

Structure, bonding and stability of semi-carbides M₂C and sub-carbides M₄C (M=V, Cr, Nb, Mo, Ta, W): A first principles investigation

- <u>F.Z. Abderrahim</u>^a '<u>H.I. Faraoun</u>^a <u>T. Ouahrani^{b, c}</u>
- ^a Unité de Recherche Matériaux et Energie Renouvelables, URMER, Université de Tlemcen, Algeria
- ^b Laboratoire de Physique Théorique, Université de Tlemcen B.P. 230, 13000 Tlemcen, Algeria
- ^c École Préparatoire en Sciences et Techniques, B.P. 230, 13000 Tlemcen Algeria
- http://dx.doi.org/10.1016/j.physb.2012.05.070,

Abstract

Density functional theory within the generalized gradient approximation (GGA) is used to investigate the electronic structure and formation energies of semi-carbides M_2C and subcarbides M_4C (where M=V, Cr, Nb, Mo, Ta and W). Our results show that M_2C carbides are more stable than M_4C . Total and partial densities of states were obtained and analyzed systematically for these phases. Moreover, the bonding nature of M_2C polymorphs is studied from the point of view of the Quantum Theory of Atoms in Molecules (QTAIM). It is found that inter-atomic interactions in these carbides are of mixed type including ionic, covalent and metallic components.

Keywords

- Ab initio calculations;
- Transition metal carbides;
- Phase stability;
- Electronic structure;
- Quantum theory of atoms in molecules