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Abstract

English

Surgical simulation involves making deformations and incisions on human organs. These simulators
require fast and precise numerical calculation algorithms to perform deformations in real time. The de-
formations applied to the organs are nonlinear where these organs have hyperelastic mechanical charac-
teristics. Therefore, the nonlinear deformation of hyperelastic tissues is the subject of extensive research.
In this thesis, we propose a new technique to improve the speed and the precision of the nonlinear defor-
mation algorithm. This technique is based on the modi�cation of the classical Newton-Raphson method
by a partially updated sti�ness matrix. Proposed method has proven to have high convergence speed
without losing precision. We provided su�cient conditions for the convergence of these algorithms by
giving explicit upper limit constraints using the Kantorovich's theorem.
keywords: Nonlinear hyperelastic deformation; Mooney-Rivilin model; nonlinear �nite element; Newton-
Raphson method; Biomechanical modeling; Virtual reality; Surgical simulation.

Français

La simulation chirurgicale basée sur la réalité virtuelle nécessite des modèles de déformation en temps réel
et précis pour un réalisme interactif. La déformation des tissus mous est généralement non-linéaire. Ces
non-linéarité complique le calcul de la matrice de rigidité tangentielle dans une formulation d'éléments
�nis non-linéaire. Dans cette thèse, nous proposons une nouvelle technique pour réduire cette complex-
ité. Notre technique consiste à mettre à jour une partition choisie de la matrice de rigidité tangentielle
au lieu de la matrice entière lors d'un processus itérative de la méthode classiques de Newton-Raphson.
Dans cette étude nous utilisons la déformation géométrique non linéaire et le modèle hyperélastique non
linéaire de Mooney-Rivilin. Notre technique a prouvé d'avoir une vitesse de convergence élevée sans
perte de précision. Nous avons fourni des conditions su�santes pour la convergence de notre algorithme
en donnant des contraintes de limite supérieure explicites en utilisant le théorème de Kantorovich.
Mots clé: Déformation non-linéaire hyperélastique; modèle de Mooney-Rivilin; élément �nis non-
linéaire; Newton-Raphson méthode; Modélisation biomécanique; réalité virtuelle; simulation chirurgicale.
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Notation

� F The deformation Gradient

� C The right Cauchy-Green deformation

� E The Strain

� σ The Cauchy stress tensor

� P The �rst Piola-Kirchho� stress tensor

� S The second Piola-Kirchho� stress tensor

� W The strain energy density

� D The fourth-order constitutive tensor for isotropic materials

� P(u) The total energy

� Pint The stored strain energy

� Pext The work done by external forces

� P̄ The �rst-order variation of P

� f b The external body force

� u The displacement

� û The perturbation

� uν The perturbed displacement

� a(u, û) The energy form

� l(û) The load form

� sym(.) The symmetry operator for matrices

� ∇0 The gradient operator with the respect to the coordinate frame of the organ at rest

� r The residual of the total energy linearizion

� R The nonlinear functional

� {·, ·} The bilinear operator

� Ni The shape function

� Cij The material constants

� Di The material constants

� J The elastic volume ratio

� µi,αi The characteristic constants of the material

� λi The principal stretch ratio

� I The invariants of the right Cauchy-Green strain tensor
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� λ2
i The three eigenvalues of C with (i = 1, 2, 3)

� tr() The trace of a matrix

� det() The determinant of a matrix

� J(u) The Jacobian matrix

� Ji The reduced invariants with (i = 1, 2, 3)

� Ji,E The derivatives of the reduced invariants with respect to Lagrangian strain with (i = 1, 2, 3)

� I The 3× 3 identity tensor

� Ω0 The domain occupied by the organ at rest

� IB The Banach space

� L2(Ω0) The Hilbert space of square integrable functionals overs Ω0

� < ., . > The inner product

� V,V0 The Sobolev space

� M (x) The tensor function

� {.} The represent tensor

� ∥.∥F The Frobenius norm

� ∂Ω0 The boundary of the organ

� Γ The �xed part

� Ωh The sub-discretized organ becomes

� ωe
h The e-th element

� Vh(Ωh) The Sobolev spaces of the sub-discretized organ

� ϵij The kronecker symbol

� xI The 3D coordonate of node

� span() The set of linear combinations of elements of a set

� φI The shape function

� Πh The projection space

� Fa The Fréchet derivative of a

� ⌊·⌋ The operator transforms the 4-tensor to a 2-tensor

� ⊗ The dyadic product

� sym(.) The symmetry operator for matrices

� : The contraction operator
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Introduction

The domain of computer simulation and virtual reality is very deeply rooted in the world. In this work,
we are interested in surgical simulation based on virtual reality. Surgical simulation is a modus operandi
that o�ers a realistic training to promote the practice of innovative and less invasive procedures while
improving the surgeon's learning. The latter can help surgeons to preoperatively assess an operation
and perform complex operations. However, there are several mechanism issues in surgical simulators
regarding the precision, speed, and realism of soft tissue deformation or cutting.
Surgical simulation in virtual reality has advantages such as: The simulations can be repeated as many
times as the user wishes, practice on di�erent levels from easy to complex situation, possibility of self-
training and the simulation platform can be installed in any structure. And it also has disadvantages
related to the cost of the purchase which is very high, the installation and the feeling of force feedback
which is di�erent from the reality and problem of the graphics. Surgical simulation has become increas-
ingly important in recent years. The main objective of these simulators is never practice the �rst time
on a patient. Therefore, it requires real-time perception for user gestures to mimic reality. The major
problems observed in the realization of these simulators are: Geometric and physical modeling of organs,
identi�cation of mechanical characteristics and resolution of nonlinear problems. Our objective in this
thesis is the resolution of nonlinear problems. We are interested in the problem of simulation accuracy
and speed. More precisely, the speed of computing accurate deformations of hyperelastic soft tissues
(Soft tissue is extra-skeletal support tissue, such as adipose tissue, tendons, ligaments, fascia, skin). It is
well known that the deformation of soft tissues by a large displacement is nonlinear and that complicates
the resolution and the integration of this deformation in a realistic simulator. So, the question that must
be asked in this case is what is the most e�cient, quickest, and accurate method of solving among the
solving methods used in the literature? To answer this problem we chose the nonlinear �nite element
method for geometric modeling and the classic Newton-Raphson method of resolution. The �nite element
method is known for its precision and its drawback on the speed in resolution with iterative methods for
larger meshes. For this reason we try to improve the speed of resolution without losing the precision.
We propose a partial updated sti�ness matrix for optimize the computation time. Also, we propose to
improve the computation of radius of convergence by applying Kantorovich's theorem in the discretized
domain by the nonlinear �nite element method.

In the �rst chapter contains an introduction of the biomechanical model of hyperelastic tissues in the
continuous medium. In surgical simulation, these hyperelstic tissues are modeled by complex geometry.
In this case, the study and resolution of the nonlinear problems of these tissues in the continuous
medium is di�cult [30]. This di�culty is solved by the discretization of the complex geometry in the
continuous medium into a simple geometric element [56]. The discretization method chosen in this thesis
is the nonlinear �nite element method. This method is known for its precision and e�ciency in solving
nonlinear problems. The major problems related to surgical simulation consist on the identi�cation of
the constitutive model, the geometrical nonlinearity and the identi�cation of the properties of the soft
tissues. The precise geometric and physical information provided by the medical images can be used to
create an average virtual patient model, to train the surgeon on di�erent types of surgical procedures.
The second chapter presents the classical method of Newton-Raphson for the numerical convergence of
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solutions. The algorithms of resolution used for the nonlinear �nite element method are incremental and
iterative which often presents di�culties of convergence related to the existence of a limit point in load
or in position [45]. This di�cult can be solved by using Kantorovich's theorem. This theorem makes it
possible to verify the convergence of the solution in the continuous domain. For their application in the
discretized domain, we introduce hypotheses and propositions to calculate and improve the convergence
radius.

The third chapter shows the drawback of the Newton-Raphson resolution method in their use in
the nonlinear �nite element method. Such that, for a large mesh the total tangential sti�ness matrix is
calculated at each iteration which in�uences on the cost and the speed of calculation. In the surgical
simulation, human organs are represented by complex geometry. Also, operations are done on a speci�c
region which presents another constraint. With these constraints, we propose a modi�cation in Newton-
Raphson method by a partially updated tangential sti�ness matrix. This proposition is tested by di�erent
regular meshed cube and non-regular liver mesh with nonlinear hyperelastic constitutive models such as
Mooney-Rivlin, NeoHooken and Saint Venant Kircho�.

In the last chapter, we present the surgical simulation based on virtual reality. We show some surgical
simulator in the state of the art section and we de�ne the material used for operation in virtual reality. For
tested the e�ectiveness of our approach of modi�ed Newton-Raphson method with a partially updated
sti�ness matrix on a surgical simulator. We integrate it in our simulator via unity 3D platform. In this
part, we show the result of liver and gallbladder tests.

In this thesis, we are interested in improving the computation and the speed of the radius of con-
vergence using Kantorovich's theorem in the discretized domain with nonlinear �nite element method.
Also, to improve the cost of computation the tangentiel sti�ness matrix with partially updated.
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Chapter 1

Biomechanical modeling of soft tissue

1.1 Introduction

Biomechanics is by de�nition a mechanics applied to biology. More speci�cally, The Study of the human
body in motion, of the external forces (ground reaction force) which act on it and of the internal forces.
The biomechanics is the product of mechanical technological advances and other sciences such as health,
anatomy and physiology. On the technical level, research in biomechanics is centered on:(i) Acquisition of
internal geometry.(ii) Modeling of the soft body by elements (several, tens of thousands of elements).(iii)
Identi�cation of mechanical properties on soft tissues.

1.2 Importance of biomechanical modeling in the design of sur-

gical simulators

The modeling of the human body depends on the biomechanical analysis. When the organ a�ected to a
deformation it change it shape. Therefore, it is essential to adopt a model which allows the analysis of
deformation of the organ. This step is important in the biomechanical analysis [71, 70]. Biomechanical
modeling consists of numerically representing the mechanical behavior of the human body. it is based
on the dynamometric and kinematic recording of the mechanical chain to determine the external forces
applied to the organ. This determination is made using the fundamental laws of mechanics. Pellicer et
al. [56] developed a machine learning model that provides real-time inference. they tested their model
on dozens of simulations with the biomechanical behavior of the liver which is carried out by the �nite
element method on several di�erent liver geometries. Miller et al. [46] proposed a physics-based brain
modeling approach. The deformations of brain are described in mechanical terms. This approach is
carried out for the application on surgical simulation and recording of neuro-images.

1.3 Continuum modeling of hyperelastic tissue in surgical simu-

lation

We can say that the domain contains a continuous material medium if at each moment and at each
point of this domain the local physical quantities relating to this material medium are well de�ned. The
physical quantity can be represented mathematically by: scalar, vector and tensor of order 2 or higher
order [47]. The goal of a continuous medium (the volume of matter) is that can use the mathematical
notions of continuity and apply them to a reality. In physics, we can represent physical quantities such
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as density, temperature, displacement, pressure by continuous functions in space and time. Moreover,
the continuity medium remains a valid hypothesis under certain physical conditions and at macroscopic
scales. To perform surgical simulation, we must found a model that simulates the largest possible range of
behavior with optimization of the computational cost [78]. The continuous modeling of a tissue is based
on the equations of the mechanics of continuous media. These equations show the relations between the
strains and stresses of a tissue.

1.3.1 Stress and Strain in continuum medium

In large deformation, the behavior of the material under strain is studied in continuum mechanics. The
representation of a large deformation of a material is linked to a deformed or undeformed geometries.
There are two representations of the deformation either by Eulerian Description: the deformation is iden-
ti�ed by its position at the current instant (t). By Lagrangian description: the deformation is identi�ed
by its initial position. In this thesis we use the Lagrange deformation.
Let us consider an object subjected to forces and displacements so that its geometry passes from the
initial state to the current state. In the initial undeformed geometry we consider P ∈ Ω identi�ed by
vector X = {X1, X2, X3} and is mapped to a point Q ∈ Ω identi�ed by vector x = {x1, x2, x3} in the
current deformed geometry[33].

Figure 1.1: The initial and current state of object.

In geometric deformation, we have:
x1 = x1(X1, X2, X3)

x2 = x2(X1, X2, X3)

x3 = x3(X1, X2, X3)

(1.1)

The mapping relation is:
x = X + u(X, t) (1.2)

where u(X, t) is the displacement of point P . This relation says that for a given point P in the undeformed
geometry, a unique point Q exists in the deformed geometry.

14



Deformation Gradient

The neighboring points at in�nitesimal distances from P and Q are denoted by vectors dX and dx. The
relationship between di�erential elements dX and dx is as follow [33]

dx =
dx

dX
dX ⇒ dx = FdX (1.3)

Where F is the deformation of Gradient can be written explicitly as

Fij =
dxi

dXj
(1.4)

Using the relation in eq.(1.2), F becomes:

F = 1 +
∂u

∂X
= 1 +∇0u (1.5)

Where, ∂u
∂X is the displacement gradient. F must be positive for large deformation.

Lagrangian strain

Using the undeformed geometry as a reference, the vector dX is deformed to dx. So, the change in
squares of length of these two vectors is as follows [33]:

∥dx∥2 − ∥dX∥2 = dxT dx− dXT dX (1.6)

= dXTFTFdX − dXT dX (1.7)

= dXT (FTF − 1)dX (1.8)

Where, FTF = C is a right Cauchy-Green deformation.

The Lagrangian strain can be written as:

E =
1

2
(C− 1) (1.9)

The factor 1
2 is used to make the de�nition identical to the engineering strains in case of in�nitesimal

strains.

Cauchy and Piola-Kirchho� Stress

In the equilibrium of a structure, stress is used to determine the failure of a material. It also depends
on the frame of reference like strain. Figure 1.2 show in the current geometry the stress vector at point
Q can be written using the area of the di�erential element ∆Sx, the force ∆f acting on it, and the unit
normal n of the area as:
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Figure 1.2: Stress vector in initial and current geometries.

The stress vector can be writte as [33]:

lim
∆Sx→0

∆f
∆Sx

= σn (1.10)

lim
∆S0→0

∆f
∆S0

= PTN (1.11)

Where σ is known as the Cauchy stress tensor (3× 3), and P is known as the �rst Piola-Kirchho� stress
tensor(3× 3)
The relation between P and σ is [33]:

P = JF−1σ (1.12)

P has an undesirable property that it is not symmetric, for to be symmetrical we multiply it by F , we
de�ne the second Piola-Kirchho� stress tensor as follow:

S = PF−T = JF−1σF−T (1.13)

Where, we can write the Cauchy stress tensor as follows:

σ =
1

J
FSFT (1.14)

1.3.2 Constitutive Relation

The constitutive theory describes the macroscopic behavior of a material between strain and stress caused
by deformation [33]. A soft tissue is called elastic when a strain energy density W exists such that the
stress can be obtained by di�erentiating W with respect to Lagrangian strain E [33].

W (u) =
1

2
E (u) : D(u) : E (u), (1.15)

Where D is the fourth-order constitutive tensor for isotropic materials. D and E are nonlinear in u. We
can determined stress by di�erentiating the strain energy density with respect to the Lagrangian strain.
This stress S called the 2nd Piola Kircho� stress [33].

S (u) =
∂W

∂E
(u) = D(u) : E (u). (1.16)
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The potential energy of an hyperelastic system is the di�erence between the stored strain energy Pint

and the work done by external forces Pext [33], where we can formulated as:

P(u) = Pint(u)− Pext(u) (1.17)

=

∮
Ω0

W (E )dΩ−
∮
Ω0

uT f bdΩ (1.18)

Where f b is the external body force. Let us consider that the displacement u is perturbed in the direction
of û (û is called the virtual displacement). Where, this perturbation is often used to �nd the displacement
at the minimum potential energy. The perturbation is controlled by parameter ν. So, the perturbed
displacement is written as follows:

uν = u+ νû (1.19)

For keeping the displacement uν in the space of admissible solution, we use the set space V0(Ω0) (where
V0(Ω0) is Sobolev spaces de�ned in section 2.2). Consequently, the variation û must satisfy the essential
homogeneous boundary condition, i.e, û ∈ V0(Ω0). Then, the �rst-order variation of P in any direction
u must be zero, as [33]

P̄(u, û) =
dP

dν
(u+ ν û)

|ν=0
(1.20)

Using eq 1.18, we can write:

P̄(u, û) =

∮
Ω0

W (E )dΩ

dν
−

∮
Ω0

uT f bdΩ

dν |ν=0
(1.21)

= a(u, û)− l(û) (1.22)

= 0 (1.23)

Where, a(u, û) is the energy form [33]

a(u, û) =

∮
Ω0

S (u) : Ê (u, û)dΩ (1.24)

=

∮
Ω0

S (u) : sym
(
∇0 û

⊤F (u)
)
dΩ (1.25)

sym(.) is the symmetry operator for matrices. ∇0 is the gradient operator computed with respect to the
coordinate frame at rest.
Then l(û) is the load form [33]

l(û) =

∮
Ω0

ûT f bdΩ (1.26)

The variational equation for the nonlinear elastic system can be written as:

a(u, û) = l(û) (1.27)

The eq. (1.27) is the weak form of nonlinear hyperelastic systems, it is called the material description or
the total Lagrangian formulation. Nonlinearity comes from the fact that the stress and strain implicitly
depend on u. The two forms internal (a(u, û)) and external (l(û)) are nonlinear in u and linear in û.
The residual between the variation of internal energy and the variation of external energy is de�ned as
[33]

r(u, û) = a(u, û)− l(û), for all û ∈ V0(Ω0). (1.28)
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In hyperelastic problem, we aims to �nd u, for all û ∈ V0(Ω0), which guarantees the nonlinear residues
r to be zero (u balances internal and external energies).

Find u ∈ V0(Ω0), s.t. r(u, û) = 0, for all û ∈ V0(Ω0). (1.29)

Thus, we can rewrite the di�erence between a(u, û) and l(û) as a nonlinear functional R : V0(Ω0) →
V0(Ω0) applied to û with a bilinear operator {·, ·} as follows [33]

{R(u), û} := a(u, û)− l(û) (1.30)

So, we can rewrite the problem de�ned in eq 1.29 with only the unknown u using eq 1.30 as follows

Find u ∈ V0(Ω0), s.t. R(u) = 0. (1.31)

1.4 Nonlinear modeling of organ's deformation

The linear analysis of structures is de�ned by three assumptions which are:(i) The behavior of the material
which is elastic.(ii) The deformations which are in�nitesimal. (iii) The resistance of the material which
is in�nite. This analysis is justi�ed only if the stress, strain and displacement are low. In reality, for
a fairly large deformation and displacement, the structural mechanics are nonlinear. Nonlinearities are
associated with material, geometry, applied forces, and boundary conditions [49].

1.4.1 Nonlinear geometry

Geometric nonlinearity is expressed by a signi�cant change in the initial structure. The deformed struc-
ture has a structural representation di�erent from that in the initial state (see �gure 1.3 [55]). In this
case, the physical and mechanical properties of the initial and deformed structure are signi�cantly dif-
ferent. Therefore, it is necessary to rewrite the equilibrium system taking into account the deformed
structure [15]. Geometric nonlinearities are modeled using appropriate constitutive equations with a high
deformation stress. So that the second Piola-Kirchho� stress and the Green-Lagrange nonlinear strain
tensor are used [24]. Nonlinear relations can be used with a hyperelastic model, to directly account for all
nonlinearities (mechanical and geometric) in the mathematical formulation [12]. A �nite element model
handling geometric and material properties nonlinearities is proposed for human liver and implemented
in [58].

Figure 1.3: Initial and deformed geometries [55].

1.4.2 Nonlinear constitutive model

The hyperelsatic biological soft tissues are modeled by non-linear contitutive laws. The constitutive
hyperelastic theory takes into account two types of non-linearities: physical non-linearity and geometric
non-linearity [20]. Therefore, the aim of these constitutive theories is to develop mathematical models
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that reproduce the true behavior of biological tissues based on the theory of nonlinear continuum me-
chanics [13]. A homogeneous isotropic hyperelastic material has as principles:(i) Material objectivity,
the constitutive equation is invariant under changes of reference. (ii) The isotropy of the material, the
strain-energy function is not a�ected by a superimposed rigid body transformation before deformation
[62]. For anisotropic soft tissues, the constitutive laws can be derived from the stress energy density
function W , which is speci�ed for each reference volume unit. W is expressed as a function of the strain
gradient (F ) or the green-lagrange strain tensor (E ) (i.e W = W (E ) = W (F )). For isotropic soft tissues,
the constitutive laws are de�ned using the strain energy density W . This quantity corresponds to the
energy stored in the soft tissue after loading ( W =

∫ Eij

0
SijdEij). The constitutive theories o�er the

possibility of minutely describing the behavioral characteristics of materials by an improvement of the
mathematical models [6, 23].

1.5 Modeling with Nonlinear Finite Element

1.5.1 Nonlinear deformation

Highly deformed structural elements are increasingly used in engineering and biomedical applications.
In order for these components to behave correctly under strong strain and displacement, it is important
to improve and apply special methodologies and techniques. In the biomedical application, the major
factor which complicates the study of deformation is the non-linearity of soft objects which presents a
high degree of di�culty. Generally, the resolution of this type of problem is done by numerical methods
[53]. The di�erent stages of analysis of a physical problem are organized according to the process shown
schematically in �gure 1.4. The �rst step is the physical problem. The precise framework of the study is
de�ned by the simplifying assumptions which make it possible to determine the appropriate mathemat-
ical model. The di�culty for the engineer is to know how to choose among the laws of physics, those
whose equations will translate with the desired precision the reality of the physical problem. A good
choice should give an acceptable answer for non-prohibitive implementation e�orts.

1.5.2 Nonlinear Finite Element Method

This method divides a continuous domain into smaller parts called �nite elements, connected together
by nodes (see �gure 2.6). The continuous variable is approximated on the �nite element domain by
interpolation or shape functions. There are several types of elements that can represent an organ,
for example (triangles, squares) in 2D space and (tetrahedron, hexahedron) in 3D space. Tetrahedral
elements are the best for modeling a complex geometry domain with little mesh distortion. Moreover, the
element tetrahedron uses exact formulas without Gaussian integration to generate the characteristics of
the element[65] . Most researchers used tetrahedron elements because they are well adapted to geometries
of arbitrary shape thanks to their simple calculations. Chamoret et al. [14] presented a hand modeled
by nonlinear �nite elements, which is in contact with a deformable object. This modeling makes it
possible to study the contact pressures between the hand of an operator and a hand tool. Meister et al.
[44] explored the use of neural networks to directly learn the underlying biomechanics. They used the
explicit FEM as the reference and they highlighted the possibility of going beyond their stability limit.
Liu et al.[40] discretized the geometry of the head-and-neck tumor into tetrahedral elements and mesh
as �ducial biomarkers in order to follow their movements.They applied di�erent force �elds to the outer
surface of the geometry and used FEM software Abaqus as a nonlinear �nite element solver to simulate
tumor deformation under di�erent load cases.
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Figure 1.4: Numerical analysis process.

The shape function of tetrahedron

For the isoparametric element, the geometric transformation (�gure 1.5) which changes from the reference
element to the real element has the following properties:

x =

4∑
i=1

Nixi (1.32)

Where xi is the nodal coordinate, and Ni is the shape function.

Figure 1.5: Geometric transformation of tetrahedron.

The shape functions is given by:

N1 = 1
6V (α1 + β1x+ γ1y + δ1z) (1.33)

N2 = 1
6V (α2 + β2x+ γ2y + δ2z) (1.34)

N3 = 1
6V (α3 + β3x+ γ3y + δ3z) (1.35)

N4 = 1
6V (α4 + β4x+ γ4y + δ4z) (1.36)

Where V is the volume of element and αi,βi, γi and δi with (i = 1, 2, 3, 4)are constants de�ned in the
appendix A.
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We can expressed the relation between coordinate and displacement of the element by:

u =

4∑
i=1

Niui (1.37)

Where ui is the nodal displacement.

1.6 Solving methods

Non-linearities are classi�ed according to their source in the model mathematics of the mechanics of
continuous and correlated media with the physical system. For structural analysis there are two sources
of non-linear behavior: Geometric non-linearity (the change in geometry caused by large deformation).
Constitutive non-linearity (the material behavior which depends on the strain). In the biomechanical
domain, the hyper-elastic tissues have a non-linear behavior [40]. It is necessary to develop reliable
and e�cient solving algorithms to perform deformations imitated to reality. For FEM, classical solving
algorithms are incremental and iterative algorithms. However, the algorithms of resolution depend in
a general way on the type of nonlinear problem which one wishes to treat. The iterative incremental
method is used for this type of problem. A balance correction is introduced on each increment using an
iterative process. This correction can be done in several ways according to the type of sti�ness matrix
used. There are several iterative incremental methods which the best known is that of Newton-Raphson
[11, 67]. The Newton-Raphson method recompute the tangent sti�ness matrix with each iteration for
solving the problem. This method has fast convergence, but its main drawback lies in the computation
time of the update of the tangent sti�ness matrix at each iteration. So, Liu et al. [41] proposed a
quasi-Newton method which allows an e�cient simulation of a large class of hyperelastic materials. Bai
et al. [4] used the Newton-Raphson as a solver for quasi-analytic inverse kinematics approach of the 6
degree of freedom manipulator in the Da Vinci surgical robot and other similar systems. Wang et al. [73]
presented a numerical solver to solve the problem of nonlinear equations in the dynamics of deformation
of blood vessels. They used the hyperelastic continuum model, and a nonlinear solver based on �nite
element discretization.

1.7 Problems related to the design of surgical simulators

1.7.1 Introduction

A surgical simulator uses geometric and physical modeling of human tissue to model biomedical infor-
mation. Then, it returns this information to the user through a multimodal interface, with visual and
haptic feedback [21]. The problems observed during the realization of these simulators are the geometric
modeling. Also, the modeling of the contacts between the virtual instruments and the soft tissues as
well as the biomechanical deformation of the soft tissues for the physic modeling. In the literature we
�nd several mathematical models have been proposed in this context which includes two antagonistic
elements: the realism of the simulation and the calculation time [57, 5]. In addition, the user interface
of the surgical simulator is essential for e�ective training, as surgeons act as if they were operating on
a real patient (�gure1.6). Sight and touch are the two main senses for producing compelling visual and
haptic rendering [64, 34]. In this case, it is important to give a realistic view of the deformations and
forces, otherwise the surgeon may learn inappropriate procedures. As well as, the constraints of real-time
realization which are essential for surgical simulation systems. Where, the �rst constraint depends on
the speed of communication between the di�erent elements of the system, while the second constraint
depends on the complexity of the geometry and the physical models and calculation algorithms[17, 63].
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Figure 1.6: Block diagram of surgical simulator.

1.7.2 Problem related to the haptic feedback

Haptic feedback is the vibratory sense of touch that is used as a communication between the controllers
and the user. In surgery, haptic feedback refers to the sense of touch that a surgeon feels during surgery
(�gure 1.7). Integrating haptic feedback into simulators leads to better performance and operational skills
[68]. The problem with using haptic feedback in simulators is that it requires expensive research and
analysis to determine its necessity [59]. Therefore, we �nd the haptic simulator expensive. Among the
critical found in the haptic feedback are sensitivity to noise, high cost and di�culty of implementation,
and ability to be used in surgical simulators [27].

Figure 1.7: Block diagram of haptic feedback.

1.7.3 Problem related to the visual feedback

In a surgical simulation, the user must feel the haptic and visual interactions in a simulation test (�gure
1.8). There is a fair amount of research focused on visual feedback in the literature. But the problem
is that the methods proposed in this context are not based on physics [29]. In real time, the simulator
must provide tens of millions of images in a fraction of a second for better visualization and this is the
known problem in realistic simulators. however, these con�icting requirements are di�cult to meet [79].
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Kara et al. [32] proposed a mechanism based on computer vision to detect and recognize objects and to
apply an optimal hand gesture through visual feedback. In this work we use a Headset HMD.

Figure 1.8: Block diagram of visual feedback.

1.7.4 Problem of soft tissue characterization

In hyperelasticity, three problems are rising. The classical problem of geometry, The identi�cation of the
constitutive laws of the material as well as the reconstruction of the force. In the problem of geometry,
the objective is to calculate the displacement �eld u, the strain �eld E as well as the stress �eld S

undergone by the material. In this case, the problem of identi�cation is to know the geometry, the
boundary conditions and the nature of the constitutive equations. In the problem of identifying the
constitutive laws of material, the objective is to �nd the constitutive parameters and the stress �eld S

after knowing the geometry, the limiting conditions, the nature of the constitutive equations and the
�elds E and u. In the problem of reconstruction of the force, the objective is to �nd the distribution of
the force on the geometry as well as the stresses S in the material by knowing the �elds u and E , the
limiting conditions in terms of support, the nature of the constitutive equations as well as the parameters
of these equations [42, 2]. The simulation of soft tissues poses certain di�culties related to the modeling
and highly realistic training of these tissues. In modeling, the identi�cation of soft tissue characteristics
is the �rst critical factor to be found. Where, the modelization take account to compression, tension
and shear. For example, the mechanical characterization of hepatic tissue is of great interest in the
management of the liver because the di�erent forms of deformation subjected to the liver tissue exhibit
di�erent mechanical characteristics [76, 26].
Many models have been developed to represent the mechanical behavior of hyperelastic materials. The
modeling of soft tissue behavior requires nonlinear constitutive laws (see �gure 1.9). The most common
nonlinear constitutive laws are limited by studies of identi�cation of model parameters from experimen-
tal tests. These laws are de�ned by a speci�c strain energy function W . The most popular non linear
constitutive laws are summarized in table 1.1.
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Figure 1.9: Stress, Strain and Strain Energy Density.

Table 1.1: Hyperelastic material models

Phenomenological models
Fung W = 1

2 [a(
∑3

i=1 λ
2
i − 3) + b(e(C1(

∑3
i=1 λ2

i−3)) − 1]

Mooney-Rivlin W = C10(I1 − 3) + C01(I2 − 3) + 1
D (J − 1)

Ogden W =
∑N

i=1
2µi

α2
i
(λαi

1 + λαi
2 + λαi

3 − 3) +
∑N

i=1
1
Di

(J − 1)2i

Polynomial W =
∑N

ij=0 Cij(I1 − 3)i(I2 − 3)j +
∑m

i=1 Di(J − 1)2i

Saint Venant-Kirchho� W = λ
2 [tr(E )]2 + µtr(E 2)

Yeoh W =
∑3

i=1 Ci(I1 − 3)i +
∑3

i=1
1
Di

(J − 1)2i

Mechanistic models
Neo-Hooken W = C10(I1 − 3) + 1

D (J − 1)2

Arruda-Boyce W = µ
∑5

i=1
Ci

λ2i−1
m

(Ii1 − 3i) + 1
D (J

2−1
2 − ln(J))

Where Cij and Di represents the material constants. J is elastic volume ratio. N is number of terms
in strain energy function. µi,αi are characteristic constants of the material and λi represent the principal
stretch ratio.

For Lagrangian strain, the strain energy density is de�ned using the strain invariants or that of the
strain tensor. The three invariants of the right Cauchy-Green strain tensor C are given as:

C = FTF (1.38)

I1 = trC = λ2
1 + λ2

2 + λ2
3 (1.39)

I2 =
1

2

[
(trC)2 − tr(C2)

]
(1.40)

I3 = det(C) (1.41)

Where F is the deformation of Gradient and λ2
1 , λ2

2, λ
2
3 are three eigenvalues of C.

For a large isostatic modulus of elasticity (Bulk's modulus), we can separate E into two parts: A
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distortion part (contains the invariants I1, I2). A dilation part (contains the third invariant I3). In
order to separate the distortion part from dilatation, it is necessary to introduce the so-called reduced
invariants, J1 , J2 , and J3, de�ned by:

J1 = I1I
− 1

3
3 (1.42)

J2 = I2I
− 2

3
3 (1.43)

J3 = I
1
2
3 (1.44)

The derivatives of the reduced invariants with respect to Lagrangian strain can be written as:

J1,E = I1,E (I3)
−1/3 − 1

3
I1(I3)

−4/3I3,E (1.45)

J2,E = I2,E (I3)
−2/3 − 2

3
I2(I3)

−5/3I3,E (1.46)

J3,E =
1

2
(I3)

−1/2I3,E (1.47)

Where

I1,E = 2I (1.48)

I2,E = 2(I1I−C) (1.49)

I3,E = 2I3C
−1 (1.50)

Where I is a 3× 3 identity tensor.
Several works have studied the mechanical behavior of hyperelastic materials. The major problem that
is recognized in these studies is the identi�cation of the mechanical parameters of soft tissue for di�erent
forms.
Hostettler et al. [28], proposed a method to compute a deformation �eld from skin position and a
modelling of the diaphragm motion. They identi�ed the Poisson's ratio and the Bulk modulus of the
liver and kidneys in vivo and compared it to those in vitro available in the literature.
Boubaker [7], studied the nonlinear elastic behavior of pelvic tissue using the Mooney-Rivlin and Ogden
model, and the identi�cation of the parameters of these organs. He used a traction machine as measuring
instrument (see �gure1.10). Zwicki-line allows to perform tensile/compression tests up to 2.5 kN and
torsion up to 5 Nm with very wide speed ranges and satisfactory speci�cations in terms of displacement
and force.
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Figure 1.10: ZWICKI-LINE 2.5kN-5 Nm [7].

Cecile [18], studied the mechanical behavior of the liver. She modeled the structures implemented in
the liver by di�erent types of behavior. She performed tests on a compression device (see �gure 1.11).
This allows the observation of behavior of the entire liver in compression in a non-anatomical position.

Figure 1.11: Experiment test of compression liver [18].

1.7.5 Addressed problem: Convergence speed and accuracy of nonlinear de-

formations

Among the main requirements in the construction of the surgical simulator, speed and precision in the
mechanical response to organ deformations. The response of the deformation must be physically realistic
and calculated in the real time to allow the interactions of the user with the virtual body such as the
insertion of a needle or the cutting [19]. The di�culty arises on the modeling of organs which comes from
the complexity in terms of composition of soft tissue materials. This leads to non-linear characteristics
of the deformation of these tissues. Geometric and material non-linearities complicate problem solving
and make it costly in terms of calculation. In this topic, several researchers have proposed techniques to
improve the speed of convergence with great precision [31, 16]. Ren et al. [61] have built an intelligent
simulation platform for venous surgery which includes a transformation based on the spring-mass. They
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viewed the vessel as a soft tissue surface model with a uniform mass distribution, which can also be
divided into grids. They subdivided the grids to improve accuracy and adopted the structure of the
grid topology to improve performance in real time. They state that the �nite element method has good
stability and high precision. But, it found a di�culty in optimizing the cost of calculation and in the
implementation. In our work we show that the FEM method can be faster and keep its stability and
precision. Zhang et al. [77] presented a formulation of bio-heat transfer under the e�ect of soft tissue
deformation for the rapid or near real-time prediction of tissue temperature, based on a fast explicit
dynamic �nite element algorithm for the transfer transient heat. Xie et al. [74] proposed an approach that
combines the traditional nonlinear �nite element method and nonlinear Kalman �ltering to address both
physical �delity and real-time performance for soft tissue modeling. This approach de�nes mechanical
tissue deformation as a nonlinear �ltering process for the dynamic estimation of nonlinear deformation
behaviors of biological tissues. Wang et al. [72] proposed a technique for real-time realization. They
introduced a screening coe�cient to �lter the deformed part of the mesh. Only this part which will be
treated using the nonlinear FEM model. The remaining of the mesh is �xed. This method optimized
the computation cost and improved the execution time. The downside of this method is that the strain
and stress of a soft tissue which are not physically realistic. In our work, we use the initialized value of
the tangential sti�ness matrix for the remaining part instead of �xing them.

1.8 Conclusion

This chapter, de�ned The biomechanical modeling of hyperelastic tissues in the continuous medium. The
geometrical and physical nonlinearity of these tissues. The resolution of nonlinear deformation problem
is treated by an iterative process the best known is that of Newton-Raphson. The model of the organ
must be represented by a discretized mesh to solve its problems iteratively. The nonlinear �nite element
method is the most precise and preferable method for the majority of researchers. At the end, the main
problems found in the conception of a surgical simulator are presented. The �rst problem that can be
noted is the geometric and physical modeling of the human body. The expensive research and analysis
for realizing the haptic and visual feedback. Also, The determination of the mechanical characteristics
of biological tissues.
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Chapter 2

Numerical convergence of

Newton-Raphson algorithms

2.1 Introduction

In this chapter, we present numerical convergence method for hyperelastic soft tissue deformation. Hy-
perelasticity leads to nonlinearity of deformations. We use a nonlinear FEM for modeling the hyperelastic
soft tissue. The complex geometry model requires the implementation of robust and e�cient resolution
methods in terms of computation time. This problems are solved by an iterative process. The famous
method used for solving the nonlinear problems is that of Newton-Raphson. Then, we propose our
contribution for checking the convergence of solution by Kantorovitch's theorem.

2.2 Preliminaries

Let us denote Ω0 ⊂ Rn the domain occupied by the target organ.

De�nition of Banach space: For any set f and any Banach space E, the space IB(f,E) of bounded
maps from f to E, endowed with the norm of uniform convergence.

De�nition of Hilbert space: An inner product space which is complete with respect to the norm
induced by the inner product is called a Hilbert space. Let y ∈ Rn then ∥y∥2 =< y, y >=

∑n
i=1 |yi|2 is

the L2-norm on Rn.

Let us consider L2(Ω0) space of Hilbert with the inner product. For f = (f1, f2, ..., fn)
T ∈ Rn, and

g = (g1,g2, ...,gn)
T ∈ Rn with x = (x1, x2, x3)

T ∈ Ω0. The inner product is as follow:

< f,g >=

∮
Ω0

n∑
i=1

fi(x)gi(x)dx , ∥f∥2L2 =< f, f > , f,g ∈ L2(Ω0) (2.1)

De�nition of Sobolev spaces: Sobolev spaces are functional spaces particularly suited to solving
partial di�erential equation problems.
Let Ω0 be any open of Rn. We de�ne the Sobolev space V by:

V(Ω0) = {f ∈ L2(Ω0)|f(x) = 0, for all x ∈ ∂Ω0, ∂f ∈ L2(Ω0)}. (2.2)
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Where ∂f is a partial derivative of f in the weak sense.

De�nition of Frèchet derivative: Let IB(f,E) is normed vector spaces. f ′(x) is called the frèchet
derivative at x ∈ E if there exist the linear operator h → f(x)h such that

lim
∥h∥→0

∥f(x+ h)− f(x)− f ′(x)h∥
∥h∥

(2.3)

De�nition of a tensor function: Consider two tensors X and x which belong to the space Rn. A
mapping of the tensor X ∈ Rn into x ∈ Rn is called a tensor function and denoted by M (x).

If M (x), x ∈ Ω0, is a tensor functional, then its L2-norm can be de�ned as

∥{M (x)}∥L2 = ∥∥M (x)∥F ∥L2 (2.4)

Where {.} represent tensor and ∥.∥F is the Frobenius norm. In this thesis, the tensor can be either of
order 2 (e.g. the deformation gradient) or of order 4 (e.g. the constitutive tensor).

De�nition of Frobenius norm: Let a matrix A (m × n). The Frobenius norm is de�ned as the
square root of the sum of the absolute squares of elements A.

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 (2.5)

Lipschitz condition: Function f satis�es a Lipschitz condition in u on the set Ω0 ⊂ Rn if a constant
γ > 0 exists with

∥f(u)− f(ū)∥ ≤ γ∥u− ū∥, for allu and ū ∈ Rn (2.6)

Upper bound for inverse matrix: Let the matrix A ∈ Rn×n ant it is invertible. There exists
η > 0 such that:

∥A−1∥ ≤ η (2.7)

Taking V(Ω0) the L2 Sobolev spaces with the inner product de�ned in eq 2.1. V(Ω0) represent the
Sobolev spaces occupied by the target organ. In a biomechanical framework, the organs of the human
body are attached by physiological links and clips (ligaments, tendons) see �gure 2.1.
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Figure 2.1: Liver anatomy showing the location of ligaments [48].

For that, we consider the space V0(Ω0) such as:

V0(Ω0) = {f ∈ V(Ω0)|f(x) = 0, for all x ∈ Γ ⊂ ∂Ω0)}. (2.8)

Where ∂Ω0 is the boundary of the organ and Γ is the �xed part. According to the continuous Sobolev
injection [9, 1], the space V0 is included in L2(Ω) (V0(Ω0) ⊂ L2(Ω)). For solving the problem in
continuum modeling f(x) = 0, there is several method found in the literature. In the next section, The
�nite element method is used for solving this problem.

2.3 Newton-Raphson method

The Newton-Raphson method is an algorithm for �nding the roots of nonlinear equations by successive
linear approximations. The equilibrium equation eq 1.18 is nonlinear in the displacement �eld u.

P(u) =

∮
Ω0

W (E )dΩ−
∮
Ω0

uT f bdΩ

We want to �nd the �eld of displacements u such that P(u) = f . Where, the potential energy P(u)

has a nonlinear function of u and f is a vector of known quantities. By using Newton's method in the
following way [33, 38]: The �eld of displacements starting from the i th iteration ui is known and it is
necessary to �nd the increment ∆ui to �nd the �eld of displacements ui+1 at the i + 1 th iteration of
Newton's method by approximating using the �rst-order Taylor series:

P(ui+1) ≈ P(ui) + K i
T (u

i).∆ui = f (2.9)

Where K i
T (u

i) is the Jacobian matrix at i th iteration [33]

K i
T (u

i) ≡ (
∂P

∂u
)i (2.10)

The new approximate solution is obtained as follows:

ui+1 = ui +∆ui (2.11)

Now, we can refer the di�erence between the applied force and the internal force as a residue. The
residual of linearized equation is as follow:

Ri+1 = f − P(ui+1) (2.12)

31



Then, the iterative process calculates the solution ui+1. If the residue is less than a given tolerance, this
solution may be accepted as a precise solution and the process stops. Otherwise, the process is repeated
until this residue becomes very small. The convergence criterion is expressed as follows:

conv =

∑n
j=1(R

i+1
j )2

1 +
∑n

j=1(fj)
2
< ϵ (2.13)

The algorithm of Newton-Raphson method is as follows:

Algorithm 1 Newton-Raphson algorithm

Initialize u0, k, max_iteration, tolerance
Calculate Jacobian matrix (KT ) eq. (2.10)
Calculate residual (R) eq. (2.12)
Calculate convergence (conv) eq. (2.13)
while (conv > tolerance & k < max_iteration) do

if conv ⩽ tolerance then
stop.

end if

if (k > max_iteration) then
stop, with error message

end if

Calculate solution increment ∆u
Update solution by u = u+∆u
Calculate convergence (conv) eq. (2.13)
Set k = k + 1

end while

Example

Let us consider system of 2 nonlinear equations with 2 unknowns variable. Where:

g : R2 → R2

g(u) = [g1(u) g2(u)]
T

With u = [u1 u2]
T . The solutions that satisfy both equations are the intersections of the contour curves

of both g1(u1, u2) and g2(u1, u2). We consider the Taylor expansions of the 2 functions:

gi(u+∆u) ≈ gi(u) +

2∑
j=1

∂gi(u)

∂uj
∆uj (i = 1, 2) (2.14)

So,

g(u+∆u) ≈

[
g1(u)

g2(u)

]
+

[
∂g1
∂u1

∂g1
∂u2

∂g2
∂u1

∂g2
∂u2

][
∆u1

∆u2

]
(2.15)

= g(u) + Jg(u)∆u (2.16)

Where, J(u) is the Jacobian matrix. By assuming g(u+∆u) = 0, we can �nd the roots as u+∆u, where
∆u can be obtained by solving the following equation:

∆u = J(u)−1(g(u+∆u)− g(u)) = −J(u)−1g(u) (2.17)
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And the root can be found from any starting point u as:

u+∆u = u− J(u)−1g(u) (2.18)

We take for the vector function g:

g1(u1, u2) = u2
1 + 2u1u2 − u1 = 0

g2(u1, u2) = u2
2 + 2u1u2 − u2 = 0

Where,

J(u) =

[
2u1 + 2u2 − 1 2u1

2u2 2u2 + 2u1 − 1

]

Figure 2.2: Function g in 3D

Figure 2.2 represent the mesh of the function g in 3D. The solutions exist in the intersections of the
contour curves of both g1(u) and g2(u).
Let us consider in the �rst test, the initial values are u0 = [0.2, 0.1]. And in the second test, the
initial values are u0 = [0.85, 0.35]. With convergence criterion (conv = 10−5) and stop criterion
(max_iteration = 10).
The �rst test result with u0 = [0.2, 0.1]:

Iteration 1 : u1 = −0.65000000000000057732, u2 = −0.45000000000000051070

Iteration 2 : u1 = −0.24258544652701230504, u2 = −0.17786659316427810840

Iteration 3 : u1 = −0.06528476968321939022, u2 = −0.05144660209970475240

Iteration 4 : u1 = −0.00816984296660905329, u2 = −0.00691021332387476567

Iteration 5 : u1 = −0.00017196010327221421, u2 = −0.00015365106811884594

Iteration 6 : u1 = −0.00000008233409869309, u2 = −0.00000007637731775707

Iteration 7 : u1 = −0.00000000000001935581, u2 = −0.00000000000001841040
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The second test result with u0 = [0.85, 0.35]:

Iteration 1 : u1 = 0.81136363636363639795, u2 = 0.10681818181818181213

Iteration 2 : u1 = 1.12168872806060271330, u2 = −0.06562528280994642249

Iteration 3 : u1 = 1.01624470697865687541, u2 = −0.00857178236204569205

Iteration 4 : u1 = 1.00037706830737005426, u2 = −0.00019555153336901603

Iteration 5 : u1 = 1.00000021293148022572, u2 = −0.00000010910928069496

Iteration 6 : u1 = 1.00000000000006794565, u2 = −0.00000000000003456074

The solution converges at the 7th iteration in the �rst test see �gure 2.3 and at the 6th iteration in the
second test �gure 2.4.

Figure 2.3: Convergence of solutions g(u1, u2) with Newton-Raphson method. Initial conditions: u1(0) =
0.2 and u2(0) = 0.1

Figure 2.4: Convergence of solutions g(u1, u2) with Newton-Raphson method. Initial condition: u1(0) =
0.85 and u2(0) = 0.35

The choice of the initial conditions in�uences the convergence of the algorithm. The 2 solutions can
be obtained after 2 or 3 iterations thanks to the good choice of the initial conditions.

2.3.1 Reviewing of the classical theorem of convergence

The classical method study the solution of a nonlinear problem by solving a sequence of linear problems.
In the Newton-Raphson method, the solution of linear problems is based on necessary assumptions
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such that the Jacobian matrix must be invertible over the whole domain. For this reason, standard
convergence theorems generally require a-priori the existence of the inverse of the Jacobian matrix and
that is bounded[22]. For the inverse of the Jacobian matrix KT (u)

−1 there exists η > 0 where:

∥KT (u)
−1∥ ≤ η (2.19)

From a computational point of view, The theoretical quantity η may be di�cult to obtain in the domain
Ω0. In this case, a local estimation sample seems preferable such as:

∥KT (ū)
−1∥ ≤ η0 (2.20)

Where ū ∈ V0(Ω0) is the approximate solution exists in the admissible solution space, and η0 is the
upper bound quantity of the local estimation of KT . In order to study the a�nity properties of the
above Newton iteration, some information about the second derivative is needed. The classic standard
form for including this information is via the Lipschitz condition with constant γ (γ > 0) as follows:

∥KT (u)− KT (ū)∥ ≤ γ∥u− ū∥ with u, ū ∈ Ω0 (2.21)

the two assumptions eq.2.20 and eq.2.21 are necessary in the method of Newton-Raphson to show the
existence and the uniqueness of a solution. Moreover, the quadratic convergence of the iterations of
Newton-Raphson in a neighborhood characterized by a quantity known as of Kantorovich such as:

η0γ <
1

2
(2.22)

2.3.2 Kantorovich's theorem

Newton's method has become ubiquitous in numerical and symbolic calculations. On speci�c functions
such as degree two polynomials over real numbers, the behavior of this operator can be simple, but in
general it is di�cult to determine whether the iterations of a given point converge to zero or not[39].
More precisely, in theory, it is classic for Newton's sequences to quadratically converge if their initial
value u0 is su�ciently close to a simple zero u∗. But for practice, this information is not su�cient,
and it is necessary to quantify what is meant by su�cient. The famous hypothesis used as a su�cient
condition for the convergence of Newton's method is from Kantorovich [60]. Kantorovich's theorem is
a mathematical statement on the semi-local convergence of Newton's method. This theorem is stated
in Banach spaces-well aware of the fact that a Banach space formulation is not directly applicable to
numerical methods: in the numerical solution of the equations of nonlinear operators, we must take into
account both function and derivative approximations. Consequently, Newton's inaccurate methods in
Banach spaces are the correct theoretical framework for studying the convergence of algorithms.
Kantorovich's theorem for continue nonlinear systems is as follows:

Theorem 1 Kantorovich's theorem asserts that the iterative method of Newton, applied to a most gen-
eral system of nonlinear equation f(u) = 0, converges to a solution u∗ near some given point ū. f is
de�ned in V0 ⊂ IB. Where IB is Banach space.
Assume for some ū ∈ V0 that [f ′(ū)]−1 exists and that:

∃α > 0 : ∥f ′(ū)−1f(ū)∥L2 ≤ α. (2.23)

∃β > 0, ∀u, v ∈ IB(ū, 2α) : ∥f ′(ū)−1 (f ′(u)− f ′(v)) ∥L2 ≤ β∥u− v∥L2 . (2.24)
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if βα ≤ 1
2 , then f has a unique solution u∗ in the ball IB(ū, ξ = 1−

√
1−2αβ
β )

The �rst condition eq 2.23 is for bounded the error estimate of the nonlinear equation f(u) = 0. The
second condition eq 2.24 is for veri�ed the Lipschitz condition. Under the two conditions, we can obtain
the error estimates, the regions of existence and uniqueness of solutions and know that ū is an initial
convergent point.

Example

Taking the previous example. For the �rst condition eq 2.23 we have:

∥g′(ū)−1g(ū)∥L2 ≤ ∥g′(ū)−1∥L2∥g(ū)∥L2 . (2.25)

≤

∥∥∥∥∥
[
2ū1 + 2ū2 − 1 2ū1

2ū2 2ū2 + 2ū1 − 1

]∥∥∥∥∥
L2

∥∥∥∥∥
[
ū2
1 + 2ū1ū2 − ū1

ū2
2 + 2ū1ū2 − ū2

]∥∥∥∥∥
L2

(2.26)

For the second condition we must prove that g(u) is β-Lipschitz. Using de�nition in [3] we have

∀u, v ∈ R2 : ∥g′(ū)−1 (g′(u)− g′(v)) ∥L2 ≤ ∥g′(ū)−1∥L2∥u− v∥L2 . (2.27)

Where
β = max(∥g′(ū)−1∥L2) (2.28)

For the initial conditions ū = [0.85 0.35] we have α = 0.2462, β = 2.6866, then αβ = 0.6615 > 1
2 so the

condition of Kantorovich's is not veri�ed. But, for the initial conditions ū = [0.9 0.2] we obtain α = 0.19,
β = 2.4892, then αβ = 0.4730 < 1

2 and ξ = 0.3084 so the theorem is veri�ed. Figure 2.5 show the better
convergence of solution comparing with �gure 2.4.

Figure 2.5: Convergence of solutions g(u1, u2) with initial condition: u1(0) = 0.9 and u2(0) = 0.2

2.4 Newton-Raphson algorithm with �nite element for solving

nonlinear minimum energy problem

2.4.1 Solving continuum mechanics with Finite element

The famous method to solve nonlinear problems in continuum mechanics is the �nite element. This
method discretizes the domain Ω0 into M geometrical element with N points(x1, .., xN ∈ Ω0). These
points are named the nodes of the organ (see �gure 2.6).
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Figure 2.6: Liver representation with FEM.

So, the sub-discretized organ becomes Ωh = ∪M
e=1ω

e
h ⊂ Ω0. Where ωe

h is the e-th element which is
composed of n nodes (e.g 4 nodes for tetrahedral element or 8 nodes for hexahedral element).

Figure 2.7: Representation of tetrahedral and hexahedral element.

Let the vector (φ1, φ2, .., φN ) a base of Vh, where Vh(Ωh) represent the Sobolev spaces of the sub-
discretized organ. We can de�ne it as follow [8]:

Vh(Ωh) = span(φ1, · · · , φN ) ⊂ V0(Ω) (2.29)

This vector is known by the shape functions and is de�ned as φI : R3 → [0, 1] with I = 1, .., N .
These shape functions are associated to the nodes of the mesh and must satisfy certain properties as:

φI(xI) = ϵij (2.30)∑N
I=1 φI = 1 (2.31)

Where ϵij is the kronecker symbol and xI is the 3D coordonate of node I. By projection of the space
V0(Ω) onto a �nite dimensional Hilbert space Vh(Ωh), we de�ne fh where is the projection of f . Hence,
for each fh ∈ Vh(Ωh) there exist its projection f ∈ V0(Ω) such that the projection can be written as

Πh : V0(Ω) → Vh(Ωh) : f 7→ Πh(f)(x) = fh(x) =

N∑
I=1

f(xI)φI(x), x ∈ Ω0 (2.32)
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Where, the projection fh(x) can be represented by the vector Fh as

Fh = (f(x1), · · · , f(xN ))
⊤ (2.33)

So, we can denote the projected version of a continuous functional f as follow:

fh = Πh(f) (2.34)

According to the notation used in section 1.3. Let us de�ne the displacement u (see �gure 2.8). Where,
u ∈ V0(Ω) caused by the deformation of the organ at rest Ω0.

Figure 2.8: Representation of displacement �eld u.

The discretized displacement is de�ned as uh ∈ Vh(Ωh) where can be represented by the 3N -vector
as

U =
(
u(x1)

⊤, · · · , u(xN )⊤
)⊤

(2.35)

U is called the global displacement vector and the displacement at node I, 1 ≤ I ≤ N is represented by
u(xI) ∈ R3.

To solve the nonlinear problem of eq 1.31 de�ned in section 1.3.2. In �rst step, it is necessary to
calculate the analytical linearization of the residue with respect to u. Next, using the �nite element
discretization to approximate the integrals with summations over the reference domain Ω0. Finally, an
iterative process used to �nd the solution of the discrete problem.

Linearization

To solve the nonlinear problem using an iterative process, it is necessary to linearize the nonlinear
functions. Hence, we know that the residual eq 1.28 is nonlinear in the displacement u. For linearize it
we consider a displacement u such as u ∈ V0(Ω). The linearized residual is de�ned as follows [33]:

r(u, û) = a(u, û)− l(û) (2.36)

r(u, û)δu =
∂a

∂u
δu+ a(u, û)− l(u) (2.37)
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Where δu = u− u. ∂a
∂u is the Fréchet derivative of internal form a at u with respect to the displacement

u. We note the Fréchet derivative of a by Fa.
So, the linearization of the residual can be written as

r(u, û)δu = Fa(u, û) δu+ a(u, û)− l(û), for all û ∈ V0(Ω0), (2.38)

Using the relation in eq1.30 the Fréchet derivative of the nonlinear operator R′(u) with a bilinear
form {·, ·} can be de�ned as follows{

R′(u), û
}
:= Fa(u, û), for all û ∈ V0(Ω0). (2.39)

The formal expression of Fa(u, û) is derived from the expression of a(u, û) as follows [33]

Fa(u, û)δu =

∮
Ω0

sym(∇0û
⊤F (u)) : D(u) : sym(∇0δuF (u)) + S (u) : sym

(
∇0û

⊤∇0δu
)
dΩ (2.40)

Where sym(.) is the symmetry operator for matrices. ∇0 is the gradient operator computed with respect
to the coordinate frame at rest.

Discretization

Using the discretized domain for represented an organ by a 3D mesh. Each element of mesh is represented
by 3n number of DOF (see �gure 2.9). All elements of the mesh are represented by 3N number of DOF.

Figure 2.9: Nodal representation of tetrahedral element.

Let be the displacement vector Uh

e
∈ R3n associated for each element which takes the nodes' element

from rest to deformed state. Let consider the global nodal displacement vector Uh ∈ R3N constructed
by row-wise concatenating the N displacements of each node.
The change from local element index to global index is done by mapping index η. Where, it takes the
element index e, 1 ≤ e ≤ M , as well as the DOF index of the local element i, 1 ≤ i ≤ 3n and maps it to
the global DOF by η(e, i), 1 ≤ η(e, i) ≤ 3N . We know in the �nite element method that each element has

an elementary tangential sti�ness matrix κωe(Uh

e
) of size 3n × 3n. For a given displacement Uh

e
, the

nonlinear strain properties are encoded in the elementary sti�ness matrix. For convenience, we consider
an extension of κωe to Kωe which is of size 3N × 3N . This extended matrix is obtained by �lling with
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zeros the extended rows and columns which can be written as :

Kωe(Uh)[j, l] =

{
κωe(Uh

e
)[j′, l′], if (j, l) = (η(e, j′), η(e, l′))

0, else.
, 1 ≤ i, j ≤ 3N, 1 ≤ i′, j′ ≤ 3n. (2.41)

Figure 2.10: Mapped the tangential sti�ness matrix of tetrahedron element into the global tangential
sti�ness matrix.

After calculation of the elementary tangential matrices. An assembly process will gather all these
matrices in a global tangential sti�ness matrix KT (Uh) of size 3N × 3N (see �gure 2.10). If the mesh
is deformed according to an external force or an imposed displacement the total behavior of this mesh
will be encoded in the total tangential sti�ness matrix. We can express the assembly of the elementary
tangential matrices by the following formula:

KT (Uh) =

M∑
e=1

Kωe(Uh

e
). (2.42)

Thus the discretization of eq 2.40 can be written as [33]

Πh

(
Fa(u, û)δu

)
:= Fa,h(uh, ûh)δuh = Û⊤

h KT (Uh)∆Uh. (2.43)

Where ∆Uh = U −Uh is the global incremental displacement. This equation gives a direct link between
the formal projection and its numerical representation. Replaces eq 2.43 in the eq 2.39, it gives us the
numerical de�nition of the Fréchet derivative R′

h(uh)

R′
h(uh) := KT (Uh) (2.44)

So, the numerical estimation for the L2-norm of the Fréchet derivative R′
h(uh) and its inverse are as

follow:

∥R′
h(uh)∥L2 =

∥∥∥∥KT (Uh)∥F
∥∥∥
L2

, (2.45)
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∥R′
h(uh)

−1∥L2 =
∥∥∥∥KT (Uh)

−1∥F
∥∥∥
L2

. (2.46)

Now, using the relation eq 1.30 we can write{
R(u), û

}
:= a(u, û)− l(û) (2.47)

So, the residual eq 2.38 can be write as

r(u, û)δu = Fa(u, û) δu+
{
R(u), û

}
(2.48)

Using the global tangential sti�ness matrix to discretize the linearized residual 2.48, we obtain

{ΠhR(u),Πhû} := Û⊤
h KT (Uh)∆Uh + Û⊤

h R(Uh). (2.49)

This equation is valid for every û ∈ V0(Ω0), therefore we obtain the following classic formula

Rh(uh) = KT (Uh)∆Uh +Rh(uh). (2.50)

The computation of K and R are based on three task. The mesh of an organ represented by FEM
requires the shape functions (linear, polynomial, etc.), the type of the constitutive model (Mooney-
Rvilin, Saint Venant-Kirchho�, etc.) and the type of primitives that make up the element (tetrahedron,
hexahedron, etc.). We can write the
(iii) Iteration. The generic iterative algorithm can be de�ne with the following steps

1. k = 0, Uh,0 = 0, R(uh,0), KT (Uh,0), [initialization];

2. ∆Uh,k = −
(
KT (Uh,k)

)−1

R(uh,k), k > 0, [Computing incremental displacement];

3. Uh,k+1 = Uh,k + ∆Uh,k, [Updating global displacement];

4. R(uh,k+1) , [Updating residual];

5. ∥R(Uh,k+1)∥L2 < ϵ, [Stop criterion].

6. KT (Uh,k+1) , [Updating tangential sti�ness];

7. k = k + 1 [Next increment];

8. go to line 2, [Loop];

So far, we have de�ned the discrete space using �nite elements to solve the problem in the continuous
medium. In the next section, we de�ne hypothesis that allow us to numerically evaluate the radius of
convergence.

2.4.2 Assumptions in the context of surgical simulation

The �nite element method formulated in displacement requires a convergence criterion when it is used
in nonlinear mechanics with iterative resolution algorithms. This convergence criterion aims to measure
the proximity of the stress �eld obtained with the equilibrium. Therefore, three hypotheses have been
proposed in this section to improve the radius of convergence. Let assume the following:
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Assumption 1 If f is continuously di�erentiable over Ω0 then there exists a positive constant c1 > 0

such that

∥{∇0f}∥L2 ≤ c1∥f∥L2 . (2.51)

This hypothesis control the L2-norm of the functional's gradient by the norm of the functional with a
positive non-null constant.

Assumption 2 If f is continuous over Ω0 then there exists a positive constant c2 > 0 such that

∥f∥L2 ≤ c2∥fh∥L2 . (2.52)

This hypothesis control the norm L2 of the functional by the projection of the functional (it represents
an interpolation error of order 0).

Assumption 3 Let us consider ρ(Ω0) is the volume of the continuous domain Ω0 and ρ(Ωh) is the
volume of the discretized domain Ωh. There exists c3 > 0 such that

ρ(Ω0) ≤ c3ρ(Ωh). (2.53)

This assumption limits the exact volume of the organ by greater value of the approximate discretized
volume. The control variables c1, c2 and c3 are used numerically during the experimental evaluation
of the convergence radius. For the chosen constants, we evaluate how close the approximate solution
is to the exact solution. The following lemma establishes an upper bound of the L2-norm of a tensor
functional given the above assumptions.

Lemma 1 Let us consider an element u ∈ V0(Ω) and its projection uh ∈ Vh(Ωh). If we consider
a continuous tensor functional M evaluated at u then there exists a constant c2 > 0 as de�ned in
assumption 3 such that

∥∥M (u)∥F ∥L2 ≤ c2

√
c3ρ(Ωh)∥Mh(uh)∥F . (2.54)

Where Mh is the projection of M onto Vh(Ωh).

Proof 1 On the one hand, we consider from assumption 3 that

∥∥M (u)∥F ∥L2 ≤ c2 ∥∥Mh(uh)∥F ∥L2 (2.55)

On the other hand, we have from equations 2.1 and 2.4

∥∥Mh(uh)∥F ∥2L2 :=

∮
Ω

n∑
i=1

{Mh(uh)}2i dΩ (2.56)

≤
n∑

i=1

{Mh(uh)}2i ρ(Ω0) (2.57)

≤ c3ρ(Ωh)∥Mh(uh)∥2F , by assumption 2. (2.58)

Combining 2.55 and 2.58 concludes the proof.

2.4.3 Contribution 1: Convergence checking with Kantorovich theorem

In this section, we compute the radius of convergence by using Kantorovich's theorem [37] as is discussed
in section 2.3.2. We recall this theorem with our notations as follows
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Theorem 2 Let us consider the nonlinear functional R : V0(Ω0) → V0(Ω0). We assume that for
ū ∈ V0(Ω0), the Fréchet derivative R′(ū) exists, is non-singular and satis�es:

∃α > 0 : ∥R′(ū)−1R(ū)∥L2 ≤ α. (2.59)

Furthermore, we assume the following

∃β > 0, ∀u,v ∈ IB(ū, 2α) : ∥R′(ū)−1 (R′(u)−R′(v)) ∥L2 ≤ β∥u− v∥L2 . (2.60)

If αβ ≤ 1
2 then problem 1.31 has a unique solution u∗ in the ball IB(ū, ξ = 1−

√
1−2αβ
β ).

The most di�cult task in using this theorem is to estimate ∥R′(ū)−1∥L2 . Where, we have no formal
expression which represents the inverse of the Fréchet derivative of the residue R′(ū). Fortunately, there
exists a lemma [50, 66] which allows to bound this inverse given that the discretized derivative of Fréchet
is bounded and given that the di�erence of these two linear operators is also bounded. We integrate this
lemma with our notations as follows

Lemma 2 Let ūh be the approximate solution of equation 1.31. Let us consider that the discretized
linear operator of the Fréchet derivative R′

h(ūh) is bounded and has a bounded inverse

∥ (R′
h(ūh))

−1 ∥L2 ≤ γ. (2.61)

Let's further assume that the di�erence between the linear operators R′(ū) and R′
h(ūh) is bounded

∥R′(ū)−R′
h(ūh)∥L2 ≤ η. (2.62)

If γη < 1, then R′(ū) is a bijection and

∥R′(ū)−1∥L2 ≤ γ

1− γη
. (2.63)

The upper bound of the Fréchet derivative of the residual R′(ū) is computed when the upper bounds
γ and η referenced in the inequalities 2.61 and 2.62 are estimated. Therefore, we have proposed the
following two propositions

Proposition 1 Given the conditions of lemma 2, the upper boundaries of inequalities 2.61 and 2.62 are
given by

1.

γ = c2

√
c3ρ(Ωh) ∥KT (Uh)

−1∥F . (2.64)

2.

η = 3c21c2

(
3c22 ∥{Fh(ūh)}∥2L2 ∥{Dh(ūh)}∥L2 + ∥{Sh(ūh)}∥L2

)
+ c2

√
c3ρ(Ωh) ∥KT (Uh)∥F .

(2.65)

Proof 2 1. To �nd γ it's simple, we take equation 2.46 and lemma 1 and we combine them. We
come out with this following formula

∥ (R′
h(ūh))

−1 ∥L2 ≤
∥∥∥KT (Uh)

−1∥F
∥∥
L2 (2.66)

≤ c2

√
c3ρ(Ωh) ∥KT (Uh)

−1∥F . (2.67)
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2. To �nd η, the �rst step is to �nd the upper bound of ∥R′
h(ūh)∥L2 which is similar to the previous

reasoning. We take equation 2.45 and lemma 1 and we combine them.

∥R′
h(ūh)∥L2 ≤ c2

√
c3ρ(Ωh)

∥∥∥KT (Uh)∥F
∥∥
L2 (2.68)

The second step, we �nd an upper bound for ∥R(ū)′∥L2 with applying the absolute value operator
|·| on both sides of equation 2.40 where leads to the following inequalities

|Fa(u, û)δu| = |
∮
Ω0

sym(∇0û
⊤F (u)) : D(u) : sym(∇0δuF (u)) + S (u) : sym

(
∇0û

⊤∇0δu
)
dΩ|, (2.69)

= |
∮
Ω0

{sym(∇0û
⊤F (u))}⊤⌊D(u)⌋{sym(∇0δuF (u))} + {S (u)}⊤{sym

(
∇0û

⊤∇0δu
)
} dΩ|,

(2.70)

≤ |
∮
Ω0

{sym(∇0û
⊤F (u))}⊤⌊D(u)⌋{sym(∇0δuF (u))}| + |{S (u)}⊤{sym

(
∇0û

⊤∇0δu
)
} dΩ| .

(2.71)

Where the operator ⌊·⌋ transforms the 4-tensor of D to a 2-tensor while preserving the initial contraction
product. In this case, the contraction products involving 2-tensors and 4-tensors in equation 2.69 are
transformed to matrix vector products in equation 2.70. Using the triangular inequality, we obtained the
derived 2.71. Applying Cauchy-Schwarz inequality [9] gives the following

|Fa(u, û)δu| ≤
∥∥∥{sym(∇0û

⊤F (u))}
∥∥∥
L2

∥∥∥⌊D(u)⌋{sym(∇0δu
⊤
F (u))}

∥∥∥
L2

+
∥∥∥{S (u)}⊤{sym

(
∇0û

⊤∇0δu
)
}
∥∥∥
L2

(2.72)

The L2-norm being submultiplicative [9], then the norm of the product is less than or equal the product
of norms

|Fa(u, û)δu| ≤
∥∥∥{sym(∇0û

⊤F (u))}
∥∥∥
L2

∥∥⌊D(u)⌋
∥∥
L2

∥∥∥{sym(∇0δu
⊤
F (u))}

∥∥∥
L2

+
∥∥{S (u)}

∥∥
L2

∥∥∥{sym(
∇0û

⊤∇0δu
)
}
∥∥∥
L2

(2.73)

Now we address the terms of the form sym(A⊤B) where A and B are matrices of dimension 3. Consider
the following derivation:

∥∥{sym(A⊤B)}
∥∥
L2 =

1

2

∥∥{(A⊤B +B⊤A)}
∥∥
L2 (2.74)

=
1

2

∥∥(I⊗A⊤){B}+ (A⊤ ⊗ I){B⊤}
∥∥
L2 (2.75)

≤ 1

2

(∥∥(I⊗A⊤)
∥∥
L2 ∥{B}∥L2 +

∥∥(A⊤ ⊗ I)
∥∥
L2

∥∥{B⊤}
∥∥
L2

)
(2.76)

≤ 1

2

(
3
∥∥{A⊤}

∥∥
L2 ∥{B}∥L2 + 3

∥∥{A⊤}
∥∥
L2

∥∥{B⊤}
∥∥
L2

)
(2.77)

≤ 3 ∥∥A∥F ∥L2 ∥∥B∥F ∥L2 (2.78)

Where, ⊗ denote the dyadic product and I is the identity matrix of dimension 3. Using this result in the
inequality terms eq 2.73, we �nd the following inequality

|Fa(u, û)δu| ≤ 3
(
3
∥∥{F (u)}

∥∥2
L2

∥∥{D(u)}
∥∥
L2 +

∥∥{S (u)}
∥∥
L2

)
∥{∇0û}∥L2

∥∥{∇0δu}
∥∥
L2 (2.79)

≤ 3c21

(
3
∥∥{F (u)}

∥∥2
L2

∥∥{D(u)}
∥∥
L2 +

∥∥{S (u)}
∥∥
L2

)
∥{û}∥L2

∥∥{δu}∥∥
L2 , by assumption 1.

(2.80)
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Thus, one can set

|Fa(u, û)| ≤ 3c21

(
3
∥∥{F (u)}

∥∥2
L2

∥∥{D(u)}
∥∥
L2 +

∥∥{S (u)}
∥∥
L2

)
∥{û}∥L2 ∥L2 . (2.81)

Given the de�nition 2.39 and replacing u by the approximate solution ū , we can put

∥R(ū)′∥L2 ≤ 3c21

(
3 ∥{F (ū)}∥2L2 ∥{D(ū)}∥L2 + ∥{S (ū)}∥L2

)
. (2.82)

Applying the link of passage from continuous to discrete entities by lemma 1, we obtain

∥R(ū)′∥L2 ≤ 3c21c2

(
3c22 ∥{Fh(ūh)}∥2L2 ∥{Dh(ūh)}∥L2 + ∥{Sh(ūh)}∥L2

)
. (2.83)

In this step, we use the triangular inequality on ∥R′(ū)−R′
h(ū)∥2L and the bounds found in eq 2.68 and eq

2.68. Finally, we �nd an upper bound of the norm of the di�erence between the continuous derivative of
the residual and its discrete version

∥R′(ū)−R′
h(ū)∥L2 ≤ ∥R′(ū)∥L2 + ∥R′

h(ū)∥L2 (2.84)

≤ 3c21c2
(
3c22 ∥{Fh(ūh)}∥2L2 ∥{Dh(ūh)}∥L2 + ∥{Sh(ūh)}∥L2

)
+ c2

√
c3ρ(Ωh)

∥∥∥KT (Uh)∥F
∥∥
L2

(2.85)

Proposition 2 1. if γη < 1 then we can de�ne the bounds of Kantorovich's theorem 2 as follows

α =
γ

1− γη

(
3c1c

2
2 ∥{Fh(uh)}∥L2 ∥{Sh(uh)}∥L2 + c2

∥∥{f bh}∥∥L2

)
. (2.86)

β = 27c31c
2
2c3ρ(Ωh)

γ

1− γη
max

uh∈IB(ūh,2α)
(∥Dh(uh)∥F ∥Fh(uh)∥F ) . (2.87)

Thus if αβ ≤ 1
2 , the exact solution of problem 1.31 is within the ball centered at the estimated displace-

ment ū and a radius estimated with ξ = 1−
√
1−2αβ
β .

Proof 3 To �nd α, it is necessary to establish an upper bound of the residual at the estimated displace-
ment. Using the triangular inequality and the equation 1.30, gets us

|[R(u), û]| ≤ |a(u, û)|+ |l(û)|, (2.88)

≤ |
∮
Ω0

S (u) : sym
(
∇0 û

⊤F (u)
)
dΩ|+ |

∮
Ω0

û⊤f b dΩ|, from eqs 1.25, and 1.26, (2.89)

≤
(
3c1 ∥{F (u)}∥L2 ∥{S (u)}∥L2 +

∥∥{f b}∥∥
L2

)
∥{û}∥L2 , from eq 2.78 and assumption 1.

(2.90)

Thus, we can put

∥R(u)∥L2 ≤ 3c1 ∥{F (u)}∥L2 ∥{S (u)}∥L2 +
∥∥{f b}∥∥

L2 , (2.91)

≤ 3c1c
2
2 ∥{F (u)h}∥L2 ∥{S (u)h}∥L2 + c2

∥∥{f bh}∥∥L2 . (2.92)

Using this result together with lemma 2 and proposition 2.1 we can infer α as follows

∥R′(ū)−1R(ū)∥L2 ≤ ∥R′(ū)−1∥L2∥R(ū)∥L2 , submultiplicity of L2 norm [9], (2.93)

≤ γ

1− γη

(
3c1c

2
2 ∥{Fh(ūh)}∥L2 ∥{Sh(ūh)}∥L2 + c2

∥∥{f bh}∥∥L2

)
, (2.94)

= α. (2.95)
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2. for �nding the estimate β, we must estimate the Lipschitz constant of the Frechet derivative of
R′(u) for all u ∈ IB(ū, 2α) we take the second derivative Fréchet [33] of the residue derived from
the equation 2.40

Ga(u, û, δu)u =

∮
Ω0

sym(∇0û
⊤∇0u) : D(u) : sym(∇0δu

⊤F (u)) + sym(∇0û
⊤F (u)) : D(u) : sym(∇0δu

⊤∇0u) dΩ

+

∮
Ω0

sym(∇0u
⊤F (u)) : D(u) : sym

(
∇0û

⊤∇0δu
)
dΩ (2.96)

Using similar reasoning as was developed for the �rst Frechét derivative (see from eq 2.71 to eq 2.85),
we can bound the second Fréchet derivative of the residual operator as follows

∥R′′(u)∥L2 ≤ 27c31 ∥{D(u)}∥L2 ∥{F (u)}∥L2 . (2.97)

Since the second Fréchet derivative is continuous on the compact set IB(ū, 2α), then it has a maximum
over this set [9]

∥R′′(u)∥L2 ≤ 27c31 max
u∈IB(ū,2α)

(∥{D(u)}∥L2 ∥{F (u)}∥L2) , (2.98)

≤ 27c31c3c
2
2ρ(Ωh) max

uh∈IB(ūh,2α)
(∥Dh(uh)∥F ∥Fh(uh)∥F ) , by lemma 1, (2.99)

= β′. (2.100)

The right hand side of 2.99 provides a Lipschitz constant of R′ on IB(ū, 2α). Thus we can estimate β

with the following quantity

∥R′(ū)−1 (R′(u)−R′(v)) ∥L2 ≤ ∥R′(ū)−1∥ ∥R′(u)−R′(v)∥L2 (2.101)

≤ γ

1− γη
β′∥u− v∥L2 , by lemma 2 (2.102)

= β∥u− v∥L2 . (2.103)

2.5 Addressing large deformations with bisection method

The objective of the analysis by NFEM is to satisfy the equilibrium equation such as the equation.1.18.
In other words, it is to make the vector of the residues disappear. In Newton-Raphson method's, the
iteration stops when the value of the residual vector is less than a speci�c tolerance. In this case, the
iteration converges and the solution becomes the current displacement. However, the iterations may not
converge in some cases. The Newton-Raphson failed to converge when the starting point is far from the
solution. So, the program stops when the iteration counter reaches the maximum number of iterations
allowed. In this case, the algorithm stops with an error message. To avoid this case, the bisection method
will be used. This method can be repeated until the iteration converges or reaches the maximum allowed
number of bisections.

Bisection method

In mathematics, the bisection method is a method of �nding roots that divides an interval several times
and then selects a sub-interval in which the root must be located for further processing. This method is
based on the intermediate value theorem for continuous functions.
As indicated previously, the Newton-Raphson method may �nd di�culty in converging to the solution
[33]. In this case, reducing the amount of the increment by dividing in half each time the convergence
iteration fails to converge, then the loop is repeated from the previously converged point. The bisection

46



process stops once the maximum number of bisections is reached.
By integrating the bisection method into the Newton-Raphson method the new algorithm becomes as
follows:

Algorithm 2 Newton-Raphson algorithm with bisection method's

Initialize u0, k, kb, max_iteration, tolerance, b_tolerance,b_iteration
Calculate Jacobian matrix KT eq. (2.10)
Calculate residual (R) eq. (2.12)
Calculate convergence (conv) eq. (2.13)
while conv > tolerance & k < max_iteration do
Set k = k + 1
if (conv ⩽ tolerance) then
stop.

end if

if (k > max_iteration) then
stop, with error message

end if

Calculate solution increment ∆u
Update solution by u = u+∆u
Calculate convergence (conv) eq. (2.13)
if (convergence > b_tolerance || k ≥ max_iteration ) then
if (kb < b_iteration) then
kb = kb + 1
∆u = ∆u ∗ 0.5
Update solution by u = u+∆u

else

stop, with error message
end if

end if

Calculate convergence (conv) eq. (2.13)
end while

Example

Taking the same example discussed in the previous section(Sec.2.3). We choose the values of the con-
vergence and stop criterion for the bisection method 0.5 and 4 respectively.
The �rst test result with u0 = [0.2, 0.1]:

Iteration 1 : u1 = −0.32500000000000028866, u2 = −0.22500000000000025535

Iteration 2 : u1 = −0.09738160291438990868, u2 = −0.07288251366120226948

Iteration 3 : u1 = −0.01579861914262817302, u2 = −0.01283360262817323516

Iteration 4 : u1 = −0.00060394058117522673, u2 = −0.00052466182254340236

Iteration 5 : u1 = −0.00000099513290709554, u2 = −0.00000090591011892417

Iteration 6 : u1 = −0.00000000000279327560, u2 = −0.00000000000262366005

47



The second test result with u0 = [0.85, 0.35]:

Iteration 1 : u1 = 0.81136363636363639795, u2 = 0.10681818181818181213

Iteration 2 : u1 = 1.12168872806060271330, u2 = −0.06562528280994642249

Iteration 3 : u1 = 1.01624470697865687541, u2 = −0.00857178236204569205

Iteration 4 : u1 = 1.00037706830737005426, u2 = −0.00019555153336901603

Iteration 5 : u1 = 1.00000021293148022572, u2 = −0.00000010910928069496

Iteration 6 : u1 = 1.00000000000006794565, u2 = −0.00000000000003456074

Figure 2.11 show that the solution converge at a 5th iteration for the �rst test. Figure 2.12, show the
second test where the solution converge at a 6th with precise convergence.

Figure 2.11: Convergence of solutions g(x1, x2) with integrating the bisection method. Initial conditions:
x1(0) = 0.2 and x2(0) = 0.1

Figure 2.12: Convergence of solutions g(x1, x2) with integrating the bisection method. Initial conditions
x1(0) = 0.85 and x2(0) = 0.35
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2.6 Conclusion

In this chapter, we de�ne the iterative process of Newton-Raphson for solving the nonlinear problem.
Sometime this process lose the convergence solution if the initial condition is far from the solution. There-
fore, the Kantorovich' theorem is used as su�cient condition for the convergence of Newton-Raphson
method. We proposed a new technique for calculate the radius of convergence using Kantorovich's
theorem in the discretized domain by the nonlinear �nite element method. This technique allows us to
calculate the upper bound of the inverse of the Fréchet derivative of residue. With the control parameters
we can de�ne the convergence region. These parameters are de�ned experimentally.
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Chapter 3

Modi�ed Newton-Raphson approach

with partially updated sti�ness matrix

3.1 Introduction

The Newton-Raphson method requires to update the total tangential sti�ness matrix of a mesh at each
iteration (see section 2.3). This method becomes slow if the mesh has a large number of nodes. Therefore,
this problem a�ects the quality of the convergence speed. As mentioned before, surgical simulators need
the computational process to perform the deformation in real time. For that, we proposed two new
techniques for the update of the tangential sti�ness matrix. We subdivide the global domain of mesh
into two sub-domains. The sub-domain in which the strain and the large displacement are located will
be treated at each iteration. The other sub-domain is initialized for the �rst proposed method by null
displacement and for the second proposed method by linear elastic material and that only for the �rst
iteration.

3.2 De�nition of partially updated sti�ness matrix

The resolution of the problem of nonlinear deformation of soft tissue by an iterative process of Newton-
Raphson as mentioned has drawbacks on the cost of calculations and the speed if the organ is represented
by a large mesh (large number of node and element). In the surgical simulation, the organs of the human
body are represented by large mesh so that they are more realistic but that poses problem for simulator
based on real time. This problem resides on the computation of the sti�ness matrix and its update at
each iteration. In surgery, the operation is done on a particular local region such as resection, tumor
removal, biopsy, etc. In this case, the displacement will be very small outside the deformation zone [72].
The two contributions in this chapter are based on this observation. The mesh is sub-divided into two
sub-domains. A sub-domain whose substi�ness matrix will be updated at each iteration. The other
sub-domain whose substi�ness matrix will be constant during all the iterations. The selection of such a
sub-domain is a problem in full share which is discussed in the next section.

3.3 Problem of selection of the updated substi�ness matrix

In the medical �eld, ablations, biopsies and incision are made on a de�ned part of an organ. The precise
selection of this part is a problem in surgical simulation. Let us consider the decomposition of soft tissue
as mentioned in �gure 3.1. To delineate the frontier of Ω⋆ and determine its size we compare two di�erent
approaches.
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Figure 3.1: Decomposition of soft tissue which the red color represent Ω∗ with external force f b and the
blue color represent the remaining part

3.3.1 First approach

This approach is used in the work by Wang et al. [72]. The general idea of Wang et al. method is
to reduce the computational matrix by taking a set of elements involved in the computation around
the center of the force-carrying element that has been selected to perform an accelerated �nite element
simulation (see �gure 3.2). Given a deforming force applied on an element, the method delimits the
boundary of Ω⋆ around this element by the following heuristic screening criterion:

|−−→ojok| ≤ s l, for 1 ≤ j, k ≤ M. (3.1)

Figure 3.2: Screening the elements involved in the calculation

Where oj , ok are the centers of gravity of the two adjacent elements. l is the maximum edge length of
the shared face. s is a screening coe�cient that tunes the size of Ω⋆ We tested this method on a regular
mesh cube which contains 1000 vertices and 4374 tetrahedral elements. The following table 3.1 shows
the e�ect of di�erent screening coe�cients. With this method, Ω⋆ does not exceed 11.11% of total mesh
and the computing scale of the model did not change when s > 40.
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Table 3.1: Ω⋆ with di�erent screen coe�cient.

s Number of nodes Number of elements % of Ω⋆

1 8 5 0.11
2 10 8 0.18
3 12 11 0.25
5 19 23 0.52
10 38 63 1.44
15 64 122 2.79
20 79 201 4.59
35 187 445 10.7
40 198 480 10.9
41 200 486 11.11
45 200 486 11.11
60 200 486 11.11

3.3.2 Second approach

Ω⋆ is obtained by partitioning the main domain Ω0 by di�erent scales sizes around the deformation
region. In the experimental section, we used percentages among at 10%, 20%, 30%, 40% and 50%.
Figure 3.3 show some percentages of Ω⋆ of mesh A which is contain 1000 vertex and 4374 tetrahedron.
This approach allows for a wider choice of size range for Ω⋆. The optimal choice of Ω⋆ requires precise
formal and optimal criteria to determine the zone of deformation.

Figure 3.3: Mesh A with di�erent |Ω⋆|
|Ω0|

3.3.3 An open problem: Selection of the boundary of the substi�ness matrix

Based on the two approaches discussed previously. The selection part of an organ is a very important task
for a realistic simulation. The �rst approach has a disadvantage on the resection of a mesh. For certain
mesh the screening coe�cient does not take more than 10% of the latter to process it. As indicated in the
example of section 3.3.1 for a regular mesh cube the Ω⋆ does not exceed 11.11% of the total mesh. The
second approach resection the mesh by di�erent percentage around the deformed part. In the surgical
simulation this ratio is not enough as will be demonstrated later in the experimental results section.
Taking the case of the liver, it is di�cult to practice a resection at localized part (eg a tumor) without
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taking into account the relationship with the adjacent portal, venous and biliary intrahepatic structures.
Therefore, an optimal boundary selection is an important problem to solve in our context. That will be
our perspective in our future work. In this thesis, we consider a set of sub-optimal selected regions on
which we show the e�ectiveness of our approaches.

3.4 Contribution 2: Substi�ness matrix initialized with initial

value

Our main formal contribution in this thesis is to update at each iteration only the tangential sti�ness
matrix of the region concerned by the deformation. The remaining of the tangential sti�ness matrix will
be initialized only once at the starting of the iterative process. Thus, we can divide the domain of the
deformed organ into two subdomains Ω⋆ with N⋆ vertices and Ω0\Ω⋆ with (N −N⋆) vertices (see �gure
3.4). Where Ω⋆ is the subdomain where the strain is located and the displacement is important. We
note this method as Init_0. This subdivision allows us to decrease the computational complexity of
each tangential sti�ness update from O(N) to O(N⋆). So, in the step 6 of the generic iterative algorithm
(section 2.4.3) the equation eq 2.42 is simpli�ed as follows

KT (Uh) =
∑

ωe∈Ω⋆

Kωe(Uh

e
). (3.2)

Figure 3.4: Decomposition domain into two sub-domain. Red color: Assembled part at each iteration.
Blue color: Remaining part with initial value.

3.5 Contribution 3: Substi�ness matrix initialized with linear

deformation

For the same idea discussed previously in section 3.4 on the division of the global domain into two sub-
domains. We will now consider Ω0\Ω∗ as a linear elastic part initialized only once on the �rst iteration
and Ω∗ as a nonlinear hyperelastic part which will be treated at each iteration (see �gure 3.5).We use
for Ω∗ Mooney-Rivlin model and for Ω0\Ω∗ a linear mechanical characteristics. We denote this method
as Init_L.
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Figure 3.5: Decomposition domain into two sub-domain. Red color: Ω⋆ with nonlinear hyperelastic
material. Blue color: Remaining part with linear elastic material

3.6 The proposed algorithm with partially updated sti�ness ma-

trix

Our objective is to minimize the cost of calculating the sti�ness matrix in the iterative process. For that,
we propose the division of domain Ω0 by two sub-domains (Ω⋆ and Ω0\Ω⋆) where the deformed part is
the one that will be treated. Our algorithm is as follows (see �gure 3.6). In the �rst step, we load the
mesh of organ, and the necessary data such as the �xed part, the deformed part and the vertex to be
moved (bloc A). We select one of the two proposed methods (Init_0 and Init_L). For the �rst proposed
method (Init_0) we initialize the global sti�ness matrix KT with a zero displacement U = 0 (bloc B).
Then, for the second proposed method (Init_L) we initialize the global sti�ness matrix KT with linear
elastic material (bloc C). The next step (bloc D), is to assemble the partial sti�ness matrix with the
current displacement U and update the residual vector for all mesh. We update the boundary condition
with �xed vertex (bloc E). The partial assembly will be repeated until the solution converges. The last
step (bloc F and bloc G), is to compute the constants of the two propositions (2.1, 2.2) and check if the
constraint (αβ ≤ 1

2 ) is justi�ed than compute radius of convergence (bloc H) with proposition 2.1.
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Figure 3.6: Diagram of Our method

3.7 Simulation Results with Mooney-Rivlin constitutive model

3.7.1 Results of substi�ness matrix initialized with initial value

We compared the proposed method to two state-of-the-art approaches: (i) the classic Newton-Raphson
algorithm [33] and (ii) the method proposed by Wang et al. [72]. To evaluate the results of our method
and show its e�ciency, we take into consideration three parameters: (1)The precision of reconstructing
the deformation. (2) The convergence time. (3) The radius of convergence. The classical Newton-
Raphson method updates the total tangential sti�ness matrix at every iteration. Therefore, we used it
as a standard method for measuring precision. We calculated the precision for the complete domain Ω0
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and the two sub-domains (Ω⋆ And Ω0\Ω⋆) according to the following formulas

ϵmethodi

Ω =
1

N

∥∥∥∥∥∥
[∑
e∈Ω

Uh
e

]
classic method

−

[∑
e∈Ω

Uh
e

]
methodi

∥∥∥∥∥∥
2

. (3.3)

Where Ω is alternatively Ω0, Ω⋆ and Ω0\Ω⋆ and methodi is either the proposed or Wang et al. [72].
The convergence time is the time required to �nd a �nal approximate solution by each method. It
can be considered as the speed of convergence of a simulation. All the methods are initialized with
zero displacement vector. From the formulas of propositions 2.1 and 2.2, we can calculate the radius of
convergence for each method. In this section, we performed tests for the three methods (classic Newton-
Raphson, proposed method and Wang et al method) by choosing the constitutive nonlinear Mooney-
Rivlin model [33]. Since, this thesis concerns surgical simulation for that we used the mechanical
properties of the liver that we have found in the literature [28, 18]. The constants of the material are
taken as C10 = 0.16KPa and C01 = 0.14KPa while the mass modulus (or the Bulk modulus) is �xed at
K = 11.11KPa [28]. For the rest of this experimental part, we performed two series of experiments: The
�rst series carried tests on a regular cubic mesh and the second on a non-regular mesh of a soft tissue of
the liver. In the �rst set, we used a di�erent number of node and element. We used the tetrahedron as
a representative type of mesh in this experiment.

Simulations on a regular meshed cube

We ran a �rst set of experiments. The cube has length, width and height of 10 mm. We ran experiments
on three di�erent meshing resolutions as shown in table 3.2.

Table 3.2: Di�erent resolutions of the meshed cube.

Mesh Type Elements Vertices
A tetrahedron 4347 1000
B tetrahedron 3375 16464
C tetrahedron 8000 41154

As mentioned in our contribution, we splitting the domain Ω0 into two sub-domains (Ω⋆ and Ω0\Ω⋆).
Ω⋆ contains the nonlinearly deformed vertices. For a precise comparison between our method and Wang
et al. method we use the same mesh subparts for both algorithms. For each regular mesh, we imposed
a non-zero border displacement on 5% of the vertices at 3 mm on the x,y and z axes (ie deformation of
vertices by 30%). We varied the nonlinearly Ω⋆ in a range of 5 sized subparts with N⋆

N × 100 = 10%,
20%, 30%, 40% and 50% of the overall mesh domain Ω0. By the following, we label these percentages as
|Ω⋆|
|Ω0| . We �xed about 10% of the overall mesh. We ran our experiments with the same code for the three
compared methods on core i3 lap-top with 4Go RAM and Matlab2016a.

Precision of reconstructing deformations

Figures 3.7 and 3.8 illustrate some qualitative results of deformations. The two �gures show the deforma-
tion of mesh A by the three methods. They represent the deformation of 10% and 50% of Ω⋆ respectively.
We see that our method has the same form of physical deformation and precision as Newton-Raphson.
For the two deformation tested by Wang et al. method [72](shown in the �gures cited above) we see that
the deformation lacks physical reality and the deformation of |Ω⋆|

|Ω0| = 50% is better than |Ω⋆|
|Ω0| = 10%.

Figures 3.9 and 3.10 show the precision of deformation of our and Wang et al. methods. These quantita-
tive results con�rm our observation on the precision of our method. Where, the subdivision of domain Ω0
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does not a�ect negatively on the deformation amount. Consequently, the partial update of the tangential
sti�ness matrix is the good choice compared to the update of the total tangential sti�ness matrix.

Time of convergence

The execution times of the three algorithms are summarized in �gure 3.11. This �gure shows the
convergence times of each mesh (A, B, C) with the �ve di�erent |Ω⋆|

|Ω0| . We use the logarithm with the
base 10 to display the axis of execution times. We note that our method converges more quickly to
the solution and that is thanks to the fast computation of the partially tangential sti�ness matrix. Our
remark on the convergence time of the Wang et al. method that this is not enough precise in the
computation of the tangential sti�ness matrix by comparing with the proposed method. In this case,
the process produces more iteration in order that the solution converges. In addition, to �x too many
vertex physically is not realistic because when we moves a set of vertex in a nonlinear way, inevitably its
neighbors react and follow this movement.

Radius of convergence

To apply Kantorovich's theorem for the three compared methods. We must �rst calculate the norms
of the di�erent terms which are used in propositions2.1 and2.2 to calculate the radius of convergence
see Table 3.3. Where, the control constants c1, c2 and c3 are chosen experimentally to satisfy the two
conditions (i.e. γη < 1 and αβ ≤ 1

2 ), To calculate β from equation 2.87, we get the maximum over
IB(ūh, 2α) by simply solving a linear problem by linearizing Dh and Fh around the approximate solution
Uh. In our experience for the three meshes A, B, C with part of |Ω⋆|

|Ω0| = 10%, we chose a range of values
for the two constants of assumptions 1 and 2 . Where, We varied c1 from 10−1 to 50 with 200 steps
and c2 is varied from 10−5 to 10−4. For assumption 3 we �xed the control constant at c3 = 1.5. The
�gures 3.12, 3.14 and 3.16, show the values of the products γη and αβ. We use the logarithm with the
base 10 to display these values. We can see that the three constants chosen satisfy the conditions of
proposition 2.2.

Figure 3.7: Result of deforming mesh A with |Ω⋆|
|Ω0| = 10%.
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Figure 3.8: Result of deforming mesh A with |Ω⋆|
|Ω0| = 50%.

Figure 3.9: Precision of reconstructing deformations with proposed method.
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Figure 3.10: Precision of reconstructing deformations with Wang et al. method.

Figure 3.11: Execution time of all methods for the three meshes A, B and C.

Figure 3.13, 3.15 and 3.17 show the radius of convergence for all methods. We can say that for certain
values of c1 and c2, the proposed method has a radius of convergence similar to the classic method. As
well, these two methods are better than Wang et al. method. The table 3.4 presents some examples of
values of the radius of convergence.
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Table 3.3: Estimation of upper bounds for regular meshes with |Ω⋆|
|Ω0| = 10%.

Mesh Estimation Proposed method Wang et al. method Newton-Raphson method
A ∥∇0ūh∥L2 185.4339 372.3015 178.4332

∥{Fh(ūh)}∥L2 599.0464 699.8396 597.7208
∥{Sh(ūh)}∥L2 0.0623 0.3508 0.0682
∥{Dh(ūh)}∥L2 4.1126 37.7582 3.0644
∥KT (Uh)∥F 0.5758 0.4724 0.6504

∥KT (Uh)
−1∥F 2.4819e+05 2.8430e+04 2.8641e+05

B ∥∇0ūh∥L2 349.2160 700.1930 341.9864
∥{Fh(ūh)}∥L2 1.1578e+03 1.3425e+03 1.1569e+03
∥{Sh(ūh)}∥L2 0.1111 0.6016 0.1138
∥{Dh(ūh)}∥L2 12.0565 71.9946 5.9133
∥KT (Uh)∥F 0.8033 1.8754 0.8339

∥KT (Uh)
−1∥F 6.4532e+05 2.8430e+04 8.4301e+05

C ∥∇0ūh∥L2 559.9283 1.4811e+03 550.0074
∥{Fh(ūh)}∥L2 1.8328e+03 2.3299e+03 1.8317e+03
∥{Sh(ūh)}∥L2 0.1601 14.1466 0.1652
∥{Dh(ūh)}∥L2 21.2159 2.6341e+03 9.4253
∥KT (Uh)∥F 0.9077 2.2754 0.9884

∥KT (Uh)
−1∥F 1.4451e+06 9.5613e+05 1.8673e+06

Figure 3.12: Conditions of the two propositions for mesh A with |Ω⋆|
|Ω0| = 10%.
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Figure 3.13: Radius of convergence of regular mesh A with |Ω⋆|
|Ω0| = 10%.

Figure 3.14: Conditions of the two propositions of regular mesh B with |Ω⋆|
|Ω0| = 10%.
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Figure 3.15: Radius of convergence of regular mesh B with |Ω⋆|
|Ω0| = 10%.

Figure 3.16: Conditions of the two propositions of mesh C with |Ω⋆|
|Ω0| = 10%.
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Figure 3.17: Radius of convergence of regular mesh C with |Ω⋆|
|Ω0| = 10%.

Table 3.4: Sample points of radius of convergence.

mesh c1 c2 Proposed method Wang et al. method Newton-Raphson method
A 0.1 1e-4 1.6425e-05 3.9223e-05 2.0345e-05

2.1162 4e-05 2.0868e-05 5.1586e-05 2.6294e-05
50 1e-5 8.1460e-06 2.0756e-05 1.0461e-05

B 0.1 1e-4 1.6276e-04 3.9223e-05 2.3136e-04
2.1162 4e-05 1.9297e-04 5.1586e-05 2.6030e-04
40.2206 1e-5 7.8745e-05 1.6065e-05 1.1421e-04

C 0.1 4e-5 4.7857e-05 0.0038 6.5228e-05
2.1162 1e-05 1.4850e-05 0.0017 1.9809e-05
20.1603 1e-5 2.4723e-04 γη > 1 3.1679e-04

Simulation results on a non-regular liver mesh

For a non-regular mesh, we chose mesh of liver which contains 16291 vertex and 60233 tetrahedra. As
mentioned above in the �gure 3.1. We �xed the part that exists in the right lobe of the liver, more precisely
the lower posterior segment. This part contains approximately 2070 vertex with zero displacement. The
superior medial segment considered as deformed part with the non-zero displacement. The selected
deformed part contains 825 vertex. We imposed a displacement of 22 mm on the z axis with four
di�erent deformed parts |Ω⋆|

|Ω0| = 20%, 30%, 40%, 50%. We ran our experiments with the same code for
the three compared methods on core i7 lap-top with 32Go RAM and Matlab2016a.
Figures 3.18 and 3.19 show the precision of the deformations of our method and Wang et al. method
compared to the classic method. Our method has a better capture of the nonlinear deformation than
the second method of each deformed part |Ω⋆|

|Ω0| . Table 3.5 summarizes the execution time of each method
with di�erent deformed part. We can say that the proposed method is almost 15 times faster than the
classic method. On average, it is also three times faster than Wang et al. method. Figure 3.22 shows
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qualitative deformations of the liver that con�rms the observation made on the quantitative evaluation
of the precision.

Figure 3.18: Precision of reconstructing liver's deformation with the proposed method.

Figure 3.19: Precision of reconstructing liver's deformation with Wang et al. method
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Table 3.5: Execution time of liver deformation in seconds.

|Ω⋆|
|Ω0| Proposed method Wang et al. method Newton-Raphson method

20% 6.0720e+03 1.2777e+04 8.7975e+04
30% 7.6998e+03 1.2249e+04 8.7975e+04
40% 1.2625e+04 1.8682e+04 8.7975e+04
50% 6.7999e+03 1.3906e+04 8.7975e+04

For this experiment, the convergence of solution is justi�ed by Kantorovich's theorem. We experi-
mentally de�ned the control parameters to calculate the convergence radius. We chose a range of values
for the constants c1 and c2. Where,c1 is varied from 10−2 to 50 and c2 from 10−7 to 10−6 with step of
100 for both. The third constants of assumption 3 is �xed at c3 = 2. In table 3.6 we show the norms of
the terms used in propositions 2.1 and 2.2 of the deformation of liver with |Ω⋆|

|Ω0| = 20% with each method
compared.
β is calculated as explained in the previous subsection 3.7.1. The product of the conditions γη and αβ

of the two propositions 2.1 and 2.2 are con�gured in �gure 3.20. With certain values obtained we can
justify the convergence of the solution by application of Kantorovich's theorem.
Figure 3.21 shows the radius of convergence obtained for each method. From this �gure we can classify
the three methods compared according to the minimum and maximum values of convergence radius in
this order: the classical method, the proposed method and Wang et al. method. Table 3.7 shows some
points of the convergence radius for the compared methods.

Table 3.6: Estimation of upper bounds for the liver mesh with |Ω⋆|
|Ω0| = 20%.

Estimation Proposed method Wang et al. method Newton-Raphson method
∥∇0ūh∥L2 6.2710e+04 1.1726e+05 8.2882e+04

∥{Fh(ūh)}∥L2 2.9893e+06 3.0013e+06 2.9906e+06
∥{Sh(ūh)}∥L2 0.0205 0.1197 0.0247
∥{Dh(ūh)}∥L2 8.1916 8.2988 8.2122
∥KT (Uh)∥F 141.7217 2.0391e+07 107.3756

∥KT (Uh)
−1∥F 8.4770e+05 1.3224e+06 8.4671e+05
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Figure 3.20: The conditions γη < 1 and αβ ≤ 1
2 for liver mesh

Figure 3.21: The radius of convergence of liver mesh
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Table 3.7: Sample points of radius of convergence (liver deformation).

c1 c2 Proposed method (s) Wang et al. method (s) Newton-Raphson method (s)
0.01 7e-07 1.4663e-07 9.2870e-07 9.8126e-08
1.5248 5e-07 4.2579e-06 2.7512e-05 3.6490e-06
5.0595 1e-07 7.9535e-08 4.9060e-07 7.5043e-08
8.5941 1e-07 1.3502e-07 8.3359e-07 1.2744e-07
50 1e-07 8.1935e-07 γη > 1 7.7224e-07

Figure 3.22: Liver deformation for di�erent Ω⋆. From top to down, the rows represent respectively 20%,
30%, 40% and 50% of Ω0. Red liver represents the initial state at rest. Blue liver is the deformation ob-
tained with the classic Newton-Raphson method. Pink liver represents the Wang's method deformation.
Green represents the deformation obtained with the proposed method.

Discussions and comments

In this section, we tested the proposed method by comparing their results with those of Newton-Raphson
and Wang et al. methods. The last method optimized the matrix computation by introducing of a
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�ltering coe�cient. In a large mesh, this coe�cient will indicate the part which will be deformed and
this part which will be treated subsequently. The remaining of the mesh considered as �xed. We
tested their method as explained in the section 3.2 and we concluded that this method lacks realism.
A comparison was made between the three methods on regular and non-regular meshes represented by
FEM. In order, for the comparison to be correct, we take the same Ω⋆ parts and the same �xed part
of the meshes for all the methods. From the execution times shown in �gure 3.11. We can classify
according to the speed of convergence our method in the �rst place after that Wang et al. method and
in the last place Newton-Raphson method. The average di�erence in execution time between the three
compared methods depends on the mesh size. Where, the di�erence between our method and the classic
method for meshes A, B, C are 59.3903 s, 582.587 s and 2148 s respectively. And between our method
and Wang et al. method for the same meshes A, B and C are 20.9011 s, 336.1185 s and 268.466 s
respectively. In terms of precision, the classic Newton-Raphson method based on FEM is known for its
supreme precision for non-linear deformation. Which is our advantage in the contribution proven in this
thesis. Where, the proposed method converges to the solution similar to the classic method with runtime
optimization. On the other hand, Wang et al. method is less precise and lacks realism. The proposed
method has succeeded in improving the speed of convergence of nonlinear deformation without losing
precision. Likewise, in the application of Kantorovich's theorem our method has better performances
than that of Wang et al. method in the calculation of the convergence radius with favorable su�cient
conditions (appropriate choice of c1, c2 and c3). In this study, we noticed that the norm of the inverse
∥KT (Uh)

−1∥F has high values as show in tables3.3 and 3.6 . Those are due to a bad conditioning of
the matrix of rigidity inherent in the methods of the �nite elements. Good conditioning of the sti�ness
matrix can improve the range of su�cient conditions for the control parameters c1, c2 and c3 and also
the convergence of the solution with less iteration based on the Newton-Raphson method. This problem
must be taken into account to further improve the acceleration and speed of convergence.

3.7.2 Results of substi�ness matrix initialized with linear deformation

Hence, we performed tests with the proposed method and Newton-Raphson method. Let us consider
di�erent parts |Ω⋆|

|Ω0| of 10%-30% and 50%. For regular meshed cube, we impose a displacement on 5%

of the vertex of the global mesh which are located in Ω∗ of 3 mm on x y and z axis. For the boundary
conditions, we �xed about 10% of the global vertex. These are located in the linear part (Ω0\Ω∗). We
ran this experiments on core i3 lap-top with 4Go RAM and Matlab2016a. For non regular Liver mesh,
we take the same �xed part and Ω⋆ part with 825 vertex as the previous experiment in section 3.7.1.
We impose a displacement of 6 mm on the z axis. We ran this experiments on core i7 lap-top with 32Go
RAM and Matlab2016a. In the following, for the mechanical properties we used the values that we found
in the literature as is mentioned in the table 3.8:

Table 3.8: Properties of liver tissue

Mooney-Rivlin C1 = 0.16kPa C2 = 0.14kPa K = 11.11kPa [28]

Linear properties λ = 8.939 MPa µ = 90.3 kPa [10]

Experimental results on a regular meshed cube

We ran the experiment for the three meshes A, B and C. The precision is calculated as mentioned in
section. Figure 3.23 represent the quantitative results of all mesh with di�erent deformed parts. Figure
3.24 show the speed convergence of our method and the classic method. We use the logarithm with the
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base 10 to display the axis of execution times. Our remark for this experiment is that the proposed
method is also faster then the classic method.

Figure 3.23: Precision of reconstructing deformations with proposed method.

Figure 3.24: Execution time of the proposed method and Newton-Raphson method for the three meshes.

Figure 3.25, 3.26 shows the qualitative results of deforming mesh A with deformed part |Ω⋆|
|Ω0| of 10%

and 50%. When the deformed part is less than 30% the result of convergence is almost similar to the
Newton-Raphson method result. On the other hand, for a deformed part greater than 30% the proposed
method loses its precision.
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Figure 3.25: Deformation of mesh A with |Ω⋆|
|Ω0| = 10%.

Figure 3.26: Deformation of mesh A with |Ω⋆|
|Ω0| = 50%

Experimental results on non regular Liver mesh

We perform test on non regular liver mesh. The imposed displacement of 6 mm is obtained with a
displacement loop of 1 mm. In these experiments, we note that the Init_L method does not converge
for the parts |Ω⋆|

|Ω0| greater than 20%. Also, it does not converge with displacement up than 1 mm. The

execution time of deformation with |Ω⋆|
|Ω0| = 20% four our method is 5.4924e + 03 s and for Newton-
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Raphson method is 1.6082e+ 04 s. So, the proposed method is faster than the classical method. Figure
3.27 represent the qualitative result of deformation with |Ω⋆|

|Ω0| = 20%.

Figure 3.27: Deformation of liver with |Ω⋆|
|Ω0| = 20%

3.7.3 Discussion

In this experimental section, we test the two proposed method by comparing it by the Newton-Raphson
method. We perform two tests, one for regular mesh and the other for non-regular mesh we take
Liver mesh as example. We take three di�erent parts of |Ω⋆|

|Ω0| for the three meshes A, B and C. The

result obtained show that this proposed Init_L method loss its precision when |Ω⋆|
|Ω0| is upper than

30%. For Liver mesh, the result obtained with |Ω⋆|
|Ω0| = 20% indicate that our method is faster than

the classical method with keeping the precision. In other case, with |Ω⋆|
|Ω0| greater than 20% the solution

lose the convergence. In addition, this method does not converge with displacement upper than 1 mm.
Comparing with Init_0 method which the result can converge with displacement upper than 4 mm and
with di�erent parts of |Ω⋆|

|Ω0| . From the point of view of improving the speed of convergence, the proposed
method serves to achieve this objective.

3.8 A comparative study with other constitutive models

The nonlinear mechanical behavior of hyperelastic tissues has been extensively studied by several re-
searchers. In this part, we propose to compare three models of hyperelastic behavior: Mooney-Rivlin,
Neo-Hookean and Saint Venant-Kirchho�. As shown above in Table 1.1, the simplest hyperelastic mate-
rial model is the Saint Venant-Kirchho� model which has a linear relationship between stress and strain
[25]. The Neo-Hookean model is a particular case of the Mooney-Rivlin model, with parameter C2 = 0.
And its justi�cation is more molecular than phenomenological[7]. The two models Mooney-Rivlin and
Saint Venant-Kirchho� are classi�ed as phenomenological models and the Neo Hookeen model is classi-
�ed as mechanistic models. A test is carried out for the three models on a regular and non-regular mesh
as indicated in the following subsections. We chose the mechanical properties of the liver that we found
in the literature of the three models (see table 3.9 ). For this comparative experiment, we perform tests
with our �rst method (Init_0) discussed in 3.4.
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Table 3.9: Hyperelastic material models of liver tissue

Mooney-Rivlin C1 = 0.16kPa C2 = 0.14kPa K = 11.11kPa [28]

Saint Venant-Kirchho� λ = 0.235Pa µ = 0.333Pa [43]

Neo-Hooken C1 = 3.7kPa K = 11.11kPa [80, 28]

3.8.1 Experimental results on regular meshed cube

First test : We ran a �rst experiment on the regular mesh A. We took a �xed part of 10% of the total
mesh and a nonlinear part of |Ω⋆|

|Ω0| = 10%. We imposed a non-zero displacement of 3 mm on 5% of the
vertex. We ran this experiments on core i3 lap-top with 4Go RAM and Matlab2016a.
Figure 3.28 show the execution time for the three models with imposed displacement of 3mm. We can say
that Saint Venant-Kirchho� is faster in computation of tangential sti�ness matrix then Mooney-Rivlin
and Neo-Hookean. Figure 3.29 present the precision of nonlinear deformation with the three hyperelastic
material models. We observed that for a displacement of 3 mm the Saint Venant-Kirchho� model has
a better pressure compared to Monney-Rivlin and Neo-Hookean. Also, the Monney-Rivlin model take
the second place after the Saint Venant-Kirchho� model whether for execution time or for precision.
The qualitative result of deformation for the three models depends on the identi�cation of the constant
materials for each model (see �gure 3.30)

Figure 3.28: Execution time with imposed displacement of 3mm for the three models: Mooney-Rivlin,
Neo-Hookean and Saint Venant-Kirchho�
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Figure 3.29: Precision deformation with imposed displacement of 3mm for the three di�erent material
models

Figure 3.30: Result of deforming mesh A with |Ω⋆|
|Ω0| = 10% for the three compared models

Second test : For a better comparison between the three models we perform test for a deformation
of 50%. Where, we impose a displacement of 5mm instead of 3mm with the same part considered in the
�rst test.
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Figure 3.31: Execution time with imposed displacement of 5mm for the two models: Mooney-Rivlin and
Neo-Hookean

Figure 3.32: Precision deformation with imposed displacement of 5mm for the two material models

In this experiment, Saint Venant-Kirchho� lost the convergence for a large deformation. On the other
hand, the other two methods naturally converge. For quantitative result, the Mooney-Rivlin model is
considered the best hyperelastic material model for large deformation. As show in both �gure 3.31 and
3.32 of the time of convergence and precision respectively. Figure 3.33 represent the qualitative result
of deformation for the both models (Mooney-Rivlin and Neo Hookean). Our remark for Neo-Hookean
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model that is not compressible.

Figure 3.33: Result of deforming mesh A with |Ω⋆|
|Ω0| = 10%

3.8.2 Experimental results on a non-regular liver mesh

In this experiment section, only Mooney-Rivilin model which converged for the two methods compared
with an imposed displacement of 40mm as it is shown in �gure 3.22 . The Neo-Hookean model converged
for a value less than 30mm for the classic method but by the proposed method it did't converge. This
model converges for a lower displacement value of 8mm for the proposed method. For the Saint Venant-
Kirchho� model the solution does not converge for both method if the imposed displacement is greater
than 3mm. We conclude that for a large deformation the Mooney-Rivlin model is the best model chosen
to solve the nonlinearity by our method.

3.8.3 Discussions

The constitutive laws for the mechanical response of hyperelastic models make it possible to predict the
nonlinear elastic response in large deformation. They are numerous and widely available in structural
computation tools. In this section, we present and compare the results of deforming meshes with the
three models well known in the literature which are: Mooney-Rivlin, Neo-Hookean and Saint Venant-
Kirchho�. The results obtained in the experiments treated above show that the Saint Venant-Kirchho�
method solves nonlinear problems for small displacements. The Neo-Hookean model is adapted to the
nonlinear problem with large deformation for the classic method but on the other hand for greater values
of displacement than 8 mm this model loses convergence in our method. The Mooney-Rivlin model is
widely used for hyperelastic tissues. This model proves its reliability in solving nonlinear problem with
large deformation as it's noticed in this thesis where it can converge with a displacement value of 40 mm
for the two methods compared.
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3.9 Comments on the conditioning of the sti�ness matrix and its

impact on convergence

In numerical analysis, conditioning measures the dependence of the solution of a numerical problem on
the data of the problem. This in order to check the validity of a solution computed with respect to
these data. The inverse sti�ness matrix must be well conditioned to avoid very important model errors.
We say that a matrix is well conditioned if its conditioning is not much greater than 1. Thus, a badly
conditioned matrix if its conditioning is high. Conditioning is linked to the choice of the polynomial base
and to the geometry of the elements. In our work, we �nd that the norm of the inverse of KT is very
high as shown in the two Tables 3.3 and 3.6. It's implies that the tangential sti�ness matrix is not well
conditioned. This problem remains a point to solve in the future work.

Table 3.10: Conditioning Values.

Mesh Estimation Proposed method
A ∥KT (Uh)

−1∥F 2.4819e+05
B ∥KT (Uh)

−1∥F 6.4532e+05
C ∥KT (Uh)

−1∥F 1.4451e+06
Liver ∥KT (Uh)

−1∥F 8.4770e+05

3.10 Conclusion

In this chapter, we de�ne our main ideas on the optimization of computation time. We propose two
methods: The Init_0 method which decompose the domain Ω0 into two sub-domain (Ω∗ and Ω0\Ω⋆).
This method initializes the global matrix KT with a zero displacement and the deformed part of Kωe

is treat at each iteration in the iterative process . The Init_L method has the same idea of the
decomposition of the domain as the Init_0 method. This method initializes the matrix KT with linear
elastic material and Ω∗ which will be treated at each iteration with nonlinear hyperelastic material. We
perform tests on our proposed methods for di�erent meshes with number of nods equal or more than
1000. We compared our results with the classic method and we note a di�erence in the computation
time of more than 8 times for the di�erent meshes with di�erent deformed part |Ω⋆|

|Ω0| . Then, we use
three nonlinear constitutive models and we conclude that the Sain Venant-Kirchho� model does not
converge for a large displacement of 50% either with the classic method or with our method. Neo-
Hookean converges for a displacement up to 80% by our method. Mooney-Rivlin is the most suitable for
our method where it can converge with a displacement upper than 80%.
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Chapter 4

Surgical simulation based on virtual

reality

4.1 Introduction

Virtual reality is a series of computer technologies that aim to immerse one or more people in a virtual
environment created by software. It can be a reproduction of the real world or a totally imaginary
environment. The experience is both visual, oral and, in some cases, haptic with the production of
senses-toutch feedback. When the person is equipped with the appropriate interfaces, such as gloves
or clothing, they can experience certain sensations related to touch or certain actions (blow, impact,
etc.)[54]. The use of virtual reality in the medical setting has a positive in�uence on the learning
performance of surgeons. They can learn the anatomy and physiology of the human body, perform
endoscopic or laparoscopic simulations, and even perform complex surgical procedures [35]. The major
problem in virtual reality-based surgical training is realism in soft tissue deformation or hyperelastic
tissue. It is extremely important to de�ne the minimum requirements for realism that training systems
must provide to be e�ective [75, 36, 69]. Peterlik et al. [58] developed a pre-calculus procedure allowing
haptic interaction. They used the static nonlinear FEM with geometric and material nonlinearities. This
procedure is based on a notion of displacement in a con�guration space which is precomputed in advance.
Oshiro et al [52] developed Liversim, software which shows the deformation of models according to the
user interaction in real time. This software is updated by Oshiro et al. [51] where it can incising the
hepatic parenchyma and intrahepatic vessels depending on the user's operations. It converts models of
organs such as the liver and gallbladder into quadrilateral mesh models with physical simulations based
on the �nite element method. Zhang et al. [79] proposed a method for modeling soft tissue deformation
based on the neural network. This method presents a nonlinear force-displacement relationship and the
associated nonlinear deformation behaviors of soft tissue. This method aims to simulate the deformation
of soft tissues in real time, and make it realistic and stable. In this chapter, we present some commercial
surgical simulator. We expose the design steps of our simulator. Finally, we perform test on virtual liver
and gallbladder tissues.

4.2 Examples of commercial surgical simulator

Simulation training is constantly associated with a signi�cant improvement in knowledge, practices, risk
management and behavior. There are many commercial surgical simulators for di�erent domains of
application. Next, we present some commercial simulators.

Vtopia Surgical : This simulator trains users to perform operations in a virtual environment. It is
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produced by the French team of ETR (�gure 4.1).

Figure 4.1: Vtopia Surgical is a virtual reality simulator for the training of surgeons. https://lab.
troisprime.com/wp-content/uploads/2017/10/Vtopia_surgical_bariatrie-e1519145789560.png.

ALT 60100-Paracentesis simulator : This simulator allows users to learn diagnostic and thera-
peutic techniques. Using ultrasound guidance, the user can visualize the insertion site and check vital
organs (�gure 4.2). It is made by Limbs & Things in the United Kingdom.

80

https://lab.troisprime.com/wp-content/uploads/2017/10/Vtopia_surgical_bariatrie-e1519145789560.png
https://lab.troisprime.com/wp-content/uploads/2017/10/Vtopia_surgical_bariatrie-e1519145789560.png


Figure 4.2: ALT 60100 - Paracentesis simulator ALT 60100 Limbs & Things https://www.medicalem.
com/6158-�che_product/alt60100-alt60100-simulateur-de-paracentese-limbs-things.jpg.

ANGIO Mentor : Provides a clinical environment of an operating room for the training of in-
tervention teams (�gure 4.3). This simulator is used in several medical companies in the endovascular
domain such as Cordis, Boston Scienti�c, Endologix and Corindus.
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Figure 4.3: Simbionix ANGIO Mentor. Endovascular training simulator https://img.medicalexpo.com/
images_me/photo-pc/81276-7614071.webp.

CAE LapVR�: This simulator allows users to learn and master techniques such as suturing, knotting
and tying the loop, as well as some commonly performed laparoscopic surgeries such as gallbladder
removal and horn occlusion (see �gure 4.4 ). It is a product of the company CAE Healthcare which
located in Florida, United States.

Figure 4.4: CAE LapVR�laparoscopic simulator https://www.caehealthcare.com/images/made/media/
images/LapVR-teaching_1024_774_s_c1.jpg.

Our simulator has the same objective of training as the simulators presented above. Our simulator
consist of headset HMD and controllers as the simulator Vtopia Surgical. With the headset HMD the
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user can react to the virtual environment and he can train and perform surgeries on a virtual human
body using the controllers.

4.3 Components of our surgical simulator

A surgical simulator consists of a visual part and a haptic part. The visual part consists of a virtual image
resulting from the infographic manipulation of 3D models representing human organs. The haptic part
makes it possible to restore to the user the sensation of force feedback due to manipulations on the organs.
The haptic device acts as a surgical tool that helps the user interact with the virtual model of the organ.
A computer system processes the deformations applied to the virtual organ and performs calculations
and updates on the latter (�gure 4.5). The functioning of virtual reality in surgical simulation is based
on 5 main components: (1) Headset HMD. (2) Controllers. (3) Motion sensors. (4) The audio system.
(5) The computer.

Figure 4.5: Surgical simulator based on virtual reality.

4.3.1 Materials

Headset HMD

The virtual reality headset is a contact between the user and the virtual environment. This headset
is called "HMD" or "Head Mounted Display" (see Figure 4.6). The virtual reality headset consists of
two miniature televisions, allowing monoscopic or stereoscopic vision. The "tracker" sensor on the top
of the helmet responds to the user's head movements, allowing the user to visit three-dimensional (3D)
environments.
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Figure 4.6: Headset HMD https://blogue.bestbuy.ca/wp-content/uploads/sites/3/2017/01/10460569.
jpg, https://static.wixstatic.com/media/d55152_4f0cf98d67e742dbbe45702�5d1c924~mv2.jpg/v1/�ll/
w_360,h_192,al_c,q_90,usm_0.66_1.00_0.01/d55152_4f0cf98d67e742dbbe45702�5d1c924~mv2.
webp.

Controllers

Represents the user's hands in the virtual world. These controllers (see Figure 4.7) allow the user to
interact with the environment through the sensation of touch and the force feedback when the user
presses on a virtual object. In the surgical simulation these joysticks control the virtual surgical tools
like the scissors, the forceps, etc.

Figure 4.7: HTC Controllers

Motion sensors

These sensors make it possible to follow the exact movement of the headset and the controllers (see �gure
4.8). They o�er a sensation of movement and life-size immersion. They can also locate the manipulation
space in real space by warning the user when he exceeds the limits of that space.
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Figure 4.8: Motion sensors

The audio system

The audio system allows auditory immersion by transcribing the sounds from the virtual reality experi-
ence.

Computer

Its role is paramount because it must be perfectly sized to meet the needs of virtual reality. To perform
a surgical simulation based in virtual reality we need to use algorithms for the calculation of deformation
and reaction and a development platform in real time.

4.3.2 Software

Unity 3D is a standard interactive application building tool that o�ers simple solutions for sensor in-
tegration. As part of the surgical simulation Unity 3D is used to display the operating scene, surgical
tools and organs through the headset (see �gure 4.9). The latter ensures communication between the
components. For example, if the organ receives a force and a position from the controllers, the latter will
translate the position of the controllers into a virtual tool position and transmit it to an algorithm to
compute the deformation applied on the organ. Then, it sends the reaction force that will be produced
by the controllers.
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Figure 4.9: The operative scene of our surgical simulator VRSurge.

4.4 Integration of the proposed method in our surgical simulator

We performed our study in chapter 3 under Matlab (R2016a, 64-bit). To integrate it into the simulator,
we coded our method in C++ language under visual studio. Afterwards, we linked the code from C++ to
C# by using DLL �le. Where, as part of a C# project, we need to use libraries (.DLL) to make a link
between C++ and C#. To be able to integrate it into Unity 3D as show in �gure 4.10.
The instructions for the coding languages are di�erent. This complicates the translation from one
language to another. In this case, we followed the same steps taken in the matlab code and we coded
them in C++. This code transfer was done using two libraries Eigen and VTK.
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Figure 4.10: Functional architecture of the proposed simulator.

VTK library

VTK is a library for 2D and 3D data visualization and image processing. It contains over 1100 C++

classes. We used this library to read and write ".vtk" format �les. The mesh data studied are in ".vtk"
format. As shown in �gure 4.10 we get all data from the �le with class "VTKSmartPointer". Then, we
read the data with class "VTKUnstructuredGrid". To obtain the vector nodes and matrix of tetrahedron
elements we use "ConvertToDataset" class which convert vtk �le to Eigen vector and matrix. Afterwards,
we process this data through the iterative process. At the end of this analysis, we save the results by
writing them in ".vtk" �le format.

Eigen

Eigen is a template C++ library for numerical analysis, which includes a linear algebra tools, such as
matrix and vector operations. This library allows the use of static or dynamic memory allocation for
its matrices and a large number of solvers for sparse matrix. This space has help us a lot to achieve
mathematical operations on matrices and vectors. We used the "Dense" class for arithmetic calculations
such as the sum, the multiplication, the transpose of a vector or matrix using the function "transpose
()", the determinant and the inverse of a matrix by the functions "determinant ()", "inverse ()".
Also, to generate an identity matrix we used the function "Identity ()", matrix or vector zero by the func-
tion "Zero()". To allocate a memory space of a large matrix or vector we used the "Sparse" class. This
class allows us to generate vector and matrix sparse using the functions "SparseVector <>", "Sparse-
Matrix <>".
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Description of the simulated surgical scene

The virtual operating room

The operating room represents one of the major sectors and certainly one of the most emblematic, as a
centerpiece of the technical platform. In this room we �nd all the devices and tools necessary to perform
a surgical operation (For example, multi-parameter monitoring monitor, diagnostic lamp and operating
table) as shown in �gure 4.9.

Organs

In the virtual scene, the human body exists with all of its virtual organs placed on the operating table.
This helps the user to feel that he is in reality and undergo surgery on it (see �gure 4.11).Of course,
these organs can be easily covered by a numerical male or female body.

Figure 4.11: Virtual organs in our VRSurge.

Tools

Surgical instruments such as scissors and pincers (�gures 4.12, 4.13) must serve the various functions
useful to operators: palpation, grasping, section, dissection, suture and destruction.
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Figure 4.12: Pincers of surgical simulation. A) Grip pincer. B) Extraction pincer. C) Fenestrated
digestive pincer. D) Dissector. E) Thin �at pincer. F) Biopsy pincer http://campus.cerimes.fr/
chirurgie-generale/enseignement/coelioscopie/site/html/6_2.html.

Figure 4.13: a) scissors. b) open scissors. c) closed scissors http://campus.cerimes.fr/chirurgie-generale/
enseignement/coelioscopie/site/html/6_2.html.

4.5 Use case on hepatobiliary surgery

Test on virtual liver tissue

In this experiment, we tested our proposed surgical platform as show in �gure 4.14, 4.15 and 4.16. We
pinched part of the liver with virtual surgical tools and we moved it.
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Figure 4.14: Pinch the liver in our VRSurge.
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Figure 4.15: Steps of deforming the liver in our VRSurge.
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Figure 4.16: Steps of deforming the liver in our VRSurge.
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Test on virtual gallbladder tissue

We performed test on gallbladder tissue where we pinched one side of the tissue and with the scissor we
cutting the other side. In the end, the gallbladder is eradicated (see �gures 4.17, 4.18 and 4.19).
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Figure 4.17: Pinch and cut the gallbladder in our VRSurge.
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Figure 4.18: Steps of cutting the gallbladder in our VRSurge
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Figure 4.19: Steps of cutting the gallbladder in our VRSurge
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4.6 conclusion

This chapter shows our designed surgical simulator. The components used to realize a simulator based
on virtual reality such as material and software. Our method is integrated on unity 3D software with
C#code which is the translated code of C++. The C++ code is realized using two libraries VTK and Eigen.
The VTK library made it easy for us to read and write a data �le. Eigen library allowe us to practice
mathematical operations on large matrices and vectors. We perform test on virtual liver and gallbladder
tissue. Finally, we prove the e�ectiveness of our proposed method with our surgical simulator. We
showed the usefulness and the e�ectiveness of the proposed simulator. This design represent a starter
prototype that will be further developed and commercialized for medical education purpose.
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Conclusion

This thesis concerns the development of a surgery simulator. We identi�ed the precise and fast
computation of deformation as one of the critical problems of this development. We determine the
biomechanical modeling of soft tissue which is a very sensitive step in the construction of a surgical sim-
ulator. Most soft tissues are described in the context of hyperelasticity to take into account the �brous
structure of these tissues. The modeling of hyperelastic tissues is studied in the continuous medium
for its. A large deformation and displacement leads to a nonlinear structural mechanics. Nonlinearities
are associated with material, geometry, applied forces and boundary conditions. We interested in this
research to solve the nonlinear deformation of hyperelastic tissues. The resolution of these deformations
by the nonlinear �nite element method with the iterative process of Newton-Raphson poses a problem
in real time. In the surgical simulation, the precision and the speed in resolution of the deformations are
the main factors to realize a simulator imitated to reality. Solving deformation problems of hyperelastic
tissue using Newton-Raphson method has an inconvenient, when the tissue is represented by a large
mesh then the cost of computation and the speed resolution becomes very slow. Therefore, our objective
is to improve the resolution time for nonlinear problems with the iterative Newton-Raphson process
and to keep the deformation precision using the nonlinear �nite element method. The Newton-Raphson
method is known in theory by its quadratic convergence if the initial value is very close to a root. But
in practice, this information is not su�cient. The famous hypothesis used as a su�cient condition for
the convergence of the Newton-Raphson method is that of Kantorovich's.

In this work, we verify the convergence of solution by Kantorovich's theorem. The computation of
the radius of convergence by using Kantorovich's theorem is a di�cult task. In the continuous domain,
there is no formal expression which help us to estimate the norm of the inverse Fréchet derivative of
the residue. Hence, there exists a lemma that allows us to bound this inverse given the discretized
Fréchet derivative is bounded and given that the di�erence of these two linear operators is also bounded.
Then, we propose two proposition with three hypotheses to estimate the radius of convergence. The
three hypotheses has a positive constants c1, c2 and c3. Which c1 control the bound of the L2-norm
of the functional's gradient by the norm of the functional, c2 control the bound of the L2-norm of the
functional by the projection of the functional and c3 control the limit bound of the volume of the organ
by the approximated discretized volume. The two proposition estimate the upper bounds of the Fréchet
derivative of the residue and its inverse. In surgery, the operation is performed on a speci�c region of an
organ. Whereof, we propose two methods which decompose the organ domain Ω0 into two sub-domains
(Ω∗ and Ω0\Ω⋆). Ω∗ represent the sub-domain which the stain and the important displacement are
located and Ω0\Ω⋆ represent the remaining of domain. The �rst proposed method (Init_0) reduces the
computation of the tangential sti�ness matrix by initialize it with non-zero displacement only once at
the �rst iteration. Ω∗ is the sub-domain which will be treated at each iteration. The strain and the
important displacement are located in this sub-domain. We carry out tests on regular meshed cubes and
non-regular liver mesh of this proposed method by comparing their results with the classical method
and the method of Wang et al.[72]. This subdivision of the domain will reduce the computation about
5 times compared to the classic method. We note that our method is the fastest in the computational
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cost comparing to the classical method and Wang et al. method. It has nearly the same precision of the
classical Newton-Raphson method with substantial improvement in convergence speed. We calculate the
convergence radius of this method with experimentally de�ned control parameters. We notice that the
constants c1 and c2 take small values and that is due to the norm of the inverse of the sti�ness matrix
which is high. This problem is caused to the bad conditioning of the sti�ness matrix. This issue is an
open problem and will be investigated in future work. The second proposed method (Init_L) models
the sub-domain Ω0\Ω⋆ with linear elastic material. Ω∗ is the sub-domain which will be treated at each
iteration and it is considered as a nonlinear hyperelastic material. We perform tests on regular meshed
cube and non-regular liver mesh. We compare the results obtained of this proposed method (Init_L)
with the classical method. For regular mesh test, we observe that for |Ω⋆|

|Ω0| upper than 30% the precision

is lost. But, it also speed than the classic method. For liver mesh, we note that for |Ω⋆|
|Ω0| upper than

20% the solution lose the convergence. Also, the solution cannot converge with displacement upper than
1 mm. The results obtained during the previous tests are carried out by the Mooney-Rivlin model.
Therefore, we perform tests with other constitutive models as Saint Venant-Kirchho� and Neo-Hookean.
For large displacement as 5mm Saint Venant-Kirchho� do not convergence. The quantitative result show
that Mooney-Rivilin is the best constitutive model for large deformation.
The proposed method Init_0 is integrated in our surgical simulator. This method is coded by Matlab
program. To integrat it in our simulator we coded it in C++ language using two libraries (VTK and
Eigen). VTK library help us to read data from ".vtk" �le format. Eigen library allows us to perform
an arithmetics operations on vectors and matrices. It has a sparse class for carry out the arithmetics
operations on sparse vectors and matrices, and solving the sparce matrix. After building the C++ library,
we create the DLL �le which can be called from the C# code. Then, we integrate the C# code in Unity
3D. We perform test in this latter on liver and gallbladder tissues.

In future work, we hope to improve our method for di�erent geometric and organ shapes. Also, to
improve still more the convergence of the solution and the calculate of radius of convergence. Find a
better approach to selecting the particular part of an organ.
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Appendix A

Appendix

Shape function

V is the volume of the element given by:

2V =

∣∣∣∣∣∣∣∣∣
1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

∣∣∣∣∣∣∣∣∣ (A.1)

Where αi,βi, γi and δi (i = 1, 2, 3, 4)are given by;

α1 =

∣∣∣∣∣∣∣
x2 y2 z2
x3 y3 z3
x4 y4 z4

∣∣∣∣∣∣∣ α2 = −

∣∣∣∣∣∣∣
x1 y1 z1
x3 y3 z3
x4 y4 z4

∣∣∣∣∣∣∣
α3 =

∣∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x4 y4 z4

∣∣∣∣∣∣∣ α4 = −

∣∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣∣

β1 = −

∣∣∣∣∣∣∣
1 y2 z2
1 y3 z3
1 y4 z4

∣∣∣∣∣∣∣ β2 =

∣∣∣∣∣∣∣
1 y1 z1
1 y3 z3
1 y4 z4

∣∣∣∣∣∣∣
β3 = −

∣∣∣∣∣∣∣
1 y1 z1
1 y2 z2
1 y4 z4

∣∣∣∣∣∣∣ β4 =

∣∣∣∣∣∣∣
1 y1 z1
1 y2 z2
1 y3 z3

∣∣∣∣∣∣∣

γ1 =

∣∣∣∣∣∣∣
1 x2 z2
1 x3 z3
1 x4 z4

∣∣∣∣∣∣∣ γ2 = −

∣∣∣∣∣∣∣
1 x1 z1
1 x3 z3
1 x4 z4

∣∣∣∣∣∣∣
γ3 =

∣∣∣∣∣∣∣
1 x1 z1
1 x2 z2
1 x4 z4

∣∣∣∣∣∣∣ γ4 = −

∣∣∣∣∣∣∣
1 x1 z1
1 x2 z2
1 x3 z3

∣∣∣∣∣∣∣
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δ1 = −

∣∣∣∣∣∣∣
1 x2 y2
1 x3 y3
1 x4 y4

∣∣∣∣∣∣∣ δ2 =

∣∣∣∣∣∣∣
1 x1 y1
1 x3 y3
1 x4 y4

∣∣∣∣∣∣∣
δ3 = −

∣∣∣∣∣∣∣
1 x1 y1
1 x2 y2
1 x4 y4

∣∣∣∣∣∣∣ δ4 =

∣∣∣∣∣∣∣
1 x1 y1
1 x2 y2
1 x3 y3

∣∣∣∣∣∣∣
The minimum potential energy with total Lagrangian formulation

The variational equation for the nonlinear elastic system can be written as:

a(u, û) = l(û) (A.2)

Where, a(u, û) is the energy form

a(u, û) =

∮
0Ω

S (u) : Ê (u, û)dΩ (A.3)

l(û) is the load form

l(û) =

∮
0Ω

ûT fBdΩ (A.4)

The eq. (A.2) is the weak form of nonlinear hyperelastic systems, it is called the material description or
the total Lagrangian formulation. Nonlinearity comes from the fact that the stress and strain implicitly
depend on u.

A general nonlinear equation can be solved using a Newton-Raphson iterative method through a
sequence of linearization.
The linearization of energy form can be written as:

L[a(u, û)] =

∮
Ω0

[∆S : Ê + S : ∆Ê ]dΩ (A.5)

Where
∆S =

∂S

∂E
: ∆E = D : ∆E (A.6)

eq. (A.5) becomes:

L[a(u, û)] =

∮
Ω0

[Ê : D : ∆E + S : ∆Ê ]dΩ (A.7)

To facilitate calculations by dividing the linearized energy form eq.(A.7) into two parts:

A(u; ∆u, û) =

∫ ∫
Ω0

(Ê : D : ∆E )dΩ The �rst term (A.8)

G(u; ∆u, û) =

∮
Ω0

(S : ∆Ê )dΩ The second term (A.9)

The �rst term

The displacement gradient, variation and the increment of displacement gradient are de�ned as follows:

∇0u =


∂u1

∂x1

∂u1

∂x2

∂u1

∂x3
∂u2

∂x1

∂u2

∂x2

∂u2

∂x3
∂u3

∂x1

∂u3

∂x2

∂u3

∂x3

 (A.10)

102



∇0û =


∂û1

∂x1

∂û1

∂x2

∂û1

∂x3
∂û2

∂x1

∂û2

∂x2

∂û2

∂x3
∂û3

∂x1

∂û3

∂x2

∂û3

∂x3

 (A.11)

∇0∆u =


∂∆u1

∂x1

∂∆u1

∂x2

∂∆u1

∂x3
∂∆u2

∂x1

∂∆u2

∂x2

∂∆u2

∂x3
∂∆u3

∂x1

∂∆u3

∂x2

∂∆u3

∂x3

 (A.12)

The variation of Lagrangian strain can be obtained as:

Ê (u, û) = sym(∇0û
TF ) (A.13)

Ê (u, û) = sym




∂û1

∂x1

∂û2

∂x1

∂û3

∂x1
∂û1

∂x2

∂û2

∂x2

∂û3

∂x2
∂û1

∂x3

∂û2

∂x3

∂û3

∂x3


F11 F12 F13

F21 F22 F23

F31 F32 F33


 (A.14)

∇0û
TF =

û1,1F11 + û2,1F21 + û3,1F31 û1,1F12 + û2,1F22 + û3,1F32 û1,1F13 + û2,1F23 + û3,1F33

û1,2F11 + û2,2F21 + û3,2F31 û1,2F12 + û2,2F22 + û3,2F32 û1,2F13 + û2,2F23 + û3,2F33

û1,3F11 + û2,3F21 + û3,3F31 û1,3F12 + û2,3F22 + û3,3F32 û1,3F13 + û2,3F23 + û3,3F33


(A.15)

Then

Ê (u, û) =

Ê (u, û)11 Ê (u, û)12 Ê (u, û)13
Ê (u, û)12 Ê (u, û)22 Ê (u, û)23
Ê (u, û)13 Ê (u, û)23 Ê (u, û)33

 (A.16)

Where

Ê (u, û)11 = û1,1F11 + û2,1F21 + û3,1F31 (A.17)

Ê (u, û)22 = û1,2F12 + û2,2F22 + û3,2F32 (A.18)

Ê (u, û)33 = û1,3F13 + û2,3F23 + û3,3F33 (A.19)

Ê (u, û)12 =
1

2
(û1,1F12 + û2,1F22 + û3,1F32 + û1,2F12 + û2,2F22 + û3,2F32) (A.20)

Ê (u, û)13 =
1

2
(û1,1F13 + û2,1F23 + û3,1F33 + û1,3F11 + û2,3F21 + û3,3F31) (A.21)

Ê (u, û)23 =
1

2
(û1,2F13 + û2,2F23 + û3,2F33 + û1,3F12 + û2,3F22 + û3,3F32) (A.22)

using shape functions :

ûi,j =

Ne∑
I=1

NI,j d̂Ii (A.23)
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û1,1F11 = N1,1d̂11F11 +N2,1d̂21F11 +N3,1d̂31F11 +N4,1d̂41F11

û1,2F12 = N1,2d̂11F12 +N2,2d̂21F12 +N3,2d̂31F12 +N4,2d̂41F12

û1,3F13 = N1,3d̂11F13 +N2,3d̂21F13 +N3,3d̂31F13 +N4,3d̂41F13

û2,1F21 = N1,1d̂12F21 +N2,1d̂22F21 +N3,1d̂32F21 +N4,1d̂42F21

û2,2F22 = N1,2d̂12F22 +N2,2d̂22F22 +N3,2d̂32F22 +N4,2d̂42F22

û2,3F23 = N1,3d̂12F23 +N2,3d̂22F23 +N3,3d̂32F23 +N4,3d̂42F23

û3,1F31 = N1,1d̂13F31 +N2,1d̂23F31 +N3,1d̂33F31 +N4,1d̂43F31

û3,2F32 = N1,2d̂13F32 +N2,2d̂23F32 +N3,2d̂33F32 +N4,2d̂43F32

û3,3F33 = N1,3d̂13F33 +N2,3d̂23F33 +N3,3d̂33F33 +N4,3d̂43F33

(A.24)

So, in the �rst term we have the nonlinear displacement-strain matrix de�ned as

BN =



N1,1F11 N1,1F21 N1,1F31 N2,1F11 N2,1F21 N2,1F31 ...

N1,2F12 N1,2F22 N1,2F32 N2,2F12 N2,2F22 N2,2F32 ...

N1,3F13 N1,3F23 N1,3F33 N2,3F13 N2,3F23 N2,3F33 ...

N1,2F11 + N1,1F12 N1,2F21 + N1,1F22 N1,2F31 + N1,1F32 N2,2F11 + N2,1F12 N2,2F21 + N2,1F22 N2,2F31 + N2,1F32 ...

N1,2F13 + N1,3F12 N1,2F23 + N1,3F22 N1,2F33 + N1,3F32 N2,2F13 + N2,3F12 N2,2F23 + N2,3F22 N2,2F33 + N2,3F32 ...

N1,1F13 + N1,3F11 N1,1F23 + N1,3F21 N1,1F33 + N1,3F31 N2,1F13 + N2,3F11 N2,1F23 + N2,3F21 N2,1F33 + N2,3F31 ...

N3,1F11 N3,1F21 N3,1F31 N4,1F11 N4,1F21 N4,1F31
N3,2F12 N3,2F22 N3,2F32 N4,2F12 N4,2F22 N4,2F32
N3,3F13 N3,3F23 N3,3F33 N4,3F13 N4,3F23 N4,3F33

N3,2F11 + N3,1F12 N3,2F21 + N3,1F22 N3,2F31 + N3,1F32 N4,2F11 + N4,1F12 N4,2F21 + N4,1F22 N4,2F31 + N4,1F32
N3,2F13 + N3,3F12 N3,2F23 + N3,3F22 N3,2F33 + N3,3F32 N4,2F13 + N4,3F12 N4,2F23 + N4,3F22 N4,2F33 + N4,3F32
N3,1F13 + N3,3F11 N3,1F23 + N3,3F21 N3,1F33 + N3,3F31 N4,1F13 + N4,3F11 N4,1F23 + N4,3F21 N4,1F33 + N4,3F31


(A.25)

Then

BN =



0 0 0 0 0 0 −F11 −F21 −F31 F11 F21 F31

F12 F22 F32 0 0 0 −F12 −F22 −F32 0 0 0

0 0 0 F13 F23 F33 −F13 −F23 −F33 0 0 0

F11 F21 F31 0 0 0 (−F11 − F12) (−F21 − F22) (−F31 − F32) F12 F22 F32

F13 F23 F33 F12 F22 F32 (−F13 − F12) (−F23 − F22) (−F33 − F32) 0 0 0

0 0 0 F11 F21 F31 (−F13 − F11) (−F23 − F21) (−F33 − F31) F13 F23 F33



The variation of nodal displacements is de�ned as:

d̂ =
[
d̂11 d̂12 d̂13 d̂21 d̂22 d̂23 d̂31 d̂32 d̂33 d̂41 d̂42 d̂43

]T
(A.26)

So
Ê = BN d̂ (A.27)

The increment of Lagrangian strain is de�ned as:

∆E (u,∆u) = sym(∇0∆uTF ) (A.28)

∆E (u, û) =

∆E (u, û)11 ∆E (u, û)12 ∆E (u, û)13
∆E (u, û)12 ∆E (u, û)22 ∆E (u, û)23
∆E (u, û)13 ∆E (u, û)23 ∆E (u, û)33

 (A.29)

∆E (u, û)11 = ∆u1,1F11 + ∆u2,1F21 + ∆u3,1F31 (A.30)

∆E (u, û)22 = ∆u1,2F12 + ∆u2,2F22 + ∆u3,2F32 (A.31)

∆E (u, û)33 = ∆u1,3F13 + ∆u2,3F23 + ∆u3,3F33 (A.32)

∆E (u, û)12 =
1

2
(∆u1,1F12 + ∆u2,1F22 + ∆u3,1F32 + ∆u1,2F12 + ∆u2,2F22 + ∆u3,2F32) (A.33)

∆E (u, û)13 =
1

2
(∆u1,1F13 + ∆u2,1F23 + ∆u3,1F33 + ∆u1,3F11 + ∆u2,3F21 + ∆u3,3F31) (A.34)

∆E (u, û)23 =
1

2
(∆u1,2F13 + ∆u2,2F23 + ∆u3,2F33 + ∆u1,3F12 + ∆u2,3F22 + ∆u3,3F32) (A.35)
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The incremental Lagrangian strain has a similar expression as:

∆E = BN∆d (A.36)

The constitutive relation is de�ned as:

S = D : E = λtr(E )I+ 2µE (A.37)

Where I is a (3X3) identity tensor, and (λ,µ) are two Lame's constants.
So we can write using eq. (A.6)

∆S = D : ∆E = λtr(∆E )I+ 2µ∆E (A.38)

tr(∆E ) = ∆u1,1F11 + ∆u2,1F21 + ∆u3,1F31 + ∆u1,2F12 + ∆u2,2F22 + ∆u3,2F32 + ∆u1,3F13 + ∆u2,3F23 + ∆u3,3F33 (A.39)

∆S =

 λtr(∆E ) 0 0

0 λtr(∆E ) 0

0 0 λtr(∆E )

 +

 2µ∆E (u, û)11 2µ∆E (u, û)12 2µ∆E (u, û)13
2µ∆E (u, û)12 2µ∆E (u, û)22 2µ∆E (u, û)23
2µ∆E (u, û)13 2µ∆E (u, û)23 2µ∆E (u, û)33

 (A.40)

∆S =

∆S11 ∆S12 ∆S13

∆S12 ∆S22 ∆S23

∆S13 ∆S23 ∆S33

 (A.41)

∆S11 = λ(∆u1,2F12 + ∆u2,2F22 + ∆u3,2F32 + ∆u1,3F13 + ∆u2,3F23 + ∆u3,3F33) + (λ + 2µ)(∆u1,1F11 + ∆u2,1F21 + ∆u3,1F31)

∆S22 = λ(∆u1,1F11 + ∆u2,1F21 + ∆u3,1F31 + ∆u1,3F13 + ∆u2,3F23 + ∆u3,3F33) + (λ + 2µ)(∆u1,2F12 + ∆u2,2F22 + ∆u3,2F32)

∆S33 = λ(∆u1,1F11 + ∆u2,1F21 + ∆u3,1F31 + ∆u1,2F12 + ∆u2,2F22 + ∆u3,2F32) + (λ + 2µ)(∆u1,3F13 + ∆u2,3F23 + ∆u3,3F33)

∆S12 = µ(∆u1,1F12 + ∆u2,1F22 + ∆u3,1F32 + ∆u1,2F12 + ∆u2,2F22 + ∆u3,2F32)

∆S13 = µ(∆u1,1F13 + ∆u2,1F23 + ∆u3,1F33 + ∆u1,3F11 + ∆u2,3F21 + ∆u3,3F31)

∆S23 = µ(∆u1,2F13 + ∆u2,2F23 + ∆u3,2F33 + ∆u1,3F12 + ∆u2,3F22 + ∆u3,3F32)

Then

Ê : D : ∆E = Ê (u, û)11∆S11 + Ê (u, û)22∆S22 + Ê (u, û)33∆S33 +2Ê (u, û)12∆S12 +2Ê (u, û)13∆S13 +2Ê (u, û)23∆S23 (A.42)

So

Ê : D : ∆E =



(û1,1F11 + û2,1F21 + û3,1F31)

(û1,2F12 + û2,2F22 + û3,2F32)

(û1,3F13 + û2,3F23 + û3,3F33)

(û1,1F12 + û2,1F22 + û3,1F32 + û1,2F12 + û2,2F22 + û3,2F32)

(û1,1F13 + û2,1F23 + û3,1F33 + û1,3F11 + û2,3F21 + û3,3F31)

(û1,2F13 + û2,2F23 + û3,2F33 + û1,3F12 + û2,3F22 + û3,3F32)



T

D (A.43)



(∆u1,1F11 + ∆u2,1F21 + ∆u3,1F31)

(∆u1,2F12 + ∆u2,2F22 + ∆u3,2F32)

(∆u1,3F13 + ∆u2,3F23 + ∆u3,3F33)

(∆u1,1F12 + ∆u2,1F22 + ∆u3,1F32 + ∆u1,2F12 + ∆u2,2F22 + ∆u3,2F32)

(∆u1,1F13 + ∆u2,1F23 + ∆u3,1F33 + ∆u1,3F11 + ∆u2,3F21 + ∆u3,3F31)

(∆u1,2F13 + ∆u2,2F23 + ∆u3,2F33 + ∆u1,3F12 + ∆u2,3F22 + ∆u3,3F32)



Where

D =



(λ+ 2µ) λ λ 0 0 0

λ (λ+ 2µ) λ 0 0 0

λ λ (λ+ 2µ) 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


(A.44)
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Finally

Ê : D : ∆E = d̂TBT
NDBN∆d (A.45)

The �rst term in the structural energy form:∫ ∫
Ω0

Ê : D : ∆E dΩ = d̂T
(∫ ∫

Ω0

BT
NDBNdΩ

)
∆d (A.46)

The second term

The variation of the increment of Lagrangian strain can be obtained as

∆Ê (∆u, û) = sym(∇0û
T∇0∆u) (A.47)

∆Ê (∆u, û) = sym

û1,1∆u1,1 + û2,1∆u2,1 + û3,1∆u3,1 û1,1∆u1,2 + û2,1∆u2,2 + û3,1∆u3,2 û1,1∆u1,3 + û2,1∆u2,3 + û3,1∆u3,3

û1,2∆u1,1 + û2,2∆u2,1 + û3,2∆u3,1 û1,2∆u1,2 + û2,2∆u2,2 + û3,2∆u3,2 û1,2∆u1,3 + û2,2∆u2,3 + û3,2∆u3,3

û1,3∆u1,1 + û2,3∆u2,1 + û3,3∆u3,1 û1,3∆u1,2 + û2,3∆u2,2 + û3,3∆u3,2 û1,3∆u1,3 + û2,3∆u2,3 + û3,3∆u3,3


(A.48)

∆Ê (∆u, û) =

∆Ê (∆u, û)11 ∆Ê (∆u, û)12 ∆Ê (∆u, û)13
∆Ê (∆u, û)12 ∆Ê (∆u, û)22 ∆Ê (∆u, û)23
∆Ê (∆u, û)13 ∆Ê (∆u, û)23 ∆Ê (∆u, û)33

 (A.49)

∆Ê (∆u, û)11 = û1,1∆u1,1 + û2,1∆u2,1 + û3,1∆u3,1 (A.50)

∆Ê (∆u, û)22 = û1,2∆u1,2 + û2,2∆u2,2 + û3,2∆u3,2 (A.51)

∆Ê (∆u, û)33 = û1,3∆u1,3 + û2,3∆u2,3 + û3,3∆u3,3 (A.52)

∆Ê (∆u, û)12 =
1

2
[û1,1∆u1,2 + û2,1∆u2,2 + û3,1∆u3,2 + û1,2∆u1,1 + û2,2∆u2,1 + û3,2∆u3,1] (A.53)

∆Ê (∆u, û)13 =
1

2
[û1,1∆u1,3 + û2,1∆u2,3 + û3,1∆u3,3 + û1,3∆u1,1 + û2,3∆u2,1 + û3,3∆u3,1] (A.54)

∆Ê (∆u, û)23 =
1

2
[û1,2∆u1,3 + û2,2∆u2,3 + û3,2∆u3,3 + û1,3∆u1,2 + û2,3∆u2,2 + û3,3∆u3,2] (A.55)

Using shape functions we obtain :

ûi,j =



N1,1 0 0 N2,1 0 0 N3,1 0 0 N4,1 0 0

N1,2 0 0 N2,2 0 0 N3,2 0 0 N4,2 0 0

N1,3 0 0 N2,3 0 0 N3,3 0 0 N4,3 0 0

0 N1,1 0 0 N2,1 0 0 N3,1 0 0 N4,1 0

0 N1,2 0 0 N2,2 0 0 N3,2 0 0 N4,2 0

0 N1,3 0 0 N2,3 0 0 N3,3 0 0 N4,3 0

0 0 N1,1 0 0 N2,1 0 0 N3,1 0 0 N4,1

0 0 N1,2 0 0 N2,2 0 0 N3,2 0 0 N4,2

0 0 N1,3 0 0 N2,3 0 0 N3,3 0 0 N4,3





d̂11
d̂12
d̂13
d̂21
d̂22
d̂23
d̂31
d̂32
d̂33
d̂41
d̂42
d̂43


(A.56)

∆ui,j = BG

[
∆d11 ∆d12 ∆d13 ∆d21 ∆d22 ∆d23 ∆d31 ∆d32 ∆d33 ∆d41 ∆d42 ∆d43

]T
(A.57)
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So, the nonlinear displacement-strain matrix is de�ned as :

BG =



0 0 0 0 0 0 −1 0 0 1 0 0

1 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 1 0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 1 0

0 1 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 1 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 −1 0 0 1

0 0 1 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 1 0 0 −1 0 0 0


(A.58)

The second term becomes

S : ∆Ê = S11∆Ê1,1 + S22∆Ê22 + S33∆Ê33 + 2S12∆Ê12 + 2S13∆Ê13 + 2S23∆Ê23 (A.59)

Where

S : ∆Ê =



û1,1

û1,2

û1,3

û2,1

û2,2

û2,3

û3,1

û3,2

û3,3



T 

S11 S12 S13 0 0 0 0 0 0

S12 S22 S23 0 0 0 0 0 0

S13 S23 S33 0 0 0 0 0 0

0 0 0 S11 S12 S13 0 0 0

0 0 0 S12 S22 S23 0 0 0

0 0 0 S13 S23 S33 0 0 0

0 0 0 0 0 0 S11 S12 S13

0 0 0 0 0 0 S12 S22 S23

0 0 0 0 0 0 S13 S23 S33





∆u1,1

∆u1,2

∆u1,3

∆u2,1

∆u2,2

∆u2,3

∆u3,1

∆u3,2

∆u3,3


(A.60)

So
S : ∆Ê = d̂TBT

GΣBG∆d (A.61)

Where

Σ =



S11 S12 S13 0 0 0 0 0 0

S12 S22 S23 0 0 0 0 0 0

S13 S23 S33 0 0 0 0 0 0

0 0 0 S11 S12 S13 0 0 0

0 0 0 S12 S22 S23 0 0 0

0 0 0 S13 S23 S33 0 0 0

0 0 0 0 0 0 S11 S12 S13

0 0 0 0 0 0 S12 S22 S23

0 0 0 0 0 0 S13 S23 S33


(A.62)

The second term of the linearized energy form can be written as:∫ ∫
Ω0

S : ∆Ê dΩ = d̂T
(∫ ∫

Ω0

BT
GΣBGdΩ

)
∆d (A.63)

Experiment results of substi�ness matrix initialized with linear

deformation

In this experience and for the two meshes A, B with deformed part of |Ω⋆|
|Ω0| = 10%, we chose a range of

values for the two constants of assumptions 1 and 2. Where, We varied c1 from 10−2 to 50 with 200 steps
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and c2 is varied from 10−5 to 10−3. For assumption 3 we �x the control constant at c3 = 2. The �gures
A.1 and A.2, show the values of the products γη and αβ. We use the logarithm with the base 10 to
display these values. We can see that the three constants chosen satisfy the conditions of proposition 2.2.
Figure A.3 and A.4 shows the radius of convergence for the compared methods. We can say that for
mesh A the radius of convergence of the proposed method is more better than the classical method.
Mesh B shows the opposite that the mesh A where the classic method is better than our method.

Figure A.1: The conditions γη < 1 and αβ ≤ 1
2 of mesh A with |Ω⋆|

|Ω0| = 10%

Figure A.2: The conditions γη < 1 and αβ ≤ 1
2 of mesh B with |Ω⋆|

|Ω0| = 10%
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Figure A.3: The radius of convergence of mesh A with |Ω⋆|
|Ω0| = 10%

Figure A.4: The radius of convergence of mesh B with |Ω⋆|
|Ω0| = 10%

A comparative study with other constitutive models

In the experiment of a comparative study with Neo-Hookean, Saint Venant-Kirchho� and Mooney-Rivlin
models. Saint Venant-Kirchho� model for large displacement lost the convergence so we study the radius
of convergence for two remaining models. So, for the mesh A with deformed part of |Ω⋆|

|Ω0| = 10%, we
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chose a range of values for the two constants of assumptions 1 and 2. Where, We varied c1 from 10−2 to
50 with 200 steps and c2 is varied from 10−6 to 10−4. For assumption 3 we �x the control constant at
c3 = 2. The �gures A.5 and A.6, show the values of the products γη and αβ. We use the logarithm with
the base 10 to display these values. We can see that the three constants chosen satisfy the conditions
of proposition 2.2. Figure A.7 and A.8 shows the radius of convergence for our and Newton-Raphson
method with Neo-Hookean and Mooney-Rivlin models. We can say that the radius of convergence of the
proposed for the two models is similar to the classical Newton-Raphson method.

Figure A.5: The conditions γη < 1 and αβ ≤ 1
2 of mesh A with classic method
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Figure A.6: The conditions γη < 1 and αβ ≤ 1
2 of mesh A with the proposed method

Figure A.7: The radius of convergence of mesh A with the classic method
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Figure A.8: The radius of convergence of mesh A with the proposed method
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