

 Université Abou Bakr Belkaïd de Tlemcen

Faculté de Technologie

Département de Génie Biomédical

MEMOIRE DE PROJET DE FIN D’ETUDES

pour l’obtention du Diplôme de

MASTER en GENIE BIOMEDICAL

Spécialité : Informatique Biomédicale

présenté par : BRIKI Mohamed Elamine

Medical images classification based
on deep features extraction exploiting transfer

learning

Soutenu le 28 Novembre 2020 devant le Jury

M. EL HABIB DAHO Mostafa MCB Université de Tlemcen Président
M. BEHADADA Omar MCB Université de Tlemcen Examinateur
Mme
M.

SETTOUTI Nesma
BECHAR Mohammed El Amine

MCA
MCB

Université de Tlemcen
Université de Tlemcen

Encadreur
Co-encadreur

Année universitaire 2019-2020

MINISTÈRE DE L’ENSEIGNEMENT SUPÉRIEUR
ET DE LA RECHERCHE SCIENTIFIQUE
UNIVERSITÉ ABOU BEKR BELKAID

FACULTÉ DE TECHNOLOGIE
DÉPARTEMENT DE GÉNIE BIOMÉDICAL

MÉMOIRE DE FIN D’ÉTUDES

pour obtenir le grade de

MASTER EN GÉNIE BIOMÉDICAL

Spécialité : Informatique Biomédicale

présenté et soutenu publiquement
par

Mr. Mohamed Elamine BRIKI

le 28 Novembre 2020

Titre:

Medical images classification based
on deep features extraction
exploiting transfer learning

Jury

Président du jury. Dr. EL HABIB DAHO Mostafa, MCB UABB Tlemcen
Examinateur. Dr. BEHADADA Omar, MCB UABB Tlemcen

Directrice de mémoire. Dr. SETTOUTI Nesma, MCA UABB Tlemcen
Co-Directeur de mémoire. Dr. BECHAR Mohammed El Amine, MCB UABB Tlemcen

A special dedication goes to :

My parents, who sustained me day and night in all ways and literary made me what I
am today,

My family who prayed for my success and supported me all along,

my professors who sincerely dedicated their time and effort to teach us class/life lessons
and inspired us to be good elements in society,

And My friends who were the great company through the ups and downs, for the
beautiful memories for which I’m endlessly grateful,

This humble work would have not seen the daylight without Mme. SETTOUTI N. and
Mr. BECHAR M.E.A who greatly contributed to this work, advising me for months,

thanks to them for all their efforts, their spirit of collaboration, and their sense of
responsibility and commitment towards their duty. Therefore throughout this thesis, I

will speak on behalf of us all, as I consider this work not my own but a shared outcome of
study and dedication with them,

But before all that, I thank Allah for everything..

Acknowledgments

All the work presented in this thesis was done under the supervision of of Mme.
SETTOUTI N. and Mr. BECHAR M.E.A who have instilled in me the passion for this
complex and fascinating subject and helped me navigate it since the beginning to ensure
the academic value of this master thesis.

I also thank my professors for guiding me during my journey in university and
inspiring me to reach that point, thanks to Mr. Bouizem with whom I refreshed my
passion towards mathematics which broaden my vision into the academic research, and
Mme. SETTOUTI N. for being such a great dedicated instructor for many years, I
thank Mr. BECHAR M.E.A for helping me with the coding and for his suggestions and
useful links and recommendations that were crucial to this outcome.

Special Thanks to the Jury members Dr. EL HABIB DAHO Mostafa and Dr.
BEHADADA Omar along with my advisers Mme. SETTOUTI N. and Mr. BECHAR
M.E.A for taking time reading and reviewing my master thesis.

i

Résumé

Les réseaux de neurones convolutifs (CNNs) sont les méthodes de pointe pour
l’analyse d’images, ils ont été appliqués à différentes tâches avec une grande var-
iété d’architectures et ils ont réalisé des résultats exceptionnels. Les méthodes
basées sur CNN sont généralement une approche à appliquer lorsqu’il s’agit de
problèmes complexes avec un jeu de données d’images volumineux, grace à leur
capacité à apprendre des représentations profondes et abstraites (deep features)
sur l’image. Dans ce projet de fin d’études, nous avons présenté une nouvelle
approche basée sur le CNN pour la classification du cancer du sein sur la base de
données INbreast pour laquelle nous avons utilisé un VGG-16 pré-entrainé, nous
avons implémenté notre méthode avec Python sur le service de cloud computing
Google "Colab". Delà, nous avons pu exécuter le modèle VGG-16 et extraire effi-
cacement les bonnes caractéristiques (features). Les résultats obtenus atteignent
un taux de classification de 97% avec SVM ce qui est comparable aux méthodes
de pointe de classification du cancer du sein, en particulier celles effectuées sur
INbreast.

Keywords

Réseaux de neurones convolutifs, caractéristiques profondes et abstraites, VGG-
16, Transfer learning, classification, base de données INbreast.

ii

Abstract

Convolutional neural networks (CNNs) are the actual state-of-the-art methods
for image analysis, it have been applied to different tasks with a wide range va-
riety of architectures and settings and achieved outstanding results. CNN-based
methods are generally such a promising truck to follow when dealing with large
image data and complex problems, for their capacity of learning abstract rep-
resentations of the image which can be used for different image analysis tasks.
In this study, we have presented a novel CNN based approach for breast can-
cer classification on the INbreast dataset, in which we’ve used a pre-trained and
fine-tuned VGG-16 by transfer learning, therefore we’ve been able to run the
training of VGG-16 smoothly and efficiently extracted good features. We have
achieved great accuracy of 97% with SVM which can be compared with state-of-
the-art methods of breast cancer classification especially those performed on the
INbreast dataset.

Keywords

Convolutional neural networks, Deep features, VGG-16, Transfer learning, clas-
sification, INbreast database.

iii

Contents

Acknowledgments . i
Résumé . ii
Abstract . iii
Contents . iv
List of Figures . vi
List of Tables . viii
List of source codes . ix
Glossary . x

Introduction 1

1 Background 3
1 Deep Learning . 3

1.1 Artificial Neural Network . 4
2 Convolutional Neural Network . 5

2.1 Biological Inspiration: . 5
2.2 CNN Architecture Overview: 7
2.3 The basic CNN architecture: Common layers in CNN 8

2.3.1 Convolutional Layer (CONV): 9
2.3.2 Activation Layer (ACT or ReLU): 10
2.3.3 Pooling Layer (POOL): 11
2.3.4 Fully-Connected Layer (FC): 13

2.4 The Role of Convolutions in Deep Learning: 13
2.5 Visualisation of learned features by CNN: 14
2.6 Pretrained CNNs: . 15
2.7 CNNs of Note: . 15

3 Transfer Learning . 16
4 Computer Vision . 19

4.1 Medical image analysis: . 21
4.2 Image classification . 22
4.3 Image features . 23

4.3.1 Classical, hand-crafted features descriptors 25
4.3.2 Advanced, latent-features representations 28
4.3.3 Deep features end-to-end learning methods 28

5 Conclusion . 32

2 State of the art 33
1 Deep features related works on Brain Tumor detection 33

1.1 Comparison . 34

iv

LIST OF SOURCE CODES

2 Deep features related works on Breast cancer recognition 34
2.1 Comparison . 35

3 Deep features related works on Lung Nodules segmentation 36
3.1 Comparison . 37

4 Deep features related works on Skin Lesions detection 37
4.1 Comparison . 38

5 General Synthesis . 38
6 Conclusion . 40

3 Implementation 41
1 Introduction: . 41

1.1 Starting point: end-to-end Li Shen’s study 42
1.2 INbreast dataset . 43
1.3 The VGG-16 model . 45
1.4 Development environment: Google Colaboratory 46

2 Code implementation . 47
2.1 Preparing the environment 47
2.2 Preparing the INbreast dataset: 48
2.3 Setting up the model and the variables for feature extraction 48
2.4 Features extraction: training features 51
2.5 Features extraction: test features 52
2.6 Preparing the labels . 53
2.7 Checking features and labels shapes 54
2.8 Classification with SVM . 55
2.9 Classification with Multilayer Perceptron 56
2.10 Classification with Random Forest 58

3 Synthesis discussion: . 60
3.1 Part 01: Results interpretation 60
3.2 Part 02: Fair Comparison with Li Shen’s Study 61

4 Conclusion . 63

General conclusion and perspectives 64

Bibliography 66

LIST OF SOURCE CODES v

List of Figures

1.1 A) Diagram of the experimental setup of hubel and Wissel exper-
iment showing an extracellular electrode recording from a neuron
in the primary visual cortex of a cat. B) In this example, the neuron
being recorded from in V1 responds selectively to bars of light pre-
sented on the screen in different orientations; the cell fires action
potentials (indicated by the vertical lines) only when the bar is at
a certain location on the screen and in a certain orientation. These
selective responses to stimuli define each neuron’s receptive field
properties. (After Purves, Augustine, et al., 2008 [9]) [10] 6

1.2 The architecture of the neocognitron. [13] 7
1.3 LeNet-5: One of the earliest convolutional neural networks. [5] . . 7
1.4 High-level general CNN architecture. [5] 8
1.5 Building blocks of a typical CNN. [14] 8
1.6 Convolution layer with input and output volumes. [8] 9
1.7 The convolution operation. [8] . 10
1.8 An example of an input volume going through a ReLU activation,

max(0;x). Activations are done in-place so there is no need to cre-
ate a separate output volume although it is easy to visualize the
flow of the network in this manner. [16] 11

1.9 Left: Our input 4x4 volume. Right: Applying 2x2 max pooling
with a stride of S = 1. Bottom: Applying 2x2 max pooling with
S = 2 – this dramatically reduces the spatial dimensions of our
input. [16] . 12

1.10 Examples of activation visualizations in different layers based on
Zeiler and Fergus’s work [18]. Reprinted from [18] with permis-
sion. © Springer International Publishing Switzerland, 2014. [5] . . 14

1.11 Different learning processes between (a) traditional machine learn-
ing and (b) transfer learning. [23] . 17

1.12 Three ways in which transfer might improve learning: a higher
performance at the very beginning of learning, a steeper slope in
the learning curve, or a higher asymptotic performance [24]. 18

1.13 Some examples of computer vision algorithms and applications. [27] 20
1.14 Images and their histograms. [32] . 25
1.15 Low-level feature detection. [38] . 26

vi

LIST OF FIGURES

1.16 Illustration of a deep learning model in which the extracted fea-
tures in each layer are visualised. Early layers contains simple fea-
tures (e.g. edges, corners), the deeper the layer is the more abstract
the feature gets, means complex representations are a combination
of the simple ones. [1] . 29

3.1 Converting a patch classifier to an end-to-end trainable whole im-
age classifier using an all convolutional design where they con-
sidered removing the heatmap to improve information flow and
convolutional layers as top layers; the magnifying glass shows an
enlarged version of the heatmap. [58] 42

3.2 Comparison of representative mammograms from DDSM and IN-
breast. [58] . 43

3.3 Database examples: multiple findings. (a) Craniocaudal view of
the right breast; (b) mediolateral oblique view of the right breast.
[57]. 44

3.4 Charts of (a) the BI-RADS image distribution (b) benign/malig-
nant cases distribution. [57]. 44

3.5 Chart describing the findings in the INbreast database. [57]. 45
3.6 VGG-16 architecture diagram. 46
3.7 Screenshot of Colab environment with dark theme. 47
3.8 Output of code 2: Training and test image data. 48
3.9 Output of code 3: Display of the architecture of the model 50
3.10 Output of code 7: Features and labels shape. 54
3.11 Output of code 8: SVM classification and evaluation. 55
3.12 Output of code 9: Multilayer Perceptron classification and evalua-

tion. 57
3.13 Output of code 10: Random forest classification and evaluation. . . 59
3.14 Confusion matrix for SVM and MLP. 61
3.15 Confusion matrix for RF. 61
3.16 ROC curves for SVM and MLP. 63
3.17 ROC curve for RF. 63

LIST OF FIGURES vii

List of Tables

2.1 A summary table of the stated approaches and their full properties. 39

3.1 Classification Results: ACC, Precision, Recall & F1-score. 60
3.2 Classification Results: AUC. 62

viii

List of source codes

1 Import some libraries . 47
2 Training and test image data . 48
3 Loading the VGG-16 and variables 49
4 Extraction of training features. 51
5 Test features extraction. 52
6 Reading and splitting labels. 53
7 Features and labels shape. 54
8 SVM classification and evaluation. 55
9 Multilayer Perceptron classification and evaluation. 56
10 Random forest classification and evaluation. 58

ix

Glossary

1D: 1 Dimensional.
2D: 2 Dimensional.
3D: 3 Dimensional.
4D: 4 Dimensional.
ACC: Accuracy (overall accuracy).
ACM: Association for Computing Machinery.
ACR: American College of Radiology.
AI: Artificial Intelligence.
AlexNet: Alex Network (referring to Alex Krizhevsk).
ANNs: Artificial Neural Networks.
AUC: Area Under Curve (referring ROC curve).
BI-RADS: Breast Imaging Reporting and Data System.
BN: Batch Normalization.
BRATS: Brain Tumor Segmentation.
BreaKHis: Breast Cancer Histopathological (referring to the BreaKHis dataset).
BRIEF: Binary Robust Independent Elementary Features.
CBIS-DDSM: Curated Breast Imaging Subset of DDSM.
CBR: Case-Based Reasoning.
CC: Color Correlogram.
CC: Craniocaudal(view).
CCV: Color Coherence Vector.
CHSJ: Centro Hospitalar de São João.
CIFAR: Canadian Institute for Advanced Research.
CNN-S: Slow CNN.
CNNs : Convolutional Neural Networks.
Colab: Google Colaboratory.
CONV: Convolutional (referring to the layer).
ConvNet: Convolutional Neural Networks.
CT: Computed Tomography.
CUs: Computing Units.
CV: Computer Vision.
DCNN: Deep Convolutional Neural Network.
DDSM: Digital Database for Screening Mammography.
DenseNet: Densely Connected Convolutional Networks.
DL: Deep Learning.
DO: Dropout.
DREAM2016: referring to the Digital Mammography DREAM 2016 Challenge.
FAST: Features from Accelerated Segment Test. FC: Fully connected (referring to

x

Glossary

the layer).
FFDM: Full-Field Digital Mammography.
FN: False Negative.
FP: False Positive.
FT: Features Transfer.
GCM: Gray-level Co-occurrence Matrix.
GLCM: Gray Level Co-occurrence Matrix.
GoogLeNet: Google-LeCun Network.
GPUs: Graphics Processing Units.
Hist.:Histogram.(referring to Histogram information)
HOG: Histogram of Oriented Gradients.
HT: Hough transform.
HUs: Hounsfield units.
IEEE: Institute of Electrical and Electronics Engineers.
ILSVRC: ImageNet Large Scale Visual Recognition Competition.
ImageNet: (referring to ILSVRC database).
ISBI: IEEE International Symposium on Biomedical Imaging.
ISIC: International Skin Imaging Collaboration.
ISLES: Ischemic Stroke Lesion Segmentation (referring to ISLES challenge).
JSRT: Japanese Society of Radiological Technology (referring to the JSRT dataset).
KNN: K-Nearest Neighbors.
KPCA: Kernel Principal Component Analysis.
LBP: Local Binary Pattern.
LG: Logistic Regression.
LIDC-IDRI: Lung Image Database Consortium and Image Database Resource Ini-
tiative.
LROIs: Lesion Regions of Interest.
MDS: Multidimensional Scaling.
MIA: Medical Image Analysis.
ML: Machine Learning.
MLO: Mediolateral Oblique (view).
MLP: Multilayer Perceptron.
MRI: Magnetic Resonance Imaging.
NIPS17: Neural Information Processing Systems 2017 conference.
PCA: Principal Component Analysis.
POIs: Points of Interest.
POOL: Pooling (referring to the layer).
ReLU: Rectified Linear Unit (referring to the layer).
ResNet: Residual Neural Network.
RF: Random Forests.
RI: Random Initialization.
RNNs: Recurrent Neural Networks.
ROC: Receiver Operating Characteristic (referring ROC curve).
ROIs: Regions of Interest.
SGF: Steerable Gaussian Filter.
SIFT: Scale invariant feature transform.
SURF: Speeded up robust features.

Glossary xi

Glossary

SVM: Support Vector Machine.
SVC: C-Support Vector Classification.
TL : Transfer Learning.
TN: True Negative.
TP: True Positive.
TPU: Tensor processing unit.
USA: United States of America.
VGG-16: Visual Geometry Group Network-16 (referring to depth of network).
X-Ray: X-Radiography.
XML: Extensible Markup Language.
YaroslavNet: Yaroslav Ganin Network.
ZFNet: Zeiler and Fergus Network.

Glossary xii

Introduction

Human Healthcare is an important element if it’s not the most important above
all concerns, such a field worthy of all complete and effort to improve quality
which leads eventually to saving lives, from that point I drew my motivation and
inspiration which led me to explore this piece of work!

Modern medicine mostly relies on the data acquired from different imaging modal-
ities that explore the human body interior and dig into lower microscopic levels
to better understand the diseases and assist doctors and therapists in their diag-
nosis and/or treatment decisions.

Since the understanding of the data is such a crucial basis to the whole process,
the better we analyze it the more efficient the curing process can be, from here
the "Artificial Intelligence" (or AI) more specifically "Machine learning" (or ML)
as well as "Computer Vision" (or CV) can help to understand the structural rep-
resentation of data from a whole different level.

Within the last few decades, AI and CV have empowered their fundamental
theories and techniques which has broadened medical challenges to new large
perspectives, since there have been introduced many original approaches such
as image classification, clustering, image segmentation, etc. that have proven to
greatly help to treat and manage many critical situations with considerable accu-
racy within a short amount of time.

Until recently, the huge advances in both hardware and software areas, the ex-
panding amounts of data, and its open-accessibility have encouraged an emerg-
ing research and development outcomes, introducing the "Deep learning" and the
"Data Mining" as new concepts, and within comes new revolutionary algorithms
and approaches like the one we’re interested about in this modest work which is
"Convolutional neural networks" (or CNNs) for classification.

In this modest work, we aim to apply one of the recent and the most success-
ful deep learning approaches to enhance the classical concept of classification for
medical images, this CNN-based approach is about learning deep features (latent
representations) from images with CNN, then using this acquired knowledge to
classify a medical image dataset, we chose the INbreast dataset for breast cancer
classification.

1

Introduction

This thesis is structured mainly in three chapters, an introduction, and a con-
clusion. The first chapter is the background chapter in which we necessary the-
oretical concepts and definitions to acquire a global understanding for the fol-
lowing chapters, the second chapter is the state-of-the-art chapter in which we
review and discuss some notable papers with different approaches all of which
have similar aspects and common view with our work to get familiar with the
recent developments in the field, the third and last chapter is about the Code
implementation of the approach with Python and discusses the results obtained.

Introduction 2

1
Background

In this first chapter, we outline the minimum theoretical basis that is necessary to
well assimilate the main matter of the presented work.

As the title of this thesis refers, the approach proposed draws equally from deep
learning and computer vision with the special touch of transfer learning, thus
we present an overview of each necessary concept in these fields, and explore
the most important techniques in brief technical descriptions. Throughout the
following sections, we aim to introduce the novice reader to the theoretical back-
ground, a common notation, and a general view of each area in this work.

1 Deep Learning

Deep learning is a sub-field of machine learning, which is, in turn, a sub-field of
artificial intelligence (AI). It tends to be specifically interested in pattern recogni-
tion and learning from data.

It may be surprising to know that the Deep Learning (DL) field has been around
since the 1940s [1], undergoing various name changes and incarnations including
cybernetics, connectionism, and the most familiar, Artificial Neural Networks (or
ANNs), based on research trends, available hardware and datasets, and popular
options of prominent researchers at the time.

3

CHAPTER 1. BACKGROUND

— Deep learning methods are representation-learning methods with
multiple levels of representation, obtained by composing simple but
non-linear modules that each transform the representation at one level
(starting with the raw input) into a representation at a higher, slightly
more abstract level. [. . .] The key aspect of deep learning is that these
layers are not designed by human engineers: they are learned from
data using a general-purpose learning procedure

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, Nature 2015. [2]

While other approaches to ML tend to focus on learning only one or two layers
of representations of the data; hence, they’re sometimes called shallow learning.

DL on the other hand is a new take on learning representations from data that em-
phasizes learning successive layers of increasingly meaningful representations.
The deep in DL isn’t a reference to any kind of deeper understanding achieved
by the approach; rather, it stands for this idea of successive layers of representa-
tions. The number of layers that contribute to a model of the data is called the
depth of the model. Modern deep learning often involves tens or even hundreds
of successive layers of representations and they’ve all learned automatically from
exposure to training data [3]. These representations are often learned via models
called neural networks, structured in literal layers stacked on top of each other.

Deep learning enables data-driven decisions by identifying and extracting pat-
terns from large datasets that accurately map from sets of complex inputs to good
decision outcomes. In the healthcare sector, deep learning is used to process med-
ical images (X-rays, CT, and MRI scans) and diagnose health conditions [4].

1.1 Artificial Neural Network

ANNs are popular ML techniques that simulate the mechanism of learning from
biological organisms inspired by the structure and function of the brain. It learns
from data and specializes in pattern recognition.

While inspired by the human brain and how its neurons interact with each other,
ANNs are not meant to be realistic models of the brain, instead, they are an inspi-
ration, allowing us to draw parallels between a very basic model of the brain and
how we can mimic some of this behavior. Deep learning belongs to the family of
ANN algorithms, and in most cases, the two terms can be used interchangeably.

An Artificial neural network contains computation units that are referred to as
neurons. These CUs are connected through weights, which serve the same role
as the strengths of synaptic connections in biological organisms. Each input to a
neuron is scaled with a weight, which affects the function computed at that unit.
An ANN computes a function of the inputs by propagating the computed values
from the input neurons to the output neuron(s) and using the weights as inter-
mediate parameters.

1. DEEP LEARNING 4

CHAPTER 1. BACKGROUND

Learning occurs by changing the weights connecting the neurons. Just as exter-
nal stimuli are needed for learning in biological organisms, the external stimulus
in ANNs is provided by the training data containing examples of input-output
pairs of the function to be learned.

The weights between neurons are adjusted in a neural network in response to
prediction errors. The goal of changing the weights is to modify the computed
function to make the predictions more correct in future iterations.

From this point of view, an ANN can be viewed as a computational graph of
elementary units in which greater power is gained by connecting them in par-
ticular ways. Furthermore, sufficient training data is also required to learn the
larger number of weights in these expanded computational graphs. [5]

2 Convolutional Neural Network

Convolutional networks (LeCun, 1989) [6], also known as convolutional neural
networks, or CNNs, are a specialized kind of neural network for processing data
that has a known grid-like topology. Examples include time-series data, which
can be thought of as a 1-D grid taking samples at regular time intervals, and im-
age data, which can be thought of as a 2-D grid of pixels. Convolutional networks
have been tremendously successful in practical applications. The name "convo-
lutional neural network" indicates that the network employs a mathematical op-
eration called convolution. Convolution is a specialized kind of linear operation.
Convolutional networks are simply neural networks that use convolution in place
of general matrix multiplication in at least one of their layers. [1]

2.1 Biological Inspiration:

The biological inspiration for CNNs is the visual cortex in animals [7]. The cells
in the visual cortex are sensitive to small subregions of the input. We call this
the visual field (or receptive field). These smaller subregions are tiled together
to cover the entire visual field. The cells are well suited to exploit the strong
spatially local correlation found in the types of images our brains process, and act
as local filters over the input space. There are two classes of cells in this region
of the brain. The simple cells activate when they detect edge-like patterns, and
the more complex cells activate when they have a larger receptive field and are
invariant to the position of the pattern. [8]

2. CONVOLUTIONAL NEURAL NETWORK 5

CHAPTER 1. BACKGROUND

Figure 1.1: A) Diagram of the experimental setup of hubel and Wissel experi-
ment showing an extracellular electrode recording from a neuron in the primary
visual cortex of a cat. B) In this example, the neuron being recorded from in V1
responds selectively to bars of light presented on the screen in different orienta-
tions; the cell fires action potentials (indicated by the vertical lines) only when the
bar is at a certain location on the screen and in a certain orientation. These selec-
tive responses to stimuli define each neuron’s receptive field properties. (After
Purves, Augustine, et al., 2008 [9]) [10]

This broader principle was used to design a sparse architecture for convolu-
tional neural networks. The first basic architecture based on this biological inspi-
ration was the neocognitron, which was then generalized to the LeNet-5 architec-
ture [11]. [12]

2. CONVOLUTIONAL NEURAL NETWORK 6

CHAPTER 1. BACKGROUND

Figure 1.2: The architecture of the neocognitron. [13]

Figure 1.3: LeNet-5: One of the earliest convolutional neural networks. [5]

2.2 CNN Architecture Overview:

CNN transform the input data from the input layer through all connected layers
into a set of class scores given by the output layer. There are many variations
of the CNN architecture, but they are based on the pattern of layers, as demon-
strated in Figure 1.4. [8]

2. CONVOLUTIONAL NEURAL NETWORK 7

CHAPTER 1. BACKGROUND

Figure 1.4: High-level general CNN architecture. [5]

2.3 The basic CNN architecture: Common layers in CNN

In CNN, the states in each layer are arranged according to a spatial grid structure.
These spatial relationships are inherited from one layer to the next because each
feature value is based on a small local spatial region in the previous layer.
Each layer in the CNN is a 3-dimensional grid structure, which has height, width,
and depth. The depth of a layer should not be confused with the depth of the net-
work itself. [5]

The word "depth" (of a single layer) refers to the number of channels in each
layer, such as the number of primary color channels (e.g., blue, green, and red)
in the input image or the number of feature maps in the hidden layers while the
depth (of the whole network) is the number of layers of the model itself.

Figure 1.5: Building blocks of a typical CNN. [14]

2. CONVOLUTIONAL NEURAL NETWORK 8

CHAPTER 1. BACKGROUND

The CNN functions much like a traditional feed-forward neural network, ex-
cept that the operations in its layers are spatially organized with sparse (and care-
fully designed) connections between layers.
The three types of layers that are commonly present in a CNN are convolution,
pooling, and ReLU. [5] (See figure 1.5).

2.3.1 Convolutional Layer (CONV):

Convolutional layers are considered the core building blocks of CNN architec-
tures. As Figure 1.6 illustrates, convolutional layers transform the input data by
using a patch of locally connecting neurons from the previous layer. The layer
will compute a dot product between the region of the neurons in the input layer
and the weights to which they are locally connected in the output layer. [8]

Figure 1.6: Convolution layer with input and output volumes. [8]

In convolutional network terminology, the first argument (in this example,
the function x) to the convolution is often referred to as the input and the second
argument (in this example, the function w) as the kernel. The output is sometimes
referred to as the feature map. [1]

s(t) = (x ∗ w)(t) =
∞∑

a=−∞

x(a)w(t− a) (1.1)

We commonly refer to the sets of weights in a convolutional layer as a filter
(or kernel). This filter is convolved with the input and the result is a feature map
(or activation map). Convolutional layers perform transformations on the input
data volume that are a function of the activations in the input volume and the
parameters (weights and biases of the neurons). The activation map for each
filter is stacked together along the depth dimension to construct the 3D output
volume. [8]

Convolution A convolution is defined as a mathematical operation describing
a rule for how to merge two sets of information.

2. CONVOLUTIONAL NEURAL NETWORK 9

CHAPTER 1. BACKGROUND

The convolution operation, shown in Figure 1.7, is known as the feature de-
tector of a CNN. The input to a convolution can be raw data or a feature map
output from another convolution. It is often interpreted as a filter in which the
kernel filters input data for certain kinds of information; for example, an edge
kernel lets pass through only information from the edge of an image. [8]

Figure 1.7: The convolution operation. [8]

2.3.2 Activation Layer (ACT or ReLU):

An activation function is a mathematical function that transforms the input data
from the previous layer into a meaningful representation, which is closer to the
expected output. [15]

Activation Functions can be: Linear Activation Function or Nonlinear Activa-
tion Functions.

After each CONV layer in a CNN, we apply a non-linear activation function,
for which the most commonly used is the ReLU (Rectified Linear Units). We typ-
ically denote activation layers as ACT or simply ReLU .

Activation layers are not technically "layers" (since no parameters/weights are
learned inside an activation layer) and are sometimes omitted from network ar-
chitecture diagrams as it’s assumed that an activation immediately follows a con-
volution. [16]

As an example, consider the following network architecture:

INPUT ⇒ CONV ⇒ ReLU ⇒ FC

To make this diagram more concise, we could simply remove the ReLU com-
ponent since it’s assumed that an activation always follows a convolution:

INPUT ⇒ CONV ⇒ FC

2. CONVOLUTIONAL NEURAL NETWORK 10

CHAPTER 1. BACKGROUND

An activation layer accepts an input volume of size Winput ×Hinput ×Dinput and
then applies the given activation function (Figure 1.8). [16]

With CNNs, we often see ReLU layers used. The ReLU layer will apply an el-
ementwise activation function over the input data thresholding—for example,
max(0,x)—at zero, giving us the same dimension output as the input to the layer:
[8]

Winput = Woutput, Hinput = Houtput , Dinput = Doutput

Figure 1.8: An example of an input volume going through a ReLU activation,
max(0;x). Activations are done in-place so there is no need to create a separate
output volume although it is easy to visualize the flow of the network in this
manner. [16]

It is noteworthy that the use of the ReLU activation function is a recent evo-
lution in neural network design. In the earlier years, saturating activation func-
tions like sigmoid and tanh were used. However, it was shown in [17] that the
use of the ReLU has tremendous advantages over these activation functions both
in terms of speed and accuracy. Increased speed is also connected to accuracy
because it allows one to use deeper models and train them for a longer time. [5]

Rectified linear units (ReLU) are the current state of the art because they have
proven to work in many different situations. Because the gradient of a ReLU is
either zero or a constant, it is possible to reign in the vanishing exploding gradi-
ent issue. ReLU activation functions have been shown to train better in practice
than sigmoid activation functions. [8]

In recent years, the use of the ReLU activation function has replaced the other
activation functions in CNN design. [5]

2.3.3 Pooling Layer (POOL):

Pooling layers are commonly inserted between successive convolutional layers.
We want to follow convolutional layers with pooling layers to progressively re-
duce the spatial size (width and height) of the data representation.

2. CONVOLUTIONAL NEURAL NETWORK 11

CHAPTER 1. BACKGROUND

Pooling layers reduce the data representation progressively over the network
and help control overfitting. The pooling layer operates independently on ev-
ery depth slice of the input. [8]

It is common to insert POOL layers in-between consecutive CONV layers in a
CNN architectures: [16]

INPUT ⇒ CONV ⇒ RELU ⇒ POOL ⇒ CONV ⇒ RELU ⇒ POOL ⇒ FC

POOL layers operate on each of the depth slices of an input independently
using either the max or average function. Max pooling is typically done in the
middle of the CNN architecture to reduce spatial size, whereas average pooling
is normally used as the final layer of the network (e.x., GoogLeNet, SqueezeNet,
ResNet) where we wish to avoid using FC layers entirely. The most common
type of POOL layer is max pooling, although this trend is changing with the
introduction of more exotic micro-architectures. [16]

Figure 1.9: Left: Our input 4x4 volume. Right: Applying 2x2 max pooling with a
stride of S = 1. Bottom: Applying 2x2 max pooling with S = 2 – this dramatically
reduces the spatial dimensions of our input. [16]

In summary, POOL layers Accept an input volume of size Winput × Hinput ×
Dinput. They then require two parameters: [8]

• The receptive field size F (also called the "pool size")

• The stride S1

Applying the POOL operation yields an output volume of size Woutput×Houtput×
Doutput, where: [16]

Woutput =
((
Winput − F

)
/S

)
+ 1

Houtput =
((
Hinput − F

)
/S

)
+ 1

Doutput = Dinput

1Stride configures how far our sliding filter window will move per application of the filter
function.

2. CONVOLUTIONAL NEURAL NETWORK 12

CHAPTER 1. BACKGROUND

2.3.4 Fully-Connected Layer (FC):

Neurons in FC layers are fully-connected to all activations in the previous layer,
as is the standard for feedforward neural networks. FC layers are always placed
at the end of the network (i.e., we don’t apply a CONV layer, then an FC layer,
followed by another CONV) layer. [16]

Fully connected layers perform transformations on the input data volume that
are a function of the activations in the input volume and the parameters (weights
and biases of the neurons). [8]

It’s common to use one or two FC layers prior to applying the softmax classi-
fier, as the following (simplified) architecture demonstrates:

INPUT ⇒ CONV ⇒ RELU ⇒ POOL ⇒ CONV ⇒ RELU ⇒ POOL ⇒
FC ⇒ FC

Here we apply two fully-connected layers before our (implied) softmax classifier
which will compute our final output probabilities for each class. [16]

Multiple Fully Connected Layers: Some CNN architectures will use multiple
fully connected layers at the end of the network. AlexNet is an example of this; it
has two fully connected layers followed by a softmax layer at the end. [8]

There are other layers for a specific use-case: Batch normalization (BN), Dropout
(DO) .etc

2.4 The Role of Convolutions in Deep Learning:

By applying convolutions filters, nonlinear activation functions, pooling, and
backpropagation, CNNs are able to learn filters that can detect edges and blob-
like structures in lower-level layers of the network – and then use the edges and
structures as "building blocks", eventually detecting high-level objects (e.x., faces,
cats, dogs, cups, etc.) in the deeper layers of the network.

In the context of image classification, our CNN may learn to:

• Detect edges from raw pixel data in the first layer

• Use these edges to detect shapes (i.e., "blobs") in the second layer

• Use these shapes to detect higher-level features such as facial structures,
parts of a car, etc. in the highest layers of the network

The last layer in a CNN uses these higher-level features to make predictions re-
garding the contents of the image. [16]

2. CONVOLUTIONAL NEURAL NETWORK 13

CHAPTER 1. BACKGROUND

2.5 Visualisation of learned features by CNN:

Another excellent set of visualizations from [18] is shown in 1.10: [5]

Figure 1.10: Examples of activation visualizations in different layers based on
Zeiler and Fergus’s work [18]. Reprinted from [18] with permission. © Springer
International Publishing Switzerland, 2014. [5]

2. CONVOLUTIONAL NEURAL NETWORK 14

CHAPTER 1. BACKGROUND

2.6 Pretrained CNNs:

Pretrained convolutional neural networks from publicly available resources like
ImageNet are often available for use in an off-the-shelf manner for other appli-
cations and data sets. This is achieved by using most of the pre-trained weights
in the convolutional network without any change except for the final classifica-
tion layer. The weights of the final classification layer are learned from the data
set at hand. The training of the final layer is necessary because the class labels
in a particular setting may be different from those of ImageNet. Nevertheless,
the weights in the early layers are still useful because they learn various types
of shapes in the images that can be useful for virtually any type of classification
application.
It is noteworthy that the use of pre-trained convolutional networks is so popular
that training is rarely started from scratch. [5]

CNNs as one of the common neural architectures, it’s among the earliest success
stories of the power of neural networks, also represent excellent examples of how
biologically inspired neural networks can sometimes provide ground-breaking
results.

Convolutional neural networks have historically been the most successful of all
types of neural networks. They are used widely for image recognition, object
detection/localization, and even text processing. The performance of these net-
works has recently exceeded that of humans in the problem of image classifica-
tion [19].
Convolutional neural networks provide a very good example of the fact that
architectural design choices in a neural network should be performed with se-
mantic insight about the data domain at hand. In the particular case of the con-
volutional neural network, this insight was obtained by observing the biologi-
cal workings of a cat’s visual cortex, and heavily using the spatial relationships
among pixels. This fact also provides some evidence that a further understanding
of neuroscience might also be helpful for the development of methods in artificial
intelligence. [5]

2.7 CNNs of Note:

Following is a list of some of the more popular architectures of CNNs. [8]

• LeNet [11]

– One of the earliest successful architectures of CNNs

– Developed by Yann Lecun

– Originally used to read digits in images

2. CONVOLUTIONAL NEURAL NETWORK 15

CHAPTER 1. BACKGROUND

• AlexNet [17]

– Helped popularize CNNs in computer vision

– Developed by Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton

– Won the ILSVRC 2012

• ZF Net [18]

– Won the ILSVRC 2013

– Developed by Matthew Zeiler and Rob Fergus

– Introduced the visualization concept of the Deconvolutional Network

• GoogLeNet [20]

– Won the ILSVRC 2014

– Developed by Christian Szegedy and his team at Google

– Codenamed "Inception", one variation has 22 layers

• VGGNet [21]

– Runner-Up in the ILSVRC 2014

– Developed by Karen Simonyan and Andrew Zisserman

– Showed that depth of network was a critical factor in good perfor-
mance

• ResNet [19]

– Trained on very deep networks (up to 1,200 layers)

– Won first in the ILSVRC 2015 classification task

3 Transfer Learning

Like AI in general and ML in particular, the concept of transfer learning has gone
through decades of evolution. From AI’s early years, researchers have considered
the ability to transfer one’s knowledge as one of the fundamental cornerstones of
intelligence [22].

In early stages, Transfer Learning (abbreviated TL) has been studied under dif-
ferent terminologies in AI including "learning by analogy", "case-based reasoning
(CBR)", "knowledge reuse and re-engineering", "lifelong machine learning", "never-ending
learning", "fine-tuning" and "domain adaptation" and so on.

3. TRANSFER LEARNING 16

CHAPTER 1. BACKGROUND

Figure 1.11: Different learning processes between (a) traditional machine learning
and (b) transfer learning. [23]

In a nutshell, TL refers to the machine learning paradigm in which an algo-
rithm extracts knowledge from one or more application scenarios to help boost
the learning performance in a "target scenario". Compared to traditional machine
learning, which requires large amounts of well-defined training data as the input,
transfer learning can be understood as a new learning paradigm (see figure 1.11).

Definition (transfer learning) Given a source domain Ds and learning task Ts,
a target domain Dt and learning task Tt, transfer learning aims to help improve
the learning of the target predictive function ft(·) for the target domain using the
knowledge in Ds and Ts, where Ds ̸= Dt or Ts ̸= Tt. [23]

Based on the transfer learning methodologies, once we obtain a well-developed
model in one domain, we can bring this model to benefit other similar domains.
Hence, having an accurate "distance" measure between any task domains is nec-
essary in developing a sound transfer learning methodology. If the distance be-
tween two domains is large, then we may not wish to apply transfer learning as
the learning might turn out to produce a negative effect. On the other hand, if
two domains are "close by," transfer learning can be fruitfully applied (see figure
1.12).

3. TRANSFER LEARNING 17

CHAPTER 1. BACKGROUND

Figure 1.12: Three ways in which transfer might improve learning: a higher per-
formance at the very beginning of learning, a steeper slope in the learning curve,
or a higher asymptotic performance [24].

In machine learning, the distance between domains can often be measured in
terms of the features that are used to describe the data. In image analysis, features
can be pixels or patches in an image pattern, such as the color or shape [22].

Transfer learning becomes particularly important for ML, it demonstrates how
learning systems can quickly adapt themselves to new situations, new tasks, and
new environments without much effort or cost. Now, such an evolution can be
examined in three points:

1. The ability to learn from small data: This ability to learn from small data
can be partly explained by the ability of humans to leverage and adapt like
it’s the case of babies who learn from few examples and generalize quickly
and effectively to concepts. Adaptation is an innate ability of intelligent
beings and intelligent systems should certainly be endowed with transfer
learning ability.

2. Small-sized data sets: In ML practice, we are often surrounded by lots of
isolated and fragmented small-sized data sets, and that’s an overwhelm-
ing amount of big data which not all organizations can collect or the right
to access for some resource limitations constraints and user privacy con-
cerns. This small-data challenge is a serious problem that can be miracu-
lously solved by "Transfer learning".

3. Reliability: When building a machine learning model, we can not fore-
see all future situations, this problem is often addressed using a technique
known as regularization. Transfer learning takes this approach further, by
allowing the model to be complex while being prepared for changes when
they come, therefore TL can make AI and ML systems more reliable and
robust when the external environment changes, that’s said from a software
system’s perspective.

3. TRANSFER LEARNING 18

CHAPTER 1. BACKGROUND

If we continuously apply transfer learning in our ML practice, we can obtain
a lifelong machine learning system that can draw knowledge from a succession
of problem-solving experiences, both in a long period and from a large variety of
tasks [22].

4 Computer Vision

— Vision allows humans to perceive and understand the world
surrounding them, while computer vision aims to duplicate the effect
of human vision by electronically perceiving and understanding an
image.

M. Sonka, R. Boyle and V. Hlavac, "Image Processing, Analysis, and
Machine Vision", 2014.[25]

As "AI" had the ambition to endow machines with some sort of intelligence
and automation, and answer the original question of Alan Turing "Can machines
think?", "Computer vision" followed AI steps raising a new ambitious question
"can machine see?" which gave birth to a new revolutionary perspective in the hu-
man evolution.

Computer Vision (abbreviated CV), is a multidisciplinary field that could broadly
be called a sub-field of AI and ML, which may involve the use of specialized
methods and make use of general learning algorithms.
CV is a field of study and research that aim to give computers the ability to ob-
serve and interpret the 3D state of the visual world.

CV started in the early 1970s, viewed as the visual perception component of the
next intelligent systems. What distinguished "computer vision" from the already
existing field of "digital image processing" (which lay only on 2D images) was a
desire to recover the three-dimensional structure of the world from images and
to use this as a stepping stone towards full scene understanding.

In vision problems, we take visual data x and use them to infer the state of the
world w. The world state w may be continuous (the 3 D pose of a body model)
or discrete (the presence or absence of a particular object). When the state is con-
tinuous, we call this inference process regression. When the state is discrete, we
call it classification. [26]

The CV field has developed rapidly but it’s not stopping any sooner, as with
the emergence of machine learning and especially neural network architectures
"computer vision" is exploring cutting-edge frameworks that led to huge ad-
vancements like: Data augmentation, feature-based analysis, semantic segmen-
tation, etc.

Two main reasons are behind the rapid progress of CV, one is that the process-
ing power, memory, and storage capacity of computers has vastly increased, the

4. COMPUTER VISION 19

CHAPTER 1. BACKGROUND

other reason is as we mentioned before the contribution of ML algorithms which
are deployed widely in vision applications.

Figure 1.13: Some examples of computer vision algorithms and applications. [27]

CV is being used today in a wide variety of real-world applications. We only
mention a few:

• Structure from motion algorithms can reconstruct a sparse 3D point model
of a large complex scene from hundreds of partially overlapping photographs
(Snavely, Seitz, and Szeliski 2006 [28]) © 2006 ACM. (see figure 1.13.a)

• Stereo matching algorithms can build a detailed 3D model of a building
facade from hundreds of differently exposed photographs taken from the
Internet (Goesele, Snavely, Curless et al. 2007 [29]) © 2007 IEEE. (see figure
1.13.b)

• Person tracking algorithms can track a person walking in front of a cluttered
background (Sidenbladh, Black, and Fleet 2000 [30]) © 2000 Springer. (see
figure 1.13.c)

• Face detection algorithms, coupled with color-based clothing and hair de-
tection algorithms, can locate and recognize the individuals in this image
(Sivic, Zitnick, and Szeliski 2006 [31]) © 2006 Springer. (see figure 1.13.d)
[27]

4. COMPUTER VISION 20

CHAPTER 1. BACKGROUND

— However, despite all of these advances, the dream of having a
computer interpret an image at the same level as a two-year-old (for
example, counting all of the animals in a picture) remains elusive.

Richard Szeliski, "Computer vision: algorithms and applications", 2010. [27]

4.1 Medical image analysis:

Image analysis is the task of extracting abstract information or semantics and
knowledge from the raw pixels of image and signal data.
This is the most challenging task in biomedical imaging as it supports researchers
and clinicians in finding clues for disease or certain phenotypes (diagnostics),
supports novices and experts in performing procedures (therapy) and follow-up
to the outcome, and allows scientists to gain knowledge from imaging data. [32]

Medical image analysis (or MIA): is an application of CV, that emerged in the
1990s to automatically complete tasks such as classification, detection, and seg-
mentation for clinical care and biomedical research.
Although MIA is a subfield of computer vision, compared to images in general,
medical images have some specific characteristics: [22]

• Small data and expensive labeling:
Medical image data are collected through special equipment under very
private contexts, hence, it often only have a small sample, measured in the
order of hundreds of samples only.
The labeling of medical images often relies on experienced and well-trained
human experts such as doctors and radiologists, making the labeling of
medical images a much more expensive and delicate process.

• Complex data:
CV tasks usually focus on two-dimensional (2D) images or videos. How-
ever, medical images have a much more complex data formation, X-ray im-
ages often consist of several views of a body area of a patient, a CT exam-
ination offers three-dimensional (3D) images or videos, MRI images even
have several modalities in 3D images, and Ultrasound devices often gener-
ate sequential image data.

• Imbalanced labels:
In practice, medical image data are imbalanced. Positive results such as true
confirmations of cancer cases have a much lower chance of appearing than
negative results since most patients are healthy. This makes the data have
an imbalanced distribution, which in turn makes it difficult to learn.
Additionally, the abnormality of the data usually occurs in a small patch of
the images, and these local patches will determine the label of the whole
image. For example, a small tumor in a CT scan of a lung will lead to a
positive label no matter what other patches are classified. This is a typical
case of multi-instance learning (Dietterich et al., 1997 [33]).

4. COMPUTER VISION 21

CHAPTER 1. BACKGROUND

Methodology: A common biomedical image analysis task can be split up into
several sub-steps: [32]

• Preprocessing to remove background noise or enhance the image,

• Extraction of features to be used in later steps,

• Registration of several images,

• Segmentation (localization and delineation) of regions of interest (ROIs),

• Classification of the image or segmented parts and measurements.

4.2 Image classification

— Given a set of training data points, each of which is associated with
a class label, determine the class label of one or more previously
unseen test instances.

Charu C. Aggarwal, "Data Mining: The Textbook", 2015. [12]

As we stated earlier, image classification is an application of CV in a continu-
ous state of the world which can simply refer to the external environment from
which we acquire the data.

Image Classification, at its very core, is the task of assigning a label to an im-
age from a predefined set of categories.
Practically, this means that our task is to analyze an input dataset of images and
return a label that categorizes each image. The label is always from a predefined
set of possible categories [16] (also classes or targets), as the system could also
assign multiple labels to the same image via probabilities of how likely the image
belongs to each class.

Image Classification Approach can be described by the following steps: [34]

I Digital data:
An image is captured by using a digital camera or any other digital instru-
ment.

II Pre-processing:
Different operations of improvement on the image data, which includes
normalization, contrast enhancement, obtaining a gray-scale image, binary
image, resizing image, complementing binary image, removing noise, get-
ting the image boundary.

4. COMPUTER VISION 22

CHAPTER 1. BACKGROUND

III Feature extraction:
The process of measuring, calculating or detecting the characteristics (or
features) from the image samples. The two most common methods are:

i geometric feature extraction
ii color feature extraction.

IV Selection of preparing information:
Selection of the specific property which best portrays the given example,
e.g., info image, output image, after preprocessing train dataset name.

V Decision and classification:
Categorizes recognized items into predefined classes by utilizing a reason-
able strategy that contrasts the image designs and the objective examples.

VI Accuracy evaluation:
Assesses the performance, precision appraisal is acknowledged to distin-
guish conceivable wellsprings of mistakes and as a pointer utilized as a part
of correlations.

4.3 Image features

Many information processing tasks can be very easy or very difficult depending
on how the information is represented. This is a general principle applicable to
daily life, computer science in general, and machine learning. [1]

Feature Engineering interests in formulating the most appropriate features and
it is considered the essential preamble in any successful ML pipeline.

Generally talking, a feature is a numeric representation of raw data, that describes
those defining characteristics of a given dataset that allow for optimal learning.
A feature is designed to be informative to the system when processing it, there-
fore a set of accurate features seek to explain an entire phenomenon.
Features are a way of representing or coding and passing abstract human un-
derstanding to computers. There are many ways to forge features, which is why
features can have many forms (structured or unstructured, quantitative or quali-
tative, etc.).

However, broadly speaking the quality of features we can design is fundamen-
tally dependent on our level of knowledge regarding the phenomenon we are
studying. The more we understand (both intellectually and intuitively) the pro-
cess of generating the data we have at our fingertips, the better we can design
features ourselves or, ideally, teach the computer to do this design work itself.
Indeed, well-designed features are crucial to the performance of both regression
and classification schemes. [35]

Indeed, the performance of many machine learning algorithms heavily depends
on having insightful input representations that expose the underlying explana-
tory factors of the output for the observed input [36].

4. COMPUTER VISION 23

CHAPTER 1. BACKGROUND

An effective data representation would also reduce data redundancy and adapt
to undesired, external factors of variation introduced by sensor noise, labeling
errors, missing samples, etc.
In the case of images or videos, dimensionality reduction is often an integral part
of feature engineering, since the raw data are typically high dimensional. [37]

Most representation learning problems face a trade-off between preserving as
much information about the input as possible and attaining nice properties (such
as independence). [1]

Effective feature engineering tools and feature extraction methods are one of the
main research areas of ML, which are still far from being solved adequately. How-
ever, throughout the short history of ML, we’ve known many approaches that
have proven their success at a certain period and new perspectives involving
deep learning are yet to be tuned.

— If computer vision was an eye to a system, feature extraction would
be its retina.

In its broadest sense, an image is a spatial map of one or more physical prop-
erties of a subject where the pixel intensity represents the value of a physical
property of the subject at that point. [32]
Image features are simplified descriptors of some aspect of an image, part of it, or
objects in it. A large number of simple features are defined in the literature, but
they generally fall into basic categories (shape, size, brightness, and texture).

Image feature extraction is about summarizing/ converting raw image data into
expressive representations that are more informative or show better association
with an underlying phenomenon. The objective of such conversion is to highlight
or make explicit in the data their most relevant elements with regard to a given
task.
Also, we generally seek invariance properties so that the extraction result does
not vary according to chosen (or specified) conditions. This implies finding ob-
jects regardless of their position, orientation or size. so that feature extraction
techniques should find shapes reliably and robustly whatever the value of any
parameter that can control the appearance of a shape.

Image features are used to compare two images or find similar landmarks or
shared objects between multiple images. They can be either global features that
describe the image as whole or local features that describe a part of any size of
the image.

4. COMPUTER VISION 24

CHAPTER 1. BACKGROUND

• Global Features:
A very basic global image feature is the image histogram, which illustrates
the probability distribution of the pixel/voxel values in the image, for each
possible value, the number of occurrences is counted in the image. Global
features, such as the shape of the histogram, can be used, for instance, to
distinguish between classes of images, e.g., hand and skull radiography (see
figure 1.14).

Figure 1.14: Images and their histograms. [32]

• Local Features:
Local features describe only a part of the image at a certain spatial position.
Most are created in two separate steps:

I features detection: in which points of interest (POIs) are localized.

II features description: for each of the detected points, a description of
this position (possibly including some surrounding areas) is created.

Since images can be acquired under different conditions like scale and rota-
tion, certain invariance against these changes is needed for both detector and
descriptor.

Whether they are global or local, feature extraction methods can be classified
based on their level of abstraction (or difficulty) into one of three broad groups:

I Classical, hand-crafted (also manual) features descriptors

II Advanced, latent-features representations

III Deep (also automated) features end-to-end learning methods (it’s the most
recent approach and our main interest area)

4.3.1 Classical, hand-crafted features descriptors

In general, these may refer to rudimentary (primitive or basic) features such as
image gradients as well as fairly sophisticated features from elaborate algorithms
such as the histogram of oriented gradients feature (HOG).

4. COMPUTER VISION 25

CHAPTER 1. BACKGROUND

More often than not, such features are designed by domain experts who have
solid knowledge about the data properties and the demands of the task. Hence
the name "hand-crafted features" is addressed.

Hand-engineering features for each task require a lot of manual labor and do-
main knowledge, and optimality is hardly guaranteed. However, it allows the
integration of human knowledge of the real world and of that specific task into
the feature design process, hence making it possible to obtain good results for the
said task. These types of features are easy to interpret.
Note that it is not completely correct to call all classical features as being hand-
crafted since some of them are general-purpose features with little task-specific
tuning (such as outputs of simple gradient filters). [37]

Due to the chronological developments in feature engineering, some of these
early feature extraction methods require more advanced and sophisticated algo-
rithms than the others, thus they can be divided into two sub-groups "low-level
features detectors" and "high-level features detectors".

I Low-level features detectors:
We shall define low-level features to be those basic features that can be ex-
tracted automatically from an image without any shape information (see
figure 1.15).

Figure 1.15: Low-level feature detection. [38]

• Color features detection: Color Coherence Vector (CCV), Histogram
of Color Moments, Color Correlogram (CC).

• Texture features detection: Gray-level Co-occurrence Matrix (GLCM),
Laws’ Texture Masks, Gabor Filter, Steerable Gaussian Filter (SGF).

4. COMPUTER VISION 26

CHAPTER 1. BACKGROUND

• Edge detection: highlights image contrast (difference in intensity), since
detecting contrast can emphasis the boundaries of features within an
image.

i First-order operators: Prewitt operator, Sobel operator
ii Second-order operators: Laplacian, MarreHildreth operator.

• Phase congruency: an alternative form of edge detection, operating on
the considerations of phase (a.k.a. time).

• Localized feature extractors: two main areas are covered here, a tra-
ditional one that aim to estimate curvatures and corners, and a more
modern area that employs region or patch-based analysis:

i Detecting image curvature (corner extraction): Moravec and Har-
ris detector.

ii Feature point detection; region/patch analysis: Scale invariant
feature transform (SIFT), Speeded up robust features (SURF), The
Features from Accelerated Segment Test (FAST).

II high-level features detectors: concerns finding shapes and objects in im-
ages, whether they are fixed in shape (such as a segment of bone in a medi-
cal image) or shapes that can deform (like the shape of a walking person).

• High-level feature extraction: fixed shape matching

i Thresholding and subtraction: both are techniques to separate the
objects from the background.

ii Template matching: a simple process, in which we try to match
a template to an image, where the template is a sub-image that
contains the shape we are trying to find.

iii Feature extraction by low-level features: combine a variety of
low-level features like SIFT, SURF, BRIEF and HOG.

iv Hough transform (HT): introduced by hough 1962, it has been
used in particular to extract lines, circles and ellipses (or conic sec-
tions).

• High-level feature extraction: deformable shape analysis

i Deformable shape analysis: including "deformable templates" and
more advanced approach "parts-based object analysis".

ii Active contours (or snakes): a completely different approach where
an active contour (a set of points) aims to enclose a target feature.

iii Shape Skeletonisation: a skeleton is a central axis to a shape de-
termined by a distance transform.

4. COMPUTER VISION 27

CHAPTER 1. BACKGROUND

4.3.2 Advanced, latent-features representations

Sometimes the feature space has some underlying properties that can not be ex-
tracted with hand-crafted features especially when the dataset is of high dimen-
sions, therefore, it is desirable to discover latent structures through some auto-
mated process. Since these structures exist but are hidden in a new (sub)-space,
they are called latent features (from the Latin word "latere").

Latent representations may expose the unobserved properties of data that exist
but cannot be directly measured from the original data. These features usually
seek a specific structure such as sparsity, decorrelation of reduced dimension,
low rank, etc. Here are some of the most important latent feature types and the
underlying extraction processes:

• Principal Component Analysis (PCA):
PCA attempts to find a low-dimensional linear subspace that accounts for
most of the variation in the data. It employs orthogonal transformations
to convert a set of correlated variables into a set of linearly uncorrelated
variables.

• Kernel Principal Component Analysis (KPCA):
Kernel PCA tries to find a low-dimensional non-linear subspace if it existed,
which is a powerful technique that outperforms the standard PCA.

• Multidimensional Scaling (MDS):
MDS allows us to visualize similarities between samples in a dataset. Thus
MDS is also a type of non-linear dimensionality reduction that tries to pre-
serve distances in a reduced dimension space. There are four types of MDS
algorithms: classical, metric, non-metric, and generalized MDS.

• Isomap:
Isomap extends MDS in the sense that it uses geodesic distances in place of
straight-line Euclidean distances between samples, such property makes it
one of the most widely used non-linear dimensionality reduction methods.

• Laplacian Eigenmaps:
A computationally efficient approach to non-linear dimensionality reduc-
tion that uses information from the neighboring data points, that are part
of a weighted graph with a set of edges connecting the neighboring data
points. It can be outlined in three steps: graph construction, edge Weight-
ing, and computing the optimal embedding.

4.3.3 Deep features end-to-end learning methods

Introduction: Early motivations and challenges In the last two decades, CV re-
searchers have focused on manually defined pipelines for extracting good image
features, so image feature extractors such as SIFT and HOG were the standard.
Although, those manually designed features require a great deal of human time
and effort to handle a complex task.

4. COMPUTER VISION 28

CHAPTER 1. BACKGROUND

A major difficulty that arise in such complex real-world applications is that the
factors of variation that explain the observed data influence every single piece of
it; the word "factors" simply to refer to separate sources of influence. For example
when analysing an image of a car, the factors of variation include the position of
the car, its color, and the angle and brightness of the sun, so each one of those can
influence the other and confuse the system.
Thus most applications require us to disentangle those factors and discard the
ones that we do not need. Eventually, it becomes a difficult challenge to extract
such high-level, abstract features from raw data.

Deep learning solves this central problem in representation learning by extracting
abstract representations that are expressed in terms of other simpler representa-
tions. Figure 1.16 shows how a DL system can represent the concept of an image
of a person (such as corners and contours) by combining simpler concepts (such
as edges).

Figure 1.16: Illustration of a deep learning model in which the extracted features
in each layer are visualised. Early layers contains simple features (e.g. edges,
corners), the deeper the layer is the more abstract the feature gets, means complex
representations are a combination of the simple ones. [1]

The recent developments in deep learning research have extended the reach
of traditional ML models by incorporating automatic feature extraction in the
base layers. The models that automatically learn and extract features are manu-

4. COMPUTER VISION 29

CHAPTER 1. BACKGROUND

ally designed in terms of the architecture, so the manual work is still there, just
abstracted further into the belly of the modeling beast.

History: Where did deep features come from! SIFT and HOG went a long way
toward extracting good image features. However, the real achievements in com-
puter vision have come from a completely different direction "deep neural network
models".
The breakthrough had place at the ILSVRC (ImageNet Large Scale Visual Recog-
nition Competition) 2012, where a group of researchers from the University of
Toronto with the lead of Alex Krizhevsky has presented their 13 layers deep CNN
model dubbed "AlexNet" (A. Krizhevsky et al., 2012 [17]) and nearly halved the
error rate of the previous year’s winner.
In the later organized ILSVRC competitions, even deeper models have been intro-
duced and proved that the deeper it goes the better the performance it gets as the
case of the winner of ILSVRC 2014 "GoogLeNet" that has 22 layers (C. Szegedy et
al., 2014 [20]).

Method: How do we get deep features! Deep representations are obtained by
passing raw input data with minimal preprocessing through a learned neural net-
work, often consisting of a stack of convolutional and/or fully connected layers.
As the input is propagated through each network layer, different data represen-
tations are obtained at abstract higher-level concepts. These networks are being
trained iteratively by minimizing a task-specific loss that alters the parameter-
s/weights in all layers.
For example, the specially designed convolutional layers of CNN allow it to ex-
tract translation-invariant features from images while the max-pooling layers of
CNN help to reduce the parameters to be learned. [37]

A learned neural network is a deep neural network (two or more layers) that can
learn deep features on its own. For that specific task, "Convolutional Neural Net-
works (CNNs)" and "Recurrent Neural Networks (RNNs)" are the most successful,
although CNNs are designed for spacial images and RNNs for sequential data.

On the surface, the mechanism of stacked neural networks appears very differ-
ent from the image gradient histograms of SIFT and HOG. But visualization of
AlexNet shows that the first few layers are essentially computing edge gradients
and other simple patterns, much like SIFT and HOG. Subsequent layers combine
local patterns into more global patterns. The result is a feature extractor that is
much more powerful than what came before. [39]

Deep learning systems can be thought of as multiple stages of applying linear
operators and piping them through a non-linear activation function. [40]

Computational resources: What made it possible now! Until the onset of this
decade, these methods were severely handicapped by a dearth of large-scale data
and large-scale parallel computing hardware to be leveraged sufficiently.

4. COMPUTER VISION 30

CHAPTER 1. BACKGROUND

We now have access to datasets that are large enough and graphics process-
ing units (GPUs) that are capable of large-scale parallel computations. This has
allowed an explosion of neural image features and their usage [41]. [37]

Advantage: Deep features’ greatest use! Representation learning is particu-
larly interesting because it provides one way to perform unsupervised and semi-
supervised learning. We often have very large amounts of unlabeled training
data and relatively little labeled training data.
Training with supervised learning techniques on the labeled subset often results
in severe over-fitting. Semi-supervised learning offers the chance to resolve this
over-fitting problem by also learning from the unlabeled data. Specifically, we
can learn good representations for the unlabeled data, and then use these repre-
sentations to solve the supervised learning task. [1]

Computer vision has now pivoted toward learning features from data, where
new feature representations are typically learned using CNNs. The learned fea-
tures in layers closer to the input layer can function as general feature extractors
and be task-specific in layers closer to the task layer. [37]
Leveraging this observation, several off-the-shelf networks have been created
and found extremely effective in many visual computing tasks, leading to tremen-
dous gain in performance. The outstanding records in ILSVRC’s multi-task chal-
lenges back up this claim. see (Krizhevsky et al., 2012 [17]; Zeiler & Fergus, 2013
[18]; Sermanet et al., 2014 [42]; Simonyan & Zisserman, 2014 [21]; C Szegedy et
al., 2015 [20]) for further knowledge.

Transfer Feature Learning of CNNs: In the previous sections, we have fairly
explained both the CNNs and transfer learning concepts. Now as we have intro-
duced deep features extraction, we will bring all those elements together to explain
the application of transfer learning on CNNs, as this is the core of the practical part
of this work.

In practice, training an entire Convolutional Network from scratch (with random
initialization) is rare as:

I It is very time-consuming and requires many computation resources

II It is relatively rare to have a dataset of sufficient size to train a ConvNet

Therefore, instead, it is common to pre-train a ConvNet on a very large dataset
(e.g., ImageNet, which contains 1.2 million images with 1000 categories), and
then use the ConvNet either as an initialization or a fixed feature extractor for
the task of interest [43]. There are mainly two major transfer Learning scenarios,
which are listed as follows: [37]

I ConvNet as a fixed feature extractor: In this scenario, we take a ConvNet
pre-trained on ImageNet, remove the last fully connected layer, then treat
the rest of the ConvNet as a fixed feature extractor for the new dataset. With
the extracted features, we can train a linear classifier such as Linear SVM or

4. COMPUTER VISION 31

CHAPTER 1. BACKGROUND

logistic regression for the new dataset.
This is usually used when the new dataset is small and similar to the orig-
inal dataset. For such datasets, training or fine-tuning a ConvNet is not
practical as ConvNets are prone to over-fitting to small datasets. Since the
new dataset is similar to the original dataset, we can expect higher-level
features in the ConvNet to be relevant to this dataset as well.

II Fine-tuning the ConvNet: The second way is to not only replace and retrain
the classifier on top of the ConvNet on the new dataset but also fine-tune
the weights of the pre-trained network using back-propagation.
The essential idea of fine-tuning is that the earlier features of a ConvNet
contain more generic features (e.g., edge detectors or color blob detectors)
that should be useful in many tasks, but later layers of the ConvNet become
progressively more specific to the details of the classes contained in the orig-
inal dataset.
If the new dataset is large enough, we can fine-tune all the layers of the
ConvNet. If the new dataset is small but different from the original dataset,
then we can keep some of the earlier layers fixed (due to overfitting con-
cerns) and only fine-tune some higher-level portions of the network.

5 Conclusion

In this chapter, we presented brief but concise definitions from deep learning
and its fundamental concepts to computer vision and its most recent methods,
we have tried not only to mention these foundations separately but to build a
bridge of knowledge between them to understand the goal of each one and its
position in the chronological development of this science.

We have passed so far by the neural networks which are the stepping stone of
deep learning, CNNs which is a more advanced concept capable of treating huge
data, which eventually led to the emergence of transfer learning that helped a lot
with the large access and applications of deep learning.

We then jumped to computer vision and image analysis, a different field that
becomes reliable on DL and its approaches. All that to come to understand the
process and the importance of deep feature extraction in image classification, a
promising application that can bring lots of improvements to many life domains.

5. CONCLUSION 32

2
State of the art

In this chapter, we will select and review some notable approaches that discuss
similar aspects to those of our goal thesis. As our thesis is a more cancer-oriented
analysis approach, we will consider and pick some state-of-the-art studies on dif-
ferent cancer types (Brain cancer, breast cancer, lung cancer, and skin cancer) and
discuss each group separately to better analyze their chronological development
and the major contributions that have been brought out to each.

As there is an emerging applicability into the cancer analysis, we try to men-
tion only the major ones that are heavily studied and contrasted in their methods
in order to get an overview of as much methods as possible.

The selected papers will be stated in a summary Table 2.1 to get a summary and
a comparative global view by mentioning all major points and specifications of
the approaches.

1 Deep features related works on Brain Tumor detec-
tion

Amin et al. (2019) [44] methodology is based on fusing score vectors from Alex
and Google CNN networks and the final vector is to be fed into multiple classi-
fiers (KNN, SVM, LG, etc.) to detect brain tumors, both MRI (BRATS1 datasets
from 2013-2017) and CT (ISLES2 2018 dataset) images have been used for training
and validation, as a first step image data are normalized and segmented. The
presented method evaluated individual score vectors, as well as the fused vector
which outperformed as 0.96 ACC (fused vector) compared to 0.92 ACC (single

1More about BRATS Datasets (2012-2018): https://www.med.upenn.edu/sbia/
miccai-brats-2018-previous-brats-challenges.html

2More about ISLES 2018 challenge: http://www.isles-challenge.org

33

https://www.med.upenn.edu/sbia/miccai-brats-2018-previous-brats-challenges.html
https://www.med.upenn.edu/sbia/miccai-brats-2018-previous-brats-challenges.html
http://www.isles-challenge.org

CHAPTER 2. STATE OF THE ART

vectors) on the BRATS dataset and KNN, performed better than other classifiers
in general.

Basheera et al. (2019) [45] approach was more simple but still efficient, they’ve
used slow CNN (CNN-S) architecture on segmented MRI images from the AAN-
LIB3 Dataset by Harvard university (which contains only 66 MRIs), the CNN-S
extracted features and classify the images in an embedded setting with the two-
stage fully connected layers. The 8-layers deep model achieved 0.90 and 1 ACC
on two small derived datasets from the original one.

1.1 Comparison

Therefore, for brain cancer analysis base-CNN methods, we’ve reviewed two ap-
proaches of the same year, Amin’s [44] was more sophisticated with more steps
and experiments with two deep CNN networks which gave it an advantage over
S. Basheera’s [45] which was more straight and direct with the limitation of small
data collection. Actually, to prove that with a couple of improvised steps and the
right tools we can always enhance the performance of the basic idea.

2 Deep features related works on Breast cancer recog-
nition

Jiao et al. (2016) [46] proposed a 15-layers depth CNN to extract both middle and
deep features to classify breast mammograms on the DDSM4 dataset. The DDSM
images were first resized (227x227), ROIs (region-of-interest) were extracted and
normalized then fed into the CNN network, and middle and deep features were
extracted from conv5 and fc7 respectively and fed each in an SVM classifier in a
hybrid setting as 2-steps correct judgments of the decision process. Competitive
classification accuracy of 96.7% has been achieved.

Nahid & Kong (2017) [47] carried out a histopathological image classification
on "BreaKHis5 dataset" with a 9-layers CNN, the approach is based on utilizing
hand-crafted features "Histogram information (Hist.)" and "Local Binary Pattern
(LBP)" along with the raw data image as an input to the proposed CNN. Bet-
ter overall performance is achieved when using the raw image data along with
(Hist.) information than with (LBP) information, a state-of-the-art accuracy on
the "BreaKHis dataset" was achieved as 96%.

Spanhol et al. (2017) [48] worked on the same previous dataset (BreaKHis) with
the AlexNet CNN of 8-layers depth, They’ve extracted features from 3 different
layers (fc6, fc7, and fc8) and carried out different classification experiments with

3More about AANLIB: http://www.med.harvard.edu/AANLIB/
4More about DDSM: https://wiki.cancerimagingarchive.net/display/Public/

CBIS-DDSM
5 More about BreaKHis dataset: https://web.inf.ufpr.br/vri/databases/

breast-cancer-histopathological-database-breakhis/

2. DEEP FEATURES RELATED WORKS ON BREAST CANCER RECOGNITION 34

http://www.med.harvard.edu/AANLIB/
https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM
https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/

CHAPTER 2. STATE OF THE ART

Logistic Regression to observe the impact of combining different deep features.
Results presented that fc6 and fc7 features performed individually better than
fc8’s and a combination of two of them even slightly improved the accuracy at
different patch levels. Results were overall around 85%.

Cao et al. (2019) [49] conducted a comparative study of several state-of-the-art
CNN models to systematically evaluate their performance for both detection and
classification of breast lesions, we will be only interested in their classification re-
sults. This study took 6 different Top-performing CNN architectures (AlexNet,
ZFNet, VGG16, GoogLeNet, ResNet, and DenseNet) on a fairly-balanced col-
lected dataset of "1043" ultrasound images manually annotated by experienced
clinicians, all models were evaluated in 4 different scenarios (FULL-RI, FULL-FT,
LROI-RI, and LROI-FT) in which data was either "full images or LROI (lesion
regions of interest)" and CNN weights initialization were either by "RI (random
initialization) or FT (features transfer)", in other words, the models were either
trained from scratch or fine-tuned.

With this said, this extensive empirical evaluation has shown that (AlexNet, ZFNet,
and VGG16) performed poorly on both "FULL-RI and LROI-RI" (trained from
scratch) due to the curse-of-dimensionality problem that easily leads to over-
fitting, in contrast to the other models (GooggleNet, ResNet, and DensNet) that
performed better due to their different strategies to avoid over-fitting and DenseNet
achieved the best accuracy of 80% on both LROI and full-sized images. With
transfer learning from the large-scale annotated ImageNet6, performance was
further improved on all 4 scenarios and DenseNet again achieved the best re-
sults with 85% (on Full-sized images) and 87.5% (on LROIs). [Not included in
the recapitulative table 2.1].

2.1 Comparison

Thus, for breast cancer based-CNN classification methods, we have seen three
different approaches one of them was Z. Jiao’s [46] on mammograms, and the
two others on histopathological images (microscopic images) which is a more
challenging task, regardless the data type z. Jiao’s [46] and FA. Spanhol’s [48]
went in the same direction extracting and fusing deep features from different
layers of the network with the only difference that they’ve used different classi-
fiers, while AA. Nahid’s [47] fused hand-crafted features with raw image data for
CNN input which gave it the advantage to tackle the challenge, so considering
the hand-crafted features along with CNN turned out to be a good choice.

Cao et al. [49] study broadens our vision about three critical points to consider
when conducting breast CNN-based analysis: 1) on the input data which tends to
give a more robust and efficient classification when utilizing LROIs, 2) on what
architecture to use for breast lesion analysis which gave the superiority for the
DenseNet and the ResNet, 3) on the advantage of transfer learning and fine-tuned
models which were proven in terms of accuracy.

6More about ImageNet: http://www.image-net.org/challengesLSVRC/

2. DEEP FEATURES RELATED WORKS ON BREAST CANCER RECOGNITION 35

http://www.image-net.org/challenges LSVRC/

CHAPTER 2. STATE OF THE ART

3 Deep features related works on Lung Nodules seg-
mentation

Xie et al. (2016) [50] approach proposed CT image classification for lung nodules
by jointly using texture and shape features along with deep features from 9-layer
DCNN based on the LeNet-5 model. The experiments conducted on the "LIDC-
IDRI"7 dataset, firstly they’ve to identify squared bounding boxes of lung nodules
to obtain 9073 image patch from 1568 nodules, a resizing step of the patches into
(32x32) is processed and then features are extracted from the DCNN’s 7th layer
(fc7), texture "GLCM" features and "Fourier descriptor" as shape features are ex-
tracted and combined then fed to a back propagation (BP) neural network for
classification. Results have shown 87% accuracy which is considered competitive
with the state-of-the-art methods.

Wang et al. (2017) [51] methodology for lung nodules classification is based on
fusing deep features from the AlexNet CNN with hand-crafted features such as
intensity and contrast features as well as the first and second-order filter features.
The experiments conducted on the "JSRT8 dataset" of chest radiography, firstly
they’ve made some preprocessing steps including an enhancement for rib sup-
pression, nodule region segmentation, and data augmentation to increase the
performance of the CNN, deep features have been extracted from the FC layer
of the AlexNet and fused with other hand-crafted features to be fed into a Ran-
dom Forest classifier trained in 10-fold patch-based cross-validation, specificity
of 96.2% was obtained.

Teramoto et al. (2017) [52] proposed a DCNN of 8-layers deep to classify lung
cancer from cytological images, the experiments were conducted on an originally
collected dataset of 298 cytological images, which were firstly cropped and re-
sized to (256×256) and training images were augmented to avoid over-fitting,
the image data were then fed to the DCNN and from its last layer, probabilities
of cancer types (adenocarcinoma, squamous cell carcinoma, and small cell carci-
noma) were obtained using a softmax function. The proposed DCNN achieved a
71.1% classification accuracy which is comparable to that of a cytotechnologist or
pathologist.

Nibali et al. (2017) [53] proposed a framework based on the ResNet-18 model but
with introducing a curriculum learning strategy along with transfer learning in a
hybrid setting. The experiments were conducted on the LIDC/IDRI dataset, the
image data were preprocessed including the normalization of Hounsfield units
(HU), cropping and re-sampling of CT slices, and then fed to the ResNet-18, the
model Was pre-trained on the CIFAR-109 dataset for better initialization of the
weights, and a curriculum learning technique was followed for training on the
new data which is increasing the difficulty of training by time by introducing the

7More about LIDC-IDRI dataset: https://wiki.cancerimagingarchive.net/
display/Public/LIDC-IDRI

8More about JSRT dataset: http://db.jsrt.or.jp/eng.php
9More about CIFAR-10: https://www.cs.toronto.edu/~kriz/cifar.html

3. DEEP FEATURES RELATED WORKS ON LUNG NODULES SEGMENTATION 36

https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
http://db.jsrt.or.jp/eng.php
https://www.cs.toronto.edu/~kriz/cifar.html

CHAPTER 2. STATE OF THE ART

easy samples first which may improve parameter optimization. With test data be-
ing augmented, classification accuracy achieved was 89.9% which outperformed
all similar state-of-the-art works.

3.1 Comparison

Hence, for lung cancer CNN-based classification methods, we have reviewed 4
approaches conducted on different data types from CT images to radiographic
and cytological images, two of them were Xie’s [50] and Wang’s [51] that went
to extracting and fusing deep with hand-crafted features and both obtained ex-
cellent results with an advantage to Wang’s method probably for the carefully
preprocessing of data. The other two methods were A. Teramoto’s [52] & Nibali’s
[53] that proposed different architectures and classified with the softmax layer
itself, both have obtained excellent accuracy with an advantage to the ResNet-
based approach perhaps for its genuine framework that embedded three types
of powerful learning techniques (residual, curriculum, and transfer learning) as
well as the challenging of data of cytological data which don’t allow a fair com-
parison here.
Therefore, the extraction/fusion approach is efficient for lung cancer classifica-
tion and standalone deep CNNs can perform well also if they are carefully car-
ried out and can even tackle more challenging data-related problems like A. Ter-
amoto’s [52].

4 Deep features related works on Skin Lesions detec-
tion

Yu et al. (2017) proposed a hybrid framework for skin lesion classification based
on AlexNet and Fisher vector, the experiments are implemented on the ISBI10

2016 Melanoma Detection Challenge Dataset of 1279 annotated skin images, af-
ter preprocessing the data (data augmentation & normalization) sub-images of
(227x227) are fed to the 8-layers deep AlexNet then features from FC6 and FC7 are
extracted, then an FV (Fisher vector) encoding was performed to aggregate these
features to build more invariant representations. Finally, the FV encoded repre-
sentations are classified for diagnosis using a linear SVM, final results demon-
strate that FC6 features with an "ACC=82.32%" perform better than FC7’s, fur-
ther improvements were observed "ACC=83.09%" when combining FV represen-
tations from multi-scale images.

Harangi et al. (2018) [54] presented an ensemble approach for skin lesions in
which they aggregated 3 different architectures into one, they chose namely "AlexNet,
VGG-16, and GoogLeNet" each of which is top-performing on the ImageNet con-
test. Their experiments were evaluated on the ISBI 2017 challenge dataset with
a data augmentation step, the architecture considered removing the final fully-
connected layer of these individual CNNs, then interconnecting them by insert-
ing a joint fully connected layer followed by a softmax layer for the final pre-

10More about ISBI challenge: https://biomedicalimaging.org/2017/past-isbis/

4. DEEP FEATURES RELATED WORKS ON SKIN LESIONS DETECTION 37

https://biomedicalimaging.org/2017/past-isbis/

CHAPTER 2. STATE OF THE ART

diction. Comparative results have shown average accuracy of 84.8% for the pro-
posed model with a clear advantage over individual and dual models.

Mahbod et al. (2019) proposed a hybrid approach for skin lesion classification
employing multiple CNNs, 3 different models were considered namely "AlexNet,
VGG-16, and ResNet-18", the setting of this framework introduced feature extrac-
tion from the last FC layers of each model (also last Conv layer for ResNet), then
train multi-class non-linear SVM classifiers on these features, the classification
scores were then combined and mapped to probabilities with Logistic regression
(LR). The experiments were evaluated on the ISIC 201711 challenge dataset with
minimal preprocessing steps (normalization, resizing, and augmentation), and
outperforming results were achieved with 90.69% as average ACC.

4.1 Comparison

Thus, for skin lesion classification, we have seen three different studies on simi-
lar datasets, while Yu’s [55] method was in a different direction than the others
introducing FV encoding to optimize the features which achieved good results,
Harangi’s [54] frm[o]– Mahbod [56] went towards ensemble approaches intro-
ducing slightly different combinations of CNNs and completely different hybrid
settings, they’ve both achieved better ACC with an advantage to Mahbod’s [56]
who combined the SVMs outputs instead of combining the architectures them-
selves.

5 General Synthesis

In this section, we group the previously reviewed papers altogether according
to their domain application, in this table we highlight the major differences be-
tween them in several points (Type of data, pre-processing steps, method, archi-
tecture,..etc.), then we state the overall accuracy of each one in the last column to
evaluate the performance of each method regarding the rest.

11More about ISIC challenge: https://challenge.isic-archive.com/landing/2017

5. GENERAL SYNTHESIS 38

https://challenge.isic-archive.com/landing/2017

CHAPTER 2. STATE OF THE ART

A
pp

ro
ac

h
Ye

ar
D

at
a

Pr
e-

pr
oc

es
si

ng
M

et
ho

d
A

rc
hi

te
ct

ur
e

TL
C

la
ss

ifi
er

A
C

C
Br

ai
n

C
an

ce
r

A
m

in
et

al
.

[4
4]

20
19

M
R

I/
C

T
N

or
m

./
Se

g.
M

ul
ti

-C
N

N
s

A
le

x/
G

oo
gL

e
Ye

s
M

ul
ti

-
cl

as
si

fie
rs

0.
96

(B
R

A
TS

20
13

)
Ba

sh
ee

ra
et

al
.

[4
5]

20
19

M
R

I
Se

g.
C

N
N

C
N

N
-S

Ye
s

So
ft

m
ax

0.
90

/1

Br
ea

st
C

an
ce

r
Ji

ao
et

al
.[

46
]

20
16

M
G

R
es

./
Se

g.
/N

or
m

.
C

N
N

(M
id

+D
ee

p
le

ve
ls

)

15
-l

ay
er

s
C

N
N

Ye
s

Tw
o-

SV
M

s
0.

96

N
ah

id
&

K
on

g
[4

7]
20

17
H

is
t.

N
o

C
N

N
+H

is
t/

LB
P9

-l
ay

er
s

C
N

N
N

o
So

ft
m

ax
0.

96

Sp
an

ho
l

et
al

.
[4

8]
20

17
H

is
t.

N
o

C
N

N
(3

D
ee

p
le

ve
ls

)
A

le
xN

et
Ye

s
LG

0.
85

Lu
ng

C
an

ce
r

X
ie

et
al

.[
50

]
20

16
C

T
Se

g.
/R

es
.

D
C

N
N

+G
LC

M
+F

D
9-

la
ye

rs
D

C
N

N
N

o
BP

-N
N

0.
87

W
an

g
et

al
.

[5
1]

20
17

X
-R

ay
En

h.
/S

eg
./

A
ug

.
C

N
N

+I
nt

.+
C

on
t.A

le
xN

et
Ye

s
R

F
0.

69
/0

.9
6

(S
en

-
s/

Sp
ec

)
Te

ra
m

ot
o

et
al

.
[5

2]
20

17
C

yt
o.

C
ro

p.
/R

es
./

A
ug

.
D

C
N

N
8-

la
ye

rs
D

C
N

N
N

o
So

ft
m

ax
0.

71

N
ib

al
i

et
al

.
[5

3]
20

17
C

T
N

or
m

./
C

ro
p.

/R
es

./
A

ug
.

C
N

N
+C

ir
r.

R
es

N
et

-1
8

Ye
s

So
ft

m
ax

0.
89

Sk
in

C
an

ce
r

Yu
et

al
.[

55
]

20
17

EL
M

A
ug

./
N

or
m

.
C

N
N

+F
V

A
le

xN
et

Ye
s

SV
M

0.
83

H
ar

an
gi

et
al

.
[5

4]
20

18
EL

M
A

ug
.

M
ul

ti
-C

N
N

s
A

le
xN

et
/V

G
G

-
16

/G
oo

gL
eN

et
Ye

s
So

ft
m

ax
0.

84

M
ah

bo
d

et
al

.
[5

6]
20

19
EL

M
N

or
m

./
R

es
./

A
ug

.
M

ul
ti

-C
N

N
s

A
le

xN
et

/V
G

G
-

16
/R

es
N

et
-1

8
Ye

s
SV

M
/L

R
0.

90

Ta
bl

e
2.

1:
A

su
m

m
ar

y
ta

bl
e

of
th

e
st

at
ed

ap
pr

oa
ch

es
an

d
th

ei
r

fu
ll

pr
op

er
ti

es
.

5. GENERAL SYNTHESIS 39

CHAPTER 2. STATE OF THE ART

6 Conclusion

In this chapter, we have reviewed some of the most notable papers in different
cancer detection areas (Brain Cancer, Breast Cancer, Lung Cancer, and Skin Can-
cer).
All of these are recent studies that explore different deep learning CNN networks
with different settings, some rely on auto-generated deep image features while
the others introduce hand-crafted features as a plus, some use softmax layers
for classification and others use third-party classifiers like SVM, RF or BP-NN or
even multiple-classifiers to produce more power.

Although the different domain-related challenges for every type of cancer, we
can say that the most successful results were those that used fused features from
different CNN networks and/or multiple classifiers.

In the next chapter, we will use the VGG-16 as a feature extractor with third-
party classifiers (SVM, MLP, and RF) to explore this approach to Breast Cancer
classification.

6. CONCLUSION 40

3
Implementation

1 Introduction:

In this chapter, we will carry out a process of deep feature extraction for medical
image classification as an application example to experimentally justify the effi-
ciency of this novel approach.
As in this work, we chose to work on INbreast [57] dataset for breast cancer clas-
sification, for this mission we needed the right CNN model that can bring out the
best possible performance.

It is noteworthy that convolution neural networks have done well so far and
credits partly go to the ImageNet1 which is a dataset of over 14 million images
belonging to 1000 classes, because of this huge large-scale image dataset, DL en-
gineers and researchers have been since then implementing pre-trained CNN
models on ImageNet and fine-tuning them on their datasets in all application
domains, that’s what we’ve talked about earlier in the first chapter as "Transfer
learning" because building CNN from scratch is not an option with poor data at
hand.
Another challenging aspect of TL is that even with the fine-tuned weights we
potentially can have bad features among those we extract which affect the over-
all accuracy, which requires some techniques on several levels from "data pre-
processing" such as data augmentation (by image flipping and rotation...etc.) to
gain more training knowledge, to "architecture design" such as adding new lay-
ers on top of the model (FC layers, max-pooling layers, heatmaps..etc.).

In our experiments, to ease these time-consuming struggles and for our poor
data and resources, we build our classification process on top of deep features
extracted from a VGG-16 model pre-trained on ImageNet and fine-tuned to clas-

1 More about ImageNet: http://www.image-net.org/challengesLSVRC/

41

http://www.image-net.org/challenges LSVRC/

CHAPTER 3. IMPLEMENTATION

sification on CBIS-DDSM2 then with transfer learning to classify INbreast.

1.1 Starting point: end-to-end Li Shen’s study

Our experiments are based on one of the CNN models used in a study by L. Shen
et al. (2017) [58], the prestigious team from the USA carried out this study as
their entry to the DREAM20163 Digital Mammography challenge, they’ve then
improved their method and presented it as their NIPS174 (Neural Information
Processing Systems) conference workshop.

Briefly, they have used different pre-trained CNN models (VGG-16, VGG-19,
ResNet-50, and YaroslavNet) as patch-based classifiers which classify mammo-
grams based on specific regions or slides which is a common strategy to ad-
dress when having small lesions and complex data, then they have converted
those patch-based to whole image classifiers by adding some layers on the top
(heatmap, residual blocks..etc.). (See figure 3.1)

Figure 3.1: Converting a patch classifier to an end-to-end trainable whole image
classifier using an all convolutional design where they considered removing the
heatmap to improve information flow and convolutional layers as top layers; the
magnifying glass shows an enlarged version of the heatmap. [58]

They have conducted their study on a recent version of the "Digital Database
for Screening Mammography" (DDSM) called CBIS-DDSM dataset, after getting
excellent results comparable to state-of-the-art they have fine-tuned some of their
models on the INbreast dataset to test the transferability of the whole image clas-
sifiers and it worked well. Consider checking their GitHub repository for further
details [59].
Note that the INbreast dataset [57] is a more recent public database for mammo-
grams that contains FFDM images as opposed to digitized film images. These
images have different intensity profiles from the DDSM images, which can be

2 More about CBIS-DDSM: https://wiki.cancerimagingarchive.net/display/
Public/CBIS-DDSM

3 More about DREAM challenges: http://dreamchallenges.org
4More about NIPS17: https://nips.cc/Conferences/2017

1. INTRODUCTION: 42

https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM
https://wiki.cancerimagingarchive.net/display/Public/CBIS-DDSM
http://dreamchallenges.org
https://nips.cc/Conferences/2017

CHAPTER 3. IMPLEMENTATION

visually confirmed by looking at two example images from the two databases
(see figure 3.2). Therefore, INbreast provides an excellent opportunity to test the
transferability of a whole image classifier onto an independent dataset.

Figure 3.2: Comparison of representative mammograms from DDSM and IN-
breast. [58]

So we have considered using their VGG-16 to extract features from our IN-
breast dataset for the following reasons:

I The model is pre-trained on ImageNet which gives the model a strong abil-
ity to learn and generalize from other data

II The model is trained on DDSM mammograms so it has domain-specific
knowledge as we will carry in our experiments for the same kind of data

III It was additionally fine-tuned on INbreast so the weights are updated and
optimized

Hence the model has learned strong representations from a large image set in-
cluding breast mammograms, so the odds are in favor to extract useful features
without the earlier-mentioned TL-related challenges.

1.2 INbreast dataset

The INbreast dataset is a mammographic dataset, with images acquired at a
Breast Centre, located in a University Hospital (Centro Hospitalar de São João
(CHSJ) in Porto, Portugal). It is a recent public database for mammograms that
contains full-field digital mammography (FFDM) images.
INbreast has a total of 115 cases were collected, from which 90 have two images
(MLO and CC) of each breast and the remaining 25 cases are from women who
had a mastectomy, and two views of only one breast were included. This sums
to a total of 410 images. Eight of the 91 cases with 2 images per breast also have

1. INTRODUCTION: 43

CHAPTER 3. IMPLEMENTATION

images acquired in different timings (follow-up). There are a total of 116 masses
among 107 images (≈ 1.1 masses per image), the overall distribution of benign/-
malignant cases is shown in figure 3.4(b).

INbreast recording includes two breast views: (See figure 3.3)

• The CC (craniocaudal) view: a top to bottom view

• The MLO (mediolateral oblique) view: a side view

Figure 3.3: Database examples: multiple findings. (a) Craniocaudal view of the
right breast; (b) mediolateral oblique view of the right breast. [57].

To standardize the terminology of the mammographic report, the assessment
of findings, and the recommendation of action to be taken, the American Col-
lege of Radiology (ACR) has developed the Breast Imaging Reporting and Data
System (BI-RADS) scale [60].

Figure 3.4: Charts of (a) the BI-RADS image distribution (b) benign/malignant
cases distribution. [57].

1. INTRODUCTION: 44

CHAPTER 3. IMPLEMENTATION

Based on level of suspicion, lesions can be placed into one of six BI-RADS
categories: (See figure 3.4(a))

• category 0: exam is not conclusive;

• category 1: no findings;

• category 2: benign findings;

• category 3: probably benign findings;

• category 4: suspicious findings;

• category 5: a high probability of malignancy;

• category 6: proved cancer.

Several types of lesions (masses, calcifications, asymmetries, and distortions)
are included (See figure 3.5. Accurate contours made by specialists are also pro-
vided in XML format.

Figure 3.5: Chart describing the findings in the INbreast database. [57].

1.3 The VGG-16 model

VGG-16 is a convolutional neural network model proposed by K. Simonyan and
A. Zisserman from the University of Oxford in this paper [21]. The model achieved
92.7% top-5 test accuracy in ImageNet. It was one of the famous models submit-
ted to ILSVRC-20145. It improves AlexNet by replacing large kernel-sized filters
(11 and 5 in the first and second convolutional layer, respectively) with multiple
3×3 kernel-sized filters one after another. VGG16 was trained for weeks and was
using NVIDIA Titan Black GPUs. VGG-16 architecture is detailed in figure 3.6.

5More about ILSVRC-14: http://www.image-net.org/challenges/LSVRC/2014/
results

1. INTRODUCTION: 45

http://www.image-net.org/challenges/LSVRC/2014/results
http://www.image-net.org/challenges/LSVRC/2014/results

CHAPTER 3. IMPLEMENTATION

Figure 3.6: VGG-16 architecture diagram.

1.4 Development environment: Google Colaboratory

Google Colaboratory6 (or Colab) is a Google research project created to help dis-
seminate ML education and research, it is based on a Jupyter notebook environ-
ment that requires no setup to use and runs entirely in the cloud.
Colab grants users access to a wide range of GPU (graphics processing unit) like
the "NVIDIA Tesla K80" GPU and even a TPU (Tensor processing unit) freely for
12 hours per runtime, this should be enough for most small and medium deep
learning projects, Colab also allows users to access, edit, download and save files
from and into Google Drive which serves greatly as Colab delete local data every
12 hours when the free runtime is over, so local data (variables, files,.etc.) get
erased and a new 12h runtime gets initialized.

6Link to Colab: https://colab.research.google.com/

1. INTRODUCTION: 46

https://colab.research.google.com/

CHAPTER 3. IMPLEMENTATION

Figure 3.7: Screenshot of Colab environment with dark theme.

2 Code implementation

2.1 Preparing the environment

1 # Download the external library "pydicom"
2 !pip install pydicom
3 # Import necessary local libraries
4 import os
5 import xlrd
6 import pydicom
7 import numpy as np
8 import pandas as pd
9 import matplotlib.pyplot as plt

10 from skimage.transform import resize
11 from keras.models import Model
12 from tensorflow.keras.models import load_model
13 from sklearn import svm
14 from sklearn.neural_network import MLPClassifier
15 from sklearn.ensemble import RandomForestClassifier
16 from sklearn import metrics

Listing 1: Import some libraries

In this code 1, we install the external "pydicom" library that we will need to

2. CODE IMPLEMENTATION 47

CHAPTER 3. IMPLEMENTATION

read (.dcm) images, we import other local libraries to the working directory for
later use.

2.2 Preparing the INbreast dataset:

In this code 2 we verify the integrity of our data, we have made it into two sets
"Training" and "Test", on which we followed the aforementioned L. Shen’s study
in their data partitioning to avoid potential performance decrease.
They’ve stated in their paper that "Bi-Rads=3" assessment is not typically given
at screening, therefore they ignored "23 images" and so we did, it remains "387
images" with other Bi-Rads values (1, 2, 4a, 4b, 4c, 5, 6) from which we addressed
"280 images" for training and "107 images" for the test, the output of code con-
firms same set sizes, The code for this part and its output is the following: (See
figure 3.8).

1 # List of "training" images
2 tr_data = os.listdir('/content/drive/MyDrive/BRIKI PFE

2020/Datasets/INbreast_for_end-to-end/Training_Data')↪→

3 # List of "test" images
4 ts_data = os.listdir('/content/drive/MyDrive/BRIKI PFE

2020/Datasets/INbreast_for_end-to-end/Test_Data')↪→

5 # Nnumber of "training" images
6 print ('Training data:',len(tr_data),'images')
7 # Nnumber of "test" images
8 print('Test data:',len(ts_data),'images')

Listing 2: Training and test image data

Training data: 280 images
Test data: 107 images

Figure 3.8: Output of code 2: Training and test image data.

2.3 Setting up the model and the variables for feature extraction

In this part 3, we load the "VGG-16" by passing its path to the "load_model"
function, then we display a summary to see each of its layers and how many
trained parameters per layer and the more important the size of data fed to each
one (See figure 3.9).
We chose the "global_average_pooling2d_1" layer as our feature extractor,
from which we extract "1024" features for each image in the dataset.
Next, we initialize a 3D NumPy array of zeros to temporarily hold the image
while before passing it to the network, another 1D NumPy array of zeros is used
to concatenate all the features to be extracted.

2. CODE IMPLEMENTATION 48

CHAPTER 3. IMPLEMENTATION

We also set the path to both training and test data directories, and the output one
to where we intend to save the features.

1 # Load the model
2 cnn_vgg = load_model('/content/drive/My Drive/BRIKI PFE

2020/Hypothesis/inbreast_vgg16_[512-512-1024]x2_hybrid.h5')↪→

3 cnn_vgg.summary()
4 # Set a feature extractor from a specific layer
5 ft_ext_vgg = Model(inputs=cnn_vgg.input,outputs=cnn_vgg.get_layer('g ⌋

lobal_average_pooling2d_1').output)↪→

6 # Set a 3D numpy array of zeros to temporarily stock an image
7 img_zeros=np.zeros(shape=(1152, 896,3))
8 # Set a 1D numpy array of zeros where to concatenate the extracted

features↪→

9 ft_zeros=np.zeros((1,1024))
10 # Set input paths
11 img_train='/content/drive/MyDrive/BRIKI PFE

2020/Datasets/INbreast_for_end-to-end/Training_Data'↪→

12 img_test='/content/drive/MyDrive/BRIKI PFE
2020/Datasets/INbreast_for_end-to-end/Test_Data'↪→

13 # Set the output path where to save extracted features and labels
14 output='/content/drive/MyDrive/BRIKI PFE

2020/Datasets/INbreast_for_end-to-end'↪→

Listing 3: Loading the VGG-16 and variables

2. CODE IMPLEMENTATION 49

CHAPTER 3. IMPLEMENTATION

Model: "model_2"
__
Layer (type) Output Shape Param #

Connected to↪→

==
input_1 (InputLayer) [(None, 1152, 896, 3 0
__
model_1 (Functional) (None, None, None, 5 14714688

input_1[0][0]↪→

__
conv2d_1 (Conv2D) (None, 18, 14, 512) 262656

model_1[0][0]↪→

__
:: :: :: :: :: :: :: :: ::

:: :: :: :: :: :: :: ::↪→

:: :: :: :: :: :: :: :: ::
:: :: :: :: :: :: :: ::↪→

:: :: :: :: :: :: :: :: ::
:: :: :: :: :: :: :: ::↪→

__
dropout_13 (Dropout) (None, 1024) 0
global_average_pooling2d_1[0][0]
__
dense_1 (Dense) (None, 2) 2050
dropout_13[0][0]
==
Total params: 29,710,146
Trainable params: 29,689,666
Non-trainable params: 20,480
__

Figure 3.9: Output of code 3: Display of the architecture of the model

2. CODE IMPLEMENTATION 50

CHAPTER 3. IMPLEMENTATION

2.4 Features extraction: training features

1 for root, dirs, files in os.walk(img_train):
2 # Browse images in a-z order
3 for file in sorted(files):
4 img1 = os.path.join(img_train, file)
5 # Read an image and preprocess it
6 img2 = pydicom.read_file(img1)
7 img3 = img2.pixel_array
8 img4=img3*(255/16383)
9 img5 = resize(img4, [1152, 896], anti_aliasing=True)

10 img_zeros[:,:,0]=img5
11 img_zeros[:,:,1]=img5
12 img_zeros[:,:,2]=img5
13 img_final=np.expand_dims(img_zeros,0)
14 # Here feature extraction
15 ft_tr=ft_ext_vgg.predict(img_final)
16 ft_zeros=np.concatenate((ft_zeros,ft_tr),axis=0)
17 ft_final=np.delete(ft_zeros, 0, 0)
18 # Save features array with the specified name
19 ft_path=os.path.join(output,'vgg_tr_ft')
20 np.save(file=ft_path,arr=ft_final)

Listing 4: Extraction of training features.

Next code 4 is to launch feature extraction from the training set with a for
loop, we pre-process raw pixels before extracting features from by:

• Normalization: As INbreast images are coded on 14bits therefore we di-
vide our pixels on a max value of "16383", and multiply by "255" to get our
images coded on 8bits as our VGG is trained on the same encoding.

• Resizing: we then resize images to the same size as the VGG input layer
[1152, 896].

Next is to add another dimension to the image to fit the input layer, we then pass
it to extract features from and concatenate them in one array and save it on as
"vgg_tr_ft".
Note that we have used "sorted(files)" to read the images in an alphabetic order
to make sure they will match the right labels later, this is a simple trick yet deter-
ministic.

2. CODE IMPLEMENTATION 51

CHAPTER 3. IMPLEMENTATION

2.5 Features extraction: test features

1 for root, dirs, files in os.walk(img_test):
2 # Browse images in a-z order
3 for file in sorted(files):
4 img1 = os.path.join(img_test, file)
5 # Read an image and preprocess it
6 img2 = pydicom.read_file(img1)
7 img3 = img2.pixel_array
8 img4=img3*(255/16383)
9 img5 = resize(img4, [1152, 896], anti_aliasing=True)

10 img_zeros[:,:,0]=img5
11 img_zeros[:,:,1]=img5
12 img_zeros[:,:,2]=img5
13 img_final=np.expand_dims(img_zeros,0)
14 # Here feature extraction
15 ft_tr=ft_ext_vgg.predict(img_final)
16 ft_zeros=np.concatenate((ft_zeros,ft_tr),axis=0)
17 ft_final=np.delete(ft_zeros, 0, 0)
18 # Save features array with the specified name
19 ft_path=os.path.join(output,'vgg_ts_ft')
20 np.save(file=ft_path,arr=ft_final)

Listing 5: Test features extraction.

In 5, we repeat exactly the same process for test set images and save test fea-
tures as a numpy array "vgg_ts_ft".

2. CODE IMPLEMENTATION 52

CHAPTER 3. IMPLEMENTATION

2.6 Preparing the labels

1 # Access and open labels "xlsx" file
2 location='/content/drive/MyDrive/BRIKI PFE 2020/Datasets/INbreast_fo ⌋

r_end-to-end/Labels/labels_finalVersion.xlsx'↪→

3 lb1 = xlrd.open_workbook(location)
4 lb2 = lb1.sheet_by_index(0)
5 lb3=lb2.col_values(0)
6 # Load labels in a numpy array
7 lbs_final=np.array(lb3)
8 # Split labels to training and test
9 tr_lbs=lbs_final[0:280] #280 labels

10 ts_lbs=lbs_final[280:387] #107 labels
11

12 # Save labels arrays
13 tr_lbs_path=os.path.join(output,'tr_lbs')
14 ts_lbs_path=os.path.join(output,'ts_lbs')
15 np.save(file=tr_lbs_path,arr=tr_lbs)
16 np.save(file=ts_lbs_path,arr=ts_lbs)

Listing 6: Reading and splitting labels.

As we have our features ready, now in this code 6 we move to prepare labels
by reading a (.xlsx) file of the full "387 images" labels prepared in the same order
as the images to guarantee the right matching.
We pass the labels to a NumPy array and then split it in the same ratio as the im-
ages before, 280 for training and 107 for the test. We save the labels as "tr_lbs"
and ts_lbs".

2. CODE IMPLEMENTATION 53

CHAPTER 3. IMPLEMENTATION

2.7 Checking features and labels shapes

1 # Load previously saved features and labels
2 vgg_tr_ft=np.load('/content/drive/MyDrive/BRIKI PFE

2020/Datasets/INbreast_for_end-to-end/vgg_tr_ft.npy')↪→

3 vgg_ts_ft=np.load('/content/drive/MyDrive/BRIKI PFE
2020/Datasets/INbreast_for_end-to-end/vgg_ts_ft.npy')↪→

4 tr_lbs=np.load('/content/drive/MyDrive/BRIKI PFE
2020/Datasets/INbreast_for_end-to-end/tr_lbs.npy')↪→

5 ts_lbs=np.load('/content/drive/MyDrive/BRIKI PFE
2020/Datasets/INbreast_for_end-to-end/ts_lbs.npy')↪→

6 # Print shapes
7 print('Size of training features:',vgg_tr_ft.shape)
8 print('Size of test features:',vgg_ts_ft.shape)
9 print('Size of training labels:',tr_lbs.shape)

10 print('Size of test labels:',ts_lbs.shape)

Listing 7: Features and labels shape.

Size of training features: (280, 1024)
Size of test features: (107, 1024)
Size of training labels: (280,)
Size of test labels: (107,)

Figure 3.10: Output of code 7: Features and labels shape.

Before we move on to classification, with this code 7 we first check the dimen-
sions of the data and labels for both training and test sets to avoid any mismatch.
We simply load the earlier saved arrays of features and labels, then we "print"
each one’s shape (See figure 3.10).

2. CODE IMPLEMENTATION 54

CHAPTER 3. IMPLEMENTATION

2.8 Classification with SVM

1 # Call SVM classif
2 svm_cls = svm.SVC()
3 # Training SVM
4 svm_cls.fit(vgg_tr_ft, tr_lbs)
5 # Testing SVM
6 svm_lbs_pred = svm_cls.predict(vgg_ts_ft)
7 # Print evaluation metrics
8 print("Accuracy:",metrics.accuracy_score(ts_lbs, svm_lbs_pred))
9 print("Precision:",metrics.precision_score(ts_lbs, svm_lbs_pred))

10 print("Recall:",metrics.recall_score(ts_lbs, svm_lbs_pred))
11 print("F1-score:",metrics.f1_score(ts_lbs, svm_lbs_pred))
12 metrics.plot_confusion_matrix(svm_cls, vgg_ts_ft, ts_lbs)
13 metrics.plot_roc_curve(svm_cls, vgg_ts_ft, ts_lbs)
14 plt.show()

Listing 8: SVM classification and evaluation.

Full Parameters Setting of "svm.SVC()": Default

classsklearn.svm.SVC(∗,C = 1.0,kernel =′ rbf ′,degree = 3,
coef0 = 0.0, shrinking = True,probability = False, tol = 0.001,
gamma =′ scale′, cache_size = 200, class_weight = None,verbose = False,
max_iter = −1,decision_function_shape =′ ovr′,break_ties = False,
random_state = None)7

In this part of the code 8 we call a "linear SVM" classifier by svm.SVC() and
simply use the fit() function to classify our training features, then the predict()
function to get predictions about the test features and assign it to "svm_lbs_pred".
We then use metrics from sklearn library to evaluate our classifier, we got excel-
lent results (Accuracy: 0.97, Precision: 1.0, Recall: 0.7, F1-score: 0.82) (See figure
3.11).

Accuracy: 0.9719626168224299
Precision: 1.0
Recall: 0.7
F1-score: 0.8235294117647058

Figure 3.11: Output of code 8: SVM classification and evaluation.

7https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.
html

2. CODE IMPLEMENTATION 55

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

CHAPTER 3. IMPLEMENTATION

Performance evaluation:

The SVM achieved a high accuracy of 97%, in other words it predicted 97%
of the classes correct which means "104 out of 107" right predictions, with a pre-
cision of 1.0 which is the perfect score that means that SVM predicted all positive
identifications (True positive or Malignancy) as positive, with a high recall (also
known as sensitivity) of 0.7 which means that false negatives were little in other
words the benign images predicted as malignant were little. The F1-score is sim-
ply the mean (harmonic mean) between precision and recall, which ever one get
high the F1-score get higher, SVM has 0.84 means both precision and recall are
high as we explained.

2.9 Classification with Multilayer Perceptron

1 # Call ANN classif
2 ann_cls = MLPClassifier(solver='adam', hidden_layer_sizes=(500,

150), max_iter=20000)↪→

3 # Training ANN
4 ann_cls.fit(vgg_tr_ft,tr_lbs)
5 # Testing ANN
6 ann_lbs_pred = ann_cls.predict(vgg_ts_ft)
7 # Print evaluation metrics
8 # Print evaluation metrics
9 print("Accuracy:",metrics.accuracy_score(ts_lbs, ann_lbs_pred))

10 print("Precision:",metrics.precision_score(ts_lbs, ann_lbs_pred))
11 print("Recall:",metrics.recall_score(ts_lbs, ann_lbs_pred))
12 print("F1-score:",metrics.f1_score(ts_lbs, ann_lbs_pred))
13 metrics.plot_confusion_matrix(ann_cls, vgg_ts_ft, ts_lbs)
14 metrics.plot_roc_curve(ann_cls, vgg_ts_ft, ts_lbs)
15 plt.show()

Listing 9: Multilayer Perceptron classification and evaluation.

Full Parameters Setting of "MLPClassifier()": Customized

classsklearn.neural_network.MLPClassifier(hidden_layer_sizes = (500, 150)
activation =′ relu′, ∗, solver =′ adam′, alpha = 0.0001,batch_size =′ auto′,
learning_rate =′ constant′, learning_rate_init = 0.001,power_t = 0.5,
max_iter = 20000, shuffle = True, random_state = None, tol = 0.0001,
verbose = False,warm_start = False,momentum = 0.9,
nesterovs_momentum = True, early_stopping = False,
validation_fraction = 0.1,beta_1 = 0.9,beta_2 = 0.999, epsilon = 1e− 08,
n_iter_no_change = 10,max_fun = 15000)8

8https://scikit-learn.org/stable/modules/generated/sklearn.neural_
network.MLPClassifier.html

2. CODE IMPLEMENTATION 56

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

CHAPTER 3. IMPLEMENTATION

In this code 9, we train a second classifier, the "Multilayer Perceptron" by
calling MLPClassifier with some specific parameters like we set Adam as The
solver for weight optimization. We train and test the "neural network" classifier
applying the same functions, fit() on the training features and predict() on test
ones, the we save the predicted classes as "ann_lbs_pred".
We use the same metrics as last time for evaluation, we got excellent results again
(Accuracy: 0.96, Precision: 0.75, Recall: 0.9, F1-score: 0.82) (See figure 3.12).

Accuracy: 0.9626168224299065
Precision: 0.75
Recall: 0.9
F1-score: 0.8181818181818182

Figure 3.12: Output of code 9: Multilayer Perceptron classification and evalua-
tion.

Performance evaluation:

The MLP achieved a high accuracy of 96% so it predicted 96% of the classes
correct, approximately "103 out of 107" right predictions, MLP achieved a pre-
cision of 0.75 which means that 75% of positive identifications (class=1) were
correct which also means that it can detect "Malignancy" with a 75% rate. A high
recall (also known as sensitivity) of 0.9 was achieved meaning that there were
almost no false negatives or false malignancy prediction. The MLP has 0.81 as
F1-score so both precision and recall are quite high which is a good classifier sign.

2. CODE IMPLEMENTATION 57

CHAPTER 3. IMPLEMENTATION

2.10 Classification with Random Forest

1 # Call RF classif
2 rf_cls = RandomForestClassifier()
3 # Training RF
4 rf_cls.fit(vgg_tr_ft,tr_lbs)
5 RandomForestClassifier(...)
6 # Testing RF
7 rf_lbs_pred = rf_cls.predict(vgg_ts_ft)
8 # Print evaluation metrics
9 print("Accuracy:",metrics.accuracy_score(ts_lbs, rf_lbs_pred))

10 print("Precision:",metrics.precision_score(ts_lbs, rf_lbs_pred))
11 print("Recall:",metrics.recall_score(ts_lbs, rf_lbs_pred))
12 print("F1-score:",metrics.f1_score(ts_lbs, rf_lbs_pred))
13 metrics.plot_confusion_matrix(rf_cls, vgg_ts_ft, ts_lbs)
14 metrics.plot_roc_curve(rf_cls, vgg_ts_ft, ts_lbs)
15 plt.show()

Listing 10: Random forest classification and evaluation.

2. CODE IMPLEMENTATION 58

CHAPTER 3. IMPLEMENTATION

Full Parameters Setting of "RandomForestClassifier()": Default

classsklearn.ensemble.RandomForestClassifier(n_estimators = 100, ∗,
criterion =′ gini′,max_depth = None,min_samples_split = 2,
min_samples_leaf = 1,min_weight_fraction_leaf = 0.0,max_features =′ auto′,
max_leaf_nodes = None,min_impurity_decrease = 0.0,
min_impurity_split = None,bootstrap = True,oob_score = False,
n_jobs = None, random_state = None,verbose = 0,warm_start = False,
class_weight = None, ccp_alpha = 0.0,max_samples = None)9

In this code 10, we train another well-known classifier "Random forest", we
call it with the RandomForestClassifier(), then train it and evaluate it with fit()
and predict(), we save the predicted classes as "rf_lbs_pred".
The same evaluation metrics are used, the RF classifier got the following results
(Accuracy: 0.96, Precision: 0.75, Recall: 0.9, F1-score: 0.82) (See figure 3.12).

Accuracy: 0.9532710280373832
Precision: 0.6923076923076923
Recall: 0.9
F1-score: 0.7826086956521738

Figure 3.13: Output of code 10: Random forest classification and evaluation.

Performance evaluation:

The RF has a 95% of accuracy so it predicted 95% correct, approximately "102
out of 107" right predictions, the precision was fairly good with 69% which means
that 69% of positive identifications (class=1) were correct which also means that
it can detect "Malignancy" with a 69% rate. A high recall (also known as sen-
sitivity) of 0.9 was achieved meaning that there were almost no false negatives
or false malignancy prediction. The RF has 0.78 as F1-score because the recall is
high.

9https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html

2. CODE IMPLEMENTATION 59

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

CHAPTER 3. IMPLEMENTATION

3 Synthesis discussion:

We split this discussion into two sub-parts, the first one to give a global discussion
of the results of each classifier in contrast to the other, the second one is to give a
fair comparison between the original study by Li Shen and the results of ours.

3.1 Part 01: Results interpretation

The main purpose of this study is to present a modern image classification ap-
proach and prove its advantage taking account of what has been stated in the
State-of-the-art Chapter.

First, we have used a VGG-16 as features extractor (see code 3) by applying the
weights from the "global_average_pooling2d_1" layer of Li Shen’s model on a
training set (280 images) (see code 4) and a test set (107 images) (see code 5).
The extracted features vectors "vgg_tr_ft & vgg_ts_ft" along with the labels vec-
tors "tr_lbs & ts_lbs" (see code 6) are used for the classification process with three
different classifiers: SVM, MLP and RF.

In the following table, we gather all results obtained with the SVM, MLP and
RF classifiers for comparison purpose:

Classif. Accuracy Precision Recall F1-Score
SVM 0.97 1.0 0.7 0.82
MLP 0.96 0.75 0.9 0.82
RF 0.95 0.69 0.9 0.78

Table 3.1: Classification Results: ACC, Precision, Recall & F1-score.

all of them gave excellent close results as it’s figured in the table 3.1, from
which we conclude that SVM scored the highest accuracy "ACC=0.97" and a per-
fect precision "Precision=1.0" which means that it was able to classify (104/107)
images correctly identifying all benign images as negatives (True Negative) so "TN=97
or 97 images as Class=0" (see figure 3.14a).
With that being said, SVM had an advantage on the overall performance, compared
to both MLP and RF with "ACC=0.96/ 0.95" and "Precision=0.75/ 0.69" respec-
tively (see table 3.1) which means that some benign images were classified as positive
(False Positive) as it is figured in the confusion matrices "MLP: FP=3" (see figure
3.14b) & "RF: FP=4" (see figure 3.15), such result only raise concern to the patient
with zero risk.

On the other hand, what could be a risk is when malignant images are classified
as negatives (False Negative) for which we have "SVM: FN=3" (see figure 3.14a)
and "MLP & RF: FN=1" (see figure 3.14b & 3.15) which is represented in the Re-
call scores "SVM: Recall=0.7" and "MLP & RF: Recall=0.9" (see table 3.1).
That being said, MLP & RF are better in classifying malignancy than SVM.

3. SYNTHESIS DISCUSSION: 60

CHAPTER 3. IMPLEMENTATION

Lastly, the F1-Score combines both Precision and Recall to give more global eval-
uation for which SVM & MLP are equivalent with "F1-Score=0.82" for both (see
table 3.1).
So judging on the "Accuracy" and "F1-Score" at the same time, we conclude from
the table 3.1 that SVM (ACC=0.97 & F1-Score=0.82) and MLP (ACC=0.96 & F1-
Score=0.82) barely outperform one another but surely both of them outperform
RF, so we see that SVM and MLP are equivalently good performing in our case.

(a) SVM (b) MLP

Figure 3.14: Confusion matrix for SVM and MLP.

Figure 3.15: Confusion matrix for RF.

3.2 Part 02: Fair Comparison with Li Shen’s Study

As our purpose is not coming up with a new architecture nor achieving a new
state-of-the-art record, and as we have made it clear introducing the first part
about the purpose of this study, we prefer to cut the road of all possible unneces-
sary struggles that would be implicated along the process by using a successful
study by Li Shen’s team in the same area of interest as our which is "Classification

3. SYNTHESIS DISCUSSION: 61

CHAPTER 3. IMPLEMENTATION

of Mammograms with CNN".

Since we have used the exact same network as as Mr. Li excluding only the last dense
layer "dense_1" that is a fully connected layer which plays a role of a classifier by
calculating the probability of each class, and eventually replace it with a third-
party classifier (SVM, MLP and RF) to explore new insights on the performance
of third-party classifier in a hybrid setting with a VGG-16 as features extractor on
medical images.
Hence any successfully achieved results are attributed in first place to Li Shen’s
architecture and configuration.

To give a loyal and fair comparison we must use the same metrics, for that we
use the AUC score as it’s the only measurement given in Li Shen’s study for the
"whole image classifier" and their results are stated in their GitHub Repository man-
ual "README.md" [59] as well as their paper [58].
In the table 3.2 we can see all AUC scores of ROC curves for Li shen end-to-end model
(VGG-16: AUC=0.96) as well as our classifiers (SVM: AUC=0.98, MLP: AUC=0.99,
RF: AUC=0.99) (see the ROC curves for SVM 3.16a, MLP 3.16b and RF 3.17).

The AUC (Area under the Curve) is a measurement used in classification analysis
in order to determine which of the used models predicts the classes best, usu-
ally used with ROC curves where the true positive rates (aka. Sensitivity or Recall)
TPR = TP

TP+FN
are plotted against false positive rates FPR = FP

FP+TN
[61].

So having a higher AUC means the model is more accurate at identifying the pos-
itive subjects (or the malignancy) which is a critical feature.
Now laying on the earlier discussed results in the "Part 01", we see that SVM
with "AUC=0.98" had "FN=3" and MLP & RF both with "AUC=0.99" had "FN=1",
so 0.01 difference in AUC score means 2 more malignant images correctly classi-
fied therefore MLP and RF achieved 0.03 difference in AUC over the VGG-16
(AUC=0.96) which is even worth 6 more malignant (positive) subjects correctly
classified, so it is a considerable improvement fairly saying.

Clearly our classifiers gave a slightly higher AUC score than the end-to-end VGG-
16 which certainly reflects the advantage of a third-party classifier performance
like SVM, MLP and RF over the dense fully connected last layer employed in Li
Shen’s model because we have used the same dataset and the same CNN network
configuration.

Classif. AUC
SVM 0.98
MLP 0.99
RF 0.99
VGG-16 0.96

Table 3.2: Classification Results: AUC.

3. SYNTHESIS DISCUSSION: 62

CHAPTER 3. IMPLEMENTATION

(a) SVM (b) MLP

Figure 3.16: ROC curves for SVM and MLP.

Figure 3.17: ROC curve for RF.

4 Conclusion

In this chapter, we have conducted the features extraction based classification ex-
periments with Li Shen’s VGG-16 network and three different classifiers (SVM,
MLP and RF) in three different hybrid settings each time.

At the end, we have concluded that all three classifiers gave excellent results and
slightly better AUC score than the end-to-end approach, specially the MLP and RF.

So the proposed approach was successful regarding INbreast mammograms clas-
sification for two reasons, first is the fine-tuned VGG-16 parametrized architecture
by Li Shen that could be able to extract useful features, and second for the third-
party classifiers that took most advantage of these features especially the MLP
and RF as a replacement for the dense layer. Hence a hybrid setting of VGG-16
and MLP or RF is recommended for "Breast Mammograms classification" tasks.

4. CONCLUSION 63

General conclusion and perspectives

In this work, we have introduced a newer and recent approach for image classifi-
cation in which meaningful features are automatically extracted from the images
with a Convolutional Neural Network (CNN).

We tested this study on the INbreast dataset, with extracted and transferred fea-
tures from a VGG-16 pre-trained on similar data which is in our case study "Breast
Cancer Mammograms", we fine-tuned these features again with the same CNN
architecture (VGG-16) but we replaced the last layer with a non-linear classifier
for which we tried three of the most popular: "Support vector machines (SVM)",
Multilayer perceptron (MLP, also known as neural networks)", and "Random
forests (RF)".

The results revealed a very good performance and even an enhancement with
SVM instead of the end-to-end approach, this enhancement can give an advan-
tage, especially in such a sensitive domain as healthcare, and with a big mass of
data, the marginal enhancement can increase.

Our work presents two main points:

• The CNN-based approach for medical image classification as a new and
advantageous prospect

• Including a hybrid setting along with CNN can give better results depend-
ing on the problem treated and the data in hand

In the comparison of SVM to RF and MLP, last two can be better at classifying the
malignancy on INbreast dataset than SVM which we can be taking advantage of
in a more complex model that includes all three classifiers.

Perspectives

CNN deep features are increasingly employed with different settings and archi-
tectures on different application domains, one of the best performing approaches,
as we have seen in the state-of-the-art, is the fusing of classification scores from
multiple hybrid classifiers, which open new prospects for future studies in which
we can follow such model setting to fuse classification scores of all of SVM, ANN,
and RF for example to get further improvements.

64

GENERAL CONCLUSION AND PERSPECTIVES

Also, we should know that the VGG-16 is not the best performing CNN archi-
tecture in the state-of-the-art as many international large-scale competitions and
challenges discovered far more complex and extremely useful architectures such
as ResNet-50, DenseNet, and GoogLeNet, hence we can consider them as well in
a fine-tuned setting to extract more accurate features.

GENERAL CONCLUSION AND PERSPECTIVES 65

Bibliography

[1] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT
press Cambridge, 2016.

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[3] F. Chollet, Deep Learning mit Python und Keras: Das Praxis-Handbuch vom En-
twickler der Keras-Bibliothek. MITP-Verlags GmbH & Co. KG, 2018.

[4] J. D. Kelleher, Deep learning. Mit Press, 2019.

[5] C. C. Aggarwal, Neural networks and deep learning. Springer, 2018.

[6] Y. LeCun et al., “Generalization and network design strategies,” Connection-
ism in perspective, vol. 19, no. 143-155, p. 18, 1989.

[7] M. Eickenberg, A. Gramfort, G. Varoquaux, and B. Thirion, “Seeing it all:
Convolutional network layers map the function of the human visual sys-
tem,” NeuroImage, vol. 152, pp. 184–194, 2017.

[8] J. Patterson and A. Gibson, Deep learning: A practitioner’s approach. " O’Reilly
Media, Inc.", 2017.

[9] D. Purves, G. J. Augustine, D. Fitzpatrick, et al., “Neuroscience. 4th,” Sun-
derland, Mass.: Sinauer. xvii, vol. 857, p. 944, 2008.

[10] D. Purves, Brains: how they seem to work. Ft Press, 2010.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[12] C. C. Aggarwal, Data mining: the textbook. Springer, 2015.

[13] K. Fukushima, “Recent advances in the deep cnn neocognitron,” Nonlinear
Theory and Its Applications, IEICE, vol. 10, no. 4, pp. 304–321, 2019.

[14] A. S. Lundervold and A. Lundervold, “An overview of deep learning in
medical imaging focusing on mri,” Zeitschrift für Medizinische Physik, vol. 29,
no. 2, pp. 102–127, 2019.

[15] A. Ghatak, Deep learning with R. Springer, 2019, vol. 245.

[16] A. Rosebrock, Deep Learning for Computer Vision with Python: Starter Bundle.
PyImageSearch, 2017.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Advances in neural information process-
ing systems, vol. 25, 2012.

66

BIBLIOGRAPHY

[18] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in European conference on computer vision, Springer, 2014, pp. 818–
833.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and pat-
tern recognition, 2016, pp. 770–778.

[20] C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with convolutions,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, 2015,
pp. 1–9.

[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[22] Q. Yang, Y. Zhang, W. Dai, and S. J. Pan, Transfer learning. Cambridge Uni-
versity Press, 2020.

[23] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on
knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[24] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research on ma-
chine learning applications and trends: algorithms, methods, and techniques, IGI
global, 2010, pp. 242–264.

[25] M. Sonka, V. Hlavac, and R. Boyle, Image processing, analysis, and machine
vision, Fourth edition. Cengage Learning, 2014.

[26] S. J. Prince, Computer vision: models, learning, and inference. Cambridge Uni-
versity Press, 2012.

[27] R. Szeliski, Computer vision: algorithms and applications. Springer Science &
Business Media, 2010.

[28] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: Exploring photo
collections in 3d,” in ACM siggraph 2006 papers, 2006, pp. 835–846.

[29] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. M. Seitz, “Multi-view
stereo for community photo collections,” in 2007 IEEE 11th International
Conference on Computer Vision, IEEE, 2007, pp. 1–8.

[30] H. Sidenbladh, M. J. Black, and D. J. Fleet, “Stochastic tracking of 3d human
figures using 2d image motion,” in European conference on computer vision,
Springer, 2000, pp. 702–718.

[31] J. Sivic, C. L. Zitnick, and R. Szeliski, “Finding people in repeated shots of
the same scene.,” in BMVC, vol. 2, 2006, p. 3.

[32] C. K. Reddy and C. C. Aggarwal, Healthcare data analytics. CRC Press, 2015,
vol. 36.

[33] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez, “Solving the mul-
tiple instance problem with axis-parallel rectangles,” Artificial intelligence,
vol. 89, no. 1-2, pp. 31–71, 1997.

[34] A. K. Sangaiah, Deep Learning and Parallel Computing Environment for Bio-
engineering Systems. Academic Press, 2019.

BIBLIOGRAPHY 67

BIBLIOGRAPHY

[35] J. Watt, R. Borhani, and A. Katsaggelos, Machine learning refined: foundations,
algorithms, and applications. Cambridge University Press, 2016.

[36] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review
and new perspectives,” IEEE transactions on pattern analysis and machine in-
telligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[37] G. Dong and H. Liu, Feature engineering for machine learning and data analyt-
ics. CRC Press, 2018.

[38] M. Nixon and A. Aguado, Feature extraction and image processing for computer
vision. Academic press, 2019.

[39] A. Zheng and A. Casari, Feature engineering for machine learning: principles
and techniques for data scientists. " O’Reilly Media, Inc.", 2018.

[40] T. Malisiewicz, “From feature descriptors to deep learning: 20 years of com-
puter vision,” Tombone’s Computer Vision Blog, Jan. 2015. [Online]. Avail-
able: https://www.computervisionblog.com/2015/01/from-
feature-descriptors-to-deep.html.

[41] R. Venkatesan and B. Li, Convolutional neural networks in visual computing: a
concise guide. CRC Press, 2017.

[42] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,
“Overfeat: Integrated recognition, localization and detection using convo-
lutional networks,” arXiv preprint arXiv:1312.6229, 2013.

[43] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn fea-
tures off-the-shelf: An astounding baseline for recognition,” in Proceedings
of the IEEE conference on computer vision and pattern recognition workshops,
2014, pp. 806–813.

[44] J. Amin, M. Sharif, M. Yasmin, T. Saba, M. A. Anjum, and S. L. Fernandes,
“A new approach for brain tumor segmentation and classification based on
score level fusion using transfer learning,” Journal of medical systems, vol. 43,
no. 11, p. 326, 2019.

[45] S. Basheera and M. S. S. Ram, “Classification of brain tumors using deep
features extracted using cnn,” in Journal of Physics: Conference Series, IOP
Publishing, vol. 1172, 2019, p. 012 016.

[46] Z. Jiao, X. Gao, Y. Wang, and J. Li, “A deep feature based framework for
breast masses classification,” Neurocomputing, vol. 197, pp. 221–231, 2016.

[47] A.-A. Nahid and Y. Kong, “Local and global feature utilization for breast
image classification by convolutional neural network,” in 2017 International
Conference on Digital Image Computing: Techniques and Applications (DICTA),
IEEE, 2017, pp. 1–6.

[48] F. A. Spanhol, L. S. Oliveira, P. R. Cavalin, C. Petitjean, and L. Heutte, “Deep
features for breast cancer histopathological image classification,” in 2017
IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE,
2017, pp. 1868–1873.

BIBLIOGRAPHY 68

https://www.computervisionblog.com/2015/01/from-feature-descriptors-to-deep.html
https://www.computervisionblog.com/2015/01/from-feature-descriptors-to-deep.html

BIBLIOGRAPHY

[49] Z. Cao, L. Duan, G. Yang, T. Yue, and Q. Chen, “An experimental study
on breast lesion detection and classification from ultrasound images using
deep learning architectures,” BMC medical imaging, vol. 19, no. 1, p. 51, 2019.

[50] Y. Xie, J. Zhang, S. Liu, W. Cai, and Y. Xia, “Lung nodule classification by
jointly using visual descriptors and deep features,” in Medical Computer Vi-
sion and Bayesian and Graphical Models for Biomedical Imaging, Springer, 2016,
pp. 116–125.

[51] C. Wang, A. Elazab, J. Wu, and Q. Hu, “Lung nodule classification using
deep feature fusion in chest radiography,” Computerized Medical Imaging
and Graphics, vol. 57, pp. 10–18, 2017.

[52] A. Teramoto, T. Tsukamoto, Y. Kiriyama, and H. Fujita, “Automated classi-
fication of lung cancer types from cytological images using deep convolu-
tional neural networks,” BioMed research international, vol. 2017, 2017.

[53] A. Nibali, Z. He, and D. Wollersheim, “Pulmonary nodule classification
with deep residual networks,” International journal of computer assisted ra-
diology and surgery, vol. 12, no. 10, pp. 1799–1808, 2017.

[54] B. Harangi, A. Baran, and A. Hajdu, “Classification of skin lesions using an
ensemble of deep neural networks,” in 2018 40th annual international con-
ference of the IEEE engineering in medicine and biology society (EMBC), IEEE,
2018, pp. 2575–2578.

[55] Z. Yu, D. Ni, S. Chen, et al., “Hybrid dermoscopy image classification frame-
work based on deep convolutional neural network and fisher vector,” in
2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017),
IEEE, 2017, pp. 301–304.

[56] A. Mahbod, G. Schaefer, C. Wang, R. Ecker, and I. Ellinge, “Skin lesion clas-
sification using hybrid deep neural networks,” in ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
IEEE, 2019, pp. 1229–1233.

[57] I. C. Moreira, I. Amaral, I. Domingues, A. Cardoso, M. J. Cardoso, and J. S.
Cardoso, “Inbreast: Toward a full-field digital mammographic database,”
Academic radiology, vol. 19, no. 2, pp. 236–248, 2012.

[58] L. Shen, L. R. Margolies, J. H. Rothstein, E. Fluder, R. B. McBride, and W.
Sieh, “Deep learning to improve breast cancer early detection on screening
mammography,” arXiv preprint arXiv:1708.09427, 2017.

[59] L. Shen, End2end-all-conv, https://github.com/lishen/end2end-
all-conv, 2016.

[60] E. Mendelson, J. Baum, W. Berg, C. Merritt, and E. Rubin, “Breast imaging
reporting and data system: Acr bi-rads—breast imaging atlas,” BI-RADS:
Ultrasound Reston, American College of Radiology, VA, 2003.

[61] What does auc stand for and what is it? https://stats.stackexchange.
com/questions/132777/what-does-auc-stand-for-and-what-
is-it.

BIBLIOGRAPHY 69

https://github.com/lishen/end2end-all-conv
https://github.com/lishen/end2end-all-conv
https://stats.stackexchange.com/questions/132777/what-does-auc-stand-for-and-what-is-it
https://stats.stackexchange.com/questions/132777/what-does-auc-stand-for-and-what-is-it
https://stats.stackexchange.com/questions/132777/what-does-auc-stand-for-and-what-is-it

BIBLIOGRAPHY

[62] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, tools, and techniques to build intelligent systems. O’Reilly Media,
2019.

[63] A. C. Müller, S. Guido, et al., Introduction to machine learning with Python: a
guide for data scientists. " O’Reilly Media, Inc.", 2016.

[64] A. Myers, “Stanford’s john mccarthy, seminal figure of artificial intelligence,
dies at 84,” Oct. 2011. [Online]. Available: https://news.stanford.
edu/news/2011/october/john-mccarthy-obit-102511.html.

[65] Y. LeCun, “Predictive learning,” Neural Information Processing Systems
Conference - NIPS 2016, Jan. 2017. [Online]. Available: https://channel9.
msdn.com/Events/Neural-Information-Processing-Systems-
Conference/Neural-Information-Processing-Systems-Conference-
NIPS-2016/Predictive-Learning.

[66] T. Peng, “Yann lecun cake analogy 2.0,” Medium, M. Sarazen, Ed., Feb. 2019.
[Online]. Available: https://medium.com/syncedreview/yann-
lecun-cake-analogy-2-0-a361da560dae.

[67] A. Burkov, The hundred-page machine learning book. Andriy Burkov Quebec
City, Can., 2019, vol. 1.

[68] D. Grattarola, “Deep feature extraction for sample-efficient reinforcement
learning,” M.S. thesis, Politecnico Di Milano, Oct. 2017.

[69] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, Second
edition. MIT press, 2018.

[70] P. Wilmott, Machine learning: an applied mathematics introduction, First edi-
tion. Panda Ohana Publishing, 2019.

[71] I. Vasilev, D. Slater, G. Spacagna, P. Roelants, and V. Zocca, Python Deep
Learning: Exploring deep learning techniques and neural network architectures
with Pytorch, Keras, and TensorFlow, Second edition. Packt Publishing Ltd,
2019.

[72] Z. SALLOUM, “Math behind reinforcement learning, the easy way,” To-
wards Data Science, Aug. 2018. [Online]. Available: https://towardsdatascience.
com/math-behind-reinforcement-learning-the-easy-way-
1b7ed0c030f4.

[73] E. S. Olivas, J. D. M. Guerrero, M. Martinez-Sober, J. R. Magdalena-Benedito,
L. Serrano, et al., Handbook of Research on Machine Learning Applications and
Trends: Algorithms, Methods, and Techniques: Algorithms, Methods, and Tech-
niques. IGI Global, 2009.

[74] W. Burger and M. J. Burge, Digital image processing: an algorithmic introduc-
tion using Java. Springer, 2016.

[75] E. R. Davies, Computer vision: principles, algorithms, applications, learning. Aca-
demic Press, 2017.

[76] D. A. Forsyth and J. Ponce, Computer vision: a modern approach. Prentice-Hall,
2012.

BIBLIOGRAPHY 70

https://news.stanford.edu/news/2011/october/john-mccarthy-obit-102511.html
https://news.stanford.edu/news/2011/october/john-mccarthy-obit-102511.html
https://channel9.msdn.com/Events/Neural-Information-Processing-Systems-Conference/Neural-Information-Processing-Systems-Conference-NIPS-2016/Predictive-Learning
https://channel9.msdn.com/Events/Neural-Information-Processing-Systems-Conference/Neural-Information-Processing-Systems-Conference-NIPS-2016/Predictive-Learning
https://channel9.msdn.com/Events/Neural-Information-Processing-Systems-Conference/Neural-Information-Processing-Systems-Conference-NIPS-2016/Predictive-Learning
https://channel9.msdn.com/Events/Neural-Information-Processing-Systems-Conference/Neural-Information-Processing-Systems-Conference-NIPS-2016/Predictive-Learning
https://medium.com/syncedreview/yann-lecun-cake-analogy-2-0-a361da560dae
https://medium.com/syncedreview/yann-lecun-cake-analogy-2-0-a361da560dae
https://towardsdatascience.com/math-behind-reinforcement-learning-the-easy-way-1b7ed0c030f4
https://towardsdatascience.com/math-behind-reinforcement-learning-the-easy-way-1b7ed0c030f4
https://towardsdatascience.com/math-behind-reinforcement-learning-the-easy-way-1b7ed0c030f4

BIBLIOGRAPHY

[77] A. Ng, “Machine learning and ai via brain simulations,” 2013. [Online].
Available: http://datascienceassn.org/sites/default/files/
Machine%20Learning%20and%20AI%20via%20Brain%20Simulations.
pdf.

BIBLIOGRAPHY 71

http://datascienceassn.org/sites/default/files/Machine%20Learning%20and%20AI%20via%20Brain%20Simulations.pdf
http://datascienceassn.org/sites/default/files/Machine%20Learning%20and%20AI%20via%20Brain%20Simulations.pdf
http://datascienceassn.org/sites/default/files/Machine%20Learning%20and%20AI%20via%20Brain%20Simulations.pdf

	page de garde MASTER Informatique bioMédicale
	thesis -après
	Acknowledgments
	Résumé
	Abstract
	Contents
	List of Figures
	List of Tables
	List of source codes
	Glossary
	Introduction
	Background
	Deep Learning
	Artificial Neural Network

	Convolutional Neural Network
	Biological Inspiration:
	CNN Architecture Overview:
	The basic CNN architecture: Common layers in CNN
	Convolutional Layer (CONV):
	Activation Layer (ACT or ReLU):
	Pooling Layer (POOL):
	Fully-Connected Layer (FC):

	The Role of Convolutions in Deep Learning:
	Visualisation of learned features by CNN:
	Pretrained CNNs:
	CNNs of Note:

	Transfer Learning
	Computer Vision
	Medical image analysis:
	Image classification
	Image features
	Classical, hand-crafted features descriptors
	Advanced, latent-features representations
	Deep features end-to-end learning methods

	Conclusion

	State of the art
	Deep features related works on Brain Tumor detection
	Comparison

	Deep features related works on Breast cancer recognition
	Comparison

	Deep features related works on Lung Nodules segmentation
	Comparison

	Deep features related works on Skin Lesions detection
	Comparison

	General Synthesis
	Conclusion

	Implementation
	Introduction:
	 Starting point: end-to-end Li Shen's study
	 INbreast dataset
	 The VGG-16 model
	 Development environment: Google Colaboratory

	 Code implementation
	Preparing the environment
	Preparing the INbreast dataset:
	Setting up the model and the variables for feature extraction
	Features extraction: training features
	Features extraction: test features
	Preparing the labels
	Checking features and labels shapes
	Classification with SVM
	Classification with Multilayer Perceptron
	Classification with Random Forest

	Synthesis discussion:
	Part 01: Results interpretation
	Part 02: Fair Comparison with Li Shen's Study

	Conclusion

	General conclusion and perspectives
	Bibliography

