الجمهورية الجزائرية الديمقراطية الشعبية

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

وزارة التعليم العالي و البحث العلمي

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

جامعة أبي بكر بلقايد- تلمسان

Université Aboubakr Belkaïd-Tlemcen

كلية التكنولوجيا

Faculté de Technologie

Département de Génie Electrique et Electronique (GEE) Filière : Electronique

MASTER INSTRUMENTATION

PROJET DE FIN D'ETUDES

Présenté par : Ouasti Riad & Oumiloud Abdelkader

Intitulé du Sujet

Etude et Simulation d'un Impédancemètre

Soutenu en 2020, devant le jury composé de :

M^r Massoum Nour-Eddine MCB M^r Kerai Salim MCA M^r Moulai Khatir Ahmed Nassim MCB Univ. Tlemcen Univ. Tlemcen Président Encadreur

Univ. Tlemcen

Examinateur

Année Universitaire 2019-2020

Remerciement

Touts d'abord nous remercions avant touts, dieu le tout puissant qui nous a donne La sante, le courage, la volonté et la patience pour mener a bien ce travail.

Nous voudríons remercíer chaleureusement mon encadreurs MR KERAI Salím.

Nous remercions pour la qualité de son encadrement, sa rigueur et sa disponibilité, ses remarques fructueuses et ses directives précieuses, qui ont contribué efficacement à l'avancement de ce travail.

Nous remercions le président de jury Mr Massoum Nour-Eddine. A ainsi que les examinatrices Mr Moulai Khatir Ahmed Nassim, D'avoire accepter de lire et examiner ce modeste travail et d'apporter les critique Nécessaires a la mise en forme de ce projet.

Sans oublier de nous remercions tout le personnel du département de Génie électrique et électronique.

Mon Víf remerciement s'adresse également à mes familles et mes amis.

Dédicace 01

Je dédiece modeste travail a :

Mes très chers parents leursprécieux soutien, pour leurs sourires

Réconfortants et pour leurs sacrífices qui m'on permis d'attendre cette étapedans Ma vie.

Toute ma famílles OUASTI

Touts mes amies, monbinôme Abdel KADER et sa famille.

Toute les personnes qui nous avoiraide durant touts la période de mon projet de fin D'étude.

Tous la promotion sortante :2019-2020 « génie électrique et électronique »

TOUS les enseignants qui m'ont dirigévers la porte de réussite.

Touts ceux quí ont participé de près ou de loina la réalisation de ce travail.

Riad

Dédicace 02

A la mémoire de ma chère mère Aucune dédicace ne saurait exprimer l'amour, l'estime, le dévouement et le respect que j'ai toujours eu pour vous.

A mon père, pour tous ses sacrífices, son amour, sa tendresse, son soutien et ses prières tout au long de mes études,

Mon frère et mes sœurs, pour leurs encouragements permanents, et leur soutien moral,

Atoute ma famille.

A tous les membres de ma famille, petits et grands Veuillez trouver dans ce modeste travail l'expression de mon affection

À tous mes amis et collègues Et à tous ce qui ont enseigné moi au long de ma vie scolaire

A tous ceux quí, par un mot, m'ont donné la force de contínuer.

Abdelkader

Sommaire

Page	Sommaire	
INTRODUCTION GENERAL 0		
	CHAPITRE 01 : LA BIOIMPEDENCE	
1-1 Introduction		03
1-2 Définition de la bioimpédance électrique		03
1-3 Les principes physiques de la bioimpédance		04
1-4 Applications diagnostiques de la bioimpédance		05
1-5 Circuit électrique équivalent d'une cellule biologique		06
1-6 Exemple commercial d'un prototype de pèse-personne impédancemètre		07
1-7 Conclusion		09
CHAPIT	RE 02 : Etude et Conception du Prototype d'impédancem	ètre
2-1 Intr	oduction	11
2-2 Sché	2-2 Schéma Synoptique	
2-3 Prine	2-3 Principe de fonctionnement	
2-4 Mise	2-4 Mise en équation	
2-5 Oscillateur 50 kHz		13
2-6 Convertisseur tension courant		13
2-7 Amp	2-7 Amplificateur d'instrumentation	
2-8 Le M	2-8 Le Multiplicateur	
2-9 Filtra	2-9 Filtrage passe bas	
2-10 Dép	2-10 Déphaseur	
2-11 Suiv	2-11 Suiveur	
2-12 Acquisition de R et X et calcul des composantes de Z		18
2-13 Conclusion		19

CHAPITRE 03: Résultats et tests	
3-1 Introduction	
3-2 Circuits de l'oscillateur	
3-3 Convertisseur tension-courant	
3-4 Amplificateur d'instrumentation	24
3-5 Multiplicateur	
3-6 Déphaseur	
3-7 Filtre passe-bas	30
3-8 Le Suiveur	33
3-9 Résultats de simulation de mesures	34
3-9-1 Simulation de la mesure de R	35
3-9-2 Simulation de la mesure de C	36
3-9-3 Simulation de la mesure de L	38
3-9-4 Simulation de la mesure de L en série avec C	39
3-9-5 Simulation d'une branche RC en série	40
3-9-6 Simulation d'une branche RL en série	41
3-10 Programmation de la carte Arduino	42
3-11 Circuits du Projet	44
3-12 Conclusion	46
Conclusion Général	48
Références	
Annexe	
Résumé	t

Liste des tableaux

Liste des tableaux	
Tableau 1: pourcentage d'erreur sur la reproductibilité des mesures données par le prototype.	08
Tableau 3-1 :Simulation de mesure de R	35
Tableau 3-2 : Simulation de mesure de C	37
Tableau 3-3 : Simulation de mesure de L	38
Tableau 3-4 : Simulation de mesure de LC	
Tableau 3-5 : Résultats de simulation et calculés par Arduino	

Liste des Figures

Liste des Figures	
Figure1-1: Exemple de bioimpedancemètre	
Figure I-2: Principe de la méthode de mesure d'impédance	
Figure 1-3:Modèle RC de la bioimpédance	
Figure 1-4: ImpédancemètreBodymaster Vision	
Figure 1-5 : positionnement des électrodes	
Figure 2-1: Schéma synoptique du prototype de l'impédancemètre	
Figure 2-2: Oscillateur à base de XR2206	
Figure 2-3: Brochage du TL081	14
Figure 2-4: Schéma électrique du convertisseur tension courant	14
Figure 2-5: Schéma interne de l'INA 103	15
Figure 2-6: Schéma interne du AD633	15
Figure 2-7 Circuit du multiplicateur AD633 avec KM=1/10=0,1	
Figure 2-8: Circuit de filtre passe bas premier ordre avec kF=1 et fC=159,2 Hz	
Figure 2-9 : Déphaseur actif de - $\pi/2$, pour quand $R_1C_1 \omega=1$	
Figure 2-10: Suiveur à partir de UA741	17
Figure 2-11 : Description d'un Arduino	
Figure 3-1 : Schéma électrique de l'oscillateur	21
Figure 3-2 : Signal à la sortie de l'oscillateur XR 2206	21
Figure 3-3 : Le schéma électrique du convertisseur tension-courant	
Figure 3-4 : Signaux pour trois valeurs d'impédance RL (1, 5 et 10 k Ω)	24
Figure 3-5 : Le schéma électrique de l'amplificateur d'instrumentation	
Figure 3-6 : Les signaux d'entrée et de sortie de l'amplificateur d'instrumentation pour plusieurs gains	

Figure 3-7: Schéma de test du multiplicateur	
Figure 3-8: Signaux d'entrée et de sortie du multiplicateur pour f=50 kHz.	28
Figure 3-9 : Déphaseur 90°	
Figure 3-10: Signaux d'entrée et de sorties du déphaseur pour R=3183 Ω.	30
Figure 3-11 : Schéma du filtre passe-bas	
Figure 3-12 : Signaux du circuit filtre passe-bas pour plusieurs fréquences	32
Figure 3-13 : Schéma du suiveur	33
Figure 3-14 : Signaux du circuit filtre passe-bas pour plusieurs fréquences	34
Figure 3-15 Signaux courant (rouge) et tension (bleu) pour R=10 k Ω	36
Figure 3-16 Exemple de simulation de R=2,4 kΩ	36
Figure 3-17 Signaux courant (rouge) et tension (bleu) pour C=1nF	
Figure 3-18 Signaux courant (rouge) et tension (bleu) pour C=1nF	
Figure 3-19 :Signaux courant (rouge) et tension (bleu) pour C=10nF en série avec L=10 mH	
Figure 3-20 Signaux courant (rouge) en avance par rapport à la tension (bleu) montrant un comportement capacitif pour C=1.2 nF en série avec R=5700 Ω	40
Figure 3-21 Signaux courant (rouge) en retard par rapport à la tension (bleu) montrant un comportement inductif pour L=7 mH en série avec R=4600 Ω	41
Figure 3-22 : Affichage de résultats de mesure de l'impédance	
Figure 3-23 : Circuit de l'impédancemètre (voir feuille A3) (la fin de mémoire)	
Figure 3-24 : Circuits imprimés	45
Figure 3-25 : Circuit 3D	46

Introduction Générale

L'impédancemétrie est une technique d'instrumentation très employée dans plusieurs domaines industriels, médicaux, biologiques et d'électronique et de télécommunications. Dans le domaine médical et biologique par exemple, la bioimpédancemétrie est la mesure de l'impédance des tissus biologiques par l'envoi d'un courant sinusoïdal à travers des électrodes. L'analyse de la bioimpédance est une approche largement appliquée utilisée dans les mesures de la composition corporelle.

L'histoire des mesures de la bioimpédance électrique sur les tissus biologiques remonte à la fin du XVIIIème siècle, avec les expériences réalisées par Galvani (Schwan, 1995). Ces mesures donnent des informations sur le milieu biologique sous test. Il a fallu attendre le début du XXème siècle, pour que soient démontrées les propriétés électriques passives des tissus biologiques, rendant leur caractérisation fréquentielle interprétable.

Notre objectif est d'étudier, de concevoir et de simuler un prototype d'impédancemètre qui se repose sur la méthode de détection synchrone avec comme grandeurs mesurées : l'impédance Z, l'angle de déphasage φ, la composante résistive R et réactive X.

Notre mémoire est organisé de la façon suivante :

• Le premier chapitre est une introduction au fonctionnement général de la bioimpédance. Il décrit certaines notions générales sur l'impédance. Il décrit de manière plus détaillée le principe de la bioimpédance.

• Le second chapitre est consacré à la présentation de l'étude théorique du système proposé avec une description détaillée des différents circuits qui ont été utilisés.

• Dans le troisième chapitre, nous présentons les démarches que nous avons suivies pour la simulation et le test de notre prototype d'impédancemètre en utilisant le Logiciel ISIS et plusieurs composants R, L et C pour la validation du prototype.

• Nous terminons ce manuscrit avec une conclusion générale synthétisant le contenu de ce projet de fin d'études et présentant les perspectives de ce thème de recherche.

<u>1-1 Introduction :</u>

Dans ce chapitre, nous aborderons les principales définitions relatives à la mesure de l'impédance et de la bioimpédance. Ensuite nous détaillerons les différents modèles des tissus biologiques qui sont utilisés pour l'évaluation de la composition corporelle.

1-2 Définition de la bioimpédance électrique :

L'**impédancemétrie** est une technique basée sur les propriétés électriques d'un dipôle. En effet, un courant alternatif de faible intensité est appliqué *via* des électrodes dites sources. D'autres électrodes dites réceptrices permettent de mesurer la tension qui correspond à l'opposition du dipôle au passage du courant, c'est l'impédance. Si le dipôle est d'origine biologique, on parlera de bioimpédance.

L'impédance (Z) est un nombre complexe défini par la loi d'Ohm comme le rapport entre la tension mesurée (V) et le débit total de courant (I) à une fréquence fixe sans oublier le déphasage entre les signaux de courant et de tension. En raison de la nature des tissus, l'impédance peut varier avec la fréquence des mesures du signal. L'impédance diminue quand la fréquence augmente. La relation entre l'impédance et la fréquence n'est pas linéaire. Plus la fréquence augmente, plus l'impédance diminue.

Dans le cas d'un milieu homogène et isotrope, l'impédance est une fonction de la conductivité et de la permittivité. Et dépend des facteurs géométriques déterminés par le facteur de cellule (k).

$$\bar{Z} = k \frac{1}{\sigma + j\omega \varepsilon_0 \varepsilon_r}$$
(1)

Cette impédance complexe s'écrit :

$$\overline{Z} = \mathbf{R} + \mathbf{j} \mathbf{X} \quad (2)$$

Avec :

k = facteur de cellule (m-1).

 σ = conductivité électrique (S/m).

j = symbole imaginaire.

 ω = pulsation angulaire (rad/s).

 $\varepsilon 0 = \text{permittivité du vide.}$

 $\varepsilon r = permittivité relative du milieu.$

L'appareil qui mesure la bioimpédance est appelée bioimpédancemètre. La figure 1-1 illustre un exemple de bioimpédancemètres commercialisés adaptés aux personnes qui souhaitent perdre du poids.

Figure 1-1 : Exemple de bioimpedancemètre.

<u>1-3 Les principes physiques de la bioimpédance:</u>

Les techniques de mesure de l'impédance électrique sont basées sur l'injection d'un courant sinusoïdal de haute fréquence et de faible amplitude qui est imposé entre deux électrodes entre une main et le pied controlatéral (figure 1-2). L'apparition d'une différence de potentiel entre ces électrodes permet de calculer l'impédance corporelle globale complexe (\overline{Z}).

Le corps humain est modélisé par une suspension de cellules dans une solution électrolytique. C'est pour cela, l'utilisation de courants alternatifs permet de franchir facilement la peau; de façon indolore, mais l'effet capacitif de la peau provoque alors un déphasage du courant par rapport à la tension appliquée. Pour éviter cet inconvénient il faut soit placer les électrodes sous la peau, soit utiliser quatre électrodes de surface [1]

Figure 1-2 : Principe de la méthode de mesure d'impédance.

1-4 Applications diagnostiques de la bioimpédance [2] :

Les informations fournis par un impédancemètre dans l'analyse de la composition corporelle sont les suivantes :

- Le pourcentage en termes de masse graisseuse.
- Le pourcentage en termes de rétention d'eau.
- Le pourcentage en termes de la masse osseuse.
- Le manque (quels sont les besoins nutritionnels que vous devez prendre).

Les autres applications cliniques de la bioimpédancemétrie touchent la plupart des applications médicales et hospitalières comme :

- La Cardiologie (épreuve d'effort, tension, évaluation de sténoses).
- L'anesthésie.
- La chirurgie (surveillance pré et post opératoire, monitorage des fluides thoraciques).
- La néphrologie en dialyse.
- Les urgences avec l'évaluation rapide du statut hémodynamique.
- Obstétriee, gynécologie et médecine interne.
- Le pourcentage de graisse sur les viscères (vessie, estomac...).

Par rapport aux autres techniques d'imagerie médicale, l'imagerie d'impédance présente des caractéristiques intéressantes [3]. Elle prend en compte les propriétés du tissu que les autres techniques ne peuvent pas fournir, comme la conductivité, la permittivité.

- Elle est totalement non-invasive et sans aucune radiation, donc sans danger.

- Elle a une excellente sensibilité : le contraste des tissus mous est très bon.

L'imagerie par impédance a une très bonne résolution temporelle permettant l'imagerie en temps réel.

1-5 Circuit électrique équivalent d'une cellule biologique :

Un courant alternatif qui traverse un tissu biologique induit donc deux types de réactions

- •
- La résistance d'un matériau conducteur homogène de section uniforme est proportionnelle à sa longueur (L) et à sa surface de section (A). En impédance, la résistance (R) dépend des fluides intra et extracellulaires.

$$R = \rho L/A = \rho L^2/V (3)$$

Où le volume V = L A, et ρ est la résistivité.

Une relation peut donc être établie entre le quotient d'impédance (L^2/R) et le volume d'eau, qui contient les électrolytes et conduit le courant électrique, ce qui peut s'écrire :

$$V = \rho L^2 / R. \quad (4)$$

 La réactance : partie imaginaire de l'impédance induite par la présence d'une inductance ou d'un condensateur. En bioimpédancemétrie, la réactance (X) capacitive dépend des membranes cellulaires .[4]

Considérant les principaux constituants de la cellule, il est possible de déduire un modèle électrique de base pour la cellule.

Figure 1-3 : Modèle RC de la bioimpédance

Si le courant est injecté dans le milieu extracellulaire, il peut y avoir:

a) Un écoulement de courant autour de la cellule par l'intermédiaire du liquide extracellulaire,

ce qui équivaut à la circulation par le biais de Re dans le circuit équivalent.

b) Un écoulement à travers la cellule traversant la membrane plasmique; Cm représente cette possibilité dans le circuit équivalent.

c) Un écoulement à travers le canal transmembranaire ionique, ce qui équivaut à la circulation par le biais de Rm dans le circuit équivalent.

Par conséquent, l'impédance correspond à la combinaison de la résistance et de la réactance selon la formule :

$$Z = \sqrt{R^2 + X^2}(5)$$

La composition corporelle correspond à l'analyse du corps humain en compartiments. Ces derniers ont un intérêt particulier en fonction de la discipline médicale considérée.

Par exemple en Médecine du sport, mesurer le poids ne suffit pas à comprendre comment améliorer la performance d'un segment au cours d'un exercice spécifique. Déterminer la masse musculaire de ce segment est plus rationnel.

De la même manière, pour une perte de poids chez un(e) obèse, il est intéressant de cibler une perte de masse grasse, et d'épargner la masse musculaire. Il faut donc envisager de définir des compartiments importants en nutrition, mais aussi la méthode permettant de les mesurer.

<u>1-6 Exemple commercial d'un prototype de pèse-personne impédancemètre :</u>

Il s'agit du Bodymaster Vision® de Tefal (figure 1-4) qui donne en plus du poids, la masse non grasse MNGt et de la masse grasse MGt.

Figure 1-4 : Impédancemètre Bodymaster Vision.

Figure 1-5 : Positionnement des électrodes.

La figure 1-5 indique le positionnement des électrodes et les lignes de courant induites par le prototype. Les électrodes réutilisables sont placées sous l'avant des pieds pour les injectrices et sous les talons pour les réceptrices. De part le placement des électrodes, les lignes de courant parcourent le corps à travers les jambes et le bas du tronc.

Le logiciel du pèse-personne, mis au point sur une population de 840 sujets avec pour référence des DEXA et des mesures de dilutions isotopiques, calcule la MNGt à partir de la résistance totale dite à «haute fréquence» R∞, avec les renseignements sexe, âge et taille. La masse grasse MGt est déduite par différence du poids et de la MNGt. [5]

Les données de l'appareil sont reproductibles avec une erreur inférieure à 1%. Le tableau 2 donne le détail de ces erreurs pour le poids, la MGt et la MNGt. La mesure de poids est régulièrement étalonnée en plaçant un pack de 6 bouteilles d'eau de 1,51 sur le prototype, on peut ainsi vérifier qu'il indique bien 9kg. [5]

	% Erreur sur la reproductibilité
Poids W (kg)	0.05
Masse Grasse MGt (kg)	0.17
Masse Non Grasse MNGt (kg)	0.17

Tableau 1: pourcentage d'erreur sur la reproductibilité des mesures données par le prototype.

<u>1-7 Conclusion :</u>

Dans ce chapitre nous avons présenté des notions générales sur la bio-impédance et les applications en Médecine. Ces notions apparaissent importantes lors de la réalisation des différents étages d'une impédancemètre. Le chapitre suivant est consacré à l'étude et à la conception d'un dispositif de mesure des composants d'une impédance.

CHAPITRE 02: Etude et Conception du Prototype d'impédancemètre

2-1 Introduction :

Ce chapitre est consacré à l'étude et à la conception d'un prototype de mesure des composantes de l'impédance. Pour cela, nous allons présenter les différents circuits que nous avons utilisés pour la conception de notre dispositif permettant d'afficher les valeurs de l'impédance à 50 kHz.

2-2 Schéma Synoptique:

Le prototype est composé d'une partie analogique permettant de mesurer la résistance R et la réactance X et une partie acquisition et affichage des valeurs R, X, le module Z et le déphasage φ comme le montre la figure suivante.

Figure 2-1 : Schéma synoptique du prototype de l'impédancemètre.

<u>2-3 Principe de fonctionnement :</u>

L'oscillateur et le convertisseur forment la source de courant à 50 kHz qui sera injecté au corps.

Le premier multiplicateur et le filtre passe bas forment une détection synchrone permettant de récupérer une composante DC proportionnelle à la valeur de R.

Quant à la valeur de la réactance, elle est récupérée par le deuxième multiplicateur et le deuxième filtre passe bas après un déphasage -90° du signal de la tension.

L'étage acquisition et affichage est réalisé à partir d'un module Arduino avec un afficheur LCD.

2-4 Mise en équation :

i(t) est le courant injecté dans le corps obtenu par le convertisseur tension courant.

v(t) est la tension du corps amplifiée par l'amplificateur d'instrumentation de gain G.

 $v(t)=V_M \cos(\omega t+\phi v)$ et $i(t)=I_M \cos(\omega t+\phi i)$.

Le multiplicateur de coefficient k_M donne une tension:

$$v_M(t) = k_M G v(t) R_C i(t)$$
.

avec : R_C est la résistance du convertisseur tension courant .

En utilisant la formule : $\cos\alpha\cos\beta=1/2 [\cos(\alpha-\beta)+\cos(\alpha+\beta)]$, on obtient :

$$v_{\rm M}(t) = R_{\rm C}Gk_{\rm M}\frac{1}{2}V_{\rm M} I_{\rm M}\cos(\phi v - \phi i) + \frac{1}{2}R_{\rm C}G k_{\rm M}V_{\rm M}I_{\rm M}\cos(2\omega t + \phi v + \phi i).$$

Puisque les valeurs efficaces de i(t) et v(t) s'écrivent comme :

$$V = \frac{VM}{\sqrt{2}}$$
 et $I = \frac{IM}{\sqrt{2}}$ valeurs efficaces.

Sachant que la phase de l'impédance \overline{Z} du dipôle est $\varphi = \phi v - \phi i$, alors on obtient à la sortie du multiplicateur:

 $v_M(t) = R_C G k_M V I \cos (2\omega t + 2\phi v - \phi)$.

Le terme de fréquence 2ω sera éliminé par un filtre passe bas de fréquence de coupure inférieure à $2\omega/10$.

On obtient à la sortie du filtre passe bas 1 avec un gain k_f

$$V_{F1}(t) = R_C G k_F k_M V I \cos \varphi$$

Sachant que V=ZI, alors

$$V_{F1}(t) = R_C G k_F k_M Z I^2 \cos \varphi$$

Et puisque Z $\cos \phi$ est la résistance du circuit R, alors

$$V_{F1}(t) = R_C G k_F k_M I^2 R = \frac{1}{2} R_C G k_F k_M I_M^2 R$$

De la même façon, pour calculer la réactance X, on déphase la tension v(t) par -90°. Sachant que X= Z sin ϕ , on récupère à la sortie du deuxième filtre passe bas $V_{F2}(t) = R_C G k_F k_M Z \ I^2 \cos(\varphi - 90^\circ) = R_C G k_F k_M Z \ I^2 \sin \varphi = \frac{1}{2} \ R_C k_F k_M I_M^2 \ X$

Nous constatons donc que la sortie du premier filtre correspond à R et que la sortie du deuxième correspond à X.

2-5 Oscillateur 50 kHz :

Nous avons choisi le XR-2206 qui est un circuit intégré fonctionnant en générateur de fonction monolithique capable de produire des formes d'ondes sinusoïdales, carrée, triangulaire, en rampe et d'impulsion de haute stabilité et précision (voir annexe 1).

Dans notre travail nous avons utilisé le branchement de la figure 2-2. A la sortie, nous avons une tension constante de 1V avec une fréquence de 50 kHz.

Figure 2-2 : Oscillateur à base de XR2206.

<u>2-6 Convertisseur tension courant :</u>

L'amplificateur opérationnel à entrée JFET TL081 est conçu pour offrir une sélection plus large que n'importe quel amplificateur opérationnel développé précédemment. Le TL081 est un amplificateur opérationnel à boîtier unique qui est largement utilisé depuis longtemps.

Figure 2-3 : Brochage du TL081 [7]

Le circuit intégré TL081 est branché comme le montre la figure 2-4 en convertisseur tension courant avec une résistance de 10 k Ω . Donc le courant est de valeur 1V/10 k Ω =0,1 mA. Pour changer la valeur du courant, on change seulement la valeur de cette résistance.

2-7 Amplificateur d'instrumentation :

1-offset null 1

5-offset null 2

Une fois le courant est injecté dans l'impédance, la tension est récupérée par un amplificateur d'instrumentation. Notre choix est porté sur l'INA103 qui a un faible bruit, un très fort taux de réjection en mode commun supérieur à 100 dB. Sa particularité est aussi d'être utilisé en très haute fréquence avec un gain G de 1000 à 100 MHz.

Le gain est réglable par une résistance externe R_G permettant d'avoir un gain de valeur $G=1+6k/R_G$

L'INA 103 dispose aussi d'une résistance interne de 60,6 Ω permettant d'avoir un gain de G=100. Dans ce cas, il suffit de connecter le pin 14 avec le 6.

Figure 2-5 : Schéma interne de l'INA 103 [8]

<u>2-8 Le Multiplicateur :</u>

Cette opération est assurée par le circuit AD633 dont le schéma interne est donné par la figure suivante :

Figure 2-6 : Schéma interne du AD633 [9]

La fonction de transfert du circuit correspond à la formule ci-dessous :

$$W = \frac{(X1 - X2)(Y1 - Y2)}{10} + Z$$

où X1, X2, Y1, Y2 et Z sont les entrées, et W est le potentiel de sortie. Toutes ces entrées sont clairement indiquées sur la sérigraphie du support.

Nous avons également ajouté un point de repiquage de masse noté «Masse». En connectant la masse de l'alimentation sur cette borne, il est alors plus aisé de mettre l'une des bornes X1, X2, Y1, Y2 ou Z à la masse par un simple pont entre l'une de ces bornes et la borne «Masse».

Figure 2-7 : Circuit du multiplicateur AD633 avec KM=1/10=0,1 .

2-9 Filtrage passe bas :

Le filtre passe-bas est un dispositif qui démontre une réponse en fréquence relativement constante (gain fixe) aux basses fréquences et un gain décroissant aux fréquences supérieures à la fréquence de coupure. La décroissance plus ou moins rapide dépend de l'ordre du filtre. Dans ce travail, nous avons choisi un filtre passe bas premier ordre avec :

R=10k Ω et C=100 nF.

La fréquence de coupure est

 $f_C = \frac{1}{2\pi RC} = \frac{1}{2 \times \pi \times 10 \times 10^3 \times 100 \times 10^{-9}} = 159,2$ Hz.

Ce circuit est utilisé deux fois dans notre projet comme c'est illustré dans la figure 1.

2-10 Déphaseur

Dans le but de récupérer la partie imaginaire, nous avons créé une différence de phase de -90° entre le signal injecté et celui récupéré.

Figure 2-9 : Déphaseur actif de $-\pi/2$, pour quand $R_I C_1 \omega = 1$.

Le circuit que nous avons utilisé est donné par la figure 2-9 La fonction de transfert est donnée par :

$$\overline{H} = \frac{1 - jR_1C\omega}{1 + jR_1C\omega}$$

Le déphasage est donné par :

$$\phi = -2 \operatorname{arctg}(R_1 C \omega)$$
.

Nous avons ajusté la valeur de R₁ pour avoir $R_1 C \omega = 1$ à une fréquence de 50 kHz pour récupérer $\operatorname{arctg}(R_1 C \omega) = 45^\circ$ donc $\phi = -90^\circ$.

<u>2-11 Suiveur :</u>

A la sortie des deux filtres, nous insérons deux suiveurs pour garder les niveaux de sorties adaptables si nous les mesurons par un autre moyen (voltmètre, oscilloscope, carte d'acquisition...).

Figure 2-10 : Suiveur à partir de UA741.

2-12 Acquisition de R et X et calcul des composantes de Z :

Pour le calcul de R, X, Z et ϕ , nous avons utilisé une carte à microcontrôleur qui est l'Arduino. Les avantages sont :

- ➢ Facile à utiliser.
- ≻ Facile à programmer par rapport à Microcontrôleur.
- \succ Pas cher et disponible.
- ➤ installer sur : Windows, Macintosh et Linux.
- > Nombreuses librairies disponibles avec diverses fonctions implémentées.
- ≻Nombreux conseils, tutoriaux et exemples en ligne. [12]

Figure 2-11 : Description d'un Arduino.

Les valeurs analogiques V_{F1} et V_{F2} sont injectées dans le port analogique de l'Arduino.

Les valeurs de R et X sont calculées à partir des valeurs de G, k_F , k_M et I_M injectées dans le programme du microcontrôleur et à partir des valeurs V_{F1} et V_{F2} en utilisant les équations suivantes :

 $R{=}2~V_{F1}/(~R_CGk_Fk_MI_M{}^2).$

 $X{=}2\ V_{F2}/(\ R_CGk_Fk_MI_M{}^2).$

Pour calculer Z et ϕ nous utilisons les fonctions :

 $Z=\sqrt{R^2+X^2}.$

 φ =arctg(X/R).

Enfin ces valeurs R et X ou Z et ϕ sont affichées dans le LCD.

2-13 Conclusion :

Dans ce chapitre, nous avons conçu notre dispositif en expliquant le fonctionnement de l'ensemble des circuits analogiques qui sont : Oscillateur 50 kHz, convertisseur tensioncourant, le multiplicateur, le filtre passe bas et le déphaseur. La partie acquisition et calcul est assurée par la carte Arduino. Dans le chapitre suivant nous donnons l'ensemble des tests et des résultats obtenus.

CHAPITRE 03:

Résultats et tests

3-1 Introduction :

Dans ce chapitre nous allons présenter toutes les étapes de simulation par ISIS de notre dispositif en visualisant les signaux et les tests dans chaque étage en terminant par la partie acquisition, calcul et affichage à travers le programme que nous avons embarqué dans la carte Arduino. Plusieurs cas de simulation de composant simples et mixtes R,L et C seront détaillés.

3-2 Circuits de l'oscillateur :

Le circuit de la figure 3-1 représente le circuit de l'oscillateur qui fournit une tension sinusoïdale de fréquence 50 kHz à base du XR2206. Le résultat de la simulation par ISIS est donné par le signal de la figure 3-2 qui a une amplitude de 1 V. La fréquence f est réglée par C₁et R₄ en utilisant l'équation suivante :

$$f = 1 / (R_4 C_1) = 50 \text{ KHz}$$

Figure 3-1 : Schéma électrique de l'oscillateur.

Figure 3-2 : Signal à la sortie de l'oscillateur XR 2206.

3-3 Convertisseur tension-courant ;

La sortie de l'oscillateur est envoyée vers le convertisseur tension courant qui permet de garder un courant constant pour n'importe quelle valeur d'impédance. Le schéma électrique de ce convertisseur est donné par la figure 3-3.

Nous avons choisi trois valeurs de résistance R_{V1} (1, 5 et 10 k Ω) pour simuler une impédance variable et pour montrer l'indépendance du courant de ces valeurs. Pour cette raison nous avons visualisé les signaux (figure 3-4) au niveau de la résistance R_1 (borne 2 relative au courant) et à la sortie de l'AOP (borne 6 relative à la tension).

Comme nous le remarquons dans la figure 3-4, les signaux de la tension de la borne 2 au niveau de R_1 sont indépendants de R_{V1} et ils ont une amplitude fixe de 1V tandis que les signaux de la tension à la sortie de la borne 6 varient avec la valeur de R_{V1} .

Nous constatons donc que le courant injecté dans la charge R_{V1} (impédance quelconque) est constant quelque soit la valeur de R_{V1} puisque cette dernière est en série avec R_1 .

Nous avons donc une source de courant de valeur 0,1 mA à 50 kHz. Cette valeur est fixée par la source de tension à l'entrée de 1 V/50 kHz et la résistance fixe $R_1=10 \text{ k}\Omega$.

Figure 3-3 : Le schéma électrique du convertisseur tension-courant.

Bleu : la borne 2. Jaune : La borne 6.

<u>3-4 Amplificateur d'instrumentation :</u>

Nous avons simulé l'amplificateur d'instrumentation INA103 schématisé par la figure 3-5 en utilisant deux signaux d'amplitude 1020 mV/50kHz/0° à IN+ et d'amplitude 1000 mV/50kHz/0° à IN-. Comme nous le voyons, ces deux signaux sont presque identiques mais de différence amplifiable par l'INA103. Cette tension de différence Vd est de valeur IN+-IN-=20 mV/50 kHz.

<u>Deux signaux IN+ et IN- identiques</u> <u>Figure 3-5 : Le schéma électrique de l'amplificateur d'instrumentation.</u>

Dans la figure 3-6, nous avons représenté la tension de différence Vd et le signal de sortie pour trois résistances R_Gdonc avec trois gains différents. Le résultat de simulation est validé en le comparant par la formule du gain de l'INA 103 :

 $G=1+6k/R_G$

<u>1^{er} cas : R_G=30 Ω donc G=200 : Vd=20 mV et Vout=4 V (4 carreaux × calibre 1 V).</u>

 $\underline{2^{\acute{eme}}\ cas: R_G=60.6\ \Omega\ donc\ G=100: Vd=20\ mV\ et\ Vout=2\ V\ (4\ carreaux\ \times\ calibre\ 0,5\ V).}$

 $\frac{3^{ème}}{mV)} cas: R_G = 667 \ \Omega \ donc \ G = 10: Vd = 20 \ mV \ et \ Vout = 200 \ mV \ (4 \ carreaux \times calibre \ 50 \ mV).$

Figure 3-6 : Les signaux d'entrée et de sortie de l'amplificateur d'instrumentation pour plusieurs gains. Magenta : Sortie. Jaune : Vd=tension de différence 20 mV (2 carreaux × calibre 10 m V).

3-5 Multiplicateur :

Le schéma du multiplicateur AD633 est donné par la figure 3-7. Pour tester son fonctionnement, nous avons injecté le même signal aux entrées X1 et Y1 et de fréquence 50 kHz et d'amplitude 1 V. Puisqu'il s'agit d'une multiplication, nous récupérons théoriquement deux composantes fréquentielles. La première correspond à la différence qui est dans notre cas 0 Hz donc une composante continue. La deuxième correspond à la somme donc une composante de 100 kHz.

Sachant que $\cos\alpha\cos\beta=1/2$ [$\cos(\alpha-\beta)+\cos(\alpha+\beta)$], et comme le facteur de multiplication $k_M=0.1 \text{ V}^{-1}$, le niveau des amplitudes des deux composantes est

 $1/2 \times 1 \text{ V} \times 1 \text{ V} \times 0.1 \text{ V}^{-1} = 0.05 \text{ V} = 50 \text{ mV}.$

Ce résultat théorique est confirmé par le résultat de simulation montrée dans la figure 3-8 qui représente le signal à l'entrée et à la sortie. Nous remarquons qu'il s'agit d'une composante sinusoïdale d'amplitude 50 mV de fréquence 100 kHz superposée à une composante continue 50 mV.

Figure 3-7 : Schéma de test du multiplicateur.

Figure 3-8 : Signaux d'entrée et de sortie du multiplicateur pour f=50 kHz. Bleu : les entrées X et Y, Jaune : Sortie.

3-6 Déphaseur :

Le but du déphaseur est de garder l'amplitude constante avec un décalage angulaire de -90° pour permettre de détecter la réactance X. Nous pouvons aussi décaler directement le courant en utilisant un déphaseur $+90^{\circ}$. Les deux configurations sont représentées dans la figure 3-9 où le déphasage est réglé par la résistance R₁ (chapitre 2).

Théoriquement, pour avoir un déphasage de -90° ou +90°, nous devons avoir $R_1C\omega=1$ ce qui correspond à $R_1=3.183$ k Ω . La figure 3-10 représente les signaux d'entrée et de sortie pour cette valeur de R_1 pour les deux configurations.

Figure 3-9 : Déphaseur 90°.

B. Signaux du déphaseur +90°.

<u>Figure 3-10 : Signaux d'entrée et de sorties du déphaseur pour R=3183 Ω. Bleu : Entrée</u> <u>et Jaune : Sortie.</u>

3-7 Filtre passe-bas :

Nous avons simulé le filtre passe-bas de fréquence de coupure $f_C=160$ Hz schématisé dans la figure 3-11 en utilisant plusieurs fréquences (0, 1, 10, 50 et 100 kHz). Nous remarquons bien dans la figure 3-12 que ce filtre permet de récupérer les harmoniques de très basses fréquences ce qui permet de récupérer la composante continue relative à R et X et en même

temps d'éliminer la haute fréquence 100 kHz qui est le résultat de la multiplication du courant avec la tension.

Figure 3-11 : Schéma du filtre passe-bas.

Pour *f=f*_C=160 Hz : Sortie sur calibre 0.2 V.

Pour f=1 kHz : Sortie sur ccalibre 0.2 V.

Pour f=10 kHz : Sortie sur calibre 5 Mv.

Figure 3-12 : Signaux du circuit filtre passe-bas pour plusieurs fréquences.

Bleu : Entrée et Jaune : Sortie.

3-8 Le Suiveur :

Le suiveur permet de garder le niveau de la sortie d'un circuit indépendant de la charge et ce quelque soit l'impédance interne comme le montre le schéma du circuit de la figure 3-13. Dans notre cas, nous avons pris RE=1 k Ω comme impédance interne.

La figure 3-14 permet de simuler le suiveur pour plusieurs charges (R1=1 $k\Omega$, 500 Ω et 50 Ω). Nous remarquons que le niveau de la sortie est toujours constant. Le suiveur n'est pas obligatoire dans notre dispositif, mais il est indispensable quand nous mettons cette sortie analogique en cascade avec une autre utilisation dont nous ne connaissons pas son impédance d'entrée.

Figure 3-13 : Schéma du suiveur .

<u>Pour R1=1 kΩ :</u>

Figure3-14 : Signaux du circuit filtre passe-bas pour plusieurs fréquences.

3-9 Résultats de simulation de mesures :

Nous présentons dans cette partie, les différents tests et résultats de simulation pour l'ensemble des composants : la résistance R, le condensateur C et l'inductance L et aussi pour des associations : RC, RL et LC.

<u>3-9-1 Simulation de la mesure de R :</u>

Dans le tableau suivant 3-1 et pour des résistances **R** données, nous reportons les tensions à la sortie du premier filtre obtenues théoriquement V_{Fth} et celles obtenues par la simulation V_{FSim} qui nous ont permis d'obtenir les résistances R_{mes} .

A partir de R théorique, nous calculons VFth par :

$$V_{Fth} = \frac{1}{2} R_C G k_F k_M I_M^2 R$$

 I_M est le courant injecté dans R à partir de la source $V_S=2$ V et R_C est la résistance du convertisseur tension courant.

A partir de V_{Fsim} , nous calculons R_{mes} par la formule suivante embarquée dans la carte Arduino.

$$R_{mes} = 2 V_{Fsim} / (R_C G k_F k_M I_M^2).$$

Pour les calibres, nous avons opté pour le changement des valeurs de R_C du convertisseur qui permettent d'avoir au maximum une tension de 5 V à la sortie du convertisseur avec un gain G=1 et avec $k_F=1$ et $k_M=1$ tout en sachant que 5 V est la tension maximale admise par la carte Arduino.

R	R _C	IM	V _{Fth}	V _{Fsim} V	R _{mes}	ΔR/R	Par signaux i(t)
Ω	Ω	mA	V		Ω		et v(t)
10 K	4 k	0,5	5	4,998	9996	0,04%	10000,10 Ω
2,4 k	4 k	0,5	1, 2	1,200	2400	0,0%	
1000	400	5	5	4,998	999,6	0,04%	
100	40	50	5	4,998	99,96	0,04%	
10	4	500	5	4,998	9,996	0,04%	

Tableau 3-1 : Simulation de mesure de R.

La figure 3-15 correspond à un exemple de mesure de R (théoriquement 10 k Ω). Nous présentons les signaux de courant (rouge) au niveau de R_C et de tension (bleu) à la sortie de l'amplificateur d'instrumentation. La résistance R est calculée par R=V_M/I_M=R_C×V_M/V_S. Nous avons trouvé R=10000,10 Ω . Ce résultat est proche à R_{mes}=9996 Ω obtenue par la détection synchrone constituée du multiplicateur et du filtre.

Nous notons que la tension V_{Fsim} correspond au premier filtre et que le deuxième filtre génère une tension nulle puisqu'il s'agit d'une résistance pure.

Dans la figure 3-16 nous représentons un exemple de simulation pour une résistance donnée R=2,4 k Ω qui a donné la même tension du filtre théorique et simulée de valeur 1,2 V.

Figure 3-15 : Signaux courant (rouge) et tension (bleu) pour R=10 k Ω .

Figure 3-16 : Exemple de simulation de R=2,4 kΩ.

Nous remarquons que les erreurs relatives entre les valeurs mesurées et les valeurs théoriques est très faible (0,04%).

<u>3-9-2 Simulation de la mesure de C :</u>

En suivant la même démarche que R, nous reportons dans le tableau 3-2 et pour des C données, les tensions à la sortie du filtre obtenues théoriquement VFthet celles obtenues par la simulation V_{Fsim} qui nous ont permis d'obtenir les réactances X_{mes} et les capacités mesurées C_{mes}

A partir de C théorique, nous calculons X=1/(C ω) et V_{Fth} par

$$\mathbf{V_{Fth}} = \frac{1}{2} \ \mathbf{R_C} \mathbf{G} \mathbf{k_F} \mathbf{k_M} \mathbf{I_M^2} \ \mathbf{X}$$

A partir de V_{Fsim}, nous calculons X_{mes} par la formule suivante embarquée dans la carte Arduino.

$$X_{\text{mes}} = 2 V_{\text{Fsim}} / (R_C G k_F k_M I_M^2).$$

Et par conséquent, nous calculons $C_{mes}{=}1/(X_{mes}\omega)$.

С	XΩ	XcalΩ	Rc	VFth	VFsim V	Cmes	ΔC/C	Par		
				V				signaux i(t)		
								et v(t)		
1 nF	3183,1	10000	4 k	1,5915	1,564	1 ,0176 nF	1,76%	1,0147 nF		
10 nF	318,3099	1000	400	1,5915	1,564	10,176 nF	1,76%			
100 nF	31,8310	100	40	1,5915	1,564	101,76 nF	1,76%			
1 μF	3,1831	10	4	1,5915	1,564	1,0176 μF	1,76%			
	Tableau 3-2 : Simulation de mesure de C.									

Nous remarquons que les erreurs relatives entre les valeurs mesurées et les valeurs théoriques sont relativement faibles (1,76%).

Nous notons que la tension V_{Fsim} correspond au deuxième filtre et que le premier filtre génère une tension nulle puisqu'il s'agit d'une réactance pure.

Dans la figure 3-17 nous avons reporté un exemple de mesure de C (théoriquement 1nF) de signaux de courant (rouge) au niveau de R_C et de tension (bleu) à la sortie de l'amplificateur d'instrumentation.

La tension est en retard avec le courant avec $R_C=4$ k Ω , les signaux sont quadrature de phase ce qui démontre l'existence d'un condensateur C.

La capacité C est calculée à partir de la réactance $Z_C=V_M/I_M=3137,047\Omega=X=1/(C\omega)$. Après calcul nous avons obtenu C=1,0147 nF. Ce résultat est proche à C_{mes}=1,0176 nF obtenue par la détection synchrone constituée du multiplicateur, déphaseur et du filtre.

Figure 3-17: Signaux courant (rouge) et tension (bleu) pour C=1Nf.

3-9-3 Simulation de la mesure de L :

En suivant la même démarche que L, nous présentons dans le tableau 3-3 et pour des L données, les tensions à la sortie du filtre obtenues théoriquement V_{Fth} et celles obtenues par la simulation V_{Fsim} qui nous ont permis d'obtenir les réactances X_{mes} et les inductances mesurées L_{mes} .

A partir de L nous calculons $X=L\omega$ et nous calculons V_{Fth} par :

$$\mathbf{V_{Fth}} = \frac{1}{2} \mathbf{R}_{\mathrm{C}} \mathbf{G} \mathbf{k}_{\mathrm{F}} \mathbf{k}_{\mathrm{M}} \mathbf{I}_{\mathrm{M}}^{2} \mathbf{X}.$$

A partir de V_{Fsim} , nous calculons X_{mes} par la formule suivante embarquée dans la carte Arduino.

 $X_{mes}=2 V_{Fsim}/(R_CGk_Fk_MI_M^2).$

Et par conséquent, nous calculons $L_{mes}=X_{mes}/\omega$.

X	XcalΩ	Rc	VFth	V _{Fsim} V	L _{mes}	$\Delta L/L$	Par signaux
Ω			V				i(t) et v(t)
3141,6	10000	4 k	1,5708	1,597	10,2 mH	2%	10,10 mH
314,1593	1000	400	1,5708	1,597	1,0 mH	2%	
31,4159	100	40	1,5708	1,597	101, 67 mH	2%	
3,1416	10	4	1,5708	1,597	10,1 67 μH	2%	
	X Ω 3141,6 314,1593 31,4159 3,1416	XXcalΩΩ3141,63141,610000314,1593100031,41591003,141610	X ΩXcalΩ (Ω)Rc3141,6100004k314,1593100040031,4159100403,1416104	X ΩXcalΩ VRc VVFth V3141,6100004k1,5708314,159310004001,570831,4159100401,57083,14161041,5708	X XcalΩ Rc VFth VFsimV Ω 10000 4k 1,5708 1,597 3141,6 1000 4k 1,5708 1,597 314,1593 1000 400 1,5708 1,597 31,4159 100 40 1,5708 1,597 3,1416 10 4 1,5708 1,597	X XcalΩ Rc VFth VFth Lmes Ω 10000 4k 1,5708 1,597 10,2 mH 3141,6 1000 4k 1,5708 1,597 1,0 mH 314,1593 1000 400 1,5708 1,597 101, 67 mH 31,4159 100 40 1,5708 1,597 101, 67 mH 3,1416 10 4 1,5708 1,597 10,1 67 μH	X XcalΩ Rc VFth VFth VFsimV Lmes ΔL/L Ω 10000 4k 1,5708 1,597 10,2 mH 2% 3141,6 1000 4k 1,5708 1,597 1,0 mH 2% 314,1593 1000 400 1,5708 1,597 101, 67 mH 2% 31,4159 100 40 1,5708 1,597 101, 67 mH 2% 3,1416 10 4 1,5708 1,597 10,1 67 µH 2%

Tableau 3-3	:	Simulation	de	mesure	de	L.

Nous remarquons que les erreurs relatives entre les valeurs mesurées et les valeurs théoriques est faible (1,76%).

Nous notons que la tension V_{Fsim} correspond au deuxième filtre et que le premier filtre génère une tension nulle puisqu'il s'agit d'une réactance pure.

Dans la figure 3-18 nous avons reporté un exemple de mesure de L (théoriquement 10 mH) de signaux de courant (rouge) au niveau de R_C et de tension (bleu) à la sortie de l'amplificateur d'instrumentation.

La tension est en avance avec le courant en rouge avec $R_C=4 \text{ k}\Omega$, les signaux sont quadrature de phase ce qui démontre l'existence d'une bobine L.

L'inductance L est calculée à partir de la réactance $Z_C=V_M/I_M=3172,075 \ \Omega=X=L\omega$. Après calcul nous avons obtenu L=10,10 mH. Ce résultat est proche à L_{mes}=10,20 mHobtenue par la détection synchrone constituée du multiplicateur, déphaseur et du filtre.

Figure 3-18 : Signaux courant (rouge) et tension (bleu) pour C=1nF.

3-9-4 Simulation de la mesure de L en série avec C :

Nous avons simulé la mesure d'une branche L en série avec C et nous avons trouvés les résultats du tableau suivant :

L et C	ΧΩ	XcalΩ	RC	VFth V	V _{Fsim} V	X _{mes}	$\Delta X/X$
C= 10 nF	2823,2901	10000	4 k	1,4116	1,440	2880	2.00%
L=10 mH							
	T 11	0 4 0	1 4	1	1 1 0		

Tableau 3-4 :Simulation de mesure de LC.

Comme nous le remarquons, la différence entre les réactances théoriques et mesurée par simulation est relativement faible (2%). Comme la réactance du C=10 nF est X_C=318,3099 et de L=10 mH est X_L=3141,6 Ω , nous constatons donc que la réactance globale de la branche LC est inductive. Ce comportement est confirmé par les signaux de la figure 3-19 où la tension (bleu) est en avance par rapport au courant (rouge).

Nous remarquons que les erreurs relatives entre les valeurs mesurées et les valeurs théoriques est faible (2%).

Nous notons que la tension V_{Fsim} correspond au deuxième filtre et que le premier filtre génère une tension nulle puisqu'il s'agit d'une réactance pure.

3-9-5 Simulation d'une branche RC en série :

La figure 3-20 représente les signaux de la tension (bleu) et du courant (rouge) obtenue pour R=5700 Ω et C=1,2 nF avec R_C=4 k Ω . Nous avons calculé l'impédance Z=V_M/I_M=6263,56 Ω et puis le déphasage $\Delta \phi$ =360°× Δt /T=23,4°.

Puisque X=Z sin ϕ ==1/(C ω) donc X=2487,56 Ω et C=1,28 nF tandis que la résistance est R =Z cos ϕ =5748 Ω .

<u>Figure 3-20 : Signaux courant (rouge) en avance par rapport à la tension (bleu)</u> montrant un comportement capacitif pour C=1.2 nF en série avec R=5700 Ω.

Nous obtenons théoriquement à la sortie du premier filtre une tension $V_{Fth1}=2,850$ V correspondant à R=5700 Ω alors que par la simulation ce premier filtre génère à la sortie $V_{FSIM1}=2,853$ V équivalente à R_{mes}=5706 Ω .

Théoriquement nous obtenons aussi à la sortie du deuxième filtre une tension $V_{Fth2}=1,3263$ V correspondant à C=1,2 nF alors que par la simulation ce deuxième filtre génère à la sortie $V_{FSIM2}=1,257$ V équivalente à $X_{mes}=2514 \Omega$ et $C_{mes}=1,266$ nF.

Les valeurs de R=5748 Ω et C=1,28 nF reposent sur la détermination exacte des pic du courant et de la tension et du déphasage entre eux. C'est pour cette raison les valeurs obtenues par la détection synchrone sont plus proches aux valeurs théoriques.

3-9-6 Simulation d'une branche RL en série :

La figure 3-21 représente les signaux de la tension (bleu) et du courant (rouge) obtenue pour R=4600 Ω et L=7 mH avec R_C=4 k Ω .

<u>Figure 3-21 : Signaux courant (rouge) en retard par rapport à la tension (bleu)</u> <u>montrant un comportement inductif pour L=7 mH en série avec R=4600 Ω.</u>

Nous obtenons théoriquement à la sortie du premier filtre une tension $V_{Fth1}=2,300$ V correspondant à R=4600 Ω alors que par la simulation ce premier filtre génère à la sortie $V_{FSIM1}=2,296$ V qui est équivalente à $R_{mes}=4592$ Ω .

Théoriquement nous obtenons aussi à la sortie du deuxième filtre une tension $V_{Fth2}=1,10996$ V correspondant à L=7 mH alors que par la simulation ce deuxième filtre génère à la sortie $V_{FSIM2}=1,157$ V qui est équivalente à $X_{mes}=2314 \Omega$ etL_{mes}=7,4 mH.

3-10 : Programmation de la carte Arduino :

Pour la lecture des valeurs des tensions analogiques des deux filtres et les convertie en R, X, Z et ϕ , nous avons écrit le programme ci-dessous :

```
#include<LiquidCrystal.h>
#include<math.h>
const float potar=0;
const float pota=1;
float valeurlue;
float valeurlue2;
int Vs=2;
int R;
int Rc=4000;
int G=1;
int Kf=1;
int Km=1;
int Im;
int z;
float cosphi;
float x;
float Vfl;
float Vf2;
LiquidCrystal lcd(12,11,7,6,5,4);
void setup()
Ł
lcd.begin(16,2);
}
void loop()
{
  valeurlue= analogRead(potar);
  Vfl=valeurlue *5/1024;
  valeurlue2= analogRead(pota);
  Vf2=valeurlue2 *5/1024;
  R=(2*Vf1*Rc)/(G*Kf*Km*(Vs*Vs));
  x=(2*Vf2*Rc)/(G*Kf*Km*(Vs*Vs));
  z=sqrt(pow(R,2)+pow(x,2));
  cosphi=(R)/sqrt(pow(R,2)+pow(x,2));
  lcd.print("R=");
  lcd.print(R);
  lcd.setCursor(9,0);
  lcd.print("z=");
  lcd.print(z);
  lcd.setCursor(0,1);
  lcd.print("cosph=");
  lcd.print(cosphi);
  lcd.setCursor (10,1);
  lcd.print("x=");
  lcd.print(x);
  lcd.setCursor (5,1);
 delay (500); }
```

Dans le tableau 3-5, nous avons reporté quelques exemples déjà simulés et calculé par le programme et (paragraphe 3.9) avec les valeurs affichées dans le LCD de la carte Arduino.

Impédance	VF1	VF2	R mes Ω	XmesΩ	Ζ	Cos			
	A0	A1							
R= 5700 Ω	2,853	1,257	5703	2509	6230	0.92			
C=1.2 nF				Cmes= 1,27 nF					
R= 4600 Ω	2,296	1,157	4589	2304	5135	0.89			
L=7 mH				Lmes=7, 3 mH					
C=1 nF	0	1,564	0	3125	3125	0			
				Cmes=1 ,02 nF					
R=2400 Ω	1,2	0	2402	0	2402	1			
Tableau 3.5 · Résultats de simulation et calculés par Arduino									

Dans la figure 3-23, nous donnons quelques exemples d'affichage de résultats précédents par l'afficheur LCD relié à notre carte Arduino.

VF1=2.853 V et VF2=1.257 V.

 Image: Construction of the second second

Figure 3-22 : Affichage de résultats de mesure de l'impédance.

3-11 Circuits du Projet :

La figure 3-23 correspond au schéma électronique de notre dispositif que nous avons réalisé avec ARES.

Figure 3-23 : Circuit de l'impédancemètre (voir feuille A3) .(la fin de cette mémoire).

La figure 3-24 représente les circuits imprimés du dispositif.

Figure 3-24 : Circuits imprimés.

La figure 3-25 est une présentation 3D de notre circuit.

Figure 3-25 : Circuit 3D.

3-12 Conclusion :

Dans ce chapitre nous avons présenté les différents étages constituant notre impédancemètre. Chaque étage a été validé séparément par la simulation. Plusieurs exemples d'impédances (R, L, C, RC, RL et LC) ont été simulés et comparés avec les mêmes impédances calculées directement par les signaux du courant et de la tension. Les impédances fournies par notre circuit simulé sont conformes à celles choisie théoriquement et nous permettent de valider notre prototype.

Conclusion Générale

Le prototype d'impédancemètre que nous avons proposé, étudié et simulé repose sur le principe de la détection synchrone et l'acquisition des signaux de la tension et du courant dans l'impédance étudiée.

Comme exemple d'application nous avons rappelé des notions générales sur la bioimpédance et les applications en Médecine.

Notre prototype comporte quatre grands étages : une source de courant 50 kHz, un amplificateur d'instrumentation, une détection synchrone et une partie d'acquisition et de calcul à base da la carte Arduino.

La source de courant est formée d'un oscillateur 50 kHz à base de XR2206 et un convertisseur tension-courant. L'amplificateur d'instrumentation à base de l'INA 103 sert à mesurer la tension dans l'impédance à caractériser.

La détection synchrone est constituée d'un multiplicateur et d'un filtre passe-bas. Deux circuits de détection synchrone ont été utilisés. Le premier sert à mesurer la composante résistive R et le deuxième sert à mesurer la composante réactive X tout en ajoutant un déphaseur +90° pour se synchroniser avec le sinus du déphasage correspondant à X. Les deux filtres passe bas fournissent deux sorties analogiques proportionnelles aux R et X.

Ces deux grandeurs R et X ont été calculées à travers la carte Arduino qui nous a permis aussi de calculer l'impédance Z et le déphasage φ .

La simulation nous a permis de confirmer le fonctionnement de tous les étages du dispositif tel qu'il est prévu dans la conception. Pour la validation complète du prototype, nous avons testé plusieurs exemples de types d'impédances R, L, C, RC, LC et RL.

Nous proposons dans les perspectives l'acquisition des signaux courant et tension vers le PC et de les traiter par Labview et d'utiliser une technique spectroscopique c'est-à-dire la mesure de l'impédance pour une gamme de fréquences.

<u> Références :</u>

[1]:A. Boulier, J. Fricker, M. Ferry, and M. J. N. C. e. M. Apfelbaum, "Mesure de la composition corporelle par impédance bioélectrique", Nutrition Clinique et Métabolisme, ISSN: 0985-0562, vol. 5, no. 3, pp. 165-174, 1991.

[2]:USER MANUAL, "Precision LCR Meter LCR-8000G Series" GW INSTEK PART NO. 82CR-81010MI1ISO-9001:https://azdoc.site/precision-lcr-meter-lcr-8000g-series-usermanual-gw-instek-p.html

[3]:google:https://www.utc.fr/masterqualite/public/publications/qualite_et_biomedical/UTC/dess _tbh/98-99/Projets/Bio_Imp/BioZ.htm.

[4]:google :.https://diagnofit.fr/la-bio-impedancemetrie-quest-ce-que-cest/

[5]: google:https://tel.archives-ouvertes.fr/tel-00282690/document.

[6]: xr2206–datasheet.

[7]:TL081- datasheet

[8]: ina103- datasheet

[9]: AD633-datasheet.

[10]: Eskimon et Olyte : Arduino pour bien commencer en électronique et en

Programmation.2009

[11]: Jzan Noel Montagne : Initiation à la mise en oeuvre matérielles et logicielles de

l'Arduino.Centre de Ressources Art Sensitif, novembre 2006.

[12] : https://zestedesavoir.com/tutoriels/686/arduino-premiers-pas-en-informatique-

embarquee/742_decouverte-de-larduino/3414_presentation-darduino/#2-10775_pourquoichoisir-arduino

[13] : Arduino-A000066-datasheet.

[14] :google :http://www.pobot.org/IMG/pdf/kesacoarduino.pdf[15]:https://www.utc.fr/masterqu alite/public/publications/qualite_et_biomedical/UTC/dess_tbh/98-99/Projets/Bio_Imp/BioZ.htm.

Annexe N°:01

FEATURES

- Low-Sine Wave Distortion, 0.5%, Typical
- Excellent Temperature Stability, 20ppm/°C, Typ.
- Wide Sweep Range, 2000:1, Typical
- Low-Supply Sensitivity, 0.01%V, Typ.
- Linear Amplitude Modulation
- TTL Compatible FSK Controls
- Wide Supply Range, 10V to 26V
- Adjustable Duty Cycle, 1% TO 99%

APPLICATIONS

- Waveform Generation
- Sweep Generation
- AM/FM Generation
- V/F Conversion
- FSK Generation
- Phase-Locked Loops (VCO)

GENERAL DESCRIPTION

The XR-2206 is a monolithic function generator integrated circuit capable of producing high quality sine, square, triangle, ramp, and pulse waveforms of high-stability and accuracy. The output waveforms can be both amplitude and frequency modulated by an external voltage. Frequency of operation can be selected externally over a range of 0.01Hz to more than 1MHz.

The circuit is ideally suited for communications, instrumentation, and function generator applications requiring sinusoidal tone, AM, FM, or FSK generation. It has a typical drift specification of 20ppm/°C. The oscillator frequency can be linearly swept over a 2000:1 frequency range with an external control voltage, while maintaining low distortion.

ORDERING INFORMATION

Part No.	Paokage	Operating Temperature Range			
XR-2206M	16 Lead 300 MII CDIP	-55°C to +125°C			
XR-2206P	16 Lead 300 MI PDIP	-40°C to +85°C			
XR-2206CP	16 Lead 300 MII PDIP	0°C to +70°C			
XR-2206D	16 Lead 300 MI JEDEC SOIC	0°C to +70°C			

Monolithic

XR-2206

Function Generator

PIN DESCRIPTION

Pin #	8ymbol	Туре	Description
1	AMSI	I	Amplitude Modulating Signal Input.
.2	STO	0	Sine or Triangle Wave Output.
з	MO	0	Multiplier Output.
- 4	V _{CC}		Positive Power Supply.
5	TC1	1	Timing Capacitor Input.
6	TC2	1	Timing Capacitor Input.
7	TR1	0	Timing Redictor 1 Output.
8	TR2	0	Timing Resistor 2 Output.
9	FSKI	1	Frequency Shift Keying Input.
10	BIAS	0	Internal Voltage Reference.
11	SYNCO	0	$syno \ Output. This output is a open collector and needs a pull up resistor to V_{CC}$
12	GND		Ground pin.
13	WAVEA1	1	Wave Form Adjust Input 1.
14	WAVEA2	1	Wave Form Adjust Input 2.
15	SYMA1	1	Wave Symetry Adjust 1.
16	SYMA2	1	Wave Symetry Adjuct 2.

3

XR-2206

DC ELECTRICAL CHARACTERISTICS

Test Conditions: Test Circuit of Figure 2 Vcc = 12V, $T_A = 25^{\circ}C$, C = 0.01µF, $R_1 = 100k\Omega$, $R_2 = 10k\Omega$, $R_3 = 25k\Omega$. Unless Otherwise Specified. S₁ open for triangle, closed for sine wave.

///////

	X	R-2208M/	/P	XI	1-2208CP	VD		
Parameters	Min.	Тур.	Max.	Min.	Тур.	Max.	Units	Conditions
General Characteristics	<u></u>	<u> </u>						
Single Supply Voltage	10		26	10		26	v	
Split-Supply Voltage	<u>+</u> 6		<u>+</u> 13	<u>+</u> 5	i	<u>+13</u>	v	
Supply Current		12	17		14	20	mA	$R_1 \ge 10 k\Omega$
Ocolliator Section	1	<u></u>			<u>.</u>			
Max. Operating Frequency	0.6	1		0.5	1		MHz	C = 1000pF, R ₁ = 1kΩ
Lowest Practical Frequency		0.01			0.01		Hz	C = 50μF, R ₁ = 2MΩ
Frequency Accuracy	!	+1	+4		+2		% of f _o	f _o = 1/R ₁ C
Temperature Stability Frequency		<u>+</u> 10	<u>+</u> 60		<u>+</u> 20		ppm/°C	$0^{\circ}C \le T_A \le 70^{\circ}C$ R ₁ = R ₂ = 20kΩ
Sine Wave Amplitude Stability ²		4800			4800		ppm/°C	
Supply Sensitivity		0.01	0.1		0.01		%/V	V _{LOW} = 10V, V _{HIGH} = 20V, R ₁ = R ₂ = 20kΩ
Sweep Range	1000:1	2000:1			2000:1		fH = fL	1 _H @ R ₁ = 1kΩ 1 _L @ R ₁ = 2MΩ
Sweep Linearity	·	·	<u> </u>	<u></u>				
10:1 Sweep	l l	2			2		%	f _L = 1kHz, f _H = 10kHz
1000:1 Sweep		8			8		%	f _L = 100Hz, f _H = 100kHz
FM Distortion		0.1			0.1		%	±10% Deviation
Recommended Timing Compor	ients	<u>#</u> =		·	<u>.</u>			
Timing Capacitor: C	0.001		100	0.001		100	μF	Figure 5
Timing Resistors: R ₁ & R ₂	1		2000	1	1	2000	kΩ	
Triangle Sine Wave Output ¹	h	*			<u>.</u>			Figure 3
Triangle Amplitude		160			160		mV/kΩ	Figure 2, S ₁ Open
Sine Wave Amplitude	40	60	80		60		mV/kΩ	Figure 2, S1 Closed
Max. Output Swing		6			6		Vp-p	
Output Impedance		600			600		Ω	
Triangle Linearity	!	1			1		%	
Amplitude Stability		0.5			0.5		dB	For 1000:1 Sweep
Sine Wave Distortion		<u> </u>						
Without Adjustment		2.5			2.5		%	R1 = 30KΩ
With Adjustment		0.4	1.0		0.5	1.5	%	See Figure 7 and Figure 8

Notes

¹ Output amplitude is directly proportional to the resistance, R₃, on Pin 3. See Figure 3.

² For maximum amplitude stability, R₃ should be a positive temperature coefficient resistor.

Bold face parameters are covered by production test and guaranteed over operating temperature range.

DC ELECTRICAL CHARACTERISTICS (CONT'D)

	X	R-2208M	P	XF	1-2206CP	סאי		
Parameters	Min.	Тур.	Max.	Min.	Тур.	Max.	Units	Conditions
Amplitude Modulation								·
Input Impedance	50	100		50	100		kΩ	
Modulation Range		100			100		%	
Carrier Suppression		55			55		dB	
Linearity		2			2		%	For 95% modulation
Square-Wave Output								
Amplitude		12			12		Vр-р	Measured at Pin 11.
Rise Time		250			250		ns	CL = 10pF
Fall Time		50			50		ns	GL = 10pF
Saturation Voltage		0.2	0.4		0.2	0.6	v	IL = 2mA
Leakage Current		0.1	20		0.1	100	μA	V _{CC} = 26V
F8K Keying Level (Pin 9)	0.8	1.4	2.4	0.8	1.4	2.4	v	See section on circuit controls
Reference Bypass Voltage	2.9	3.1	3.3	2.5	3	3.5	V	Measured at Pin 10.

Figure 12. Circuit for Sine Wave Generation with Minimum Harmonic Distortion. (R₃ Determines Output Swing - See Figure 3)

Annexe N°: 02

Data Sheet

FEATURES

4-quadrant multiplication Low cost, 8-lead SOIC and PDIP packages Complete—no external components required Laser-trimmed accuracy and stability Total error within 2% of full scale Differential high impedance X and Y inputs High impedance unity-gain summing input Laser-trimmed 10 V scaling reference

APPLICATIONS

Multiplication, division, squaring Modulation/demodulation, phase detection Voltage-controlled amplifiers/attenuators/filters

GENERAL DESCRIPTION

The AD633 is a functionally complete, four-quadrant, analog multiplier. It includes high impedance, differential X and Y inputs, and a high impedance summing input (Z). The low impedance output voltage is a nominal 10 V full scale provided by a buried Zener. The AD633 is the first product to offer these features in modestly priced 8-lead PDIP and SOIC packages.

The AD633 is laser calibrated to a guaranteed total accuracy of 2% of full scale. Nonlinearity for the Y input is typically less than 0.1% and noise referred to the output is typically less than $100\,\mu V$ rms in a 10 Hz to 10 kHz bandwidth. A 1 MHz bandwidth, 20 V/µs slew rate, and the ability to drive capacitive loads make the AD633 useful in a wide variety of applications where simplicity and cost are key concerns.

The versatility of the AD633 is not compromised by its simplicity. The Z input provides access to the output buffer amplifier, enabling the user to sum the outputs of two or more multipliers, increase the multiplier gain, convert the output voltage to a current, and configure a variety of applications. For further information, see the Multiplier Application Guide.

FUNCTIONAL BLOCK DIAGRAM

Low Cost

AD633

Analog Multiplier

The AD633 is available in 8-lead PDIP and SOIC packages. It is specified to operate over the 0°C to 70°C commercial temperature range (J Grade) or the -40°C to +85°C industrial temperature range (A Grade).

PRODUCT HIGHLIGHTS

- The AD633 is a complete four-quadrant multiplier offered 1. in low cost 8-lead SOIC and PDIP packages. The result is a product that is cost effective and easy to apply.
- No external components or expensive user calibration are 2. required to apply the AD633.
- Monolithic construction and laser calibration make the 3. device stable and reliable.
- 4. High (10 M Ω) input resistances make signal source loading negligible.
- 5. Power supply voltages can range from ±8 V to ±18 V. The internal scaling voltage is generated by a stable Zener diode; multiplier accuracy is essentially supply insensitive.

n furnished by Analog Devices is b and re ity is assumed by Analog Devices for its use, nor fi rity articles that may result from its use. Specification anted by implication or otherwise under any pa ts of pa change tent or pa ent rights of Ana se is grant marks are the property

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2015 Analog Devices, Inc. All rights reserved. ©2015 Analog Devices, Inc. All rights reserved. Technical Support

Data Sheet

SPECIFICATIONS

 $T_{A}=25^{o}C\text{, }V_{S}=\pm15\text{ V}\text{, }R_{L}\geq2\text{ }k\Omega\text{.}$

T-11-	1
I anie	
1 abic	

			AD633J, AD633A		
Parameter	Conditions	Min	Тур	Max	Unit
TRANSFER FUNCTION		(X1-	X2(Y1 - Y2)		
		W =	10 V +2		
MULTIPLIER PERFORMANCE					
Total Error	$-10 V \le X, Y \le +10 V$		±1	±21	% full scale
T _{MIN} to T _{MAX}	1000		±3		% full scale
Scale Voltage Error	SF = 10.00 V nominal		±0.25%		% full scale
Supply Rejection	$V_s = \pm 14 V$ to $\pm 16 V$		±0.01		% full scale
Nonlinearity, X	$X = \pm 10 V, Y = +10 V$		±0.4	±11	% full scale
Nonlinearity, Y	$Y = \pm 10 V, X = +10 V$		±0.1	±0.4 ¹	% full scale
X Feedthrough	Y nulled, $X = \pm 10 V$		±0.3	±11	% full scale
Y Feedthrough	X nulled, $Y = \pm 10 V$		±0.1	±0.4 ¹	% full scale
Output Offset Voltage ²			±5	±50 ¹	mV
DYNAMICS					
Small Signal Bandwidth	$V_0 = 0.1 V rms$		1		MHz
Slew Rate	$V_0 = 20 V p - p$		20		V/µs
Settling Time to 1%	$\Delta V_0 = 20 V$		2		μs
OUTPUT NOISE					
Spectral Density			0.8		µV/√Hz
Wideband Noise	f = 10 Hz to 5 MHz		1		mV rms
	f = 10 Hz to 10 kHz		90		μV rms
OUTPUT					
Output Voltage Swing		±11 ¹			V
Short Circuit Current	$R_L = 0 \Omega$		30	40 ¹	mA
INPUT AMPLIFIERS					
Signal Voltage Range	Differential	±10 ¹			V
	Common mode	±10 ¹			V
Offset Voltage (X, Y)			±5	±30 ¹	mV
CMRR (X, Y)	$V_{CM} = \pm 10 \text{ V}, f = 50 \text{ Hz}$	60 ¹	80		dB
Bias Current (X, Y, Z)			0.8	2.0 ¹	μΑ
Differential Resistance			10		MΩ
POWER SUPPLY					
Supply Voltage					
Rated Performance			±15		V
Operating Range		±81		±18 ¹	V
Supply Current	Quiescent		4	6 ¹	mA

¹ This specification was tested on all production units at electrical test. Results from those tests are used to calculate outgoing quality levels. All minimum and maximum specifications are guaranteed; however, only this specification was tested on all production units.
² Allow approximately 0.5 ms for settling following power on.

Rev. K | Page 3 of 20

AD633

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	±18 V
Internal Power Dissipation	500 mW
Input Voltages ¹	±18 V
Output Short-Circuit Duration	Indefinite
Storage Temperature Range	-65°C to +150°C
Operating Temperature Range	
AD633J	0°C to 70°C
AD633A	-40°C to +85°C
Lead Temperature (Soldering, 60 sec)	300°C
ESD Rating	1000 V

 $^{\rm 1}$ For supply voltages less than ± 18 V, the absolute maximum input voltage is equal to the supply voltage.

Data Sheet

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only: functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

 θ_{lA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 3.

Package Type	θιΑ	Unit
8-Lead PDIP	90	°C/W
8-Lead SOIC	155	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Rev. K | Page 4 of 20

Data Sheet AD633 **PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS** X1 1 8 +V_S 8 X2 Y1 7 X1 X2 2 7 W Y2 2 6 Z Y1 3 6 +V_S -V_S 3 5 -V_S 5 W Y2 4 Z 4

Figure 2. 8-Lead PDIP

AD633JN/AD633AN

 $W = \frac{(X1 - X2)(Y1 - Y2)}{10V} + Z$

Table 4. 8-Lead PDIP Pin Function Descriptions

Pin No.	Mnemonic	Description
1	X1	X Multiplicand Noninverting Input
2	X2	X Multiplicand Inverting Input
3	Y1	Y Multiplicand Noninverting Input
4	Y2	Y Multiplicand Inverting Input
5	-Vs	Negative Supply Rail
6	Z	Summing Input
7	w	Product Output
8	+Vs	Positive Supply Bail

Table 5. 8-Lead SOIC Pin Function Descriptions

Pin No.	Mnemonic	Description
1	Y1	Y Multiplicand Noninverting Input
2	Y2	Y Multiplicand Inverting Input
3	-Vs	Negative Supply Rail
4	Z	Summing Input
5	w	Product Output
6	+Vs	Positive Supply Rail
7	X1	X Multiplicand Noninverting Input
8	X2	X Multiplicand Inverting Input

AD633JR/AD633AR

 $W = \frac{(X1 - X2)(Y1 - Y2)}{10V} + Z$

Figure 3. 8-Lead SOIC

TOO AN

Rev. K | Page 5 of 20
Annexe N°:03

INA103

Low Noise, Low Distortion INSTRUMENTATION AMPLIFIER

FEATURES

- LOW NOISE: 1nV/√Hz
- LOW THD+N: 0.0009% at 1kHz, G = 100
- HIGH GBW: 100MHz at G = 1000
- WIDE SUPPLY RANGE: ±9V to ±25V
- HIGH CMRR: >100dB
- BUILT-IN GAIN SETTING RESISTORS: G = 1, 100
- UPGRADES AD625

DESCRIPTION

The INA103 is a very low noise, low distortion monolithic instrumentation amplifier. Its current-feedback circuitry achieves very wide bandwidth and excellent dynamic response. It is ideal for low-level audio signals such as balanced low-impedance microphones. The INA103 provides near-theoretical limit noise performance for 200 Ω source impedances. Many industrial applications also benefit from its low noise and wide bandwidth.

Unique distortion cancellation circuitry reduces distortion to extremely low levels, even in high gain. Its balanced input, low noise and low distortion provide superior performance compared to transformer-coupled microphone amplifiers used in professional audio equipment.

The INA103's wide supply voltage $(\pm 9 \text{ to } \pm 25\text{V})$ and high output current drive allow its use in high-level audio stages as well. A copper lead frame in the plastic DIP assures excellent thermal performance.

APPLICATIONS

- HIGH QUALITY MICROPHONE PREAMPS (REPLACES TRANSFORMERS)
- MOVING-COIL PREAMPLIFIERS
- DIFFERENTIAL RECEIVERS
- AMPLIFICATION OF SIGNALS FROM: Strain Gages (Weigh Scale Applications) Thermocouples Bridge Transducers

The INA103 is available in 16-pin plastic DIP and SOL-16 surface-mount packages. Commercial and Industrial temperature range models are available.

International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111 Internet: http://www.burt-brown.com/ • FAXLine: (800) 548-6133 (US:Canada Only) • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

©1990 Burr-Brown Corporation

PDS-1016H

Printed in U.S.A. March, 1998

SBOS003

SPECIFICATIONS

All specifications at T_A = +25°C, V_S = $\pm 15V$ and R_L = 2k\Omega, unless otherwise noted.

		INA103KP, KU			
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
	±10V Output ±10V Output ±10V Output	1	$G = 1 + 6 k \Omega / R_G \\ 0.005 \\ 0.07 \\ 0.05 \\ 10 \\ 25 \\ 25 \\ 0.0003 \\ 0.0006 \\ \end{array}$	1000 0.05 0.25 0.01 0.01	V/V V/V % % ppm/*C ppm/*C ppm/*C % of FS ⁽²⁾ % of FS
$\label{eq:constraint} \begin{array}{l} \textbf{OUTPUT} \\ \text{Voltage,} \ R_{L} = 600\Omega \\ R_{L} = 600\Omega \\ \text{Current} \\ \text{Short Circuit Current} \\ \text{Capacitive Load Stability} \end{array}$	$ \begin{array}{l} T_A = T_{MIN} \mbox{ to } T_{MAX} \\ V_S = \pm 25, \ T_A = 25^\circ C \\ T_A = T_{MIN} \mbox{ to } T_{MAX} \end{array} $	±11.5 ±20 ±40	±12 ±21 ±70 10		V V mA nF
$\label{eq:state} \begin{split} & \text{INPUT OFFSET VOLTAGE} \\ & \text{Initial Offset RTI}^{(3)} \\ & (KU Grade) \\ & \text{vs Temp } G = 1 \text{ to } 1000 \\ & G = 1000 \\ & \text{vs Supply} \end{split}$	$ \begin{split} T_A &= T_{MIN} \text{ to } T_{MAX} \\ T_A &= T_{MIN} \text{ to } T_{MAX} \\ \pm 9V \text{ to } \pm 25V \end{split} $		(30 + 1200/G) 1 + 20/G 0.2 + 8/G	(250+ 5000/G) 4 + 60/G	μV μV μV/∘C μV/∘C μV/V
INPUT BIAS CURRENT Initial Bias Current vs Temp Initial Offset Current vs Temp	$T_A = T_{MIN}$ to T_{MAX} $T_A = T_{MIN}$ to T_{MAX}		2.5 15 0.04 0.5	12 1	μΑ nA/°C μA nA/°C
INPUT IMPEDANCE Differential Mode Common-Mode			60 2 60 5		MΩ pF MΩ pF
INPUT VOLTAGE RANGE Common-Mode Range (4) CMR G = 1 G = 100	DC to 60Hz DC to 60Hz	±11 72 100	±12 86 125		V dB dB
INPUT NOISE Voltage ⁽⁵⁾ 10Hz 100Hz 1kHz Current, 1kHz	R _s = 0Ω		2 1.2 1 2		nV/√Hz nV/√Hz nV/√Hz pA/√Hz
OUTPUT NOISE Voltage A Weighted, 20Hz-20kHz	1kHz 20Hz-20kHz		65 100		nV/√Hz dBu
DYNAMIC RESPONSE					
-3dB Bandwidth: G = 1 G = 100 Full Power Bandwidth $V_{OUT} = \pm 10V$, $R_{L} = 600\Omega$ Slew Rate THD + Noise Setting 1 mp 0.18/	Small Signal Small Signal G = 1 G = 1 to 500 G = 100, f = 1kHz		6 800 240 15 0.0009		MHz kHz V/μs %
G = 1 G = 100 Settling Time 0.01%	V _O = 20V Step		1.7 1.5		μs μs
G = 1 G = 100 Overload Recovery ⁽⁶⁾	V _O = 20V Step 50% Overdrive		2 3.5 1		μs μs μs

NOTES: (1) Gains other than 1 and 100 can be set by adding an external resistor, R_G between pins 2 and 15. Gain accuracy is a function of R_G . (2) FS = Full Scale. (3) Adjustable to zero. (4) $V_O = 0V$, see Typical Curves for V_{CM} vs V_O . (5) $V_{NOISE RTI} = \sqrt{V^2}_{N NPUT} + (V_{N OUTPUT}/Gain)^2 + 4KTR_G$. See Typical Curves. (6) Time required for output to return from saturation to linear operation following the removal of an input overdrive voltage.

GENERIC PACKAGE VIEW

DW 16

SOIC - 2.65 mm max height

7.5 x 10.3, 1.27 mm pitch

SMALL OUTLINE INTEGRATED CIRCUIT

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

الملخص:

قدمنا في عملنا كفصل أول مفاهيم عامة عن الممانعة والتطبيقات في الطب، أما بالنسبة للفصل الثاني مخصصة لدراسة وتصميم جهاز لقياس الممانعة. بينما في الفصل الثالث تطرقنا للمراحل المختلفة التي تشكل مقياس الممانعة، تم التحقق من صحة كل طابق بشكل منفصل بواسطة المحاكاة. **الكلمة الأساسية:** قياس الممانعة.

Résumé :

Dans notre travail, nous avons présenté des notions générales sur l'impédance et les applications en Médecine. Nous avons étudié et conçu un dispositif de mesure des composantes d'une impédance R et X ou Z et φ . Nous avons présenté les différents étages constituant notre impédancemètre. Chaque étage a été validé séparément par la simulation.

Mot clé : Impédance, Détection synchrone, Arduino .

Abstract:

In our work, we have presented general notions on impedance and applications in Medicine. Our study is devoted to the study and design of a device for measuring the components of impedance. We presented the different stages constituting our impedance meter. Each stage was validated separately by the simulation.

Key word: Impedance, Lock in Amplifier, Arduino.

