UNIVERSITE ABOU BEKR BELKAÏD – TLEMCEN

N° d'ordre : / DSTU/2020

FACULTE DES SCIENCES DE LA NATURE ET DE LA VIE ET SCIENCES DE LA TERRE ET DE L'UNIVERS

DEPARTEMENT DES SCIENCES DE LA TERRE ET DE L'UNIVERS

LABORATOIRE DE RECHERCHES N°25 : PROMOTION DES RESSOURCES HYDRIQUES, PEDOLGIQUES ET MINIERES : LEGISLATION ET CHOIX TECHNOLOGIQUES

Mémoire de fin d'études

Présenté pour l'obtention du diplôme De Master Académique

Domaine :	Sciences de la Terre et de l'Univers
Filière :	Géologie
Option :	Géologie des bassins sédimentaire

Thème

Le magmatisme miocène du Nord de l'Algérie, géochimie et perspectives minières.

Par

MENNAD NADIYA et NMICHE SARRA

Soutenue le 03/11/2020 devant le jury composé de :

M. ADACI Mohammed	M.C.A	Univ. Tlemcen	Président
M. BELMOUHOUB Abdelkader	M.AA	Univ. Tlemcen	Encadreur
Mme ZAOUI Djamila	M.C.B	Univ. Tlemcen	Examinateur

Année universitaire 2019/2020

الملخص:

يتميز الساحل الجزائري بوجود العديد من الترسبات والمباني المعدنية المرتبطة بالميوسين الصهاري. كانت هده التمعدنات موضوع العديد من الدراسات الجيولوجية والجيتولوجية مكن هدا العمل من اكتشاف الرواسب (واد الكبير; العوانة; واد سميزور; مسيردا; تافنة; تيفروين....) المنهجية المحددة والمطبقة في ايطار هدا العمل تتكون من المعالجة الإحصائية للبيانات التحليلية تتعلق هده الدراسة بتوزيع 10 عناصر رئيسية:

نم تحليلها على دفعة (SiO2; Al₂O₃; MgO; Fe₂O₃; K₂O; Na₂O; P₂O₅; CaO; TiO₂; MnO) من 617 عينة صخرية موزعة على 12 كتل بركانية من اجل معرفة أي من هده الاكاسيد تساهم في التمييز بين هده الكتل الصخرية.

يهدف هدا العمل الى ان يكون قادرا على تحديد أفضل ما يمكن طبيعة التمعدن المعدني المرتبط بالبراكين في الكتل الست البركانية المعنية دراسة مقارنة مع تمعدنات جينية بركانية اصلية تم اجرائها من التحليل التمييزي.

الكلمات المفتاحية: الساحل الجزائري، الترسبات المعدنية، المعدنيات، المعالجة الإحصائية، الاكاسيد، دراسة مقارنة، التحليل التميزي.

.

Résumé

Le littoral algérien est caractérisé par la présence de plusieurs gisements et édifices métallifères liées au magmatisme miocène. Ces minéralisations ont fait l'objet de plusieurs études géologique et gitlogique ; ces travaux permis de découverte des gisements (Oued El Kébir ; El Aouana ; Oued amizour ; Tifaraouine ; M'Sirda...).

La méthodologie définie et appliqué dans le cadre de ce travail consiste en traitement statistique des données analytique.

Cette étude porte sur la répartition de 10 éléments majeurs (SiO₂, Al₂O₃, Fe₂O₃, MgO ; CaO ; Na₂O ; K₂O ; TiO₂, P₂O₅ et MnO) analysés sur un lot dz 617 échantillons en roches répartis sur 12 massifs volcanique afin de voir lequel ou lesquels de ces oxydes contribuent à la discrimination entre ces massifs.

Ce travail se veut comme objectif de pouvoir préciser le mieux possible, la nature de la minéralisation métallifère associée aux volcanites des six massifs volcanique en question, une étude comparative avec des minéralisations métallifères volcano-gènes authentique est effectuée à partir de l'analyse discriminante.

Mots clés : Magmatisme miocène ; Nord de l'Algérie ; Gisements métallifères ; Minéralisation ; Traitement statistique ; Eléments chimique ; Analyse discriminante ; Analyse multi variables ; Analyse factorielle ; Analyse en composant principale.

Abstract

The Algerian coast is characterized by the presence of several deposits and metalliferous buildings linked to Miocene magmatism. These mineralizations are the subject of several geological and gitological studies; this work enabled the discovery of deposits (Oued El Kebir; El Ouana; Oued amizour; Tifaraouine; M'Sirda ...).

The methodology defined and applied for this work consists of statistical processing of analytical data.

This study focuses on the distribution of 10 major elements (SiO₂, AL₂O₃, Fe₂O₃, MgO; CaO; Na₂O, K₂O; TiO₂, P₂O₅ and MnO) analyzed on a batch of 617 rock samples spread over 12 volcanic massifs in order to see which one or which of these oxides contribute to the discrimination between these massifs.

This work aims to be able to specify as best as possible the nature of the metalliferous mineralization associated with the volcanics of the six volcanic massifs in question, a comparative study with authentic volcanogenous metalliferous mineralizations is carried out from the discriminant analysis.

Dédicaces

C'est avec toutes mes affections je dédie se modeste travail :

A Ma très chère mère qui m'a apporté sans cesse amour,

Soutien et encouragement ; et qu'elle trouve ici l'expression de mes vives reconnaissances.

A celui qui m'a donné vie et qui m'as apporté sans cesse son amour, mon père

Mon cher frère Rachid et sa chère épouse Amina et leur angle Assil.

Ma chère sœur Hanane et son cher mari Abdelkader et leurs enfants Islam et Oussama

A toute la famille Nmiche et Ghenimi petits et grands.et mes cousins et cousines.

Ma chère sœur binôme Mennad Nadia Mes chères amis proches Youcef ; Imene Et enfin à tous mes collèges de promotion Master02 Géologie 2019-2020

Nmiche Sarra

Dédicaces

C'est avec toutes mes affections je dédie se modeste travail :

A Ma très chère mère qui m'a apporté sans cesse amour,

Soutien et encouragement ; et qu'elle trouve ici l'expression de mes vives reconnaissances.

A celui qui m'a donné vie et qui m'as apporté sans cesse son amour, mon père

Mes chères sœurs Zahra et Siham

Mes chères frères Mohamed et Abdelhak

A toute la famille Mennad et Djerdi petits et grands.et mes cousins et cousines.

Ma chère sœur binôme Nmiche Sarra Mes chères amis proches Abdewahab ; Chahinaz ; sarra Et enfin à tous mes collèges de promotion Master02 Géologie 2019-2020

Mennad Nadiya

Remerciements

Nous tenons à remercier **ALLAH** le tout puissant de nous avoir attribué ses bienfaits, de nous avoir donné la chance de finir nos études, d'avoir veillé sur nous, dès le début de notre formation jusqu'à maintenant ! C'est grâce à lui que nous y sommes arrivés. Puis le grand mérite revient à nos très chers professeurs qui ont supervisé notre formations ceux que nous avons connu dans la vie et ceux qui se présentent devant nous, nous les remercions du fond de cœur de nous avoir transmis leur savoir-faire et de leurs connaissances qui ont illuminé notre cerveaux, nous les remercions pour le soutien qu'ils nous ont portés et de ne pas nous abandonné. D'ici là nous pouvons constater une lueur d'espoir vers un futur proche très brillant.

Cette mémoire c'est le fruit de patience de volonté et de sacrifices. Il n'aura pu être réalisé sans l'intervention de nombreuses personnes sont encouragements qui m'ont entourée tout au long de cette fascinante aventure scientifique à qui nous tiens à exprimer nous reconnaissance

Nous sincères remerciements seront donnés à notre encadreur Monsieur :

BELMOUHOUB Abdelkader. De nous avoir proposé ce thème et d'avoir accepté de nous encadrer et de nous avoir prêté main forte à chaque fois qu'on a eu besoin de toi.

Comme nous remercions les honorables membres de jury qui sont :

Un grand merci à **Monsieur Mohamed Adaci**. Maitre de conférences à l'université de Tlemcen département des sciences de la terre et de l'univers. De nous avoir consacré un peu de votre temps précieux et d'avoir partagé votre riche savoir pendant les Sinc années. Vos remarques très pertinentes n'ont Beaucoup aidée à l'amélioration de ce travail. Merci de nous acceptons de présider le jury.

Nous sincères remerciements à Madame **Zaoui** Maitre de conférence à l'université de Tlemcen département des sciences de la terre et de l'univers pour avoir accepté de lire et de juger ce mémoire.

الملخص	1
Résumé	2
Abstract	3
Dédicaces	4
Remerciements	6
Table des matières	7
PREMIER CHAPITRE : GÉNERALITES	9
1. Introduction	10
2. Problématique	10
3. Méthodologie	11
4. Aperçu géographique et géologique des régions d'étude	11
4.1. La région de M'Sirda	12
4.2. La région de la Tafna	11
4.3. La région de Tifaraouine	11
4.4. La région de cherchell(Algérois)	11
4.5. La région d'El Aouana	11
4.6. La région d'Oued Amizour	11
DEUXIEME CHAPITRE : ANALYSE DISCRIMINANTE	14
1. Définition	15
2. But de l'étude	15
3. Traitement statistique des données analytiques	15
3.1 Analyse discriminante	16
3.2 Synthèse de l'analyse discriminante	19
3.3 Analyse canonique	20
TROISIÈME CHAPITRE : ANALYSE MULTI VARIABLE	
1. Analyse multi-élémentaire	
1.1. Gisements corrélés dans le diagramme SiO2-K2O, El Aouana, O.Amizour, l'A et Kuroko).	Algérois
1.1.1. Analyse factorielle	31
1.1.2. Analyse en composantes principales (ACP)	32
2. Gisements corrélés dans les diagrammes AL2O3-SiO2 et CaO-AL2O3	
2.1 Analyse factorielle :	
2.2 Analyse en composant principale	35

Table des matières

3. Gisements corrélés dans le diagramme CaO-SiO ₂	
3.1 Analyse factorielle	
3.2 Analyse en composant principale	
4. Gisements corrélés dans le diagramme K2O-Al2O3 et K2O-CaO	
4.1 Analyse factorielle	40
4.2 Analyse en composant principale	
Conclusion générale	
Références Bibliographique	
LISTE DES ABREVIATIONS	
LA LISTE DES TABLEAUX	
LA LISTE DES FIGURES :	

PREMIER CHAPITRE : GÉNERALITES

1. Introduction

Le Nord de l'Algérie comprend de nombreux édifices magmatiques répartis le long de la cote. Ces édifices sont mis en place au sein de substratums de diverses natures (sédimentaire et métamorphique) et de différents âges (Paléozoïque, Plio-Quaternaire). Ces massifs montrent la présence de séries différenciées, par endroits altérées, constituées de coulées, de produits pyroclastiques ainsi que des corps sub-volcaniques montrant par endroits, des racines plutoniques ((Benali & al 2003 ; Louni & al 1995 ; Louni 2002 ; Ait Hamou, F. 1987 ; Aissa, D.E. 1996).

Au total, d'Ouest en Est, le long de la cote, six massifs volcaniques sont répartis sur trois portions le long de la chaine volcano-plutonique de la méditerranée. La portion occidentale (oranaise) renferme les massifs volcaniques des M'sirda et de Tifaraouine, la portion centrale (algéroise) ceux de Ténès-Cherchell et de Zemmouri-Ténia et enfin la portion orientale (nord constantinoise), les massifs volcaniques d'Oued Amizour et celui d'El Aouana.

Les vulcanites de ces massifs sont d'âge Miocène et elles présentent un chimisme calcoalcalin (Ait Hamou, F. 1987 ; Megartsi, M. 1985). Elles sont souvent altérées et elles encaissent diverses minéralisations métallifères. Celles-ci montrent diverses morphologies et elles sont associées à divers types de gangue.

Les travaux de Recherche minière entrepris par l'Office National de Recherche Géologique et minière (ORGM) durant le siècle passé sur ces six massifs ont mis en évidence diverses minéralisations. Ainsi, au vu de préciser la nature de ces minéralisations métallifères, une approche statistique est envisagée dans le cadre de cette étude.

2. Problématique

Le Nord de l'Algérie se caractérise par la présence de diverses minéralisations sulfurées polymétalliques associées aux formations magmatiques, mises au jour par l'ORGM. Celles-ci montrent diverses natures et morphologies.

L'encaissant de ces minéralisations est représenté par des formations magmatiques altérées miocènes dans les portions occidentale (M'sirda-Tifaraouine) et orientale (Oued Amizour-Oued .El Kébir) alors que dans la portion centrale ces minéralisations sont encaissées dans les nappes du Crétacé affectées par le magmatisme miocène. Ces minéralisations polymétalliques ont fait l'objet de plusieurs études géologiques et gîtologiques.

Pour pouvoir préciser, le mieux possible, la nature de ces minéralisations métallifères (métaux de base et accompagnateurs) associées aux vulcanites des massifs en question, une étude comparative avec des minéralisations métallifères volcano-gènes authentiques, établies au niveau mondial, est effectuée. Pour des raisons de comparaison et de fiabilité on utilise l'analyse discriminante.

Parmi les caractéristiques envisagées permettant cette discrimination entre ces minéralisations par massif et par conséquent les tendances (proximités entre les échantillons, Appartenant au bvf même massif ou non) qu'elles présentent, la discrimination géochimique est utilisée.

3. Méthodologie

La méthodologie définie et appliquée dans le cadre de ce travail consiste en un traitement statistique, par analyse discriminante et par analyse multi variable des données analytiques. Au total, 10 éléments majeurs (Oxydes : SiO₂, Al₂O₃, Fe₂O₃, MgO, CaO, Na₂O, K₂O, TiO₂, P₂O₅ et MnO analysés sur un lot de 617 échantillons en roches répartis sur 12 massifs volcaniques (M'Sirda ; Tafna ; Tiffaraouine ; Algerois ; El Aouana ; Oued Amizour Abitibi ; Kuroko ; Point chaud ; Zone de subduction ; Dorsale médioocéanique ; Faille transformante.) ont été utilisés.

4. Aperçu géographique et géologique des régions d'étude

La chaine alpine de l'Afrique du Nord « Maghrébides » fait partie de l'orogène alpin périméditerranéen (Durand-Delga ; 1969). En Algérie, cette chaîne montre du Nord au Sud une zone interne : zone des nappes, et une zone externe, L'histoire géologique de cette chaine est marquée, au Miocène ; par d'importantes activités tectoniques et magmatiques.

Ainsi ; de nombreux édifices magmatiques (plutoniques et volcaniques) post-tectonique mis en place alignés le long de cette chaine ; encadrés par des terrains de nature et de différents âges. Ceux-ci définissent d'Ouest à l'Est un secteur occidental (oranais) renfermant les volcans des M'sirda, ceux de la Tafna et l'ensemble volcanique du Sahel d'Oran, un secteur central (Algérois) ou les formations volcaniques de Ténès et de Cherchelle, le Nord constantinois avec les massifs de Oued Amizour et celui le plus oriental de Oued el Kébir. (**fig01**).

Fig. Nº 01 : La ceinture volcano-métallogénique du Nord algérien (Megartsi, M. 1985)

4.1.La région de M'Sirda

Le massif de M'sirda se localise à l'extrémité NW du pays. Il se caractérise par la présence des vulcanites altérées composées de basaltes et d'andésites. Ces formations se sont mises en place au cours de 3 phases d'activité. Aux 2 premières phases sont attribuées des basaltes et des andésites calco alcalins miocènes. A la 3ème phase des basaltes alcalins plioquaternaires.

4.2. La région de Tafna

Notre région d'étude est limitée au Nord par le flanc nord de Djebel Sabaa Chiouck, au Sud par les Monts de Tlemcen à l'Est par les Monts de Tessala et enfin à l'Ouest par la faille bordière du massif des Traras (FBT) qui s'étend sur plusieurs kilomètres.

Dans les bassins sublittoraux de l'Algérie occidentale, le Miocène forme un cycle sédimentaire complet qui se divise en Miocène inférieur et supérieur (PERRODON, 1957).

Et des terrains anti-nappe ; synchro-nappe et des autres post-nappe (Guardia, 1975).

4.3. La région de Tefaraouine

Le massif de Tifaraouine fait partie de l'ensemble volcanique du Sahel d'Oran. Il se localise à une quarantaine de kilomètres au SW de la ville d'Oran. Les formations volcaniques observées dans ce massif sont dominées par la présence de produits pyroclastiques (brèches et tufs) de nature andésitique

4.4. La région de cherchell (Algérois)

La coulée rhyolitique du site 14, datée à 15.4 Ma. Clairement antérieure aux xénolites de granodiorite et de rhyolite contenus.

4.6. La région d'El Aouana

Dans la région d'El Aouana (l'activité magmatique) est caractérisée par la mise en place de Roches sub-volcanique et volcanique accompagnées par une minéralisation principalement polymétallique.

4.5. La région d'Oued Amizour

Le secteur Oued Amizour est situé au sud de la vallée de la Soummam, entre la ville de l'Oued Amizour et la rive occidentale du golf de Bejaïa.

Le complexe magmatique de ce secteur est constitué de deux ensembles, l'un est intrusif et comprend sept plutons d'extension inégale, l'autre est volcanique constitué de laves et de pyroclastites

DEUXIEME CHAPITRE : ANALYSE DISCRIMINANTE

1. Définition

L'analyse discriminante est une technique de statistique exploratoire qui travaille sur un ensemble de N observations (617 échantillons) décrites par K variables (10 oxydes), répartis en Z groupes (12 massifs volcaniques).

Elle vise à produire un nouveau système de représentation, des variables latentes formées à partir de combinaisons linéaires des variables initiales, qui permettent de discerner le plus possible les groupes d'individus (Z catégories).

Il s'agit d'une méthode géométrique car elle propose une représentation graphique, dans un espace réduit, qui permet de visualiser les proximités entre les observations, appartenant au même groupe ou non. Elle donne aussi la possibilité d'interpréter les axes factoriels, combinaisons linéaires des variables initiales, expliquer et ainsi comprendre les caractéristiques qui distinguent les différents groupes.

2. But de l'étude

Le but de cette analyse est d'étudier les relations entre une variable qualitative (massif volcanique) et un ensemble de variables explicatives quantitatives (oxydes) pour déterminer le ou les oxydes les plus discriminants vis à vis des massifs volcaniques et à quel massif appartient un oxyde à partir de ses caractéristiques (valeurs).

Ainsi, l'idée de base de l'application, dans ce cadre, de l'analyse discriminante est de déterminer si parmi les 12 massifs en question existe un ou plusieurs massifs différent par rapport à la moyenne qu'ils prennent sur un ou plusieurs parmi les 10 oxydes particuliers choisis c'est à dire déterminer le ou les oxydes permettant la meilleure discrimination possible entre les 12 massifs Pour cela ; les variables explicatives (oxydes) doivent être métriques et ne doivent pas être trop corrélées entre elles.

Ainsi, l'idée de base de cette étude est établie sur l'hypothèse que si les moyennes des teneurs en oxydes analysés peuvent être significativement différentes dans les 12 massifs, ces variables discriminent bien ceux-ci d'utiliser ces variables pour prédire l'appartenance à un groupe (par exemple, pour de nouvelles observations).

3. Traitement statistique des données analytiques

Les données analytiques ont été regroupées dans un tableau du fichier Excel. Le logiciel Statistica 8 a été utilisé pour les traitements suivants :

3.1 Analyse discriminante

*Discrimination par la moyenne

Il est clair que si les moyennes d'une variable (oxyde) entre différents groupes (massifs volcaniques) sont significativement différentes nous pouvons en conclure que cette variable discrimine bien ceux-ci. Dans ce cas, on soumet au test de significativité statistique les différences entre les moyennes des oxydes dans les différents massifs volcaniques.

Ce traitement a porté, dans un premier lieu, sur le calcul des moyennes de teneurs en éléments chimiques (**Tab.1**et **fig. 2**).

	SiO2	Al2O	Fe2O	MgO	CaO	Na2O	K2O	TiO2	P2O5	MnO	Ν
Secteur		3	3								
Misindo	48,2669	14,70	6,507	2,665	10,24	1,687	4,832	1,181	0,611	0,199	20
IVI SIFUA	0	103	59	862	276	241	069	724	379	655	29
Abitibi	58,5645	17,37	5,654	2,184	5,624	2,711	3,190	0,805	0,406	0,078	11
	4	545	55	546	55	818	909	455	364	182	11
17 1	68,0170	14,45	5,073	2,692	1,474	1,542	2,890	0,619	0,112	0,121	10
Кигоко	0	200	00	000	00	000	000	000	000	000	10
Algénois	59,0326	16,27	5,228	3,041	5,115	2,992	2,977	0,537	0,170	0,079	40
Algerois	5	755	37	224	71	041	959	551	204	796	49
Tifaraouine	53,8856	16,20	5,611	3,672	6,457	3,331	3,489	0,772	0,230	0,087	76
	6	895	71	500	90	447	605	500	540	105	/0
ELA	58,2576	15,41	6,180	5,203	6,709	2,675	2,243	0,570	0,123	0,107	52
E I Aouana	9	077	00	462	62	000	846	769	846	692	52
Qued Amizour	62,8538	15,48	5,141	2,401	4,475	3,581	3,616	0,613	0,150	0,080	12
Oueu Amizour	5	846	54	538	39	538	923	077	769	000	15
Doint aboud	46,6545	13,18	11,16	6,822	9,124	3,873	1,699	2,840	0,541	1,007	16
Point chaud	6	022	891	392	78	696	348	435	087	391	40
Zone de	48,6740	13,29	11,14	7,090	8,174	4,012	0,869	9,985	0,234	2,193	05
subduction	0	353	718	471	94	588	882	529	824	177	03
Dorsale	19 6015	15.00	5 506	7.055	11 27	2 6 9 1	0.255	1 602	0.268	0 192	
médio0océaniq	40,0045	13,09	5,590	053	11,27	2,081	0,555	1,005	0,200	0,162	42
ue	2	040	07	933	280	903	238	809	810	301	
Faille	47,9406	32,08	0,354	0,090	15,90	2,466	0,016	0,029	0,000	0,010	16
transformante	2	313	63	500	375	250	313	750	000	000	10
Tofno	53,9500	16,00	7,296	5,180	7,697	3,391	2,133	1,207	0,333	0,115	0
1 a111a	0	875	25	000	50	250	750	500	750	000	0

Tab 2	N°1.	Teneur	moyenne en	oxydes	par secteur
-------	------	--------	------------	--------	-------------

Fig. N°02. Représentation graphique des teneurs moyennes en éléments chimiques

Les résultats obtenus (**Tab** N°01 et **fig.2**) montrent pour les massifs Tafna ; El Aouana ; Tifaraouine de fortes teneurs moyenne en Al₂O3, MgO, Fe₂O₃, Na₂O₃ et CaO ; par contre une faible teneur en P₂O₅.

M'sirda et Abitibi se caractérisent par de fortes valeurs moyennes de P_2O_5 ; K_2O et CaO. De fortes teneurs en K_2O et Na₂O caractérisent les massifs de Tifaraouine ; O.Amizour et l'Algérois.

De ce qui précède on peut conclure avec les résultats suivants : L'élément SiO₂ permet de discriminer l'ensemble des vulcanites d'une forte teneur dans tous les secteurs qui nous avons déterminé et traité (kuroko; Abitibi; M'sirda; Tefaraouine; Tafna; Algérois; El Aouana).

Tifaraouine ; Tafna ; Al Aouana ; Oued Amizour et Algérois se rassemblant.

 P_2O_5 discrimine les secteurs M'sirda ; Abitibi ; Tafna par contre une faible teneur dans les secteurs volcanite de Kuroko ; El Aouana.

	Wilks' - Lambda	Partial - Lambda	F-remove - 11,416	p-level	Toler.	1-Toler. (R-Sqr.)
Al ₂ O ₃	0,096061	0,513219	35,87007	0,000000	0,692010	0,307990
K ₂ O	0,064310	0,766604	11,51389	0,000000	0,472317	0,527683
CaO	0,062539	0,788313	10,15540	0,000000	0,359948	0,640052
Fe ₂ O ₃	0,064933	0,759243	11,99222	0,000000	0,698791	0,301209
P_2O_5	0,061300	0,804246	9,20499	0,000000	0,826104	0,173896
SiO ₂	0,054469	0,905112	3,96468	0,000017	0,553475	0,446525
TiO ₂	0,057227	0,861482	6,08078	0,000000	0,881069	0,118931
Na ₂ O	0,062511	0,788665	10,13398	0,000000	0,282063	0,717937
MnO	0,060071	0,820693	8,26261	0,000000	0,328904	0,671096
MgO	0,055478	0,888642	4,73911	0,000001	0,488596	0,511404

3.2 Synthèse de l'analyse discriminante

Tab N°02. Le Lambda partiel de Wilk

Dans le tableau (**Tab** $N^{\circ}02$) et la figure (**fig.03.**), le Lambda Partiel de Wilk indique que la variable Al_2O_3 est celle qui contribue le plus, devant la variable Fe_2O_3 en second, la variable K_2O suivis respectivement par CaO , Na₂O, P₂O₅, MnO, TiO₂, MgO et enfin la variable SiO₂ qui contribue le moins à la discrimination générale.

Notons que plus la valeur de Lambda Partiel de Wilk est petite plus la discrimination est importante.

Fig.03 .Représentation graphique des oxydes en fonction de Lambda Partiel de Wilk

On peut conclure à ce point, que les teneurs en Al₂O₃, Fe₂O₃, K₂O, CaO et Na₂O sont les variables principales qui nous permettent de faire la distinction entre les différents secteurs. Pour plus d'informations sur la nature de la discrimination, réalisons une analyse canonique.

3.3 Analyse canonique

Nous allons maintenant étudier des fonctions discriminantes pour voir dans quelle mesure les dix variables permettent de discriminer les différents groupes. Le nombre de ces fonctions sera égal à celui des variables-1 (soit 9 fonctions discriminantes).

Tout d'abord, déterminons si les neuf fonctions discriminantes (composantes) sont Statistiquement significatives (**Tab N°03**).

	Eigen value	Canonicl - R	Wilks' – Lambda	Chi-Sqr.	df	p-level
0	<mark>2,445629</mark>	0,842483	<mark>0,049304</mark>	1279,147	110	0,000000
1	0,971544	<mark>0,701985</mark>	<mark>0,169882</mark>	753,377	<mark>90</mark>	0,000000
2	<mark>0,688911</mark>	0,638673	0,334929	<mark>464,880</mark>	<mark>72</mark>	0,000000
3	0,272718	<mark>0,462904</mark>	0,565666	242,144	<mark>56</mark>	0,000000
4	0,233634	<mark>0,435186</mark>	0,719933	139,654	<mark>42</mark>	0,000000
5	0,082626	0,276261	0,888134	50,419	30	0,011215
6	0,026707	0,161284	0,961517	16,678	20	0,673766
7	0,011524	0,106736	0,987197	5,477	12	0,940144
8	0,001429	0,037774	0,998573	0,607	6	0,996285

Tab N°03.Test du Chi² avec supp des composantes successives

Le tableau (Tab $N^{\circ}03$) teste toutes les composantes canoniques (fonctions discriminantes). Trois fonctions discriminantes (ou canoniques) sont statistiquement

significatives. Ainsi, nous allons devoir trouver trois explications (conclusions) quant à la manière dont les teneurs en oxydes nous permettent de discriminer entre les dix secteurs.

	Root 1	Root 2	Root 3	Root 4	Root 5	Root 6	Root 7	Root 8	Root 9
Al ₂ O ₃	0,29145	- 0,168189	0,026096	0,082225	- 0,102417	0,09610	-0,08580	- 0,07438	0,09100
K ₂ O	- 0,00026	0,379665	0,238639	0,157909	- 0,399301	- 0,23438	-0,35973	- 0,01706	0,12043
CaO	0,11369	0,055403	0,178619	- 0,073529	- 0,068141	- 0,05341	-0,19243	0,17359	- 0,02842
Fe ₂ O ₃	- 0,13649	- 0,097317	- 0,052508	0,152317	- 0,131750	0,16034	-0,10006	- 0,05003	- 0,08089
P ₂ O ₅	- 0,60149	0,716319	1,903422	- 0,574031	1,379157	2,14193	0,56219	0,82355	1,28277
SiO ₂	0,02576	- 0,025144	- 0,047314	- 0,014255	0,008793	0,04758	-0,09946	0,08337	0,02777
TiO ₂	0,00636	- 0,044622	0,022355	0,062078	- 0,009355	- 0,04222	0,02203	0,05685	0,04496
Na ₂ O	- 0,24562	- 0,048203	- 0,068196	- 0,515063	- 0,763806	- 0,03999	0,01416	0,30993	0,01836
MnO	0,11148	- 0,211232	0,194741	0,378445	0,465978	- 0,11230	-0,14390	- 0,09661	0,04895
MgO	- 0,02087	- 0,120075	0,077354	- 0,166589	- 0,064143	- 0,05043	-0,23748	- 0,07927	0,19741
Constant	- 4,86167	4,170146	- 0,305108	0,786519	5,583403	- 4,23706	10,5889 1	- 5,12433	- 3,85767
Eigenval	2,44563	0,971544	0,688911	0,272718	0,233634	0,08263	0,02671	0,01152	0,00143
Cum.Pro p	0,51652	0,721716	0,867216	0,924814	0,974158	0,99161	0,99725	0,99968	0,99999

Coefficients des fonctions discriminantes

Tab N°04. Coefficients bruts des variables canoniques

	Root 1	Root 2	Root 3	Root 4	Root 5	Root 6	Root 7	Root 8	Root 9
Al ₂ O ₃	<mark>0,870155</mark>	-0,502146	0,077912	0,245492	- 0,30578	0,286912	- 0,256151	- 0,222059	0,271685
K ₂ O	- 0,000489	<mark>0,720048</mark>	0,452587	0,299480	- 0,75729	- 0,444511	- 0,682241	- 0,032355	0,228391
CaO	0,528017	0,257318	0,829589	- 0,341504	- 0,31648	- 0,248047	- 0,893745	0,806230	- 0,132009
Fe ₂ O ₃	- 0,466190	-0,332381	- 0,179339	0,520231	- 0,44999	0,547649	- 0,341733	- 0,170870	- 0,276275
P ₂ O ₅	- 0,175394	0,208879	0,555038	- 0,167387	0,40216	0,624585	0,163934	0,240147	0,374057
SiO ₂	0,224118	-0,218798	- 0,411716	- 0,124046	0,07651	0,414031	- 0,865489	0,725475	0,241677
TiO ₂	0,053199	-0,373445	0,187089	0,519538	- 0,07829	- 0,353358	0,184366	0,475819	0,376296
Na ₂ O	- 0,459136	-0,090107	- 0,127479	- 0,962815	- 1,42779	- 0,074758	0,026476	0,579358	0,034330
MnO	0,237901	-0,450769	0,415577	0,807602	<mark>0,99440</mark>	- 0,239651	- 0,307073	- 0,206166	0,104462
MgO	- 0,073510	-0,422949	0,272472	- 0,586791	- 0,22594	- 0,177627	- 0,836505	- 0,279225	0,695359
Eigenval	2,445629	0,971544	0,688911	0,272718	0,23363	0,082626	0,026707	0,011524	0,001429
Cum.Pro p	0,516523	0,721716	0,867216	0,924814	0,97416	0,991609	0,997250	0,999684	0,999986

Tab N°05.Coefficients centrés-réduits des variables canoniques

Fig. N°04. les composants des fonctions discriminantes

La première fonction discriminante est essentiellement définie par la variable Al_2O_3 , CaO et dans une moindre mesure Fe_2O_3 et Na₂O. La seconde fonction par K_2O , Al_2O_3 et dans une moindre mesure MnO et MgO; La troisième fonction semble plutôt marquée par les variables CaO, P_2O_5 . Les variables K_2O MnO et SiO₂ contribuent également à cette fonction.

Les valeurs propres (composantes) de chaque fonction discriminante ainsi que la proportion cumulée de variance expliquée par chaque fonction montrent que :

Les trois premières fonctions expliquent plus de 0,86722% de la variance expliquée ; La première fonction explique plus de 51% (51,6523) de la variance expliquée, la seconde plus de 20% (20,5193) et la troisième plus de 14% (14,55).

Les trois premières fonctions expliquent 86,7216% de la variance globale expliquée, c'est-à-dire que plus de 86% du pouvoir discriminant total est expliquée par ces trois premières fonctions. Celles-ci sont donc clairement les plus importantes.

Pour établir des Corrélations Variables - fonctions discriminantes, une matrice de la structure Factorielle est calculée (Tab $N^{\circ}06$)

Coefficients de la structure factorielle

	Root 1	Root 2	Root 3	Root 4	Root 5	Root 6	Root 7	Root 8	Root 9
Al ₂ O ₃	0,729590	-0,134376	0,048843	0,113781	-0,393349	0,369451	0,227680	-0,195199	0,158007
K ₂ O	-0,016432	0,659850	-0,145060	0,421629	-0,311532	-0,054200	-0,107631	-0,053708	0,426702
CaO	0,146934	-0,185351	0,561798	-0,231301	0,107474	-0,075636	-0,260395	0,150184	-0,606140
Fe ₂ O ₃	-0,448762	-0,346437	0,283738	0,265766	-0,141525	0,361066	-0,320461	-0,150319	-0,419501
P ₂ O ₅	-0,158136	0,221201	0,454423	0,021882	0,025821	0,647506	0,258523	0,145733	0,436877
SiO ₂	0,060448	0,218955	-0,677648	0,112701	0,133579	0,161983	-0,307065	0,454361	0,321609
TiO ₂	-0,142364	-0,306371	0,115699	0,319082	0,008429	-0,331946	0,168599	0,366582	0,511435
Na ₂ O	-0,126621	-0,222640	-0,002936	-0,031671	-0,467468	0,009973	0,333285	0,333154	-0,104643
MnO	-0,137724	-0,275992	0,120979	0,277388	-0,032049	-0,121018	0,084020	0,197182	-0,236187
MgO	-0,262029	-0,313901	0,158379	-0,384980	0,183199	-0,204741	-0,383023	-0,418064	0,371572

Tab N°06. Matrice de la structure Factorielle, Corrélations Variables - fonctions discriminantes.

Le tableau (**Tab** N°.06) montre de nettes corrélations entre (**Root 1- Al2O3**), (**Root 2- K2O**) et (**Root 3-CaO- SiO**₂).

Moyennes des variables canoniques

	Root 1	Root 2	Root 3	Root 4	Root 5	Root 6	Root 7	Root 8	Root 9
M'sirda	0,13305	2,19431	1,75594	0,79318	0,482825	- 0,128575	- 0,101673	0,039388	- 0,010556
Abitibi	0,63533	0,59363	- 0,36265	0,41759	0,294317	0,686616	0,231818	0,145212	0,159387
Kuroko	0,09172	0,34392	- 2,10592	0,90315	1,633121	0,448130	0,194771	- 0,195499	- 0,020536
Algérois	0,38160	0,42503	- 0,94081	0,09202	- 0,004699	0,063020	0,158238	0,011586	- 0,044869
Tifaraouine	0,19866	0,73632	- 0,21016	- 0,09702	- 0,604504	- 0,245518	0,088299	- 0,089852	0,017569
E l Aouana	0,22447	0,02235	- 0,76040	- 0,21406	0,188625	- 0,017813	- 0,375498	- 0,055605	0,008466
Oued Amizour	0,06968	0,70829	- 1,22448	- 0,07372	- 0,526997	0,003362	- 0,101100	0,492825	- 0,045356
Point chaud	- 1,59516	- 0,11379	0,83350	- 0,38096	- 0,335358	0,581586	- 0,010493	- 0,049210	- 0,031615
Zone de subduction	- 1,29281	- 1,37662	0,19341	0,48704	0,009627	- 0,179695	0,015165	0,022324	0,005562
Dorsale médio océanique	0,36874	- 0,26931	0,53939	- 1,12838	0,757557	- 0,237684	0,125414	0,043143	0,003156
Faille transformante	6,87701	- 1,71171	0,93125	0,34863	- 0,303027	0,225199	- 0,021031	- 0,013045	- 0,020443
Tafna	- 0,04904	0,02308	- 0,08488	- 0,46669	- 0,339546	0,381152	- 0,113836	0,090509	0,118379

Tab N°07. Moyennes des variables canoniques

Apparemment, la première fonction discriminante permet surtout de discriminer Point chaud et zone de subduction des autres secteurs.

En conclusion, les tableaux (Tab nn° 5, 6 et7) permettent les constats suivants :

La $1^{\text{ère}}$ fonction (**Root1**) permet de discriminer sur la base des teneurs en Al₂O₃, CaO point chaud et zone de subduction. Les moyennes canoniques des secteurs Point chaud et Zone de subduction sont très différentes de celles des autres groupes.

La 2ème fonction (**Root2**) sur la base des teneurs en Al_2O_3 , K_2O , M'sirda en opposition à zone de subduction et faille transformante.

La 3ème fonction (**Root3**) sur la base des teneurs en CaO, P_2O_5 M'sirda en opposition à Kuroko et O.Amizour.

Pour visualiser les résultats obtenus ci-dessus des diagrammes de corrélation (oxydessecteur) ont été établis. Diagramme de SiO₂-K₂O

Le diagramme (Fig. N°05) discrimine trois nuages de points représentant chacun un ensemble de secteurs corrélables.

L'ensemble A, en haut du nuage, représente **M'sirda et Tifaraouine**. Ces deux massifs ne montrent pas de corrélation avec les autres.

L'ensemble B regroupe El Aouana, O. Amizour, l'Algérois et le Kuroko.

L'ensemble C, le plus inférieur montre une corrélation entre zone de subduction, dorsale médio-océanique, point chaud auxquels se rattache la Tafna.

-Diagrammes Al₂O₃- SiO₂- CaO-AL₂O₃

Fig. N°06 Diagrammes Al₂O₃- SiO₂- CaO-AL₂O₃

Les deux diagrammes (**fig. N°06**) discriminent faille transformante, M'sirda. Les autres secteurs Abitibi ; Kuroko ; Tefaraouine ; Tafna ; Algérois ; El Aouana ; Oued amizour ; ayant le même type de minéralisation dans les deux diagrammes (Al₂O₃- SiO₂- CaO-AL₂O₃).

Diagramme CaO- SiO₂

Le diagramme (**fig.N°07**) rassemble l'ensemble des secteurs en un seul nuage de points. Il semble que M'sirda se détache du reste.

Il semble exister 3 nuages de points dans ce diagramme représentant chacun, un ensemble de secteurs. Le nuage de point le plus haut regroupe **Tifaraouine et M'Sirda** Le nuage de point (en bas au milieu) regroupe (Abitibi, Algérois, Tafna, El Aouana, O. Amizour, point chaud et kuroko.) ; le nuage de point à droite représente faille transformante.

Diagramme K₂O-CaO

Ce diagramme comporte 2 ensembles du nuage Les points du nuage qui en haut regroupe **M'Sirda et Tifaraouine**. Les points du nuage la plus inférieur regroupe Abitibi, kuroko, Algerois, El Aouana, O.Amizour et Tafna.

M'Sirda et **Tifaraouine** sont distingués sur les diagrammes : (K₂O-SiO₂), (K₂O-AL₂O₃), (K₂O-CaO). Les formations volcaniques de ces massifs sont plus potassiques.

M'Sirda est plus calcique (diagrammes CaO-AL2O3; CaO-SiO2 et K2O-CaO

Par ailleurs, remarquer bien que <u>M'sirda</u> ne ressemble <u>pas</u> aux autres secteurs sur l'ensemble des secteurs. Les tableaux (Root2 et Root3) montrent aussi cette discrimination.

Etablir un lien avec :

-La 2ème fonction (Root2) sur la base des teneurs en Al₂O₃, K₂O, <u>M'sirda</u> en opposition à zone de subduction et faille transformante.

-La 3ème fonction (Root3) sur la base des teneurs en CaO, P_2O_5 <u>M'sirda</u> en opposition à Kuroko et O.Amizour.

TROISIÈME CHAPITRE : ANALYSE MULTI VARIABLE

1. Analyse multi-élémentaire

Le traitement multi élémentaire (AF et ACP) des données étudiées montrent les résultats Suivants :

1.1. Gisements corrélés dans le diagramme SiO₂-K₂O, El Aouana, O.Amizour, l'Algérois et Kuroko).

1.1.1. Analyse factorielle

Elle est destinée à réduire un grand nombre de variables en corrélation à un plus petit nombre de variables indépendantes, ou facteurs.

Le facteur F1 (SiO₂- Fe₂O₃- MgO- CaO- K₂O et MnO) mis en évidence représente les formations magmatiques (volcaniques). SiO₂ indique la présence de silicates et Fe₂O₃- MgO les minéraux ferromagnésiens. L'opposition de CaO à SiO₂ indique que le plagioclase est intermédiaire.

Le facteur F2 (Na₂O - P_2O_5) évoquent probablement un fort lessivage et la présence de l'apatite.

Ainsi, le groupe El Aouana, O.Amizour, l'Algérois qui présentent le même type de minéralisation (polymétallique) que Kuroko présentent le même type d'associations géochimiques caractéristiques.

1.1.2. Analyse en composantes principales (ACP)

Son but est de maximiser la dispersion de variables autours d'une droite appelée facteur. Lorsqu'on extrait plusieurs facteurs, Ces derniers doivent être orthogonaux ou indépendants les unes des autres.

Nombre des éléments		% Total -	Cumulative –	Cumulative	5	52,40%
chimique	Eigenvalue	variance	Eigenvalue	- %	4	
1	5,239914	52,39914	5,23991	52,3991		
2	2,200934	22,00934	7,44085	74,4085	envalu	22,01%
3	0,730349	7,30349	8,1712	<u>81,712</u>	iii 2	
4	0,590612	5,90612	8,76181	87,6181	1	20% 5,91% , 40%
5	0,443854	4,43854	9,20566	92,0566	0	2,53% 2,28% 1,88% ,75% ,51%
6	0,253449	2,53449	9,45911	94,5911	ł	
7	0,227838	2,27838	9,68695	96,8695	-1 -1	0 1 2 3 4 5 6 7 8 9 10 11 12
8	0,187674	1,87674	9,87462	98,7462		Eigenvalue number
9	0,074608	0,74608	9,94923	99,4923		
10	0,050769	0,50769	10	100		
Tab N°.09. Valeurs propres de la matrice de corrélation SiO2-K2O						11.Diagramme des valeurs propres de la crice de corrélation SiO2-K2O

Le tableau (**Tab** N°09) et la figure (**fig.**N°11) permettent d'extraire 3 facteurs qui expliquent plus de 81% de la variance globale.

La projection des variables de trois facteurs

Le même résultat est obtenu avec les ACP.

2. Gisements corrélés dans les diagrammes AL₂O₃-SiO₂ et CaO-AL₂O₃

Ces 2 diagrammes intègrent les mêmes gisements et par conséquent un traitement multivarié leur sera commun. Le résultat obtenu pour les gisements corrélés dans le diagramme AL₂O₃-SiO₂ sera extrapolé à ceux figurant sur le diagramme CaO-AL₂O₃.

2.1 Analyse factorielle :

Il apparaît que deux facteurs sont bien identifiés (**Tab.N.11**. ° et **Fig.N**°**15**). Le Facteur1 (F1), (SiO₂- Fe₂O₃- MgO- CaO et K₂O) traduit la présence de formations magmatiques. Le Facteur2 (F2), (Na₂O-MnO) évoque la présence de plagioclase acide.

A regarder le signe positif pour SiO₂, Na₂O en opposition à celui de CaO.

Ce résultat donne un certain sens à la présence d'une séquence plus acide qui caractérise les formations magmatiques appartenant à ce groupe

2.2 Analyse en composant principale

Le tableau (**Tab** N°12) et la figure (**Fig.16**) permettent d'extraire trois facteurs expliquant plus de 66,87% de la variance.

Le même résultat obtenu que l'analyse factorielle. Le facteur (F3) indique la présence des plagioclases.

3. Gisements corrélés dans le diagramme CaO-SiO₂

3.1 Analyse factorielle

Le facteur F1 (SiO₂- Fe₂O₃- MgO- CaO- K₂O) représente les formations magmatiques (volcaniques). SiO₂ indique la présence de silicates et Fe₂O₃- MgO les minéraux ferromagnésiens. L'opposition de CaO à SiO₂ indique que le plagioclase est intermédiaire. Le facteur F2 (Na₂O - MnO) indique un fort lessivage et la présence de l'apatite.

Ainsi, les gisements de El Aouana; Oued Amizour; Algérois; Tafna présentent le même type d'associations géochimiques caractéristiques que Kuroko et Abitibi et présentent le même type de minéralisation (polymétallique).

3.2 Analyse en composant principale

						3,5			E	igenv /	alues o	of corre	elation es only	matrix	(
Nombre des éléments		% Total –	Cumulative –	Cumulative		3,0		27,899	6										
chimique	Eigenvalue	Variance	Eigenvalue	- %					21,06%										
1	2,789012	27,89012	2,78901	27,8901	e	2,0				19,04%	0								
2	2,105503	21,05503	4,89451	48,9451	envalu	1,5													_
3	1,904352	19,04352	6,79887	67,9887	Ē	10					10,629	6							
4	1,062151	10,62151	7,86102	78,6102		.,						8,06%	6						
5	0,806465	8,06465	8,66748	86,6748		0,5							4,179	63,75	% 2,21	% 1,98%	1.229	6	
6	0,417047	4,17047	9,08453	90,8453		0,0											-0		
7	0,37485	3,7485	9,45938	94,5938		-0,5													
8	0,220704	2,20704	9,68008	96,8008		-1	0	1	2	3	4 Eig	5 envalu	6 ie num	7 Iber	8	9	10	11	12
9	0,197658	1,97658	9,87774	98,7774															
10	0,122257	1,22257	10	100	F	ig.N	°21	.Di	agra	am	me	de	s v	ale	urs	s pro	opr	es	de l
Tab N°15 corrélatio	Tab N°15. valeurs propres de la matrice de corrélation CaO-SiO2 corrélation																		

L'analyse composant principale de diagramme CaO-SiO₂ permis de dégager trois facteurs qui expliquent 67,98% de variance globale d'après le (**Tab** N°15) et la (**Fig.N°21**)

La projection des variables de trois facteurs

Le même résultat obtenu par l'analyse factoriel

4. Gisements corrélés dans le diagramme K2O-Al2O3 et K2O-CaO

4.1 Analyse factorielle

Pour ce diagramme représente un gisement qui regroupe l'ensemble des secteurs qui contient la même composition minéralogique des facteurs qui le composent en a le secteur D'Abitibi ; Kuroko ; El Aouana ; Oued Amizour ; Algérois ; Tafna ; Dorsale médio-océanique ; Point chaud ; Faille transformant ; Zone de Subduction.

En trouve que le secteur de M'sirda ; Tefaraouine et la zone elles sont différents de ce gisement et nous avons voire par la corrélation dans l'AF (**Fig.25**) et l'ACP.

Il apparaît que deux facteurs sont bien identifiés (TabN°17 et Fig.N°25).

Le Facteur1 (F1), (SiO₂- Fe₂O₃- MgO- CaO) traduit la présence de formations magmatiques. Le Facteur2 (F2), (Na₂O-MnO) évoque la présence de plagioclase acide.

A regarder le signe positif pour SiO₂, Na₂O en opposition à celui de CaO.

Ce résultat donne un certain sens à la présence d'une séquence plus acide qui caractérise les formations magmatiques appartenant à ce groupe.

4.2 Analyse en composant principale

Nombre des éléments chimique	Eigenvalu e	% Total – variance	Cumulative - Eigenvalue	Cumulative - % 29,4069			
1	2,940689	29,40689	2,94069				
2	2,204346	22,04346	5,14503	51,4503			
3	1,963487	19,63487	7,10852	71,0852			
4	1,029129	10,29129	8,13765	81,3765			
5	0,813599	8,13599	8,95125	89,5125			
6	0,359271	3,59271	9,31052	93,1052			
7	0,260107	2,60107	9,57063	95,7063			
8	0,172923	1,72923	9,74355	97,4355			
9	0,143042	1,43042	9,88659	98,8659			
10	0,113406	1,13406	10,00000	100,0000			

Tab N°18. Valeurs propres de la matrice de corrélation

Fig. N°26 : .Diagramme des valeurs propres de la matrice de corrélation

Le tableau (**Tab** N°17) et la figure (**Fig.N**°26) permettent d'extraire trois facteurs expliquant plus de 67,98% de la variance.

La projection des variables de trois facteurs

Les mêmes résultats obtenus avec les ACP

Ces 2 diagrammes fusionner les mêmes gisements nous conclusion un traitement multivarié sera commun. Le résultat obtenu pour les gisements corrélés dans le diagramme K₂O-Al₂O₃ sera indiqué à ceux figurant sur le diagramme K₂O-CaO.

Conclusion générale

En conclusion l'étude statistique du magmatisme miocène du Nord de l'Algérie a permis les résultats suivants :

Le traitement statistique par analyse discriminante des éléments chimique des secteurs (M'sirda ; Tifarouine ; Tafna ; Algérois ; Al Aouana ; Oued Amizour ; Kuroko ; Abitibi ; Point Chaud ; Zone de Subduction ; Dorsale médio-océanique ; Faille Transformante). Nous permet de discerner six diagrammes discriminants :

Le diagramme K₂O-SiO₂ permet de corréler Oued Amizour ; El Aouana ; Algérois à Kuroko. Par conséquent, ces minéralisations consistent en une association formée de Cuivre, Plomb, Zinc, Fer, Titane ; Argent et Baryum.

Le diagramme Al₂O₃-SiO₂ regroupe les secteurs Algerois, Tifaraouine, Al Aouana, Tafna, oued Amizour exceptés M'sirda encaissent le même type de minéralisation que Kuroko (Cu, Pb et Zn) et Abitibi (Ag ; Cu ; Zn ; Fe ; Ti).

Le Diagramme CaO-Al₂O₃ rassemblant au diagramme de AL₂O₃-SiO₂ ; donc ils ont les mêmes résultats.

Les diagrammes (K₂O-Al₂O₃) et (K₂O-CaO) : corrélées les massifs (Abitibi ; Algérois ; Amizour ; Tafna ; El Aouana...) ; par conséquent réunissant de Cuivre de Fer de Plan et de Zinc.

Le diagramme de CaO-SiO₂: permet de corrélés les secteurs nationaux et mondiaux ; la zone de subduction ; point chaud et dorsale médio-océanique sont des cadres géodynamique ; les autres gisements caractérisé par (Cu ; Pb ; Zn ; Fe ; Ag ; Ni ; Ba...).

À ce point on conclut que les éléments majeurs Al_2O_3 ; Fe_2O_3 ; K_2O ; CaO et Na_2O permettront de nous faire la distinction entre les différents massifs.

Les éléments en traces (Cuivre; Plan; Zinc; Fer...) permettront de faire la discrimination entres les gisements nationaux et mondiaux.

Références Bibliographique

AISSA D.E. 1996. Les minéralisations du massif cristallophyllien de l'Edough-Annaba. Thèse de Doctorat d'Etat, USTHB, Alger, 420 p.

AIT HAMOU, F. 1987. Etude pétrologie et géochimique du volcanisme d'âge miocène de la région de Hadjout (Ouest-Algérois). Thèse Magister, USTHB, Alger, 193 p.

BELANTEUR, O., BELLON. H. MAURY R. C., OUABADI, A., COUTELLE, A., SEMROUD, B., MEGARTSI, M., FOURCADE, S. 1995. Le magmatisme miocène de l'Est Algérois : géologie, géochimie et géochronologie ⁴⁰K-⁴⁰Ar, Compte rendu de l'académie des sciences. Paris, Série IIa 321, 489.

BELON, H. 1976. Les séries Magmatiques néogènes et quaternaires du pourtour de la Méditerranée occidentale comparés dans leur cadre géochronométrique: Implication géodynamiques. Thèse Doctorat d'Etat, Paris, 367p

BELON, H. 1976. Les séries Magmatiques néogènes et quaternaires du pourtour de la Méditerranée occidentale comparés dans leur cadre géochronométrique: Implication géodynamiques. Thèse Doctorat d'Etat, Paris, 367p.

BENALI, 1994. Les dômes périphériques du massif volcanique d'El Aouana (Pétrographie, géochimie, minéralogie, pétrogenèse). Thèse Magister, USTHB, Alger, 100 p

BENALI, H.2007, les minéralisations associées aux roches magmatiques tertiaires du Nord de l'Algérie (typologie, pétrologie, cadre géographique et implication métalloginique) thèse de doct d'Etat USTHB.p15.16.40.45.

CHIRON, J-C, 1978, les gisements « KUROKO »du japon, chronologie de la rocheche Minière N°443, tabl1, 16p.

KHELLAF, S.2015, (discrimination géochimique des volcanismes Miocènes du Nord de l'Algérie) Mém. Master Univ.tlmcen, p3, 4, 5,6, 7, fig. 1.

LOUNI-HACINI A., BELLON. H., MAURY R. C., MEGARTSI, M., COULON, C., SEMROUD, B., COTTEN, J., COUTELLE, A. 1995. Datation ⁴⁰K-⁴⁰Ar de la transition du volcanisme calco-alcalin en Oranie au Miocène supérieur, Compte rendu de l'académie des sciences. Paris, Série IIa 975-982. **MEGARTSI, M. 1985**. Le volcanisme mio-plio-quaternaire de l'Oranie nord occidentale. Thèse de Doctorat d'Etat, Université d'Alger, Alger, 296 p.

SAMAMA-BELMOUHOUB, A, 1995, sevice d'analyses des roches et minéraux-laboratoire de chimie CNRS, les Echantillons, S07 ; S08, S09, S10, S11, S12, S13.paris.

Durand-Delga M, (1969), Mise au point sur la structure du Nord-Est de la Berbérie. Publ. Serv. Géol. Algérie, n°39, 89-131.

Georges- B ; 2006, Gitologie et métallogénie. Thèse de doctorat faculté de science et de génie Univ laval Québec 114, 123, 77p.

Abbassene - F ; 2016, Contraintes chronologiques et pétrogéochimiques du magmatisme sur l'évolution pré- et post-collisionnelle de la marge algérienne : Secteur de la Petite Kabylie. Thèse de doctorat, Univ de Bretagne Occidentale 6, 8p.

Bellon - H, Guardia ; P, J. Magne ; 1984. Les associations volcaniques du Miocène Supérieur de la région oranaise (Algérie occidentale). Conséquences géodynamiques. Pub. 255, 256, 263p.

Benali - H., Semroud - B. et Kolli - O. ; 2003. Caracteristiques des dômes périphériques du Complexe magmatique d'El Aouana (Jijel, Algérie). Bulletin du Service Géolologique de L'Algérie, 14, 3-14.

Louni-Hacini A., Bellon. H., Maury R. C., Megartsi, M., Coulon, C., Semroud, B., Cotten, J. Coutelle, A. 1995. Datation 40K-40Ar de la transition du volcanisme calco-alcalin en Oranie Au Miocène supérieur, Compte rendu de l'académie des sciences. Paris, Série IIa 975-982.

Arafa- M., 1997, Pétrologie du magmatisme néogène du NW de Annaba (NE Algérie). Thèse de Magister, Univ. Annaba, 243p.

Gentil - L. (1903). Etude géologique du bassin de la Tafna. Publ.257p.

Guardia - P. (1975), Géodynamique de la marge alpine du continent africain d'après l'étude de l'Oranie nord-occidentale. Thèse Sc. Nice ; 289 p.

Semroud-B. 1981, Evolution pétrologique du complexe magmatique néogène de la région de Béjaïa-Amizour Thèse de Doctorat d'Etat, Université d'Alger, Alger, 263p.

Semroud-B. 1993, Caractères pétrologiques des laves miocènes de la région de Béjaïa-Amizour (ALGERIE) Bulletin du Service Géolologique de l'Algérie, 4, 55-64.

Semroud-B., Maury, R. C., Ouabadi, A., Cotten, J., Fourcade, S., Fabriès. J., Gravelle, M.1994, Géochimie des granitoïdes miocènes de Béjaia Amizour (Algérie du Nord). Compte rendu de l'académie des sciences. Paris, Série II 319, 95-102.

ORGM : Office Nationale de Recherche Géologique et Minière.

LISTE DES ABREVIATIONS

ACP : Analyse en Composant Principale **AF** : Analyse Factorielle Ag: Argent Al₂O₃: Alumine ou Oxyde d'Alumine CaO: Oxyde de Calcium **CNRS :** centre national de la recherche scientifique. Cu: Cuivre **F1** : premier facteur **F2**: deuxième facteur **Fbt :** Faille Bordière des Traras Fe: Fer Fe₂O₃ : Oxyde de Fer K₂O : Oxyde de Potassium MgO : Oxyde de Magnésium MnO : Oxyde de Manganèse Na₂O : Oxyde de Sodium Ni : Nickel **ORGM** : Office des recherches géologiques et minières. P₂O₅ : Pentoxyde de Phosphore Pb : plomb SiO₂: Silice Ti : Titane TiO₂: Dioxyde de Titane Vms : Volcanogenic Massive Sulfide deposits

Zn:Zinc

LA LISTE DES TABLEAUX

- Tab 01 : Teneur moyenne en oxydes par secteur
- Tab 02 : Le Lambda partiel de Wilk
- Tab 03 : Test du Chi² avec supp. Des Composantes. Successives
- Tab 04 : Coefficients bruts des variables canoniques

Tab 05 : Coefficients centrés-réduits des variables canoniques

Tab 06 : Matrice de la structure Factorielle, Corrélations Variables - fonctions discriminantes (Pooled - within-groups correlations).

Tab 07 : Moyennes des variables canoniques

Tab 08 : Facteur Loadings (Unrotad) SiO₂-K₂O

Tab 09 : Valeurs propres de la matrice de corrélation SiO₂-K₂O

Tab 10 : Tableau des facteurs loadings

Tab 11 : Facteurs Loadings Al₂O₃-SiO₂)

Tab 12 : valeurs propre de la matrice de corrélation

Tab 13 : Facteurs loadings des variables

- Tab 14 : Facteur loading CaO-SiO₂
- Tab 15 : valeurs propres de la matrice de corrélation
- Tab 16 : Facteurs loading des variables
- Tab 17 : facteurs loadings K₂O-Al₂O₃
- Tab 18 : Valeurs propres de la matrice de corrélation
- Tab 19 : facteurs loadings des variables

LA LISTE DES FIGURES :

- Fig01 : Ceinture volcanique du Nord algérien
- Fig02 : Représentation graphique des teneurs moyennes en éléments chimiques
- Fig03 : Représentation graphique des oxydes en fonction de Lambda Partiel de Wilk
- Fig04 : Les composant des fonctions discriminant
- Fig05: Diagramme K₂O-SiO₂
- Fig06: Diagramme AL₂O₃-SiO₂
- Fig07: Diagramme CaO-SiO₂
- Fig08: Diagramme K₂O-AL₂O₃
- Fig09: Diagramme K₂O-CaO
- Fig10: Diagramme SiO₂-K₂O
- Fig11 : Diagramme des valeurs propres de la matrice de corrélation SiO₂-K₂O
- Fig12 : Cercle de corrélation F1-F2
- Fig13 : Cercle de corrélation F1-F3
- Fig14 : Cercle de corrélation F2-F3
- Fig15 : Diagramme factoriel F1*F2
- Fig16 : Diagramme des valeurs propres de la matrice de corrélation
- **Fig17** : Cercle de corrélation F1*F2
- Fig18 : Cercle de corrélation F1*F3
- Fig19 : Cercle de corrélation F2*F3
- **Fig 20 :** Diagramme F1*F2
- Fig 21 : Diagramme des valeurs propres de la matrice de corrélation CaO-SiO₂
- **Fig22 :** Cercle de corrélation F1*F2
- Fig23 : Cercle de corrélation F1*F3
- Fig24 : Cercle de corrélation F2*F3
- **Fig25 :** Diagramme F1*F2

Fig26 : Diagramme des valeurs propres de la matrice de corrélation **Fig27 :** Cercle de corrélation F1*F2

- Fig28 : Cercle de corrélation F1*F3
- Fig29 : Cercle de corrélation F2*F3

Fin