NONHOMOGENEOUS ELLIPTIC EQUATIONS WITH DECAYING CYLINDRICAL POTENTIAL AND CRITICAL EXPONENT

MOHAMMED BOUCHEKIF, MOHAMMED EL MOKHTAR OULD EL MOKHTAR

ABSTRACT. We prove the existence and multiplicity of solutions for a nonhomogeneous elliptic equation involving decaying cylindrical potential and critical exponent.

1. INTRODUCTION

In this article, we consider the problem
\[-\text{div}(|y|^{-2a} \nabla u) - \mu |y|^{-2(a-1)} u = h|y|^{-2a+b}|u|^{2^* - 2} u + \lambda g \quad \text{in } \mathbb{R}^N, \quad y \neq 0, \]
\[u \in D^{1,2}_0, \tag{1.1}\]
where each point in $\mathbb{R}^N$ is written as a pair $(y, z) \in \mathbb{R}^k \times \mathbb{R}^{N-k}$, $k$ and $N$ are integers such that $N \geq 3$ and $k$ belongs to $\{1, \ldots, N\}$; $-\infty < a < (k-2)/2$; $a \leq b < a + 1$; $2^* = 2N/(N-2+2(b-a))$; $-\infty < \mu \leq \bar{\mu}_{a,k} := ((k-2(a+1))/2)^2$; $g \in H^\prime_\mu \cap C(\mathbb{R}^N)$; $h$ is a bounded positive function on $\mathbb{R}^k$ and $\lambda$ is real parameter. Here $H^\prime_\mu$ is the dual of $H_\mu$, where $H_\mu$ and $D_0^{1,2}$ will be defined later.

Some results are already available for (1.1) in the case $k = N$; see for example [10, 11] and the references therein. Wang and Zhou [10] proved that there exist at least two solutions for (1.1) with $a = 0$, $0 < \mu \leq \bar{\mu}_{0,N} = ((N-2)/2)^2$ and $h \equiv 1$, under certain conditions on $g$. Boucheik and Matallah [2] showed the existence of two solutions of (1.1) under certain conditions on functions $g$ and $h$, when $0 < \mu \leq \bar{\mu}_{0,N}$, $\lambda \in (0, \Lambda_*)$, $-\infty < a < (N-2)/2$ and $a \leq b < a + 1$, with $\Lambda_*$ a positive constant.

Concerning existence results in the case $k < N$, we cite [6, 7] and the references therein. Musina [7] considered (1.1) with $-a/2$ instead of $a$ and $\lambda = 0$, also (1.1) with $a = 0$, $b = 0$, $\lambda = 0$, with $h \equiv 1$ and $a \neq 2 - k$. She established the existence of a ground state solution when $2 < k \leq N$ and $0 < \mu < \bar{\mu}_{a,k} = ((k-2 + a)/2)^2$ for (1.1) with $-a/2$ instead of $a$ and $\lambda = 0$. She also showed that (1.1) with $a = 0$, $b = 0$, $\lambda = 0$ does not admit ground state solutions. Badiale et al [1] studied (1.1) with $a = 0$, $b = 0$, $\lambda = 0$ and $h \equiv 1$. They proved the existence of at least a nonzero nonnegative weak solution $u$, satisfying $u(y, x) = u(|y|, x)$ when $2 \leq k < N$ and

2000 Mathematics Subject Classification. 35J20, 35J70.
Key words and phrases. Hardy-Sobolev-Ma\'ya inequality; Palais-Smale condition; Nehari manifold; critical exponent.
©2011 Texas State University - San Marcos.