Parois verticale	154,14	0,01	470,4	725,07
Total				1938,025

II.4 Conclusion

Les surcharges climatiques d'une structure métallique ont été vérifiées grâce aux donnes du site étudié et en suivant le Règlement neige et vent RNV99.

Les constructions métalliques sont concernées par la surcharge climatique comme le vent parce qu'elles sont des structures légères et peuvent-être affecté par un soulèvement.

Les surcharges climatiques sont des ennemis numéros un des structures métalliques comme des hangars.

Il faut donc calculer la neige et le vent pour assurer la stabilité des hangars parce qu'ils affectent vraiment ces structures. Dans notre cas, la structure a vérifié les conditions du vent et de la neige.

Chapitre 3 : Calculs Sismiques

III.1 Introduction

Séisme est un mouvement de plaque rigide qui constitue la couche externe du globe appelé lithosphère. La lithosphère est la couche solide comprenant une partie de manteau et la croute terrestre.

En Algérie le code parasismique utilise pour les bâtiments est le règlement parasismique algérienne RPA99/v2003 qui nous permet étudie suivant trois méthodes :

- i) La méthode statique équivalente
- ii) La méthode d'analyse modale spectrale
- iii) La méthode d'analyse dynamique par accelerogramme

Dans notre cas, on choisit la méthode statique équivalente

III.2 Principe et modélisation de méthode statique équivalente

Le mode fondamental de vibration est le seul mode important. La réponse de mode de vibration représente la réponse totale. La force sismique est modélisée par une force statique appliquée à la base de la structure. Des forces latérales équivalentes à l'action du séisme considère sont appliquées au niveau de chaque plancher.

II.3 Caracteristique sismique de l'ouvrage

Notre batiment est situé dans la zone sismique IIa à Oran.

RPA 99 Parameters	; ;	<					
Case: Seismic RPA 99 (2003)							
Auxiliary case							
Zone	Usage						
OI ⊚IIa OIIb O							
Site OS1 OS2 OS3	● \$4						
	Residual mode						
Behavior factor:	4 Direction definition						
Quality coefficient:	1,000 Filters						
	OK Cancel Help						

Figure III - 1 : Parametres sismiques

	-	ZONE		
Groupe	Ι	IIa	IIb	III
1 A	0,15	0,25	0,30	0,40
1 B	0,12	0,20	0,25	0,30
2	0,10	0,15	0,20	0,25
3	0,07	0,10	0,14	0,18

 Tableau III - 1 : Valeurs du coefficient d'acceleration RPA99v2003

Figure III - 2 : Carte de zonage sismique du territoire national-RPA99

Zone IIa → A=0,15

C'est un ouvrage pour stockage des voitures, il est considéré comme groupe d'usage 2 ouvrages d'importance moyenne.

La site est tres meuble donc il est classe en categorie S4

Période T_1, T_2

Tableau III - 2 : Valeur de T₁, T₂ selon RPA2003

Site	<i>S</i> ₁	<i>S</i> ₂	S ₃	<i>S</i> ₄
$T_1(sec)$	0,15	0,15	0,15	0,15
$T_2(sec)$	0,30	0,40	0,50	0,70

Notre site est très meuble donc T_1 =0,15s et T_2 =0,70s
III.3.1 Coefficient du comportement global de la structure R

Selon le tableau 4,3 Chapitre IV du RPA 99v2003, R → 4. Portique auto stable ordinaire.

Pour centage d'amortissement critique ξ et facteur de correction d'amortissement η

Il est en fonction du matériau constructif, du type de structure et l'importance du remplissage, donc selon le RPAv2003, ξ =5% et η =1

III.3.2 Facteur de qualité

Il est en fonction de :

-La redondance et la géométrie des éléments qui la constituent

-La régularité en plan et en élévation

-La qualité du contrôle de la construction

Il est déterminé par la formule suivante

$$Q = 1 + \sum_{1}^{6} P_q$$

Avec P_q : la pénalité à retenir selon le critère de qualité q « satisfaite ou non

Tableau l	III - 3	3:	Valeurs	des	pénalités
-----------	---------	----	---------	-----	-----------

	P_q	
Critère q	observe	N/observe
1. Conditions minimales sur les	0	0,05
files de contreventement		
2. Redondance en plan	0	0,05
3. Régularité en plan	0	0,05
4. Régularité en élévation	0	0,05
5. Contrôle de la qualité des	0	0,05
matériaux		
6. Contrôle de la qualité de	0	0,10
l'exécution		

Q=1

III.3.3 Vérification de la période fondamentale de la structure

La valeur de T, calculée par le logiciel ROBOT ne doit pas dépasser celle estimée à partir de la formule empirique appropriée par le RPA99 de plus de 30%. La période fondamentale obtenu par le logiciel ROBOT : T=0,91s

|--|

Case/Mode	Frequency (Hz)	Period (sec)
30/ 1	1,09	0,91
30/ 2	1,18	0,85
30/ 3	1,31	0,77

Le période empirique est donné par la formule suivante :

$$T = C_t \times h_n^{\frac{3}{4}}$$

Avec :

 C_t : Coefficient donnée en fonction du système de contreventement et du type de remplissage pour des contreventements assures par des palées triangules $C_t=0,085$

 h_n : Hauteur mesurée en mètres à partir de la base de la structure jusqu'au dernier niveau h_n =7,53m

$$T_{emp} = 0,085 \times 7,53^{\frac{3}{4}} = 0,386s$$
$$1,3T_{emp} = 1,3 \times 0,386 = 0,5018s$$

 $T_{num} = 0.91s > 1.3T_{emp} = 0.5018$ donc on prend T = 0.5018s

III.3.4 Vérification de l'effort tranchant à la base

$$V_t > 0.8V$$

La force sismique totale :

$$V = \frac{A.D.Q}{R}.W$$

Avec :

W : poids totaux de la structure (calculée par Robot) W=957,56kN

D : Coefficient d'amplification dynamique moyen, fonction de la catégorie de site, du facteur de correction d'amortissement et de la période fondamentale de la structure (T)

$$D = \begin{cases} 2,5\eta & 0 < T < T_2 \\ 2,5\eta(T_2/T)^{\frac{2}{3}}T_1 < T < 3,0s \\ 2,5\eta(T_2/3,0s)^{\frac{2}{3}}(3,0s/T)^{\frac{5}{3}}T_1 < T < 0,3 \\ T = 0,5018s \ et \ T_2 = 0,70 \end{cases}$$

D=2,5 η = 2,5 × 1 = 2,5

- Q : facteur de qualité = 1
- A : coefficient d'accélération =0,15
- R : coefficient de comportement global = 4

$$V_x = \frac{0,15 \times 2,5 \times 1}{4}.957,56 = 89,77kN$$
$$V_y = \frac{0,15 \times 2,5 \times 1}{4}.957,56 = 89,77kN$$

Les résultats donnent par robot structure analysis

Effort sismique dans le sens $(X)V_{tx}=15,45$ kN

Effort sismique dans le sens (Y) V_{ty} =17,54kN

Tableau III - 5 : Effort Sismique

	$V_t(kN)$	V (kN)	80%V (kN)	$V_t > 80\% V$
V_{x}	15,45	89,77	71,82	Non vérifie
V_y	17,5	89,77	71,82	Non vérifie

III.4 Conclusion

Les efforts à la base de la structure ne sont pas vérifiés parce que le période T = 0.91 donné par le logiciel Robot Structural Analysis est trop grande pour une structure métallique.

Les hangars métalliques sont les structures légères et ils ne sont pas vraiment affectés par le séisme contraire au cas d'une structure en béton.

Chapitre 4 : Dimensionnement des éléments secondaires

IV.1. Introduction

Les ossatures secondaires sont conçues pour soutenir de couverture et de bardage et transmettre aux portiques les surcharges du vent agissant sur ces éléments.

Dans notre étude, on va vérifier les pannes, les lisses de bardages et les potelets.

IV.2. Dimensionnement des pannes

Dépars la longueur de notre structure (42 m) et la disponibilité des profilés de longueur de 12 m, on est amené à utiliser des pannes de portée de 6 m et d'autres de 12 m étant donné que les portiques sont espacés de 6m.

Figure IV - 1 : Disposition en alternance des pannes sur les portiques

Comme les pannes sont continuées sur deux ou trois travées, on veillera à ne pas disposer tous les appuis d'extrémité au droit d'un même portique, ce qui aurait pour effet de surcharger les portiques adjacents. Par conséquent, il est usuel de prévoir des pannes dont les extrémités sont disposées en alternance sur les traverses comme le montre la figure III.2. De ce fait, la somme des réactions des pannes sur deux traverses voisines est quasiment identique

Figure IV - 2 : Réactions d'appui d'un système de pannes à une et deux travées

IV.2.1 Modélisation des charges d'entretien

Les charges d'entretien correspondant à deux hommes pesants chacun 100 kg sont placés à une distance de 1/3 de la longueur de la panne. Afin de faciliter le calcul, nous adoptant une charge répartie équivalente sur la panne en égalisant les deux moments maximaux de la poutre sur 2 appuis chargée uniformément et avec deux charges ponctuelles distantes de 1/3.

$$M_{max} = \frac{P \cdot l}{3} = \frac{q_{eq} \cdot l^2}{8}$$
$$q_{eq} = \frac{8 \cdot P}{3 \cdot l} = \frac{8x1000}{3x6} = 445 \, N/ml = 0.445 \, kN/ml$$

IV.2.2 Pannes sur 2 appuis

Pour dimensionner les pannes, il est nécessaire de connaître les sollicitations appliquées à ces éléments. Pour cela, on modélise le squelette de notre structure (Poteaux, traverses, potelets, pannes, lisses et contreventement) et de déterminer les efforts (N, T, M) selon la combinaison la plus défavorable.

Nous avons donc adopté le logiciel « **Robot Structural Analysis** » pour mener nos calculs. La combinaison la plus défavorable induisant des charges conséquentes est « G+1.5Vi). Alors, nos pannes sont sollicitées à des dépressions et par conséquent, la semelle inférieure est comprimée.

Etant donné que les pannes sont inclinées, elles sont donc sollicitées à la « flexion composées déviée ».

Ci-dessous les efforts maximaux appliqués à la panne :

$$N_{Ed} = 16.02 \text{ kN};$$

$$M_{y,Ed} = 8.47 \text{ kN.m}; \qquad M_{z,Ed} = 0.26 \text{ kN.m};$$

$$V_{y,Ed} = 0.17 \text{ kN}; \qquad V_{z,Ed} = 5.65 \text{ kN}$$

4 < 0.0 1 1 1

• •

L'outil de modélisation utilisé nous propose un profilé laminé « **IPE 160** » en acier S275 vérifiant la résistance à la flexion composée déviée.

A partir de là, on vérifie manuellement la résistance, la déformation et l'instabilité de cet élément et donc le cas où ce n'est pas vérifier, on essayera de trouver une solution optimale à ces vérifications (changer de profilé, de nuance ou ajouter des liernes).

IV.2.2.a Classification de la section

Pour classer la section de notre panne, on adopte la méthode simplifiée de classification qui consiste à déterminer la contrainte maximale de flexion ou de compression et identifier la classe correspondante.

$$\sigma_{c} = \frac{N_{sd}}{A} = \frac{16,02 \times 10^{3}}{20,1.10^{2}} = 7,92MPa$$

$$\sigma_{fy} = \frac{M_{y}}{W_{pl,y}} = \frac{8,47 \times 10^{6}}{123,9 \times 10^{3}} = 68,36MPa$$

$$\sigma_{fz} = \frac{M_{z}}{W_{pl,z}} = \frac{0,26 \times 10^{6}}{26,10 \times 10^{3}} = 9,96MPa$$

$$\sigma_{fy} = 68,36 > \sigma_{fz} = 9,96 > \sigma_{c} = 7,92$$

La contrainte de flexion est prédominante ; Par conséquent, le profilé **IPE 160 en acier S275** est de **classe 1**

Semelle en compression

$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$$

$$\frac{c}{t_f} = \frac{(b/2)}{t_f} = \frac{82/2}{7.4} = \frac{41}{7.4} = 5.54$$
$$\frac{c}{t_f} = 5.54 \le 10\varepsilon = 9.2$$

Semelle est de classe 1

Ame en flexion

$$\frac{d}{t_w} = \frac{127,2}{5} = 25.44$$
$$\frac{d}{t_w} = 25.44 \le 72\varepsilon = 65.52$$

Ame est de classe 1

IV.2.2.b Vérification de la flèche

La panne est penchée du fait qu'elle repose sur des traverses inclinées. La flèche composée des deux déformations dans les plans yy et zz doit être inférieur à la flèche admissible donnée par l'Eurocode 3 égale à l/200.

$$f = \sqrt{{f_y}^2 + {f_z}^2} \le \frac{l}{200}$$

Pour une poutre sur 2 appuis, la flèche est donnée par la formule :

$$f_{y} = \frac{5}{384} \frac{Q_{y} \cdot l^{4}}{E \cdot I_{z}} et f_{z} = \frac{5}{384} \frac{Q_{z} \cdot l^{4}}{E \cdot I_{y}}$$

$$M_{y} = \frac{Q_{z} \cdot l^{2}}{8} \rightarrow Q_{z} = \frac{8 \times M_{y}}{l^{2}} = \frac{8 \times 8.47}{6^{2}} = 1,88 \ kN/m$$

$$M_{z} = \frac{Q_{y} \cdot l^{2}}{8} \rightarrow Q_{y} = \frac{8 \times M_{z}}{l^{2}} = \frac{8 \times 0.26}{6^{2}} = 0,06 \ kN/m$$

$$f_{y} = \frac{5}{384} \frac{0,06x(6.10^{3})^{4}}{21.10^{4} \ x \ 68,31.10^{4}} = 7.06 \ mm \le \frac{l}{200} = \frac{6\ 000}{200} = 30 \ mm$$

$$f_{z} = \frac{5}{384} \frac{1.88 \ x(6.10^{3})^{4}}{21.10^{4} \ x \ 869,3.10^{4}} = 17.39 \ mm \le \frac{l}{200} = \frac{6\ 000}{200} = 30 \ mm$$

$$f = \sqrt{f_{y}^{2} + f_{z}^{2}} = \sqrt{(7.06)^{2} + (17.39)^{2}} = 18.77 \ mm \le \frac{l}{200} = \frac{6\ 000}{200} = 30 \ mm$$

La condition de flèche est vérifiée.

IV.2.2.c Vérification de l'effort tranchant $V_{y,pl,Rd} = \frac{0.58 f_y A_{vz}}{\gamma_{M0}} = \frac{0.58x275x966}{1.10} = 140\ 070\ N = 140,07\ kN$ $A_{vy} = 2.b.t_f + (t_w + r).t_w = 2x82*7.4 + (5+9)\ x5 = 1\ 283,6\ mm^2$

$$V_{z,pl,Rd} = \frac{0.58 f_y A_{vy}}{\gamma_{M0}} = \frac{0.58 x 275 x 1283.6}{1.10} = 186\ 122\ N = 186,12\ kN$$

 $V_{y,Ed} = 0.17 \text{ kN} < V_{y,pl,Rd} = 140,07 \text{kN}$

$$V_{z,Ed} = 5.65 \text{ kN} < V_{z,pl,Rd} = 186,12 \text{ kN}$$

La résistance à l'effort tranchant est vérifiée

IV.2.2.d. Vérification résistance avec instabilité

La combinaison défavorable induit une dépression dans les pannes et par conséquent, la semelle inférieure est comprimée et sensible au déversement. Certaines pannes, un effort de compression s'ajoute aux moments de flexion.

Les pannes sollicitées uniquement en flexion déviée auront la même section que celle des pannes sollicitées en flexion composée déviée afin d'éviter des décalages des semelles lors de leur assemblage.

Il y a donc risque de flambement et de déversement des pannes et doit vérifier l'inéquation cidessous.

$$\frac{N_{sd}}{\chi_z \cdot \frac{A.f_y}{\gamma_{M1}}} + \frac{k_{LT} \cdot M_{y,sd}}{\chi_{LT} \frac{W_{pl,y} \cdot f_y}{\gamma_{M1}}} + \frac{k_z \cdot M_{z,sd}}{\frac{W_{pl,z} \cdot f_y}{\gamma_{M1}}} < 1$$

Détermination de χ_z

Le profilé est de classe 1, alors $\beta_a = 1$

$$\lambda_1 = 93.9 \left[\frac{f_y}{275} \right]^{0.5} = 93.9 \left[\frac{235}{275} \right]^{0.5} = 86.39$$

Pannes doublement appuyées

$$l_{fz} = l$$

$$\lambda_z = \frac{l_{fz}}{i_z} = \frac{l}{i_z} = \frac{6\ 000}{18.4} = 326,08$$

$$\overline{\lambda_z} = \left[\frac{\lambda_z}{\lambda_1}\right] (\beta_a)^{0.5} = \frac{326,08}{86.39} = 3,76$$

Chapitre 4 : Dimensionnement des éléments secondaires

$$\overline{\lambda_z} = 3.76 > 0.2$$

Il y a risque de flambement

Le facteur d'imperfection est choisi selon la courbe de flambement.

$$\frac{h}{b} = \frac{160}{82} = 1,95 > 1,2$$

 $t_f=7,4 \text{ mm} < 40 \text{ mm}$, flambement suivant l'axe (zz). La courbe de flambement est b et $\alpha=0.34$

$$\phi = 0.5 [1 + \alpha(\bar{\lambda} - 0.2) + \bar{\lambda}^2]$$

$$\phi_z = 0.5. [1 + 0.34. (3.76 - 0.2) + 3.76^2]$$

$$\phi_z = 8.16$$

$$\chi = \frac{1}{\phi + [\phi^2 - \bar{\lambda}^2]^{0.5}}$$

$$\chi_z = \frac{1}{8.16 + [8.16^2 - 3.76^2]^{0.5}}$$

$$\chi_z = 0.06$$

Détermination de χ_{LT}

Calcul de λ_{LT} en fonction du moment critique

$$M_{cr} = C_1 \frac{\pi^2 E I_z}{(k_z L)^2} \left[\sqrt{\left(\frac{k_z}{k_w}\right)^2 \frac{I_w}{I_z} + \frac{(k_z L)^2 G I_t}{\pi^2 E I_z} + (C_2 z_g)^2 - (C_2 z_g)} \right]$$

Poutre sur 2 appuis, alors, $k_z=k_w=1$

Poutre chargée uniformément, alors, C₁=1.13 et C₂=0.46

la longueur de déversement est L=6 m

La charge est appliquée sur la semelle inférieure, alors, z_g =+h/2 = 80 mm

ГГ

Les calculs sont menés en kN et m.

$$= 1.13 \frac{3.14^{2} \times 21.10^{4} \times 68,31.10^{4}}{(6.10^{3})^{2}} \left[\sqrt{\frac{3.96.10^{9}}{68.31.10^{4}}} + \frac{(6.10^{3})^{2} \times 80769 \times 3.6.10^{4}}{3.14^{2} \times 21.10^{4} \times 68.31.10^{48}} + (0.46 \times 80)^{2} - (0.46 \times 80) \right]$$

M_{cr}=11013970 N.mm = 11,01 kN.m

Section de classe, $\beta_w=1$

$$\bar{\lambda}_{Lt} = \left[\frac{\beta_W W_{pl,y} f_y}{M_{cr}}\right]^{0.5} = \left[\frac{1x123,9.10^3 x275}{11013970}\right]^{0.5} = 1.758$$
$$\bar{\lambda}_{Lt} = 1,758 > 0.4$$

Il y a risque de déversement

 $\alpha_{LT}=0.21$

$$\phi_{LT} = 0.5 \left[1 + \alpha (\bar{\lambda}_{LT} - 0.2) + \bar{\lambda}_{LT}^{2} \right]$$

$$\phi_{LT} = 2.21$$

$$\chi_{LT} = \frac{1}{\phi_{LT} + [\phi_{LT}^{2} - \bar{\lambda}_{LT}^{2}]^{0.5}}$$

$$\chi_{LT} = 0.282$$

Détermination de k_{LT}

$$k_{LT} = 1 - \frac{\mu_{LT} \cdot N_{Ed}}{\chi_z \cdot A \cdot f_y}$$
$$\mu_{Lt} = 0.15 \, \bar{\lambda}_z \cdot \beta_{My} - 0.15$$

 β_{My} est le facteur de moment uniforme équivalent pour le déversement

Moments dus à des charges transversales (poutre sur 2 appuis, uniformément chargée)

 $\mu_{Lt} = 0,15 \ x \ 3.756 \ x \ 1,3 - 0,15 = 0.583 < 0,9$

$$k_{LT} = 1 - \frac{0,583x16020}{0.06x2010x275} = 0.748 < 1$$

klt=0,748

Détermination de k_z

$$\begin{split} k_z &= 1 - \frac{\mu_z.\,N_{Ed}}{\chi_z.\,A.\,f_y} \\ \mu_z &= \bar{\lambda}_z.\,(2.\,\beta_{Mz}-4) + \left[\frac{W_{pl.z}-W_{el.z}}{W_{el.z}}\right] \end{split}$$

29

$$\beta_{Mz} = 1,3$$

$$\mu_z = 3.76x(2x1.3 - 4) + \left[\frac{26,1.10^3 - 16,66.10^3}{16,66.10^3}\right]$$

 $\mu_z = -4.69 < 0.9$

$$k_z = 1 - \frac{-4,69x16020}{0.06x2010x275} = 3.02 > 1,5$$

On prend $k_z=1,5$ alors

IV.2.2.e Vérification de la résistance avec risque de déversement et flambement

$$\frac{N_{sd}}{\chi_z \cdot \frac{A.f_y}{\gamma_{M_1}}} + \frac{k_{LT} \cdot M_{y,sd}}{\chi_{LT} \frac{W_{pl,y} \cdot f_y}{\gamma_{M_1}}} + \frac{k_z \cdot M_{z,sd}}{\frac{W_{pl,z} \cdot f_y}{\gamma_{M_1}}} < 1$$

0.475 + **0.726** + 0.046 = 1,247 > 1

La condition n'est pas vérifiée. On est donc amené à utiliser des liernes pour ne pas changer de profilé et de nuance d'acier.

La panne se trouve maintenant sur 3 appuis et par conséquent, le moment par rapport à l'axe zz est M_z =0,0675 kN.m et donc Q_y =0,06 kN/ml

La flèche est forcément inferieure à la flèche admissible (de même pour la vérification des efforts tranchants)

$$f = \sqrt{f_y^2 + f_z^2} = \sqrt{(7.06)^2 + (7.13)^2} = 10.04 \, mm \le \frac{l}{200} = \frac{6\,000}{200} = 30 \, mm$$

Avec f_z=0.41 f₀ (f₀=17,40 mm)

Détermination de χ_z

$$l_{fz} = l/2$$

$$\lambda_z = \frac{\frac{l_{fz}}{2}}{i_z} = \frac{3\ 000}{18.4} = 163,04$$
$$\overline{\lambda_z} = 1.87 > 0.2$$

Il y a risque de flambement

α=0.34

$$\phi = 0.5 [1 + \alpha (\bar{\lambda} - 0.2) + \bar{\lambda}^2]$$

$$\phi_z = 0.5. [1 + 0.34. (1.87 - 0.2) + 1.87^2]$$

$$\phi_z = 2.549$$

$$\chi = \frac{1}{\phi + [\phi^2 - \bar{\lambda}^2]^{0.5}}$$

$$\chi_z = \frac{1}{2.549 + [2.549^2 - 1.87^2]^{0.5}}$$

$$\chi_z = 0.234$$

Détermination de χ_{LT}

 M_{cr}

$$= 1.13 \frac{3.14^2 \times 21.10^4 \times 68,31.10^4}{(3.10^3)^2} \left[\sqrt{\frac{3.96.10^9}{68.31.10^4} + \frac{(3.10^3)^2 \times 80769 \times 3.6.10^4}{3.14^2 \times 21.10^4 \times 68.31.10^{48}} + (0.46 \times 80)^2 - (0.46 \times 80) \right]$$

Section de classe, $\beta_w=1$

$$\overline{\lambda}_{Lt} = 1,24 > 0.4$$

Il y a risque de déversement

α_{LT}=0.21

$$\phi_{LT} = 1,387$$

 $\chi_{LT} = 0.501$

Détermination de k_{LT}

$$k_{LT} = 1 - \frac{\mu_{LT} \cdot N_{Ed}}{\chi_z \cdot A \cdot f_y}$$
$$\mu_{Lt} = 0.15 \,\overline{\lambda}_z \cdot \beta_{My} - 0.15$$

 β_{My} est le facteur de moment uniforme équivalent pour le déversement

Moments dus à des charges transversales (poutre sur 2 appuis, uniformément chargée)

$$\beta_{My} = 1,3$$

$$\mu_{Lt} = 0,15 x 1,24 x 1,3 - 0,15 = 0.216 < 0,9$$

$$k_{LT} = 1 - \frac{0,216x16020}{0,234x2010x275} = 0,973 < 1$$

$$\mathbf{k}_{LT} = \mathbf{0},\mathbf{973}$$

Détermination de kz

$$k_{z} = 1 - \frac{\mu_{z} \cdot N_{Ed}}{\chi_{z} \cdot A \cdot f_{y}}$$
$$\mu_{z} = \bar{\lambda}_{z} \cdot (2 \cdot \beta_{Mz} - 4) + \left[\frac{W_{pl.z} - W_{el.z}}{W_{el.z}}\right]$$
$$\beta_{Mz} = 1,3$$
$$\mu_{z} = 1,24x(2x1.3 - 4) + \left[\frac{26,1 \cdot 10^{3} - 16,66 \cdot 10^{3}}{16,66 \cdot 10^{3}}\right]$$

 $\mu_z = -2,063 < 0,9$

$$k_z = 1 - \frac{-2,063x16020}{0.06x2010x275} = 1,255 < 1,5$$

k_z = 1,255

Vérification de la résistance avec risque de déversement et flambement

$$\frac{N_{sd}}{\chi_z \cdot \frac{A.f_y}{\gamma_{M1}}} + \frac{k_{LT} \cdot M_{y,sd}}{\chi_{LT} \frac{W_{pl,y} \cdot f_y}{\gamma_{M1}}} + \frac{k_z \cdot M_{z,sd}}{\frac{W_{pl,z} \cdot f_y}{\gamma_{M1}}} < 1$$

0.136 + **0**.531 + 0.013 = 0,68 < 1

La vérification à la résistance, au flambement et déversement sont satisfaisants.

IV.2.2.f Vérification résistance au voilement par cisaillement de l'âme

La panne est non raidie, on vérifie la condition :

$$\frac{h_w}{t_w} < 69\varepsilon$$
$$\frac{145,2}{5} = 29,04 < 69\varepsilon = 69x0,92 = 63,78$$

Il n'y a pas de voilement par cisaillement de l'âme de la panne

IV.2.2.g Vérification de la capacité de la tôle de la toiture à maintenir la panne contre le déversement

Dans le cas d'un chargement descendant (pression) due par exemple (1.35g+1.5N+0.7 V), on doit vérifier la rigidité de la toiture empêcher la semelle supérieure comprimée de la panne de déverser.

Rigidité de la tôle > rigidité de déversement [3]

$$1\ 000\ \sqrt{t^3}\left(50\ +\ 10^3\sqrt{b_{roof}}\right)\frac{s}{h_w} \ge \left(E\ I_w\frac{\pi^2}{L^2} + G\ I_t + E\ I_Z\frac{\pi^2}{L^2}\ 0.25\ h^2\right)\frac{70}{h^2}$$

t : épaisse de la TN40 (**t=1 mm**) ; il faut acquérir de la tôle avec une épaisseur de 1 mm si non, chercher une autre solution tel que doubler la tôle.

- b_{roof}: largeur du toit (6m)
- s : distance entre pannes (1,75m)
- h_w : hauteur des nervures des plaques (TN40 , h_w =40 mm)
- h : hauteur de la panne (160mm)
- l : longueur de la panne (6 m)
- Iw, Iz, It, e, G : propriétés géométriques et mécaniques de l'IPE 160

1000 x 227x44 = 9 910 179 kN.m :m> (1366+2907692308+251443463) x0.0027 = 8 638 266

Condition vérifiée, il y a donc maintien d la panne par la tôle de la toiture pour empêcher son déversement.

IV.2.3 Dimensionnement des liernes

Nous avons donc ajouté des liernes aux pannes afin d'éviter la déformation latérale c'est-àdire, le déversement. Dès lors que la pente des versants atteint 8 à 10%, l'effet de la charge transversale (perpendiculaire à l'âme) sur la panne devient préjudiciable et conduit à des sections importantes et onéreuses en absence des liernes.

La solution est de relier les pannes entre elles en mi portée pour réduite le moment sollicitant (car le moment maximal pour une poutre sur 3 appuis est plus faible qu'une poutre sur 2 appuis).

Figure IV - 3 : Emplacement et distribution des efforts dans les pannes

Le dispositif de deux groupes de liernes a été adopté afin de réduire les efforts dans ces dernières et d'éviter des sections importantes.

L'effort de traction au point C est R=1.25 Qy(L/2)

 $R = N_1 == 1.25 \ x \ 0.06 \ x \ 3 = 0.225 \ kN$

 $N_2 = N_1 + 1.25 \ x \ 0.06 \ x \ 3 = 0.45 \ kN$

 $N_3 = N_2 + 1.25 \ x \ 0.06 \ x \ 3 = 0.675 \ kN$

 $N_4 = (N_3 + 1.25 \text{ x } 0.06 \text{ x } 3) \cos\theta = 0.9 \text{x} \cos 25^\circ = 0.82 \text{kN}$

L'effort maximal est dans les bretelles et vaut 0.82kN.

 $N_{Ed}\!\!<\!\!N_{pl,Rd}$

$$N_{Ed} = 0.82 \text{ kN} < N_{pl,Rd} (A.f_y/\gamma_{M0})$$

 $A > (0.82.10^3 x 1.0)/235 = 3.50 \text{ mm}^2$

 $A = (\pi d^2)/4$

Chapitre 4 : Dimensionnement des éléments secondaires

$$d \ge \sqrt{\frac{4A}{\pi}} = \sqrt{\frac{4x3.50}{3.14}} = 2.11 \, mm$$

Pour des raisons pratiques et de sécurité, on choisira une barre à embout filetés en acier S235 de diamètre ϕ =10mm (figure II.4)

Figure IV - 4 : Barre pleine avec manchons emplacement de la panne sur l'âme du profilé

IV.2.4 Dimensionnement des échantignoles

Les échantignoles assurent la liaison entre pannes et les traverses. Les échantignoles en acier sont fixées aux traverses par boulonnage pour notre projet.

Figure IV - 5 : Attache boulonnée par échantignole pour 2 pannes

Réalisés d'un plat plié (parfois raidi), ils sont dimensionnés en flexion déviée.

 $Q_z = 1.88 \text{ kN/ml}$

 $Q_y = 0.06 \text{ kN/ml}$

L'excentrement est limité par la condition :

Où b est la largeur du profilé IPE160 (b=82 mm)

82 mm < t < 123 mm,

soit t= 110 mm

Figure IV - 6 : Excentrement Echantignole

Echantignole de rive

 $R_y = 2 \ Q_{y,Sd} \ (L/2) = 2x0.06x(6/2) = 0.36kN$

 $R_z = 2 Q_{z,Sd} (L/2) = 2x1,88x(6/2) = 11,28kN$

Moment de renversement :

 $M_r = Ry. (h/2) + R_z t$

 $M_r = 0.36 x 80 + 11.28 x 100 = 1 \ 157 \ kN.mm$

L'échantignole un plat en acier S235 généralement de classe 1 ou 2.

On doit verifier inequation: $MEd = M_r < M_{pl,Rd}$

$$M_r \leq M_{pl,Rd} = \frac{W_{pl,Rd} \cdot f_y}{\gamma_{M0}}$$
$$W_{pl,Rd} \geq \frac{M_r \cdot \gamma_{M0}}{f_y} = \frac{1\,157.\,10^3 x 1.0}{235} = 4\,923,404\,mm^3$$

On choisira un échantignole d'épaisseur de 4 mm (facile à plier) avec une largeur de 200 mm.

 $W_{pl,Rd} = 40\ 000\ mm^3$

IV.3 Lisses de bardages

Les lisses de bardages font parties des éléments secondaires du hangar. On va assurer ses stabilités en faisant des calculs à l'état limite ultime (ELU) et a l'état limite service (ELS).

Les lisses de bardage sont assemblées horizontalement sur les portiques ; ces éléments sont sollicités en flexion dans le plan horizontal suite à l'action du vent sur le bardage, et en flexion dans le plan vertical sous l'action de leur poids propre et le poids du bardage associé. Ces éléments peuvent être des profils IPE, UPE, etc.

On a trois types de lisses de bardages. Les lisses de 6m sur le pignon entre les poteaux et potelets. Les lisses de 18m sur toute la longueur du pignon et les lisses de 42m sur le long pan.

IV.3.1 Lisses sur 2 appuis 6m

La combinaison la plus défavorable induisant des charges est 1,35G+1,5V₁.

Elles sont donc sollicitées à la « flexion composées déviée »

Ci-dessous les efforts maximaux appliqués à la lisse :

 $N_{Ed} = 0,17kN;$

 $M_{y,Ed} = 16,74$ kN.m; $M_{z,Ed} = 1,35$ kN.m;

 $V_{y,Ed} = 0.36 kN$

Nous choisirons un profilé laminé « **UPN 200** » en acier S275 et on va vérifier la résistance avec instabilités et flèche) à la flexion composée déviée.

IV.3.1.a Classification de la section

Pour classer la section de notre panne, on adopte la méthode simplifiée de classification qui consiste à déterminer la contrainte maximale de flexion ou de compression et identifier la classe correspondante.

$$\sigma_c = \frac{N_{sd}}{A} = \frac{0.17 \times 10^3}{6.10^2} = 0.28MPa$$
$$\sigma_{fy} = \frac{M_y}{W_{pl.y}} = \frac{16.74 \times 10^6}{228 \times 10^3} = 73.42MPa$$
$$\sigma_{fz} = \frac{M_z}{W_{pl.z}} = \frac{1.35 \times 10^6}{51.8 \times 10^3} = 26.06MPa$$

$$\sigma_{fy} = 73,42 > \sigma_{fz} = 26,06 > \sigma_c = 0,28$$

La contrainte de flexion est prédominante ; Par conséquent, le profilé **UPN 200 en acier S275** est de **classe 1**

Semelle en compression

$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$$
$$\frac{c}{t_f} = \frac{(b/2)}{t_f} = \frac{75/2}{11.5} = \frac{37.5}{11.5} = 3,26$$
$$\frac{c}{t_f} = 3,26 \le 10\varepsilon = 9.2$$

Semelle est de classe 1

Ame en flexion

$$\frac{d}{t_w} = \frac{151}{8,5} = 17,76$$
$$\frac{d}{t_w} = 17,76 \le 72\varepsilon = 65.52$$

Ame est de classe 1

IV.3.1.b Vérification de la flèche

La panne est penchée du fait qu'elle repose sur des traverses inclinées. La flèche composée des deux déformations dans les plans yy et zz doit être inférieur à la flèche admissible donnée par l'Eurocode 3 égale à l/200.

$$f = \sqrt{{f_y}^2 + {f_z}^2} \le \frac{l}{200}$$

Pour une poutre sur 2 appuis, la flèche est donnée par la formule :

$$f_{y} = \frac{5}{384} \frac{Q_{y} \cdot l^{4}}{E \cdot I_{z}} et f_{z} = \frac{5}{384} \frac{Q_{z} \cdot l^{4}}{E \cdot I_{y}}$$

$$M_{y} = \frac{Q_{z} \cdot l^{2}}{8} \rightarrow Q_{z} = \frac{8 \times M_{y}}{l^{2}} = \frac{8 \times 16,74}{6^{2}} = 3,72 \text{ kN/m}$$

$$M_{z} = \frac{Q_{y} \cdot l^{2}}{8} \rightarrow Q_{y} = \frac{8 \times M_{z}}{l^{2}} = \frac{8 \times 1,35}{6^{2}} = 0,3 \text{ kN/m}$$

$$f_{y} = \frac{5}{384} \frac{0,3x(6.10^{3})^{4}}{21.10^{4} x \cdot 148.10^{4}} = 16,29 \text{ mm} \le \frac{l}{200} = \frac{6000}{200} = 30 \text{ mm}$$

$$f_{z} = \frac{5}{384} \frac{3,72 \cdot x(6.10^{3})^{4}}{21.10^{4} \cdot x \cdot 1910.10^{4}} = 15,65 \text{ mm} \le \frac{l}{200} = \frac{6000}{200} = 30 \text{ mm}$$

$$f = \sqrt{f_y^2 + f_z^2} = \sqrt{(16, 29)^2 + (15, 65)^2} = 22,58 \ mm \le \frac{l}{200} = \frac{6\ 000}{200} = 30 \ mm$$

La condition de flèche est vérifiée.

IV.3.1.c Vérification de l'effort tranchant

$$V_{y,pl,Rd} = \frac{0.58 f_y A_{vz}}{\gamma_{M0}} = \frac{0.58x275x1770}{1.10} = 256650 N = 256,65kN$$
$$V_{y,pl,Rd} = 0,36kN < V_{y,pl,Rd} = 256,65kN$$

La résistance à l'effort tranchant est vérifiée

IV.3.1.d Vérification résistance avec instabilité $N_{sd} = k_{IT} \cdot M_{ysd} = k_z \cdot M_{zsd}$

$$\frac{N_{sd}}{\chi_z \cdot \frac{A.f_y}{\gamma_{M1}}} + \frac{\kappa_{LT} \cdot M_{y,sd}}{\chi_{LT} \frac{W_{pl,y} \cdot f_y}{\gamma_{M1}}} + \frac{\kappa_z \cdot M_{z,sd}}{\frac{W_{pl,z} \cdot f_y}{\gamma_{M1}}} < 1$$

Détermination de χ_z

Le profilé est de classe 1, alors $\beta_a = 1$

$$\lambda_1 = 93.9 \left[\frac{f_y}{275} \right]^{0.5} = 93.9 \left[\frac{235}{275} \right]^{0.5} = 86.39$$

C'est une lisse doublement appuyée :

 $l_{fz} = l$

$$\lambda_z = \frac{l_{fz}}{i_z} = \frac{l}{i_z} = \frac{6\,000}{21,4} = 280,37$$
$$\overline{\lambda_z} = \left[\frac{\lambda_z}{\lambda_1}\right] (\beta_a)^{0.5} = \frac{280,37}{86,39} = 3,24$$
$$\overline{\lambda_z} = 3,24 > 0.2$$

Il y a risque de flambement

Le facteur d'imperfection est choisi selon la courbe de flambement.

$$\frac{h}{b} = \frac{200}{75} = 2,67 > 1,2$$

 $t_f=11,5 \text{ mm} < 40 \text{ mm}$, flambement suivant l'axe (zz). La courbe de flambement est b et $\alpha=0.34$

$$\emptyset = 0.5 \left[1 + \alpha \left(\bar{\lambda} - 0.2 \right) + \bar{\lambda}^2 \right]$$

$$\phi_z = 0.5. [1 + 0.34. (3.24 - 0.2) + 3.24^2]$$

$$\phi_z = 6.26$$

$$\chi = \frac{1}{\phi + [\phi^2 - \bar{\lambda}^2]^{0.5}}$$

$$\chi_z = \frac{1}{6.26 + [6.26^2 - 3.24^2]^{0.5}}$$

$$\chi_z = 0.08$$

<u>Détermination de χ_{LT} </u>

Calcul de λ_{LT} en fonction du moment critique

$$M_{cr} = C_1 \frac{\pi^2 E I_z}{(k_z L)^2} \left[\sqrt{\left(\frac{k_z}{k_w}\right)^2 \frac{I_w}{I_z} + \frac{(k_z L)^2 G I_t}{\pi^2 E I_z} + (C_2 z_g)^2} - (C_2 z_g) \right]$$

Poutre sur 2 appuis, alors, $k_z = k_w = 1$

Poutre chargée uniformément, alors, C_1 =1.13 et C_2 =0.46

La longueur de déversement est L=6 m

La charge est appliquée sur la semelle inférieure, alors, z_g =+h/2 =100 mm

Les calculs sont menés en kN et m.

 M_{cr}

$$= 1.13 \frac{3.14^2 \times 21.10^4 \times 148.10^4}{(6.10^3)^2} \left[\sqrt{\frac{9,07.10^9}{148.10^4} + \frac{(6.10^3)^2 \times 80769 \times 11,9.10^4}{3.14^2 \times 21.10^4 \times 68.31.10^{48}} + (0.46 \times 100)^2 - (0.46 \times 100) \right]$$

 M_{cr} =29056242,1 N.mm = 29,06kN.m Section de classe, β_w =1

$$\bar{\lambda}_{Lt} = \left[\frac{\beta_W W_{pl,y} f_y}{M_{cr}}\right]^{0.5} = \left[\frac{1x228.10^3 x275}{29056242.1}\right]^{0.5} = 1,47$$
$$\bar{\lambda}_{Lt} = 1,47 > 0.4$$

Il y a risque de déversement

 $\alpha_{LT}=0.21$

Chapitre 4 : Dimensionnement des éléments secondaires

MAJONI.E.F

$$\chi_{LT} = \frac{1}{\phi_{LT} + [\phi_{LT}^2 - \bar{\lambda}_{LT}^2]^{0.5}}$$
$$\chi_{LT} = 0.385$$

Détermination de k_{LT}

$$k_{LT} = 1 - \frac{\mu_{LT} \cdot N_{Ed}}{\chi_z \cdot A \cdot f_y}$$
$$\mu_{Lt} = 0.15 \ \bar{\lambda}_z \cdot \beta_{My} - 0.15$$

 β_{My} est le facteur de moment uniforme équivalent pour le déversement

Moments dus à des charges transversales (poutre sur 2 appuis, uniformément chargée)

$$\mu_{Lt} = 0.15 x 324 x 1.3 - 0.15 = 0.482 < 0.9$$

$$\beta_{My} = 1.3$$

$$k_{LT} = 1 - \frac{0,482x170}{0.08x600x275} = 0.994 < 1$$

klt=0,994

Détermination de kz

$$k_{z} = 1 - \frac{\mu_{z} \cdot N_{Ed}}{\chi_{z} \cdot A \cdot f_{y}}$$
$$\mu_{z} = \bar{\lambda}_{z} \cdot (2 \cdot \beta_{Mz} - 4) + \left[\frac{W_{pl.z} - W_{el.z}}{W_{el.z}}\right]$$
$$\mu_{z} = 3.24x(2x1.3 - 4) + \left[\frac{51.8 \cdot 10^{3} - 27 \cdot 10^{3}}{27 \cdot 10^{3}}\right]$$

 $\mu_z = -3,265 < 0,9$

$$k_z = 1 - \frac{(-3,265)x170}{0.08x600x275} = 1,04 < 1,5$$

$k_z = 1,04$

IV.3.1.e Vérification de la résistance avec risque de déversement et flambement

$$\frac{N_{sd}}{\chi_z \cdot \frac{A.f_y}{\gamma_{M_1}}} + \frac{k_{LT} \cdot M_{y,sd}}{\chi_{LT} \frac{W_{pl,y} \cdot f_y}{\gamma_{M_1}}} + \frac{k_z \cdot M_{z,sd}}{\frac{W_{pl,z} \cdot f_y}{\gamma_{M_1}}} < 1$$

$$0,013 + 0.756 + 0.108 = 0,878 \le 1$$

Les conditions sont vérifiées

IV.3.2 Lisses sur 4 appuis 18m

La combinaison la plus défavorable induisant des charges est $1,35G + 1,5V_1 + 0,75S$.

Elles sont donc sollicitées à la « flexion composées déviée »

Ci-dessous les efforts maximaux appliqués à la lisse :

$$N_{Ed} = 8,50 \text{kN};$$

$$M_{y,Ed} = 6,28 \text{kN.m}; \qquad M_{z,Ed} = 0,49 \text{kN.m};$$

$$V_{y,Ed} = 0,24 \text{kN}; V_{z,Ed} = 1,32 \text{kN}$$

L'outil de modélisation utilisé nous propose un profilé laminé « **UPN 200** » en acier S275 vérifiant la résistance à la flexion composée déviée.

IV.3.2.a Classification de la section

Pour classer la section de notre panne, on adopte la méthode simplifiée de classification qui consiste à déterminer la contrainte maximale de flexion ou de compression et identifier la classe correspondante.

$$\sigma_{c} = \frac{N_{sd}}{A} = \frac{8,50 \times 10^{3}}{6.10^{2}} = 14,17MPa$$

$$\sigma_{fy} = \frac{M_{y}}{W_{pl,y}} = \frac{6,28 \times 10^{6}}{228 \times 10^{3}} = 27,542MPa$$

$$\sigma_{fz} = \frac{M_{z}}{W_{pl,z}} = \frac{0,49 \times 10^{6}}{51,8 \times 10^{3}} = 9.45MPa$$

$$\sigma_{fy} = 27,54 > \sigma_{c} = 14,17 > \sigma_{fz} = 9,45$$

La contrainte de flexion est prédominante ; Par conséquent, le profilé **UPN 200 en acier S275** est de **classe 1**

IV.3.2.b Vérification de la flèche

La panne est penchée du fait qu'elle repose sur des traverses inclinées. La flèche composée des deux déformations dans les plans yy et zz doit être inférieur à la flèche admissible donnée par l'Eurocode 3 égale à l/200.

Chapitre 4 : Dimensionnement des éléments secondaires

$$f = \sqrt{{f_y}^2 + {f_z}^2} \le \frac{l}{200}$$

Pour une poutre sur 2 appuis, la flèche est donnée par la formule :

$$f_{y} = \frac{5}{384} \frac{Q_{y} \cdot l^{4}}{E \cdot I_{z}} \text{ et } f_{z} = \frac{5}{384} \frac{Q_{z} \cdot l^{4}}{E \cdot I_{y}}$$

$$M_{y} = \frac{Q_{z} \cdot l^{2}}{8} \rightarrow Q_{z} = \frac{8 \times M_{y}}{l^{2}} = \frac{8 \times 6,28}{6^{2}} = 1,40 \text{ kN/m}$$

$$M_{z} = \frac{Q_{y} \cdot l^{2}}{8} \rightarrow Q_{y} = \frac{8 \times M_{z}}{l^{2}} = \frac{8 \times 0,49}{6^{2}} = 0,11 \text{ kN/m}$$

$$f_{y} = \frac{5}{384} \frac{0,11x(6\cdot10^{3})^{4}}{21\cdot10^{4}x \cdot 148\cdot10^{4}} = 5,91 \text{ mm} \le \frac{l}{200} = \frac{6000}{200} = 30 \text{ mm}$$

$$f_{z} = \frac{5}{384} \frac{1,40 \times (6\cdot10^{3})^{4}}{21\cdot10^{4}x \cdot 1910\cdot10^{4}} = 5,87 \text{ mm} \le \frac{l}{200} = \frac{6000}{200} = 30 \text{ mm}$$

$$f = \sqrt{f_{y}^{2} + f_{z}^{2}} = \sqrt{(5,91)^{2} + (5,87)^{2}} = 8,33 \text{ mm} \le \frac{l}{200} = \frac{6000}{200} = 30 \text{ mm}$$

La condition de flèche est vérifiée.

IV.3.2.c Vérification de l'effort tranchant $V_{y,pl,Rd} = \frac{0.58 f_y A_{vz}}{v} = \frac{0.58 x 275 x 1770}{1.10} = 256650 N = 256,65 kN$

$$\gamma_{M0} = 0.24 \text{kN} < V_{y,\text{pl,Rd}} = 256.65 \text{ kN}$$

 $A_{vy} = 2.b.t_{f} + (t_w + r).t_w = 2x75*11,5 + (8,5+11,5) \times 8,5 = 1\ 895 \text{mm}^2$ $V_{z,pl,Rd} = \frac{0.58}{\gamma_{M0}} \frac{f_y A_{vy}}{\gamma_{M0}} = \frac{0.58x275x1895}{1.10} = 274\ 775\ N = 274,775\ kN$ La résistance à l'effort tranchant est vérifiée

IV.3.2.d Vérification résistance avec instabilité

$$\frac{N_{sd}}{\chi_z \cdot \frac{A.f_y}{\gamma_{M_1}}} + \frac{k_{LT} \cdot M_{y,sd}}{\chi_{LT} \frac{W_{pl,y} \cdot f_y}{\gamma_{M_1}}} + \frac{k_z \cdot M_{z,sd}}{\frac{W_{pl,z} \cdot f_y}{\gamma_{M_1}}} < 1$$

Détermination de χ_z

Le profilé est de classe 1, alors $\beta_a = 1$

$$\lambda_1 = 93.9 \left[\frac{f_y}{275} \right]^{0.5} = 93.9 \left[\frac{235}{275} \right]^{0.5} = 86.39$$

Lisse doublement appuyée

$$l_{fz} = l$$

$$\lambda_z = \frac{l_{fz}}{i_z} = \frac{l}{i_z} = \frac{6\ 000}{21.4} = 280.37$$

$$\overline{\lambda_z} = \left[\frac{\lambda_z}{\lambda_1}\right] (\beta_a)^{0.5} = \frac{280.37}{86.39} = 3.24$$

$$\overline{\lambda_z} = 3.24 > 0.2$$

Il y a risque de flambement

Le facteur d'imperfection est choisi selon la courbe de flambement.

$$\frac{h}{b} = \frac{200}{75} = 2,67 > 1,2$$

 $t_f=11,5 \text{ mm} < 40 \text{ mm}$, flambement suivant l'axe (zz). La courbe de flambement est b et $\alpha=0.34$

$$\phi = 0.5 [1 + \alpha (\bar{\lambda} - 0.2) + \bar{\lambda}^2]$$

$$\phi_z = 0.5. [1 + 0.34. (3.24 - 0.2) + 3.24^2]$$

$$\phi_z = 6.26$$

$$\chi = \frac{1}{\phi + [\phi^2 - \bar{\lambda}^2]^{0.5}}$$

$$\chi_z = \frac{1}{6.26 + [6.26^2 - 3.24^2]^{0.5}}$$

$$\chi_z = 0.08$$

Détermination de χ_{LT}

Calcul de λ_{LT} en fonction du moment critique

$$M_{cr} = C_1 \frac{\pi^2 E I_z}{(k_z L)^2} \left[\sqrt{\left(\frac{k_z}{k_w}\right)^2 \frac{I_w}{I_z} + \frac{(k_z L)^2 G I_t}{\pi^2 E I_z} + (C_2 z_g)^2 - (C_2 z_g)} \right]$$

Poutre sur 2 appuis, alors, $k_z = k_w = 1$

Poutre chargée uniformément, alors, $C_1=1.13$ et $C_2=0.46$

la longueur de déversement est L=6 m

La charge est appliquée sur la semelle inférieure, alors, z_g =+h/2 =100 mm

Les calculs sont menés en kN et m.

$$= 1.13 \frac{3.14^{2} \times 21.10^{4} \times 148.10^{4}}{(6.10^{3})^{2}} \left[\sqrt{\frac{9,07.10^{9}}{148.10^{4}}} + \frac{(6.10^{3})^{2} \times 80769 \times 11,9.10^{4}}{3.14^{2} \times 21.10^{4} \times 68.31.10^{48}} + (0.46 \times 100)^{2} - (0.46 \times 100) \right]$$

 M_{cr} =29056242,1 N.mm = 29,06kN.m

Section de classe, $\beta_w=1$

$$\bar{\lambda}_{Lt} = \left[\frac{\beta_W W_{pl,y} f_y}{M_{cr}}\right]^{0.5} = \left[\frac{1x228.10^3 x275}{29056242.1}\right]^{0.5} = 1.47$$
$$\bar{\lambda}_{Lt} = 1.47 > 0.4$$

Il y a risque de déversement

 $\alpha_{LT}=0.21$

$$\phi_{LT} = 0.5 \left[1 + \alpha (\bar{\lambda}_{LT} - 0.2) + \bar{\lambda}_{LT}^2 \right]$$
$$\phi_{LT} = 1,71$$
$$\chi_{LT} = \frac{1}{\phi_{LT} + [\phi_{LT}^2 - \bar{\lambda}_{LT}^2]^{0.5}}$$
$$\chi_{LT} = 0,385$$

Détermination de k_{LT}

$$k_{LT} = 1 - \frac{\mu_{LT} \cdot N_{Ed}}{\chi_z \cdot A \cdot f_y}$$
$$\mu_{Lt} = 0.15 \,\overline{\lambda}_z \cdot \beta_{My} - 0.15$$

 β_{My} est le facteur de moment uniforme équivalent pour le déversement

Moments dus à des charges transversales (poutre sur 2 appuis, uniformément chargée)

$$\mu_{Lt} = 0.15 x 3.24 x 1.3 - 0.15 = 0.482 < 0.9$$

$$k_{LT} = 1 - \frac{0,482x8500}{0.08x600x275} = 0.709 < 1$$

klt=0,994

Détermination de k_z

$$k_{z} = 1 - \frac{\mu_{z} \cdot N_{Ed}}{\chi_{z} \cdot A \cdot f_{y}}$$
$$\mu_{z} = \bar{\lambda}_{z} \cdot (2 \cdot \beta_{Mz} - 4) + \left[\frac{W_{pl,z} - W_{el,z}}{W_{el,z}}\right]$$
$$\mu_{z} = 3.24x(2x1.3 - 4) + \left[\frac{51,8 \cdot 10^{3} - 27 \cdot 10^{3}}{27 \cdot 10^{3}}\right]$$

 $\mu_z = -3,265 {<}\,0,9$

$$k_z = 1 - \frac{(-3,265)x8500}{0.08x600x275} = 3,178 < 1,5$$

On prend $k_z=1,5$ alors

$$k_{z}=1,5$$

IV.3.2.e Vérification de la résistance avec risque de déversement et flambement

$$\frac{N_{sd}}{\chi_z \cdot \frac{A.f_y}{\gamma_{M_1}}} + \frac{k_{LT} \cdot M_{y,sd}}{\chi_{LT} \frac{W_{pl,y} \cdot f_y}{\gamma_{M_1}}} + \frac{k_z \cdot M_{z,sd}}{\frac{W_{pl,z} \cdot f_y}{\gamma_{M_1}}} < 1$$

0,661 + 0.202 + 0.056 = 0,92 ≤ 1

Les conditions sont vérifiées

IV.3.3 Lisses sur 8 appuis 42m

La combinaison la plus défavorable induisant des charges est 1,35G dans le plan zz et $1,5V_1$ dans le plan yy

Elles sont donc sollicitées à la « flexion composées déviée ».

Ci-dessous les efforts maximaux appliqués à la lisse :

$$N_{Ed} = 0,31 kN;$$

 $M_{y,Ed} = 7,01 kN.m;$ $M_{z,Ed} = 1,10 kN.m;$
 $V_{y,Ed} = 1,09 kN;$ $V_{z,Ed} = 7,26 kN$

L'outil de modélisation utilisé nous propose un profilé laminé « UPN 140 » en acier S275 vérifiant la résistance à la flexion composée déviée.

IV.3.3.a Classification de la section

Pour classer la section de nos lisses, on adopte la méthode simplifiée de classification qui consiste à déterminer la contrainte maximale de flexion ou de compression et identifier la classe correspondante.

$$\sigma_{c} = \frac{N_{sd}}{A} = \frac{0.31 \times 10^{3}}{5.10^{2}} = 0.62MPa$$

$$\sigma_{fy} = \frac{M_{y}}{W_{pl,y}} = \frac{7.01 \times 10^{6}}{103 \times 10^{3}} = 68.06MPa$$

$$\sigma_{fz} = \frac{M_{z}}{W_{pl,z}} = \frac{1.10 \times 10^{6}}{28.3 \times 10^{3}} = 38.87MPa$$

$$\sigma_{fy} = 68.06 > \sigma_{fz} = 38.87 > \sigma_{c} = 0.62$$

La contrainte de flexion est prédominante ; Par conséquent, le profilé **UPN 140 en acier S275** est de **classe 1**

Semelle en compression

$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$$
$$\frac{c}{t_f} = \frac{(b/2)}{t_f} = \frac{60/2}{10} = \frac{30}{10} = 3$$
$$\frac{c}{t_f} = 3 \le 10\varepsilon = 9.2$$

Semelle est de classe 1

Ame en flexion

$$\frac{d}{t_w} = \frac{98}{7} = 14$$
$$\frac{d}{t_w} = 14 \le 72\varepsilon = 65.52$$

Ame est de classe 1

IV.3.3.b Vérification de la flèche

La panne est penchée du fait qu'elle repose sur des traverses inclinées. La flèche composée des deux déformations dans les plans yy et zz doit être inférieur à la flèche admissible donnée par l'Eurocode 3 égale à 1/200.

$$f = \sqrt{{f_y}^2 + {f_z}^2} \le \frac{l}{200}$$

La flèche f_y est due à la charge du vent (1.35V₁) et elle est calculée pour une poutre sur 8 appuis distants de 6 m. elle vaut : **15,75 mm**

La flèche f_z une poutre sur 8 appuis distants de 6 m. elle vaut : 24,71mm

$$f_y = 15,75 \ mm < \frac{l}{200} = \frac{6000}{200} = 30 \ mm$$
$$f_z = 24,71 \ mm < \frac{l}{200} = \frac{6000}{200} = 30 \ mm$$

 $f = \sqrt{f_y^2 + f_z^2} = \sqrt{(15.75)^2 + (24,71)^2} = 29,30 \ mm < \frac{l}{200} = \frac{6000}{200} = 30 \ mm$

La condition de flèche est vérifiée.

IV.3.3.c Vérification de l'effort tranchant

$$V_{y,pl,Rd} = \frac{0.58 f_y A_{vz}}{\gamma_{M0}} = \frac{0.58x275x1040}{1.10} = 150\ 800\ N = 150,8kN$$
$$V_{y,pl,Rd} = 1,09kN < V_{y,pl,Rd} = 150,8kN$$

 $A_{vy} = 2.b.t_f + (t_w + r).t_w = 2x60*10 + (7+10) x7 = 1 319mm^2$

$$V_{z,pl,Rd} = \frac{0.58 f_y A_{vy}}{\gamma_{M0}} = \frac{0.58x275x1319}{1.10} = 191\,255\,N = 191\,255kN$$

La résistance à l'effort tranchant est vérifiée

IV.3.3.d Vérification résistance avec instabilité

$$\frac{N_{sd}}{\chi_z \cdot \frac{A.f_y}{\gamma_{M_1}}} + \frac{k_{LT} \cdot M_{y,sd}}{\chi_{LT} \frac{W_{pl,y} \cdot f_y}{\gamma_{M_1}}} + \frac{k_z \cdot M_{z,sd}}{\frac{W_{pl,z} \cdot f_y}{\gamma_{M_1}}} < 1$$

Détermination de χ_z

Le profilé est de classe 1, alors $\beta_a = 1$

$$\lambda_1 = 93.9 \left[\frac{f_y}{275} \right]^{0.5} = 93.9 \left[\frac{235}{275} \right]^{0.5} = 86.39$$

Lisse doublement appuyée

$$l_{fz} = l$$

$$\lambda_z = \frac{l_{fz}}{i_z} = \frac{l}{i_z} = \frac{6\,000}{17,5} = 342,85$$

$$\overline{\lambda_z} = \left[\frac{\lambda_z}{\lambda_1}\right] (\beta_a)^{0.5} = \frac{324,85}{86,39} = 3,96$$

$$\overline{\lambda_z} = 3,96 > 0.2$$

Il y a risque de flambement

Le facteur d'imperfection est choisi selon la courbe de flambement.

$$\frac{h}{b} = \frac{140}{60} = 2,33 > 1,2$$

 $t_f=10 \text{ mm} < 40 \text{ mm}$, flambement suivant l'axe (zz). La courbe de flambement est b et $\alpha=0.34$

$$\phi = 0.5 [1 + \alpha (\bar{\lambda} - 0.2) + \bar{\lambda}^2]$$

$$\phi_z = 0.5. [1 + 0.34. (3.96 - 0.2) + 3.96^2]$$

$$\phi_z = 9.016$$

$$\chi = \frac{1}{\phi + [\phi^2 - \bar{\lambda}^2]^{0.5}}$$

$$\chi_z = \frac{1}{9.016 + [9.016^2 - 3.96^2]^{0.5}}$$

$$\chi_z = 0.058$$

Détermination de χ_{LT}

Calcul de λ_{LT} en fonction du moment critique

$$M_{cr} = C_1 \frac{\pi^2 E I_z}{(k_z L)^2} \left[\sqrt{\left(\frac{k_z}{k_w}\right)^2 \frac{I_w}{I_z} + \frac{(k_z L)^2 G I_t}{\pi^2 E I_z} + \left(C_2 z_g\right)^2} - \left(C_2 z_g\right) \right]$$

Poutre sur 2 appuis, alors, $k_z = k_w = 1$

Poutre chargée uniformément, alors, C₁=1.13 et C₂=0.46

La longueur de déversement est L=6 m

La charge est appliquée sur la semelle inférieure, alors, z_g =+h/2 =70 mm

Les calculs sont menés en kN et m.

$$M_{cr} = C_1 \frac{\pi^2 E I_z}{(k_z L)^2} \left[\sqrt{\left(\frac{k_z}{k_w}\right)^2 \frac{I_w}{I_z} + \frac{(k_z L)^2 G I_t}{\pi^2 E I_z} + (C_2 z_g)^2 - (C_2 z_g)} \right]$$

 M_{cr}

$$= 1.13 \frac{3.14^2 \times 21.10^4 \times 62, 7.10^4}{(6.10^3)^2} \left[\sqrt{\frac{1,80.10^9}{62,7.10^4} + \frac{(6.10^3)^2 \times 80769 \times 5,68.10^4}{3.14^2 \times 21.10^4 \times 62, 7.10^{48}} + (0.46 \times 70)^2 - (0.46 \times 70) \right]$$

M_{cr}=13443808,1N.mm = 13,44kN.m

Section de classe, $\beta_w=1$

$$\bar{\lambda}_{Lt} = \left[\frac{\beta_W W_{pl,y} f_y}{M_{cr}}\right]^{0.5} = \left[\frac{1x103.10^3 x275}{13443808,1}\right]^{0.5} = 1,45$$
$$\bar{\lambda}_{Lt} = 1,45 > 0.4$$

Il y a risque de déversement

 $\alpha_{LT}=0.21$

$$\phi_{LT} = 0.5 \left[1 + \alpha (\bar{\lambda}_{LT} - 0.2) + \bar{\lambda}_{LT}^2 \right]$$
$$\phi_{LT} = 1,68$$
$$\chi_{LT} = \frac{1}{\phi_{LT} + [\phi_{LT}^2 - \bar{\lambda}_{LT}^2]^{0.5}}$$
$$\chi_{LT} = 0,393$$

Détermination de k_{LT}

$$k_{LT} = 1 - \frac{\mu_{LT} \cdot N_{Ed}}{\chi_z \cdot A \cdot f_y}$$
$$\mu_{Lt} = 0.15 \ \bar{\lambda}_z \cdot \beta_{My} - 0.15$$

 β_{My} est le facteur de moment uniforme équivalent pour le déversement Moments dus à des charges transversales (poutre sur 2 appuis, uniformément chargée)

$$\mu_{Lt} = 0.15 \ x \ 3.96 \ x \ 1.3 - 0.15 = 0.623 < 0.9$$

 $\beta_{My} = 1.3$

$$k_{LT} = 1 - \frac{0.6232x310}{0.05x500x275} = 0.975 < 1$$

Détermination de k_z

$$k_{z} = 1 - \frac{\mu_{z} \cdot N_{Ed}}{\chi_{z} \cdot A \cdot f_{y}}$$
$$\mu_{z} = \bar{\lambda}_{z} \cdot (2.\beta_{Mz} - 4) + \left[\frac{W_{pl.z} - W_{el.z}}{W_{el.z}}\right]$$
$$\mu_{z} = 3.96x(2x1.3 - 4) + \left[\frac{28,3.10^{3} - 14,8.10^{3}}{14,8.10^{3}}\right]$$

 $\mu_z = -4,64 < 0,9$

 $k_z = 1 - \frac{(-4,64)x310}{0.05x500x275} = 1,17 < 1,5$

IV.3.3.e Vérification de la résistance avec risque de déversement et flambement

$$\frac{N_{sd}}{\chi_z \cdot \frac{A.f_y}{\gamma_{M_1}}} + \frac{k_{LT} \cdot M_{y,sd}}{\chi_{LT} \frac{W_{pl,y} \cdot f_y}{\gamma_{M_1}}} + \frac{k_z \cdot M_{z,sd}}{\frac{W_{pl,z} \cdot f_y}{\gamma_{M_1}}} < 1$$

0,042 + 0.674 + 0.183 = 0,90 ≤ 1

La résistance de la lisse de longueur de 42 m est vérifiée.

IV.4 Calculs des potelets

Les potelets de pignons jouent le rôle de support vertical des lisses de bardage aux pignons du hangar, puisque la distance entre les poteaux du portique aux pignons est de 18 m. L'ossature des pignons est constituée de 2 potelets intermédiaires partageant cette dernière en 3 travées comme indiqué dans la figure ci-dessous (figure 5.1). Pour la face où on doit disposer les portes du hangar, on laisse la travée au milieu ouverte sans lisses afin de pouvoir fixer le cadre de la porte du hangar

Les potelets sont le plus souvent des profilés en I ou H. Ce sont les éléments destinés à rigidifier le bardage et résister aux efforts horizontaux du vent. Nous considérons nos potelets bis- articulés comme c'est souvent le cas.

Ainsi les potelets sont sollicités en compression grâce au poids des lisses et des bardages associés et en flexion dans le plan horizontal grâce aux surcharges du vent.

Figure IV - 7 : Potelet la plus sollicité

IV.4.1 Evaluation des charges

- \checkmark G= poids propre du potelet + poids propre des lisses + poids propre du bardage
- ✓ Poids propre des lisses UPN 200 : 25,3kg/m
- ✓ Poids propre de bardage : 11kg/m
- ✓ Vent sur pignon : 159,38daN/m²
- ✓ V=159,38×6=956,28daN/m
- ✓ 6 est la distance entre les potelets
- ✓ L : longueur du potelet le plus solliciter = 6,89m

On choisira dans un premier temps un profilé IPE 240

Profile IPE 240 G=30,7kg/m h=240mm b=120mm t_w =6,2mm t_f =9,8mm r=15mm, A=39, 1 $mm^2 I_y$ =3892 × 10⁴ $mm^4 W_{ely}$ =324,3 × 10³ $mm^3 W_{ply}$ =366,6 × 10³ $mm^3 I_z$ =283,6 × 10⁴ $mm^4 W_{elz}$ =47,27× 10³ $mm^3 W_{plz}$ =73,92× 10³ $mm^3 I_t$ =12,88× 10⁴ mm^4

IV.4.2 Vérification de la flèche à l'ELS

Le potelet est sollicité à la flexion composée. La flèche est due au vent de dépression et elle est égale à :

$$f_z = \frac{5}{384} \times \frac{V \times l^4}{EI_y} \le f_{ad} = \frac{l}{200}$$

$$f_z = \frac{5}{384} \times \frac{9,56 \times (6.89 \ 10^3)^4}{210 \ 000 \ x3892 \ 10^4} = 34,33 \ mm \le f_{ad} = \frac{6.89 \ 10^3}{200} = 34,45 \ mm$$

La condition de la flèche est vérifiée

Calcul du poids propre :

 $G_{IPE240} = 30,7 \text{ kg/m x } 6.89 \text{ m} = 221,52 \text{ kg} = 2215,2 \text{ N} = 2,215 \text{ kN}$

 $G_{\text{lisse}} = (25,3 \text{kg/m x 6 m}) \text{ x6} = 151,8 \text{x6 kg} = 9108 \text{ N} = 9,11 \text{kN}$

 $G_{TN40} = 11 \text{ kg/m x 6 m} = 66 \text{ kg} = 660 \text{ N} = 0,66 \text{ kN}$

G= poids propre du potelet + poids propre des lisses + poids propre de bardage

G=2.215+9.11+0.66=11,99kN

 $N_{Ed} = 11,99kN;$

$$M_{y,Ed} = 1,155$$
kN.m

Classification de la section du profile laminé IPE 240 S275

IV.4.3 Classification de la section

Pour classer la section de nos lisses, on adopte la méthode simplifiée de classification qui consiste à déterminer la contrainte maximale de flexion ou de compression et identifier la classe correspondante.

$$\sigma_c = \frac{N_{sd}}{A} = \frac{11,99 \times 10^3}{39,1.10^2} = 3,06MPa$$
$$\sigma_{fy} = \frac{M_y}{W_{pl.y}} = \frac{1,155 \times 10^6}{366,6 \times 10^3} = 3,15MPa$$

Chapitre 4 : Dimensionnement des éléments secondaires

$$\sigma_{fy} = 3,06 > \sigma_c = 3,06$$

La contrainte de flexion est prédominante ; Par conséquent, le profilé **IPE 240 en acier S275** est de **classe 1**

Condition de la résistance selon l'Eurocode 3

IV.4.4 Incidence de l'effort tranchant

$$\begin{aligned} Q_{z.Sd} &= 1,5V = 1,5 \times 956,28 = 14,344 kN \\ V_{z.Sd} &= Q_{z.Sd} \times \frac{l}{2} = 14,344 \times \frac{6,89}{2} = 49,41 kN \\ A_{vz} &= A - 2bt_f + (t_w + 2r) \times t_f \\ A_{vz} &= 19,14 \times 10^2 mm^2 \\ V_{pl.Rd} &\leq \frac{A_{v.} \left(f_y / \sqrt{3} \right)}{\gamma_{M0}} = \frac{19,14 \left(27,5 / \sqrt{3} \right)}{1,1} = 276,26 kN \\ V_{z.Sd} &= 49,41 kN < 0,5 V_{pl.Rd} = 138,13 kN \end{aligned}$$

La condition de l'effort tranchant vérifie

IV.4.5 Incidence de l'effort normale $\begin{bmatrix} A_{m}f_{n}\end{bmatrix}$

$$N_{sd} \le \min\left[0,25N_{pl.Rd}; \frac{byry}{\gamma_{M0}}\right]$$

$$N_{sd} = 11,99kN$$

$$N_{pl.Rd} = \frac{A.f_y}{\gamma_{M0}} = \frac{39,1 \times 27,5}{1,1} = 977,5kN$$

$$A_{vy} = A - 2bt_f = 39,1 - 2 \times 12 \times 0,98 = 15,58cm$$

$$\frac{A_{vy}f_y}{\gamma_{M0}} = \frac{15,58 \times 27,5}{1,1} = 389,5kN$$

$$N_{sd} = 11,99 \le \min[244,375; 389,5]kN$$
La condition de l'effort normale vérifie

IV.4.6 Vérification du moment

$$M_{sd} \le M_{c.Rd} = \frac{W_{ply} \cdot f_y}{\gamma_{M0}}$$
$$M_{sd} = 1,155kN.m$$
$$M_{ply.Rd} = \frac{366,6 \times 27,5 \times 10^2}{1,1} = 91,65kN.m$$
$$1,155kN.m < 91,65kN.m$$

Donc la condition du moment est vérifiée

IV.4.7 Vérification résistance avec instabilité

$$\frac{N_{sd}}{\chi_z \cdot \frac{A.f_y}{\gamma_{M1}}} + \frac{k_{LT} \cdot M_{y,sd}}{\chi_{LT} \frac{W_{pl,y} \cdot f_y}{\gamma_{M1}}} + \frac{k_z \cdot M_{z,sd}}{\frac{W_{pl,z} \cdot f_y}{\gamma_{M1}}} < 1$$

Détermination de χ_z

Le profilé est de classe 1, alors $\beta_a = 1$

$$\lambda_1 = 93.9 \left[\frac{f_y}{275} \right]^{0.5} = 93.9 \left[\frac{235}{275} \right]^{0.5} = 86.39$$

Lisse doublement appuyée

$$l_{fz} = l$$

$$\lambda_y = \frac{l_{fy}}{i_y} = \frac{l}{i_y} = \frac{4480}{99,7} = 44,93$$

$$\overline{\lambda_y} = \left[\frac{\lambda_y}{\lambda_1}\right] (\beta_a)^{0.5} = \frac{44,93}{86,39} = 0,52$$

$$\overline{\lambda_y} = 0,52 > 0.2$$

Il y a risque de flambement

Le facteur d'imperfection est choisi selon la courbe de flambement.

$$\frac{h}{b} = \frac{240}{120} = 2 > 1,2$$

tf=9,8 mm < 40 mm, flambement suivant l'axe (yy). La courbe de flambement est b et α =0.21

$$\emptyset = 0.5 [1 + \alpha (\bar{\lambda} - 0.2) + \bar{\lambda}^2]$$

$$\phi_y = 0.5. [1 + 0.21. (0.52 - 0.2) + 0.52^2]$$
$$\phi_y = 0,6688$$
$$\chi = \frac{1}{\phi + [\phi^2 - \bar{\lambda}^2]^{0.5}}$$
$$\chi_y = \frac{1}{0,6688 + [0,6688^2 - 0,52^2]^{0.5}}$$
$$\chi_z = 0,917$$

Détermination de χ_{LT}

Calcul de λ_{LT} en fonction du moment critique

$$M_{cr} = C_1 \frac{\pi^2 E I_z}{(k_z L)^2} \left[\sqrt{\left(\frac{k_z}{k_w}\right)^2 \frac{I_w}{I_z} + \frac{(k_z L)^2 G I_t}{\pi^2 E I_z} + \left(C_2 z_g\right)^2} - \left(C_2 z_g\right) \right]$$

Poutre sur 2 appuis, alors, k_z=k_w=1

Poutre chargée uniformément, alors, C_1 =1.13 et C_2 =0.46

La longueur de déversement est L=6 m

La charge est appliquée sur la semelle inférieure, alors, $z_g{=}{+}h{/}2$ =120 mm

Les calculs sont menés en kN et m.

$$M_{cr} = C_1 \frac{\pi^2 E I_z}{(k_z L)^2} \left[\sqrt{\left(\frac{k_z}{k_w}\right)^2 \frac{I_w}{I_z} + \frac{(k_z L)^2 G I_t}{\pi^2 E I_z} + (C_2 z_g)^2} - (C_2 z_g) \right]$$

$$\begin{split} & \mathsf{M}_{\mathrm{cr}} \\ &= 1.13 \frac{3.14^2 \times 21.10^4 \times 283, 6.10^4}{(4,48.10^3)^2} \left[\sqrt{\frac{37,39.10^9}{283, 6.10^4} + \frac{(4,48.10^3)^2 \times 80769 \times 12,88.10^4}{3.14^2 \times 21.10^4 \times 283, 6.10^{48}} + (0.46 \times 120)^2 \right. \\ & - (0.46 \times 120) \right] \end{split}$$

 M_{cr} =56986565,5N.mm = 56,99kN.m

Section de classe, $\beta_w=1$

$$\bar{\lambda}_{Lt} = \left[\frac{\beta_W W_{pl,y} f_y}{M_{cr}}\right]^{0.5} = \left[\frac{1x366, 6.10^3 x275}{5698656, 5}\right]^{0.5} = 1,33$$
$$\bar{\lambda}_{Lt} = 1,33 > 0.4$$

Il y a risque de déversement

 $\alpha_{LT}=0.21$

$$\phi_{LT} = 0.5 \left[1 + \alpha (\bar{\lambda}_{LT} - 0.2) + \bar{\lambda}_{LT}^2 \right]$$
$$\phi_{LT} = 1,503$$
$$\chi_{LT} = \frac{1}{\phi_{LT} + [\phi_{LT}^2 - \bar{\lambda}_{LT}^2]^{0.5}}$$
$$\chi_{LT} = 0,453$$

Détermination de k_{LT}

$$k_{LT} = 1 - \frac{\mu_{LT} \cdot N_{Ed}}{\chi_z \cdot A \cdot f_y}$$
$$\mu_{Lt} = 0.15 \,\overline{\lambda}_y \cdot \beta_{My} - 0.15$$

 β_{My} est le facteur de moment uniforme équivalent pour le déversement

Moments dus à des charges transversales (poutre sur 2 appuis, uniformément chargée)

klt=1

IV.4.8 Vérification de la résistance avec risque de déversement et flambement

$$\frac{N_{sd}}{\chi_z \cdot \frac{A.f_y}{\gamma_{M_1}}} + \frac{k_{LT} \cdot M_{y,sd}}{\chi_{LT} \frac{W_{pl,y} \cdot f_y}{\gamma_{M_1}}} < 1$$

 $0,01337 + 0,0278 = 0,041 \le 1$

Les conditions sont vérifiées.

IV.5 Conclusion

Les pannes sont en IPE 160 et ses conditions de stabilités sont toutes satisfaites par le profile choisit.

Les trois types de lisses de bardages (sur 2 appuis, sur 4 appuis et sur 8 appuis) aussi vérifient les conditions de stabilités.

Enfin, les potelets aussi vérifient toutes les conditions de stabilités. Donc ses éléments secondaires seront adoptés dans notre projet.

V.1 Introduction

Le calcul d'une structure exige que sous toutes les combinaisons d'action possible définies règlementairement, la stabilité statique doit être assurée tant globalement, au niveau de la structure, qu'individuellement au niveau de chaque élément.

Les diverses sollicitations, générés par les actions, développent des contraintes au sein même des matériaux ce qui peut provoquer la déformation des éléments qui composent la structure.

Il est impératif donc, de vérifier que les contraintes et les déformations sont en déca des limites admissibles conformément à la règlementation pour garantir le degré de sécurité souhaité.

V.2 Dimensionnement des poteaux

Les portiques, qui constituent l'ossature principale des bâtiments rez-de-chaussée, sont composés de traverses, qui supportent les pannes, et de poteaux, qui supportent les traverses et les lisses.

Le choix va se porter sur des profilés laminés de classe 1 ou 2. On va adopter un profilé en I en acier S275 dont l'inertie principale se trouve dans le du pignon et il sera connecté à la traverse par assemblage semi-rigide.

V.2.1 Choix du profilé

Les sollicitations sont déterminées à l'aide du logiciel Robot Structural Analysis après modélisation du squelette de notre structure.

La combinaison la plus défavorable est $G+1,5V_i$; c'est une dépression pour les poteaux et par conséquent la semelle intérieure sera comprimée et celle où seront fixées les lisses est tendue.

Les sollicitions sont donc :

```
\begin{split} N_{Ed} &= 82 \text{ kN}(\text{Effort de compression}) \\ M_{y.Ed} &= 265, 22 \text{ kN. m} \\ M_{z.Ed} &= 0 \text{ kN. m} \\ V_{y,Ed} &= 0, 84 \text{ kN} \\ V_{z,Ed} &= 11, 45 \text{ kN} \end{split}
```

Le poteau est donc sollicité à la flexion composée (chargement de dépression, semelle intérieure comprimée).

Dans un premier temps, on choisira un profilé laminé **IPE 360**et on vérifiera sa résistance par la suite.

Les caractéristiques géométriques de l'IPE 360 sont :

G=57,1kg/m h=360mm b=170mm t_w =8mm t_f =12,7mm r=18mm, A=72,7mm² I_y =16270× $10^4 mm^4 W_{ely}$ =903,6× $10^3 mm^3 W_{ply}$ =1019× $10^3 mm^3 I_z$ =1043× $10^4 mm^4 W_{elz}$ =122,8× $10^3 mm^3 W_{plz}$ =191,1× $10^3 mm^3 I_t$ =37,32× $10^4 mm^4$

V.2.2 Classification du profilé

$$\sigma_{c} = \frac{N_{sd}}{A} = \frac{82 \times 10^{3}}{72,7.10^{2}} = 11,27MPa$$

$$\sigma_{fy} = \frac{M_{y}}{W_{pl,y}} = \frac{265 \times 10^{6}}{1019 \times 10^{3}} = 251,22MPa$$

 $\sigma_{fv} = 251,22 > \sigma_c = 11,27$

La contrainte de flexion est prédominante ; l'IPE 360 en acier S275 est classé 1 (voir détail des calculs ci-dessous)

V.2.3 Classe de l'âme

$$\frac{d}{t_w} \le 72\varepsilon$$

$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0,92$$

$$\frac{298,6}{8} = 37,325 \le 72\varepsilon = 66,24$$

L'âme est classe 1

$$\frac{c}{t_f} = 10\varepsilon$$
$$\frac{85}{12,7} = 6,69 \le 10\varepsilon = 9,2$$

Donc la semelle est classe 1

V.2.5 Vérification à l'effort tranchant

 $V_{pl.Rd} \le \frac{0.58 \times f_y \times A_v}{\gamma_{M0}}$

 A_v est de l'aire de cisaillement

$$A_{v} = A - 2bt_{f} + (t_{w} + 2r) \times t_{f} = 72,7 \times 10^{2} - 2 \times 170 \times 12,7 + (8 + 2 \times 18) \times 12,7 = 3510,8$$

$$V_{pl.Rd} = \frac{0.58 \times 27,5 \times 35,108}{1.1} = 509,06kN$$

$$V_{z,sd} = 11,45KN \le V_{pl.Rd} = 509,06kN$$

$$V_{z,sd} = 11,45KN \le 0, 5.V_{pl.Rd} = 254,533kN$$

Non seulement il n'y a pas d'incidence de l'effort tranchant sur les moments, la vérification à l'effort tranchant est observée.

La vérification de l'effort tranchant $V_{y, Ed}$ n'est pas nécessaire car sa valeur est insignifiante ($V_{y,Ed} = 0,84 \text{ kN}$)

Vu que la semelle du poteau comprimée n'est pas celle qui est fixée sur les lisses, il y a un fort risque de déversement.

Il y a de la compression dans le poteau et par conséquent, il y a risque de flambement.

V.2.6 Vérification d'inéquation (<u>flexion composée</u> avec risque de déversement

$$\frac{N_{sd}}{\chi_z.N_{pl.Rd}} + \frac{k_{LT}.M_{y.Sd}}{\chi_{LT}.M_{ply.Rd}} \le 1$$

La longueur de notre poteau est 5,6m et espacement entre lisses est 1,12m

$$\lambda_1 = 93,9\varepsilon \text{ avec } \varepsilon = \left[\frac{235}{f_y}\right]^{0,5} \varepsilon$$

Dans notre cas $\varepsilon = 0.92 \ car \ f_{\gamma} = 275 N/mm^2$

$$\lambda_1 = 93,9\varepsilon = 93,9 \times 0.92 = 86,388$$

 $\beta_A = 1$ pour les sections transversales 1,2 ou 3

$$\lambda = \frac{l_{fz}}{i_z} = \frac{112}{3,79} = 29,55$$

$$\bar{\lambda}_z = \left[\frac{\lambda}{\lambda_1}\right] \cdot (\beta_A)^{0.5} = \frac{29,55}{86,388} = 0,340 > 0.2$$

Il y a risque de flambement

Donc il y a risque de déversement

$$\lambda_z = \frac{l_{fz}}{i_z} = \frac{560}{3,79} = 147,75$$

 $\beta_A = 1$ pour les sections transversales 1,2 ou 3

$$\bar{\lambda}_z = \left[\frac{\lambda_z}{\lambda_1}\right] \cdot (\beta_A)^{0,5} = \frac{147,75}{86,388} = 1,70$$

Courbe de flambement $\frac{360}{170} = 2,11 > 1,2 \ donc \ \alpha_z = 0,34$

 α est un facteur d'imperfection

$$\phi = 0.5 \left[1 + \alpha (\overline{\lambda_z} - 0.2) + \overline{\lambda_z}^2 \right]$$
$$\phi_z = 0.5 [1 + 0.34(1.70 - 0.2) + 1.70^2] = 2.204$$
$$\chi_z = \frac{1}{\phi + \left[\phi^2 - \overline{\lambda_y}^2 \right]^{0.5}} = \frac{1}{2.204 + [2.204^2 - 1.70^2]^{0.5}} = 0.277 \ge 1$$

$$\frac{N_{sd}}{\chi_z.N_{pl.Rd}} + \frac{k_{LT}.M_{y.Sd}}{\chi_{LT}.M_{ply.Rd}} \le 1$$

$$\frac{82x10^3}{0,277x7270x275} + \frac{0,95x265,22x10^6}{0,67x1019,10^3x275} = 0,147 + \mathbf{1}, \mathbf{404} = \mathbf{1}, \mathbf{55} \ge 1$$

Condition non vérifiée ; le terme (1,404) est préjudiciable pour le déversement.

SOLUTION

Ajouter des Bracons tous les 1.12m et par conséquent réduire la longueur de déversement (c-à-d, changer χ_{LT}).

Figure V - 1 : Bracons ajouté pour diminuer le déversement

Alors

$$\bar{\lambda}_{LT} = \left[\frac{\lambda_{LT}}{\lambda_1}\right] \cdot (\beta_w)^{0.5}$$

$$\lambda_{LT} = \frac{L/i_z}{\sqrt{C_1} \left[1 + \frac{1}{20} \left(\frac{L/i_z}{h/t_f}\right)^2\right]^{0.5}} = \frac{112/3.79}{\sqrt{1.77} \left[1 + \frac{1}{20} \left(\frac{112/3.79}{360/12.7}\right)^2\right]^{0.5}} = 21,92$$

$$\bar{\lambda}_{LT} = \left[\frac{21,92}{86,833}\right] \cdot (1)^{0.5} = 0.25 < 0.4$$

Il y a eu lieu uniquement de vérifier le flambement

$$\frac{N_{sd}}{\chi_z.\,N_{pl.Rd}} \le 1$$

$$\lambda_z = \frac{l_{fz}}{i_z} = \frac{112}{3,79} = 29,55$$

 $\beta_A = 1 \text{ pour les sections transversales } 1, 2 \text{ ou } 3$

$$\bar{\lambda}_{z} = \left[\frac{\lambda_{z}}{\lambda_{1}}\right] \cdot (\beta_{A})^{0.5} = \frac{29,55}{86,388} = 0,34$$
$$\phi = 0,5 \left[1 + \alpha(\overline{\lambda_{z}} - 0,2) + \overline{\lambda_{z}}^{2}\right]$$
$$\phi_{z} = 0,5[1 + 0,34(0,34 - 0,2) + 0,34] = 0,582$$
$$\chi_{z} = \frac{1}{\phi + \left[\phi^{2} - \overline{\lambda_{y}}^{2}\right]^{0.5}} = \frac{1}{0,582 + [0,582^{2} - 0,34^{2}]^{0.5}} = 0,949$$

$$\frac{82000}{0,949x.\,7270x275} = 0.04 \le 1$$

Condition vérifiée

$$\frac{82x10^3}{0,277x7270x275} + \frac{0,95x265,22x10^6}{0,67x1019,10^3x275} = 0,147 + \mathbf{1}, \mathbf{404} = \mathbf{1}, \mathbf{55} \ge 1$$

Les semelles inférieures de la traverse et les semelles intérieures des poteaux sont stabilisées en plaçant des bracons simples, eux-mêmes reliés à la lisse de bardage faisant partie du système de contreventement.

Poteau L=5.6m

Avec risque de déversement

										b- Avec risque	de déverseme	nt : Il faut éga	lement véri	fier que :
						$\chi_{LT} = -$	$\phi_{LT} + \left[\phi_{LT}\right]^2$	$-\overline{\lambda}_{LT}^{2}^{0.5}$	mais $\chi_{1T} \leq 1$			N _{si} k		kM
χιτ	0,64					(=) = 2 1					$\frac{S_a}{A_{ef}}$ +	Watasfa	$+\frac{c}{W_{st}} \leq 1$
ŧπ	1,12				$\phi_{LT} = 0.5.[1]$	$+ \alpha_{LT} . (\lambda_{LT} - 0.2)$	$()+\lambda_{LT}$					$\chi_z \cdot \frac{\chi_y}{\chi} = \chi_l$	T	- pi.z + y
αιτ	0,21				$\alpha_{tr} = 0.21$							/ M1	7 <i>M</i> 1	7 <i>M</i> 1
λ _{LT BARRA}	1,03	> 0,4	risque					Pou	r les profilés lam	unës				
β	1,00	classe 1 où 2			$\alpha_{LT} = 0,49$			Pou	r les sections sou	$k_{LT} = 1 - \frac{r}{2}$	(.A.f.	mais k	,≤1;	
W _{pl,y}	1 019 000,00	mm ³			г	0,5				,	()		r	
f _v	275,00	N/mm²	Mpa		$\overline{\lambda}_{LT} = \beta_w N$	$V_{pl,y} \cdot \frac{J_y}{M} =$	$\frac{\lambda_{lT}}{2}$ $(\beta_{v}$) ^{0,5}	ancement réduit	$\mu_{LT} = 0.15$	$\overline{\lambda}_{z} \cdot \beta_{MLT} - 0.15$	mais <i>u</i>	$t_{rr} \leq 0.9$;	
M _{cr}					L	m _σ	[^i]		ancement reduct	,	factour de momente	ut uniforma faulu	alant naur la d	Kuamamant
λ ₁	86,80				 [0,5	[22	s] ^{0,5}		$-p_{MLT}$ est le	facteur de momer	u uniforme equiv	aient pour le c	eversement.
λ _{LT}	89,62				$\lambda_1 = \pi. \frac{E}{f}$	= 93,9£ ave	$\varepsilon \mathcal{E} = \left \frac{23}{f} \right $	et f	en N/mm ² .	Lorsque $\bar{\lambda}$	$_{17} \leq 0.4$, il est i	nutile de prendr	e en compte l	e déversement.
β _{MLT}	1,80				_ [//]	1	[[]	/]						_
μι	-0,06	<= 0,9								TERME 1	TERME 2	TOTAL		
κιτ	1,00	<=1				1	N _{Sd}	k_l	$_T M_{y,Sd}$					
Ner	82 000,00	N					A f	+	W.f	0,04321597	1,47588098	1,51909695	<1	
Musi	265 220 000.00	N.mm	265.22	kN.m		X	11.J y	χ_{iT}	. pl.y J y				>1	
Υ.	0.95		,			102	γ_{M1}	N LI	γ_{M1}				-	
A	7 270.00	mm ²												
7.41	1.00													
lur	_,													

Poteau L=5.6m mais avec des bracons tous les 1.12 m

L_D=1.12m

Avec risque de déversement

	ry	-,	-/-												
_										l	- Avec risque	de deversemei	nt : Il faut ega	lement verif	ier que :
1							X11 =	1	- 10.5 I	nais $\chi_{LT} \leq 1$					
1							ϕ_{LT} +	$\phi_{LT} - \lambda_{LT}$	r ⁴				N. k	M	k M
1	χ ιτ	0,99				1		- 1					$\frac{A_{Sd}}{A_{sd}} + \frac{A_{sd}}{A_{sd}}$	$\frac{U^{-W_{y,Sd}}}{W_{y,Sd}}$ +	$\frac{\kappa_z M_z M_z}{W_{alor} f_a} \leq 1$
	фLT	0,54				$\phi_{LT} = 0.5 [1 + \alpha_{LT}]$	$\lambda_{l,T} = 0,2 + \lambda_l$	ur"]					$\chi_z \cdot \frac{\chi_z}{\chi} = \chi_L$	r. <u>v</u>	<u>y</u>
!	αιτ	0,21				$\alpha_{rr} = 0.21$							7 M1	7 M 1	7 M 1
	λ _{LT BARRA}	0,25	> 0,4	risque					Pour k	es profilés lami	inés – – – – – – – – – – – – – – – – – – –				
ł	βο	1,00	classe 1 où 2			$\alpha_{LT} = 0,49$			Pour k	es sections sou	$k_{LT} = 1 - \frac{\mu}{\lambda}$	$\frac{df A f_{y}}{df_{y}}$	mais k	,≤1;	
1	W _{pl,y}	1 019 000,00	mm ³			_ r ,	7 ^{0,5} [2	1				_			
1	fy	275,00	N/mm²	Mpa		$\overline{\lambda}_{LT} = \beta_w W_{pl.y} \cdot \frac{J}{M}$	$\frac{y}{\lambda} = \frac{\lambda_{LT}}{\lambda}$	$(\beta_{w})^{0.5}$	L'élan	cement réduit ;	$\mu_{LT} = 0.15.$	$\overline{\lambda}_{z}$. $\beta_{MLT} = 0,15$	mais µ	$u_{LT} \le 0.9$;	
1	M _{cr}					L	a] ["	-			<i>Burrestle</i>	facteur de momen	nt uniforme équiv	alent pour le dé	versement
1	λ ₁	86,80				$\begin{bmatrix} E \end{bmatrix}^{0.5}$		[235] ^{0,5}		,	- Para cor ic	literetir de momen	a unionne equi	are in pour re de	
1	λιτ	21,92				$\lambda_1 = \pi \cdot \left \frac{f_y}{f_y} \right = 9$	3,9. <i>E</i> avec <i>E</i> :	$= \frac{1}{f_y}$	et f _y er	n <i>N/mm</i> ⁻.	Lorsque $\overline{\lambda}$	$_{LT} \leq 0,4$, il est in	nutile de prendre	e en compte le	déversement.
1	β _{MLT}	1,80													
	μι	-0,06	<= 0,9						,	14	TERME 1	TERME 2	TOTAL		
!	κ _{LT}	1,00	⊂1				N_{Sd}		k_{LT}	.M _{y.Sd}					
1	N _{sd}	82 000,00	N				A.	$\overline{f_{v}}^{+-}$		$W_{ply} \cdot f_y$	0,04321597	0,95999954	1,0032155	<1	
ł	M _{y,Sd}	265 220 000,00	N.mm	265,22	kN.m		χ_z	_ λ	χ_{LT} .	N				>1	
1	χ.	0,95					Y	M1		V M 1					
1	Α	7 270,00	mm ²												
1	γ _{M1}	1,00													
1															

V.3 Dimensionnement des traverses

Les travers sont des éléments structuraux assurant la transmission des efforts des charges extérieures, de la toiture, pannes et leur poids propre vers les poteaux.

Le choix va se porter sur des profilés laminés de classe 1 ou 2. On va adopter un profilé en I en acier S275.

V.3.1 Choix du profilé

Les sollicitations sont déterminées à l'aide du logiciel robot structural analysis après modélisation du squelette de notre structure.

La combinaison la plus défavorable est $G+1,5V_i$; c'est une dépression pour les traverses et par conséquent la semelle intérieure sera comprimée et celle où seront fixées les lisses est tendue.

Les sollicitions sont donc :

 $N_{Ed} = 1166, 64 \text{ kN}$ (Effort de compression) $M_{y.Ed} = 92, 87 \text{ kN}. \text{ m}$ $M_{z.Ed} = 4, 32 \text{ kN}. \text{ m}$ $V_{y,Ed} = 7, 42 \text{ kN}$ $V_{z.Ed} = 1, 35 \text{ kN}$

La traverse est donc sollicitée à la flexion composée (chargement de dépression, semelle intérieure comprimée).

Dans un premier temps, on choisira un profilé laminé **IPE 400** et on vérifiera sa résistance par la suite.

Caractéristiques du profile IPE 400

Profile IPE 400 G=66,3kg/m h=400mm b=180mm t_w =8,6mm t_f =13,5mm r=21mm, A=84,5mm² I_y =23130× 10⁴mm⁴ W_{ely} =1156× 10³mm³ W_{ply} =1307× 10³mm³ I_z =1318× 10⁴mm⁴ W_{elz} =146,4× 10³mm³ W_{plz} =229× 10³mm³ I_t =51,08× 10⁴mm⁴

V.3.2 Classification du profilé

$$\sigma_c = \frac{N_{sd}}{A} = \frac{116,64 \times 10^3}{84,5.10^2} = 13,80MPa$$
$$\sigma_{fy} = \frac{M_y}{W_{pl,y}} = \frac{92,87 \times 10^6}{1307 \times 10^3} = 71,05MPa$$
$$\sigma_{fz} = \frac{M_z}{W_{pl,z}} = \frac{4,32 \times 10^6}{229 \times 10^3} = 18,86MPa$$

 $\sigma_{fy} = 71,\!05 > \sigma_{fz} = 18,\!86 > \sigma_c = 13,\!80$

Flexion est prédominante

IPE 400 en acier S275

V.3.3 Classe de l'âme

$$\frac{d}{t_w} \le 72\varepsilon$$

$$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$$

$$\frac{331}{8.6} = 38.488 \le 72\varepsilon = 66.24$$

L'âme est classe 1

V.3.4 Classe de semelle

$$\frac{c}{t_f} = \frac{\binom{b}{2}}{t_f} \le 10\varepsilon$$
$$\frac{90}{13,5} = 6,66 \le 10\varepsilon = 9,2$$

Donc la semelle est classe 1

Condition de résistance selon l'Eurocode 3

V.3.4 Vérification à l'effort tranchant

$$V_{pl.Rd} \le \frac{0.58 \times f_y \times A_v}{\gamma_{M0}}$$

 A_v est de l[']aire de cisaillement

$$A_{vz} = A - 2bt_f + (t_w + 2r) \times t_f = 84,5 \times 10^2 - 2 \times 180 \times 13,5 + (8,6 + 2 \times 21) \times 13,5$$

= 4271,3

$$V_{ply.Rd} = \frac{0.58 \times 27,5 \times 42,713}{1,1} = 908,033kN$$

$$V_{y,sd} = 7,42KN \le V_{pl.Rd} = 908,033kN$$

$$V_{y,sd} = 7,42KN \le 0,5.V_{pl.Rd} = 454,016kN$$

$$A_{vy} = A - 2bt_f = 84,5 \times 10^2 - 2 \times 180 \times 13,5 = 3590$$

$$V_{plz.Rd} = \frac{0.58 \times 27,5 \times 35,90}{1,1} = 572,750kN$$

$$V_{z,sd} = 1,35KN \le V_{pl.Rd} = 572,750kN$$

$$V_{z,sd} = 1,35KN \le 0,5.V_{pl.Rd} = 286,375kN$$

Non seulement il n'y a pas d'incidence de l'effort tranchant sur les moments, la vérification à l'effort tranchant est observée.

V.3.5 Vérification d'inéquation (<u>flexion composée</u> avec risque de déversement

$$\frac{N_{sd}}{\chi_z.N_{pl.Rd}} + \frac{k_{LT}.M_{y.Sd}}{\chi_{LT}.M_{ply.Rd}} + \frac{k_z.M_{z.Sd}}{M_{plz.Rd}} \le 1$$

La longueur de nos traverses est 9,21m et espacement entre panne est 1,25m

$$\lambda_1 = 93,9\varepsilon \text{ avec } \varepsilon = \left[\frac{235}{f_y}\right]^{0.5} \varepsilon$$

Dans notre cas $\varepsilon = 0.92 \ car \ f_y = 275 N/mm^2$

 $\lambda_1 = 93,9\varepsilon = 93,9 \times 0.92 = 86,388$

 $\beta_A = 1$ pour les sections transversales 1 ,2 ou 3

$$\lambda = \frac{l_{fz}}{i_z} = \frac{125}{3,95} = 31,645$$

$$\bar{\lambda}_z = \left[\frac{\lambda}{\lambda_1}\right] \cdot \left(\beta_A\right)^{0.5} = \frac{31,645}{86,388} = 0,366 > 0.2$$

Il y a risque de flambement

Donc il n'y a pas risque de déversement

On vérifie sans risque de déversement avec cette équation :

$$\frac{N_{sd}}{\chi_z \cdot N_{pl.Rd}} + \frac{k_y \cdot M_{y.Sd}}{M_{ply.Rd}} + \frac{k_z \cdot M_{z.Sd}}{M_{plz.Rd}} \le 1$$
$$\lambda_y = \frac{l_{fy}}{i_y} = \frac{921}{16,55} = 55,649$$

 $\beta_A = 1 \: pour \: les \: sections \: transversales 1$,2 ou 3

$$\overline{\lambda}_{y} = \left[\frac{\lambda_{y}}{\lambda_{1}}\right] \cdot \left(\beta_{A}\right)^{0.5} = \frac{55,649}{86,388} = 0,644$$

Courbe de flambement $\frac{400}{180} = 2,22 > 1,2 \ donc \ \alpha_y = 0,21$

 α est un facteur d'imperfection

$$\phi = 0.5 \left[1 + \alpha \left(\overline{\lambda_y} - 0.2 \right) + \overline{\lambda_y}^2 \right]$$

MAJONI.E.F

$$\phi_y = 0.5[1 + 0.21(0.644 - 0.2) + 0.644^2] = 0.753$$
$$\chi_y = \frac{1}{\phi + \left[\phi^2 - \bar{\lambda}_y^2\right]^{0.5}} = \frac{1}{0.753 + \left[0.753^2 - 0.644^2\right]^{0.5}} = 0.277 \ge 1$$

Détermination de ky

$$\begin{split} k_{y} &= 1 - \frac{\mu_{y} \cdot N_{Ed}}{\chi_{y} \cdot A \cdot f_{y}} \\ \mu_{y} &= \ \bar{\lambda}_{y} \cdot \left(2 \cdot \beta_{My} - 4\right) + \left[\frac{W_{ply} + W_{ely}}{W_{ely}}\right] \end{split}$$

 β_{My} est le facteur de moment uniforme équivalent pour le déversement

Moments dus à des charges transversales (poutre sur 2 appuis, uniformément chargée)

$$\beta_{My} = 1,3$$

$$\mu_y = 0,664 x(2 x 1,3 - 0,4) + \left[\frac{1307 - 1156}{1156}\right] = -0,7709 < 0,9$$

$$k_y = 1 - \frac{(-0,7709)x116,64}{0.874x8450x275} = 1,00 \le 1$$

K_y=1

Détermination de k_z

$$k_{z} = 1 - \frac{\mu_{z} \cdot N_{Ed}}{\chi_{z} \cdot A \cdot f_{y}}$$
$$\mu_{z} = \bar{\lambda}_{z} \cdot \left(2 \cdot \beta_{Mz} - 4\right) + \left[\frac{W_{plz} + W_{elz}}{W_{elz}}\right]$$
$$\mu_{z} = 0,366 x(2 x 1,3 - 0,4) + \left[\frac{229 - 146,4}{146,4}\right] = -0,606 < 0,9$$
$$k_{y} = 1 - \frac{(-0,606)x116,64}{0.939x8450x275} = 1,00 \le 1$$

K_z=1

$$\frac{N_{sd}}{\chi_z.N_{pl.Rd}} + \frac{k_y.M_{y.Sd}}{M_{ply.Rd}} + \frac{k_z.M_{z.Sd}}{M_{plz.Rd}} \le 1$$

$$\frac{116,64x10^3}{0,939x\frac{8450x275}{1,1}} + \frac{1x92,87x10^6}{\frac{1307x10^3x275}{1,1}} + \frac{1x4,32x10^6}{\frac{229x10^3x275}{1,1}} = 0,0588 + 0,284 + 0,075$$
$$= 0,42 \le 1$$

V.4 Conclusion

Toutes les conditions sont vérifiées.

Chapitre 6 : Assemblages

VI.1 Introduction

Le présent chapitre concerne le dimensionnement ainsi que la vérification des assemblages dans notre structure. Les assemblages et les dispositifs utilisés sont vérifiés selon la norme Eurocode 3.

Dans un premier temps, nous aborderont le dimensionnement des assemblages principaux : poteau-traverse, pieds de poteau puis dans un deuxième temps, on calculera certains assemblages par gousset : contreventements. Nous dimensionnerons les éléments constituants ces derniers, à savoir : plaque, boulons et soudures. Les assemblages poutre-poteau et pied de poteau articulé seront traités d'une manière détaillée. La méthode de calcul appelée « Méthode des composantes détaillée dans l'annexe J de l'Eurocode 3 » sera utilisée pour déterminer le moment résistant et la rigidité des connexions.

VI.2 Assemblage Pieds de poteau

Les pieds de poteaux sont des éléments verticaux qui transmettent aux fondations les efforts extérieurs qui sont appliqués à la structure (efforts verticaux, poussées horizontales et des moments fléchissant résultants des efforts horizontaux et des charges verticales appliquées en tête de poteaux).

Comme il a été expliqué précédemment, nous avons choix des pieds de poteaux articulés du fait de la mauvaise qualité du sol.

Les efforts maximaux sont résumés dans le tableau ci-dessous :

Tableau VI - 1 : Valeurs des efforts sollicitant le pied de poteau le plus chargé

(Calculés avec le logiciel)

	F _X (kN)	F _Y (kN)	F _H : résultant K(N)	Fz (kN)
Poteau le plus	20.37	18.71	27.65	59.50
sollicité	-38.44	-96.82	104.17	-92.54

Comme les pieds de poteaux sont articulés, il absence des moments dans le tableau; Les valeurs négatives correspondent à la compression (respectivement, les valeurs positive correspondent à la traction)

L'effort F_H correspond à la résultante de F_X et F_Y .

Choix de la platine :

L'épaisseur de la platine « $t_{\rm p}$ » pour une rangée de boulons d'ancrage (articulation) doit satisfaire la condition :

$$t_{p} \geq \sqrt{\frac{N_{T,Ed}}{f_{yp}.2\pi}}$$
$$t_{p} \geq \sqrt{\frac{92,54.10^{3}}{275x2\pi}} = 7,32 \ mm$$

On prendre des platines d'épaisseur $t_p=10 \text{ mm}$

Choix des tiges d'ancrage :

Le diamètre des tiges est donné par

$$d \ge \sqrt{\frac{N_{T,Ed}}{f_{ub}}}$$

On adopte des tiges de classe 4.6 (avec f_{ub}=400 MPa)

$$d \ge \sqrt{\frac{92,54.\,10^3}{400}} = 15,21\,mm$$

On choisira donc des tiges de classe 4.6 avec un diamètre de 20 mm par précaution

Figure VI - 1 : Vues assemblage pied de poteau en 3D

Figure VI - 2 : Vue assemblage pied de poteau en 2D

- ✓ Poteau : IPE 360 Acier S275
- ✓ Platine : 460x300x10 (mm) en Acier S235
- ✓ Tiges d'ancrage : M18-4.6, entraxe de 120 mm et la section cisaillée en partie filetée
- ✓ Bèche : double cornière CAE 80x10 de longueur 100 mm en Acier S235
- ✓ Semelle isolée : L=100 mm ; B=800 mm ; H=600 mm
- ✓ Béton C25/30 (f_{ck}=25MPa)
 - f_{cd} : résistance de calcul à l'écrasement de la fondation = 25MPa
 - f_{jd} : résistance à l'écrasement du matériau de scellement = 40.13 MPa
- ✓ Mortier de calage : épaisseur tg=30mm ; $f_{ck,g}$ =12 MPa ; Coef. De frottement C_{f,d}=0.30

VI.3 Vérification Compression-Cisaillement

VI.3.1 Vérification à la compression

Figure VI - 3 : Vérification a la compression

Largeur d'appui additionnelle de la semelle :

$$c = t_p \sqrt{\frac{f_{yp}}{3 f_{jd} \gamma_{M0}}} = 14 mm$$

 $b_{eff} = 41\ mm$; $l_{eff} = 198\ mm$

La résistance à la compression d'une semelle en tronçon en T

 $F_{C,Rd} = f_{jd} b_{eff} l_{eff} = 1 \ 355 \ kN$

F_H (kN) Résultante

104.17

```
FC,Rd (NC,Rd= 1 355 kN>Fz (Nsd) = 104.17kN
```

Résistance du béton à la compression est vérifiée

VI.3.2 Vérification de la Résistance au cisaillement

Résistance au frottement : $F_{f,Rd} = C_{f,d.}N_{C,Ed} = 0,30x92.54=27,76$ kN

Résistance au cisaillement d'un boulon d'ancrage :

$$F_{vb,Rd} = \frac{\alpha_{bc}.f_{ub}.A_s}{\gamma_{M2}} = \frac{0.32x400x192}{1.25\ 10^3} = 12,28\ kN$$

Avec α_{bc} =0.44 - 0.0003 f_{yb} = 0,32

Résistance au cisaillement de l'assemblage

 $F_{v,Rd} = F_{f,Rd} + n.F_{vb,Rd} + F_{b,Rd}$

F_{b,Rd} : résistance de la bèche au cisaillement

$$F_{b,Rd} = \left(\frac{f_{yb}}{\sqrt{3}}\right) A_{beche} = \left(\frac{235}{\sqrt{3}}\right) x \ 10 \ 100 = 135 \ kN$$

 $F_{v,Rd} = F_{f,Rd} + n.F_{vb,Rd} + F_{b,Rd} = 27,76 + 2x12,28 + 135 = 188$ kN

Résistance au cisaillement des soudures :

$$V_{w,Rd} = \frac{\binom{f_u}{\sqrt{3}}}{\beta_w \gamma_{M2}} a. l_{w,eff} = \frac{\binom{360}{\sqrt{3}}}{0.8x1,25} 4x597,2x0.001 = 496,5 kN$$

 $l_{w,eff} = 2x(360-2x12.7-2x18) = 597,2mm$

Vérification de la résistance au cisaillement :

$$V_{z,Rd} = \min(F_{v,Rd}; V_{w,Rd}) = \min(188; 496,5) = 188 \, kN$$

Fx (kN)
Fy (kN)
20.37
18.71
-38.44
-96.82

 $V_{z,Rd} = 188 \ kN > max(F_x; F_y) = 96,82 \ kN$

Résistance au cisaillement vérifiée

VI.3.3 Vérification Traction-cisaillement

Figure VI - 4 : Vérification Traction-cisaillement

Tableau VI - 2 : Résistance d'un boulon d'ancrage en traction

	Fx (kN)	Fy (kN)	Fн : résultant K(N)	Fz (kN)
Poteau le plus sollicité	20.37	18.71	27.65	59.50

$$F_{t,Rd} = \frac{0.9 f_{ub} A_s}{\gamma_{M2}} = \frac{0.9 x 400 x 192}{1.25 x 10^3} = 55.3 \ kN$$

 $2F_{t,Rd}$ = 110,3 kN>F_z = 59,50 kN (tiges résistent en traction)

Contrainte d'adhérence de calcul :

$$f_{bd} = \frac{0,36\sqrt{f_{ck}}}{\gamma_c} = \frac{0,36\sqrt{25}}{1,5} = 1,2 MPa$$

Résistance de calcul par adhérence entre le béton et le boulon d'ancrage :

 $F_{t,bond,Rd} = \pi dl_b f_{bd} = 3,14x18x500x1,2 \ 10^{-3} = 33,9 \ kN$

✓ Résistance de calcul des boulons d'ancrage :

$$F_{t,Rd,anchor} = \min(F_{t,Rd}; f_{t,bond,Rd}) = \min(55,3; 33,6) = 33,6 kN$$

Comme il y a 2 tiges d'ancrage, $F_{t,Rd,anchor} X 2 = 67,2 kN > Fz = 59,50 kN$

V	I.3.4	Résistan	nce de la plaque à la flexion
$l_{eff,1} =$	237	[mm]	Longueur efficace pour un boulon pour le mode 1
$l_{eff,2} =$	237	[mm]	Longueur efficace pour un boulon pour le mode 2
m =	51	[mm]	Pince boulon-bord de renforcement
M _{pl,1,Rd} =	= 1,39	[kN*m]	Résistance plastique de la dalle pour le mode 1
$M_{pl,2,Rd} =$	= 1,39	[kN*m]	Résistance plastique de la dalle pour le mode 2
$F_{T,1,Rd} =$	108,27	[kN]	Résistance de la dalle pour le mode 1
$F_{T,2,Rd} =$	66,73	[kN]	Résistance de la dalle pour le mode 2
F _{T,3,Rd} =	76,80	[kN]	Résistance de la dalle pour le mode 3

 $F_{t,pl,Rd} = min(F_{T,1,Rd} , F_{T,2,Rd} , F_{T,3,Rd})$

 $F_{t,pl,Rd}$ = 66,73 [kN] Résistance de la dalle pour le mode à la traction

	VI.3.5	Résista	nce de l'âme du poteau à la traction
$t_{wc} =$	8	[mm]	Epaisseur efficace de l'âme du poteau
b _{eff,t,wc}	= 237	[mm]	Largeur efficace de l'âme à la traction
$A_{vc} =$	35,14	[cm ²]	Aire de la section au cisaillement
w =	0,85		Coefficient réducteur pour l'interaction avec le cisaillement
$F_{t,wc,Rd}$	= w b _{eff,t,w}	$_{\rm c}t_{ m wc}f_{ m yc}$ / $\gamma_{ m M0}$	
F _{t,wc,Rd}	= 444	,29 [kN]	Résistance de l'âme du poteau

VI.3.6 Résistance de la zone tendue

 $N_{j,Rd}$ =66,73 kN Résistance de la semelle à la traction axiale

VI.3.7 Résistance à la traction de l'assemblage

 $N_{j,Ed} / N_{j,Rd} = (59,5/66,73) = 0,89 \le 1,0$ vérifiée

VI.3.8 Ferraillage De La Semelle Du Pied De Poteau

Nous adoptons comme fondations, des semelles isolées en bloc dont les dimensions sont :

- ✓ Hauteur H=600mm
- ✓ Longueur L= 1000 mm
- ✓ Largeur B = 800 mm

L'effort maximal sollicitant la semelle en compression est donnée par la combinaison à l'ELU « 1.35g+1.5N ». Cette effort vaut $N_{Sd}=50,76kN$

L'enrobage est de 3 cm

Acier de ferraillage Fe E 400

Contrainte admissible $\sigma_{sol} = 0,1$ MPa. Comme on ne dispose pas de rapport géotechnique et vu que le sol du site est très mauvais (Argile), on prendra la plus faible contrainte d'un sol argileux.

Section des armatures dans la direction de la longueur « L » :

$$A_x = \frac{N_{Sd} \cdot A}{8 \, d_A \sigma_s} = \frac{50760 \times 1000}{8 \times (600 - 30) \times 348} = 32 mm^2$$

Section des armatures dans la direction de la largeur « B » :

$$A_y = \frac{N_{Sd} \cdot A}{8 \, d_A \sigma_s} = \frac{50760 x 800}{8 x (600 - 30) x 348} = 26 m m^2$$

Les sections des aciers sont très faibles pour ferrailler les blocs de béton. Par précaution, nous adoptons de ferrailler le bloc en partie inférieure de 4 barres de ϕ 12 dans les deux directions

Figure VI - 5 : Assemblage Poteau Traverse en 3D

Figure VI - 6 : Assemblage Poteau Traverse en 2D

Poteau : IPE 360 S275

Traverse IPE 400 S275 inclinée de 12°

Boulons M16-8.8 (2 colonnes et 4 rangées = 8 boulons au total)

Voir plan caractéristiques géométriques de l'assemblage.

Résistance à la traction d'un boulon = $F_{t,Rd}$ =90,43 kN

Platine: (h_p=420 mm; b_p=170 mm; t_p=20 mm) – Acier S235

Raidisseurs Poteau : Hauteur du raidisseur $h_{su} = 335 \text{ mm}$; Largeur du raidisseur $b_{su} = 81 \text{ mm}$ et Epaisseur du raidisseur $t_{hu}=8 \text{ mm}$) en acier S235

Soudures d'angle : soudures de l'âme et raidisseurs $a_w = a_s = 5 \mbox{ mm}$; Soudure semelle $a_f = 8 \mbox{ mm}$

<u>Coefficients de matériau</u> $\gamma_{M0} = 1,00$; $\gamma_{M1} = 1,00$; $\gamma_{M2} = 1,25$; $\gamma_{M3} = 1,10$

EffortsM_{b1,Ed} = 109,47 kN.m (Moment fléchissant dans la poutre droite)

V_{b1,Ed} = 57,86 kN (Effort tranchant dans la poutre droite)

N_{b1,Ed} = 66,39 kN (Effort axial dans la poutre droite)

Résultats

1. Résistances de la poutre $N_{tb,Rd}$ =2322,65 kN (Résistance de calcul de la section à la traction)

V_{cb,Rd}=677,81 kN (Résistance de calcul de la section au cisaillement)

V_{cb,Rd}=677,81kN (Résistance de calcul de la section au cisaillement)

$$V_{b1,Ed}/V_{cb,Rd} = 0.09 \le 1.0$$
 vérifiée

M_{b,pl,Rd}=359,47kN.m (Résistance plastique de la section à la flexion (sans renforts))

M_{cb,Rd}=355,97kN.m (Résistance de calcul de la section à la flexion)

F_{c,fb,Rd} =900,87kN (Résistance de l'aile et de l'âme comprimées)

2. Résistances du poteau

V_{wp,Ed}=374,85kN (Panneau d'âme en cisaillement)

V_{wp,Rd}=514,69kN (Résistance du panneau d'âme au cisaillement)

 $V_{wp,Ed}/V_{wp,Rd} = 0,73 \le 1,0$ vérifiée

F_{c,wc,Rd}=626,58kN (Résistance de l'âme du poteau)

3. Résistance de l'assemblage à la traction

4. Résistance de l'assemblage à la flexion

Nr	hj	F _{tj,Rd}	F _{t,fc,Rd}	F _{t,wc,Rd}	$F_{t,ep,Rd}$	$\mathbf{F}_{t,wb,Rd}$	$\mathbf{F}_{t,Rd}$	$\mathbf{B}_{p,Rd}$
1	332	165 , 95	165 , 95	281,61	180,86	434,59	180,86	395 , 28
2	252	122,69	165 , 57	281,61	180,86	417,24	180,86	395 , 28
3	172	136,99	165 , 57	281,61	180,86	417,24	180,86	395,28
4	92	44,80	165,42	281,61	180,86	417,24	180,86	395,28

Tableau VI - 3 : Récapi	tulatif des efforts R	Résistance de l'assem	blage à la flexion M	I j,Rd
-------------------------	-----------------------	-----------------------	----------------------	---------------

2. Résistance de l'assemblage au cisaillement

3. Résistance des soudures

$$\begin{split} &\sqrt{[\sigma_{\perp max}^2 + 3^*(\tau_{\perp max}^2)]} \leq f_u/(\beta_w * \gamma_{M2}) 229,61 < 365,00 & \text{vérifiée} \\ &\sqrt{[\sigma_{\perp}^2 + 3^*(\tau_{\perp}^2 + \tau_{II}^2)]} \leq f_u/(\beta_w * \gamma_{M2}) 212,67 < 365,00 & \text{vérifiée} \\ &\sigma_{\perp} \leq 0.9^* f_u/\gamma_{M2} \\ &114,81 < 262,80 & \text{vérifiée} \end{split}$$

- 4. Rigidité de l'assemblage
- 5. Classification de l'assemblage par rigidité.
- 6. Composant le plus faible

Figure VI - 7 : Assemblage satisfaisant vis à vis de la Norme : Ratio 0,96

Figure VI - 8 : Assemblage d'une diagonale de contreventement

Données :

- ✓ Diagonale en cornière à ailes égales CAE 80x8 en acier S235
- ✓ 3 Boulons : M16-6.8 (f_{yb} =410 MPa ; f_{ub} =600 MPa)

Le plan de cisaillement passe par la partie FILETÉE de la tige du boulon Espacement des boulons :

 $e_1 = 40 \text{ mm}$; $e_2 = 50 \text{ mm}$

 $p_1 = 60 \text{ mm}$; $p_2 = 0 \text{ mm}$;

- ✓ Soudures d'angle du gousset : a=5mm
- ✓ Gousset : longueur l_p =300 mm ; hauteur h_p =300 mm ; épaisseur t_p =10 mm
- ✓ Effort appliqué : Nt,Sd= 75,57 kN

VI.3.9 Vérification des boulons au cisaillement

L'effort de cisaillement par plan de cisaillement d'un boulon est donné par la formule :

$$F_{\nu,Rd} = \frac{\alpha_{\nu}.f_{ub}.A_s}{\gamma_{M2}}$$

Avec

 $\alpha_v=0.5$ (boulons de classe 6.8)

 $f_{ub} = 600 \text{ MPa}$

A=157 mm² (*ici, la partie cisaillée de la tige est en partie filetée*)

γ_{M2}=1.25

$$F_{\nu,Rd} = \frac{0.5x600x157}{1.25} = 37\ 680\ N = 37,68\ kN$$

Comme on est en présence d'une seule cornière, il y a une seule section cisaillée (1 plan de cisaillement). Nous sommes en présence de 3 boulons alors, on a $3F_{v,Rd}$

L'effort sollicitant par cornière Nt,sd = 76 kN est inférieur à3.Fv,Rd = 113 kN.

Les boulons résistent au cisaillement

VI.3.10 Vérification des cornières à la traction

La vérification des cornières se fait dans les sections brute et nette selon la formule cidessous :

$$N_{t,Sd} < N_{t,Rd} = min \left(N_{pl,Rd} = \frac{A.f_y}{\gamma_{M0}} \right; N_{u,Rd} = 0, 9. \frac{A_{net}.f_u}{\gamma_{M2}}$$

Traction en section brute

$$N_{t,Rd} = N_{pl,Rd} = \frac{A.f_y}{\gamma_{M0}} = \frac{1230x235}{1.0} = 289\ 050\ N = 289,05\ kN$$

Traction en section nette

$$A_{1} = A - d_{0}xt = 12,3 \ 10^{2} - 18x8 = 1 \ 086 \ mm^{2}$$

$$A_{2} = [\ (30 - (18/2))) + 0.5x \ ((40 - (18/2)) + 2x(60 - 18)) \]x8 = 624 \ mm^{2}$$

$$A_{3} = [\ (2x(30 - (18/2)) + 0.5(2x \ (60 - 18))) \]x8 = 672 \ mm^{2}$$

$$A_{net} = A_{min} = min \ (A_{1}, A_{2}, A_{3}) = 624 \ mm^{2}$$

MAJONI.E.F

$$N_{u,Rd} = 0.9. \frac{A_{net} \cdot f_u}{\gamma_{M2}} = 0.9. \frac{624x360}{1.25} = 161\,741\,\text{N} = 161,741\,\text{kN}$$

Alors

 $N_{t,Sd} = 76 \ kN < N_{t,Rd} = min \ (289,05 \ kN ; 161,74 \ kN)$

Il y a résistance des cornières à la traction en section brute et nette.

VI.3.11 Vérification à la pression diamétrale des pièces assemblées

Etant donné que le gousset possède une épaisseur (ép. =10 mm) supérieure à celle de la cornière (ép. =8 mm), il n'est pas nécessaire de vérifier la résistance à la présence diamétrale de ce dernier.

$$F_{b,Rd} = \frac{k_1 \cdot \alpha_b \cdot f_u \cdot d \cdot t}{\gamma_{Mb}}$$

$$k_1 = min\left[\left(2, 8, \frac{e_2}{d_0} - 1, 7\right); \left(1, 4, \frac{p_2}{d_0}\right); 2, 5\right]$$

$$\alpha_b = min\left[\left(\frac{e_1}{3, d_0}\right); \left(\frac{p_1}{3, d_0} - 0.25\right); \frac{f_{ub}}{f_u}; 1\right]$$

 f_u : limite de rupture des pièces assemblées = 360 MPa

d : *diamètre du boulon* = 16 mm

t : la plus petite épaisseur des pièces assemblées = 8 mm

 $\gamma_{M2} = 1.25$

$$k_{1} = min\left[\left(2, 8.\frac{50}{18} - 1, 7\right); 2, 5\right] = 2.5$$

$$\alpha_{b} = min\left[\left(\frac{40}{3x18}\right); \left(\frac{60}{3x18} - 0.25\right); \frac{600}{360}; 1\right] = 0,74$$
2.5r0.74r360r16r8

 $F_{b,Rd} = \frac{2.5x0.74x360x16x8}{1.25} = 68\ 198\ N = 68,20\ kN$

 $3.F_{b,Rd} = 204,59 \text{ kN} > N_{t,Sd} = 76 \text{kN}$

Il y a résistance de la cornière par pression diamétrale

VI.3.12 Vérification de la soudure du gousset au poteau

Nous sommes en présence de cordons obliques.

$$a. \sum l \ge \beta_{w}. \gamma_{Mw} \frac{F\sqrt{3 - \sin^2 \alpha}}{f_u}$$
$$5x(2x300) = 3000 \ mm^2 \ge 0.8x1.25 \frac{79\ 000\sqrt{3 - 0.5}}{360} = 347 \ mm^2$$

On a résistance de soudures à l'effort de traction

VI.4 Conclusion

L'ensemble des assemblages étudiés dans ce chapitre, à savoir : pieds de de poteaux, poutrespoteaux et les diagonales des contreventements résistent aux sollicitations maximales dues aux combinaisons à l'état limite ultime.

Afin d'éviter toute erreur lors de la fabrication des pièces constituantes ces assemble, il est conseillé d'utiliser un logiciel adapter au débitage des plans tel que Tekkla.

Conclusion générale et perspective

Ce projet de fin d'études nous a permis de mettre à profit les connaissances apportées dans le cadre de la formation de Master Génie Civil et de mieux les intégrer. Toutefois dans une réalité économique et professionnelle, on a dû s'adapter et se rendre plus opérationnel.

Grâce à ce projet de fin d'étude, nous avons appris à utiliser non seulement des outils de calcule et de DAO pour les dessins, mais aussi à appliquer des règlements telle que le l'Eurocode 3, R.N.V.99 et le R.P.A.99 (version 2003).

Nous sommes partis de certains paramètres du projet, puis déterminer les différents efforts agissants sur la construction métallique et en fin, dimensionner l'ensemble des éléments composants notre structure sans oublier l'étude sismique dans le but d'assurer la sécurité des vies humaines

La modélisation de la structure était une phase difficile dans notre projet car elle nécessité non seulement de connaître le mode d'emplois de l'outil de calcul mais surtout l'interprétation des résultats. L'ensemble des éléments constituant la structure ont été vérifiés en résistance, déformation et instabilité avec plusieurs essais pour aboutir à des profilés optimaux.

On aurait souhaité faire la vérification au feu, mais manque de temps, nous sommes arrêtés au dimensionnent de la structure.

Il est difficile et parfois frustrant, pour un étudiant en master, de s'apercevoir que dans un projet réel, il n'est pas simple de mettre en adéquation les aspects techniques, esthétiques et financiers, car le dernier, dans notre société actuelle, représente bien souvent l'enjeu majeur d'une opération de construction.

En fin, nous souhaitons que ce modeste travail apporte un plus à notre département et servira pour les promotions à venir.

Références

1].T.Nouioua, Y. Sebaibi, Z. labiod ,M.K.Guedouda, I.Goual - Perméabilité saturée horizontale du mélange Vase-bentonite: Application à la sebkha d'Oran – 13th Arab Structural Engineering Conference – University of Blida – December 13-15, 2015 Algeria.

[2]. Eurocode 1 – Actions sur les structures – Partie 1-1 : Actions générales – Poids volumique, poids propre, charges d'exploitation bâtiments, 30 novembre 2001

[3]. Eurocode 3 – Calcul des structures en acier - Partie 1-1 : Règles générales et règles pour les bâtiments, 16 avril 2004

[4] Règles parasismiques algériennes RPA99/version 2003, Document technique règlementaire D.T.R B C 2 48

[5]. Règlement neige et vent R.N.V. 1999, Document technique règlementaire D.T.R C 2-4.7

ANNEXES

I Tableau β_M

II Tableaux des sections

				Bucklin	g curve	
Cross section			Limits	Buckling about axis	S 235 S 275 S 355 S 420	S 460
		1,2	$t_\ell \! \leq \! 40 \ mm$	$\begin{array}{c} y-y\\ z-z \end{array}$	a b	80 80
	h v	c d/d	$40 \ mm \! < \! t_{f} \! \le \! 100$	$\begin{array}{c} y-y\\ z-z \end{array}$	b c	a a
		1,2	$t_f \le 100 \ mm$	$\begin{array}{c} y-y\\ z-z \end{array}$	b c	a a
		b/b ≤	t _f > 100 mm	y-y z-z	d d	c c
	+*, +*,		$t_f \! \leq \! 40 \ mm$	y - y z - z	b c	b c
	y y y y		t _e >40 mm	$\begin{array}{c} y-y\\ z-z \end{array}$	c d	c d
			hot finished	any	a	80
			cold formed	any	c	c
		ge	nerally (except as below)	any	b	ь
		thi	ck welds: $a > 0.5t_f$ $b/t_f < 30$ $h/t_w < 30$	amy	¢	¢
	E ¥ D	-(\Rightarrow	any	e	c
	<u> </u>			ашу	b	ь

III Tableau de C1 et C2

Chargement et conditions d'appui dans le plan	Diagramme du moment fléchissant	C1	C2					
Δ Δ		1,13	0,45					
		2,57	1,55					
<u>↓ </u>		1,35	0,59					
u		1,69	1,50					
a. <u>Åmes:</u> (parois internes perpendiculaires à l'ase de flexion)								
---	--	-----	------------------------------------	--	---	------	--	--
Classe	Âme fléchie	1	Âme comprimée		Âme en flexion composée			
Distribution des contraintes dans la paroi (compression positive)		h r	f,					
1	d/t _* ≤ 72z		dt. ≤ 33 t		$\begin{array}{l} Quand \alpha > 0.5: \\ d/t = \leq 396t \ (13\alpha - 1) \\ Quand \alpha < 0.5: \\ d/t = \leq 36t \ \alpha \end{array}$			
2	d/t+ ≤ 83 ¢		d/t = ≤ 38 z		$\begin{array}{l} Quand \alpha \geq 0,5;\\ dN_{\pi}\leq 456\epsilon, (13\alpha-1)\\ Quand \alpha \leq 0,5;\\ dN_{\pi}\leq 41,5\epsilon \alpha \end{array}$			
Distribution des contraintes dans la paroi (compression positive)	42 42 42 42 42 42 42 42							
3	d/t _w ≤ 124 ε		d/t _* ≤ 42 [€]		$\begin{array}{ll} Quand \psi > -1: \\ d\mathcal{H}_{w} \leq 42 t \left(0, 67 + 0, 33 \psi \right) \\ Quand \psi \leq -1: \\ d\mathcal{H}_{w} \leq 62 t \left(1 - \psi \right) \ \sqrt{(-\psi')} \end{array}$			
- 235//	¢.		235		275	355		
	ŧ		1		0,92	0,81		
Tableau 4 : Rapports largeur-épaisseur maximaux pour les parois comprimées (EC3 Tableau 5.3.1 (feuille 1))								

IV Tableaux des sections transversales

c. <u>Paroi: de semelle:</u> \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow								
Classe	Type de section	Paroi comprim te	Paroi en flexion Bord comminé	composée Bord tendu				
Repartition des contraintes dans l'élément (compression positive)		:						
1	Laminé Soudé	otr≤10s otr≤9s	c/tr <u>≤^{10ε}α</u> c/t <u>r≤9a</u>	$\operatorname{otr} = \frac{10e}{a\sqrt{a}}$ $\operatorname{otr} = \frac{9e}{a\sqrt{a}}$				
2	Laminé Scudé	of $r \le 11\epsilon$ of $r \le 10\epsilon$	$c/t_{r} \leq \frac{11\epsilon}{\alpha}$ $c/t_{r} \leq \frac{10\epsilon}{\alpha}$	$\operatorname{ot}_{r \leq \frac{11}{\alpha \sqrt{\alpha}}}$ $\operatorname{ot}_{r \leq \frac{10}{\alpha \sqrt{\alpha}}}$				
Repartition des contraintes dans l'élément (compression positive)		÷						
3	Laminé Soudé	oft $r \le 15\epsilon$ oft $r \le 14\epsilon$	$\operatorname{ot}_{r \leq 23} \operatorname{s}_{\sqrt{k_r}}$ Po	our k, cf figure 2d tableau 8				
€=√235/ /;	ţ.	235	275	355				
	e	1	0,92	0,81				

Tableau 6 : Rapports largeur-épaisseur maximaux pour les parois comprimées (EC3 Tableau 5.3.1 (feuille 3))