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Abstract 

Due to the highly irregular image shapes and complex spatial arrangements, thyroid histological image 

classification is a difficult problem. Since it can accurately resolve local densities and represent different structures 

in the image, the multifractal analysis (fractal geometry extension) has been found useful in characterizing the 

intensity distribution present in such images. In this work, we propose a multifractal method based on the local 

characterization (Holder exponent) and global characterization (multifractal spectrum) of histological thyroid 

images.  

The algorithm is implemented in three major stages in the Python programming environment: 

preprocessing; Estimating the Hölder exponents, which consist of extracting the Hölder image (image of local 

singularity) based on the local maximum value (linear regression "Log (maximum values)" against the "Log 

(window dimension)"). Multifractal spectrum based on the box-counting method that counts the number of 

redundancies of each α value in the Holder image. The results obtained are saved in Excel in order to extract 

pertinent parameters for classifier layer (perspective work).   

We settle for visually interpreting the multifractal spectra. We noticed that these spectra show differences 

from one class of tissue to another: healthy tissue/adenoma/carcinoma; and allow differentiation between different 

types of carcinoma. Therefore, the results obtained show the importance and adaptability of multi-fractal analysis 

in the diagnosis aid of thyroid pathologies.  

Keywords: 

Medical images, Histology, Thyroid, Fractal geometry, Fractal dimension, Multifractal analysis, Hölder 

exponent, Multifractal spectrum, Box counting, Diagnosis aid. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 
 

 (ن بيئة البرمجة بايثو تطبيق على الغدة الدرقية ): التحليل متعدد الكسيريات للصور النسيجية

 ملخص

يعتبر تصنيف صور الغدة الدرقية النسيجية مشكلة صعبة بسبب أشكال الصور غير المنتظمة للغاية والترتيبات المكانية المعقدة. أثبت 

كسيريات )امتداد الهندسة الكسيرية( فائدته في توصيف توزيع الشدة الموجود في مثل هذه الصور: يمكنه حل الكثافات المحلية بدقة التحليل متعدد ال

 وتمثيل الهياكل المختلفة في الصورة. في هذا العمل، نقترح طريقة متعددة الكسيريات تستند بشكل أساسي إلى التوصيف المحلي )أسُ هولدر(

 شامل )الطيف متعدد الكسيريات( للصور الطبية.والتوصيف ال

يتم تنفيذ الخوارزمية على ثلاث مراحل رئيسية على بيئة البرمجة بايثون: المعالجة المسبقة؛ تقدير أسُ هولدر الذي يهدف إلى استخراج 

)بعد  لوغاريتم» بدلالة« )القيم القصوى( لوغاريتم»صورة هولدر )صورة التفرد المحلي( بناءً على القيمة القصوى المحلية )الانحدار الخطي 

تم حفظ النتائج ي .هولدرصورة دد التكرارات لكل قيمة ألفا في ال؛ الطيف متعدد الكسيريات يعتمد على طريقة عد الصناديق التي تحسب ع«(النافذة(

 ل المنظوري(.التي تم الحصول عليها في الإكسال من أجل استخراج المعلمات ذات الصلة لطبقة المصنف )العم

ببساطة فسرنا بصريًا الأطياف متعددة الكسيريات. لاحظنا أن هذه الأطياف تختلف من فئة إلى أخرى: الأنسجة السليمة/الورم 

متعدد ليل حالغدي/السرطان؛ والسماح بالتمييز بين مختلف أنواع السرطان. وبالتالي، تظهر النتائج التي تم الحصول عليها أهمية وقابلية التكيف للت

 الكسيريات للمساعدة في تشخيص أمراض الغدة الدرقية.

 الكلمات المفتاحية:

يريات، سالصور الطبية، علم الأنسجة، الغدة الدرقية، الهندسة الكسيرية، البعد الكسيري، التحليل متعدد الكسيريات، أس هولدر، الطيف متعدد الك

 العد الصندوقي، المساعدة في التشخيص.

 

  



  

 
 

 

 

Résumé  

La classification des images histologiques de la thyroïde est un problème difficile en raison des formes 

d'image très irrégulières et des arrangements spatiaux complexes. L'analyse multifractale (extension de la 

géométrie fractale) s'est avérée utile pour caractériser la distribution d'intensité présente dans de telles images : 

Elle peut résoudre avec précision les densités locales et représenter différentes structures dans l'image. Dans ce 

travail, nous proposons une méthode multi fractale qui repose principalement sur la caractérisation locale 

(exposant de Hölder) et la caractérisation globale (spectre multifractal) d'images médicales. 

L'algorithme est implémenté en trois étapes dans l'environnement de programmation Python : 

Prétraitement ; Estimation des exposants de Hölder qui consiste à extraire l'image de Hölder (image de la 

singularité locale) à partir de la valeur maximale locale (droite de régression linéaire "Log (valeurs maximales)" 

en fonction du "Log (dimension de la fenêtre)") ; Spectre multifractal basée sur la méthode de comptage de boîtes 

qui compte le nombre de redondances de chaque valeur α dans  d'image de Hölder. Les résultats obtenus sont 

enregistrés dans Excel afin d'en extraire les paramètres pertinents pour la couche classifieur (travail en 

perspective). 

Nous nous contentons d'interpréter visuellement les spectres multi fractals. Nous avons remarqué que ces 

spectres présentent des différences d'une classe de tissus à l'autre : tissu sain/adénome/carcinome ; et permettent 

une différenciation entre les différents types de carcinome. Par conséquent, les résultats obtenus montrent 

l'importance et l'adaptabilité de l'analyse multi fractale pour l’aide au diagnostic des pathologies thyroïdiennes.  

Mots-clés : 

Images médical, Histologie, thyroïde, géométrie fractal, Dimension fractal, analyse multifractal, Exposant 

de Hölder, spectre multifractal, comptage de boîtes, Aide au diagnostic. 
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Context and problematic 

Humans acquire three-quarters of their information visually. In addition to the importance of vision to a 

person's existence and in many aspects of their life, in medicine, vision is emerging as the preferred diagnosis 

method. The digital creation and processing of high-quality images are therefore of paramount importance, and 

this is the purpose of medical imaging, the medical specialty that consists of producing and interpreting images of 

the living human body for diagnosis, treatment (interventional imaging), or monitoring of disease progression.  

Thus, the main purpose of medical imaging is to obtain images of the interior of the human body using various 

physical concepts to enable clinicians to examine the human body and thus provide increasingly accurate diagnoses 

(a direct understanding of physiology and pathology). In general, image processing uses two methods. The first is 

image enhancement, which includes visualization and sometimes-manual interpretation by a human expert. The 

second approach is computer vision, which involves implementing automated interpretation procedures similar to 

those of the human visual perception system.   

Histology, or the examination of cells, tissues, and organs under the microscope, is one of the most dynamic 

and complex disciplines of medicine. Recent advances in medical imaging allow doctors generally and especially 

pathologists today to identify and diagnose diseases that were previously inaccessible one of them the thyroid 

tumors present as a thyroid nodule and can be benign (thyroid adenoma) or malignant (thyroid carcinoma).  More 

than 100 different types of cancer have now been discovered.  According to the statistics collected, and through 

the following figures, we review the statistics on thyroid cancer in Algeria. The first figure (Figure 0- 1 (A)) 

presents an increased incidence of thyroid cancer over a three-year period (incidence of thyroid cancer in Algeria, 

2014-2017); we notice through it that the group most at risk of developing thyroid cancer is the elderly. Thyroid 

cancer is the third most prevalent cancer diagnosis in Algerian women in both the east and west, according to the 

Algerian Journal of Health Sciences 2017. In the figure (Figure 0- 1 (B), the statistics show the prevalence of 

various types of cancer in Algeria in the year 2020; thyroid cancer is the third most common cancer. The evaluation 

of a thyroid nodule is one of the most common and difficult challenges that pathologists face.  

Diverse cancer kinds may have significantly different morphology, size, texture, and color distributions, 

making it difficult to design a standard pattern for tumor identification that can be applied to thyroid nodules. 

Furthermore, because individual histology images are so large, the histopathology image dataset is considered 

large-scale, which increases processing complexity and complicates image analysis. These are the key obstacles 

in automatic analysis of digital histopathology images. Difficulties and uncertainty exist, notably in evaluating the 

possibility of malignancy and the effective therapeutic strategy. As a result, researchers use a variety of methods 

to expand visual perception to study the relationship between structure and function in human cells and tissues. 

One such method is medical image analysis, which includes image compression, image synthesis, image 

segmentation, and tissue analysis. In addition, the Histological characterization presents an intensive research field 

in medical and histological image analysis that aims to complement the visual observation of histological images 

with quantitative information about histology.  
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Figure 0- 1:  (A) Incidence of thyroid cancer in Algeria, 2014-2017, (B) Incidence of thyroid cancer in Algeria, 2020. 

Fractal geometry and multifractal analysis 

The tools of Euclidean geometry make it difficult to describe the complexity of natural objects. This 

geometry has the ability to evaluate elements with simple structures. Natural images have an extremely complex 

structure that is built on irregular forms. As in the case of tissues and cells. Therefore, performing such complex 

tasks necessitates techniques that are more advanced than traditional image analysis methods.  After the discovery 

that Natural geometry or fractal geometry by the mathematician Mandelbrot in the 70s, who proposed new 

concepts for understanding certain complex phenomena. There is no longer any doubt about the regularity of 

nature: behind all chaos and all-hazard hides an order. There is a set in mathematics called the Julia set, which 

paved the way for fractal geometry, in which the scientist Mandelbrot chose a small set within the Julia set and 

obtained the Mandelbrot set, from which Mandelbrot derived began to establish the science of fractals or fractal 

geometry. The Mandelbrot set is distinguished that the more you zoom in, the more copies of the first figure you 

will find, and this is the most important characteristic of fractal shapes. Fractals can be compared to matryoshkas, 

which are famous Russian dolls that are similar to each other. Complex patterns of repeating geometric patterns 

result in shapes that repeat infinitely in smaller and smaller sizes, and this is what makes fractal geometry more 

complex. This notion allows for a straightforward geometrical interpretation and is used in a wide range of 

domains, including geophysics, biology, medicine, and fluid mechanics.  

 A fractal dimension is a non-integer number proposed by fractal theory that allows the object's more or 

less tortuous aspect to be quantified. The fractal dimension can be defined in a variety of ways, including the 

Minkowski or Hausdorff definitions. Fractal dimension can be used to describe natural scenes; however, when the 

studied image is sufficiently irregular, this type of analysis is no longer effective. When examining signals with a 

large fluctuation in regularity from point to point, multifractal analysis is recommended. Multifractals could be 

seen as an extension of fractals. A multifractal object is more complex in the sense that it is always invariant by 

translation, although the dilatation factor needed to be able to distinguish the detail from the whole object depends 

on the detail being observed. 
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Fractal analysis has experienced significant growth in recent years, it has been the subject of many 

applications in very varied fields both theoretically (development of multifractal analysis). In the multifractal 

approach, the image model is not determined using a transformation function, such as the filter function, but the 

image is modeled using one or more measures, which we will denote by (µ).  

This approach allows emphasizing the fundamental role that resolution plays in multifractal image 

analysis. Then, the most significant difference between the classical and multifractal approach is in the way of 

treating irregular details. While classical methods use different techniques to try to rid the image of irregularities, 

the multifractal approach draws information about the image from irregularities (singularities). In addition, most 

classical methods use relative (normalized) gray pixel levels as basic information when analyzing an image. The 

multifractal method uses the degree of Hölder regularity of a point measure as basic information. Quantitative 

description of multifractals is usually done through the so-called. Multifractal spectrum f (α). The procedure begins 

with the determination of Hölder’s exponent α, which describes the degree of regularity of the structure at each of 

its points, and then determines the distribution of α value in the structure, i.e. multifractal spectrum f (α).   

Finally, it is important to point out that multifractal analysis does not assume anything in terms of image 

structure and regularity. Namely, the image does not have to be either "fractal" or "multifractal", whatever that 

means, in order to be analyzed. Instead of making and proving any assumptions, the multifractal method is simply 

applied to the image, and then based on the results; there are different conclusions can be drawn about the structure 

and regularity of the image. 

State of the art 

Recently, several important developments in multifractal analysis have had a major impact on applications 

of image processing and analysis.  These applications, among others, show that multifractal analysis has resolutely 

passed over the past few years from the descriptive stage to the operational stage. The capacity of multifractal 

analysis algorithms to classify medical images in general, and especially histological images, has been shown in 

multiple published papers during the past decade. In addition, several studies showed the interest of extracting 

from histological images fractal or multifractal parameters, potentially related to the fractal or multifractal behavior 

of tissues in space and time. Several outstanding works in medical imaging [1, 2, 3]. We will also mention some 

interesting research in histological image characterization and classification, but first, we will cite some works 

from various modalities (we take CT-Scan and Magnetic Resonance imaging as examples). 

 CT-Scan 

Among the outstanding works in medical imaging by CT-Scan, we can cite those R. Korchiyne and others [4] 

proposed a powerful method for the characterization and segmentation of medical images based on fractal 

geometry. In which they developed a method based on the Hausdorff multifractal spectrum to characterize CT-

Scan medical images. In this study, the group of researchers analyzed two CT-Scan bone images corresponding to 

two different subjects. A healthy subject whose densimetric analyzes showed the absence of pathologies linked to 

osteoporosis, the other osteoporotic (Figure 0- 2). 
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Figure 0- 2: The region of interest ROI on the femoral neck of the bone. 

The steps of their multifractal algorithm: 

• Grayscale image →  Normalize the image to full scale → Consider an arbitrary pixel and its neighboring 

porches (Figure 0- 3)→ Consider the maximum(minimum) measurement of each box → Calculate the logarithm 

of the maximum values of the box → Plot the linear regression line "Log (Max)" as a function of the "Log (i)" of 

the dimension of the box. → The slope of the linear regression is the value→ same procedure for all pixels →

 Find Hölder's image. → Plot the multifractal spectrum. 

 

Figure 0- 3: The tables designate the calculation windows for different boxes i=1(a), i=3(b) and i=5(c). 

Results of the research: 

- Holder images (images according to A) make it possible to distinguish the image of a healthy subject from a 

diseased image. 

- Hausdorff spectra allow to accurately deriving a lot of statistical information about the microarchitecture of the 

bone.  

- The texture becomes more irregular as α value increases. 

- The minimum values of the Hölder exponent have a maximum spectrum f (α) close to two (dimension of a 

surface). 

- In the healthy subject, the signal decreases regularly in an angular way while the other spectrum decreases 

differently in three zones. 

 Magnetic Resonance Imaging 

Among the outstanding works in medical imaging by magnetic resonance, we can cite those of Mohamed Khider 

[5] the researcher implemented fractal and multifractal analysis methods after that proposed classification 

procedures. The data used are radar images taken in three different regions: Sétif (Algeria), Bordeaux (France), 

Melbourne (United States) and medical images of the MRI and CT scanner type. In the case of medical images, 

the database used is made up of 40 images from different imagers (MRI and CT scanner) collected at the CHRU 

in Lille (Figure 0-4). They concern regions of interest (rectangular and various sizes) positioned by clinicians on 

each native image to cover strictly trabecular territories. They are coded on 8 bits in BMP format.  
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Figure 0- 4: (A) and (B) illustrate MRI images with windows indicating ROIs. (C) Figure showing a trabecular 

bone texture ROI. 

The multifractal analysis method used for image classification: 

The grain spectrum and large deviation method were used to classify bone texture with 10 images of MRI type. 

The preliminary results obtained on 10 images are very satisfactory. 

 Microscope  

Among the outstanding works in medical imaging by microscope we can cite the applications of multifractal 

analysis in histological images for some organs: 

o Liver and prostate cancer 

  Chamidu Atupelage and others [6]. In this paper, they proposed a texture descriptor to observe the 

histologic texture into highly discriminative feature space. The data used (20x magnification) and visualized using 

a tool called Nano-Zoomer (the tool visualizes each data sample in 8-different magnifications: 1.25x, 2.5x, 5.0x, 

10x, 20x, 40x, 63x, and 100x) and experienced pathologists annotated the cancer regions of each of the data 

samples. Based on this annotated data sample, for each organ (liver and prostate), then researchers constructed 24 

categories of experimental datasets (three sizes of image patches: 64×64, 128×128, and 256×256 pixels with eight 

magnifications). Each category consists of around 300∼400 sample patches.  

Multifractal characterization method used: 

In this work, they extract texture characteristics in the multifractal domain as α and F (α), which correspond 

to each pixel of a given image. They empirically defined six local singularity characteristic measures to construct 

the multifractal feature descriptor. The formulations of these measures are illustrated in (Figure 0-5). 

 

Figure 0- 5: The formulations of measures used in this research. 
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Results of the research: 

The use of multifractal characteristics to characterize histologic texture is more effective. For both the liver 

and prostate data sample datasets, the suggested feature descriptor has a good classification rate (Around a 95% 

of classification rate for both liver and prostate data samples). 

o Large intestine (colon) cancer 

Natasa Zivic et al. [7] are analyzing images with the purpose of finding differences between medical 

images in order of their classifications in terms of separation of malign tissue from normal and benign tissue. 

Dataset used contain three groups of images tissues  (Normal tissue of large intestine (colon), Tissue of large 

intestine (colon) with diagnose of malign tumors – cancer, Tissue of large intestine (colon) with diagnose of benign 

tumors – adenomas). 

The steps of their multifractal analysis method: 

1. Calculating parameters of multifractal analysis for all three group of images 

2. Exploring if there are differences of statistical significant between multifractal parameters for previous 

mentioned groups of tissues. For multifractals analysis of digital medical images and gaining of parameters of 

multifractals analysis, they have used "FracLac" programs. 

Results of the research: 

- The reliability of classification between cancer and adenoma groups obtained using the program FracLac was a 

little bit lower (73%) compared to the obtained result obtained using the program FracLab. 

- The parameters of multifractal analysis significantly differ for all three observed groups of normal tissue, 

cancer and adenoma 

o Breast cancer 

Ramakrishnan Mukundan et al, [8] explored the possibility of using multifractal methods for identifying 

the statistical characteristics of the image intensity distribution that are important for processing histopathological 

images. The data set used contained four histopathological image samples; each sample contributes to 250 sub 

image frames.  

The steps of their multifractal analysis method: 

The high-resolution high magnification histopathological images are sub-divided into small image frames of size 

288*288 pixels.   

The α-threshold comparison is applied to separate the sub image frames that contain epithelial type tissues from 

those containing non-epithelial type tissues.  

After that, the system detects the mitosis cells and computes fractal spectrum of the epithelial sub-image frames 

(Figure 0- 6). 

The mitotic cell detection is a method, which is based on the computed α-values within the cell region.  They then 

explore if the NP and TF scores can be estimated from the multifractal spectrum. 
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Figure 0- 6: System overview of multifractal analysis of tissue images used. 

Results of the research: 

- It has been shown that a multifractal decomposition of tissue images could be used for identifying mitotic cells, 

and for estimating the NP and TF scores.  

- The proposed multifractal methods could be combined with algorithms for extracting cytological features for 

effective classification and segmentation of images of biopsy sections. 

Goal of the present Work 

The main goal of the present work is to apply the multifractal analysis method in the analysis of the 

histological images for thyroid in particular follicular adenoma and papillary carcinoma. Our program will be 

executed on the Python programming environment. 

We propose a simple, efficient, and effective method using multifractal analysis applied to the 

characterization and classification of histopathology images.  The advantages of our framework include: 

 The ability to characterize the singularity of images locally and globally, which solves the problem of the 

complexity of the clinical feature representation. 

 The unified framework on two different thyroid nodules types, demonstrating the efficacy and simplicity of our 

method. 

 This automated analysis system helps pathologists in automatically classifying and differentiating histological 

images corresponding to follicular adenoma, papillary carcinoma, and healthy thyroid, as well as improving 

diagnostic efficiency and accuracy. 
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Work structure  

We will present our work in the form of three chapters after a general introduction. 

Chapter 1 

The medical context represented by histology images and the thyroid gland will be defined in the first chapter. 

Therefore, we divided it into two sections: the first discusses the microscopic image acquisition technology, their 

methods and some notions of virtual slide technology. In the second part, we will touch on the medical approach 

to the thyroid gland. dealing with the structure and tissues of the healthy thyroid gland, as well as, we will touch 

on thyroid diseases, their classification systems such as TIRADS and Bethesda, and finally, we touch the two types 

of thyroid nodules that we interested on; the follicular adenoma and papillary carcinoma and their macroscopic 

and microscopic brief descriptions. 

Chapter 2 

In the second chapter, we define fractal geometry and the Multifractal analysis method (characterization). Thus, 

we divided this chapter into two sections: In the first one, we present the notions of fractal geometry and fractal 

analysis as a quick review of basic fractal geometry concepts. We emphasize its peculiarity in comparison to 

Euclidean geometry, specifically, that it allows us to examine non-rectifiable sets. This section's main objective is 

to provide a complete explanation of the fractal dimension. As a result, we will focus on the Hausdorff dimension 

as well as box dimensions. In the second part, we are interested in the Multifractal analysis technique; in the first 

instance, we will examine its foundations: its uniqueness in relation to measurement theory; the fundamental 

concept of singularity as measured by Hölder’s exponent, the concept of multifractal or singularity spectrum, 

which provides information on the geometric distribution of singularities.  

Chapter 3: 

The third chapter presents the work, and each steps we are going to describe the algorithms implemented 

for multifractal analysis. In addition, we will discuss the result that we obtained. Before this, we will present the 

database of thyroid samples that we will work on as well as the programming environment and then the general 

approach proposed. 

We conclude by a general conclusion with perspectives for improving our work and suggestions for future work 

are presented. 
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I.1 Introduction  

Advances in medical imaging have allowed for the early detection and diagnosis of a variety of ailments in various 

areas that were previously unattainable. Therefore, in our research project, we are interested in the analysis of 

histological images of the thyroid with nodules as a pathology. As a point of organization, we have split this 

chapter into two sections: 

The first part introduces histological science; we must have some basic knowledge of histology, one of 

the most active and technologically advanced fields in medicine. Wherein, it is the study of cells, tissues, and 

organs as seen through the microscope.  

Through the second part, as we are interested in the tissue characterization of histological images for the 

Thyroid gland. We are going to present the thyroid medical approach to place the application we are working on 

in its proper context.  

I.2 Histological techniques and Histology imaging technologies 

I.2.1 History    

 Malpighi was the "Father of Histology" (1628-1694). The next man to be dubbed the "Father of Histology" was 

Marie F.X. Bichat, who in 1801, without using a microscope, described 21 different types of tissues. Then, Carl 

Mayer, a professor of anatomy in Bonn, was the first to use the term "histology" in 1819 [9]. 

Histology has undergone three revolutions in the last two centuries: the founding revolution based on optical 

microscopy and cell theory, the revitalizing revolution based on electron microscopy, and the definitive revolution 

based on molecular biology.  

These three critical stages in the history of this field correspond to a dive into ever-finer scales of observation, 

corresponding to increasingly elementary levels of living organisms [10]. 

I.2.2 Histology Definition  

Histology is the study of the human body's tissues and their arrangement to constitute organs. This subject covers 

all elements of tissue biology, with a focus on how the structures and arrangements of cells optimize organ-specific 

activities [11]. 

I.2.3 Histological techniques 

As molecular cell biology and histopathology of biopsied specimens are of the highest importance nowadays, 

histological techniques are key steps in histology, cell biology, and histopathology. 

As mentioned in the definition Histology is the scientific study of tissues. This science studies the anatomy 

of different tissues using microscopes. Histology, a microscopic biological science, aided in the classification of 

plant and animal tissues as well as the identification of their detailed structures 
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Tissue 

A tissue, in biology, is a group of similar cells (contributing to the same function) and of the same origin. The 

assembly of biological tissues constitutes an organ. There are four basic types of tissue: epithelial tissue, connective 

tissue, muscle tissue, and nervous tissue (Figure I- 1) [12]. 

Types of human tissue 

a) Epithelial tissue (or epithelium): They form the epidermal layer of the skin, which covers the whole 

surface of the body. Moreover, it covers the surface of organs (e.g., the inner lining of the digestive system). Thus, 

they protect the organ from external factors, such as injury, and loss of fluids. It also fulfills a variety of functions 

within the body including secretions and absorption [13]. 

b) Connective tissue: The main function of connective tissues, as its name implies, is to connect. In addition, 

protection of soft tissues (e.g., the Skull), transmission of mechanical stress (e.g., the Fascia), also transport (e.g., 

the Blood), besides, the storage process (e.g., the White fat) [13]. 

c) Muscle tissue: The ability to contract is the prevailing feature among all muscle tissue. The muscular 

tissue is classified into three sections (skeletal, cardiac, and smooth). Each sort of muscle cell has its distinct 

characteristics. Skeletal muscle tissue is necessary for generating forces for movement and locomotion. The heart 

wall and the proximal sections of the aorta include cardiac muscle tissue .In addition, the walls of blood vessels 

and visceral organs such as the digestive, urinary, and reproductive systems, a prominent component of which is 

smooth muscle tissue [13] [14]. 

d) Nervous tissue: Neurons, or nerve cells, are the cells in nervous tissue that create and conduct impulses. 

Nerve tissue makes up the brain, spinal cord, autonomic ganglia, peripheral nerves, and portions of sensory organs 

[13] [14].  

 
Figure I- 1: Four types of human tissue [15]. 

Histology Tissue preparation procedures and analysis  

The histopathological approach is based on a semiological analysis that compares healthy tissues with 

pathological tissues. The preparation of tissue slices or sections' is a method employed in histological research.  
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To examine the tissue's cellular nature, samples must be processed in such a way that microscopic details 

may be viewed, the basic technique involves several steps: Fixation, Dehydration, Clearing, Infiltration, 

Embedding, and Trimming (Figure I- 2) [11]. 

 

Figure I- 2: Sectioning fixed and embedded tissue [11]. 

a) Fixation 

It is realized by placing small pieces of tissue in solutions of chemicals that cross-link proteins and inactivate 

degradative enzymes, which is essential to preserve cell and tissue structure, it must be immediate or at least very 

quickly started after obtaining the Small pieces [11].   

  Fixation takes between 2 and 5 hours for a biopsy and 48 hours for an operative specimen, depending on 

the size of the sample. Add the most commonly used fixative for light microscopy is buffered formalin [11].  

The samples having completed their fixation are deposited in plastic cassettes, directly if they are biopsies or if 

they are surgical specimens. 

b) Tissue Processing 

Processing tissues into thin microscopic sections is usually done using a paraffin block, as follows: 

Dehydration: The tissue moved through a sequence of progressively concentrated alcohol solutions. Ethanol 

(alcohol) is miscible with water in all proportions so that the alcohol progressively replaces the water in the 

specimen. A series of increasing concentrations is used to avoid excessive distortion of the tissue [11] [16]. 

Clearing: We use an intermediate solvent that is fully miscible with ethanol and paraffin wax. This solvent will 

displace the ethanol in the tissue, and then this, in turn, will be displaced by molten paraffin wax. The reagent used 

is called a "clearing agent", which removes a substantial amount of fat from the tissue [11] [16]. 

Infiltration: The tissue is then immersed in melted paraffin until it is entirely infiltrated with it [11]. 

Embedding: The specimen must now be shaped into a "block" that can be clamped into a microtome for section 

cutting after it has been extensively penetrated with paraffin (Figure I- 3) or plastic wax [11] [17]. 

 

Figure I- 3: Tissue Embedded in paraffin [17]. 



Chapter I                                                                        Medical context

  

7 

 

 

 

c) Sectioning 

 A microtome is a precision cutting instrument that slices sections from a block of embedded tissue. For frozen 

sections, the section thickness typically ranges from 8 - 15 µm, for wax sections 4–10 µm, and 0.5–3 µm for plastic 

histological sections (Figure I- 4). With each pass of the tissue past the knife, it advances the tissue block a preset 

amount [17].  

 

Figure I- 4: Paraffin sections form “ribbons” during the sectioning process [17]. 

Mounting Tissue Sections: The tissue ribbons transferred carefully to a warm water bath after cutting 

(Figure I-5). They are allowed to float on the surface before being scooped up and placed on a slide beneath the 

water level. The best slides for this method are charged slides, which promote tissue adhesion to the glass and limit 

the risk of sections washing off the slide during staining [18]. After clearly labeling the slides, they should be dried 

upright at 37°C for a few hours to slowly melt the extra paraffin wax while leaving the tissue segment intact [18].  

 
Figure I- 5: Mounting tissue sections [17]. 

d) Staining and Coverslipping 

When not stained, most cells are translucent and seem practically colorless. Histochemical stains (usually 

hematoxylin and eosin) are used to create contrast to tissue slices, allowing tissue features to be seen and evaluated 

more easily. After staining, an optical grade glue is used to attach a coverslip over the tissue specimen on the slide 

to protect it [18]. 

I.2.4 The microscope  

Microscopy is a set of imaging techniques at the microscopic scale is a science that studies the structure and 

morphological organization of cells using an instrument called the microscope.   The word microscope is the source 

of two Greek words (micros: meaning small, skopos: meaning watcher thus) [19]. The microscope is an extremely 

useful tool. There are many small objects or details of objects that cannot be seen with the naked eye. The 

microscope produces images of small objects with high clarity and magnification as well as studies morphological 

properties at micro- and Nano-scale lengths [20].  
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The eyepieces, microscope tube, nosepiece, objective, mechanical stage, condenser, coarse and fine focusing 

knobs, and light source are the essential components of the microscope [21]. There are different microscopes 

categories available essentially Light and Electronic Microscopy. 

Light Microscopy 

Light microscopes, also known as optical microscopes, are necessary for histology investigations because they 

allow us to see cells and morphological characteristics of tissues (Figure I- 6 (A)). To magnify tissue samples, a 

light microscope uses glass lenses and visible light. It was invented in the sixteenth century [22]. 

Most microscopes are light microscopes, which illuminate the specimen with a light bulb. The resolution of a light 

microscope is restricted to 3 micrometers (magnification up to 1500X). After then, two items that are close together 

no longer appear to be separate [23]. 

Electronic Microscopy  

An electron microscope is an optical tool that magnifies things using a beam of electrons for a more detailed view. 

Thus, the use of electrons as a source of illumination produces high-resolution images in electronic microscopy 

(Figure I- 6 (B)). The resolution is around 0.01 nanometers (magnification up to 300,000X) [22] [23]. 

 

Figure I- 6: (A) Light Microscopy, and (B) Electronic Microscopy [22] [24]. 

I.3 The Thyroid gland   

Histologic tissue characterization is an area of intensive research, aiming at complementing the visual observation 

of histological images with quantitative information about the tissues.  

In this project, we are interested in the tissue characterization of histological images for the Thyroid gland. 

 The thyroid is an endocrine gland; it releases hormones that regulate metabolism, or the body's energy 

utilization. Thyroid hormones control many important bodily functions, including (Respiration, heart rate, central 

and peripheral neurological systems…etc.) and other factors are all important. 

 The thyroid gland can be affected by a variety of disorders, including nodules, hyperthyroidism, hypothyroidism, 

thyroiditis, and hyperthyroidism [25].  
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I.3.1 Anatomy  

The thyroid is a butterfly-shaped gland that sits low in the front of the neck (just below Adam's apple). It 

has two side lobes (left and right) of elongated shape connected by an isthmus (Figure I-7). These lobes are attached 

to the lateral surfaces of the larynx and the trachea. They are enveloped by a conjunctive capsule dependent on 

cervical Aponeurosis.  A third, inconstant lobe is located on the anterior surface of the trachea it is called the 

Lalouette pyramid [26] [27]. 

The thyroid, weighing 20 to 30 g, is a lobulated-looking gland, architecturally organized into follicles or 

vesicles.  Its volume is highly variable among individuals, depending on morphotype, age, sex, and iodine load. 

The consistency of the gland is soft and elastic, also characterized by its reddish color [28]. 

 

Figure I- 7: thyroid gland anatomy [27] [26]. 

I.3.2 Histology  

A thin capsule, made of fibrous connective tissue, covers the thyroid and penetrates the glandular 

parenchyma, which divides the thyroid gland into lobules by incomplete partitions. Each thyroid lobules contains 

20 to 40 round to oval follicles [29] [25]. 

Thyroid vesicles or follicles are responsible for the synthesis and release of thyroid hormones. Furthermore, 

they are spheres containing a homogeneous colloid, bounded by a simple epithelium (follicular cells), representing 

the structural and fundamental units of the thyroid parenchyma. In addition, a thin connective tissue stroma 

containing lymphatic vessels, blood vessels, and nerves separate the thyroid follicles [29]. 

Thyroid is the source of Thyroid hormones (T3 and T4) by follicular cells (also called thyroid epithelial 

cells or thyrocytes). Add, Calcitonin (hypocalcemic hormone) by C cells, clear cells, or parafollicular cells. These 

hormones are necessary for all cells of the body to function normally [29]. 

Thyroid vesicles (Follicles) 

Thyroid vesicles are the functional units of the gland. These have a lining and glandular epithelium formed 

of a single layer of cubic, squamous, or columnar cells, heir structure varies depending on where they are located 

in the gland and what function they perform. Regardless of regional differences, thyroid activity can be determined 

by the appearance of all vesicles. The epithelium of the vesicles is made up of follicular and parafollicular cells 

(Figure I- 8) [29].  
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a) Follicular cells 

Follicular cells form small round structures called follicles, in which, the thyroid hormone is stored in a 

material called colloid that fills the center of the follicles. These cells are in contact with the colloid on one side 

and the capillaries on the other (polarized) [29].  

The iodine in the blood is absorbed by the follicular cells, which then produce the hormones T4 (thyroxine) 

and T3 (triiodothyronine). These two hormones are secreted under the dependence of the pituitary hormone TSH 

(Thyroid Stimulating Hormone). The latter is under the control of TRH (Thyrotropin-Releasing Hormone) [29]. 

b) Parafollicular cells or C cells 

The clear cells, also known as C cells or calcitonin cells are the thyroid's second type of endocrine cells. 

Between the follicular epithelium and the basement membrane. These cells their nucleus is pale and ovoid, their 

cytoplasm is clearer than that of follicular cells, hence their name. Furthermore, C cells are embedded in the 

follicular epithelium but never meet the colloid.in addition, in the usual histological preparations, the C cells are 

difficult to recognize [29].  

 
Figure I- 8: Thyroid Follicles and thyroid parafollicular or C cells [30]. 

I.3.3 Thyroid Gland Function 

The thyroid is part of the endocrine system, which consists of glands that produce, store, and releases 

hormones that regulate metabolism, or the body's energy utilization. Thyroid hormones control a number of 

important bodily functions (Respiration, heart rate, central and peripheral neurological systems, and other factors 

are all important, etc.). The thyroid gland uses iodine to produce two main hormones: Triiodothyronine (T3) and 

Thyroxine (T4) [31]. 

It is critical that T3 and T4 levels are not excessively high or excessively low. The hypothalamus and 

pituitary glands in the brain communicate to keep T3 and T4 levels balanced.  TSH-releasing hormone (TRH) is 

produced by the hypothalamus and signals the pituitary to tell the thyroid gland to produce more or less T3 and 

T4 by increasing or decreasing the release of thyroid-stimulating hormone (TSH) [31]. When T3 and T4 levels in 

the blood are low, the pituitary gland secretes more TSH, which signals the thyroid gland to produce more thyroid 

hormones (Figure I-9). Conversely, when T3 and T4 levels are high, the pituitary gland sends less TSH to the 

thyroid gland, slowing the hormone's production [31]. Calcitonin is a hormone produced by thyroid C cells that 

helps regulate blood calcium levels. It accomplishes this by slowing calcium release from the bones and increasing 

calcium excretion into the urine by the kidneys [31]. 



Chapter I                                                                        Medical context

  

11 

 

 

 

  

Figure I- 9: T3, T4, and TSH secretion systems [32]. 

I.3.4 Thyroid nodules 

The thyroid gland affected by a variety of disorders (Thyroid nodules, hyperthyroidism, hypothyroidism, 

thyroiditis, and hyperthyroidism… etc.). Thyroid nodule genesis may be considered as an amplification of thyroid 

heterogeneity. Lumps or growths of the thyroid (Figure I-10), usually made up of normal thyroid tissue or fluid, 

frequently discovered on routine physical examination or imaging tests [33] [34].   

Thyroid nodules are tumors of the thyroid gland that can be benign or malignant (cancer). They occur 

frequently and their frequency increases with age. Undoubtedly, the prevalence of nodular thyroid disease has 

increased over time, because of advancements in imaging technology. Likewise, the four major components of 

thyroid nodule assessment: clinical history and examination; serum thyroid-stimulating hormone (TSH) 

measurement; ultrasound; and fine-needle aspiration (FNA) if needed [34].  

 Most benign nodules have no known cause, however, they are frequently observed in members of the same 

family. Iodine deficiency is a common cause of nodules all over the world. Thyroid nodules grow increasingly 

common, as people get older [35]. 

 

Figure I- 10: Thyroid nodules in the thyroid gland [36]. 

I.3.5 Types of thyroid nodules 

Thyroid nodules are classified into five types with distinct histological features: hyperplastic, neoplastic, colloid, 

cystic, and thyroiditis nodules [37]. In general, thyroid nodules may be a benign nodules or malignant nodules. 

Hyperplasia: Nodular thyroid hyperplasia is a non-cancerous development that affects the thyroid gland. 

One-half of the gland (one lobe) or the entire gland can be affected by abnormal growth (both lobes and the 

isthmus). This type is the most common cause of nodules in the thyroid gland [37]. 
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Neoplastic: Neoplasms are abnormal mass of tissue that form when cells divide too fast or die too soon. 

Thyroid neoplasm might be classified as benign (non-cancerous) for example Thyroid adenoma, or malignant 

(cancer) such as papillary, follicular, and medullary. Malignant neoplasms can spread to other parts of the body 

through the blood and lymph systems [37]. 

Colloid: There are one or more overgrowths of normal thyroid tissue. These growths are benign (non-

cancerous). They may grow to be enormous, but they never expand beyond the thyroid gland [37].  

Cystic: These growths are filled with fluid or partly solid and partly filled with fluid. Overall, these growths 

are benign (non-cancerous) [37].  

Thyroiditic: Nodular lymphocytic thyroiditis (NLT) is an inflammation of the lymphatic system in the 

thyroid, which grows as a nodule in a hyperplastic or normal gland. It can be associated with other nodular diseases 

of the thyroid such as papillary thyroid carcinoma and lymphoma [37]. 

Depending on whether or not they generate thyroid hormones, thyroid nodules are classified into three 

types: cold, warm, or hot: cold nodules do not produce Thyroid hormones.  Warm nodules act as normal thyroid 

cells. Thyroid hormones are overproduced in hot nodules [38] [39]. 

I.3.6 Thyroid nodule diagnostic tools and evaluation methods 

When a doctor examines a mass or nodule in the neck, the main purpose is to rule out the possibility of cancer. 

However, the doctor would want to ensure that the thyroid is functioning appropriately. Several examinations are 

available to determine the exact nature of the thyroid nodule.  

Therefor, the doctor might recommend one or more of the following tests: 

Anamnesis and clinical examination 

The clinician will carefully examine the anterior cervical region, as well as the lymph node areas. He will note the 

location of the nodule, its consistency and size. The doctor will also look for any signs and symptoms of an 

overactive thyroid, such as tremors, hyperactive reflexes, and a fast or irregular heartbeat.  

Moreover, he will also check for signs and symptoms of hypothyroidism, such as a slow heartbeat, dry skin, and 

facial swelling [40]. Upon this, the doctor must use a blood test to determine the irregularity in terms of secretory 

hormones. 

Laboratory tests 

Tests that measure levels of thyroid-stimulating hormone (TSH) and hormones produced by the thyroid gland 

in the blood, which indicate whether the patient has hyperthyroidism or hypothyroidism. In the case of patients 

who are consulting for thyroid nodules, it has been shown that the risk of cancer is higher if the TSH is within the 

high values of normal (normal values; 0.4 à 4 mUI/l.), and lower in the case of low normal values [40] [34].  

Although not systematically recommended, the detection of antiperoxidase antibodies makes it possible 

to exclude chronic thyroiditis.  
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The thyroglobulin assay isn’t recommended in the development of thyroid nodules but is only useful in 

the follow-up of patients operated on for thyroid cancer. Calcitonin is useful in the initial evaluation of thyroid 

nodules and before surgery.   If calcitonin is higher than normal, a calcium stimulation test will help refine the 

diagnosis [40] [34].  

However, the blood tests are not enough to test for thyroid cancer. To gather more information about the 

nodule, the doctor might recommend one or more of the following tests. 

Thyroid ultrasound 

Ultrasonography (US) is a reference test for the investigation of thyroid morphology, particularly nodules. 

Clinicians can use them to differentiate cysts into solid nodules or to determine if there are multiple nodules. They 

may also use them as a guideline during a fine-needle aspiration biopsy.  

 The role of the ultrasonography in the case of the nodular pathology is for a more accurate diagnosis and 

study the adjacent thyroid parenchyma, look for other associated subclinical nodules, and specify the 

characteristics of the nodular formations detected [34]. 

 There are three modes of medical ultrasonography (US). The first one is the B-Mode, which measures the 

acoustic impedance and displays the anatomy. The second mode is the Doppler, which measures the motion and 

displays the vascular flow. The last mode is Elastography, which measures the mechanical properties and displays 

tissue stiffness [34]. 

 The technique used in ultrasonography imaging of the thyroid nodules is that the operator use a lower 

frequency probe (10–15 MHz) to measure a large goiter or to study endothoracic extension. The examination 

includes a study in three modes mentioned above [34]. The operator must be educated and trained in thyroid 

ultrasound to provide detailed and informative reports that contain (location, nodule size in three dimensions, 

nodule sonographic features: “composition, echogenicity, shape, margin, halo, calcification, and vascularity”). 

With which, the clinician can assess the risk of a cancerous nodule [39] [34] [41].  

 The ultrasound study completes the clinical, biological and possibly scan evaluation of the nodules. It 

does not allow, or rarely, to affirm independently of the other evaluations the nature of a nodule [34].  

Thereby appeared the thyroid imaging reporting and database system (TI-RADS). It has then been adapted, 

refined, and evaluated in order to be easily usable in routine by radiologists and clinicians; this system describes 

six categories of nodules (Table 1), associated with an increasing level of malignancy risk [34] [42]. 
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Table I- 1:  stratification of the risk of malignancy according to (TI-RADS) score [26]. 

TI-RADS score  Signification  Risk of malignancy (%) 

TI-RADS 1 Normal exam  

TI-RADS 2 Benign ≈  0 

TI-RADS 3 Most likely benign 0.25 

TI-RADS 4A Low suspicion of malignancy 6 

TI-RADS 4B Strong suspicion of malignancy 69 

TI-RADS 5 Practically definitely malignant ≈  100 

Additional medical examinations may be recommended based on the results. 

Thyroid scan 

For hot nodules with low TSH, a scan to visualize the functioning of the thyroid and detect if the nodule secretes 

thyroid hormones [39].   

The scintigraphy will show the distribution of the tracer and will guide the gesture of the puncturer (Figure I-11), 

who will avoid stinging in hot and/or hyperfixing areas, which will give an automatically very cellular 

cytopuncture [34]. 

 

Figure I- 11: Thyroid Scan [43]. 

Fine-needle cytopuncture 

For cold nodules with normal TSH, simple medical surveillance or cytopuncture (biopsy) of the nodule using a 

fine needle to remove cells from the nodule and analyze them in the laboratory [39]. Thyroid cytology helps 

distinguish benign thyroid nodules from thyroid cancer [40].  

I.3.7 Bethesda Classification of Thyroid cytopathology 

Thyroid cytologies are classified according to a six-category system established in 2007 at Bethesda [40] [34]. 

Each category contains a number of cytological diagnostic orientations, each of which is associated with an 

individual's risk of developing cancer. This classification accounts for the ambiguities of cytology and has the 

benefit of directing the clinician's therapeutic decision [40] [34]. 
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Table I- 2: Thyroid cytopathology: Bethesda system 2010 [40] [34]. 

Categories (prevalence) Subcategories Risk of 

cancer 

To behave 

Bethesda I 

Sampling 

unsatisfactory / non-

diagnostic 

(< 15 %) 

 Not 

evaluated 

Solid  nodule: 2nd  cytopuncture at 3 

months 

Cystic  nodule: to be correlated with 

the clinic and  ultrasound  

(cytopuncture).If suspicious areas 

remain  

Bethesda II 

Benign 

(60 %) 

Vesicular adenoma  

Vesicular colloid nodule 

hyperplasia 

Thyroiditis 

0 - 3%  

 

Simple ultrasound control at 6-18 

month intervals for 3 to 5 years 

Bethesda III 

Significance follicular 

Lesion indeterminate 

(< 7 %) 

 5- 15% 2nd cytopuncture within 3 to 6 months 

under ultrasound guidance 

Bethesda IV 

Follicular tumor 

(neoplasm) 

(6-11 %) 

 15-30 % Surgical control (lobectomy) 

Bethesda V 

suspected of 

malignancy 

(2-8 %) 

Papillary carcinoma 

Medullary carcinoma 

Poorly differentiated 

carcinoma 

Anaplastic carcinoma 

Metastases Lymphomas 

60-75 % Surgical control 

(total thyroidectomy or lobectomy) 

  Bethesda VI 

Malignant 

(5-8 %) 

97-99 % Surgical control 

(total thyroidectomy) 

or specific medical treatment 

(radiotherapy ± chemotherapy) 

Thyroid nodules are common diseases presented in the clinic, and their pathological types are complex. 

 This research project sheds light on the classification of two types of nodules, which are follicular adenoma 

and papillary carcinoma.  

Therefore, we describe the histological aspect as well as the characteristics of these two nodules in order to 

do this. 
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I.3.8 Follicular adenoma and papillary carcinoma 

A follicular adenoma is a benign tumor of the thyroid that is entirely enclosed by the capsule. A carcinoma is a 

thyroid tumor that has invaded the capsule and is malignant. 

Follicular adenoma 

Follicular cancers (Benign tumor of thyroid) are cancers of follicular origin, not having the characteristics 

of papillary cancer, and which can resemble the normal thyroid (Figure I-12). Follicular cancer is often unifocal, 

lymph node metastases are infrequent, and distant metastases are located in the lungs and bones. Hürthle cell 

cancer is composed of more than 75% oxyphil (or oncocytic) cells; the malignancy criteria are the same as for 

follicular cancers, and the prognosis is determined by the same factors as for follicular cancers.  It is a firm tumor, 

homogeneous or oval surrounded by a thin fibrous capsule [44]. 

Microscopically, it is a very well encapsulated tumor, enveloped by a thin fibrous capsule. In addition, the tumor 

is composed of closely packed follicles. Furthermore, there are different patterns, like Normofollicular (the 

follicles will be of normal size), micro-follicular (follicles will be very small), also known as the fetal type. 

Macrofollicular (the follicles are large and colloid-filled). Moreover, the lining epithelial cells are low cuboidal to 

columnar and have a regular nucleus. Also, the surrounding thyroid will show compressed follicles [45]. 

 

 
Figure I- 12: (A) the macroscopic and (B) microscopic appearance of a follicular adenoma [46]. 

Papillary thyroid carcinoma (PTC) is the most frequent type of malignant thyroid tumor, accounting for around 

80% of all thyroid cancers. Histologically, papillary thyroid carcinomas can have a papillary, solid, or follicular 

architecture [47]. 

According to the WHO (World Health Organization) definition, papillary carcinoma is a malignant epithelial 

tumor of the vesicular strain with unique nuclear features (Figure I-13) [33].  

Macroscopically, papillary carcinomas are variable in shape and size ranging from less than a millimeter to several 

centimeters and can be uni or multifocal. They are frequently firm, grainy in appearance, greyish-white, or buff 

for the oxyphilic forms, and poorly limited [33]. 

Microscopically, as the WHO definition states, the nuclei of the cells constituting the papillary carcinomas have 

characteristic aspects. They have sinuous contours and an appearance with edges that are not round. These nuclei 

appear as 'coffee beans' and accumulate as 'roof tiles', they are enlarged, rounded, and oval or elongated. 

Concerning the nuclear membrane, chromatin condensation thickens it irregularly and nuclei pressed on it [33].  

A B 
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Figure I- 13: (A) the macroscopic and (B) microscopic appearance of a papillary carcinoma [46]. 

I.4 Conclusion 

 

In this first chapter, we presented our medical context. After an introduction to the chapter, and a brief history of 

histology, its definition, and its techniques, we have detailed the technique for preparing histological samples. We 

talked about the microscope. Thus, we presented in the second part the thyroid gland and its histology, and we 

presented the nodules and their method of diagnosis. Finally, we addressed the two types of pathology that we had 

selected namely follicular adenoma and papillary carcinoma. 

In this project, we are interested in the tissue characterization of histological images for the Thyroid gland. 

Histologic tissue characterization is an area of intensive research, aiming at complementing the visual observation 

of histological images with quantitative information about the tissues. Tissue and cell image analysis is difficult 

and time-consuming. Because they have irregular shapes; they are different sizes and have different orientations. 

As a result, performing such complex tasks necessitates techniques that are more advanced than traditional image 

analysis methods. As a reason, we will use a novel method of analysis called Multifractal analysis that we will 

discuss in the following chapter. 

A B 
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II.1 Introduction  

Traditional object descriptions based on the well-known Euclidean geometry are incapable of expressing a 

variety of natural objects and events. The mathematician Benoît Mandelbröt in about 1970 invented a new 

geometry, which is Fractal geometry that facilitates the study of objects that has complex geometric shapes. 

Fractal geometry is widely used in medical image analysis problems, as it finds different applications and 

provides diverse results. Specifically, it is used in the analysis of histological images, where the analysis of tissues 

and cells is difficult and time-consuming due to their complex and irregular shapes, which requires more advanced 

techniques than traditional image analysis methods. This chapter attempts to review fractal geometry and 

Multifractal analysis. As a point of organization, we have split this chapter into two sections: in the first one, we 

present the fractal objects, their notion of dimensions, and their methods of calculation. Through the second part, 

we are interested in the Multifractal analysis. 

II.2 Fractal geometry and dimensions 

II.2.1 History of Fractal geometry                                              

Geometry derived from the Greek words "geo" (meaning earth) and "metrein" (meaning "to measure"). 

Euclidean geometry is the traditional way of studying geometrical shapes and figures formed by the use of lines 

and circles. "Euclid geometry." named after the Greek mathematician Euclid d'Alexandrie (around 300 BC) [48].  

Apollonius in the 3rd century BC came up with the notion of merging three circles into a fourth. Then, when 

space permitted, he fills it with more tangent circles, etc., in an attempt to fill the "contained" circle, which is 

impossible to do. He thus touched infinity. In doing so, he uncovered the "baderne of Apollonius," the earliest 

known fractal object in human history [48] [49] [50]. Albrecht Dürer published another fractal artwork in 1520 

that specifies how to make his pentagons, and Sierpinski will pick up where he left off [51]. 

Johannes Kepler realized that the planets orbit the sun in ellipses rather than circles. Afterwards, 

Edmond Halley had assumed that these orbits could be explained by an analogy with light, using the inverse 

square law. Subsequently, Isaac Newton devised a new approach known as infinitesimals, and he came up with 

his renowned theory of universal gravitation in the end.  Simultaneously, Gottfried Leibniz invented the most 

concise version of differential calculus, whose tools are differentiation and integration [48]. Pierre-Simon 

Laplace asserted that using this type of calculation in the case where the exact location of each known particle 

could predict the future of the entire universe. The differential calculation approach used on straight or curved 

lines.  After that, Karl Weierstrass, Georges Cantor, and Henri Poincaré established a new geometry to study 

the irregular and rough characteristics [48](Figure II- 1).  

 

Figure II- 1: (A) and (B): baderne of Apollonius, (C) Albrecht Dürer pentagons,(D) and (E) represent a new 

geometry by Karl Weierstrass and Henri Poincaré respectively [48]. 
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A huge number of mathematicians attempted to create artificial fractals bearing their names. In 1883, 

Georg Cantor discovered a set that was fractal in nature and named after him (Cantor dust). The curve of Peano 

is one of the fractals shape. In 1891, an analysis professor Giuseppe Peano found a curve that covered all of 

space. It does not omit any points of the plane. In 1900, David Hilbert designed his curve, which is a one-

dimensional curve that fills an entire two-dimensional space. Following that, in 1904, Helge von Koch designed 

The Koch Snowflake, which is a fractal curve. After that, Paul Lévy proved that dimension is a continuous 

topological invariant in 1911. In addition, he described the properties of self-similarity and showed its geometry 

[48]. A few years after, separately in about 1914, Gaston Julia and Pierre Fatou, they researched the translation 

of the plane of complex numbers using iterative functions. The transformation results in an image of the initial 

position. Their work is known as the Julia set. In 1916, Vaclav Sierpinski proposed a new fractal: the Sierpinski 

triangle also called Sierpinski gasket or Sierpinski sieve. In 1919, Felix Hausdorff pioneered a new method of 

thinking about dimensions, introducing the fractal dimension, which accepts non-integer values. In 1926, Karl 

Menger made a 3D extension of the Cantor collection or the Sierpinski [48](Figure II- 2). 

 

Figure II- 2: artificial fractals from (A) to (H) respectively (Cantor dust, Giuseppe Peano curve, David Hilbert 

curve, Paul Lévy curve, Gaston Julia and Pierre Fatou fractal image, the Sierpinski triangle, Karl Menger 3D extension of 

the Cantor collection) [1]. 

Lewis Fry Richardson was interested in the length of British shores in 1926. He concluded that it 

depended on the size of the ruler. The length will be unlimited if the size of the ruler is infinitely small. In fact, the 

length of the boundary is fractal. This work related to fractals and a method for solving a system of linear equations 

known as the modified Richardson iteration [48]. 

The history of fractals dates back to 1975 when Benoît Mandelbrot The father of fractal geometry coined 

the word fractal. He discovered that the errors were fractal in nature. Furthermore, he was acquainted with Julia 

and Fatou's works and used computers to exploit them [48]. Benoît Mandelbröt used the concept of fractals to 

demonstrate that irregular objects and chaotic phenomena, in general, are interesting and can be studied in a non-

reductive way that takes into account their complexity [52] [53](Figure II- 3).  

 

Figure II- 3: (A) length of British shores quantified in different size of the ruler, (B) Mandelbröt set [48] [54]. 
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II.2.2 Fractal geometry and Fractal objects 

As fractal geometry belongs to the geometric field, then, it is concerned with the study of the shape and 

spatial relationships of points, lines, surfaces, volumes, etc., which are referred to as "objects" or "sets". In the 

context of image analysis, these sets are a collection of points from a binary image, i.e., we can say whether or not 

a point in the image belongs to the set (the spatial distribution of the points that comprise the object) [55].  

Fractal geometry provides a powerful tool for exploring the world of non-integer dimensions. 

Monofractals, Multifractals, and self-affine fractals are the three most prevalent fractals. A monofractal object is 

a simple self-similar fractal with only one scaling factor, whereas a Multifractal object is a complicated fractal 

system with at least two scaling factors for separate regions.  A self-affine fractal has various scaling factors in 

different development directions or at different scale levels, as well as, they are frequently classified as 

Multifractals [56].  

Fractal is coined from the Latin word fractus. The Latin verb “frangere” correspondent stands for "to 

break:" to create irregularly shaped fragments. In addition to "fragmented," fractus should also mean "irregular," 

with both meanings preserved in fragment.  The proper pronunciation is fracʹtal, the stress being placed as in 

fracʹtion [52]. 

“Bottomless wonders spring from simple rules, which are repeated without end.” – Benoît Mandelbröt 

 A fractal is an object composed of several sub-objects, or a mathematical object, such as a curve, an 

irregular surface, or even a volume, results from an iterative process and, presents a character self-similarity. 

Moreover, can be built using accurate or random rules [51] [57].   

“Fractal is a structure, composed of parts, which in some sense similar to the whole structure” – Benoît Mandelbröt 

II.2.3 Properties of fractal objects 

The term fractal, which can be geometrical or statistical, is the fundamental idea of fractal geometry. 

According to Mandelbrot's theory, fractal objects have the following characteristics: Primarily, they have self-

similar behavior; it is the most important property of fractals [58] [59] [60]. It defines structures that appear very 

similar at different scales. This means that when a portion of the structure is removed and compared to the entire 

structure, they are identical (Figure II- 4). As well as, they do not have a specific (finite) length; the object's level 

of detail is infinite. Besides, it is far too irregular to be described in traditional Euclidean geometric terms, either 

extremely interrupted or fragmented. What is more, it has a recursive and easy definition, and its dimensions are 

not integers. Because of their complications, computers are required for their studies [61] [62] [63]. 

 

Figure II- 4: Self-similarity of Von Koch curve [64]. 
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II.2.4 Examples of some famous fractal structures 

These irregular geometrical objects can be classified into two distinct categories. The first category is 

deterministic fractals; these fractals are pure mathematics and self-similar. The second one is probabilistic fractals, 

which are fractals created by random processes [48]. In the following we will give some examples of deterministic 

fractals. 

a) The Cantor set  

Georg Cantor discovered this fractal set in 1883, many fractal figures, such as the Cantor dust and the Koch 

curve, as well as the Sierpinski triangle, have their origins in the Cantor set. The method followed to create it is 

given in the following steps mentioned: Take a segment, and remove its central third. Then, take the central third 

of each of the two remaining segments and remove it. Etc. (Figure II- 5). Continuing, we form dust of points, there 

is an infinity of them and the total length is zero. However, the quantity of dashes increases until it becomes 

uncountable like the infinity of real numbers [48] [65] [66]. 

 

Figure II- 5:  the six first iterations of the CANTOR SET structure [66]. 

b) Von Koch curve  

Helge von Koch designed the snowflake curve in 1904, a transformation rule: The Koch curve corresponds 

to the transformation of a single segment (Figure II- 6), created by substituting a single straight-line segment with 

a pattern of several line segments. Then, the pattern's line segments are then substituted with the same pattern [66]. 

 

Figure II- 6: the four iterations of the KOCH Curve [66]. 

Regarding the Koch snowflake is the figure formed on an initial equilateral triangle (Figure II- 7), created 

by Replacing the middle third of each segment with an equilateral triangle with no base. In which this operation is 

repeated on the figure obtained; and, this, as a number of times needed [48] [65] [66] [67]. 

 

Figure II- 7: the four iterations of the KOCH Snowflake [66]. 
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c) The Julia and Mandelbrot sets 

Gaston Julia (French mathematician born in Algeria) published his work in 1918: research on the iteration 

of rational functions. Through it, he underscores what is known today as Julia sets. He had imagined them but had 

never seen them for lack of means of calculation such as computers. Julia becomes famous, but his works will wait 

about fifty years before being exploited by B. Mandelbrot in 1975 [48]. 

  The Mandelbrot set is the most famous object in modern mathematics. It is also a breeding ground for 

the world's most famous fractals. B. Mandelbrot represented this set for the first time in 1978. The set itself is an 

infinite swarm of odd-shaped points clustered on "complex number plane".  This classic fractal figure, obtained 

very simply, it describes the convergence of the recursive function used by Julia [48] [68]: 

𝐙𝐧 = 𝐙𝐧−𝟏
𝟐 + 𝐂             (1) 

The function's new value (Zn) is equal to the function's old value (Zn-1) squared plus a constant (C= A + i B). 

If 𝐙𝟎 = zero The Mandelbrot set is the set of complex plane points C such that the sequence does not tend to infinity 

(Table II-1)( Figure II- 8). 

Table II- 1: Differences between Gaston Julia set and the Mandelbrot set [48]. 

 Gaston Julia set the Mandelbrot set 

We fix C 𝐙𝟎 

The recursive function used 𝐙𝐧 = 𝐙𝐧−𝟏
𝟐 + 𝐂 𝐙𝐧 = 𝐙𝐧−𝟏

𝟐 + 𝐂 

 scan all the values of 𝐙𝟎 𝐂 

sometimes, the value of 𝐙𝐧  

bounded 

We draw 𝐙𝟎  all the points for 

which the sequence is bounded. 

We draw C all the points for which 

the sequence is bounded. 

 

Figure II- 8: Mandelbrot set: (A) the set appears in black, with the fractal boundary alive with color,  

We will develop below some examples of fractal analysis tools such as fractal dimensions. 

II.2.5 Fractal and dimensions  

Dimensions are different measurements that have traditionally been used to describe objects and 

phenomena. When we talk about dimensions in antiquity, we mean the height, length or width of an object. The 

most well-known dimension is the Euclidean one𝐃𝐄 and the second is known as the topological dimension 𝐃𝐓. In 

most circumstances, they can be used as synonyms because many objects could be the same thing.  However, we 

will briefly mention some differences (Table II-2) (Figure II- 9). The topological dimension is defined by how an 

observed object can be divided, whereas the Euclidean dimension is determined by the space filled by an object 

[69] [70]. 
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Table II- 2: Some differences between topological and Euclidean dimensions [69] [71]. 

The topological dimensions 𝐃𝐓 The Euclidean dimensions 𝐃𝐄 

The point topological dimension  𝐃𝐓 = 𝟎 The point Euclidean dimension 𝐃𝐄 = 𝟎 

The line can be divided by dashed points 𝐃𝐓 = 𝟏 The straight line is one dimensional 𝐃𝐄 = 𝟏 

To divide surfaces, curves are necessary  𝐃𝐓 = 𝟐 The curve line lying in the plane 𝐃𝐄 = 𝟐 

To divide space, surfaces are necessary 𝐃𝐓 = 𝟑 The complex curve in space is three-dimensional𝐃𝐄 = 𝟑 

 

Figure II- 9: Examples illustrating the distinctions between topological and Euclidean dimensions [69]. 

Returning to our running examples, when dealing with the self-similarity of fractals with intricate and 

irregular geometric structures, classical geometry or an integer dimension are not suitable. In this case, a new 

mathematical method is used to evaluate the complexity of geometric figures using a single parameter, known as 

“fractal dimension 𝐃𝐅” or “Hausdorff dimension 𝐃𝐇” also called “Self-similar dimension 𝐃𝐒 ;” is a concept 

applicable only to deterministic self-similar fractals [72] [69].  

A fractal dimension “Hausdorff dimension 𝐃𝐇” is a number that quantifies the degree of irregularity and 

fragmentation of a geometric set. It characterizes the self-similar behavior of the surface. Furthermore, it estimates 

the change in a set's size based on the unit of measurement [73] [74]. Fractal dimension can be defined as follows. 

Let d be the dimension of a fractal object in the Euclidian space. We cover this object with balls of diameter r such 

that each point of the object is inside one of the balls. We estimate that this requires at least N(r) balls. If, for a 

sufficiently small r, N(r) satisfies the power law [72] [69] [75]. 

𝐍(𝐫) = 𝐫𝐃𝐅    or likewise     𝐃𝐅 =
𝐥𝐨𝐠(𝐍)

𝐥𝐨𝐠(𝐫)
 

(𝟐) 

Where  𝐃𝐅 is called the fractal dimension or fractal capacity of the object. In addition, 𝐍(𝐫) number of balls 

with linear diameter 𝐫 used to cover the object (Figure II- 10).   

 
Figure II- 10: Fractal dimension estimation applied to the Koch Curve [73]. 



Chapter II           Fractal Geometry and Multifractal Analyses of images 

26 
 

Fractal dimension accepts integer values for simple geometric objects like a point, a straight line, or a 

smooth two-dimensional surface (equivalent to 𝑫𝑭 = 𝟎, 𝟏, 𝟐 ), and non-integer values for self-similar fractal 

objects with a highly irregular shape.  In general, there is a relationship between fractal and topological dimension; 

While 𝐃𝐓is always an integer (‘2’ for an object in the plane and ‘3’ for an object in space), 𝐃𝐅 is a decimal number 

ranging between ‘1’ and ‘2’ (for an object in the plane) or ‘2’ and ‘3’ (for an object in space) [72] (Table II-3).  

Table II- 3: Similarity dimension calculation [76]. 

Example sets  𝐃𝐓 𝑵(𝒓) 𝒓 
Ds =

𝒍𝒐𝒈(𝑵)

𝒍𝒐𝒈(𝒓)
 

The Cantor set

 

0 2 3 0.631 

The Koch curve

 

1 4 3 1.261 

II.2.6 Fractal dimension computing methods 

Fractal analysis is a collection of methods (most of which are computer-based) for assigning a fractal   

dimension and other fractal features to a dataset in all areas of research, including medical image processing, to 

better understand its complexities [77]. The fractal dimension quantifies the irregularity of complex objects and 

can characterize the complexity and inhomogeneity of porous media. For all of these reasons, the fractal dimension 

is commonly employed to describe a texture. There are numerous techniques for calculating it, each with its own 

theoretical foundation, which frequently results in different dimensions being obtained by different methods for 

the same object. Although they are all different, a basic principle is always respected. It is summarized by the three 

phases below [78] [79, 80]: Use various "measurements" to calculate the quantities represented by the object. 

Then, plot the logarithm of the quantities measured as a function of the logarithm of the sizes and use linear 

regression to estimate this line. ultimately, estimate the Fractal Dimension as the slope of the obtained line. 

  Below, we provide and categorize the most commonly used literature approaches, which are divided into 

three categories: box-counting methods, fractional Brownian motion (fBm) methods, and area measurement 

methods.  

a) Box counting methods 

The first methods developed were those known as "box-counting." We cite three methods in this class that 

share the following steps: Each approach in this class needs a meshing of the signal, the formulation of a probability 

in each created box, and the estimate of the Fractal Dimension by least-squares linear fitting as the final step. Their 

theory is reasonably simple and straightforward to construct. However, they have certain drawbacks [64] [79] [81].  

 Box-counting method (BCM) 

The box-counting dimension is an estimate of fractal dimension obtained using the box-counting method 

for image purposes or natural situations. Russel et al. (1980) defined this method. It consists in dividing an image 

into a set of equal squares, and then count the number of squares that contain one or more pixels of the object [82, 

81].  
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Its principle is to cover a signal or an image with boxes of size r and calculate the fractal dimension. For 

example, consider an image of size N*N with each pixel either black (foreground) or white (background) to 

demonstrate the method for binary images. Starting, the image is covered with a grid of 𝒓-sized boxes. The number 

of boxes 𝑵(𝒓) required to cover the black pixels (foreground) is then calculated [82] [83] [84] [85] [86] (Figure 

II- 11). The box-counting dimension is defined as follows for different values of r:   

𝑫𝑩 = − 𝐥𝐢𝐦
𝒓→𝟎

𝒍𝒐𝒈(𝑵(𝒓))

𝒍𝒐𝒈(𝒓)
 

  (𝟑) 

 

Figure II- 11: Example of the box-counting method in binary images. The binary image is divided into increasingly 

fine boxes, and for each, the number of boxes needed to cover black pixels is calculated [86]. 

Because 𝑵(𝒓) is computed over a range of 𝒓, fractal objects have a linear relationship between 𝒍𝒐𝒈(𝒓) 

and 𝒍𝒐𝒈(𝑵(𝒓)).This linear relationship can be seen as a line on a scatter plot with the x and y axes representing 

𝒍𝒐𝒈(𝒓) and  𝒍𝒐𝒈(𝑵(𝒓)), respectively. Box-counting dimension can thus be calculated using the slope of the line 

created by 𝒍𝒐𝒈(𝑵(𝒓)) ∗ 𝒍𝒐𝒈(𝒓).  

Anyhow, this method has several limitations, as it requires the use of a binary image. It is sensitive to box 

size and is only valid for self-similar images. Other solutions are provided, as we are going to mention below, to 

address some of the drawbacks of the Box-counting dimension method. 

 Differential box-counting method (DBCM) 

The differential box-counting method (DBCM) is a box-counting method adaptation that Chaudhuri and 

Sarkar (1995) suggested it. It has the advantage to work with greyscale images, thus eliminating the binarization 

step. The basic idea behind this method is as follows: The signal is divided into r-sized boxes, and N(r) is calculated 

like the difference between the minimum and highest grey levels in the (i, j) Th box. This procedure is then 

performed for each box, and the fractal dimension is estimated using the equation(𝟑) [82]. 

The choice of box size is a significant constraint of the box-counting algorithms. Many researches were 

conducted in order to determine the upper and lower constraints for the box size. Among the researchers' findings, 

that with a too-small box size, the maximum number of boxes above the grid would be greater than the number of 

available intensity levels. As a result of the unaccounted boxes, fractal dimension would be underestimated. 

Similarly, given an excessively large box size, the number of boxes would be significantly smaller than the number 

of intensity levels [82] [87] [88].  

 « Extended counting » method (XCM) 

As an alternative to the BCM, the extended counting method "XCM" (Sandau and Kurz, 1997) was 

presented. The XCM principle can be expressed as follows: The BCM is applied to numerous subsets of a fractal 

set, and the maximum dimension of the subsets is considered as the set's FD. The BCM, on the other hand, is 

considerably simple when used for subsets [82] [81] (Figure II- 12). 
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Figure II- 12: Graphical presentation of the principle of (A) DBCM and (B) XCM [81]. 

b) Fractional Brownian motion (fBm) methods 

A fractal model based on fBm is a non-stationary model that is frequently used to describe random 

phenomena. According to Pentland (1984), the majority of fractals observed in physical models are fractal 

Brownian functions (fBfs). Two approaches are typically used to estimate the Fractal Dimension of an image 

believed to be a 2D fractal Brownian function. They are based on the image's variogram or Fourier transform [82]. 

 Variogram method 

The variogram method is based on statistical Gaussian image modeling. Given an Fractal Dimension, 

fractional Brownian motion modeling can be used to generate a corresponding image. Given an image, the Fractal 

Dimension is approximated using the assumption that it is formed from a fractional Brownian motion.  

This algorithm generates reliable Fractal Dimension estimates. Its applicability to erratically distributed 

data sets is one of its main features. However, it was demonstrated that partitioning a signal into an insufficient 

number of clusters allows the variogram approach to estimate the Fractal Dimension, but when a sufficiently 

enough number of clusters is utilized; a very abrupt decrease toward the correct value is detected, followed by 

delayed convergence [82, 81]. 

 The power spectrum   

The power spectrum approach is based on fractional Brownian motion's power spectrum dependence. 

Each image line is Fourier processed in this method, the power spectrum is evaluated, and the power spectra are 

then averaged. The slope is used to calculate Fractal Dimension. The Fourier approach is appropriate for self-

affine surface analysis and modeling. Unfortunately, the procedure is time-consuming and necessitates the use of 

gridded data. The key disadvantage is that the method is only effective on surfaces having an exponential power 

spectrum. In general, this constraint on the shape of the power spectrum is invalid, and it may lead to inaccuracies 

in the calculation of Fractal Dimension [82, 81]. 

c) Area measurement methods 
Area measuring methods employ structuring elements of varying scales r to compute the area A(r) of the 

signal intensity surface at a given scale (r). The slope of the best fitting line at the points (log(r), log (A(r)) yields 

the Fractal Dimension. Three algorithms are the most commonly utilized in this techniques class [82]: 

 Isarithm method (IM) 

The Isarithm method's concept is to determine the complexity of the isarithm or contour lines required to 

approximate the complexity of a surface. This approach is only defined for the two-dimensional scenario. On the 

image, a series of isarithms (e.g., contours) are created depending on the data values. The walking divider method 
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can be used to estimate the Fractal Dimension of each isarithm, and the Fractal Dimension of the image is the 

average Fractal Dimension of the isarithms plus one. Most importantly, unlike other approaches such as BCM, it 

is only applicable to self-similar surfaces. This approach is useful for estimating the Fractal Dimension of non-

similar surfaces. Its main drawbacks are Isarithm dependence, applicable for only 2D cases and dependence on 

directions: rows, columns, cardinal [82, 89]. 

 Blanket method (BM) 

Peleg et al. (1984) developed the blanket approach to determine the area of a gray level surface and 

consequently the Fractal Dimension of a 3D structure. The algorithm is based on Mandelbrot's approach, which in 

turn is based on Minkowski's sausage logic. They examined all the points in 3D space at a distance ‘e’ from the 

surface in the method, covering the surface with a "blanket" of thickness 2e. This blanket has two surfaces, one on 

top and one on the bottom (defined by dilatation and erosion of the image). One of the method's advantages is its 

resistance to fluctuations in gray levels and applicable for 3D case. Another advantage of using asymmetric 

structuring components was that anisotropic structures within the picture could be identified. Moreover, its main 

drawback is that Fractal Dimension is restricted to relatively low theoretical Fractal Dimensions [90, 91, 82].   

 Triangular prism method (TPM) 

Clarke introduced this method in 1986; it compares the surface areas of triangular prisms with the pixel's 

area in log-log. The aim is then to compute the surface of the triangle prism of each analysis window of size s, and 

then to calculate the surface A(s), which corresponds to the sum of all the triangular prism surfaces acquired. Thus, 

the approach derives a relationship between the surface area of triangular prisms formed by the image's grey-level 

values and the grid step size used to measure the prism surface area [82, 92] (Figure II- 13). The advantage of this 

method is that it is fastest and more accuracy and its main drawbacks include fractal dimension underestimation 

and sensitivity to noise or extreme gray-level [81]. 

 
Figure II- 13: Illustration of the Triangular prism method. Where σ is the grid size, S1, S2, S3, and S4 represent the 

areas of four triangles. (i, j), (i, j+1) and (i+1, j+1) are, respectively, the coordinates of the four points of the triangular 

prism, h(0) denotes. 

Fractal analysis is no longer effective when the object is very complex and presents a punctual regularity 

that varies greatly from one point to another. Its dimension cannot be characterized by itself. It is therefore 

necessary to calculate its local fractal dimension to describe its irregularity at every point. The multifractal analysis 

covers the study of these objects, their local behaviors, and their scale invariance properties.  
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II.3 Multifractal Analysis 

Beyond mathematical models for understanding invariance of scale, a series of analysis approaches known 

as Multifractal analysis has been created. Where, multifractal analysis can be applied to any object in order to 

characterize and understand changes, fluctuations in local regularity. This new paradigm shift, which focuses on 

fractal methods rather than fractal objects, has been critical in the advancement of multifractal research. 

Multifractal analysis is a useful method for processing biomedical images. Several researchers have 

advocated employing multifractals for segmentation, classification, signal analysis, and other purposes. The 

multifractal spectrum can provide the statistical characterization of intensity fluctuations in an image structure. 

Despite the complexity of the tissue and cell pictures' extremely irregular shape, multifractal analysis can resolve 

local densities and depict the statistical features of shapes with complicated spatial arrangements. 

This section discusses the technique for calculating the Hölder exponent, often known as the α-value, as 

well as variations in the local density of the image. Furthermore, the many kinds of multifractal measures. As well 

as it is shown how to generate a multifractal spectrum, which describes an image's fractal dimension.  

II.3.1 Multifractal History  

Multifractal analysis, which was developed in the 1980s to explain turbulence signal findings, has provided 

new tools for the study and modeling of signals from a variety of scientific domains. Kolmogorov created the 

theory of homogeneous and isotropic turbulence in 1941, which paved the way for the history of multifractals. The 

turbulent velocity signals appear to be quite erratic in some locations and considerably less so in others, with no 

obvious borders to these regions. This "multi-scale" complexity is too similar to fractals. Multifractal analysis first 

developed in physics to better comprehend and analyze such complicated functions, as well as to offer new 

quantitative characteristics that allow their classification [93].  

In fact, the beginnings of multifractal analysis are in the various energy cascade models proposed by 

Mandelbrot (1974) in fully developed turbulence: “Intermittent turbulence in self-similar cascades: divergence 

of high moments and dimension of the carrier”, which were formalized in 1985 by Parisi and Frisch in their 

investigation of experimental data. Mandelbrot's multifractal ideas were revisited in a broader context developed 

and clarified in a work by theoretical physicists Halsey et al: "Fractal Measures and their Singularities" in 1986. 

Simultaneously, Kadanoff and his collaborators at the University of Chicago laid the foundations of this approach 

in the context of invariant measures of dynamical systems [94, 95]. 

According to Mandelbrot (1988), the concept of self-similarity can be extended to measures (such as 

spreading mass or probability) distributed on Euclidean support (e.g., a point set). In this context, fractal sets may 

be characterized by a function or a spectrum of interlinked fractal dimensions rather than simply one fractal 

dimension (as seen in the preceding section). These fractal sets are referred to as multifractal. Thereupon, 

multifractal analysis can be seen as an extension of fractal analysis [96].  

 By 1992, two studies had been published that validated the Multifractal Formalism for two types of 

measures that showed some degree of self-similarity: {Gibbs’ states on hyperbolic cookie-cutters in 𝑹 (Rand); 

Moran’s self-similar measures in 𝑹𝒅(Cawley & Mauldin)} [94]. 
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II.3.2 Methods of multifractal analysis 

Multifractal analysis can be seen as an extension of fractal analysis. A multifractal object is more complex 

in that it is always invariant under dilation, and the factor required to distinguish the detail from the entire object 

depends on the observed detail. There are several ways and approaches for performing multifractal analysis. As 

an example, we quote the following [97]: 

- The structure-function approach was pioneered by Parisi and Frisch [98]. 

- The generalized dimension method of Hentschel and Procaccia uses the box-counting algorithm [99]. 

- The method of moments was pioneered by Halsey and all [100]. 

- The Barabasi and Vicsek method based on the HHCF (Height Height Correlation Function) technique [101]. 

- Use the box-counting method with the BDC (Differential Box-Counting) algorithm on grayscale images by 

Sarkar and Chaudhuri [102]. 

- The method of multifractal analysis based on a direct method without recourse to multifractal formalism by 

Chhabra and Jensen [103]. 

- 2D wavelet transform modulus maxima lines (2D-WTMM) is a multifractal formalism that is based on the 

continuous wavelet transform proposed by Arneodo and all [104]. 

- Peng and others first proposed the multifractal detrended fluctuation analysis method and then developed for 

higher orders by Kantelhardt and others [105]. 

- The dominant coefficients method that uses the discrete wavelet transform [106]. 

- Maximum coefficients of Discrete Wavelet Transform for 2D   Multifractal Analysis proposed by Ouahabi [107]. 

- The large deviation spectrum method proposed by Mandelbrot, and used by Hentschel and Procaccia [108]. 

II.3.3 Concept of measure 

A measure of a bounded subset S of 𝑅𝑛, expressed as µ(S), is frequently regarded as a type of mass 

distribution. Consider spreading a small handful of sugar on a bounded surface; the mass sugar distribution on the 

surface at a given point corresponds to the measure.  

In the context of image processing, the most natural choice is to consider that the measure carried by a 

region is the sum of the light intensities of each point of the region's support.  On an image, the points where the 

light intensity is non-zero constitute the measure's support, while the points where it is zero are considered "outside 

the object" [76]. 

II.3.4 Hurst exponent and fractal dimension 

A fractal object, as defined in the previous section on fractals, is one whose fractal dimension differs from 

its topological dimension and is invariant with respect to the scales of analysis. We define another parameter, the 

exponent of Hurst, to distinguish between the fractal dimension and the topological dimension. The relation that 

binds it to the fractal dimension is given by 𝐃𝐅 + 𝑯 = 𝐃𝐓  where 𝐃𝐓 denotes the object's topological dimension. 

Hurst exponent can be calculated using various methods for example; box counting method, the method 

of variation, the probabilistic method, the method of spectral analysis in the Fourier domain, the morphological 

method, etc. [72].  
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II.3.5 Local behavior: Hölder exponent (𝜶-value)   

A multifractal object is more complex in that it is always invariant under dilation, and the factor required 

to distinguish the detail from the entire object depends on the observed detail. Therefore, the Multifractal’s main 

parameter is Holder’s exponent also known as the local singularity coefficient or says the local Hurst exponent 

so verifies the relation locally. Together with the multifractal spectrum, this scaling exponent can be used to 

characterize statistically the overall image structure. Multi-fractal analysis can also be used to provide local 

information and to isolate particular fractal dimension regions [72, 109].  

 
Figure II- 14: The greyscale image (left) and its corresponding intensity histogram (right) [109]. 

Using a grayscale image as an example (Figure II- 14), each pixel has an intensity value that is represented 

as a multilevel gray value. These grey values are interpolated linearly from black to white. The local singularity 

coefficient, also known as the Hölder exponent or α-value, reflects the local behavior of a function 𝜇𝑝(w) around 

the pixel, as given in Equation(𝟒). 

𝝁𝒑(𝒘)  = 𝑪𝒘𝜶𝒑,         w=2k+1 ,             k=0,1,2,3,…m. (𝟒) 

𝒍𝒐𝒈 (𝝁𝒑)  = 𝜶𝒑𝒍𝒐𝒈(𝒘) + 𝒍𝒐𝒈(𝑪),          (𝟓) 

Where w stands for the window size centered at the pixel p. In addition, C is an arbitrary constant, and m 

is the total number of boxes used in the computation of 𝛼𝑝. The slope of the linear regression line can be used in 

a log logarithmic plot where log (𝜇𝑝(𝑤)) is plotted against log (w) to estimate the value of 𝛼𝑝 [110, 111, 109]  . The 

Hölder exponent is computed for the entire data set. The range of values [𝛼𝑚𝑖𝑛,𝛼𝑚𝑎𝑥] may vary depending on the 

nature of the studied process. In some cases, it is limited to a narrow value range, whereas in others, it can range 

from zero to infinity [112].  

The following are some commonly used multi-fractal intensity measures for calculating the Holder exponent. 

II.3.6 Multifractal measures 

In multifractal analysis, there are four types of intensity measures: maximum measure, inverse-minimum 

measure, summation measure, and Iso measure [113].  The function of a multifractal measure is denoted 

as 𝜇𝑤(𝑥, 𝑦). Let 𝑔(𝑘, 𝑙)represent the intensity value at pixel(𝑥, 𝑦), and Ω be the set of all pixels within the measured 

neighborhood of a square window size 𝑤. 

a) maximum measure (max measure) 

The maximum intensity value within the square region 𝜇𝑤(𝑚, 𝑛) is represented by the max measure. In 

ways it is the measure with the highest intensity value found in the window w centered on the pixel p. If all pixels 

are black with an intensity value of exactly zero, a problem may develop.  
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This may result in a mathematical error while computing log (0). To avoid this issue, fully black pixels are 

treated as background and are ignored in max measure [109]. 

Maximum : 𝜇𝑤(𝑥, 𝑦) = 𝑚𝑎𝑥 𝑔(𝑘, 𝑙) ,   (𝒌, 𝒍)𝝐Ω 
(𝟔) 

b) Inverse-minimum measure (inv-min measure) 

The minimum measure determines the lowest intensity value and gives it to 𝜇𝑤(𝑥, 𝑦). Hemsley proposed 

an inverse-minimum measure based on the positive difference between 𝜇𝑤(𝑥, 𝑦)and one. The subtraction from 

one is needed to ensure that the measure's value does not drop as the window size increases. If all pixels are white 

with an intensity value of exactly one, a problem may develop. This may result in a mathematical error while 

computing log (0). To avoid this issue, fully white pixels are treated as background and are ignored in inv-min 

measure [109]. 

Inverse-minimum : 𝜇𝑤(𝑥, 𝑦) = 1 − 𝑚𝑖𝑛 𝑔(𝑘, 𝑙) ,   (𝒌, 𝒍)𝝐Ω 
(𝟕) 

c) Summation measure (sum measure) 

The sum measure adds together all of the pixel intensities in the neighborhood. Similarly, if all pixels are 

black, Equation (𝟖) will encounter an error for calculating log (0). As a result, completely black pixels are treated 

as background and will not be used in sum measure computations [109]. 

Summation : 𝜇𝑤(𝑥, 𝑦) = ∑ 𝑔(𝑘, 𝑙),   (𝒌, 𝒍)𝝐Ω 
(𝟖) 

d) Iso measure 

The Iso measure, as shown in Equation (𝟗), counts the number of pixels in the neighborhood that have 

identical intensity values to the centered pixel. If the central pixel is the sole pixel in the region with a unique 

intensity, then 𝜇𝑤(𝑥, 𝑦)equals one. Because the probability that the pixels in a neighborhood to have the same 

intensity value is quite low, the Iso measure can be tweaked to accept a 5% degree of precision. This adjustment 

permits more pixels with similar intensity values to the central pixel to be included in the multifractal measurement 

[112, 109]. (Note that # is the number of pixels) 

 Iso: 𝜇𝑤(𝑥, 𝑦) = #{(𝒌, 𝒍) \ 𝑔(𝑥, 𝑦) ≅  𝑔(𝑘, 𝑙), (𝒌, 𝒍)𝝐Ω },    
(𝟗) 

II.3.7 Holder image (α-image) 

The local singularity is computed for the entire original image, and the resulting image is called the α-

image. (Figure II- 15) shows the results of utilizing several multifractal measures, while (Figure II- 14) shows the 

original greyscale image. For display purposes, the original image in (Figure II- 14) and the α-images in (Figure 

II- 15) are normalized to [0.0, 1.0], black to white.  Furthermore, the α-histogram for each multifractal measure 

demonstrates that the distribution of α-values has a bell-shaped curve, is skewed, and is translated along the α-axis 

(Figure II- 16) [109]. 
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Figure II- 15: The α-image. The α-range for each measure is different: [0.0000, 0.4808] for max measure, [0.0000, 

0.9354] for inv-min measure, [1.7917, 2.3315] for sum measure, and [0.0000, 2.1694] for Iso measure [109]. 

 

Figure II- 16:   α-histogram. The distribution of α-values has a bell-shaped curve, and is skewed and translated 

along the α-axis respectively [109]. 

II.3.8 Global behavior:  Multifractal Spectrum (Singularity spectrum) 

A multifractal spectrum is a function that describes the geometrical property of the α-image. The Hölder 

exponent provides a local approach to the images. This only gives useful information about the image's local 

singularity. To define a multifractal image description, it is important to be able to characterize points of the same 

singularity and discern the different local behaviors in an image. Then we consider that each value of the defined 

Hölder exponent corresponds to a fractal set E (α), the fractal dimension of which we will calculate and that the 

support of the image X is therefore formed by the union of fractal sets of different dimensions [109, 114]. 

𝑆𝑖 = 𝐸(𝛼𝑖 ) = {(𝒙, 𝒚) \ 𝛼(𝑥, 𝑦) =  𝛼𝑖},     𝑿 = ⋃ 𝐸(𝛼𝑖 )𝒊  
 (𝟏𝟎) 

 𝐸(𝛼𝑖 ) сan be interpreted as the subset of points having the same scaling behavior described by α. 

Furthermore, the information provided by the Hölder function 𝛼(𝑥, 𝑦) is either difficult to obtain or 

impossible to obtain in several cases. In this case, it is preferable to consider simplified high-level information, 

which consists of describing the distribution of the image's Hölder exponents from a geometrical or statistical point 

of view; this approach is known as multifractal analysis [109]. Hausdorff dimension is one of the box-counting-

based methods for calculating fractal dimension. Each value 𝛼 of the Hölder exponent defines a fractal set E (𝛼) 

[115]. The Hausdorff fractal dimension is defined as follows with 𝛼𝑖 represent the Hölder exponent of the 

subspace 𝑆𝑖 .  𝑁𝜆(𝛼𝑖) is the number of boxes 𝑆𝑖 containing the value 𝛼𝑖  

𝑓𝜆(𝛼𝑖) = −
𝑙𝑜𝑔(𝑁𝜆(𝛼𝑖))

𝑙𝑜𝑔(𝜆)
   

(𝟏𝟏) 

The multifractal spectrum 𝑓(𝛼)is found by the limited value: 

𝑓(𝛼) = lim
𝜆→0

𝑓𝜆(𝛼𝑖)   
(𝟏𝟐) 

The pair (α, 𝑓(α)) provides both local (via α) and global (via 𝑓(𝛼)) information. It is referred to as the Hausdorff 

spectrum of the image X [114] (Figure II-17). 
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The Hausdorff spectrum provides a global geometric characterization of signal singularities. It thus measures the 

global distribution of the various Hölder exponents.  

 

Figure II- 17: Schematic representation of a multifractal spectrum [116]. 

II.3.9 Methods for Multifractal Spectrum calculation   

There are several methods for approximating the multifractal spectrum. They are divided into two categories: those 

based on box counting and those based on wavelets. 

3.1.1.9.1 Box counting methods 

To characterize the structure of some scaling processes, an unlimited number of fractal dimensions are 

required. Box counting techniques are ‘extensions’ of (monofractal) box counting methods that are used to describe 

multifractals. This class's methods are built on the same principles as the techniques for fractal dimension 

assessment shown in the preceding section. The signal is meshed using various box sizes, r, and a normalized 

measure is calculated in each box. 

1) Generalized fractal dimensions and multifractal spectrum 

To analyze point sets, standard box-counting techniques are used. An infinite number of generalized 

dimensions 𝐷𝑞 , ("generalized" in the sense that they are defined using the variable q), which are also known as 

"Renyi’s dimensions", and the associated spectrum of singularities given by  𝑓(α), describes each set. The 

definition of  𝐷𝑞  as a function of q is provided by the expression [117, 118] 

 𝐷𝑞 = (𝑞 − 1)−1 lim
𝑁→ ∞

[∑
𝑝𝑖

𝑞

ln 𝑁𝑖 ]    (𝑞 ≠ 1)   

(𝟏𝟑) 

Here 𝑝 = ∫ 𝑏𝑜𝑥 𝑑𝜇  , with μ being the probability measure of the multifractal set, and i = 1, 2… N (where N is the 

number of boxes). In addition, i is the index of a box that belongs to a grid that covers the set. 

where, the sequence of mass exponents 𝜏 𝑞, which is a function relating the probability moments to the radius 

length of the covering areas gives the relationship between the spectrum of generalized fractal dimensions,  𝐷𝑞, 

and the multi-fractal spectrum, 𝑓(α), by the expression [119, 79]: 

𝜏 𝑞 = (𝑞 − 1) 𝐷𝑞   
(𝟏𝟒) 

By using the Legendre transform described by the relations, the previous expression can be used to obtain the 

multifractal spectrum 𝑓(α) [120]. 

𝛼 𝑞 = −𝑑𝜏 𝑞/𝑑𝑞  

𝑓(𝛼 𝑞) = 𝑞𝛼 𝑞 + 𝜏 𝑞 

(𝟏𝟓) 
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With α being the holder exponent. 

These methods have the same limitations as box-counting methods, although numerous computational 

improvements have been documented. Aside from issues that arise when the boxes contain few points, the 

algorithms are characterized by low statistics, which are accentuated by the negative exponents (q<0); this causes 

the measure to diverge rapidly [79]. 

2) The “sand box” or cumulative mass method 

The sandbox approach, created by Vicsek (1990) and introduced by Tél et al. (1989), is effective for 

assessing generalized fractal dimensions for both positive and negative moment orders, q, allowing reconstruction 

of the entire multifractal spectrum [121].  

The Sandbox approach takes into account the mass (total of sample measurements), M(R), inside a region 

i of a certain radius R (i.e. a 3D sphere) centered on the fractal. Using arbitrary points as centers, the average mass 

and their qth moments over randomly dispersed centers can be calculated as⟨ [𝑀(𝑅)]𝑞⟩, where q is the probability 

moment order [119]. The benefit of this method is that the boxes are centered on the structure, so no boxes have 

too few elements (i.e. pixels) within. Indeed, for q< 0, boxes with a limited number of elements (because they 

barely overlap with the cluster) contribute abnormally huge amounts [79]. 

3) The large-deviation multifractal spectrum  

The form of the multifractal spectrum is always concave when estimated using the methods outlined above. 

The large-deviation multifractal spectrum has the advantage of not being inherently concave, resulting in less 

information loss. However, far more numerical effort is necessary, making the method difficult to apply in both 

2D and 3D. In fact, the methodology necessitates the calculation of two limits rather than only one as in the 

previous two methods [79]. Let μ be a function of measure, and 𝑁𝜆(𝛼) the number of boxes, which satisfies [97]: 

𝑁𝑟(𝛼) =  #{𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑟 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜇(𝐼)  >=  𝑟𝛼} 

# in the previous expression expresses "the number of", α is the exponent of the singularity. 

The relation expresses the Multifractal spectrum of large deviations (of grains) of the measurement μ: 

𝑓𝑐(𝛼) = lim
𝜀→0+

lim
𝑟→0+

𝑙𝑜𝑔+(𝑁𝑟(𝛼 + 𝜀)) − 𝑁𝑟(𝛼 − 𝜀)

−log (𝑟)
 

(𝟏𝟔) 

Where r represents the measurement scale. 

B. Wavelets methods 

Concerning the methods of approximation of the spectrum of singularities, specifically which of Legendre, 

three formalisms based on the transform in wavelets using three different methods. Some methods are based on 

the discrete wavelet transform, while others on the continuous wavelet transform we mentioned them: Methods 

based on the discrete wavelet transform, the wavelet transform modulus maxima (WTMM) method, and the 

wavelet leaders’ method [79, 122]. 

1) Methods based on the discrete wavelet transform 

We begin with the first technique for multifractal spectrum computation in wavelet methods, which uses 

the Discrete Wavelet Transform. Intuitively, there appear to be some parallels between these mathematical devices. 

Jaffard established the properties of the multifractal formalism (based on discrete wavelet coefficients) (1997). 

Meyer (1998) demonstrated that under conditions of moderate regularity on the paths of the process x (t), the local 

Hölder exponent can be calculated from size estimates of the wavelet coefficients 𝑊𝑗,𝑘 [123, 79]. 
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Discrete wavelet transform enables signal investigation at many resolutions and locations, which is closely 

connected to multifractal analysis. The discrete or dyadic wavelet transform is used in this method. The structure 

function and multifractal spectrum are derived from the coefficient modules of this transform [123, 79]. 

𝛼(𝑡0) = lim
𝑘2−𝑗→𝑡0

−
1

𝑗
𝑙𝑜𝑔2|𝑊𝑗,𝑘| 

(𝟏𝟕) 

Where 𝑘2−𝑗 → 𝑡0 means that 𝑡0 belongs to [2−𝑗𝑘, 2−𝑗(𝑘 + 1)] as 𝑗 → +∞ 

2) The wavelet transform modulus maxima (WTMM) method 

This analysis allows for the characterization of data's multifractal aspect (whether 1D, 2D or 3D). This 

method is also based on the wavelet concept in general, and specifically on the use of the continuous wavelet 

transform. Thus, rather than studying the signal directly, the method proposes studying its wavelet transform, 

whose local maxima reveal the singularities [122, 79]. 

Here we remind the definition of a singularity of the signal s at x in the form of the Holder exponent h. 

|𝑠(𝑥) − 𝑝(𝑎)|~𝑎ℎ(𝑥0) 
 

(𝟏𝟖) 

The wavelet transform of s  

𝑇[𝑠](𝑥0, 𝑎)~ 𝑎ℎ(𝑥0) 

 

(𝟏𝟗) 

 The spectrum of singularities using the Legendre transform is given by the equation (20): 

𝑓(𝛼) = min
𝑞

(𝑞𝛼 − 𝜏(𝑞)) 

 

(𝟐𝟎) 

3) The wavelet leaders method 

This is a relatively new approach. It is founded on the discrete wavelet transform's notion of wavelet leaders [79]. 

II.4 Conclusion 

  

In this chapter, we have described a new geometrical model created and proposed by the mathematician 

Mandelbrot to describe the complexity of irregular shape objects, which subsequently came to be known as “fractal 

geometry”. When fractal analysis is no longer effective when the object is very complex and has a very variable 

fine regularity from one point to another. Accordingly, the use of multifractal analysis in this case is the solution. 

The multifractal analysis approach aims to characterize complex structures and images locally; using the holder 

exponent, and globally; using multifractal spectrum. 

There are three kinds of multifractal spectra, each of which is calculated using a different algorithm: 

-The Hausdorff spectrum. 

-Legendre's spectrum. 

-The spectrum of large deviations. 

In the next chapter, we will present the implementation our project method based on multifractal analysis 

of histological images, and results obtained. 
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III.1 Introduction 

Because of the variability and morphological complexity of tumors, histological images are difficult to 

interpret. Even well trained pathologists strain to make a precise diagnosis. Our research aids in the identification 

of thyroid diseases such as follicular adenoma and papillary cancer. Pathologists will benefit from this approach, 

which is based on the analysis of histological images of the thyroid and the automatic classification of the latter 

into three classes: follicular adenoma of the thyroid, papillary carcinoma of the thyroid, or normal thyroid. 

In the previous chapter, we have mentioned some method to estimate multifractal spectrum, in this chapter 

we propose a box-counting method for analyzing histological images of the thyroid based on multifractal analysis. 

The method is composed of three main steps: pre-processing the input image, finding the image of Holder (α-

image), and estimating the multifractal spectrum. Pre-processing operations to improve the characteristics of an 

image are required before the main analysis and information extraction. In the second step, we propose a local 

characterization method of the pre-processed image. The third step aims at the global characterization of the image. 

However, before proceeding with these steps, we will first present the general approach proposed then we present 

the databases of thyroid samples that we will work on. 

III.2 Image processing and analyzing generalities 

1. Medical image 

A medical image is the materialization of anatomical or functional information in vivo of elements (organs, 

tissues, cells) of the human body, as well as the data collected or generated from these elements, in the form of 

images. These images are obtained to answer a medical requirement (a clinician's issue) by employing acceptable 

technical imaging methods while reducing the patient's risks and expenditures [124]. 

2. Digital image 

Derived from the two Latin words [125]; the word "image" is derived from the verb "imitari," which means, "to 

imitate." On the other hand, digital is derived from "digitalis," which means "relative to a finger" and is the result 

of the combination of two words: "digitus," which means "finger," and the suffix "-al," which means "relative to."  

A digital image is a virtual image that only exists in computer memory or as a binary number sequence    

(1-0) that specifies the image as it should appear on a computer monitor. Digital images are divided into two 

categories: Images in bitmap format and Images in a vector format [126]. A digital image is made up of a finite 

set of elements, called picture elements, or pixels (3D voxels). The dimensions (height and width) of an image are 

related to the number of pixels, where the number of pixels in image is (height multiplied by width) [127]. A pixel 

is a point in an image that has a particular on a specific shade, opacity, or color. (The integers represent the intensity 

of red, green, and blue). RGBA; this is an extension of RGB with the addition of an alpha field that represents the 

image's opacity [127]. 

3. Medical imaging 

Medical imaging refers to several different technologies that are used to obtain images of the interior of the 

human body.  It employs a variety of physical principles (US, X-Ray, Gama Rays). In addition, it enables 

physicians to investigate the human body and make diagnosis that is more exact as a result (direct understanding 

of physiology and pathology) [128]. It is an essential tool in diagnosis and treatment [129]. 
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4. Medical image processing  

The objective of image processing is to remove irrelevant data so that important information may extracted 

and manipulated for image analysis. The three fundamental steps for implementing this system are as follows 

[130]: 

 acquisition and digitization 

The first step in digital image processing is image acquisition, which involves converting an image into a 

number. In another way, an optical device captures an unprocessed image of an object or scene and converts it into 

a manageable format for processing and analysis purposes [131]. 

 pre-processing 

Processing, also known as pre-processing, is a technique for enhancing image quality. Various techniques 

are used to link the concept of quality to the achievement of an objective: (Restoration, Compression, and 

segmentation…) [132]. 

 analysis and interpretation 

The process of extracting meaningful information from images, such as finding shapes, counting objects, 

identifying colors, or measuring object properties, is known as image analysis. As same, the process of examining 

images and identifying and judging their significance by considering their location and extent is known as image 

interpretation. Expertise in image interpretation develops over time as a result of practice [133, 134]. 

5. Classification of medical images 

Automatic Image Classification is a pattern recognition application that uses a classification system to 

automatically assign a class to an image. Object classification, scene classification, texture classification, face 

recognition, fingerprint recognition, and character recognition are all examples of current applications.  

Depending on the information available about the data to be classified, there are two main types of machine 

learning: supervised machine learning and unsupervised machine learning. 

 supervised methods 

The analyst must first select training areas where he/she knows what is on the ground and then digitize a 

polygon within that area using supervised classification (Each image in the supervised approach is assigned a label 

that describes its class membership.) 

 unsupervised methods 

The data available in the unsupervised (or clustering) approach does not have labels, so the system must extract a 

rule of membership for each image in a given group. 

Many different algorithms are used in machine learning; the classifier is the procedure that performs this task, as 

an example we cite the Support Vector Machine algorithm: 

Support Vector Machine (SVM) 

SVMs are a type of machine learning algorithm that can be used to solve problems like classification, 

regression, and anomaly detection. They are known for their strong theoretical guarantees, great flexibility, and 

ease of use, even if you do not know much about data mining [135]. 

The training data is represented as points in space, separated into categories by a clear gap as wide as 

possible in a support vector machine. Then we accomplish classification by locating the hyper-plane such that all 

the points of the same class are on the same side of the hyper-plane [136]. 
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 Linear SVM 

This type is used for linearly separable data, which means if a dataset can be classified into two classes by using a 

single straight line, then such data is termed as linearly separable data, and classifier is used called as Linear SVM 

classifier. 

 Non-linear  

Non-Linear SVM is used for non-linearly separated data, which means if a dataset cannot be classified by using a 

straight line, then such data is termed as non-linear data and classifier used is called a Non-linear SVM classifier. 

III.3 Proposed approach 

Medical imaging is one of the medical fields that embrace image processing and analysis. Our work is 

based on a multifractal analysis approach to characterize locally and globally the histological medical images of 

the thyroid by proposing attributes from the image of singularities and the multifractal spectrum.  

In our study, we are interested in the analysis of different histological image samples of the thyroid 

corresponding to different pathologies. Healthy samples (healthy thyroid tissue), the second samples contain the 

follicular adenoma (benign pathology),  the third samples contain the papillary carcinoma (malignant pathology) 

and the last one contains different types of carcinoma (papillary, medullary, and vesicular carcinoma). 

Fractal geometry analysis of digital images is based on seeing the image as a surface in three-dimensional 

Euclidean space, where (x, y) denotes the pixel position and the gray level is the third component [137].  The 

proposed approach is based on the analysis of fractal components of the image. 

 

Figure III- 1: Summary of calculating the Hölder exponent and multifractal dimension. 

The steps of our multifractal algorithm are (Figure III- 1):  

• Grayscale image then normalize the image to full scale the next step is to consider an arbitrary pixel and its 

neighboring porches after that consider the maximum measurement of each window and calculate the logarithm 

of the maximum values of the window. 

• Plot the linear regression line "Log (Max)" by the function of the "Log (i)" of the dimension of the window. The 

slope of the linear regression is the value α. Repeat the same procedure for all pixels 

• Find the Hölder image (α-image). 
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• The α-values within the α-intervals are obtained by subdividing the range of α-values [𝛼𝑚𝑖𝑛 , 𝛼𝑚𝑎𝑥] into a pre-

specified number of sub-intervals. 

• The size of box ε starts from half the size of the input image of size N and recursively reduces until one. 

• Plot the linear regression line log (n (ε)) against log (ε). The slope of linear regression is the multifractal spectrum 

f(α)  

f(α) = −
log(n(ε))

log(ε)
   

𝟑 − 𝟏 

𝑛(𝜀) =  #{Ω | 𝛼𝑖 ≤  𝛼(𝑘, 𝑙) <  𝛼𝑖+1 |  ,    (𝑘, 𝑙)𝜖Ω} 

Where # is the number of pixels. 

• Plot the multifractal spectrum 

• Find the relevant parameters to characterize the multifractal spectrum. 

• The classification using the classifier “support vector machine” (perspective part).  

III.4 Data Acquisition 

The first step of our end of studies project work was the acquisition of the base of histological microscopic 

images from the slides containing the thyroid tissue (normal thyroid, follicular adenoma, and papillary carcinoma). 

Thanks to the kind contribution of Dr. Pathologist BELARBI Omar who provided us with this database, sufficient 

for a pilot study. 

First real database of thyroid sample, acquired with Olympus microscope and DIP camera at Tlemcen 

University Faculty of Medicine. Finally, obtained images are color images in JPG (Joint Photographic Group) 

format. We selected 90 thyroid histological sections from this database, 2048x1536 in size at three magnifications 

of 10, 20, and 40. Among these images, 30 represent the case of the normal thyroid, 31 represent the case of the 

benign pathology, which is the follicular adenoma, and the other 29 represent the case of the malignant pathology, 

which is the papillary carcinoma Cases for analysis included (Figure III- 2.a).  

Second real database of thyroid sample, acquired with Optika microscope and camera at El Bayadh Hospital. 

Finally, obtained images are color images in JPG (Joint Photographic Group) format. We selected 130 thyroid 

histological sections from this database, 1920x1080 in size at three magnifications of 4, 10, and 40. Among these 

images, 42 represent the case of the medullary carcinoma, 44 represent the case of the papillary carcinoma, and 

the other 44 represent the case of the vesicular carcinoma, which is the papillary carcinoma Cases for analysis 

included (Figure III. 2. b). 

 

Figure III- 2: Some images from the first database. Some images from the database (a. First database, b. Second Database). 
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b. Samples from Second Database 

III.5 Programming Environment 

o Equipment used 

Model Lenovo IdeaPad 330 

Processor Intel(R) Celeron (R) CPU 3867U @ 1.80 GHz 

 RAM 4.00 GO 

System used Windows  10 Professional 

o Programming language (Python) 

Today, the Python programming language enables a wide range of software applications, many of which 

have a significant impact on our everyday lives. Python, invented by Guido van Rossum and first released in 1991, 

has experienced continuous refinement and has evolved into a powerful yet flexible and easy-to-learn "Swiss Army 

knife" for programmers [138, 139]. The Python version 3 (python 3.10 (64-bit)) programming environment is used 

to implement our program (Figure III- 3). 

 

Figure III- 3: Python logo [2]. 

Python is an object-oriented programming language that is open source and multi-platform. It contains 

high-level data structures that are efficient and a basic but effective approach to object-oriented programming 

[140]. Python provides the following educational advantages [141]: 

- Portable, accessible across all systems (from Unix to Windows); 

- Python has a straightforward syntax. Python statements are extremely similar to pseudocode algorithm 

statements, while Python expressions employ algebraic notation.  

-  Python's semantics are safe. Any phrase or statement whose meaning deviates from the language's 

definition generates an error notice. 

- Python is scalable. Straightforward Python applications are simple to write for novices. 
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- Python is a free programming language that is widely used in the industry. Python has a vast user 

community, and knowledge in Python programming is highly valued on resumes. 

It is a simple and versatile language for expressing ideas about computing, suitable for both beginners and 

specialists, due to specialized libraries, and is utilized in a wide range of applications, including software 

development, data analysis, and infrastructure management. Among them, we use in our project (OpenCV, 

NumPy, Matplotlib, Math, scipy …) 

- OpenCV 

Initially developed by Intel, the first version of OpenCV (Open Computer Vision) in June 2000; it is a free 

graphics library that specializes in real-time image processing [142]. This package has a wide range of features 

that allow you to create programs that start with raw data and end with basic GUIs. It supports the majority of low-

level image processing activities. It can read, write, and display photos, as well as compute grayscale and color 

histograms, smooth and filter images, and perform image thresholding (Otsu method, adaptive thresholding), 

segmentation (connected components), and mathematical morphology [143]. 

The focus of OpenCV has been on matrices and operations on them since version 2.1. The matrix is, in fact, 

the fundamental structure. A matrix of pixels can be thought of as an image. As a result, all of the basic matrices 

operations are available, including transpose, inversion determinant calculation, and multiplication (by a matrix or 

a scalar) (Figure III- 4). 

You must initially import the OpenCV package with the following instruction: 

import cv2  

 

Figure III- 4: OpenCV logo [5]. 

- Numpy 

NumPy is a Python library for manipulating arrays. Travis Oliphant created NumPy in 2005. It also has 

functions for working with linear algebra, the Fourier transform, and matrices. This Python package allows us to 

manipulate matrices and multidimensional arrays as well as mathematical algorithms that operate on them. 

This free and open-source software library offers a variety of functions, including the ability to create 

directly a table from a file or, conversely, save a table in a file, as well as manipulate vectors, matrices, and 

polynomials [144] (Figure III- 5). 

You must initially import the numpy package with the following instruction [145]: 

import numpy as np 

 

Figure III- 5: NumPy logo [5]. 
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- Matplotlib 

In the Python programming language, Matplotlib is a library for plotting and presenting data in the form of 

graphs. It may be used in combination with the scientific computing Python packages NumPy and SciPy. It also 

has an object-oriented API that enables graphics to be incorporated into programs using GUI tools like Tkinter, 

wxPython, Qt, or GTK [146](Figure III- 6). 

You must initially import the numpy package with the following instruction 

from matplotlib.pyplot as plt 

 

Figure III- 6: matplotlib logo. 

- Math 

Python math module is defined as the most famous mathematical functions, we can use throughout code 

for more complex mathematical computations which include trigonometric functions, representation functions, 

logarithmic functions, etc. Furthermore, it also defines two mathematical constants, i.e., Pie and Euler number, 

etc. This library is not useful when dealing with complex mathematical operations like the multiplication of 

matrices (Figure III- 7). 

import math 

 

Figure III- 7: math logo.  

- scipy 

A scientific Python library is open-source, BSD-licensed math, science, and engineering library. It consists 

of a set of mathematical algorithms. NumPy, which allows convenient and quick N-dimensional array 

manipulation, is used by the SciPy package. The fact that SciPy is based on Python also means that a powerful 

programming language is accessible for creating sophisticated programs and customized applications (Figure III- 

8).  

from scipy import stats 

 

Figure III- 8: scipy logo. 
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III.6 Method description 

The processing steps are (Figure III- 9): 

1. Preprocessing : (acquisition of the image, convert image to grayscale, normalized image) 

2. Characterization: We use the holder exponent for local characterization and the multifractal spectrum based 

on the box counting method for characterizing the image globally. 

3. Learning 

4. Form recognition 

The following diagram demonstrates the processing sequence to be followed in order to solve the project's 

problematic. 

 

Figure III- 9: The processing steps. 

III.6.1 First part: Prepossessing  

• Input data; we start by reading the data. 

• Transformation of the original image in grayscale level  

• Resizing the grayscale level image  

• Uses the median filter on a 3 x 3 neighborhood. as it is very effective in eliminating noise while preserving 

contours we use Median filtering to remove noise from images 

• Normalization; the analysis focused on 256-level grayscale medical images with dimensions of 1522x1522 

pixels for the first database and 1080x1080 pixels for the second database that contain three carcinoma classes. 

• Plot all the images (Figure III- 10). 

 

Figure III- 10: Application of the pre-processing python program for a healthy thyroid image. 
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III.6.2 Second part: Holder exponent estimation 

After we apply the first step in our project program to the frame image (pre-processing), the next step is to 

estimate the holder exponent allowing the following algorithm. There are various notions that can be used to 

estimate local Holder exponents. In our research, we use the log-log regression method. The holder exponent is a 

local measure in which at each neighborhood point we have a measure that we will present locally, we measure 

something like "fractal dimension", calculated by log-log regression performed at different scales (in our project 

we limited it in four scales “window dimension=[1, 3, 5, 7]”). 

 According to the second chapter and among the multifractal measurements made to determine the holder 

image, we have chosen the max measure. The algorithm applied: 

• Consider an arbitrary pixel “a central pixel” and its neighboring porches (Figure III- 11). 

• After that, consider the maximum measurement of each window. 

•  Calculate the logarithm of the maximum values of each window. 

• Plot the linear regression line "Log (maximum values)" by the function of the "Log (window dimension)". 

•  The slope of the linear regression is the value α “singularity coefficients”.  

• Repeat the same procedure for all pixels of the considered image. 

• Find the Hölder image (α-image). 

 

Figure III- 11: the tables designate the calculation windows for different window sizes in red color w0=1(A), 

w0=3(B) w0=5(C) and w0=7(D). 

Example of Holder images obtained using images from the first database (Figure III- 12). 

 

Figure III- 12: Holder images for different classes (a) (b) and (c). 
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Example of Holder images obtained using images from the second database (Figure III- 13). 

 

Figure III- 13: Holder images for different classes of carcinoma (a) (b) and (c). 

III.6.3 Third part: Multifractal spectrum estimation 

When the holder image has been estimated “the local characterization of the original image” then we will 

estimate the multifractal spectrum to characterize the intensity of this image “the global characterization”. This 

second part of the characterization in our multifractal analysis program is the calculation of the fractal dimension 

where sets of points have the same singularity coefficient alpha (Figure III- 14). 

 Firstly, the α-values within the α-intervals are obtained by subdividing the range of α-values[ 𝛼𝑚𝑖𝑛 , 𝛼𝑚𝑎𝑥] into 

a pre-specified number of sub-intervals “with step is 0.1”.  

 Therefore, the next step in the spectrum estimation is the application of the box-counting method seen in 

chapter two to determine the fractal dimension vector. 

 Box-counting method counts the number of boxes, n (ε) with box size ε, that contain pixels with α-values 

within the α-interval, as shown in (Figure III- 14). 

 Subdivision of the alpha image into boxes of different sizes. 

 For each box size “epsilon”, calculate the number of boxes having at least one alpha value in the alpha interval; 

“if the box considered contains at least one pixel that have an alpha value in the range return number of boxes 

plus one”. Apply this step for all sub-intervals   

 Calculate regression line between vectors Log (epsilon) and Log (number of boxes). 

 Apply the algorithm until the number of max boxes is less then to the max of total number of boxes.  

 Estimate the geometric multifractal spectrum by the equation (𝟑 − 𝟏) (Figure III- 15). 

 

Figure III- 14: Box-counting method that uses different box sizes ε. 
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Figure III- 15: Example of multifractal spectrum obtained using holder images for the first and the second 

database.  

III.7 Application and results  

III.7.1 Pre-processing and Holder  exponent estimation algorithms 

We have selected 24 images from the two databases to be used in the application of our algorithm: 

 four images of a healthy thyroid, four images with follicular adenoma, and four images with papillary 

carcinoma (Figure III- 16), and from the second database, we have chosen four images with medullary carcinoma, 

four images with papillary carcinoma, and four images with vesicular carcinoma (Figure III- 17).  

First database 

 

Figure III- 16:  Preprocessing and Holder exponent-Samples from first Database (A: healthy thyroid; B: follicular 

adenoma; C: papillary carcinoma). 
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Second database 

 

Figure III- 17: Preprocessing and Holder exponent-Samples from second Database (A: medullary carcinoma; B: 

papillary carcinoma; C: vesicular carcinoma). 

III.7.2 Discussion of the result of the Holder exponent algorithm 

- According to the Holder exponent of the images selected from the twice database in (Figure III- 16) and (Figure 

III- 17), Holder images make it possible to distinguish the image of a healthy subject from different diseased 

images.  

- As indicated in (Figure III- 16) and (Figure III- 17) thyroid carcinoma tissues, and follicular adenoma tissues 

have a greater α-range of the α-image compared to healthy tissues in max measures. 

- Based on these examples, we can conclude that the Holder exponent provides an efficient tool for detecting 

singularities.  

- The choice of type of measure depends on what is to be detected: maximum measures in small environments can 

be used to detect all singularities.  

III.7.3 Multifractal spectrum estimation  

Until the holder image calculated, the estimation of the multifractal spectrum is the next step. 

 In the multifractal spectrum program that we use two vector are returned  

• The first vector is named alpha vector contains α-values 

• The second vector is named f alpha vector contains the fractal dimensions determined using the box counting 

method 

The two vectors must be saved to be used in the rest analysis, in our case we save them in the first time as a python 

data type after that we use a program that convert them to excel data. 
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Now we present in the following figures the results after the execution of the program on three classes of the 

previously obtained Holder images.  

III.7.4  Multifractal spectrum First database 

(Figure III- 18) shows multifractal spectrums of healthy thyroid holder images; (Figure III- 19) shows multifractal 

spectrums of follicular adenoma holder images; (Figure III- 20) shows multifractal spectrum of papillary 

carcinoma holder images. 

 

Figure III- 18: The multifractal spectrum of healthy thyroid holder images. 

 

Figure III- 19: The multifractal spectrum of follicular adenoma holder images. 
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Figure III- 20: The multifractal spectrum of papillary carcinoma holder images. 

III.7.5 Multifractal spectrum Second database 

(Figure III- 21) shows multifractal spectrums of medullary carcinoma holder images; (Figure III- 22) shows 

multifractal spectrums of papillary carcinoma holder images; (Figure III- 23) shows multifractal spectrum of 

vesicular carcinoma holder images. 

 

Figure III- 21: The multifractal spectrum of medullary carcinoma holder images. 

 

Figure III- 22: The multifractal spectrum of papillary carcinoma holder images. 
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Figure III- 23: The multifractal spectrum of vesicular carcinoma holder images. 

III.8 Step to classification  

To compare different results obtained by the algorithm proposed we need to transform data save as python 

data to excel data for each class in first and second database after that we calculate the mean multifractal spectrum 

for each class. Finally, we present the means multifractal spectra corresponding to the three classes of the first 

database and three means specter of the second database. 

• The first step is to load the data alpha and f_alpha saved previously as python data. 

• The next step is to save data loaded to excel; for each image, we must save their data in a separable file. 

• Then for each class, we have to concatenate Excel files for four images selected in one file. 

• After that, as we need to plot all spectra of each class in one diagram the alpha minimum value for all images is 

zero and the maximum value is defined as the maximum value in four alpha vector. 

• Then, we calculate and represent the mean spectrum for each class using Excel. 

•  Finally, for each database, we represent all mean spectra corresponding to the different classes in one diagram 

to compare their multifractal spectra. 

Note 

Here is the instruction that allows passing data from the python environment to excel which is a very easy 

tool to use. 

#---------------load the data alpha and f_alpha saved ---- 

 With open ('path of the alpha data /name of data to open, ‘rb') as f: 

    alpha_vector1 = np.load (f)  

with open ('path of the f_alpha data /name of the data to open','rb') as f: 

    f_alpha1 = np.load (f) 

#---------------------save to excel----------- 

df1 = pd.DataFrame ({'alpha_vector1’: alpha_vector1, 'f_alpha1': f_alpha1})  

df1.to_excel ("name the file 1.xlsx", index=True) 

# ------------ concatinate several Excel files -------- 

tout=[] 

colonnes=[1,2] #here first and second colon of each file want to concatinate. 

for f in glob.glob('path of files want to concatinate /*.xlsx'): 

    df=pd.read_excel(f,usecols=colonnes) 

    tout.append(pd.read_excel(f, usecols=colonnes)) 

df=pd.concat(tout, axis=1) 

enregistrer=pd.ExcelWriter('path to save the result of the concatenation /name of 

the file to save.xlsx') 

df.to_excel(enregistrer, ‘here put the name of the excel sheet') 

enregistrer.save() 
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The following diagram represent the different multifractal spectra of the four images of healthy thyroid class 

(Figure III- 24). 

 

Figure III- 24: Excel diagrams of the f_alpha data as a function of alpha of the selected healthy thyroid images. 

The following diagram represent the mean multifractal spectrum of the four images of healthy thyroid class 

(Figure III- 25). 

 

Figure III- 25: Excel diagram of the mean multifractal spectrum for the selected healthy thyroid images. 

The following diagram represent the different multifractal spectra of the four images for follicular adenoma 

class (Figure III- 26). 
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Figure III- 26: Excel diagrams of the f_alpha data as a function of alpha of the selected follicular adenoma images. 
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The following diagram represent the mean multifractal spectrum of the four images of follicular adenoma class 

(Figure III- 27). 

 

Figure III- 27: Excel diagram of the mean multifractal spectrum for the selected follicular adenoma images.  

The following diagram represent the different multifractal spectra of the four images for papillary carcinoma 

class (Figure III- 28). 

 

Figure III- 28: Excel diagrams of the f_alpha data as a function of alpha of the selected papillary carcinoma 

images. 

The following diagram represent the mean multifractal spectrum of the four images of papillary carcinoma 

class (Figure III- 29). 

 

Figure III- 29: Excel diagram of the mean multifractal spectrum for the selected papillary carcinoma images. 
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Multifractal mean spectra for different classes of healthy thyroid, follicular adenoma and papillary carcinoma 

from first Database (Figure III- 30).  

 

Figure III- 30: Excel diagram of the mean multifractal spectra for different classes of the first database. 

III.8.1 Discussion First database result 

- For the different three classes we noticed that the maximum values of the Hölder exponent “f_alpha”  have a 

maximum mean spectrum f (α) close to two (dimension of a surface). 

- In the healthy thyroid tissue images, the signal decreases regularly and reduced until it is zero (the signal in black 

color). 

- In the case of the follicular adenoma signal (the signal in green color) compared with the healthy thyroid tissue 

signal, the follicular adenoma signal decreases differently in three zones, the first zone 𝛂 𝐢𝐧 𝐫𝐚𝐧𝐠𝐞 [𝟎, 𝟎. 𝟑] the 

signal is slowly changing then the healthy tissue signal, the second zone 𝛂 𝒊𝒏 𝒓𝒂𝒏𝒈𝒆 [𝟎. 𝟑 , 𝟏] changing and 

decreases rapidly, the third zone 𝛂 𝒊𝒏 𝒓𝒂𝒏𝒈𝒆  [𝟏 , 𝟏. 𝟖] changing in alternating form(increases and decreases). 

- In the case of the papillary carcinoma signal (the signal in red color) compared with the healthy thyroid tissue 

signal, the signal decreases differently in three zones, the first zone 𝛂 𝐢𝐧 𝐫𝐚𝐧𝐠𝐞 [𝟎, 𝟎. 𝟒] the signal is more slowly 

decreasing then the twice described signals, the second zone 𝛂 𝒊𝒏 𝒓𝒂𝒏𝒈𝒆 [𝟎. 𝟒, 𝟏. 𝟔] changing and decreases 

rapidly, the third zone 𝛂 𝒊𝒏 𝒓𝒂𝒏𝒈𝒆  [𝟏. 𝟔 , 𝟐. 𝟏] signal has a constant value of zero. 

- According to the diagram of the variation of the obtained spectra in figure 31 and its discussion, we can say that 

the multifractal spectrum using box counting method can be used to classify the thyroid histological images and 

we can suggest the 𝛂 𝒊𝒏 𝒓𝒂𝒏𝒈𝒆  [𝟎 , 𝟎. 𝟑] as the interested range.  
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Second database  

The following diagram represent the different multifractal spectra of the four images of medullary carcinoma 

class (Figure III- 31). 

 

Figure III- 31: Excel diagrams of the f_alpha data as a function of alpha of the selected medullary carcinoma images. 

The following diagram represent the mean multifractal spectrum of the four images of medullary carcinoma 

class (Figure III- 32). 

 

Figure III- 32: Excel diagram of the mean multifractal spectrum for the selected medullary carcinoma images. 
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The following diagram represent the different multifractal spectra of the four images of papillary carcinoma 

class (Figure III- 33). 

 

Figure III- 33: Excel diagrams of the f_alpha data as a function of alpha of the selected papillary carcinoma images. 

The following diagram represent the mean multifractal spectrum of the four images of papillary carcinoma 

class (Figure III- 34). 

 

Figure III- 34: Excel diagram of the mean multifractal spectrum for the selected papillary carcinoma images. 

The following diagram represent the different multifractal spectra of the four images vesicular carcinoma class 

(Figure III- 35). 

 

Figure III- 35: Excel diagrams of the f_alpha data as a function of alpha of the selected papillary carcinoma images. 
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The following diagram represent the mean multifractal spectrum of the four images of vesicular carcinoma 

class (Figure III- 36). 

 

Figure III- 36: Excel diagram of the mean multifractal spectrum for the selected papillary carcinoma images. 

(Figure III- 37) shows multifractal spectrum for different classes of carcinoma from second Database. 

 

Figure III- 37: Excel diagram of the mean multifractal spectra for different classes of the second database. 

III.8.2 Discussion second database result 

- For the different three classes of carcinoma the same note in the previous discussion that is the maximum 

values of the Hölder exponent “f_alpha”  have a maximum mean spectrum f (α) close to two (dimension 

of a surface). 

- In the case of the medullary carcinoma images, the signal decreases rapidly and reduced until it is zero 

(the signal in red color). 

- In the case of the vesicular carcinoma signal (the signal in black color), the signal decreases regularly 

compared with the other twice signals “the medullary carcinoma and papillary carcinoma”. 

- In the case of the papillary carcinoma signal (the signal in red color) compared with the other signals, the 
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f(alpha)=2 after that, with 𝛼 𝑖𝑛 𝑟𝑎𝑛𝑔𝑒 [0.9, 1.7] decreasing very rapidly then the twice described signals, 
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According to the diagram of the variation of the obtained spectra in (Figure III- 37) and its discussion, we 

can say that the multifractal spectrum using box counting method can be used to classify the different carcinoma 

classes of images and we can suggest the α in range [0 , 1.3] as the interested range.  

III.8.3 Discussion of the pertinent parameters 

Among these parameters, from the multifractal spectrum we can determine alpha min and alpha max for each 

class (Table III-1 and Table III-2) we can also determine the values of the peaks and the range interested in the 

analysis. Therefore, to improve the system for a better diagnosis tool, some of the future developments are 

suggested in the next section (general conclusion and perspective). 

Table III- 1: Different alpha range of the classes for the first database. 

 
Follicular adenoma Papillary carcinoma Healthy 

Type of multifractal  

 

αmin  αmax αmin αmax  

 
αmin αmax 

 

Max measure  

 
0 1.8 0 1.6 0 2.1 

 

Table III- 2: Different alpha range of the classes for the second database. 

 
medullary carcinoma papillary carcinoma vesicular carcinoma 

Type of multifractal  

 

αmin  

 

αmax  

 
αmin αmax  

 
     αmin αmax 

Max measure  

 
0 2.8 0 2.9 0 2.2  

III.9 Conclusion 

 

In this chapter, we presented our multifractal analysis approach based on box counting method as well as 

the different steps of our algorithm. We started with a description of the general design of our system followed by 

a brief description of the thyroid tissue databases. Then we moved on to the application of the different tasks in 

our algorithm with the discussion.  

The calculation of the Hölder exponent gives good results for the differentiation between the different 

classes of thyroid tissue (Healthy, adenoma and carcinoma). In addition, it has been shown that a multifractal 

analysis of tissue images could be used for identifying different classes of cancer thyroid tissues. 

The proposed multifractal methods could be combined with algorithms for extracting other features for 

effective classification of images of thyroid tissue. 

Initial calculation of multifractal matrices requires the consumption of significant computer and time resources, 

especially if larger images are analyzed. 

The general conclusion and perspectives are in the next section. 



  

 
 

General Conclusion  

And Perspectives
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General Conclusion  

 Medical image analysis has significantly advanced image processing and led to the development of new 

diagnostic aid systems in the medical field. The latter’s goal is to offer practitioners an automatic image 

interpretation that paves the way for the exploitation of anomalies. Due to the highly irregular shapes and complex 

image structures, the classification of tissue images is a difficult problem. Since it can accurately resolve local 

densities and represent different structures in the image, the multi-fractal analysis method has proven useful in 

characterizing the intensity distribution present in such images.  The multifractal method uses the degree of Hölder 

regularity of a point measure as basic information. Instead of making and proving any assumptions, the multifractal 

method is simply applied to the image, and then based on the results different conclusions can be drawn about the 

structure and regularity of the image. In this work, we presented a method for characterizing histological images 

of the thyroid, which is the Multifractal analysis based on the box counting method.  

First, we defined histology, its technical methods and the different technologies used in histological 

imaging. Then, since the images to be analyzed are thyroid images, we talked about the thyroid as well as their 

anatomy and histology followed by the functioning and the different pathologies and their classification. Finally, 

we end with a brief notion of papillary carcinoma and follicular adenoma. 

In the second step, we defined the fractal geometry and the notion of fractal dimension, defining in addition, 

their methods of calculation. Next, regarding fractal analysis we focused specifically on multifractal analysis as 

an extension of fractal analysis. After having described this method and its local 'holder exponent' and global 

'multifractal spectrum or singularity spectrum' characterization tools, we present the methods for estimating the 

multifractal spectrum. 

In order to overcome the factors that limit the analysis of histological images of the thyroid, we have 

proposed a multifractal analysis method based on the box-counting method. The method includes four main steps: 

the analysis and preprocessing of the histological image, estimation of the Holder exponent and we chose the 

maximum intensity as a measure type, then, the estimation of the multifractal spectrum by the box-counting 

method, and finally, we saved the data saved previously as python data in Excel to interpret and analyze them. 

Excel Data can be used for extraction of pertinent parameters that are set as input layer for an automatic classifier 

such as SVM. Since we have not reached this stage in this research project, we are content to interpret the 

differences visually from the multifractal spectra. We noticed that the multifractal spectra present differences from 

one class of tissue to another: healthy tissue/ Adenoma / Carcinoma and a differentiation between different types 

of carcinoma. We notice that these differences are mainly in the final third of the spectrum (differences between 

the max, peaks, and decay rate). 

Therefore, we can conclude that this approach is suitable for the analysis of irregularities present in thyroid 

histological images. Moreover, we can finally propose some perspective to improve this work in future work.  
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Perspectives in future works 

The results presented in this project show that multifractal analysis could be a valuable tool in the 

characterization of histological images for identifying irregularities and in estimating singularities. Some possible 

enhancements and future research directions are outlined below: 

1. Use other types of intensity measures 

There are many types of intensity measures in multifractal analysis that can be used: inverse-minimum 

measure, mean measure, summation measure, and Iso measure… etc.    

2. Focus on the interval of spectrum where differences occurs and make it more precise by sub-sampling alpha 

vector in Holder Images.  

3. Find the relevant parameters 

There are many parameters that we can be used to characterize the multifractal spectrum (for instance, the 

alpha min and alpha max,  𝑓𝑚𝑎𝑥(𝛼) and 𝑓𝑚𝑖𝑛(𝛼)  

4.  Perform classification step using support vector machine classifier (or another automatic classifier) : 

According to the results that we obtained in the previous chapter, we can use SVM classifier to separate 

each class automatically. 

5. Introduce multi-scale techniques 

 To characterize the features of interest at various resolutions, the multifractal analysis attempted 

in this research could be combined with multi-scale methods (for instance, wavelets). 

 Explore the multi-scale advantages from data acquisition (microscope zoom tool). 
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