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Abstract

Computer aided detection and diagnosis CADe/CADx systems, are an essential tools used by
physicians to assist them in their daily clinical diagnosis. In cancers diseases, these systems
have an important role to perform the early detection and diagnosis, this allows to provide
early treatment before it will be too late.
In this thesis, we present several methods to be uses in a computer aided diagnosis system
in order to generate structured reports of liver lesions including cancer using Computed
Tomography (CT) images. In addition, we propose different methods for computer aided
detection of breast cancer, by treating breast density classification using mammography and
breast lesion classification using histopathology images.
At this context we present three distingue contributions, the first one is related to the
annotation of liver CT images by using a medical ontology, in which we propose three
methods.
The second contribution is about breast density classification according to the standard
Breast Imaging Reporting and Data System (BI-RADS). In addition to that, we propose
an improved version of Synthetic Minority Over-Sampling Technique Algorithm (SMOTE)
used to equilibrate the dataset.
The last contribution is about breast lesions classification in the histopathology images.
Precisely, we propose a method to distinct benignant and malignant lesions, as well to
classify the normal cases, benign cases, in situ and invasive cancer cases.

Keywords: Medical images; Computer-aided diagnosis; Image retrieval; Liver
annotation; BEMD; Gabor wavelet; Mammography; Breast tissue
classification; SMOTE; Image classification; Histology images; Deep learning.
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Introduction

Medical imaging represents one of the cornerstones used in the detection and diagnostic of
diseases. One of the most frightful diseases is cancer, in whichmany lives are lost every year.
According to the statistic given by the World Health Organization in 2018, over 9.6 million
people are died with cancer [12]; only the early detection, diagnostics and treatments can
improve the survival of patients rates. Medical imaging is used to face cancer by detecting
it in the earliest stage.

The rapid progress evolution and improvement of imaging techniques knew since the
development of the sonar technology in 1960, despite that the discovery of X-ray imaging
was in 1896 [13]. At the moment, there are many available imaging techniques used in
the medical field such as Computed Tomography (CT) imaging, Mammography, Magnetic
Resonance (MR) imaging, Ultrasound (US) imaging, etc.
Medical images are usually asked by physicians to be used in the cancer diagnosis, their
availability and reimbursement facilitate the process. Therefore, this daily production
increases the number of medical images [14].

Computer-aided detection and diagnosis CADe/CADx systems are one of the better
solutions operating the amount of the produced medical images, by assisting the clinicians
in their diagnostics. CAD systems are based on computer models that provide many
functionalities in the diagnostic. For example, they can be used to detect, segment the
cancers. Also, they can give the type of cancers and annotate its properties.

In this thesis, we were particularly interested in developing computer models of CAD
systems for liver and breast cancer annotation and classification.

Motivation

Breast and liver cancers are the most common cancer. In 2018, breast cancer represented the
second common cancer, which constituted 11.6% of cancer incidence with 2.09million cases
and the mortality rate among cancer cases was 6.6%, equivalent to 627000 deaths. In other
side, liver cancer was the sixth common cancer with 4.7% of cancer incidence; however, it
represented the fourth cause of cancer mortality with a rate of 8.2% equivalent to 782000
deaths [12] [15].
These figures were a sufficient source of motivation in order to develop the methods of
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computer-aided detection and diagnosis CADe/CADx systems for liver and breast cancers.
The CAD systems based on artificial intelligence methods showed their positive impact on
improving the diagnosis led by physicians [16]. In fact, the CAD system allows physicians
to overcome some problems that affect their performance during the diagnostic, such as
misinterpretation due to perceptual fatigue or the weak experience, also to automate the
redundant tasks in order to avoid time-consuming.

Objectives

The main goal of this thesis is to develop newmethods of computer-aided diagnostic system,
by presenting new solutions on images annotation and classification based on indexation
approaches. More precisely, we focused on studying liver and breast lesions, including
cancers.

For the liver’s lesions, we presented several methods for automatic liver annotation using
liver CT images in order to generate a structured report, that helps physicians in the process
of reporting and image retrieval. The modality CT was chosen, because it is suitable for
detecting and diagnosing liver lesions and liver metastases, thanks to its capacity at imaging
soft tissue structures [17].

In the breast study, we have focused on two solutions, the first one is related to breast
parenchyma tissue classification, and the second one is based on breast lesion classification.
We have investigated the development of breast tissue density classification, because breast
density is associated with breast cancer risk, where is considered as a marker for prior cancer
risk [18]. To achieve this study, we have used the mammography.
On the other side, we have used the histopathology images for breast lesion classification.
In fact, the histopathology images analysis obtained from the biopsy process is the most
accurate method used to determine for sure if there is cancer or not.

In summary, developing methods to support the pathologists in their diagnostics was the
essential aim for us.
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Challenges

We found many challenges to realize the objectives of this thesis; we quote them according
to the problematic treated.

Liver annotation

• Creation of a standardized report

• Reducing the semantic gap between the low level and height level image features

Breast density and lesions classification

• The use of a standardized classification

• Overcome the imbalance problem of dataset

• Validate the different methods using different datasets

• Avoid the use of handcrafted features

In addition to the above challenges, the development of efficient methods that compete the
related works was the most difficult challenge to realize.

Contributions

In this thesis, we will present three distingue contributions.
The first one, consists of developing liver annotation methods by using ontology to

generate a standardized report. In addition to this, and in order to avoid the semantic
gap between the low level and the height level image features, we used the methods of
classification and content-based medical image retrieval for images indexation.

The second and the third contributions are related to breast study, where in the second
contribution we developed a method for breast density categorization by applying the
standard Breast Imaging Reporting and Data System (BI-RADS) classification. We also
proposed an improved version of the SMOTE algorithm to equilibrate the dataset.

In the third contribution, we developed an effective method for the histopathological
classification of breast lesions. This kind of images is very complicated, making the
extraction of handcraft features a difficult task. For this reason we have proposed to use the
deep learning approaches. In addition, the presented method is evaluated on two different
datasets.

In order to provide an objective and efficient comparison, we have evaluated all the
proposed methods in international challenges.
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Thesis Overview

The present thesis is organized as follows:
Chapter 1 gives an overview of medical background, by providing the medical

information, including the anatomy and physiology of the liver and breast with their
pathologies and diagnosis.

Chapter 2 presents the literature related works on liver annotation, breast density
classification and histopathology images classification.

Chapter 3 presents the methods developed for liver CT annotation, with
experimentations, including our participation in liver challenge, and comparative study with
related works.

Chapter 4 presents the method developed for breast density classification, in addition to
the experimentation carried out on different datasets. The chapter concludes by presenting
the results obtained in the mammography challenge.

Chapter 5 starts by introducing the fundamentals concept of Convolutional Neuronal
Network (CNN) and the different architectures, then the proposed method is presented.
Finally, a discussion of the results obtained in the histopathology image challenge is given.

We conclude this thesis with a general conclusion and some potential future works.
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Chapter 1

Overview of Liver and Breast

1.1 Introduction

We focus in this chapter on the medical background related to the liver and breast. Where
we reviewing the anatomy and physiology of these two organs and we will explain they
principals components. Thereafter we will introduce in detail their lesions and finally we
will conclude each part by the imaging techniques used to diagnosis the lesions.

1.2 Anatomy and physiology of the liver

The liver is a vital organ comprises around 2% of an human’s body weight [19] and is the
second largest organ after the skin, partially protected by the ribs, it is located on the right
side of the body beneath the diaphragm, on top of the stomach, overlying the gallbladder,
right kidney and intestines [20].
It help metabolism support as well immunity and digestion, furthermore detoxification and
vitamin storage. These function make him an essential organ in the human’s life, fortunately
one particularity of the liver is its capacity to regenerate its dead tissues [20].

1.2.1 Liver components

A. Liver vessels
The liver is one of the most densely vascular organs in the human body. It contains
more than 10% of the body’s total blood volume, and it is crossed by 1.4 liters of blood
on average every minute (for an adult).
The liver contains four vessel structures: portal vein, hepatic vein, hepatic arteries and
bile ducts.

• Portal vein: The portal vein is unique among all bloods vessels of the body. It
main function is to bring the blood rich in nutrients from the gastrointestinal tract
and spleen to the liver in order to process nutrients and filter out toxic substances;
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thereafter the blood goes back into general circulation [21].
This blood accounts for approximately 2/3 to 3/4 of blood flow into the liver.

• Hepatic veins: are blood vessels which transport the liver’s deoxygenated blood
and blood which has been filtered by the liver to the inferior vena cava.
There are three main hepatic veins which divide off the inferior vena can just
below the surface of the diaphragm: the right hepatic vein, middle hepatic vein
and left hepatic vein.

• Hepatic arteries: arterial blood accounts for only a 1/4 of the blood flow into the
liver, however, it supplies about 2/3 to 3/4 of the oxygen to the liver since the
blood is more oxygen rich than portal vein blood. The common hepatic artery
originates from three main source : the celiac trunk, the left gastric artery and
superior mesenteric artery. Where the middle hepatic artery is arises from the
celiac trunk, the right hepatic artery is arises from the superior mesenteric artery,
the left hepatic artery is which arises from the left gastric artery [22].

• Bile Ducts: the liver produce the bile that is used for fats digestion. The bile
ducts carry the bile through the liver to the gallbladder to be stored or released
directly into the small intestine.

The liver divides into four unequal lobes; the right hepatic lobe is the largest, the left
hepatic lobe is the narrowest part of the organ. Between these two major lobes, there
is the square lobe and the caudate lobe. The square lobe and the caudate lobe are
separated by a furrow called the hilum of the liver. It is at the hilum that the portal
vein and the hepatic artery enter the liver, and that major bile ducts pass.
Each lobe of the liver is divided into segments; there are 8 segments in all. These
anatomical divisions are important for surgical procedures: when a part of the liver is
damaged and must be extracted, resection often follows these anatomical contours.

B. Lobules
The liver is composed of 100,000 functional units named lobule. Each lobule has an
hexagonal shape where at each its corner there are portal vein, hepatic artery and bile
duct called portal triad [20].
Blood supplying from portal vein and hepatic artery drains into the branch of the
hepatic vein that lies in the lobule’s center via sinusoidal vascular channel [23]. Each
sinusoid containing 2 main cell types: Kupffer cells and Hepatocytes.
Kupffer cells: are a type of macrophage, their functions include the phagocytosis of
large particles, secretion of immune-regulatory mediators also they capture and break
down old, worn out red blood cells [24].
Hepatocytes: have cubical shape, are the foundation of the lobule and they line the
sinusoids; their functions include metabolism, storage, digestion, and bile production
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Figure 1.1: Liver vessels and segments [1]

[20]. In the lobule there is a space between the sinusoidal and the hepatocytes cells
named the space of Disse, this space allows the hepatocytes to meet the blood and
to absorbed the plasma components. Furthermore, it contains the stellate cells that
constitute 5% of the total hepatic cell and it function is to store the fat such as vitamin
A [25].
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Figure 1.2: Liver lobule [2]
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1.2.2 Physiology of the Liver

The liver can be thought of as a chemical factory that processes, transforms and eliminates
different substances. In fact, the blood of the portal vein reaches the liver with very many
substances resulting from the digestion system. These molecules are absorbed by the cells of
the liver which are endowed with specific enzymes and allow their chemical transformation.
These changes made by the liver are vital for the body. The liver’s functions can be
categorized into the following :

A. Digestion
An essential component for digestion is the bile, it is a yellow liquid produced by the
Hepatocytes and it released in the bile ducts to be stored in the gallbladder.
The hormone cholecystokinin is liberated from duodenum to stimulate the gallbladder
to release bile, this occurs when duodenum contain large fat clumps. The bile turns
these large clumps into smaller pieces that have more surface area and are therefore
easier for the body to digest [20].

B. Metabolism
The liver is an essential metabolic organ which governs body energy metabolism [26].
Where it contribute to metabolize carbohydrate, lipids, and proteins into biologically
substances.
In carbohydrates metabolism, the liver maintaining glucose concentrations in a normal
range in the blood [27]. The excess glucose of the blood supplied by the portal vein
after a food, is reduced by the liver by storing it in the form of glycogen. When the
level of glucose is too low in the blood, the liver degraded the glycogen to the glucose
and releases it in the blood [28].
The liver plays a key role in lipid metabolism [29], the lipids reaching the liver are
transformed into triglycerides and stored in liver cells. In response to the body’s energy
needs, these triglycerides are broken down into fatty acids and used. In addition,
it transform the excess carbohydrates and proteins into fatty acids and triglycerides,
which are then stored in adipose tissue [30].
The liver cells synthesize the amino acids of the dietary proteins obtained from the
digestive system. The amino acids will be used as energy source after removing the
toxic amine groups and convert them into ammonia and eventually urea [20].

C. Detoxification
Certain substances which arrive at the liver are toxic for the organism: the role of the
liver is to degrade these substances into non-toxic products.
The ammonia, which is naturally produced by the colon during the decomposition of
the digestive content, has a high neurological toxicity. It is degraded by the liver cells,
then eliminated in the urine.
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The liver also plays an essential role in the breakdown cycle of hemoglobin. The
red blood cells have a lifespan of around 120 days. At the end of this period,
they are destroyed in the spleen, where the breakdown of hemoglobin produces free
bilirubin. The bilirubin is toxic and can be harmful; it has a characteristic yellow
color. It reaches the liver via the bloodstream and is transformed there into conjugated
bilirubin, non-toxic.
The alcohol (ethanol) ingested also mainly reaches the liver. Absorbed by the liver
cells, it is transformed into acetaldehyde and then into acetate. These substances are
returned to the blood and eliminated via the kidneys. But ethanol and acetaldehyde
have a toxic effect on liver cells: they have chemical properties that seriously disrupt
their functioning, and lead to fatty liver disease.
Medicines taken by mouth reach the liver in the same way: it absorbs and eliminates
part of the active substances in the medicine. The dosages of the drugs take into
account this intervention of the liver [31].

D. Storage
The liver provides storage of many essential nutrients, vitamins, andminerals obtained
from blood passing through the hepatic portal system. Glucose is transported
into hepatocytes under the influence of the hormone insulin and stored as the
polysaccharide glycogen. Hepatocytes also absorb and store fatty acids from
digested triglycerides. The storage of these nutrients allows the liver to maintain the
homeostasis of blood glucose. Our liver also stores vitamins and minerals - such as
vitamins A, D, E, K, and B12, and the minerals iron and copper - in order to provide
a constant supply of these essential substances to the tissues of the body [32].

E. Immunity
The liver is considered as one of innate immune organ [33], due that it processed a set
of immune cells. Indeed, the liver contains a large number of Kupffer cells represent
80–90% of the total population of macrophages in the body [34]. The liver contain
also an important innate immune cells named natural killer (NK) cells that provide the
first line of defense against pathogens and tumors [35].
Moreover, there are NKT cells a liver lymphocyte cells regulator for liver disease by
modulating liver inflammation, injury, fibrosis and regeneration [34].
In addition, there are the liver sinusoidal endothelial cells, that play an important role in
the innate immunity, where they remove soluble macromolecular and colloidal waste
from the circulation, also they detect microbial infection through pattern recognition
receptor. In they turn the hepatocytes produce about 80–90% of the circulating innate
immunity proteins in the body [34].
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1.3 Liver pathologies

The liver represents a key target organ for toxicity [19], that make him prone to a variety of
pathologies [25].
The liver pathologies causes given by the National Library of Medicine (NLM) [36] are as
following :

• Pathologies caused by viruses, such as hepatitis portal vein is unique

• Pathologies caused by drugs, poisons and alcohol such as fatty liver disease and
cirrhosis

• Inherited diseases, such as Wilson disease

From the pathologies there is also liver tumor, the next section we will define each pathology
separately.

A. Viral Hepatitis
Hepatitis is any acute or chronic inflammation of the liver. It is said to be acute when
the body comes into contact with the virus, and chronic when it persists beyond 6
months after the start of the infection.
There are two cause to have Hepatitis : the viral causes with the main hepatitis
alphabetical viruses, known as A, B, C, D and 3 other virus Epstein Barr virus, Cyto
Megalo virus and herpes.
The second cause are non-viral such as alcoholism, autoimmune disease and obesity.
This disease can progress spontaneously to recovery or progress to cirrhosis or liver
cancer [31].

B. Fatty liver
Non-Alcoholic Fatty Liver Disease (NAFLD) results from the accumulation of fat
in liver cells. This occurs, when a person consumes more fat and sugars making
triglycerides developed in the hepatocytes exceeds 5% of the liver weight.
Angulo [37] classify the causes of NAFLD into primary causes, nutritional, drugs,
metabolic, toxins and infections.
The primary causes are : obesity, glucose intolerance, type 2 diabetes,
hypertriglyceridemia, low HDL cholesterol, hypertension.
From the nutritionals causes there are protein calorie malnutrition, rapid weight loss.
As drugs causes, he cited estrogens, tamoxifen, amiodarone.
Lipodystrophy and hypopituitarism as metabolic causes.
The causes can be toxins such as bacillus cereus toxin and infections causes like
hepatitis C and human immunodeficiency virus.
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C. Cirrhosis
Cirrhosis is the consequence of any chronic liver disease such as viral hepatitis,
alcoholic hepatitis, etc. In a patient with liver disease, scar tissue replaces damaged
liver cells: it is hepatic fibrosis. The scar tissue surrounds clusters of regenerating
liver cells; these clusters constitute regeneration nodules [31].
Cirrhosis therefore changes the function and structure of the liver, which has several
consequences: the primary functions of the liver such as filtration of blood and
secretion of bile are no longer fulfilled. Portal hypertension develops (increased
pressure inside the venous system which leads blood from the digestive system to
the liver). Ultimately, cirrhosis can progress to liver cancer within 15 to 20 years of
its onset [38].

D. Wilson disease
Wilson’s disease is a rare genetic condition occurs when the liver don’t release the
copper into the bile as it must be. This leads to liver damage and result to releases
the copper into the bloodstream. Thereafter many organ are affected like the kidneys,
brain, and eyes. in an advanced stage of Wilson Disease, it can cause severe brain
damage, liver failure, and death [39].

E. Liver tumor
By definition the tumor is an abnormal growth of cells that can be benign
(noncancerous) or malignant (cancerous). Benign tumors usually do not pose a serious
health risk, in contrary to malignant tumors that can be fatal [40].

The following section we will introduce the benign liver lesions followed by malignant liver
lesions.

1.3.1 Benign liver lesions

One particularity of benign tumor it didn’t spread to other organs like malignant tumor.

A. Hemangiomas
Is the most common benign liver lesion, made up of clusters of blood-filled cavities,
lined by endothelial cells and fed by the hepatic artery. The small masses (1 mm - 3
cm) and the medium masses (3 cm - 10 cm) don’t cause symptoms and do not need
treatment, however larger masses (10 cm - 20+cm) can cause pain and usually they
will develop complications that require prompt surgical intervention or other kind of
therapy [41].

B. Focal Nodular Hyperplasia
Is the second most common benign liver lesion, it develops within hepatic
parenchymal tissue, the tumor is characterized by the presence of scar, which is
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generally located at the center of the lesion [42]. Focal nodular hyperplasia is more
common in young to middle-aged adults, specially females compared to male with
a ratio of 8/1 [43]. FNH is typically asymptomatic lesions, usually requiring no
treatment.

C. Hepatic cysts
Liver cysts are abnormal fluid-filled sacs that form in the liver occur in up to 5% of
the population [44]. Generally don’t require treatment unless symptoms develop, and
they rarely affect liver function [45].

D. Hepatocellular adenoma
Is an uncommon benign liver tumors, are often round, well-defined
pseudoencapsulated masses. The masses can be small (<5cm) or large (>5cm)
resection preferred for large masses that pose a greater risk of hemorrhage or
malignant progression [46]. The Hepatocellular adenoma, usually occurs in young
women which is correlated with increased estrogen levels especially found in the oral
contraceptives and also in the obese persons [47].

1.3.2 Malignant liver lesions

In the benign tumor, excessive cell production remains limited and localized. Generally, the
benign tumor easily gives way to local treatment. In the case of malignant tumors, excessive
cell production becomes anarchic and uncontrolled.
Cancerous liver tumors that start in the liver are called primary liver cancer. The cancerous
tumors in the liver that starts in another organ and spread to the liver through blood or
lymphatic vessels are called metastatic liver cancer.

A. Hepatocellular carcinoma (HCC)
Develops from liver cells, is the most primary common malignant liver lesion that
occurred more often in males than females with the ratio of 4/1 [48]. HCC have two
different growth patterns : single tumor that grows larger and spread to other parts of
the liver only in the late disease, the second type start as many small cancer nodules
throughout the liver [2].
Viral hepatitis and excessive alcohol intake are risk factors, well on the cirrhosis
remains the most important risk factor for the development of HCC.
The HCC is the 3rd cause of death from cancer [49] because the diagnosis is too often
made in advanced disease degree where the liver is impairment, at this stage, there is
virtually no effective treatment that would improve survival [48].
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B. Intrahepatic cholangiocarcinoma (bile duct cancer)
Represent 10% to 20% of liver cancer, cholangiocarcinoma can be start in the cells that
line the small bile ducts or in the bile ducts outside the liver [16]. Men and women are
affected with the same frequency, most often after age 60. The causes of chronic bile
inflammation are important risk factors for intrahepatic cholangiocarcinoma [50].

C. Angiosarcoma
Is a rare primary malignancy disease that represent 2% of liver cancer. Starts in the
cells lining the blood vessels of the liver more precisely endothelial cells and usually
presents as an abdominal mass [51]. Angiosarcoma affects both men and women, the
average age is less than 50 years [52]. Generally its evolution is very rapid, by the
time that they diagnosis, the cancer usually too widespread thus conduct to die almost
patients within 2 years after diagnosis [51] .

D. Hepatoblastoma
Hepatoblastoma is developed in children younger than 4 years old. Usually, the
symptom can be abdominal distension or abdominal mass [53]. Fortunately, if
this tumor didn’t spread outside the liver it will be treated successfully surgery and
chemotherapy [2].

1.4 Diagnosis of liver cancer

The liver cancer can be due to many factors such as: gender, race, chronic viral hepatitis,
cirrhosis, tobacco use, obesity, type 2 diabetes [54].

1.4.1 Symptoms of liver cancer

The liver cancer symptoms can be as follow :

• Loss of appetite and weight

• Yellowing of the skin and eyes (jaundice)

• An enlarged liver and spleen, felt as fullness under the ribs on the right and the left
side respectively

• Vomiting and feeling very full after a small meal

1.4.2 Imaging tests

A. Ultrasound
Ultrasound uses sound waves to produce images of the liver, it is the first test used to
look at the liver. This test can show tumors growing in the liver [55] (see Figure 1.3).
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B. Computed tomography (CT)
Is a imaging technique which consists in measuring the absorption of X-rays by the
tissues then, by computer processing, digitizing and finally reconstructing 2D or 3D
images of anatomical structures. It can give specific information of tumor like the size
and the shape as well as the information of blood vessels [55] (see Figure 1.4 ).

C. Magnetic resonance imaging (MRI)
Magnetic Resonance Imaging (MRI), is an examination performed by a device that
produces electromagnetic waves with a very powerful magnet. With MRI, the doctors
can differentiate between benign and malignant tumor (see Figure 1.5 ).

D. Angiography
Angiography is a radiological examination that allows to study invisible blood vessels
on conventional radiographs. Its purpose is to detect vascularization disorders by
injecting the dye into an artery to outline blood vessels while X-ray images are taken.
It can also be prescribed before an intervention to pinpoint the path of blood vessels
[55] (see Figure 1.6 ).

Figure 1.3: Ultrasound machine

Figure 1.4: Computed Tomography machine

14



Chapter 1 Overview of Liver and Breast

Figure 1.5: Magnetic Resonance Imaging machine

Figure 1.6: Angiography machine

1.4.3 Other tests

A. Biopsy
The biopsy is a sample of flesh in the organ extracted for analysis, it can be
done by hollow needle or an incision, depending on the size and the position of
suspicious area, the number of lumps and other medical problems.
Fine-needle aspiration (FNA): is a type of biopsy in which a very fine needle
and syringe are used to collect cells, tissue or fluid from an abnormal region or
mass. The sample is then examined under a microscope.
Core-needle biopsy: a larger needle is used during core needle biopsy to draw a
column of tissue out of a suspicious area. This biopsy is recommended if cancer
is suspected.
Surgical biopsy: is an operation in which the tissue of the lump are surgically
removed for microscopic examination. This exam is also called open biopsy. A
surgical biopsy may be excisional (removes the entire mass or abnormal region)
or incisional (removes a fragment from an abnormal mass or region).
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1.5 Anatomy and physiology of the breast

The breast organ, medically known as the mammary gland, is located on the anterior chest
wall. The female breast is highly complex and more developed than the male breast.
The prime function of the female breast is lactation: a term that encompasses synthesis,
secretion and ejection of milk. Prior to puberty there are no discernible differences,
functional or structural, between the male and female breast. With the onset of puberty,
a big changes ensue in the morphology and function of the female breast. These changes are
the result of the unique response of the breast to various normal hormonal influences [56].

1.5.1 Breast components

As shown in Figure 1.7, the breast consists of :

• Lobe (milk gland): the female breast contain 15–20 sections called lobes. Each of
these lobes is composed of many smaller lobules, where milk is produced.

• Nipple: is the small raised area in the center of the breast from which milk is drawn.

• Milk Ducts: are about 6-8 tubes that transfer milk from the lobules to the nipple.

• Areola : is the dark area of skin surrounding the nipple, it contains sweat glands that
serves to lubricate the nipple during breastfeeding.

• Breasts tissue: The breast does not contain muscles. Women’s breasts contain fatty
tissue, fibrous, and glandular tissue [57]

– Glandular tissue includes the lobes and the ducts.

– Fibrous, or connective, tissue include ligaments, supportive tissues, it provide
support to the breast and give it its shape.

– Fatty tissue, fills in the spaces between glandular and fibrous tissue, the amount
of fat determines the size of the breast.

1.5.2 Breast development

Human breast tissue begins to develop in the 6th week of fetal life. Breast tissue initially
develops along the line between the fetal axilla and inguinal region and form two ridges
called the mammary crests or milk lines. By the 9th week of fetal life, the breast tissue
regresses (goes back) to the chest area, leaving two breast buds on the upper half of the chest
[58] [3].
Figure 1.8 depicts the development of the mammary gland in the fetal life.
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Figure 1.8: Development of the mammary gland. (A) Ventral view of an embryo gestation
showing mammary crests. (B) The view showing the remains of the mammary crest [3]

Female breast goes through more changes than any other organ in the body [59], from birth,
puberty, pregnancy and breastfeeding, right through to menopause.

• From birth until puberty
The breast consists of lactiferous ducts.

• Puberty
In early puberty, the ducts start to proliferate, and their terminations form solid masses
of cells that represent the future breast lobules [56]. The areola becomes a prominent
bud, and breasts begin to fill out.
In late puberty, glandular tissue and fatty tissue increase in the breast, and the areola
becomes flat.

• Pregnancy
During pregnancy, the nipples and breasts may feel sensitive and tender, breasts
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increase in size very quickly, the nipples and areola change in size and colour as they
prepare for milk production [60]. In the late of pregnancy, the nipples start leaking
a liquid substance that contains antibodies named colostrum, this can happen also as
early as 14 weeks of pregnancy.

• Breast feeding
After birth, The levels of estrogen and progesterone hormones decrease. The breasts
will usually begin to produce milk three to five days after a woman has given birth.
During these few days before milk is produced, the body produces colostrum. The
researches shows that breastfeeding may reduce the risk of developing breast cancer
[61].

• Breast changes after menopause
After menopause, breast change in size and shape, this is because the breast tissue
become more fatty. In fact, the breasts glandular tissue has been kept solid so that the
glands could produce milk, shrinks after menopause and is replaced with fatty tissue
[56]. Because the breasts become less dense after menopause it is often easier for
radiologists to detect breast cancer on an older woman’s mammograms.

1.6 Breast pathologies

The pathologies of breast are divided into two categories : Benign lesions and Malignant
lesions.
The benign breast lesions are more found in the women than the malignant lesions, and in
most cases the treatment don’t need surgery, however some benign lesions can be associated
with an increase risk of breast cancer. The women are facing the risk of having benign
lesions in the second to fifth decades of life, nevertheless, the risk of havingmalignant lesions
continues to increase after menopause. In the next section we introduce the common benign
lesions found in the breast.

1.6.1 Benign breast lesions

Benign lesions can develop from mammary tissues. They are not life threatening unlike
malignant lesions, except in some cases if they are misplaced or too large.
These lesions are numerous and varied in their aspects. Guray and Sahin [62] classified
them into: developmental abnormalities, inflammatory lesions, fibrocystic changes, stromal
lesions, and neoplasms.
On other hand, Masciadri and Ferranti [63] gave the classification of benign breast lesions
according to histological origin, that represent: terminal and lobular ducts, ductal system
and lesions of different origin. In [64] the authors used the categorization based upon the
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degree of cellular proliferation and atypia, where three categories of benign breast lesions
were defined : non proliferative, proliferative without atypia, and atypical hyperplasia.
In the following section we will introduce the more commonly benign lesions based on the
classification given by Guray and Sahin [62], because it is more general.

A. Developmental Abnormalities
Mammary heterotopia: is the presence of supernumerary breast tissue at a
nonphysiological site, this tissue is known as ectopic tissue, is seen mostly along
the milk line (see Figure 1.8), specially on the chest wall, axilla and vulva. The
supernumerary of nipples is called ”Polythelia” and supernumerary of areola or
glandular tissue is called ”Polymastia”.
Mammary hypoplasia: is the underdevelopment of glandular tissue during
adolescence, Mammary hypoplasia is recognized as Insufficient Glandular Tissue
(IGT), the consequence of this lesion is that, the women with IGT have a low milk
production or in some cases a total absence of milk. Hypoplastic breasts signs include
the lack of change during pregnancy, asymmetrical shape of breasts and the areolas
appear swollen.

B. Inflammatory lesions
According to D’Alfonso et al. [65], the inflammatory lesions of breast mimic
malignancy lesion on clinical and radiographic, which makes their diagnostic more
difficult. The inflammatory and reactive changes in the breast are classified into :
Mastitis (Lactation Mastitis, Granulomatous Mastitis), Mammary Duct Ectasia and
Fat Necrosis.
Lactation Mastitis: is an inflammation of the mammary, which occurs in the vast
majority of cases in women who are breastfeeding. It happen when bacteria found
on the breast surface penetrate the nipple through small cracks, caused cellulitis
(bacterial skin infection ) of the interlobular connective tissue.
Granulomatous Mastitis: occurring as reactions resulting from infectious etiology
such as tuberculosis and sarcoidosis [62]. The silicone product used for breast
augmentation can cause granulomatous reaction in the breast.
Mammary Duct Ectasia: is an inflammation of ducts, identify by the dilatation of
the central ducts. These ducts occupied by acidophilic material corresponding to
retention of secretion products with intraluminal plugs of histiocytes [66]. Among
the symptoms of this condition nipple discharge and inversion, a palpable subareolar
mass sometimes associated with pain.
Fat Necrosis: Refers to non-enzymatic necrosis, often caused by a variety of chest
injuries. Fat necrosis may mimic breast cancer if it appears as spiculated dense mass
[62].
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C. Fibrocystic Changes
Fibrocystic changes in the breast, also known as fibrocystic disease, chronic cystic
disease and mazoplasia [62], are the most common benign lesion of the breasts that
occur in 50 to 80% of premenopausal women.
In fibrocystic disease there are two kind of lesions: solid lesions and liquid or semisolid
lesions (macro and micro cysts), which encompasses adenosis, cysts, epithelial
hyperplasia with or without atypia, apocrine metaplasia, radial scar, and papilloma
[62].
Cyst: A breast cyst is a bag filled with fluid, and have round or ovoid structures that
develops in the breast. It is the most common type of breast mass in women aged 35
to 50 years. A breast cyst is usually benign and rarely cancerous. The Cyst can appear
in one breast or in both. The symptoms of a breast cyst may be: a mass in a breast,
often soft and mobile, it grows, sensitive and painful before or during menstruation.
Adenosis: It is a hyperplasia 1 achieving an increase in size and number of glandular
components, mostly involving the lobular units.
The most knowing lesion in Adenosis are : sclerosing adenosis and microglandular
adenosis.
Sclerosing adenosis: is a palpable mass which can mimic invasive breast cancer. It
is defined as a benign lobulocentric lesion of disordered acinar, myoepithelial, and
connective tissue elements [67].
Microglandular adenosis: is characterized by a proliferation of round, small glands
distributed irregularly within dense fibrous and/or adipose tissue [62] .
Apocrine Metaplasia: is defined as a benign epithelial alteration of breast tissue and
it manifest as non-proliferative breast lesion.
The new cells have a visual resemblance to apocrine glandular cells, for this reason
this condition was named Apocrine Metaplasia, these cells can be a palpable mass.
Apocrine Metaplasia is frequently seen in women older than 30 years and increases
with age [68].
Epithelial Hyperplasia: is a benign proliferative that line the ducts or the milk glands
(lobules) inside the breast. In Hyperplasia disease there are two kind of lesions: Ductal
Lesions and Lobular Lesions [69].
Ductal Lesions: is proliferative epithelial cells that line the small ducts inside the
breast.
Lobular Lesions: is proliferative epithelial cells lining the milk glands (lobules).
Columnar Cell Lesions: represent the substitution of regular layer of cuboid
epithelial by columnar cells covering the Terminal Duct Lobular Units (TDLUs), lined
by one to several layers of tightly packed, columnar shaped epithelial cells [70] [71].
Phyllodes tumours of the breast: Phyllodes tumors of the breast or cystosarcoma

1The enlargement of tissue caused by an increase in the reproduction rate of its cells
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phyllodes, are rare fibroepithelial lesions [72]. Affecting women over 40 years old,
Phyllodes tumours are presented as a painless mass that can grow quickly. Most
phyllodes tumors are benign, but about 1 out of 4 of these tumors are malignant,
represent less than 1% of all breast cancers.
Radial Scar: It is characterized by a fibroelastotic center, from which emanate
numerous ducts, and lobules in a stellar architectural organization. Radial scar’s
stellate appearance may mimic carcinoma mammographically and histologically [73].
Intraductal Papilloma: is a benign papilloma characterized by a proliferation
intraductal of luminal and basal epithelial cells. Intraductal papilloma can be found
in both large ducts of the subareolar region and the TDLU more peripherally [74]. It
clinically manifested by serous and bloody discharge.

D. Neoplasms
Fibroadenoma: represent one of the most common benign tumor breast, in which
it assimilate approximately one-third of all benign breast lesion of the female.
Fibroadenoma made up of both glandular tissue and stromal (connective) tissue, and
it appear as small firm and rubbery mass that moves easily and whose contours are
well defined. Usually it occur in women in second and third decade of life [75] [76].
Lipoma: is benign tumors, it manifest as a lump under the skin that occurs due to an
overgrowth of fat cells, it usually solitary tumor and isn’t tender.
Adenoma: is a pure epithelial proliferative neoplasm, but is considered benign, the
most common lesion of adenoma are tubular adenoma and lactating adenoma.
Tubular adenoma present as firm mass, is a proliferation of packed tubular structures
within a small amount of fibrous stroma, it occurs in young women.
Lactating adenoma present as painless breast mass, palpable that undergo rapid
growth, it occurs in the postpartum period [62].
Hamartoma: know also as fibroadenolipoma or adenolipoma, it is smooth, painless
lump composed by the overgrowth of mature breast cells of fatty, fibrous and gland
tissues [62][77].

1.6.2 Malignant breast lesions

There are several kinds of breast cancer, where two categories of breast cancer were defined
Non-invasive breast cancers and Invasive breast cancers.

A. Non-invasive breast cancers
Also know by carcinoma in situ, the breast cancer starts in the milk ducts or lobules
and it do not grow to other part of breast tissue. In this category there are Ductal
carcinoma in situ and Lobular carcinoma in situ.
Ductal carcinoma in situ (DCIS ): DCIS is a non-invasive cancer that stays inside
the milk duct, it can spread along the ducts and gradually affect a substantial area of
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the breast. This type accounts for 85% of carcinoma in situ and 20 to 30% of breast
cancers [78].
Lobular carcinoma in situ (LCIS): LCIS is an overgrowth of cells that stay inside the
lobule. Lobular carcinoma in situ accounts for 1 to 2% of breast cancers and it can be
developed to invasive breast cancer in either breast [78].

B. Invasive breast cancers
Also know by infiltrating, in opposite to non-invasive breast cancers, the cancer cells
invaded into the neighboring breast tissue as fatty and connective tissues or can be
spreading to other organs. In this category there are different types of breast cancer,
we will present each of them successively.
Invasive ductal carcinoma (IDC): IDC represents 8 in 10 of invasive breast cancers
[79]. It starts in the milk ducts, the cancer cells breaks through the wall of duct and
intrude the nearby breast tissue. In some cases, it may be able to spread (metastasize)
to other parts of the body. The spread of cancer cells occurs first through the lymphatic
system and the first metastases are localized in the lymph nodes adjacent to the affected
organ. This is known as lymph nodemetastasis or regional metastatic adenopathy. The
dissemination of cancer cells by blood is usually delayed andmay lead to the formation
of metastases in organs distant from the site of origin such as the liver, lungs or bones.
This is known as visceral metastases or secondary cancers.
Papillary Breast Cancer: is a very rare type of invasive ductal breast cancer, when it
is infiltrating it represent less than 1 to 2% of all invasive breast cancers. It tends to
occur in older women. When the cells are looked under microscope they appear as
finger-like projections, from this it called Papillary Breast Cancer [80].
Mucinous (Colloid) Breast Cancer: Colloid is a rare type of invasive ductal breast
cancer that accounts for less than 2% of all breast cancers. The tumor is made up of
cancer cells that secrete mucus and may contain also typical invasive ductal cells. It
develops more often in women aged 60 to 70 years [81].
Invasive lobular carcinoma (ILC): ILC represents 1 in 10 of invasive breast cancers
[79]. It manifest like IDC except that the cancer cells starts in lobules (the milk
producing glands).
Inflammatory breast cancer (IBC): Inflammatory breast cancer presents 1% of all
breast cancers, but it is fast growing and often fatal [78]. The cancer cells block
the lymphatic vessels in the skin of the breast, this cause symptoms of inflammation
hence its name: Inflammatory breast cancer. Among the symptoms there are: breast
swelling, warming, thickening and red color of the skin [79].
Paget Disease of the Breast: Paget’s disease of the breast is a rare type of breast
cancer. It affects the skin of the nipple and the areola, it appears as a rash, crusted,
scaly and red. Paget’s disease of the breast affects more women over 50 years old and
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women having infiltrating ductal carcinoma or ductal carcinoma in situ [82].
Angiosarcoma of the Breast: present 0.05% of all breast cancers, starts in the cells
which line the blood vessels or lymph vessels of the breast. There are two types
of angiosarcoma: A primary angiosarcoma it manifests in women age 30-50 years
who have never had any treatments for breast cancer. In contrast, the secondary
angiosarcoma, it manifests in woman age 67-71 years, who has already had treatments
for a primary breast cancer [83].

1.7 Diagnosis of breast cancer

Finding breast cancer early and getting treatment are the most important strategies to prevent
deaths from breast cancer. The symptoms can help to detected and diagnosis the breast
cancer, in the next paragraph we give the common symptoms of breast cancer.

1.7.1 Symptoms of breast cancer

The symptoms of breast cancer are all abnormal manifestations caused by this disease, the
most frequent symptoms are :

• A lump in a breast or underarm is the sign of the most commonly observed breast
cancer.

• Changes in breast skin and the mamelon: irritation, redness and dimpling of breast
skin.

• Any change in the size or shape of the breast and the nipple.

• Nipple discharge without being compressed or tinged with blood.

• Pain in any area of the breast.

Late symptoms occur when the cancerous mass grows or spreads to other parts
of the body, including other organs:

• Bone pain

• Weight loss

• Nausea

• Loss of appetite

• Jaundice
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• Breathlessness

• Cough

• Headache

• Double vision

• Muscular weakness

These symptoms do not necessarily mean that it is breast cancer, because they can happen
with other conditions and many women with breast cancer have no symptoms.
Fortunately different tests can be used to look for breast cancer such asmammography, breast
ultrasound, magnetic resonance imaging (MRI) and biopsy. All these techniques will be
introduced in the following section.

1.7.2 Imaging tests

A. Mammography
Mammography is a low dose X-ray of the breast. The image obtained by
mammography is called a mammogram. It can help to detect cancerous and
noncancerous tumors in the breast. A mammogram can be performed either as part
of a breast cancer screening named screening mammography or in the presence of
symptoms named diagnostic mammogram.
Screening mammogram: is a screening test that is used for women who have no
symptoms of breast cancer. In this mammogram, both breasts are examined. This test
can help to detect abnormal lumps or areas of breast tissue that may be too small to be
detected by palpation.
Diagnostic mammogram: is performed when a patient has symptoms suggestive of
breast cancer such as nipple discharge, redness of the skin and lumps in the breast,etc.
This mammogram includes a basic mammogram and additional pictures centered on
the suspect areas.

B. Breast ultrasound
Breast ultrasound is performed following a mammogram when it showed an
abnormality. In this case, the ultrasound allows the radiologist to analyze more finely
this anomaly.
Breast ultrasound is recommended, when the density of the breasts does not allow
to obtain a good quality of mammogram, this is the case in some young women and
also is used in the case of pregnant women for the reason that the mammography are
contraindicated because the X-rays.
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Figure 1.9: Mammography machine

C. Magnetic resonance imaging (MRI)
For women with breast cancer, MRI is used to determine the size of the cancer and
it growth, and also to evaluate the response of chemotherapy performed before the
operation. In screening women at high risk for breast cancer, MRI is recommended
with mammography, because MRI can miss some cancers [84].

1.7.3 Other tests

A. Biopsy
When other tests show that there is a possibility to have breast cancer, the breast biopsy
is the only way to know for sure if it’s cancer.

1.8 Conclusion

In this chapter, we saw the anatomy and physiology of liver and breast organs, a great
importance was given to the pathologies including benign and malignant lesions. In the
liver pathologies diagnosis, the CT image technique gave an important information to the
clinical evaluation of liver disease. In other side, in the breast pathologies diagnosis, the
mammography is the most technique used to identify malignant lesion and the biopsy
represent the only way to know for sure if it’s cancer. For these reasons we were interested by
studying and analyzing these kind of modalities, CT for liver, mammogram and histological
images for breast. More details about this studies are given in the next chapters.
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State of the art

2.1 Introduction

Advancements in medical technology has given rise to produce a huge number of
medical images from different medical imaging techniques such as mammography, digital
microscopic images, etc. Consequently, this laying a great challenge to manage, store and
retrieve these images. Computer-aided detection and diagnosis CADe/CADx systems are
developed to assist the physicians in the diagnosis process. This is achieved by automating
some tasks and by giving their diagnostic opinion, using a set of image analysis methods and
machine learning techniques [85] .

In this chapter, we will present the methods proposed to be used in CADe/CADx systems
for liver computed tomography (CT) images annotation, breast density classification using
mammogram and breast histopathological image classification. In the next section, we
will present the related works proposed to annotate liver CT images including the methods
proposed for ImageCLEF challenge. In section 2.3 we will review the related works on
breast density classification using digital mammography.
In section 2.4 we will present the works related to the classification of the histopathological
images. Where, we will focus on the methods that classify the tumor kind as malignant and
benignant at the first time. Secondly we will review the methods proposed in International
Conference on ImageAnalysis and Recognition (ICIAR)Grand Challenge onBreAstCancer
Histology image (BACH), that aim to automatically classify breast histology images in four
classes: normal, benign, in situ carcinoma and invasive carcinoma.

2.2 Liver CT annotation

The liver lesion annotation is one of the recent research branches in the medical field, since
it contributes to improve the diagnostic by providing accurate details about lesions. Despite
that, the liver image annotation is a hard task where a few CAD system have been developed
[86]. Generally, the liver CAD systems can contain several modules such as liver, vessels
and lesions segmentation module that allows to define the regions of interests (ROIs), liver
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tissue and tumors classification modules and annotation module.
According to [87] the segmentation methods are repartitioned into two approaches: the

grey level and the contour-based approaches.
From the grey level approaches we found the region growing method, clustering method
and threshold method. In the liver segmentation, the region growing method is the most
used [88] [89]. In other side, the lesion segmentation are gotten using the clustering method
such as k-means [90] and fuzzy c-means [91]. In addition to the threshold method [92] [93].
The vessels segmentation are given using region growing method [94] [95] and clustering
method like fuzzy c-means [96].
The contour based approaches contain the deformable models and graph cut models. In the
literature review, the deformable models are used to segment the liver [97] [98], the lesion
[99] and vessels [100]. In other side, the graph cut models are used for liver [101] [102],
lesion [103] and vessels segmentation [104].
In addition to these approaches, deep convolutional neural networks approaches are also
used for liver segmentation [105] and liver tumor segmentation [106].
The segmentation methods can be manual, semi-automatic and fully automated. In the
manual segmentation, the radiologist marked the region of liver and lesion by using a
software made for this task such as Physician Annotation Device (iPAD) [107], the authors
in [9] [108] used iPAD for liver lesion segmentation. In the semi-automatic segmentation
the radiologists partially intervene by initializing the seeds pixels of the region of interest for
automatic segmentation [109] or by guiding the segmentation using an interactive process
[103]. The fully automatic segmentation is more challenging because the image with low
contrast is much difficult to segment, in addition no radiologists intervene, yet if it will be
carried out successfully it be helpful for them because it saves time.

In CAD systems there are liver tissue and tumor classification modules. To achieve
the two tasks of classification, the most modules used the low level features extracted from
the region of interest and feed them into machine learning methods for classification. In
general, the low level features can be texture features, shape features and colors features,
more precisely intensity features since themedical image are usually in grayscale. In addition
to this features, the bag of visual features is also used to describe the liver lesion.
In the literatures, we found the methods developed for liver tissue classification such as the
method proposed by Mir in 1995 [110] which is based on texture features to classify liver
CT tissues into normal and abnormal tissue with malignancy. In [111] the authors classify
the liver into fatty and cirrhosis. A further interesting goal to classify the liver CT tissues
was given by [112], where they studied the altered liver tissue in CT image for patients with
colorectal cancer.
In other hand, several methods for liver lesion classification have been developed. We can
categorize them according to the type features used. For example, Safdari et al. [113] and
in the researches given by Diamant et al. [114] [115] used the bag of visual word histogram
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to classify the lesions into cyst, haemangiomas and metastases.
The First Order Statistics (FOS), Co-occurrence Matrices (COM), Gray Level Difference
Matrices (GLDM), Laws Texture Energy (LTE) are used both by Stoitsis et al. [116] and
Mougiakakou et al. [117] to categorize the liver lesion into normal, cyst, hemangioma and
Hepatocellular carcinoma (HCC).
Ganeshan et al. [112], Ye et al. [118] and Chi et al. [119] used only COM, FOS to classify the
lesion into the adequate categories, indeed Chi et al. [119] used 7 classes of lesions namely:
HCC, metastases, hemangioma, cysts, liver abscess and focal nodular hyperplasia.
The Gray-Level Co-Occurrence Matrix (GLCM) features was the largely used to classify
different types of lesions [120][121] [122].

Despite the lesion classification is important, but in the reality themedical images contain
more information. In fact, for several years radiologists annotate manually these images by
creating a structured reports. Indeed, many factors contributed to make this task difficult
such as the subjectivity in the annotation because it depend on radiologists experience and
the errors due to the perceptual misinterpretation [123].
Fortunately, to overcome this problems many solutions have been proposed, such as the
development of ontologies like Onlira [124] and RadLex [125] that contain a structured
vocabularies of the radiology field. With these ontologies, the radiologic reports will be
more standardized, they contribute also to reduce the misinterpretation with less semantic
gap between the low and high level features. The liver functional annotation system is based
on lesions and vessels structure and their anatomical relationship with the liver that can be
described by ontological terms or graphic representation.

We have chosen to work on liver annotation more precisely on the CT images, as it is
alreadymentioned in the literature [126], that in this modality the liver lesions andmetastases
are mostly identified and diagnosed.

2.2.1 Related works

In this section, we will present literature methods that annotate the liver properties, vessels
and lesions. We have noticed that the vast majority of the works have been concentrated on
the annotation of lesions, this comes back to their importance in the diagnosis, a summary
of the works carried out is presented in Table 2.1.
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Year Author(s) No. of
Images

Name of
Dataset Methods Accuracy

(%)
2010 Napel et al. [108] 30 Private dataset AdaBoost NDCG=95

2011 Korenblum et al.
[127] 74 Private

dataset

Distance of
imaging

observation
characteristics

ROC=0.92

2012 Gimenezet et al.
[128] 79 Private

dataset LASSO 81.6

2013 Agarwal et al.
[9] 278 Private

dataset Auto-encoders p-value=
0.74

2014 Depeursinge et al.
[123] 74 Private

dataset SVM ROC =
0.85

2014 Spanier and
Joskowicz [129] 50 ImageCLEF

2014
LDA,LR,
KNN,SVM 91

2014 Ermis and Cemgil
[130] 50 ImageCLEF

2014 GCTF 88

2015 Kurtz et al. [131] 72 Private
dataset Distance AUC 0.79

2016 Chen et al. [86] 50 MICCAI
2007 Vessel-tree

volumetric
overlap

error= 4.16

2016 Kumar et al. [132] 50 ImageCLEF
2014

SVM, weighted
nearestneighbor 91

2018 Spanier et al. [126] 50 ImageCLEF
2014 SVM NDCG= 84

2018 Alahmer [87] 174 Private
dataset SVM 95.56

2020 Loveymi et al.
[133] 50 ImageCLEF

2015

Random
subspace (RS) +

kNN
93.1

2020 Pan et al. [134] 64 Private
dataset

Vessel
skeletonization -

Table 2.1: Brief overview of different studies carried out on liver CT annotation
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Napel et al. [108] proposed a content-based medical image system that retrieve similar
radiology CT images to a query image, in order to annotate its liver lesions. The radiologists
circumscribe the ROIs lesions from 30 portal venous phase CT images, and annotated them
into 12 lesions categories by using 161 semantic features terms selected from the ontology
RadLex. The lesions categories are : overall lesion shape, lesion margin and contours,
lesion rim or capsule, lesion focality, overall, uniformity within lesion, overall within lesion,
spatial pattern, temporal features, lesion substance, lesion effect on liver, miscellaneous
lesion findings. In fact, the radiologists constructed a semantic features descriptors of size
161 contain a binary value (present or absent of semantic features). In addition, the authors
extracted 46 texture features (14 histogram features and 32Gabor features) and two boundary
features in total 209 features were used. Finally, adaptive boosting algorithm with similarity
measure were used for retrieval.

Korenblum et al. [127] built Biomedical Image Metadata Manager (BIMM) system to
search, retrieve and annotate liver’s lesions. Image metadata contain all information about
image modality, acquisition parameters, annotations created by radiologists and the regions
of interest (ROIs). BIMM is a Web-based application composed of controller module and
database. The radiologists used iPAD to select ROIs and generate AIM files (Annotation
and Image Markup standard) that contain the anatomy, imaging observations (e.g., mass),
imaging observation characteristics (smooth margins) and diagnoses type.
The diagnosis type include: cyst, metastasis, hemangioma, hepatocellular carcinoma, focal
nodular hyperplasia, abscess, laceration, fat deposition.
BIMM receive the AIM file through web service, and the controller module charge to store
into a database. In the test phase, the user can query BIMM for image metadata using text or
image as input via web browser. The text query return the query results matching anywhere
in the AIM image metadata. In other side, image query search for image containing similar
lesion based on image observation characteristics, then the images returned are ranked
according to similarity matching.

Gimenezet et al. [128] presented a framework for liver lesions annotation using a set
of hand craft features classified by L1-regularized logistic regression. The ROIs were
extracted from 79 CT images of liver lesions in the portal venous phase and annotated by a
radiologist. The types of lesions used in this study are: hepatocellular carcinoma, metastasis,
hemangioma, focal nodular hyperplasia, abscess, laceration, fat deposition and cyst.
The following semantic features from RadLex ontology are used to create a binary
semantic annotation vector (positive or negative observations) of size 30 for each ROI:
smooth margin, ovoid, normal perilesional tissue, homogeneous, heterogeneous, enhancing,
solitary lesion, non enhancing, homogeneous enhancement, hypodense, circumscribed
margin, round , multiple lesions 1-5, lobular, homogeneous fade, multiple lesions
6-10, peripheral discontinuous nodular enhancement, multiple lesions >10, homogeneous
retention, centripetal fill-in, soft tissue density, poorly-defined margin, abuts capsule of
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liver, water density, hypervascular, irregularly shaped, irregular margin, heterogeneous
enhancement, lobulated margin, internal nodules. The authors extracted 431 features of
texture, shape, contrast and edge. From texture they used histogram and its features such as
peak, entropy, and variance. Also they extracted the low frequency coefficients of 3-level
Haar wavelet transform, the features of Daubechies wavelet transform and Gabor features.
The shape features include compactness, roughness, local area integral invariant, radial
distance signature. The contrast features used are proportion of pixels with intensity larger
than threshold and difference of means, for the edge they used edge sharpness and histogram
on Edge.

Agarwal et al. [9] implemented an auto-encoders with one hidden layer for liver’s lesion
annotation. The authors used 4491 patches extracted from 504 ROIs lesions of 278 images.
The lesions were annotated with the same 30 binary semantic features used by Gimenezet et
al. [128]. The auto-encoders received as input the patches and train to generate the semantic
features vectors (e.g. the lesion is heterogeneous or not).

Depeursinge et al. [123] built a framework that model the visual liver lesions using visual
semantic terms (VST). The authors used a private dataset composed of 74 ROIs extracted by
a radiologist and divided into a set of 12×12 patches. These patches were extracted from the
margin and the internal texture of the lesion, in order, to define the 18 VSTs describing
the peripheral and internal lesion. The 18 VSTs are introduced in RadLex ontology
and distributed into 7 lesion categories. Lesion margin: circumscribed margin, irregular
margin, lobulated margin, poorly-defined margin, smooth margin. Lesion substance:
internal nodules. Perilesional tissue characterization: normal perilesional tissue. Lesion
attenuation: hypodense, soft tissue density, water density. Overal lesion enhancement:
enhancing ,hypervascular, nonenhancing. Spatial pattern of enchacement: hererogeneous,
homogeneous, peripheral discont. Lesion uniformity: heterogeneous, homogeneous.
To predict the likelihood of VSTs in ROIs, the authors used the features of steerable Riesz
wavelets, which are learned using Support-vector machine (SVM).

Spanier and Joskowicz [129] tested four classifiers to predict the liver’s annotations of the
ImageCLEF liver CT annotation challenge 2014. Wherein, from the four classifier namely
the linear discriminant analysis (LDA), logistic regression (LR), K-Nearest Neighbors
(KNN), and SVM. The LDA and KNN were selected as their exhibits annotation precision.
We note that the ImageCLEF liver CT annotation challenge 2014 provide a dataset of 50
CT images (50 training and 10 testing) with 73 liver and liver lesion annotations available
for experiments, in addition to a set of local and global features extracted from the images.
The authors selected 39 features that are: Liver volume, liver mean, liver variance, vessel
ratio, vessel volume, min lesion volume, max lesion volume, lesion ratio, all lesions
mean, all lesions variance, all lesions skewness, all lesions kurtosis, all lesions energy, all
lesions smoothness, all lesions abcssia, all lesions entropy, all lesions threshold, number of
lesions, lesion mean, lesion variance, lesions kewness, lesion kurtosis, lesion energy, lesion
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smoothness, lesion abcssia, lesion entropy, lesion threshold, lesion2vessel min distance,
lesion2vessel touch ratio, vessel total ratio, vessel lesion ratio, volume, surface area, max
extent, aspect ratio, sphericity, compactness, convexity, solidity. The authors added 9
features: the average and the standard deviation of the gray level intensity values of the
healthy part of the liver, the average and the standard deviation of gray level intensity values
of the lesion, the mean and the standard deviation of the lesion’s contour gray levels, the
average gray level difference between the healthy part of the liver with the lesion and lesion’s
contour, the average gray level difference between the lesion and its contour.

Ermis and Cemgil [130] used Generalized Coupled Tensor Factorization (GCTF) that
represent a generalization of the Probabilistic Latent Tensor factorization models to annotate
the liver CT images. The annotations problems was formulated as matrices factorization by
extracting common latent factors. For this purpose, the ImageCLEF2014 liver CT dataset
was represented in the form of matrices and the GCTF framework was used to develop
coupled factorization of these matrices to fill the liver, vessels and lesions annotation. The
authors used the Kullback–Leibler (KL) divergence and the Euclidean distance as cost
function.

Kurtz et al. [131] proposed a system for liver CT annotation and retrieval based on
the similarities of both image features and ontological inter-term in addition to the user
feedback.
The system was composed on five steps, in the first step, the radiologist extracted 72 ROIs
lesions and annotated them using 18 RadLex terms distributed into 8 categories: lesion
margin and contour, lesion substance, perilesional tissue, lesion attenuation, overall lesion
enhancement, spatial pattern of enhancement, lesion uniformity, lesion effect on liver.
Thereafter, each ROI was divided into a set of 12×12 patches and the energies of multi-scale
Riesz wavelets were extracted to represent the terms’ visual signatures.
The second step was dedicate to the computation of the global term similarities by
combining image-based term similarity and semantic term similarity (ontology). In fact,
in the image-based similarity the Euclidian distance was used to compute the distance
between the visual signatures of the given terms. In other hand, semantic term similarity
was computed using hierarchical and depth distance between the terms in the ontology. The
global term similarities was used to fill a symmetric term similarity matrix that model the
similarity between all the terms. These two steps are included in the offline phases.
In the step three of the online phase, the visual signatures of each term of the training data
are used to automatically annotate the content of the ROI lesion of the query image by
defining the semantic feature vector.
The step four consist to retrieve similar image to the image query using the hierarchical
semantic-based distance (HSBD) [135] and the similarity matrix .
Finally, according to the user feedback on the retrieved image, the authors applied a penalty
algorithm to advantage the relevant image and disadvantage the irrelevant images.
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Chen et al. [86] presented a vessels tree method for functional segments annotation of
liver CT image. The method was based on determining the topology of portal veins, where
through its branches they can obtain the liver segments and conduct to annotate the liver’s
regions. In the first stage, the authors segment the liver and the tumor regions using graph
cut algorithm. Thereafter they applied the Hessian filter to segment the vessel regions. The
vessel skeleton was extracted from the vessel regions using 3D thinning algorithm, thereafter
it was formulated by graph then to a vessel trees. The authors categorized the vessel trees into
two sub-trees. The First one, contain the main vessels of liver portal vein with a large radius
branches, while the second sub-tree contain small radius branches. As the second sub-tree
present the distribution of vessels system, the authors used K-means to cluster the vessel tree,
Kwas equal to 8 according to the number of functional segments. After that, the authors used
the Euclidian distance between each voxel in the liver with a branch to identify the region
of the voxel. Finally the clinical features are extracted include the global and individual
features. As the global features they extracted the size of liver, vessels, and lesions, as well
as the ratio of each segment to liver. The individual features include the anatomical locations,
such as the spatial relationship among vasculature, lesions, liver, and the segments in which
the lesion resides. These clinical features are used to generate a structured report for liver
annotation, in addition the authors provide functional segments visualization.

Kumar et al. [132] proposed a method for automatic annotation of liver CT images.
The authors used 3D-CT images of the liver from the ImageCLEF 2014 Liver annotation
challenge, this dataset contain 50 images for training and 10 images for test, it included
73 concept to be annotated and a set of texture and shape features extracted from the liver,
the hepatic vasculatures, and lesions. The texture features are Haralick, Gabor, Tamura and
Haa. The shape features contain volume, surface area, sphericity, solidity, convexity, Hu
shape invariants. The features with missing values or that had no variation across all images
were excluded by the authors and the number of features used was 446. In addition, they
extracted a bag of visual features descriptors from the training images by applying k-means
on the features derived from the scale invariant feature transform (SIFT), then 1000-bin
histogram was defined. The retrieval strategy was decomposed into two stages for each
concept to be annotated. The first stage, they extracted the collection of annotations from
the similar training images to the image test and in the second stage they selected the best
answer from the obtained collection. The authors tested the classifier SVM and weighted
nearest-neighbor (WNN) for retrieval. In the case of SVM, the first stage was composed of
the 1-vs-all SVMs and the second stage was composed of the 1-vs-1 SVMs. In other side,
the first stage of WNN approach consist to retrieve the nearest-neighbors images by using
Euclidean distance and in the second stage a weighted voting scheme was used to select the
best annotation for each concept. The best result was obtained using SIFT descriptors with
WNN method.
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Spanier et al. [126] developed an automatic method for content base liver CT images
retrieval, that restore the most similar liver lesion annotations to a test image. The method
was composed of segmentation module, features extraction and similarity measure. In the
segmentation module 3D region growing using super pixel was applied. Thereafter, the
normalized gray level histogram of 60 bins was used as features vector of the segmented
liver. The authors used the images of ImageCLEF2014 Liver annotation dataset and only
three groups of lesion semantic annotation:
Lesion contrast: homogeneous or heterogeneous
Lesion composition: solid
Peripheral localization: smooth and encapsulated or infiltration
The remarkable contribution of their work is the use of SVM to compute the weight of
each bin to identify each annotation. In the test phase, a weighted comparison measure
was performed between the image query descriptor and the dataset descriptors.

Alahmer [87] proposed a full system for liver lesion annotation and classification.
The system include the segmentation module that segment the liver using histogram-based
adaptive threshold and morphological operations, thereafter the region growing process
is used to extract the lesions and vessels. The authors proposed multiple ROIs selection
approach using intensity difference, then for each ROI a set of lesion characteristics were
extracted. The lesion characteristics consist of the high-level features that are composed
of features extracted from the image contents and the features inferred from the low-level
features through the machine learning SVM.
In total 85 semantic terms are used to annotate 21 high-level features of 174 CT scan liver
lesion. The high-level features are: lesion density, lesion density type, lesion rim, lesion rim
thickness, contrast uptaken, enhancement pattern, lesion composition, lesion leveling type,
lesion shape, lesion focality, lesion margin, lesion margin definition, lesion enhancement,
lesion brightness, lesion surrounding, calcified (inside lesion), calcified wall, scar, lobe,
segment, close to vein.

Loveymi et al. [133] investigated a set of handcrafted features to annotate liver CT
images by producing an organized structured report. The handcraft features include shape
descriptors like area, moments, circularity, solidity, weighted centroids, major and minor
axis lengths and eccentricity. As texture descriptors they extracted 48 features from 3D
GLCMs using four direction 0°, 45°, 90° and 135° and distance equal to 1. In addition, 24
means and 24 standard deviation features obtained from the 3D Gabor wavelet transform
were used. Furthermore, a coding histogram obtained from the quantization of Speeded Up
Robust Features was used (SURF). Besides to that, the authors proposed a new descriptor
named Deep Local Binary Pattern (DLBP). The DLBP are based on Local Binary Patterns
(LBP), where a set of LBP histogramswere computed frommulti-slide liver image, thereafter
computed the covariance matrix of the LBP histograms, and from it they extracted the
Rotation Invariant LBP histogram (RILBP). In order, to select the appropriate features for
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each annotation the RSKNN that represent Random subspace (RS) with kNN was used, as
well, the SVM in the classification step. Using the dataset from ImageCLEF 2015 liver CT
annotation task, the obtained result showed that RSKNN outperform the SVM.

Pan et al. [134] proposed a liver annotation system based on improved
vessel-skeletonization method. First, the authors segment the liver and it vessels, then
the skeleton vessels are extracted from vessels regions, thereafter the liver’s segments are
defined using the connectivity of skeleton vessels. To process the segmentation of liver
from the CT images, the level set method was used, where the seeds points can be were up
manually by the user or automatically. For vessel segmentation they used regional growth
algorithm with a manual seeds initialization. The main contribution of the authors was the
introduction of the modified iterative thinning-based vessel skeletonization, where the voxel
on the surface of the vessels are deleted in the iterative thinning objects. The hepatic portal
vessel skeleton was transformed into a tree-shape data structure, where each tree node is
marked according to it the portal vein branch. Finally the authors used a proposed nearest
neighbor segment approximation distance to identify the liver’s segments. Based on these
segments, the liver annotations extracted are: the number of voxel in a segment, the volume
ratio of segment to liver, the average volume information of the lobes.

In the next section we will present the works related to breast density classification.
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2.3 Breast Density classification in digital mammogram

The mammography is one of the common examination techniques to detect breast cancer.
The radiologists look for different features from a mammogram such as breast density,
masses and calcifications to detect breast abnormalities.
Several methods for CADe/CADx systems have been developed during the last decade to
accurate radiologists in their diagnostic. This methods are developed to detect breast lesion
abnormalities, or to classify breast density that can conduct to the detection of abnormalities
[136].

In state of the art, the methods based on lesion detection are partitioned on two axes: the
first one, masses segmentation and classification, the second is calcification detection and
classification.
To segment masses, the presented methods in [137] [138] [139] used machine learning
approaches, indeed the deep learning methods were used to segment masses [140] [141]
[142] and to classify the shape of masses as irregular, lobular, oval and round [142]. Some
works [143] [144] [145] focused on detection and identification of masses types that can be
classified as benign or malignant.
The calcification is a breast lesion that could be micro-calcification or macro-calcification.
The micro-calcifications are represented by a small calcium deposit, if they have a
regular shape they will be considered as benign lesion other way as malignant lesion.
The macro-calcifications are represented by a large calcium deposit that are considered
noncancerous lesions. The works related to the calcification include a proposed automatic
computer detection of clustered calcifications in [146] and calcification descriptor for
content-based mammogram retrieval given in [147] . In other side, the research are more
involved in micro-calcifications detection and classification than the macro-calcification.
From the solutions given for the micro-calcifications detection there are [148] [149] [150]
and for micro-calcifications classification there are [151] [152].

We come back to the state of the art methods. Indeed, there are some researchers that have
been focused on developing CAD systems for breast tissue density classification. Specially
because the increase in breast tissue density is associated with breast cancer risk. In fact,
according to Sprague et al. [18], more than 30 states in the united states have agreed to use
breast density as a marker for prior cancer risk, where they made breast density notification
legislation [153]. In addition, differentiate between different breast tissue density classes is
considerably difficult specifically for atypical cases, that makes CAD systems helpful for
the radiologists. These points were motivated us to work on the breast density classification,
in addition this work was not done by the research groups in our laboratory.

The following section we will present the studies carried out on breast tissue density
classification.
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2.3.1 Related works

The relation between breast density and the risk to develop breast cancer overcome to 1976,
where Wolfe [154] was the first that validate this correlation based on the study carried on
7214 patients.
Wolfe [154] defined four groups of risk for developing breast cancer (N1,P1,P2,DY).
N1: tissue composed primarily of fat and no ducts visible (represent lowest risk).
P1: tissue chiefly fat with prominent ducts in anterior portion up to one-fourth of volume of
breast ( represent low risk).
P2: prominent duct pattern occupying more than one-fourth of volume of breast (represent
high risk).
DY: is a dysplasia, minor component of prominent duct pattern (represent highest risk).
Another classification was given by Tabár and Dean [155] based on a combination of four
mammographic features:
Nodular (N): represent the terminal ductal lobular units.
Linear (L): represent either ducts or fibrous or blood vessels.
Homogeneous (H): represent fibrous tissues.
Radiolucent (R): represent adipose fatty tissues.
Tabár and Dean defined five risk levels based on the distributions of the four features
[N%,L%, H%, R%]: TI [25%, 15%, 35%, 25%] is the lowest risk, TII [2%, 14%, 2%, 82%],
TIII is similar to TII except that the ducts are often associated with fibrosis, TIV [49%, 19%,
15%, 17%], TV [2%, 2%, 89%, 7%] is the highest risk.
The American College of Radiology (ACR) [156] proposed the classification Breast
imaging-reporting and data system (BI-RADS) to standardize mammography reporting. The
classification BI-RADS is the most used, covers the significant relationship between density
and cancer in the breast. The four breast compositions were defined as follows:
• BI-RADS I: almost entirely fatty breast (0 - 25%)
• BI-RADS II: some fibroglandular tissue (26% - 50%)
• BI-RADS III: heterogeneously dense breast (51% - 75%)
• BI-RADS IV: extremely dense breast (76% - 100%)

The proposed method classify the breast tissue into four BI-RADS classes. In addition,
as well was reported in [157] the classification of breast tissue into the two classes fatty and
dense in the atypical cases is a hard task even for experienced radiologists, for this reason
our method is also used to classify these types of tissues.

A brief description of the methods proposed to classify breast tissues are showed in
Table 2.2, each of them is detailed next.
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Year Author(s) Number
of classes

No. of
Images

Name of
Database Methods Accuracy

(%)

1998 Karssemeijer
[158] 04 615 Nijmegen KNN 67.0

2002 Bovis and Singh
[159] 04 377 DDSM

Multiple
classifiers
ANN

71.4

2003 Petroudi et al.
[160]

02 132 Oxford Nearest
neighbor

92.5
04 75.7

2005 Oliver et al. [161] 04 300 DDSM KNN+ ID3 47.0
2006 Bosch et al. [162] 04 500 DDSM KNN,SVM 84.75

2007 Castella et al.
[163]

02 352 Collected LDA 88
04 83

2008 Oliver et al. [164] 02 322 MIAS Bayesian 91
04 831 DDSM 77

2011 Liu [165] 04 88 T.Hospital SVM 86.4
2011 Z.Chen [166] 02 322 MIAS KNN 88.0

2012 Muštra et al. [167] 02 322 MIAS Naïve
Bayesian 91.6

144 KBD-FER KNN 97.2

2013 Masmoudi et al.
[168] 04 400 EL Farabi ANN 79.0

2016 Kriti et al. [169] 02 322 MIAS SVM 94.4
PNN 92.5

2016 Virmani and kriti
[170] 02 322 MIAS KNN 96.2

2017 Ahn et al. [171] 02 397 Private
dataset CNN Correlation

coefficient=0.96

2018 Xu et al. [172] 02 409 INbreast CNN 96.8
04 92.6

2018 Mohamed et al.
[173] 02 22000 Private

dataset CNN AUC= 0.98

2018 Wu et al. [174] 02 201179 Private
dataset

CNN 86.5
04 CNN 76.7

Table 2.2: Brief overview of different studies carried out on differentmammographic images
databases for two-classes and four-classes breast tissue density classification
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Karssemeijer in [158] proposed the use of local region features to classify beast density.
The authors construct a method based on hypothesis that a correlation between tissue
thickness and distance to the skin exit. For that a set of sub-regions that have the same
distance to skin are extracted and the sub-region features were computed from grey level
histograms. kNN classifier was used to classify 615 digitized mammograms acquired from
University Hospital Nijmegen.

Bovis and Singh [159] have investigated the use a set of textural features with Multiple
Artificial Neural Network (ANN) for breast tissue classification. The authors employed four
approaches to determine the texture proprieties: the first one, is GLCM using the directions
0°, 45°, 90°, 135° and pixel distances 2, 4, 6 they extract 15 features (angular secondmoment,
contrast, correlation, inverse different moment, sum average, sum variance, sum entropy,
entropy, difference average, difference variance, difference entropy, information measure
of correlation I, information measure of correlation II, inertia, variance). Secondly, they
extracted 10 spectral energy from the power spectrum of the Fourier transform. Thirdly, they
computed the total texture energy from the combination of Laws’ texture masks with each
mammographic image. Finally, by applying the Discrete Wavelet Transform (DWT) four
features (standard deviation, mean, skewness and kurtosis) are extracted from 3 different
sub-bands at 3 different scales of the transformed image. In addition to these features,
they extracted the entropy, standard deviation, mean, skewness and kurtosis from the grey
scales breast images. The authors used Principal Component Analysis (PCA) to reduce
the dimensionality of features vectors. In the classification step, the set of ANNs outputs
expressed in a probabilistic framework, are combined using six combination rules: majority
vote, sum rule, max rule, min rule, product rule and median rule. The best result was given
by using the product rule.

Petroudi et al. [160] classify themammographic breast density according to the statistical
distribution of tissue patterns. In fact, the authors applied the Maximum Response 8 (MR8)
filter bank on 11 mammogram image per BI-RADS class (total 44 images). Then, all filtered
responses are aggregated and K-means is used to compute 10 cluster centers per class, thus
40 cluster centers represent the textons dictionary. The authors create a texton histogram
for each image based on textons dictionary. At the test time, the test image histogram
is compared to all the training images histograms and the class of the nearest neighbor is
assigned to the image test.

Oliver et al. [161] proposed a method for breast parenchymal density classification
into the four BIRADS scores. At the beginning, the breast region was smoothed with a
median filter of size 5 × 5. Then the authors apply Fuzzy C-Means algorithm to group
pixels into separate categories with the aim to obtain representative instances of two classes:
normal and dense tissue. Then a set of morphological and texture features for each class
were extracted. The morphological features used are the centre of masses and the medium
intensity of both clusters. As texture features, they calculated features derived fromGLCMs.
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With four directions: 0°, 45°, 90°, 135°; and a distance equal to 1, the features extracted
are contrast, energy, entropy, correlation, sum average, sum entropy, difference average,
difference entropy, and homogeneity features. The authors used 300 Medio-Lateral Oblique
right mammograms taken from DDSM. The database is formed of 50 mammograms with
BI-RADS I and IV, and 100 with BI-RADS II and III. Two classifiers were testes: the k-NN,
Decision Tree classifier (ID3). However, only by using fuzzy combination of the above two
classifiers the accuracy was improved.

In 2008, Oliver et al. [164] proposed an improve of their results in [161] by using
more features and using a Bayesian combination of a number of classifiers. At set of
morphological features for both clusters were calculated including the relative area and the
first four histogram moments (mean intensity, the standard deviation, the skewness, and
kurtosis). They also added more GLCMs, in which they used four different directions:
0°, 45°, 90°, and 135°, and three distances equal to 1, 5, and 9 pixels. For each GLCM,
the following features were used: contrast, energy, entropy, correlation, sum average, sum
entropy, difference average, difference entropy, and homogeneity features.
The classification was performed by using the kNN, the decision tree classifier C4.5 instead
of ID3, and Bayes classifier based on the combination of the first two classifiers. The best
results was obtained using Bayesian combination.

Bosch et al. [162] used textons descriptors with probabilistic Latent Semantic Analysis
(pLSA) to classify breast parenchymal tissue. In fact, they extracted a texton around
each pixel, then they created a bag-of-words using k-means. Next, pLSA is applied to
automatically find the tissue distribution for each mammogram. Finally the authors tested
SVM and KNN to classify the tissues distribution and the best result was obtained using the
SVM classifier.

Castella et al. [163] proposed a semiautomatic method for breast tissue density
classification. Firstly, the radiologists extracted four ROIs per mammogram of size 256×256
pixel, chosen from the central breast region. Then, the authors extracted a set of different
statistical quantities from each ROI. These features involve from the gray level histogram
like the standard deviation, skewness and kurtosis. They also extracted 20 GLCMs from
each ROI using four directions of 0°, 45°, 90°, 135° and five distances of 1, 3, 5, 7, 9 and
they computed the following features: energy, entropy, contrast, and homogeneity. From the
Primitive Matrix (PM) they derived the Short Primitive Emphasis (spe), the Long Primitive
Emphasis (lpe), as well as Gray Level Uniformity (glu) and Primitive Length Uniformity
(plu). They also used the fractal dimension and the coarseness, contrast, complexity, and
strength provided from the Neighborhood Gray Tone Difference Matrix (NGTDM). The
authors used three Bayesian classifiers based on the measure of Mahalanobis distance, a
naïve Bayesian, and LDA. The dataset used for the experiments consisted of 352 digital
mammograms collected at the Clinique des Grangettes, Geneva, Switzerland. The best
results was given by the classifier LDA.
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Liu et al. [165] proposed a sub-region based method for breast density prediction using
88 full field digital mammograms (FFDM) provided by Tianjin tumor hospital. Firstly, from
each image the authors extracted a set of sub-regions of size 128×128 without overlapping
and for each region they computed the histogrammoments descriptors. Thereafter, they used
the SVM classifier to classifier these regions, the SVMwas trained on 400 sub-regions which
contained 200 high density sub-regions and 200 low density sub-regions from the whole set
of all images. Finally the mammogram density is assigned to the image by computing the
ratio number of high density sub-regions to the whole set sub-region of the image.

Chen et al. [166] investigated the potential application of five local feature for breast
density classification. These features are LBP, Local Grey level Appearances (LGA), Basic
Image Features (BIF), Texton I and Texton II.
In Texton I, they used the MR8 filter bank to map each pixel within the breast area into 8
dimensional filter response space. In fact, the filter responses over all the training images
from each class were aggregated and clustered using K-Means, then these centres (textons)
are gathered together into the texton dictionary. Subsequently, the textures are modeled by
the frequency histogram of textons.
In Texton II, they extracted 3 × 3 image patches around each pixel within the breast area
and rearranged these image patches into 9 dimensional feature space, then they sorted the
160 textons extracted from the training set according to the magnitude value in ascending
order, and then labeled each breast tissue pixel by the nearest texton. The authors used the
KNN for the classification and MIAS database for evaluation. The best classification result
was obtained by Texton II, followed by LGA, providing the second-best result, while LBP
performs worst among these five approaches.

Muštra et al. [167] used a set of first and second order grayscale features to predict
breast density. In fact, from each image the authors extracted a ROI of size 512×384, then
the following features were computed: the number of pixels with higher intensity than the
mean intensity of the muscle region, the higher intensity than Otsu’s threshold, standard
deviation, entropy, skewness, kurtosis. They extracted also multi-resolution histograms
with 8,16,32 and 64 bins and four features: the mean, standard deviation, skewness, kurtosis
from 256 bin histograms. From the mammogram they extracted the Haralick and Soh from
GLCMs using four direction and distance equal to 1,3,5. The authors tested the best first
forward and backward search of the wrappers selection methods by applying the KNN
and Naive Bayesian classifiers. For the evaluation the authors used MIAS and the private
dataset named KBD-FER digital mammography database obtained from the University
Hospital Dubrava, Zagreb, Croatia. The best results obtained using MIAS dataset was given
by the best first backward selection method with Naive Bayesian classifier. In other side,
the best results obtained using KBD-FER dataset was given by best first forward selection
method and KNN classifier.
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Masmoudi et al. [168] proposed local binary pattern variance descriptor (LBPV) to
classify tissue density. LBPV allows to exploit the local and global textural information by
using an adaptive weight to adjust the LBP descriptor histogram. The obtained descriptors
are classified using ANN. For the evaluation the authors used the Tunisian dataset named
EL FARABI from the radiology center EL FARABI Sfax Tunisia.

Kriti et al. [169] proposed a method based on the potential of Laws’ masks of various
lengths for texture description of mammographic images. After the manual extraction
of ROIs of size 200×200 pixels, the authors computed five statistical parameters: mean,
standard deviation, skewness, kurtosis, and entropy from Laws’ texture energy images. The
Laws’ texture energy images are extracted from 2D Laws’ masks constructed from one
dimensional vectors for three different length of 5,7,9 pixels. The vectors describing the
following features: Level(L), Edge(E), Spot(S), Wave(W) and Ripple(R). The authors used
PCA to reduce the descriptors dimensionality, SVM and Probabilistic neural network (PNN)
for the classification. The highest accuracywas obtained using the four principal components
derived from Laws’ masks of length 5 with SVM.

Virmani and kriti [170] proposed the use of wavelet energy descriptors for breast tissue
density classification. First, the ROIs of size 200×200 pixels are manually extracted, then
the following wavelets filters are applied on these ROIs: Haar (db1), Daubechies (db4 and
db6), Coiflets (coif1 and coif2), Symlets (sym3 and sym5) andBiorthogonal (bior3.1, bior3.3
and bior4.4). Thereafter the energy descriptors are extracted from each sub-image results
from the different decompositions. Finally, for the classification the authors tested SVM,
KNN and PNN. The best results was obtained using the energy descriptors computed from
the sub-image resulting from 2nd level decomposition of Haar wavelet filter classified with
KNN.

Ahn et al. [171] developed a CNN for breast density estimation. The CNN was trained
to learn the local and global image features. In fact, to extract the local features the
authors applied the histogram stretching on down-sampling images. Then they generated
four images, the first one represent a denoising image and the two other images represent
hessian based eigenvalue 1 and 2 respectively and the last one is the original image with
histogram-stretched. Thereafter a set of paths of size (41×41) were extracted from the
above images and their histogram of 100 bins were computed. For the global features,
the authors extracted a histogram of 100 bins from the whole histogram stretched image.
Thus, they obtained a matrix features of 100×5 that was feed into the CNN. The proposed
CNN was composed of 2 times convolutional layer +pooling+dropout and convolutional
layer+pooling followed by 2 fully connected layers. The obtained correlation coefficient
with the radiologist was equal to 0.96.

Xu et al. [172] proposed a CNN based on residual blocs to classify breast parenchymal
into four and two BI-RADS categories. The CNN was composed of 67 convolution layers
and 3 fully connected layers, all the convolutional layers have a kernel size of 3×3 and they
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were decomposed on three groups. The first group have the number of filters equal to 64, in
the second the number of filters was 128 and the last group have a number of filter equal to
256. The authors used 7 residual blocks in each group. The CNN was trained from scratch
using INbreast dataset, after the application of the augmentation methods (rotation and flip)
on images resized to 224×224.

Mohamed et al. [173] presented a CNN model based on AlexNet architecture to classify
breast tissue into scattered density and heterogeneously dense. The CNN was composed of
five convolutional layers, three max-pooling layers and three fully connected layers. The
authors investigate two training approaches, in the first one the CNN was trained from
scratch, in the second they applied the fine-tuning by using the weights of the pre-trained
AlexNet learned on ImageNet. In the first training the CNN was trained on a private
dataset of 22000 images and in the second training the authors used only 500 mammogram
images. The results showed that the first training method outperform the second with a small
difference.

Wu et al. [174] proposed a multi-column CNN to predict breast density. Each
column has as input a crop image of size 2600×2000 from one of the four views used in
screening mammography. The columns contain a set of convolutional and pooling layers
(convolution+max pooling, convolution+convolution+max pooling, 2×(convolution+max),
convolution, global average pooling).
The outputs of those columns (256×4) were concatenated and fed to the fully connected layer
then to the softmax layer for density classification.
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2.4 Breast histopathological image classification

The histology is a branch of biology dealing with the study of tissues1, and the histopathology
is a subsection of histology that aim to study tissue disease. The mammography help the
radiologists to identify areas of abnormality, but in some cases, they can’t differentiate
cancerous from noncancerous cells [175] .
The histopathology still the primary test to accurate the cancer diagnosis, where a thin slice
of suspected area tissue (section) is removed from body by surgical biopsy, then the staining
is applied to enhance the visualization of the section, after that, the section is covered in
a glass cover slip to be analyses by pathologists using microscope. The used of digital
imaging techniques allows to digitalize the section into whole-slide digital pathology images
(WSIs). Since these images are very large, the pathologists used smaller regions named
patches extracted from WSIs to be analyzed with various magnifications. The pathologists
accurate the cancer diagnosis and determine it level based on the cells shapes regularities
and tissue distributions.

Breast cancer histopathological image analysis is a laborious and hard task, where the
pathologist uses manual techniques to get quantitative information from images such as
mitotic counts. This techniques are time-consuming that can lead to statistical human
errors related to the decrease of attention due to fatigue [176]. In addition, to make the
histopathological report the pathologists need to have a good experience in the field by
studying a large numbers of tumors tissues.
To overcome this issue, several pathologist are integrated to produce the histopathological
report. However, in some case might exist a disagreement between pathologists [177].
According to Allison et al. [178] this disagreement can be due to the difference in diagnostic
study methodology and the different opinion features on diagnostic. These problems
adversely affect the quality of the breast cancer diagnostic.

The CAD systems are developed to help the pathologists during the diagnosis, that
allows to produce an efficient diagnostic by avoid misdiagnosis with reducing, both, the
workload of pathologist and the cost. The developed methods in CAD system for Breast
cancer histopathological image analysis are divided on two axes: The first axe is based on
the extraction of the quantitative information from images by using segmentation techniques.
The second one is based on texture representation.
The researches on both axes have been using hand-crafted features withmachine learning and
deep learning methods. In fact, the nuclei segmentation [179] [180] [181] [182] [183] and
detection [184] [185] are the methods proposed to extract nuclei information, some others
works focused on mitosis detection [186] [187] [188] and counting [186]. These methods
provide a quantitative information that represent one of the salient factor used by pathologists
to give a diagnostic.

1https://www.dictionary.com/browse/histology

44



Chapter 2 State of the art

In other hand, texture representation methods include tissue organization and tumor
detection, these methods were developed by using both hand-crafted features with machine
learning [189] [190] and deep learning method [191]. In addition, histopathological tissue
is used to classify tumor type (benign and malignant) [192] [10] and cancer grade [193].

In this study we had chosen the histopathological tissue to classify the tumor type, the
main reason is the availability of the datasets. The next section we will present the works
related to the histopathological tissue studies to classify the tumor type, in the second part,
we will highlight on the top performing methods in the ICIAR 2018 Grand Challenge on
BreAst Cancer Histology image (BACH).

2.4.1 Related works

In the histological image classification we distingue two approaches of classification. The
first one, used the whole slide images (WSIs) [194] and the second is based on region of
interest.
As the used datasets in our study Breakhis and BACH datasets contain the region of interest
from the WSIs, in this section we focus on introducing the works that used these datasets.
Table 2.3 presents a summary methods that have used BreaKhis dataset, each methods is
detailed next.

Spanhol et al. [5] tested a set of textural descriptors such as Local Binary Patterns
(LBP) [213], Completed LBP (CLBP) [214], Local Phase Quantization (LPQ) [215],
Gray-Level Co-occurrence Matrix (GLCM) [216], Parameter-Free Threshold Adjacency
Statistics (PFTAS) [217] and ORB keypoint descriptor [218]. For the classification they
tested the 1-nearest neighbor (1-NN), Quadratic Linear Analysis (QDA), SVMs and Random
Forests (RF). The result obtained showed that PFTAS classified with SVM and QDA gave
a good discriminative features for breast histopathological image classification .

Spanhol et al. [195] proposed CNN based on AlexNet architecture to classify
breast cancer histopathological images. The CNN was composed of 5 layers containing
respectively convolution + max pooling operation, convolution + average pooling,
convolution + average pooling and finally 2 fully connected layer. First, the images were
resized from 700×460 to 350×230 , then two methods were applied to extract the patches
from the images: sliding window with 50 % of overlapping and random extraction with
none overlap, by using patch image of size 32×32 and 64×64, in total 4 strategies were
tested (1: sliding window + 32×32, 2: sliding window + 64×64, 3: random + 32×32, 4:
random + 64×64). The conducted results on Breakhis dataset showed that the strategy
#4 gave a good accuracy for low magnifications 40×, 100×. The authors also tested the
combination of four CNNs using different strategies then they applied the max rule. The
accuracy was improved only at the patient level.
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Years Author(s) Methods Protocol
(train,test)

Total Accuracy
(%)

2016 Spanhol et al.
[5] PFTAS+QDA 70%,30% 83.02

2016 Spanhol et al.
[195] Proposed CNN 70%,30% 84.46

2016 Spanhol et al.
[195]

Combining
multiclassifier 70%,30% 85.19

2016 Bayramoglu
et al. [196]

CNN using
multimagnification 70%,30% 83.24

2017 Spanhol et al.
[192] Deep features 70%,30% 83.93

2017 Sun and
Binder [197] GoogleLeNet Not

specified 86.81

2017 Song et al.
[198]

Fisher Vector +
VGG-VD model 70%,30% 86.67

2017 Han et al.
[199] CSDCNN 70%,30% 96.16

2017 Samah et al.
[175]

Pyramid-structure
Wavelet 70%,30% 85.62

2017 Nejad et al.
[200] Proosed CNN 70%,30% 77.5

2017 Sharma et al.
[201] PFTAS+ RF Not

spiecified 81.27

2017 Zhi et al.
[202] Proposed CNN 80%,20% 88.97

2018 Cascianelli et
al. [203]

VGG+Reduction
strategies 75%,25% 81.27

2018 Nejad et al.
[204] VGG+SVM 98%,2% 80

2018 Benhammou
et al. [205] Inception-V3 70%,30% 83.9

2018 Song et al.
[206]

Fisher Vector +
VGG19+
Component

Selective Encoding
(CSE)

70%,30% 88.03

2018
Sanchez-

Morillo et al.
[207]

KAZE Features 70%,30% 79.27

2018 Kumar and
Rao [208] Proosed CNN 70%,30% 82.93

2018 Alirezazadeh
et al. [209]

Adapation+PFTAS+
QDA 70%,30% 87.85

2018 Al Nahid et
al. [210] CNN+Mean shift Not

specified 89

2019 Sudharshan et
al. [211] MIL+CNN 70%,30% 86.02

2019 Zhu et al.
[212] Hybrid CNN 70%,30% 83.37

Table 2.3: A summary studies of different works on histopathological images classification
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Bayramoglu et al. [196] proposed a framework to classify breast cancer histology
independent of their magnification. This framework contain two CNNs, one is single task
used to classify the image as begin and malignant, and the second is multi task used to
predict both malignancy and image magnification level. The authors justify the use of all
magnification to train a CNN to reduce the training time. Actually, this approach is faster
because single training is applied instead of different training for different magnifications.
In the CNN multi task, the authors predict the magnification level of image to overcome
the limitation of unknown image magnification at the test phase. In the preprocessing, the
authors extract a patches of size 460×460, then they resize it to 100×100, thereafter they
applied rotation and flipping to augment the dataset. The two proposed CNNs are very
similar, in which both of then contain three convolution layers of size (7×7, 5×5, and 3×3),
the first two convolution layer are followed by ReLu, max pooling and normalization layer
the last convolution layer is followed by ReLu and max pooling, the architectures ended by
two fully-connected layers. In the CNN single task only one softmax is use, in the CNNmulti
task two softmax are used (one for malignancy and the second for magnification prediction).

Spanhol et al. [192] used DeCAF features to classify histopathological images. In fact,
the idea of DeCAF features is to reuse a pre-trained CNN (architecture and parameters). The
input image is feed-forward into the pre-trained CNN and the result of the last layer was used
as input to the classifier. The authors used the CNN CaffeNet trained on ImageNet and they
used logistic regression as classifier. Where the combination of the last three fully connected
layers (fc6,fc7,fc8) of CaffeNet were used as input to the classifier.

A similar work of [192], Benhammou et al. [205] applied DeCAF features on pretrained
Inception-v3, while during the training, they pass the Decaf features outputs through a fully
connected to the softmax classifier.

Sun and Binder [197]made several experiments for histopathology images classification,
where they used three different CNNs namely Caffenet, Resnet and GoogLeNet. The first
experiment concern the kind of transfer learning, in which the authors tested the training
of whole network against training only the top network. The results showed that training
the whole network is better. In the second experiment they tested the impact of context by
testing the full image with resolution 350×230 and crop with size 64 and 128; the best result
was obtained by using the whole image. The accuracies given by the three CNN were very
close.

Song et al. [198] proposed a method based on CNN and fisher vectors for histopathology
image classification. First the image forward to the convolution layers of VGG pretrained
on imageNet, then the image features extracted from these layers are coded using Fisher
Vector (FV). The authors proposed anAdaptation layer, this layer aim to adapt FV descriptors
into the CNN; the adaptation layer was inserted between the convolution layers and the
fully connected layers. Finally, the obtained descriptors was classified using Support Vector
Machine (SVM).
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Han et al. [199] proposed Class Structure-based Deep Convolutional Neural Network
(CSDCNN) for breast histopathological image classification. The CSDCNN is a model
that is designed to take into account the relation of the feature space among intra-class and
inter-class. In fact, the authors integrate to the loss function a distance constraint to control
the features similarities of intra-class and inter-class images. CSDCNN was inspired form
GoogLeNet, the input layer was used to resize the image to 256×256, followed by a set
of convolutional and pooling layers. The augmentation techniques (rotation, flipping and
translation) were used to boost the performance and to resolve the imbalanced class problem.
The authors adopted the transfer learning to train CSDCNN.

Samah et al. [175] tested a set of textural descriptors to classify histological tissue
images. The features descriptors are GLCM, LBP, Pyramid-structured Wavelet Transforms
(PWT) and Tree structured Wavelet Transform (TWT). The kNN was used as classifier. By
using only the magnifying 400× the best result was given by PWT.

Nejad et al. [200] proposed a CNN to classify the histopathological image at the 40×
magnifying factor. First the image was resized to half and the RGB color normalization
is applied by subtracting the mean from all images of the dataset, the authors also applied
the augmentation techniques using rotation and flipping. The CNN was composed of one
hidden layer including a convolutional filters, one rectified linear unit for neuron activation,
a normalization unit, a maximum pooling, followed by a fully connected layer.

Sharma et al. [201] have used the hand-crafted features with machine learning approach
to diagnose breast cancer from histopathological images. Where they applied the region
growing to segment the nuclei from the background, after that, they used the Parameter
Free Threshold Adjacency Statistics (PFTAS) to extract the features of nuclei region, then
Random forest classifier was used to predict the cancer cases.

Zhi et al. [202] presented a simple architecture CNN to predict malignant cases, this
architecture was inspired from the six bottom layers of VGG, where it composed of three
time (convolution (3×3), convolution (3×3) and maxpooling) followed by fully connected
layer, dropout, fully connected layer and sigmoid. The architecture was initialized by the
training weight of ImageNet, then the authors applied the transfer learning with two steps:
firstly, they trained the fully connected layers while fixing the convolutional layers, secondly
they fine tuning all the layers. According to the results given, applying transfer learning on
a smaller architecture outperform the application of transfer learning on VGG model.

Another simple architecture proposed by Kumar and Rao [208] was composed of six
convolutional layers, the first three layers have a kernels size of 5×5, that are followed by
max pooling layers and the last three layers have a kernels size of 3×3 followed by average
pooling layer, the architecture contain two fully connected layers.

Cascianelli et al. [203] used three dimensionality reduction methods on features
extracted from a pre-trained VGG to classify histopathological images. The methods tested
were Principal Component Analysis (PCA) [219], Gaussian Random Projection (GPR) [220]
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and Correlation-Based Feature Selection (CBFS) [221]. The obtained results showed that
GRP and CBFS were adequate for this type of classification.

Nejad et al. [204] proposed a content-based medical image retrieval (CBMIR) method
based on CNN. The method was composed on two steps. In the first step, the images
were resized into 224×224 and feed-forward into a pre-trained VGG, then 1000 features are
extracted from the fully connected layer. The second step aim to reduce the dimensionality of
the features vector by extracting class-specific and patient specific descriptors. The authors
used the ensemble of Error Correcting Output Code (ECOC) [222] to train both multi-patient
and breast cancer classifiers. In the test time, the Euclidien distance was used to retrieve the
similar images to the image query based on the class-specific and patient-specific descriptors.

Song et al. [206] proposed an improved version of their method [198] by introducing a
newmethod for features dimensionality reduction called the Component Selective Encoding
(CSE). This method was used to reduce the high dimensionality of FV descriptors by
selecting the discriminate Gaussian components in the FV. The authors used a combination
of two quantificationmetrics to quantify the discriminativeness of eachGaussian component.
The first one used the classification probabilities obtained from SVM classifiers trained
on the N Gaussian components in the FV. The second metric is based on the discriminate
weight obtained from the absolute difference between the benign and malignant weights for
each components. The benign /malignant weights are obtained by training set of benign
/malignant images, for each Gaussian component.

Sanchez-Morillo et al. [207] proposed a method based on KAZE [223] features and
bag-of- words to classify benign and malignant histopathology image. In training step, for
each image the KAZE keypoints were extracted, then k-means was applied to build the
features bag, in order to quantize the features space of the training data, each cluster centre
of the features bag was considered as a vocabulary word in a dictionary of visual words.
The bag of visual words was used to encode the input image by using the nearest neighbor
algorithm between the image KAZE features and the bag of visual words to encode the image
into an histogram. This histogram was fed into SVM classifier for training. In the test step,
the bag of words was used to encode the test image, and the SVM classifier is used to predict
the image label. This method showed a good performance in magnification 40×.

Alirezazadeh et al. [209] proposed an adaptation method to overcome the mismatch of
histopathological images caused by post processing such as staining. The authors project
the test and training set into a domain invariant space. In fact, they extract the hand-craft
features (PFTAS) forming with them a learning projection matrix. This matrix represent the
correlation similarity of benignant and malignant cases, the authors minimize it by using
gradient decent. Thereafter the samples are mapped through the projection matrix then to
the classifier QDA.

Al Nahid et al. [210] tested CNN, Long Short Term Memory (LSTM) and combined
CNN and LSTM to classify the breast cancer images. The authors tested also Softmax layer
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and SVM as classifier. First, the K-means andmean-Shift clustering techniques were applied
to the input image in order to partition the image into region with structural information,
then the image result was feed to each model separately. The CNN model was composed of
two convolution layers followed by three time convolution and pooling layers finished by
flatten layer and drop-out then decision layer. The LSTM model contain two LSTM layers,
followed by drop-out and dense layer finally the decision layer. The third model contain both
CNN and LSTM, where the flatten layer of the CNN is followed by dense layer, the output of
dense layer has been used as the input layer for LSTM. The result showed that the mean-Shift
algorithm with the first model based on CNN and Softmax as classifier outperform the two
others models.

Sudharshan et al. [211] explored the impact of Multiple Instance Learning (MIL) to
predict breast cancer on histopathological images. From the twelve different MIL methods
, the best result was given by non-parametric MIL [224] for two formulation. Where, the
first one they used patient as bag and the images as instances, in the second one, they used
image as bag and patches as instances. The authors also compare MIL to the single instance
classifiers (1-NN, quadratic discriminant analysis, random forest and SVM) trained on the
PFTAS features vector. The result showed the efficacy of the non-parametric MIL compared
to single instance classifiers.

Zhu et al. [212] developed a hybrid CNN composed of global and local branch model.
The two branch have the same model, the difference is only on the input. Where the global
model have as input a down-sampled whole image, and the local model received as input a
set of patches extracted from the image (the authors used 15 non overlapping patches). In
order to reduce the complexity of the CNN, a pruning block was introduced to remove the
redundant channels. Finally, to improve the performance, the bagging approach are used by
assembling multiple models together.

In the rest of this section, we will present the top performing methods of the BACH
challenge 2018 (see Table 2.4 ), for further details about the rest of the methods, we refer the
reader to read the overview paper of the challenge [10].
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Authors Methods Accuracy
(%)

Chennamsetty et al.
[225] Resnet-101; Densenet-161 87

Kwok [226] Inception-Resnet-v2 87
Brancati et al. [227] Resnet-34, 50, 101 86
Marami et al. [228] Inception-v3 84
Kohl et al. [229] Densenet-161 83
Wang et al. [230] VGG16 83
Steinfeldt et al. XCeption 81

Koné and Boulmane
[231] ResNeXt50 81

Table 2.4: Overview of the top performed methods on BACH challenge

The method proposed by Chennamsetty et al. [225] is base on three CNNs, ResNet-101
and two DenseNet-161 networks pre-trained on ImageNet. The authors adopted two
approaches of normalizations, normalization scheme−1 and normalization scheme−2. In
the first one, the normalization is given by using the mean and standard deviation from
ImageNet dataset, while in the normalization scheme−2, they used the mean and standard
deviation from histology data.
In the pre-processing the images are resized to 224×224 pixels, then normalization scheme−1
is applied, next the images passed through ResNet-101 and DenseNet-161 separately;
on the other side, the images normalized with schema−2 are passed through the second
DenseNet-161. Finally the majority voting was used on the three predictions to assign the
final label to the image. With an accuracy of 87% this method won the challenge with
Kwok’s method [226].

Kwok used Inception-Resnet-v2 initialized using ImageNet pre-trained weights to
classify H&E stained images [226].
Firstly, the patches of size 1495×1495 pixels and stride of 99 pixels were cropped from each
image. In total 5,600 patches where extracted from 400 microscopy images. These patches
were then resized to 299×299 pixels. For the augmentation the authors applied the rotational
symmetry, random vertical/ horizontal flipping and rotation of 90°, 180°, 270°. Then the
patches passed through Inception-Resnet-v2 for classification.

Brancati et al. [227] used combination of three ResNet with different configurations of
layers, where 34, 50 and 101 layers are used respectively. First, the authors reduce the size
of the image by down-sampling the image by factor k equal to 80%, in which patch image of
size 308×308 pixels was extracted from the image center. Then the CNNs were pre-trained
on ImageNet and all the layers are fine-tuning by the patches extracted from BACH training
dataset. Next the maximum probability rule is used to assign the image label. This approach
ranked in the top-three method in the challenge.
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Marami et al. [228] constructed an ensemble of four Inception-v3 trained using four
different datasets.
The first one, is BACH training dataset part ”A” contain four classes (in-situ carcinoma,
invasive tumor, and benign tumor).
The second one, BACH training dataset part ”A” and the training dataset of the part ”B”
of the challenge that contain whole slide images with three classes (benign, invasive, and
in-situ).
The third one, BACH training dataset part ”A” and whole slide images with expanded
annotation for normal tissue (benign, invasive, in-situ and normal).
The fourth one , BACH training dataset part ”A” and whole slide images with expanded
annotation for normal tissue, and BreakHis images for the benign tissue class.
The ensemble network models are trained on annotated regions of size 512×512 pixels.
The authors modify the inception network by using adaptive pooling before applying the
fully connected layers. The class predictions of test images are inferred by averaging the
probabilities of the trained CNNs.

Kohl et al. [229] propose to used densely connected convolutional neural networks
(DenseNet -161) pre-trained on ImageNet to classify the histopathological images.
In the pre-processing, the images are resized to 205×154 pixels, then data augmentation is
applied to overcome the issue of the small number of training images by using arbitrary
rotations and random scale. Finally the authors normalized each image by the mean and the
standard deviation of all images in the dataset. The training phase was composed of two
step: first, the training was applied only on the fully connected layer, in the second step the
training was applied to the whole layers.

Wang et al. [230] proposed an approach based on two training stage. In the first stage
the training images were resized to 256×256 and normalized to zero mean and unit standard
deviation, then the authors augment the training dataset by using random cropping of size
224×224, rotation 90°,181°,270° and random horizontal inversion, and random vertical
rotation. After that, they applied the Sample Pairing method for another data augmentation,
Sample Pairing method consist to randomly selected two images from different classes, and
then they were superimposed together to generate a new image, the image result receives
the class label of one of the initial images. Sample Pairing method was applied on the
augmented data and the obtained images were passed though VGG-16 network for training.
In the second stage, the network weight obtained from the first stage were used to initialize
another VGG-16 and in this training stage only the basic data augmentation techniques (
random cropping, random 90°,181°,270° rotation, random horizontal inversion, and random
vertical rotation) were applied.

Koné et. al [231] used hierarchical binary tree classification approach, in which they used
three ResNeXt50. In the root of CNN classifies there is general model aim to classify the
image into carcinoma and non-carcinoma. Carcinoma set contains the in situ and the invasive

52



Chapter 2 State of the art

images, and non-carcinoma set contains normal and benign images. The general model is
pre-trained on ImageNet and Fine tuning with patches of size 299×299 extracted from the
center of the resized images. Followed by two specialized models, one of them classify the
carcinoma set into in situ and invasive and the other one classify the non-carcinoma set into
normal and benign. These models were initialized by the weight obtained from the general
model. The CNNs used were trained with different learning rates, this method with our
proposed method, were ranked 7th out of 51 teams of the challenge.

2.5 Conclusion

This chapter highlighted annotation and classification methods for liver CT, breast density
and histopathological images.
In fact, we reviewed in details more than sixty works including the methods proposed for
different challenges. In both annotation and classification tasks, ROIs extraction, the features
extraction methods and machine learning approaches are used to achieve them. The trend to
use the deep learning approaches to analyze the medical image is noteworthy, especially in
related methods for histopathological images classification. As we have presented in section
2.4, the majority literature methods used the CNNs, this is due to the capacity of CNNs to
discriminate relevant image information from these complex images. The three followed
chapters, we will detail the methods used for annotation and classification of liver CT, breast
density and histopathological images.
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Liver CT annotation

3.1 Introduction

According to the statistic given by World Health Organization (WHO), liver cancer is one
of the fourth most common causes of cancer death after lung, colorectal and stomach [232].
With more than 700 000 deaths each year [233], liver cancer is the fifth most common cause
of cancer death for men and the seventh for women [234].
Early diagnostics and treatments can improve the chances of survival. Indeed, the percent
of people that live at least 5 years after the liver cancer was improved since 40 years ago,
from 3% to 18% now [234]; this despite that, the rate of liver cancer death has tripled from
this period [233].
More and more solutions have been increasingly developed and implemented to improve
the early diagnosis and treatment, such as the different imaging techniques resulted the
prominence of computer-aided detection and diagnosis CADe/CADx systems .
The CAD system help the radiologists in their daily works by providing liver lesions
annotation based on image processing and artificial intelligence techniques.

In this chapter, we presented the methods used to annotate the liver lesions, in order
to generate a structured radiologic report. The next section, we will present the methods
proposed for liver CT image annotation. Thereafter, we will give the experimental results
obtained on ImageCLEF2015 liver CT annotation challenge and the comparative study with
related works is given in section 3.3.

3.2 Methods

Medical image annotation is the process allowing to assign textural and graphical metadata
to the image. In fact, the graphical metadata is manifested by specifying the contour and
the regions of organ. In other side, the textural metadata vary from simple information
such as image modality and body orientation to more complicate metadata named height
level semantic concepts. These concepts are used to describe the proprieties of organ its
components and lesions.
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In the past years, the radiologist annotated the medical images manually. This process
requires time and expertise because it is subjective, and in addition it is expensive [132]. The
clinicians got one’s way to overcome these issues, by using the support of automatic medical
images annotation. Actually, the automatic medical images annotation is an important tool
for making an organized semantic archives; that will be used by physicians in their diagnostic
as well as their education. Generally, in liver images the annotation include liver features,
vessels and lesions.

In this section we will present the methods developed for automatic liver annotation,
more precisely the liver CT images, we have chosen this modality because liver lesions and
metastases are most often initially indentified and diagnosed in CT images [126] .
The proposed annotation methods are based on Content-Based Image Retrieval (CBIR) and
classification approaches.
The CBIR, rely the low level image features to the height level semantic concepts by
retrieving the image that have the same low level image features to the image query, then
the selection of adequate annotations for a given concept of image test are obtained from the
results.
In the classification approaches, each concept’s label is considered as a class that we want
to predict, so the machine learning methods are used to predict the appropriate annotation
according to the low level image features.
The community scientific has been invested on developing a standardized vocabularies in
order to facilitate the annotation and the sharing. Such as the lexicon RadLex for radiology
terms [235] and ONLIRA (Ontology of the Liver for Radiology) [124].
ONLIRA ontology contains various liver concepts as well as their relationships that help to
generate an express radiology reports [124]. In all the presented methods, we have used the
concepts and proprieties of ONLIRA ontology to annotate the liver CT image.
In Table 3.1 we will describe the concepts to annotate as well their properties.
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Group Concept
Properties

(UsE features)

Possible values
(assigned indices)

Liver

Liver

Liver Placement

downward displacement(0), normal
placement(1), leftward
displacement(2), upward
displacement(3), other(4)

Liver Contour
irregular(0), lobulated(1), nodular(2),

regular(3), other(4)

Liver Size Change
decreased(0), increased(1), normal(2),

other(3)
Liver Craniocaudal
Dimension (mm)

The amount change in size of
liver(mm)

Density Type
heterogeneous(0), homogeneous(1),

other(2)

Density Change
decreased(0), increased(1), normal(2),

other(3)

Right Lobe

Right Lobe
Craniocaudal

Dimension (mm)

The amount change in size of right
lobe(mm)

Right Lobe Size
Change

decreased(0), increased(1), normal(2),
other(3)

Left Lobe

Left Lobe
Craniocaudal

Dimension(mm)

The amount change in size of left
lobe(mm)

Left Lobe Size
Change

decreased(0), increased(1), normal(2),
other(3)

Caudate Lobe

Caudate Lobe
Craniocaudal

Dimension(mm)

The amount change in size of caudate
lobe(mm)

Caudate Lobe Size
Change

decreased(0), increased(1), normal(2),
other(3)

Vessel Hepatic Artery
Hepatic Artery
Lumen Diameter

decreased(0), increased(1), normal(2),
other(3)

Hepatic Artery
Lumen Type

obliterated(0), open(1), partially
obliterated(2), other(3)

Hepatic Portal
Vein

Hepatic Portal V.
Lumen Diam.

decreased(0), increased(1), normal(2),
other(3)

Hepatic Portal V.
Lumen Type

obliterated(0), open(1), partially
obliterated(2), other(3)

56



Chapter 3 Liver CT annotation

is Cavernous
Transformation
Observed?

(Hepatic Portal
Vein)

NA(-1),True(1),False(0)

Left Portal Vein
Left Portal V.
Lumen Diam

decreased(0), increased(1), normal(2),
other(3)

Left Portal V.
Lumen Type

obliterated(0), open(1), partially
obliterated(2), other(3)

is Cavernous
Transformation
Observed? (Left
Portal Vein)

NA(-1),True(1),False(0)

Right Portal Vein
Right Portal V.
Lumen Diam

decreased(0), increased(1), normal(2),
other(3)

Right Portal V.
Lumen Type

obliterated(0), open(1), partially
obliterated(2), other(3)

is Cavernous
Transformation
Observed? (Right

Portal Vein)

NA(-1),True(1),False(0)

Hepatic Vein
Hepatic V. Lumen

Diam
decreased(0), increased(1), normal(2),

other(3)
Hepatic V. Lumen

Type
obliterated(0), open(1), partially

obliterated(2), other(3)

Left Hepatic
Vein

Left Hepatic V.
Lumen Diam

decreased(0), increased(1), normal(2),
other(3)

Left Hepatic V.
Lumen Type

obliterated(0), open(1), partially
obliterated(2), other(3)

Middle Hepatic
Vein

Middle Hepatic
V.Lumen Diam.

decreased(0), increased(1), normal(2),
other(3)

Middle Hepatic
V.Lumen Type

obliterated(0), open(1), partially
obliterated(2), other(3)

Right Hepatic
Vein

Right Hepatic V.
Lumen Diam

decreased(0), increased(1), normal(2),
other(3)

Right Hepatic V.
Lumen Type

obliterated(0), open(1), partially
obliterated(2), other(3)

General Patient Diagnosis

Diagnosis of given image using ICD10
codes (bar separated) and in the free
text MD’s comments are written (bar

separated)
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Lesion

Lesion

Cluster Size

1(1), 2(2), 3(3), 4(4), 5(5), multiple(6)
For simple cases this value shows

number of lesions inside the ROI, but
in case of having more than one

lesions of a certain type, the biggest
lesion is annotated as a sample of that
cluster and number of lesions with
same properties is written here

Contrast Uptake
NA(-1), dense(0), heterogeneous(1),

homogeneous(2), minimal(3),
moderate(4), other(5)

Contrast Pattern

NA(-1), central(0), early uptake then
wash out(1), fixing contrast in late

phase(2), heterogeneous(3),
homogeneous(4), peripheric(5),
peripheric nodular(6), spokes

wheel(7), undecided(8), other(9)

Lesion
Composition

SolidCycsticMix(0), Solid(1),
SolidWithCystic(2), PureSolid(3),
PredominantSolid(4), Cystic(5),

PureCystic(6), PredominantCystic(7),
CysticWithSolidComponent(8),
CysticWithDebris(9), Abcess(10)

is Leveling
Observed?

True(1),False(0)

Leveling Type
NA(-1), fluid fluid(0), fluid gas(1),
fluid solid(2), gas solid(3), other(4)

is Debris
observed?

True(1),False(0),NA(-1)

Debris Location
NA(-1), floating inside(0), located on

dependent position(1),other(2)

is Close to Vein

NA(-1), HepaticArtery(0),
HepaticPortalVein(1),

RightPortalVein(2), LeftPortalVein(3),
HepaticVein(4), RightHepaticVein(5),

MiddleHepaticVein(6),
LeftHepaticVein(7),
VenacavaInferior(8),

PosteriorBranchOfRightPortalVein
(9), AnteriorBranchOfRightPortalVein

(10), other(11)
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Vasculature
Proximity

NA(-1), adjacent(0), adjunct to
contact(1), bended(2),

circumscribed(3), invaded(4), other(5)

Area

Lobe
LeftLobe(0), CaudateLobe(1),

RightLobe(2)

Segment

SegmentI(1), SegmentII(2),
SegmentIII(3), SegmentIV(4),
SegmentV(5), SegmentVI(6),
SegmentVII(7), SegmentVIII(8)

Width
a number in mm which represents

width of the lesion

Height
a number in mm which represents

heigth of the lesion
is Gallbladder
Adjacent?

True(1),False(0)

is Peripherical
Localized?

True(1),False(0)

is Subcapsular
Localized?

True(1),False(0)

is Central
Localized

True(1),False(0)

Margin Type

geographical(0), ill defined(1),
irregular(2), lobular(3),

serpiginious(4), spiculative(5), well
defined(6), other(7)

Shape
band(0), fusiform(1), irregular(2),
linear(3), nodular(4), ovoid(5),

round(6), serpiginious(7), other(8)
is Contrasted True(1),False(0),NA(-1)
is Calcified?

(Area)
True(1),False(0),NA(-1)

Area Calcification
Type

NA(-1), coarse(0), focal(1),
millimetric-fine(2), punctate(3),

scattered(4), other(5)

Density
NA(-1), hyperdense(0), hypodense(1),

isodense(2), other(3)

Density Type
NA(-1), heterogeneous(0),
homogeneous(1), other(2)

Capsule
is Calcified?
(Capsule)

True(1),False(0),NA(-1)
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Capsule
Calcification Type

NA(-1), coarse(0), focal(1),
millimetric-fine(2), punctate(3),

scattered(4), other(5)

Polyp
is Calcified?
(Polyp)

True(1),False(0),NA(-1)

Polyp Calcification
Type

NA(-1), coarse(0), focal(1),
millimetric-fine(2), punctate(3),

scattered(4), other(5)

Pseudocapsule
is Calcified?

(Pseudocapsule)
True(1),False(0),NA(-1)

Pseudocapsule
Calc.Type

NA(-1), coarse(0), focal(1),
millimetric-fine(2), punctate(3),

scattered(4), other(5)

Septa
is Calcified?
(Septa)

True(1),False(0),NA(-1)

Septa Calcification
Type

NA(-1), coarse(0), focal(1),
millimetric-fine(2), punctate(3),

scattered(4), other(5)

Diameter Type
NA(-1), complete(0), incomplete(1),

other(2)
Thickness NA(-1), thick(0), thin(1), other(2)

Solid Component
is Calcified? (Solid

Component)
True(1),False(0),NA(-1)

Solid Component
Calcification Type

NA(-1), coarse(0), focal(1),
millimetric-fine(2), punctate(3),

scattered(4), other(5)

Wall

is Calcified?
(Wall)

True(1),False(0),NA(-1)

Wall Calcification
Type

NA(-1), coarse(0), focal(1),
millimetric-fine(2), punctate(3),

scattered(4), other(5)
Wall Type NA(-1), thick(0), thin(1), other(2)

is
Contrasted?(Wall)

True(1),False(0),NA(-1)

Table 3.1: List of Groups, concepts, proprieties and their possible values

Remark
Other: none of the other labels answer the question.
NA: the question is not relevant to this image.
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3.2.1 Method n° 1

Our first method for liver CT image annotation is based on a classification approach. Our
method is composed of two main steps. The first step consists of features vectors extraction,
where two descriptors containing a set of texture and shape features are extracted. In the
second step, a classification process is achieved by using random forest classifier.

A. Features extraction and description
The descriptor n°1
•The proposed liver features includes

1. Liver Mean: liver’s mean intensity value.

2. Liver Variance: liver’s variance intensity value.

3. Liver Skewness: liver’s skewness value.

4. Liver Kurtosis: liver’s kurtosis value.

5. Liver Solidity: solidity of liver.

6. Liver Convexity: convexity of liver.

7. Gray Level Co-occurrence Matrix (GLCM): we have used the features extracted
from the spatial GLCM proposed by Haralick that estimates image properties
related to second-order statistic. We have calculated the 3D gray level
co-occurrence matrix for four different directions (0°, 90°, 45°, and 135°) and
distance d=1, the Haralick’s texture features extracted are: contrast, entropy,
variance, summean, correlation, max probability, inverse variance, inertia [216],
and also energy, cluster shade, cluster prominence and homogeneity proposed by
by Soh and Tsatsoulis [236]. Therefore, our GLCMbased feature vector includes
48 elements.

7. 3D Gabor wavelet transform: we have used the mean and the standard deviation
as texture features extracted form the images filtred by Gabor wavelet.

In the following we will provide more details about Gabors wavelet.
It is a transformation that captures the local structure corresponding to spatial
frequency (scale), spatial localization, and orientation selectivity [237]; it is
defined in the equation 3.1.

Ψu,v (z) =
∥Ku,v∥2

σ2
e

(
∥Ku,v∥2|z|2

2σ2

) [
eiku,vz − e−

σ2

2

]
(3.1)

Where Z=(x,y), u and v define the orientation and the scale of the Gabor kernels,
||.|| denotes the norm operator, and the wave vector Ku,v is defined as follows:

Ku,v = Kve
iθµ (3.2)
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Where Kv=kmax/fv , Kmax is the maximum frequency and f is the spacing factor
between kernels in the frequency domain, θu= πu / 8
We have used σ = 2π, Kmax = π /2, and f = 21/2.
Let I(x,y) be the gray level distribution of an image, the convolution of the image
I and a Gabor kernel ψu,v is defined as follows:

Ou,v = I(z) ∗Ψu,v(z) (3.3)

Where * denotes the convolution operator, and Ou,v(z) is the convolution result
corresponding to the Gabor kernel at orientation u and scale v.
The energy information of the image I (x, y) can be expressed as follows [238]:

Eu,v =
∑
x

∑
y

|Ou,v| (3.4)

Suppose that I(x,y) denotes an image of M × N pixels, µu,v(x) and σu,v(x) denote
its mean and standard deviation computed from the scale v and the direction u,
respectively, µu,v(x) and σu,v(x) can be computed as follows :

µu,v = Eu,v/MN (3.5)

σu,v =

√∑
x

∑
y (|Ou,v(z))− µu,v|)2

MN
(3.6)

With eight orientations and three scales, the feature vector includes 24 elements
for means and 24 elements for deviation. Therefore, the feature vector is
composed of 48 features.

• The proposed lesion features
A pre-processing step was applied in order to segment the lesion. To do this, we have
applied a morphological operation which is dilatation. This operation was done after
thresholding the liver and applying the AND operator between lesion bounding box
and the liver mask. Thereafter, we extracted the following features:

1. The Euclidean distance between the centroid of the liver and lesion centroid.

2. The distance between the x coordinate centroid of the liver and the x coordinate
centroid of the lesion.

3. The distance between the y coordinate centroid of the liver and the y coordinate
centroid of the lesion.

4. Surface area of the lesion.

5. The perimeter of the lesion.
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6. The circularity C1 of the lesion: this measure always takes the value of 1 for
perfect circles [239] , it is expressed by the following formula:

C1 =

√
Area

(πMaxRadius)2
(3.7)

7. Dispersion property: the irregularity of the mass is estimated from dispersion
property, which identifies the irregular shape characteristics [239]. This value is
given by the equation below:

Dp =
MaxRadius

Area
(3.8)

8. Elongation property: the regular oval mass can be differentiated from the
irregular by using Elongation [239]. Its value is expressed by the following
equation :

En =
Area

(2MaxRadius)2
(3.9)

9. The circularity C2 of lesion: this value show a mass is similar to an ellipse. It
is useful in differentiating circular / oval masses from irregular masses. This
measure always takes a value of 1 for perfect squares, circles [239]. It is
calculated by the equation given below:

C2 =

√
MinRadius

MaxRadius
(3.10)

The total dimension of the first descriptor is 111(6+48+48+9).
The descriptor n°2
We have also investigated the performances of our method by using a second
descriptor containing the texture features of the lesion instead of liver texture features.
The two texture features are the gray level co-occurrence matrix (GLCM) for four
different directions (0°, 90°, 45°, and 135°) and distance d=1. Therefore, our GLCM
based features vector includes 48 elements. The second texture features is Gabor
wavelet transforms, we have used the mean and the standard deviation, with sixteen
orientations and five scales, the features vector includes 80 elements for means and
80 elements for deviation. Therefore, the total dimension of the second descriptor is
223 (6+48+160+9).
Now let’s recap:
Descriptor 1: contain shape and texture features of liver with lesion shape features,
the total size of the descriptor is 111 features.
Descriptor 2: contain liver shape features with shape and texture features of lesion,
the total size of the descriptor is 223 features.
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B. Classification
In the second phase of our experiments, we have used a supervised multi-class
classifier based onRandomForest classifier (RF) [240] and a proposed similarity score
calculation. RF is a machine learning technique that builds a forest of classification
trees where each tree is grown on a bootstrap sample of data, and the attribute at each
tree node is selected from a random subset of all attributes. The final classification
of an individual is determined by voting over all trees in the forest. Indeed, there
are many advantages of using RF method, that make it an ideal approach for the
analysis of biological data. First, it can handle a large number of input attributes - both
qualitative and quantitative-. Second, it estimates the relative importance of features
in determining classification. Third, RF is fairly robust in the presence of etiological
heterogeneity and relatively high amounts of missing data. For the tree type we have
used Classification And Regression Tree (CART), and our RF is composed of 500
tree. To obtain the annotation of the liver’s concepts, we associate for each concept a
classifier. Indeed, the two descriptors extracted are feed forward separately to Random
forest classifier in order to predict the correct annotations of the liver’s concepts.
The following concept’s proprieties are predicted using the classification approach: Is
Central Localized, Is Contrasted, Is Gallbladder Adjacent, Is Peripherical Localized, Is
Subcapsular Localized, Has Lesion Quantity, Has Area Density, Has Area Shape, Has
Area Margin Type, Has Density, Has Lesion Contrast Uptake, Has Lesion Contrast
Pattern, Has composition, Has Lesion Vein Proximity, Is Located In Segment, Is Close
To Vein. The property ”Is Located In Lobe” is estimated according to the property ”Is
Located In Segment”. i.e. if segment is { II,III,IV } the lesion lobe is the left lobe, if
the segment is { V,VI,VII,VIII } the lesion lobe is the right lobe, and caudate Lobe for
segment I. The height and the width of lesion are extracted directly from the image.
One of the challenge of the used dataset was that some concepts have just a few sample,
this was make the application of classifier ineffective. For this reason, to annotate the
remaining concepts, we have used the proposed similarity score calculation between
the unannotated image (U) and a training image (T) as the distance between their
respective features vectors given as bellow:

Sim(U, T ) =
d∑

i=1

1− |ui − ti|
vi

(3.11)

Where vi was the i-th maximum feature in dataset , ui was the i-th feature in the
features vector of U, ti was the i-th feature in the features vector of T, and d was
the dimensionality of the feature set. Thereafter, we selected the five most similar
images, and the label that has the majority voting will be assigned to the concept’s
proprieties.
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3.2.2 Method n° 2

Our second method is based on CBIR by using the signature of the liver. To do that, we have
taken a slice from 3DLiver CT scans localized at lesion center. First, we normalized the liver
into a rectangular block with constant dimensions to account for imaging inconsistencies.
The size of the normalized block was (200×190).
Feature encoding was implemented by convolving the normalized liver pattern with 1D
Log-Gabor wavelets. The 2D normalized pattern was broken up into a number of 1D signals,
and then these 1D signals were convolved with 1D Gabor wavelets. The frequency response
of a Log-Gabor filter is given as:

G(f) = exp(
−(log(f/f0))2

2(log(σ/f0))2
) (3.12)

Where f0 represents the centre frequency, and σ gives the bandwidth of the filter.
Thereafter we divided the output of filtering into a small blocks of size (5×5), consequently
the size of template becomes (40×38) .
Finally, the dominant angular direction of each block was extracted and quantized to four
levels, using the Daugman method [241], where each angular direction produced two bits of
data. Indeed when going from one quadrant to another, only 1 bit changes. Figure 3.1 shows
the phase quantization.

 
Im 

Re 
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Figure 3.1: Phase Quantization

The encoding process produces a bitwise template containing a number of bits of
information, the final size of template is 40×76.
For the retrieval task, the Hamming distance was employed. This distance gives a measure
of how many bits are the same between two bit patterns. In comparing with the bit patterns
X and Y, the Hamming distance, HD, is defined as the sum of disagreeing bits (sum of the
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exclusive-OR between X and Y) over N, the total number of bits in the bit pattern.

HD =
1

N

N∑
j=1

Xj(XOR)Yj (3.13)

Thereafter, we selected the five most similar images, and the label that has the majority
voting will be assigned to the concept’s proprieties. The retrieval process is illustrated in
Figure 3.2.
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Figure 3.2: An overview of the retrieval process
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3.2.3 Method n° 3

Thismethod is based onCBIR using spectral images textural analysis that uses a combination
of Bidimensional Empirical Mode Decomposition (BEMD) and Gabor wavelet transform.

A. Features extraction and description
First, for each input image we have applied the Bidimensional Empirical Mode
Decomposition (BEMD), then we have transformed each Bidimensional Intrinsic
Mode Function (BIMF) using the Gabor wavelet transform, thereafter the mean and
the standard deviation are extracted.
Based on a similarity distance given in equation 3.11, we selected the five most similar
images, and the label that has the majority voting will be assigned to the concept’s
proprieties.
More details about BEMD is given in the next paragraph.

• Bidimensional Empirical Mode Decomposition (BEMD)
The Bidimensional Empirical Mode Decomposition (BEMD) approach is a
highly adaptive decomposition [242]. It is mainly based on the characterization
of image by Intrinsic Mode Function (IMF) decomposition, where the image
can be decomposed into a redundant set of composite images called IMF and a
residue. Adding all the IMFs with the residue allow reconstructing the original
image without distortion or loss of information [243]. This method, derived from
image data and which is fully unsupervised, permits to analyze nonlinear and non
stationary data as texture images.

• The extracted descriptors
In order to evaluate our approach, we calculated two descriptors:
Descriptor n° 1: is computed by applying Gabor wavelet transformwith sixteen
orientations and ten scales, so we have extracted 160 elements of means and 160
elements of deviation from the first BIMF decomposition. Therefore, the total
dimension of the first descriptor was 320.
Descriptor n° 2: is calculated from the first, the second and the third BIMF, we
have extracted 160 elements of means and 160 elements of deviation for each
one of them. Therefore, the total dimension of the second descriptor was 960.
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3.3 Experimental results

In this section, we will present the experimental results of the proposed methods for liver
CT image annotation. To do an effective and objective evaluation of the methods, we have
participated to the second version of ImageCLEF Liver CT Image Annotation challenge in
2015 by submitting the first and the second methods. We will explain in detail this challenge
in the next paragraph.

3.3.1 ImageCLEF challenge

A. Objective of the challenge
The aim of the liver CT annotation task was to automatically generate a structured
reports. Describing the semantic features of the liver, its vascularity, and lesions.
This reports can help to raise the difficult task of annotating the liver CT image [244].

B. Dataset
In our experimentations, we have used the ImageCLEF2015 liver CT annotation
dataset.
The training dataset includes 50 cases, each consisting of :
• Cropped CT image of the liver, a 3D matrix. The volumes had varied resolutions (x:
190-308 pixels, y: 213-387 pixels, slices: 41-588) and spacing (x, y: 0.674-1.007mm,
slice: 0.399-2.5mm),
• A liver mask that specifies the part corresponding to the liver,
•A bounding box (ROI) corresponding to the selected region of the lesion within the
liver,
• An RDF file contained 73 ground truth annotations (User Express (UsE) features).
These annotations were determined by clinician based on the ONLIRA lexicon terms.
The test dataset contained 10 CT volumes, with varied resolutions and pixel spacing,
cropped to the region around the liver. The test data also included a mask of the liver
pixels and a bounding box (ROI) (see Figure 3.3).

C. Evaluation criteria
The evaluation is performed on the basis of the completeness and accuracy of the
predicted annotations. Completeness is defined as the number of predicted annotations
divided by total number of annotations, while accuracy is the number of correct
predicted annotations divided by total number of predicted annotations.

Completeness =
Number_of_predicted_UsE_features
Total_number_of_UsE_features

(3.14)

Accuracy =
Number_of_corrected_predicted_UsE_features

Number_of_predicted_UsE_features
(3.15)
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Figure 3.3: Image test of the liver, the contour in red and ROI in blue

Method Runs Completeness Accuracy Total Score
Method 1:Desriptor 1 01 0.99 0.825 0.904
Method 1:Descriptor 2 02 0.99 0.822 0.902

Method 2 03 0.99 0.836 0.910

Table 3.2: The runs results of Liver CT annotation task 2015
[6][7]

Total_Score =
√

Completeness× Accuracy (3.16)

D. The models submitted
We have submitted three runs to ImageCLEF2015 liver CT annotation challenge, the
two first runs correspond to the first method with the first and the second descriptor,
and the third run correspond to the second method.

E. Results
Among 32 groups, which registered for the challenge, only our group have submitted
the runs to the second version of ImageCLEF liver CT annotation challenge in 2015
[6].
The results in Table 3.2 show that all of our runs achieved good scores (>90). In
general, there were no large difference between the scores, especially for the first
method, where we have used two different descriptors. The score obtained from the
first and the second descriptor are respectively 90.4% and 90.2%, this small difference
shows that texture features of liver is more descriptive than the texture features of
lesion. We achieved a completeness score of 99% for every run, and the best accuracy
of 83.6% was given by the second method.

69



Chapter 3 Liver CT annotation

Liver Vessel Lesion-Area Lesion-Lesion Lesion-Component
Run Comple Acc Comple Acc Comple Acc Comple Acc Comple Acc
Run1 1.00 0.925 1.00 1.00 1.00 0.730 1.00 0.47 0.96 0.87
Run2 1.00 0.925 1.00 1.00 1.00 0.746 1.00 0.47 0.96 0.84
Run3 1.00 0.925 1.00 1.00 1.00 0.753 1.00 0.48 0.96 0.89

Table 3.3: Completeness (comple) and Accuracy (Acc) of the five different groups of liver
concepts [6] [7]

Descriptor n°1 Descriptor n°2
Completeness Accuracy Completeness Accuracy

Liver 1.00 0.92 1.00 0.92
Vessel 1.00 1.00 1.00 1.00

Lesion-Area 1.00 0.65 1.00 0.67
Lesion-Lesion 1.00 0.48 1.00 0.51

Lesion-component 0.96 0.86 0.96 0.89
Total score 0.880 0.889

Table 3.4: The score results obtained for each group of the method n°3 [8]

The results presented in Table 3.3 shows that the scores obtained by the three runs for
liver group and vessel group are the same. One explanation for this could be that there
were instances where in all the training samples had the same annotation. We notice
that the second method outperform the first method in the other groups, which shows
its efficacy.
For the first method, descriptor 1 (run1) gives the best discrimination of lesion
component compared to the descriptor 2 (run2), in this case the texture features of
liver is more suitable than texture features of lesion, in other hand the properties of
area lesion were well described by the texture features of lesion.
After the challenge we have developed and evaluated the third method using the same
dataset and we obtained the results given in Table 3.4.
The two descriptors achieved the same result with just a few small difference between
them , where the best result is obtained by using three BIMFs with the score of 88.9%
compared to the first descriptor with the score of 88%. This suggests that, using more
details improves the annotation’s accuracy.

3.3.2 Comparative study with related works

In this section, we make a comparison with related works that have used the same dataset,
this give an objective comparison.
ImageCLEF liver CT annotation challenge was organized on two versions in 2014 and 2015.
As we were the only ones group that participated to the 2015 version, we will compare our
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Year Methods Liver Vessel Lesion-
Area Lesion-Lesion Lesion-

Component
Comp Acc Comp Acc Comp Acc Comp Acc Comp Acc

2014 A.Kumar et al.
[132] 1.00 0.93 1.00 1.00 0.92 0.79 1.00 0.83 1.00 0.94

2014
Spanier and
Joskowicz
[129]

1.00 0.93 1.00 1.00 0.85 0.81 0.90 0.82 1.00 0.94

2014 Ermis and
Cemgil [130] 0.62 0.88 1.00 1.00 0.46 0.77 0.20 1.00 0.12 0.15

2015 Method n°2
[7] 1.00 0.92 1.00 1.00 1.00 0.75 1.00 0.48 0.96 0.89

2017
Method n°3
Descriptor n°2

[8]
1.00 0.92 1.00 1.00 1.00 0.67 1.00 0.51 0.96 0.89

Table 3.5: The comparison of test results [8] [6]

results with the results of 2014 version.
We recall that the dataset of ImageCLEF2014 liver CT annotation challenge was similar to
dataset 2015, in addition it contains a set of 60 features extracted from each image.

In ImageCLEF2014 liver CT annotation challenge, Kumar et al. [132], Spanier and
Joskowicz [129], Ermis and Cemgil [130] have participated to the challenge, where kurmar’s
method achieved the first place of this version. Table 3.5 shows the details for each method.

Table 3.5 shows that all authors have completed the liver annotation with accuracy more
than 90% except the method proposed in [130]. In other side, they annotated completely and
successfully the vessels proprieties.
The two proposed methods are the only ones that annotated completely the concepts related
to lesion-area, however a remarkable accuracy difference is obtained between the two
methods. The method n°3 achieved a low accuracy compared to the method n°2, this
could be explained by the loss of information due to the Bidimensional Empirical Mode
Decomposition, which affected the precision of annotation.
The concepts related to lesion-lesion are annotated completely by [132] and our two proposed
approaches. However, [132] has got the accuracy of 83% by using a feature set of size 1446,
while we achieved 48% and 51%. We attribute this difference to the size of features set
which has significantly improved the accuracy of the annotation.
Lesion-components group are annotated with a score higher than 90% by [132] [129] and
our two methods [7] [8]. We achieved a completeness score of 96%, and accuracy of 89%.

From the results of the two versions of the challenge, the method proposed by Kumar et
al. [132] achieved the first place with a total score of 94.7%, with the difference of 3.7 to
our best method (method n°2) [7] that gained a total score of 91% .

A recent study was given by Loveymi et al. [133] in 2020 on ImageCLEF2015 liver
CT annotation dataset but using only 43 properties, showed that the features obtained from
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GLCMs, Gabor wavelet transform, SURF and their proposed descriptor named Deep Local
Binary Pattern (DLBP) gave the accuracy of 93.1%.
It is interesting to note that one of the major considerations in the annotation of the liver is
the appropriate combination of features.

3.4 Conclusion

In this chapter, we have presented the methods developed to annotate liver CT scans. The
methods have different features descriptors and were based on different strategies such as
classification and CBIR. The experiments conducted on the ImageClef 2015 annotation
dataset showed that the second proposed method based on the signature of the liver, achieved
the best result compared to the remains proposed methods.
This method is based essentially on the features of the image. In order, to improve the
efficacy of this method we plan in our futures works to investigate the semantic reasoning
by using the ontology ONLIRA.
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Mammographic image classification

4.1 Introduction

Breast cancer affects one in nine women during their lives [245]. It is one of the leading
causes of cancer mortality among women in the world.
The mammography is the preferred screening examination for breast cancer used by
radiologists, where they estimate the breast density by visual examination of mammography.
The low energy X-rays in mammography are used to analyze the breast tissue, and the
composition of tissue can predict cancer risk. Patients with higher density breast tissue need
to receive special attention since pathologies tend to be hidden by dense backgrounds.

In this work, a CAD system is proposed to classify breast parenchyma tissue using a new
approach based on the distribution of the potential correlation of textons.
Furthermore, the CAD system includes a proposed modified Synthetic Minority
Over-Sampling Technique Algorithm (SMOTE) allowing equilibration of the datasets.

In this chapter, we present the proposed CAD system and it validation using experimental
tests. For this, different datasets were used, in addition, parametrical sensitivity of the
proposed methods were investigated to evaluate the main influent parameters and to choose
the best combination for the final test. Then the comparisons with the stat-of-the-art results
were presented and discussed. In section 4.5, we present our participation in the Digital
Mammography DREAM Challenge, which was synchronized with our development of the
method. This participation allowed us to see the shortcomings of the method, after the
challenge we have introduced the necessary improvements in the method.

4.2 Method

Traditional approaches use images pixels for features descriptors extraction. The approach
that we propose for our CAD system is based on textons to classify breast parenchyma tissue.
In this method, the images are mapped to a co-occurrence matrix that models the distribution
of a defined textons. From the co-occurrence matrix, a set of features are extracted to build
the training dataset. In this section, we explain the tree processes involved in the CAD system

73



Chapter 4 Mammographic image classification

that we propose to model the breast parenchyma tissue:

• Textons extraction

• Features descriptor extraction

• Classification process using the modified SMOTE algorithm

4.2.1 Textons extraction

The objective of this task is to represent all the images dataset with a defined pattern of
textons. The set of textons are determined from all the images of the dataset and the selection
of textons are defined by a frequency range and using the k-means algorithm.
Textons extraction step is organized as follows:

1. First, all the images are rotated (to get the same position for the left and the right
breast) and for each input image, textons of size ‘N × N’ pixels which are spaced by
‘M’ pixels are extracted

2. Then, for each texton, the following features are calculated: mean, variance, standard
deviation, skewness, kurtosis, entropy and energy

3. Next, k-means is used to cluster the textons of the input image to extract the centres
textons of the image (we note ‘W’ the number of image centres)

4. The frequency of the centre given by the number of textons belonging to this centre
divided by the total number of textons is calculated

5. All the centres of all images of the training dataset which have a frequency higher than
a specified threshold are grouped into one set, (we note ‘F’ the selection frequency)

6. k-means method is used to extract from the obtained set in step 5, the most represented
centres of the dataset. The obtained set is called the dataset-centres (we note ‘C’ the
number of dataset centres). This dataset-centres-set will be used in the next steps

Figure 4.1 shows the schema of textons extraction.
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Figure 4.1: Textons extraction

4.2.2 Features descriptors extraction

The dataset-centres-set extracted are used tomap each input image to a co-occurrencematrix,
then we extract a set of features. The process of features extraction for training and test
images follows these consecutive steps:

1. The descriptors of all textons of the image are extracted; this step is done only for
the test images because the descriptors of training images are already extracted at the
second textons extraction stage

2. Then, each texton in the image is represented by the index of the nearest centre of the
dataset-centre-set. The nearest centre is chosen by computing the Euclidian distance
between each texton descriptor and the centres descriptors

3. Thereafter, the spatial GLCM [216] is created

4. From the co-occurrence matrix, we have computed the histogram and we have
extracted the following features: mean, variance, standard deviation, skewness,
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kurtosis, entropy and energy. In addition, we have computed the Haralick features
[216] and features proposed by Soh and Tsatsoulis [236] using four different directions
0°, 45°, 90°, and 135°; and distances equal to 1, 5 and 9. The features extracted are:
autocorrelation, contrast, correlation, cluster prominence, cluster shad, dissimilarity,
energy, entropy, homogeneity, maximum probability, variance, sum average, sum
variance, sum entropy, difference variance, difference entropy, information measure
of correlation 1, informationmeasure of correlation 2, maximal correlation coefficient,
inverse difference, inverse difference normalized and inverse difference moment
normalized. So, the final descriptor contains all the extracted features

Figure 4.2 shows the schema of features descriptor extraction.
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4.2.3 Classification process using the modified SMOTE algorithm

The features extracted are used to train a Random forest classifier in order to generate the
classifier model. Inasmuch as the dataset is imbalanced, we propose to apply a step of
equilibration before training. When the model is generated, the classifier can predict a new
instance. The process of training and prediction follows these consecutive stages (see Figure
4.3):

1. First, we use the proposed modified SMOTE to balance the dataset

2. Then, we train the dataset by using Random Forest Classifier

3. Consequently, the classifier model is generated

4. Next, we classify a novel instance by usingRandom forest classifier model. The output
of the classifier model is the predicted class. As result the class instance is given by
the classifier
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Figure 4.3: The classification process proposed

As it can be seen in the experimental results presented in section 4.3, the application of
this procedure will induce a relative accuracy of prediction. The datasets are imbalanced,
however using the SMOTE balancing algorithm improved the performance results. Thus,
the equilibration of the dataset is a crucial step in the proposed method. In the following
paragraph, the proposed modification of the SMOTE algorithm is presented.
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A. The proposed modified SMOTE algorithm
Our goal is to achieve an equilibration of the dataset on the basis of an improved
SMOTE algorithm. The SMOTE algorithm proposed by Chawla et al. [246] is as
follow:

Algorithm 1: SMOTE (T, N, k)
Result: (N/100)*T synthetic minority class samples
Input: Number of minority class samples T; Amount of SMOTE N%; Number of nearest neighbours
k;
(* If N is less than 100%, randomize the minority class samples as only a random percent of them will
be SMOTEd.*);

if (N <100) then
Randomize the T minority class samples (***);
T = (N/100) * T;
N = 100;

end
N = (int)(N/100) (* The amount of SMOTE is assumed to be in integral multiples of 100*) ;
k = Number of nearest neighbours;
numattrs= Number of attributes;
Sample[ ][ ]: array for original minority class samples ;
newindex: keeps a count of number of synthetic samples generated, initialized to 0 ;
Synthetic[ ][ ]: array for synthetic samples ;
(* Compute k nearest neighbours for each minority class sample only.*);
for i← 1 to T do

Compute k nearest neighbours for i, and save the indices in the nnarray;
Populate(N, i, nnarray);

end
Function Populate(N , i, nnarray):

(* Function to generate the synthetic samples.*);
while N ̸= 0 do

Choose a random number between 1 and k, call it nn. This step chooses one of the k nearest
neighbors of i;

for attr ← 1 to numattrs do
dif= Sample[nnarray[nn]][attr]−Sample[i][attr];
gap = random number between 0 and 1;
Synthetic[newindex][attr] = Sample[i][attr] +gap∗dif;

end
newindex++;
N = N − 1;

end
return (*End of Populate.*)

The SMOTE method synthesizes randomly the minority instances along a line joining
a minority instance and ignoring nearby majority instances. This drawback has an
important impact on the results. We have made the modification of the SMOTE
algorithm [246] in the random instruction (is marked by *** in the Algorithm 1), in
which we have replaced the step of randomization by selection. More precisely we
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have selected the minority instances to be over-sampled. The process of selection is
based on finding the minority instances that are the most close to all others minority
instances in the dataset.
The selection process follows these consecutive stages:

1. For each minority instance we extract the k-nearest neighbours

2. Thereafter, we compute the number of apparition of each minority instance in the
k nearest neighbours of all minority instances, and we store the score for each
position separately (for example the instance x, occurs as the first nearest #3, as
second nearest #6 ,..,as the k nearest #5)

3. Then, we calculate the weighting vector, by dividing each number of occurrence
by his number of position (for example the weighting vector for x is [ 3/1,
6/2,...,5/k] )

4. Next, we compute the weighting value for each minority instance by summing
the values of the weighting vector, (for example the weighting value for x is 3/1+
6/2+...+5/k)

5. Finally, we select the k instances that have the maximumweighting value. These
instances are selected to generate the synthetic instances

The instances given by the array result of the selection Pseudocode are used to
generated the synthetic instances of the minority class.
The parameter k of the k-nearest neighbours is defined as follow:

K = (N/100) ∗ T (4.1)

Where T is number of minority class samples and N is the amount of SMOTE.
The selection Pseudocode is presented as follows:

79



Chapter 4 Mammographic image classification

Algorithm 2: selection Pseudocode (T, N, k)
Result: result[K]: array that contains the indices of the salient instance
Input: Number of minority class samples T; Amount of SMOTE N%; Number of nearest neighbours
k;
(*initialization*)
closedarray [T][K]: array for indices instance;
coeftarray [K]: 1..K ;
weighinstances [K]: initialized to 0 ;
weightarray [T]:array that contains the sum of weights for each instance;
(*Compute k+1 nearest neighbours for i, and save the indices in the closedarray, then the first nearest
neighbours is excluded because it is the same instance*)

for i← 1 to T do
closedarray [i][k+1]=indice;

end
closedarray= closedarray[:][2:k+1] ;
(* Compute the weight instances*)
form← 1 to T do

for i← 1 to T do
for j ← 1 toK do

if (closedarray[i][j]==m) then
weighinstances [j]= weighinstances [j]+1;

end
end

end
S=0;
for j ← 1 toK do

S=S+( weighinstances[j]/ coeftarray[j]);
end
weightarray [m]=S;
(*initialization to 0*)
for j ← 1 toK do

weighinstances[j]=0;
end

end
(*We select the K indices that have the maximum distance.*)
c=0 ;
while c<K do

max=weightarray[1];
indice=1;
for i← 2 to T do

if (weightarray[i]>max) then
max = weightarray[i];
indice=i;

end
end
weightarray[indice]=-inf;
c=c+1;
result[c]= indice;
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4.3 Experimental results

4.3.1 Evaluation criteria

The measures considered for the evaluation of the experiments are performed on the basis
of accuracy, precision, recall and kappa statistic.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.2)

Precision =
TP

TP + FP
(4.3)

Recall =
TP

TP + FN
(4.4)

Kappa =
(Po− Pe)

(1− Pe)
(4.5)

TP is true positive, the number of positive cases that are correctly identified as positive cases.
TN is true negative, the number of negative cases that are correctly identified as negative
cases.
FP is false positive, the number of negative cases that are incorrectly identified as positive
cases.
FN is false negative, the number of positive cases that are incorrectly identified as negative
cases.
Kappa Statistics is based on the difference between how much agreement is actually present
(“observed” agreement-Po) compared to how much agreement would be expected to be
present by chance alone (“expected” agreement-Pe) [247].

4.3.2 Equilibrating approach

In order to check the efficiency of the modified SMOTE method proposed versus the basic
SMOTE, the experiment studies the cases of two-class and multiclass problem by using
different classifiers on two datasets.

A. Datasets
Two datasets from the UCI Machine Learning Repository [248] are used: Wisconsin
Breast Cancer (WBC), and Breast Tissue with 6 class. The two datasets describe the
breast (see Table 4.1).
We refer that a pre-processing of the datasetWBC has been done. In fact, each instance
with a missing attribute values is eliminated. In total 16 instance were excluded.

B. Experimental results
The experiments were carried out by using three different classifiers: Random Forest
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Data set name Number
of Classes

Number
of Attributes

Number
of Examples

WBC 2 10 699
Breast Tissue 6 10 106

Table 4.1: Datasets characteristics

[240], Multilayer Perceptron [249] and Bayes Network [250].
The performance estimation of each classifier is obtained by means of 10-fold
cross-validation. We mention that the experiments include the synthetics samples in
the test step to evaluate their quality. Table 4.2 shows that the proposed method gives
the best accuracy for the two datasets WBC and Breast Tissue with 6 Class whatever
is the classifier.
The Breast Tissue with 6 Class is a multiclass dataset. Therefore, balancing
the distribution of dataset is much challenging to get better accuracies. In this
case, the proposed method meets this challenge and outperform the basic SMOTE
with accuracy gap of 1.52%, 2.27% and 3.79% using respectively Random Forest,
Multilayer Perceptron and Bayes Network classifier. We notice that for all cases, the
Random Forest with the proposed method gives the best results.

Datasets Classifier Models Precision Recall
Kappa
statistic

Accuracy
(%)

WBC Random
Forest

The proposed
method

0.986 0.985 0.970 98.536

SMOTE 0.982 0.982 0.964 98.198

Bayes
Network

The proposed
method

0.982 0.982 0.964 98.198

SMOTE 0.980 0.980 0.959 97.973

MLP
The proposed

method
0.977 0.976 0.952 97.635

SMOTE 0.972 0.972 0.943 97.184

BT- 6 Class Random
Forest

The proposed
method

0.799 0.803 0.763 80.303

SMOTE 0.784 0.788 0.745 78.787

Bayes
Network

The proposed
method

0.693 0.697 0.636 69.697

SMOTE 0.661 0.674 0.609 67.424

MLP
The proposed

method
0.729 0.742 0.690 74.242

SMOTE 0.681 0.705 0.645 70.454

Table 4.2: Comparison of the proposed method with SMOTE
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4.3.3 CAD system for mammography image classification

In order to validate the whole CAD system (Textons based feature description and
equilibration), the following tests are carried out on the Mammographic Image Analysis
Society (mini-MIAS) database and the Digital Database of Screening Mammography
(DDSM).

For each dataset, we start by the presentation of the dataset then a sensitivity study of
the algorithm parameters and the classifier are investigated, and finally the comparison of
the results obtained with and without equilibration is presented. The last paragraph gives
conclusions of the accuracy of the CAD when different datasets are used.

A. DDSM classification
• Dataset presentation
From DDSM database [251], a set of 424 medio lateral-oblique mammograms is
used. For each mammogram, the density of the breast determined by the Breast
Imaging Reporting and Data System (BI-RADS) are included. The American College
of Radiology (ACR) provides four categories according to breast parenchymal density
(see also Figure 4.4):

– BI-RADS I: the breast is almost entirely fatty

– BI-RADS II: there is some fibrogandular tissue

– BI-RADS III: the breast is heterogeneously dense

– BI-RADS IV: the breast is extremely dense

The number of mammograms belonging to each category is equal to 74, 156, 99 and
95 for BI-RADS I, BI-RADSII, BI-RADSIII, BI-RADSIV, respectively.

Figure 4.4: Example mammograms (a) BI-RADS I (b) BI-RADS II (c) BI-RADS III (d)
BI-RADS IV
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Parameters N M W F C Accuracy
(%)

Parameter n°1 21 7 15% 0.02 100 62.26
Parameter n°2 61 25 15% 0.02 100 51.02
Parameter n°3 41 15 15% 0.02 100 70.28
Parameter n°4 41 15 10% 0.02 100 65.33
Parameter n°5 41 15 15% 0.02 120 61.08
Parameter n°6 41 15 15% 0.03 100 63.91

Table 4.3: Values of different parameters

• Experimental results
The performance estimation is obtained by means of the leave-one-woman-out
methodology, i.e., the left and right mammograms of a woman are analyzed by
a classifier trained using the mammograms of all other women in the dataset.
The leaveone- woman-out methodology is used to avoid bias as the left and right
mammograms of a woman are expected to have similar internal morphology [164].
A sensitivity study of the algorithm parameters is carried out in order to select the best
combination for the next tests. The algorithm presented in section 4.2 has different
parameters including: the size of textons N×N, the distance between textons M, the
number of image centers W, the value of the selected frequency F and the number of
the dataset-centers C.
Table 4.3 shows the different parameters tested. (Note that Random Forest classifier
with 300 trees is used, furthermore, the tests are done without equilibration for this
experimentation).
The textons N-M tested are 21-7, 61-25,41-15, the accuracy obtained was 62.26%,
51.02%, 70.28% respectively, for the rest of experiments N=41 and M=15 are used.
For the quantization, we have taken 10% and 15% of textons image to build the centers
of image. The obtained results were 65.33% and 70.28%. So, we have chosen 15%
of textons from each image.
For frequency selection, we have tested F=0.02 and F=0.03, the results were 70.28%
and 63.91%.
Finally, for the number of centers of dataset we have tested C=100 and C=120, the
best results are given using 100 centers. For the rest of experiments, we have used the
third parameter (N=41, M=15, W=15%, F=0.02, C=100). After the selection of the
parameters of the algorithm, the parameter of the classifier was investigated.
Several experiments have been done (see Figure 4.5) to choose the optimal number
of trees for Random Forest. We notice that the accuracy given by 300 trees was
70.28% and 71.22%, for 150 trees was, therefore 150 trees was chosen. After the
calibration of the model and the classifier, we proceed with the final test including the

84



Chapter 4 Mammographic image classification

 

68
69
70
71
72

50 100 150 200 250 300 350 400

A
cc

ur
ac

y

Number of trees

Figure 4.5: Accuracy related to different number of trees

equilibration. Table 4.4 shows the confusion matrix of breast density classification
without equilibration, equilibration with SMOTE and using the modified SMOTE.
In order to have a detailed analysis, the results will be presented for each class
separately.
The performance of the classification is improved by using equilibrated dataset from
71.22% to 83.25%.
The classification results of the imbalanced dataset in Table 4.4.(A) is better for
majority classes compared to minority classes. This is due to the fact that the classifier
is biased by the number of images in the majority classes. Thus, the accuracy
for the class BI-RADS II are higher than the class BI-RADS I by 32.62%. By
using equilibration with SMOTE in Table 4.4.(B), the accuracy of minority class is
improved. Unfortunately, the majority class obtained a lowest accuracy of 75.64%
(compared to 83.97% for imbalanced dataset).
The modified SMOTE in Table 4.4.(C) improves the total accuracy. In addition, the
improved method overcomes the problem of imbalanced accuracy for minority and
majority class. (Accuracy is over 80% for all classes).
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(A) Total Accuracy 71.22 %
BI-RADS I II III IV Accuracy(%)

I 38 32 3 1 51.35
II 15 131 8 2 83.97
III 0 13 72 14 72.72
IV 3 18 13 61 64.21

(B) Total Accuracy 79.71 %
BI-RADS I II III IV Accuracy (%)

I 65 8 1 0 87.83
II 24 118 8 6 75.64
III 1 5 84 9 84.84
IV 4 9 11 71 74.73

(C) Total Accuracy 83.25%
BI-RADS I II III IV Accuracy (%)

I 66 5 3 0 89.18
II 19 125 8 4 80.12
III 0 9 81 9 81.81
IV 3 5 6 81 85.26

Table 4.4: Confusion matrix of breast density classification: (A) Without
equilibrating, (B) The SMOTE algorithm, (C) The modified SMOTE

In order to compare the quality of the synthetic data created by the modified and
original SMOTE algorithm, classification accuracy was conducted only with synthetic
data. The BI-RADS II was not investigated due to the fact that this class has the
majority images and no synthetic data were created for it.
The obtained results shown in Figure 4.6 demonstrated the quality of the synthetic
data for BI-RADS I and BI-RADS IV generated by the modified SMOTE algorithm.
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Figure 4.6: Accuracy obtained for the synthetic dataset of BI-RADS I, BI-RADS III,
BI-RADS IV
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Parameters N M W F C Accuracy
(%)

Parameter n°1 21 7 15% 0.02 100 89.13
Parameter n°2 21 7 10% 0.02 100 85.71
Parameter n°3 21 7 15% 0.03 100 84.16
Parameter n°4 31 10 15% 0.02 100 90.99
Parameter n°5 31 10 15% 0.02 120 89.44
Parameter n°6 11 5 15% 0.02 100 87.57

Table 4.5: Values of different parameters

B. MIAS classification
• Dataset presentation
The dataset mini-MIAS [252] contains 322 images in Medio Lateral-Oblique (MLO)
view. The images in this dataset are classified into three categories based on
their density as fatty, fatty-glandular and dense-glandular. In this study, all the
fatty-glandular and dense-glandular mammograms are treated as one group of dense
mammograms according to what as was used in several related works (Chen et al.
[253]; Kriti et al. [169] ; Muštra et al. [167]; Oliver et al. [164]; Virmani and Kriti
[170] ), thus two-classes are defined fatty and dense, we have 106 and 216 images
respectively
• Experimental results
Several experiments were achieved in order to select the best parameters.
The classification was achieved by using Random Forest (100 trees) and the
leave-one-woman-out methodology, furthermore, the tests are done without
equilibration.
We can see from Table 4.5 that the best parameters are: N=31, M=10, for the
quantization W=15%, 0.02 for frequency and C=100 for number of center of dataset .
For the rest of experiments, we have used the fourth parameter.
Table 4.6 shows the confusion matrix of the breast density classification without
equilibration, by using equilibration with SMOTE and by using the modified SMOTE.
It can be observed that the accuracy of classification is improved by using equilibration
methods with 0.31% for SMOTE and 3.42% for the modified SMOTE.
We notice also that the best score of dense category is given by the imbalanced dataset.
This is because the classifier is biased by the majority category that represent 67.08%
of dataset. On the other hand, the modified SMOTE gave the best accuracy for the
minority category with an accuracy of 94.34% compared to 91.51% and 81.13% for
SMOTE and the imbalanced dataset respectively. At the same time, it keeps the
accuracy of majority category height.
We attribute the efficiency of the modified SMOTE algorithm compared to the basic
SMOTE algorithm to the quality of the synthetic data used in the training step.
In fact, by computing the accuracy of classification of these data only, we obtained
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100% of correct classification for the modified SMOTE algorithm and 91.82% for
SMOTE algorithm.

(A) Total Accuracy 90.99%
Categories Fatty Dense Accuracy(%)

Fatty 86 20 81.13
Dense 9 207 95.83

(B) Total Accuracy 91.30 %
Categories Fatty Dense Accuracy (%)

Fatty 97 9 91.51
Dense 19 197 91.20

(C) Total Accuracy 94.41%
Categories Fatty Dense Accuracy (%)

Fatty 100 6 94.34
Dense 12 204 94.44

Table 4.6: Confusion matrix of breast density classification: (A)Without
equilibrating, (B) The SMOTE algorithm, (C) The modified SMOTE

C. Discussion on the experimental results
We notice that the same parameters of the algorithm (frequency, quantization and
number of centers) give the best results for MIAS and DDSM. The difference on the
parameterization is related to the size of textons (N) and the space between textons
(M). We attribute this difference to the size of the image of the two datasets, in fact
the images in DDSM are much bigger than the images in MIAS. (In DDSM textons
parameters are N=41, M=15, for MIAS N=31, M=10).
In addition to this, the modified SMOTE algorithm achieves the best results for each
dataset. As demonstrated earlier this is related to the quality of the synthetic data used
in the training step.
Based on these results, it can be concluded that the CAD system present good stability
related to the used datasets.

4.4 Comparative study with related works

In this section, both comparison with state of the art for the equilibrating approach and CAD
system are presented and commented.

4.4.1 Equilibration approach

First, to demonstrate the effectiveness of the modified SMOTE algorithm, a comparative
study with related works regarding the equilibrating approach is presented in Table 4.7.
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Datasets Reference Models Accuracy %

WBC The proposed method Random Forest 97.51
Wang et al. [254] S-AIRS 96.91

Breast-Tissue-
6 C1ass

The proposed method Random Forest 77.36
Tallón-Ballesteros et al.

[255] TSEAFS 60.93

Mantovani et al. [256] SVM 42
Belarouci et al. [257] KNN+LMS 71.43

Table 4.7: Comparison of the proposed modified SMOTE with studies in literature

We mention that the synthetics samples were used only in training step in order to avoid
biasing in classification accuracy.
• WBC Dataset
Wang et al. [254] proposed a hybrid method by combining Synthetic Minority
Over-Sampling Technique (SMOTE) and Artificial Immune Recognition System (AIRS)
called SAIRS. SAIRS obtained an accuracy of 96.91% for the dataset WBC.
We obtained an accuracy of 97.51 % which is better than the result given by SAIRS.
•Dataset Breast-Tissue-6 Class
Tallón-Ballesteros et al. [255] proposed a method called TSEAFS, to reduce the complexity
of Evolutionary ANNs (EANNs). TSEAFS has been tried out with four filters. The best
accuracy of 60.93% is given by using the Fast Correlation-Based Filter.
Mantovani et al. [256] used the Random Search (RS) method with the Genetic Algorithm
(GA) for adjusting hyper-parameters of Support Vector Machines, using the dataset
Breast-Tissue-6 Class the accuracy of 42% is obtained.
Belarouci et al. [257] have proposed a learning method based on a cost sensitive extension
of Least Mean Square (LMS) algorithm. After the balancing phase, they used different
classifiers SVM, K-NN and MLP. The best score of 71.43% is given by both MLP and
K-NN.
For the dataset Breast-Tissue-6 Class, our proposed method achieved a good performance
compared to the above-mentioned methods.
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4.4.2 CAD system for mammography image classification

A performance comparison of the proposed CAD system and those of different studies in
the literature presented in sate of the art chapter (2.3) is given in Table 4.8. Note that the
performances of all these methods were evaluated using DDSM and MIAS datasets.

A. DDSM dataset
Bovis and Singh [159] used 377 MLO images, and achieved an overall correct
classification of 71.4%.
Oliver et al. [164] improved their proposed approach presented in [161] by using more
features and using a Bayesian combination of a number of classifiers. Therefore, the
accuracy of 47% was enhanced to 77%.
The proposed method is more accurate than the methods presented in [159] and [161]
in spite of using more images (424 images).
Bosch et al. [162] have achieved the accuracy of 84.75%, we attribute this achieved
performance to the size of the descriptors used.

B. MIAS dataset
Oliver et al. [164] classified mammograms in two categories fatty and dense; they
have achieved 89% accuracy for low density, 94% for high density and the total score
was 91%. Chen et al. [253] and Muštra et al. [167] obtained precision rates of 88%
and 91.6% of correct classified images respectively. The proposed method outperform
the methods presented in (Chen et al. [253] ; Kriti et al. [169]; Muštra et al. [167];
Oliver et al. [164]) excepte for [170]. The methods proposed given in (Kriti et al.
[169];Virmani and Kriti [170]) used a manual selection of region of interest (ROI)
from the central breast region that contains tissue pattern only. This process is not
automatic and time consuming. Instead, our method does not use a manual process
which makes it easier to use.
All the presented results in this chapter are given in the paper ”ATopological Approach
for Mammographic Density Classification Using a Modified Synthetic Minority
Over-Sampling Technique Algorithm” [258].
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Dataset Author(s) Accuracy
(%)

DDSM

Bovis and Singh [159] 71.4
Oliver et al. [161] 47
Bosch et al. [162] 84.75
Oliver et al. [164] 77

The proposed approach 83.25

MIAS

Oliver et al. [164] 91
Chen et al. [253] 88
Muštra et al. [167] 91.6
Kriti et al. [169] 94.4

Virmani and Kriti [170] 96.2
The proposed approach 94.41

Table 4.8: Accuracy comparison of the proposed method with studies in literature using
DDSM and MIAS

During the development phase of the method, we tested it in the international challenge
named the Digital Mammography DREAM (Dialogue for Reverse Engineering Assessment
and Methods), to evaluate it and to make the necessary improvements.
In the following section we will present in detail this challenge and the changes that we have
made on the method after the challenge.

4.5 The Digital Mammography DREAM Challenge

4.5.1 Objective of the challenge

The aim of the Digital Mammography DREAM Challenge is to establish a new quantitative
tool that help to reduce the recall rate for breast cancer screening. In fact, the tool define
the likelihood that a patient can be diagnosed with cancer within one year from the given
screening digital mammography, and this is done without access to previous exams or
historical, clinical and demographic information.
The participants were asked to submit amodel that have the input and the output as following:
Input: A screening mammography exam consisting of several images of both breasts.
Output: Two scores, the left breast score and the right breast score, each between 0 and 1,
That indicating the likelihood that the subject was tissue-diagnosed with cancer within one
year from the given screening exam [4].
The Digital Mammography DREAM Challenge was divided into a Competitive Phase,
followed by a Community (collaborative) Phase.
Competitive phase, had three rounds that allows the teams to adjust their models and a final
round, in which the best teams were selected to the community phase.
Community phase regroup the teams with the highest predictive performance, they work
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together as one team leading by experts in the field, with the goal of building a predictive
model that exceeds the performance of the best method from the competitive phase.
A big funding has been dedicated to the challenge by Laura and John Arnold Foundation,
Coding4Cancer and White House Office of Science and Technology Policy, in which, up
to $1.0 million in prize money was made available to the community phase group based on
successful completion of milestone objectives [4].

4.5.2 Dream Mammography Challenge timeline

In the DREAM Mammography Challenge there were four phases: open phase from
September 2016 to November 2016, leaderboard phase from November 2016 to March 2017
and validation phase from March 2017 to May 2017 phases, which together constitute the
competitive phase. The community phase from July 2017 to November 2017 (see the Figure
4.7).
In the open phase, the teams got the time to exercise the challenge infrastructure before the
competition. The Leaderboard phase was composed of three round and the validation phase
contain the final round of the competitive period where participants submitted their final
models for scoring.

 

Figure 4.7: The timeline of the Dream Mammography Challenge [4]

4.5.3 Dataset

The Group Health Cooperative (funded by the National Cancer Institute of USA, through
Grant No. 5PO1CA154292-05), has provided over 640000 de-identified mammography
images from 86000 exams.
The digital mammography images are provided in DICOM format with different sizes
ranging from 3328x2560 to 5928x4728 pixels. The DICOM header of these images, have
all been de-identified by Group Health, only a binary label was given, that indicate if breast
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cancer was diagnosed in the next 12 months after the exam. The mammography image
data of the challenge, was not available for download by participants. So, both the training
and prediction generation were done on the challenge cloud, given by IBM SoftLayer and
Amazon Web Services. The participants were asked to submit trainable model in the form
of a Docker1 image. The machines in the cloud run the training phase using the training data
and the test phase using trained model and the test data.
Figure 4.8 shows an example of craniocaudal (CC) view and mediolateral oblique (MLO).

Figure 4.8: CC and MLO views of the left and the right breast

4.5.4 The model submitted

The goal of the challenge was to predict the probability that a patient can develop cancers
within 12 months based on mammographic images. Several studies have shown that the
breast density is an important breast cancer risk factor [259][260].
Indeed, they indicate that the increase in the breast density is one of the strongest indicators
of developing breast cancer.
So, to meet the Digital Mammography DREAMChallenge and to evaluate the initial version
of our method, we tested it to automatically discover the development of breast cancer.
We entered to the challenge in the validation phase with the alpha version of the method
[261]. In fact, at this time the Textons extraction step and Features descriptor extraction step
where developed, unfortunately we didn’t have time to test the main hyper parameters of the
method.
In the Textons extraction step (describe in section 4.2.1 ), for each image in the training data,
textons with a size of 200×200 pixels were extracted, then the mean, variance, standard
deviation, skewness, kurtosis, entropy and energy are computed for each texton. Next
k-means was used to cluster the textons, we have taken W=15% that represent the number
of image centers. The obtained centers of all images of the training dataset which have a
frequency higher than 0.02 (F=0.02) are grouped into one set. Finally by using k-means the
most represented centers (Dataset-Centers-Set) of the training dataset were extracted, we

1Docker is a technology for creating portable virtual machines
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have taken C=100.
In Features descriptor extraction step, the Dataset-Centers-Set extracted are used tomap each
input image to a co-occurrence matrix, then we have extracted a set of features. Thence, each
texton in the image is represented by the index of it nearest center of the Dataset-Center-Set.
Thereafter, from the co-occurence table, we have extracted the Haralick and Soh features and
also we have computed the mean, variance, standard deviation, skewness , kurtosis, entropy
and energy from the histogram.
In the test phase, for each input image we have extracted the features vector as it was
described before. Then the Euclidian distance was used to retrieve the most similar images
to the image query based on their descriptors, we have taken d=50 and d=100.

4.5.5 Results

Evaluation criteria: the models were evaluated using the area under the receiver operating
characteristic curve (AUC) as primary metric. AUC measures the overall performance of a
binary classifier [262].

Over 1,100 participants comprising 126 teams from 44 countries entered the challenge,
only 31 teams submitted their methods for final validation in the competitive phase, the
best-performing method achieved the AUC of 0.855. We have submitted two runs to Digital
Mammography DREAM Challenge, in the first one we have used fifty nearest images to
compute the voting and for the secondwe have used one hundred nearest images. For the first
submitted run, AUC score of 0.53 is obtainedmaking themethod rank #22 in the leaderboard,
and the second run we have obtained the AUC score of 0.55 [261].
Table 4.9 shows the result of the final ranking of validation phase.
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Ranking Team AUC
1 Yaroslav Nikulin 0.87
2 Dezso Ribli 0.85
3 Yuanfang Guan 0.84
4 DeepHealth Mammography 0.84
5 Eagle Eye 0.82
6 Lunit-mammo 0.80
7 42 Is the answer 0.79
8 Vivillon 0.78
9 London Mammo 0.73
10 Donuts 0.70
11 UCSF_MammoDeep 0.69
12 Li Shen 0.65
13 DMIS_mammo 0.63
14 FHDO 0.62
15 Deep Blue Lived 0.61
16 Anamaria Vizitiu 0.61
17 NYU Courant-Medicine 0.59
18 Iulian Stroia 0.59
19 SC1 Baseline Method 0.57
20 Dream9 KTH 0.55
21 Alexandre Cadrin-Chênevert 0.54
22 Our team 0.53
23 David Gutman 0.52
24 Clinical Persona 0.52
25 Jcb 0.5
26 NCKUBME 0.5
27 SciLifeLab 0.5
28 TranLabRocks 0.49
29 INESCTEC_VCMI 0.49
30 Wolfpack 0.48
31 Rui Hou 0.44

Table 4.9: The result of the final ranking of validation phase of the competitive period [9]

In this paragraph we will present the top 5 performing methods of the DM challenge,
for further details about the rest of the methods, we refer the reader to read the overview
paper of the challenge titled ” Evaluation of CombinedArtificial Intelligence and Radiologist
Assessment to Interpret Screening Mammograms ” [16].

The best-performingmethod of the challenge was proposed by Yaroslav Nikulin member
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of Therapixel team [263]. The method was based on detecting DCIS cancer that is
characterized by micro-calcifications located in the milk ducts, to that end, a CNN based on
modified VGG Net architecture was used. The modified architecture was composed of two
parts, the first one consist of 12 convolution layers and 6 pooling layers, that aim to produce
a heat map of the image that specify the different type of lesion includes: calcification
benign, calcification malignant, mass benign, mass malignant and the case of healthy. For
this reason, the network is pre-train on labeled patches from DDSM, where the lesions are
annotated. The second part refine the classification to get final cancer probability, therefore
three fully connected layers are added on top of this heat map and trained with image labels.
The method achieve an AUC score of 0.85.

The method proposed by Ribli et al. [264] is based on lesion detection, the method
localize each lesion by a bounding box with a score that represent the degree that a given
lesion is benign or malignant. The score affected to the image is the maximum scores
of all malignant lesions detected on the image. The authors used Faster R-CNN based
on VGG16 to localize lesion on the original image and its horizontally, vertically, and
horizontally-vertically flipped versions, and they take the average of the 4 scores. The
authors trained the model on DDSM and a private dataset from the Department of Radiology
at the Semmelweis University in Budapest, Hungary, because the training dataset of the
DREAM mammography challenge does not have pixel level annotation. With an AUC of
0.85 the method achieved the 2nd place in the challenge.

Yuanfang Guan’s model achieved the 3rd place in the challenge with an AUC of 0.84, the
author trained two types of models. The first model predicts calcification and the number of
calcifications, for this full resolution model is trained on small region that allows detection
of DCIS. The second model trained on low-resolution to predict masses [16].

DeepHealth team developed a two stage training approach, the first one consist of
patch-level classifier and the second is a full-image-level classifier. In the patch-level
classifier two ResNet were used, the first CNN trained on patches extracted from larger
images size for calcification classification, whereas the second CNN trained on patches
extracted from smaller images size for mass classification. In this stage the DDSM dataset
was used to construct a training set of image patches, using the available lesions to generate
labels. The CNNs were used in the second stage to initialize the full-image level classifier,
this model consisted of global average pooling on the convolutional feature maps produced
by each patch CNN, followed by concatenation of the two resulting feature vectors that form
fully-connected classification layer. This model was again trained on DDSM dataset, and
then fine-tuned on theDREAM images. DeepHealth’smodel achieved the 4th best performer
from 31 models with an AUC of 0.84 [16].

The team Eagle Eye guided by Mengling Feng [265], proposed a method that used
patches of the full mammogram, this help to reduced the size of the input files while
maintaining the resolution required to identify lesion in the mammogram. Then a heat map
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containing abnormal lesions are constructed using these patches. The risk score for cancer
was calculated based on the number of the lesions found on the heat map. The team achieved
the 5th place in the challenge with AUC of 0.82.

4.5.6 Discussion

The top five performing methods of the challenge are based on deep learning, in addition
they are composed of two steps. In first one, the lesions (microcalcification and masses ) are
detected, to that end the patches (textons) of the image are used. In second step, the methods
gave the likelihood for each image to develop a cancer within one year, this was conducted
by using the result obtained of the first step.
Inasmuch as the training dataset of the challenge didn’t contain spatially annotated lesions
information, to train these methods they used external datasets like DDSM and the models
were refined on the training dataset of the challenge.
Comeback now to the proposed method, initially we have developed it to classify the breast
density, we supposed that this approach based on a statistical analysis of breast density can
discover the development of breast cancer.

There were two common points between the proposed method and the five top
performing challenge method:
The first one, is the use of textons (patches) in order to extract information, because doing
the processing directly on the complete image does not give a good prediction score, we
mention here that the size of the images were from 3328x2560 to 5928x4728 pixels.
The second point, was to extract the overall relationship between the image patches.
In our case we have used the co-occurrence matrix to extract this relation.

As a point of difference, to solve the problem of imbalance in the training dataset, we
used an equal number of images between the class of cancer and non-cancer cases, and as the
number of cancer cases has been very limited, the training dataset obtained has been small.
Contrary to the five top performing challenge method, where they use image data
augmentation (the method of deep learning) to make the balance.
The difference of 0.3 in AUC was obtained between the proposed method and the five
best methods of the challenge. We attribute this difference to the effectiveness of the deep
learning methods, these methods which never fail to give good results in medical field. Also
to the strategy of the balancing that we have used.

After the challenge we have proposed the modified SMOTE algorithm (see section 4.2.3)
for balancing the training dataset and we have used Random forest classifier instead of
Euclidian distance in the final version of the method. This challenge was a good experience
for us, the modification that we brought to our method was a consequence from the result
obtained in the challenge.
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4.6 Conclusion

In this chapter, we have tackled the problem of breast tissue classification, while considering
the problem of non-equilibrated dataset.
The first contribution is related to the breast tissue classification. We have modeled the
images according to their tissue densities correlation. We have also demonstrated the
successful application of textons distribution for the two classes as well as multiclasses breast
tissue classification.
We also presented the evaluation of our initial version of the method allowing to predict the
probability that a patient can develop cancers within the Digital Mammography DREAM
Challenge, what generated the second contribution. In which we have addressed to the
equilibration issue by proposing an improved version of the SMOTE approach, the latter
has shown a great efficiency.
We have also proved that the use of a balanced dataset improves the results of classification.

98



Chapter 5

Histopathological image classification

5.1 Introduction

Breast cancer diagnosis pass though the step of detection by using mammography or
ultrasound imaging, in the case of cancer detection, the diagnosis is then followed by breast
tissue biopsy.

In the part of breast cancer diagnosis, in this thesis, we wanted to give an integrated
methods to aid the diagnostic of breast cancer. In which, in the precedent chapter, we
concentrated on breast density classification that is one of the criterion used by radiologist
to diagnosis breast cancer. As is known, the histopathological analysis is the main reference
to determine the existence of breast cancer, this makes histopathological analysis very
important task in the breast cancer diagnostic.
Thence, We had to study the histopathological images, indeed the presented work in this
chapter is based on the use of the most recent artificial intelligence methods that are deep
learning, to classify breast cancer histology images.

The next section is dedicate to give a general overview on deep learning methods, then
we present the proposed method for breast cancer classification using histopathological
images, after that we will give it evaluation on International Conference on Image Analysis
and Recognition (ICIAR) Grand Challenge on BreAst Cancer Histology image (BACH)
followed by discussion section.

5.2 Deep learning

Since the beginning of computer development, the Artificial Intelligence (AI) theme was
considered as one of the exclusive subject in computer science. In fact, in 1950 Alan
Turing [266] discussed how to build intelligent machines that can simulate human reasoning
and how can be able to do intelligent things, Alan Turing proposed the Turing Test to test
machines intelligence 1.

1Machines were capable of thinking, if it were able to make small talk with another human and understand
the context of the conversation.
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The main objective of AI is to provide a set of algorithms that can be used to solve problems
that humans perform intuitively, but are otherwise very challenging for machines. Artificial
neural network (ANN) methods are a subfield of artificial intelligence. In which, they were
inspired by the neural connections in our nervous system, to imitate the human reasoning.
As it was described by Soni [267], the word “neural” is the adjective form of “neuron”, and
“network” denotes a graph-like structure; therefore, “Artificial Neural Network”. ANN has
gone through different incarnations since 1943, knowing today by deep learning methods.
In the following section we will introduce the fundamentals notions of ANN followed by the
basics concept of deep learning methods.

5.2.1 Neural Networks Fundamentals

The researches in neurocomputing started early, in 1943 the neuroscientist Warren
MuCulloch and the logicianWalter Pitts, published the paper ”A logical calculus of the ideas
immanent in nervous activity”, in which they proposed the first artificial neuron allowing to
compute arithmetic and logical functions [268].
In addition, the book ”The Computer and the Brain” of John von Neumann [269], published
in 1958 one year after his death, contribute to pave theway for neurocomputing development.
The next paragraph, we will introduce the anatomy and physiology of biological neurons,
then the analogy of the biological neuron with the artificial neuron is presented in the
Artificial Neural Networks paragraph. Finally, we will end this section by given the
historical passage of ANNs methods towards deep learning methods.

A. Biological neurons
Our brains are composed of billion of neurons, each connected to about 10,000 other
neurons. The neuron contain three principals units: cell body (called also soma),
dendrites, axon and synapses cells (see the Figure 5.1).
The dendrites and axon connect the neuron to other neurons. In fact, the axon receives
the impulsion, in the form of an electric signal, from the cell body and carries them
away to the dendrites of neighboring neuron by using the synapses cells (situated at
the end of the axon) that allow to make connection between two neurons. The neuron
can be either activates or not, this means that neuron activation is a binary operation.
If these electrical inputs are sufficiently powerful to fire the neuron, then the neuron
activates and transmits the signal along its axon, passing it along to the dendrites of
other neurons. Thus allow to continuing the process of passing the message along.

B. Artificial Neural Networks
The artificial neural networks is represented as a directed graph containing a set of
nodes and a set of connections. The node receives inputs signal as stimuli from other
nodes in the graph, it compute a simple linear threshold function and transmits the
output signal forward to another node only when the signal is stronger than the node’s
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Figure 5.1: Anatomy of a neuron

threshold limit (also called bias b), the resulting signal is labeled by a weight allowing
to precise the extent to which the signal is amplified (w>0) or diminished (w<0).

The analogy of the biological neuron and the artificial neuron is that the axons and
dendrites represent by the connections between nodes, the synapses represent the
connection weights, and the activity in the soma approximates node’s computation.
According to Zupan and Gasteiger [270], Both the biological network and ANN learn.
We can see in the Figure 20, that the Net input is computed as the inner product of the
input signals (xi) impinging on the neuron and their strengths (wi). For n signals, the
activation function is expressed as:

y =

{
1, if

∑n
i=1wixi ≥ b

0, if
∑n

i=1 wixi < b
(5.1)

1 indicate ”ON” and 0 indicate ”OFF”.

C. The Perceptron Algorithm
The neural network proposed by McCulloch and Pitts know also by linear threshold
gate was a binary model, In which its input and output are binary values. This neural
network can do only a binary classification.
In the linear threshold gate the weight values are (0,1) or (-1,1) and the output Y of
the model is computed as following:

Y = f(
n∑

i=1

xi ∗ wi) (5.2)

Where f is a linear step function at threshold T. Although McCulloch and Pitts
proposed a formal model, yet, the linear threshold gate was limited by using a manual
values of the weight and threshold.
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Figure 5.2: Biological and artificial neuron in interaction with other neurons

More flexible model called Perceptron, was proposed by the American psychologist
Frank Rosenblatt in his article ”A Probabilistic Model for Information Storage and
Organization in the Brain [271] in 1958. This model could automatically learn
the weights by using Hebbian learning rule of adjusting weights that are required to
classify an input. The single layer perceptron proposed by Rosenblatt was the simplest
type of artificial neural networks that can only classify linearly separable cases, based
on a threshold function

Y = f(
n∑

i=1

xi ∗ wi) + b) (5.3)

Where b represents the threshold (bias) value.
The improvements given Rosenblatt, made perceptron researches, at this era, more
attracted by the scientific community.
However, the book of Minsky and Papert ”Perceptrons: an introduction to
computational geometry [272] in 1969, contribute to unveiled the limitation of the
perceptron, by demonstrating that the perceptron can’t separate nonlinear data points.
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This publication caused a stunted growth of neural network researches where they
stagnated for nearly a decade.
The illuminated year of ANNs was in 1986, in which Rumelhart et al. [273] introduce
in their paper ”Learning representations by back-propagating errors” a new learning
procedure of ANN by using back-propagation algorithm.
The back-propagation algorithm enabledmulti-layer ANN to learn nonlinear functions
and solve nonlinear problems (like XOR) by using nonlinear activation functions.
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Figure 5.3: Neural Mode with one hidden layer

The back-propagation
The back-propagation was introduced in 1960 by the professor of Aerospace Henry
J.Kelley [274] in his paper ” Gradient Theory of Optimal Flight Paths”.
In 1962 , Stuart Dreyfus [275] proposed in the article ”The numerical solution
of variational problems” a simplification of back-propagation computation from
dynamic programming to the chain rule.
In 1970, Seppo Linnainmaa [276], introduced the automatic differentiation (AD)
method that compute the derivative of a differentiable composite function for
backpropagation algorithm and he implements the computer code. Since the
integration of the back-propagation in learning process of ANN by Rumelhart et al.
[273] in 1986, Back-propagation algorithm represent one of the cornerstone in ANN.
This algorithm is composed of two steps:

1. The forward pass: inputs are passed through the network and the output
predictions are obtained.

2. The backward pass: the gradient of the loss function at the final layer is
computed and it use to recursively apply the chain rule to update the weights in
the network.
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D. From ANN to deep learning
In 1971, the Ukrainian Alexey Grigoryevich Ivakhnenko [277] used the methods of
inductive statistical learning known by Group Method of Data Handling (GMDH)
to creates 8-layer Deep neural network. Where in each layer, they selected the best
features through a polynomial activation functions and forwarded them to the next
layer. 9 years after, the Japanese computer scientist Kunihiko Fukushima [278]
proposed the first convolutional neural network architecture which could recognize
visual patterns named Neocognitron in 1980. In Kunihiko Fukushima’s paper [278]
”Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern
Recognition Unaffected by Shift in Position”; he introduce the convolutional and
pooling layers that still used until today. Neocognitron was trained by using a
reinforcement scheme. In 1989, Yann LeCun [279] used backpropagation to train
convolutional neural network to classify handwritten digits; his model was the
cornerstone of the modern computer vision foundation. Yann LeCun ’s system was
used to read handwritten checks in the United States.
A new problem appeared in the growth road way of deep learning methods, discovered
by Sepp Hochreiter in 1991 [280], is the vanishing gradient which can make the
learning of a big deep neural network methods almost impractical. In fact, the early
layers could not be learned because the learning signal can’t reach these layers.
Two solutions where proposed for this issue. The first one, proposed by Schmidhuber
in 1992 [281], use a pretraining approaches that were developed for recurrent neural
networks (RNN); in these approaches the weights layers are initialized in unsupervised
learning layer-by-layer; which implies that the weights in early layers only need a
slightly adjustment during supervised learning to achieve good results.
The second solution proposed by Sepp Hochreiter and Jürgen Schmidhuber in 1997
[282] is the approach of long short-term memory (LSTM). In 2008, a new idea
contribute to the advancement of deep neural networks is the used of GPUs for training
and testing. Given by Andrew NG’s group in Stanford university. The use of GPUs
allowed deep neural networks to train efficiently on huge volume of data. The most
important solution of the vanishing gradient problem, was introduced by Glorot et al.
in 2011 [283] in their paper ”Deep Sparse Rectifier Neural Networks” is the use of
Rectified Linear Unit layer (ReLU) activation function.
The deep learning boom globally was in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC 2012). Where Alex Krizhevsky et al. [284] proposed AlexNet
with a GPU implementation, that won the challenge with a huge jump over the other
methods. Since 2012, the researches in deep learning accelerated rapidly, where
many startups and research teams are created and supported by great companies and
universities.
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5.3 Convolutional Neural Networks (ConvNets/CNNs)

AConvolutional Neural Network (CNN) is a Deep Learning algorithm that used to recognize
visual patterns directly from pixel images. ConvNet represent one of the advancements
methods in Computer Vision.
The Neocognitron, proposed by Fukushima in 1980 [278] was one of the first CNN that
recognize visual patterns such as handwritten characters.
Few years later, LeCuN et al. [285] proposed an improved version of his ConvNet
architecture [286] called LeNet used to classify characters in a document.
The cornerstone of CNN is the convolution. The convolution is a mathematical operation
on two functions that measure the overlap as they interact; this operation allows the CNN to
learn the filters that are used to extract the features of the image.
The automatic features process make CNN most used and advanced compared to other
computer vision methods, where the features are hand-engineered.

5.3.1 Convolutional Neural Network principle

ConvNet are based on the concept of artificial ANNs, where they are made up of neurons
that have learnable weights and biases. However unlike the fully connected (FC) layers used
in neural networks where each neuron in the input layer is connected to every output neuron
in the next layer. The CNN use FC only at the last layers. Another difference point is that
ConvNet receive an image as input.
The CNN extract the features of the image by assign the importance of learnable weights
to salient objects be able to classify the images. Figure 5.4 shows a general schema of a
ConvNet.

 Input 
Feature maps 

Feature maps 
Feature maps 

Convolutions Convolutions Fully connected 

output 

Figure 5.4: Convolutional Neural Networks schema
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5.3.2 Layer types in Convolutional Neural Network

ConvNet is a sequence of layers, that are arranged in a 3D volume: width, height, and depth.
In the first layer, the depth is equal to the number of image channels usually 3 (RGB), in
more advanced layers the depth is equal to the number of filters applied.
Each layer transforms one volume of activations to another through a differentiable function.
There are many layer types used to build CNNs, the most used are:
Convolutional (CONV)
Rectified Linear Unit layer (RELU)
Pooling (POOL)
Fully-connected (FC)
Batch normalization (BN)
Dropout (DO)
The next paragraph we describe each layer type separately.

• Convolutional layer: computes the convolution between the filters (whose
parameters need to be learned ) and the local regions of the input that are connected
to them.

• Rectified Linear Unit layer: this layer applies an activation function to the input of
the layer, thresholding at zero like max (0,x). It allows to add non-linearity to the
network making him more generalized.

• Pooling layer: this layer applies downsampling operation along the width and the
height of layer’s volume. It represent a method to reduce the size of an input and it is
common to insert pooling layer between consecutive convolution layers [287].

• Fully-connected (FC) layer: in this layer all activation are fully connected to the
previous layers. It always placed at the end of the network. It’s common to use one or
two FC layers prior to applying the softmax classifier [287].

• Batch normalization (BN) layer: this layer normalize the given input volume before
passing it into the next layer in the network.

• Dropout (DO) layer: this is a regularization layer, which it randomly disconnect
inputs from the preceding layer with a probability p, this allow to prevent overfitting.

From all the above layers types, the CONV, FC and BN are the only layers that contain
parameters that are learned during the training process. Pooling layers have an impact on
the spatial dimensions of an image as it moves through a CNN.

106



Chapter 5 Histopathological image classification

5.3.3 The CNNs architectures

In this section, we will present the first ones CNNs such as LeNet-5 and AlexNet, then
we will give a general overview of the CNNs architectures that have been pretrained on
ImageNet dataset and shared by Keras deep learning librarie, then we finish by introducing
the two recent CNNs.
We refer the readers interested to the CNNs schema to see the Appendix.

 

 

 

 

  

Inception-V1 
VGG 

1998 2012 2013 2014 2015 2016 2017 2018 2019 2020 

LeNet-5 

AlexNet 
Inception-V3 

ResNet 

Xception       
DenseNet 

MobileNet V1 

MobileNet V2 

EfficientNet  

Noisy Student  

Figure 5.5: Timing Diagram of CNNs development

A. LeNet-5
The LeNet developed by LeCun [285] for Optical Character Recognition is a small
and simple architectures. This architecture contain: 2 convolutional layers, 2
The average-pooling layers and 3 fully-connected layers. Du to it straightforward
composition, LeNet represent the starting point to teach the CNNs concepts.

B. AlexNet
Developed by Krizhevsky member of the Geoffrey Hinton’s group [284]. This
architecture won the 2012 ImageNet classification challenge with a huge difference
compared to the othermethods; that was contribute tomake the deep learning approach
in the shine era. AlexNet contain 5 convolutional layers with Rectified Linear Units
(ReLUs) as activation functions, 3 max pooling layers and 3 fully-connected layers.

C. VGG
The Visual Geometry Group (VGG) of Oxford university [288] developed VGG
architecture of 16 layers (VGG-16) and 19 layers (VGG-19). The aim of the group
was to make up a deeper networks by using successive convolution layers that used
only small filters of size (3×3). VGG-16 has 13 convolutional and 3 fully-connected
layers. VGG-19 has 16 convolutional and 3 fully-connected layers.
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D. Inception-v1(GoogleNet)
It was developed by Christian Szegedy et al. [289] a team at Google. The team design
an architecture that are depth but it keep the computation constant. Where they used
stack modules called ”Inception module” instead of stacking convolutional layers,
the architecture contains also two auxiliary classifiers. The Inception module contain
different filters of size 1×1, 3×3, 5×5 to captures different features, followed by filter
Concat that allows to concatenate the filters results. The filters with size 1×1 is used to
reduce the dimensionality. The auxiliary classifiers are used in the training process to
keep the gradient signal propagated back. In total, Inception-1 architecture contained
22 layer but with only 4 million parameters compared to 60 million parameters in
AlexNet.

E. Inception-v3
Christian Szegedy et al. [290] proposed two improved version of Inception-v1
named Inception-v2, Inception-v3. The main hallmark in Inception-v2 is to scale up
networks by adding factorized convolutions while using an efficient computation. In
fact, they factorising n×n convolutions into asymmetric convolutions: 1×n and n×1
convolutions, and 5×5 convolution is factorised to two 3×3 convolution operations.
This version also tackled the problem of the representational bottleneck (it manifest
by the dimensions reduction of the input that drastically cause loss of information), by
using an efficient grid size reduction, where the filter banks were made wider instead
of deeper. In addition to the factorized 7x7 convolutions, the regularization solution
were introduced in Inception-v3 includes: RMSProp optimizer, batch normalisation
in the auxillary classifiers.

F. ResNet
The above architectures are based on the increasing number of layers to have a good
precision, however this can conduct to the standard problem of vanishing gradient that
make the accuracy saturated. He et al. [291] from Microsoft treated this problems
by designing ResNet architecture that use skip connections (named also residuals).
In fact, ResNet avoid the training difficulty of deeper neural networks making them
more depth and less complex. In the traditional connection between layers in CNNs,
each layers is connected to its previous, obverse to this, the skip connections allows
the layer to be connected to layers behind the previous layer.

G. Xception
François Chollet from Google [292] proposed eXtreme Inception architecture named
Xception architecture, where Inception modules have been replaced with modified
depthwise separable convolutions.
Depthwise separable convolutions was introduced by Laurent Sifre in 2014 [293]. Is a
depthwise convolution followed by a pointwise convolution. Depthwise convolution
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is the channel-wise convolution, and pointwise convolution is 1×1 convolution.
Depthwise separable convolutions help to reduce the computational complexity.
Xception architecture used pointwise convolution followed by a depthwise
convolution. This modification is inspired from the inception module. In fact,
the Inception module consists to independently look at cross-channel correlations
and spatial correlations. Where, the cross-channel correlations are captured by 1×1
convolutions, then the spatial correlations within each channel are captured with
convolutions of 3×3 and 5×5 [290]. So, Xception perform 1×1 convolution to every
channel, then it perform a 3×3 convolution to each output. That represent a linear
stack of depthwise separable convolution layers, Xception contain also a residual
connections.

H. DenseNet
The Dense Convolutional Network (DenseNet), introduce by Huang et al. [294] is
based on the idea of skip connection used in ResNet, yet it connects each layer to
every other layer in the network, this kind of connection is named Dense connectivity.
DenseNets minimize the vanishing-gradient problem, and strengthen propagation and
reuse features. In Densely Connected Convolutional Networks paper of Huang et
al. [294] introduce DenseNet-121, DenseNet-169, DenseNet-201 and DenseNet-264.
Where each architecture is composed of Dense Block and Transition Layer.

I. MobileNet-v1
Developed by Howard et al. [295] from Google, MobileNets is a light architecture
that is designated to mobile and embedded vision applications. Its lightness is related
to the use of depthwise separable convolutions instead of full convolution.
Two hyper-parameters are introduced in MobileNet, that make this architecture more
flexible, these parameters are Width Multiplier ” α” and Resolution Multiplier ”ρ”.
The role of α is to thin a network uniformly at each layer, where the number of input
channels M becomes αM and the number of output channels N becomes αN.
ρ is used to set the input resolution, where ρ ∈ (0, 1] that can make the input resolution
of the network 224, 192, 160 or 128 [295].

J. MobileNet-v2
Sandler et al. [296] introduce the second version of MobileNet by proposing a new
module to overcome the drawback of MobileNet-v1. The idea of MobileNet-v1
was to find tradeoff between performance and computation. So the expensive full
convolutions were replaced with the cheaper depthwise separable convolutions, thus
resulting a low-dimension tensors that conduct to reduce the number of computations.
Nevertheless, when a convolution is applied to low-dimensional tensor, it won’t be
able to extract a lot of information. Hence, the invented of the bottleneck residual
block module. This module first expanded the input to high dimension then it used
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depthwise convolution to extract the features, finally it apply a linear convolution to
project the features to a low dimensional space, whence name bottleneck. In this
module there is also residual connection. Figure 5.6 show an illustration of this
module.
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Figure 5.6: Mobile inverted bottleneck

K. EfficientNet
In the state-of-the-art CNNs development, scaling the architectures by increasing
depth, with or image resolution was a conventional practice to improve model
accuracy. However such CNNs scale up method using the three dimensions
simultaneous was not defined before the work of Tan and Le [297] in 2019.
In fact, the authors define a new scaling method to scale up CNNs in order to improve
model performance. In this method the authors used compound coefficient φ to
uniformly scale the hyper parameters include depth, width and resolution (depth: d
= αϕ, width: w = βϕ, resolution: r = γϕ). α, β and γ are constants determined by a
small grid search with the constraint that α β2·γ2 ≈ 2. The authors also introduce a new
CNN called EfficientNet, this architecture is composed of mobile inverted bottleneck
(MBConv).
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L. Noisy Student
In 2020, Noisy Student was introduced by Xie et al. [298] of Google research team.
This architecture is based on the concept of semi supervised Learning, where unlabeled
images are used to improve the ImageNet accuracy.
The authors used two EfficientNet models, one is considered as teacher and the second
as student. First, the teacher is training on ImageNet images, then is used to predict
pseudo labels on 300M unlabeled images. It pursue by the EfficientNet student
training on both dataset (ImageNet and 300M pseudo labeled images given by the
teacher). This two steps are iterate a few times by treating the student as a teacher to
relabel the unlabeled data.
The authors used the name Noisy Student, because in the process of student learning
they used input noise and model noise by using dropout, data augmentation and
stochastic depth, this to push the generalization of the student.

In the next section we will present the CNNs chosen in our method for the
histopathological images classification.
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5.4 Method

We propose a classification method based on a consensus oriented by three convolutional
neural network architectures (CNNs): InceptionV3, ResNet50 and MobileNet.
The consensus is giving by Hard Voting as described in Figure 5.7. Hard voting is the
simplest case of majority voting. Here, we predict the class label ŷ via majority (plurality)
voting of each CNN Cj:

y = mode {C1(x), C2(x), ..., Cm(x)} (5.4)

Assuming that we combine three CNNs that classify a training sample as follows:
• CNN C1 -> class 2
• CNN C2 -> class 2
• CNN C3 -> class 1

y = mode {2, 2, 1} = 2 (5.5)

Via majority vote, we classify the sample as ”class 2.”

 Training set 

New data InceptionV3 ResNet50 MobileNet 

C2 C2 C1 

Voting 

C2 
Final prediction 

Predictions 

CNNs Models 

Figure 5.7: The steps of the propose approach
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5.5 Experimental results

5.5.1 Dataset

Taking into account the large number of images in BreakHis dataset [5] and it availability,
we have chosen it for the evaluations.
The BreaKHis database contains microscopic biopsy images of benign and malignant breast
tumors. Samples are generated from breast tissue biopsy slides, stained with Hematoxylin
and Eosin (H&E).
H&E is one of the principal stains in histology, the hematoxylin stains cell nuclei into blue,
and Eosin stains cytoplasm, connective tissue and other extracellular substances into red or
pink.
The database is composed of 7909 images divided into benign and malignant tumors. This
dataset provides five training-testing splits, with each split using 70% of images for training
and 30% for testing [5].

Figure 5.8: Slide of breastmalignant tumor (stainedwithHE) seen in differentmagnification
factors: (a) 40×, (b) 100×, (c) 200×, and (d) 400× [5].
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5.5.2 Results

First we have tested each CNN architecture separately, we notice that all CNNs are initialized
with the pre-trained imageNet weights. And we have retraining all the network using 30
epochs. The measures considered for the evaluation of the experiments are performed on
the basis of accuracy at image level and patient level as was used in [195].
Let:
Np be the number of total patients
Nrp are the images correctly classified
Nnp be the number of cancer images of patient P
Patient score can be defined as:

Patient_Score =
Nrp

Nnp

(5.6)

Then the global patient recognition rate is:

Patient_Accuracy =

∑
Patient_Score

Np

(5.7)

Second, we evaluated the recognition rate at the image level.
Let:
Nr are the histopathological images correctly classified
Nall be the number of cancer images of testing set
The recognition rate at the image level is:

Image_Accuracy =
Nr

Nall

(5.8)

Figure 5.9 and Figure 5.10 show the accuracy result of InceptionV3, MobileNet and
ResNet50.
MobileNet outperform the two other CNNs at patient level and in themajoritymagnifications
at image level.
On the other hand, to select the good combination of CNNs a set of experiment are conducted,
we remark that the combination of all CNNs give the best results as shown in Figure 5.11
and Figure 5.12.
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Figure 5.9: The accuracy at image level
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Figure 5.10: The accuracy at patient level
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Figure 5.11: The accuracy given at image level for the four combinations
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Figure 5.12: The accuracy given at patient level for the four combinations
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5.5.3 Comparative study of related works

In this section, we make a comparison with related works given in the state of the art chapter
(section 2.4). Table 5.1 summarizes the methods and their accuracies.

Authors Methods
Image level Patient level

Magnification
AVG

Magnification
AVG

40× 100× 200× 400× 40× 100× 200× 400×
Spanhol et
al. [5]

PFTAS+
QDA

- - - - - 83.8 82.1 84.2 82 83.02

Spanhol et
al. [195]

Proposed
CNN

89.65 85.0 82.8 80.2 84.4 88.6 84.5 83.3 81.7 84.52

Spanhol et
al. [195]

Combining
multi

classifier
85.6 83.5 82.7 80.7 83.12 90.0 88.4 84.6 86.1 87.27

Spanhol et
al. [192]

Deep
features

84.6 84.8 84.2 81.6 83.8 84.0 83.9 86.3 82.1 84.07

Benhammou
et al. [205]

Inception
V3

86.5 83.2 85.4 80.3 83.85 87.6 82.4 86.1 79.7 83.95

Bayramoglu
et al. [196]

CNN using
multi

magnification
- - - - - 83.08 83.17 84.63 82.10 83.24

Sun and
Binder [197]

Google
LeNet

87.59 85.67 89.86 84.12 86.81 - - - - -

Song et
al. [198]

Fisher Vector
+VGG
model

87.0 86.2 85.2 82.9 85.32 90.0 88.9 86.9 86.3 88.02

Song et
al. [206]

Fisher Vector
+VGG19+
Component
Selective
Encoding

87.5 88.6 85.5 85.0 86.65 88.5 90.8 89.2 89.2 89.42

Sanchez-
Morillo et
al. [207]

KAZE
Features

85.9 80.4 78.1 71.1 78.87 86.4 81.6 77.8 72.9 79.67

Han et
al. [199]

CSDCNN
With the

modification
of the loss
function

95.8 96.9 96.7 94.9 96.07 97.1 95.7 96.5 95.7 96.25

Al Nahid
et al. [210]

CNN+Mean
shift

90 85 91 90 89 - - - - -
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Samah et
al. [175]

Pyramid-
structure
Wavelet

- - - 85.62 85.62 - - - - -

Nejad et
al. [200]

Proosed
CNN

77.5 - - - 77.5 - - - - -

Sharma et
al. [201]

PFTAS+ RF 81.7 81.2 80.7 81.5 81.27 - - - - -

Sudharshan
et al. [211]

MIL+CNN 87.8 85.6 80.8 82.9 84.27 92.1 89.1 87.2 82.7 87.77

Zhi et
al. [202]

Proposed
CNN

91.28 91.45 88.57 84.58 88.97 - - - - -

Kumar and
Rao [208]

Proosed
CNN

82 86.2 84.6 84 84.2 83 81 84.2 81 81.66

Cascianelli
et al. [203]

VGG+
Reduction
strategies

84 88.2 87 81.2 81.27 - - - - -

Alirezazadeh
et al. [209]

Adapation+
PFTAS+
QDA

- - - - - 89.1 87.3 88.4 86.6 87.85

Nejad et
al. [204]

VGG+SVM 80 80 - - - - -

Zhu et
al. [212]

Hybrid
CNN

85.7 84.2 84.9 80.1 83.72 85.2 83.5 84.1 79.3 83.02

Nedjar et
al. [299]

Inceptionv3+
ResNet-50+
MobileNet

89.87 88.05 89.42 86.23 88.39 91.06 88.96 89.01 86.21 88.81

Table 5.1: Accuracy comparison of the proposed method with studies in literature

Different approaches were developed and tested to predict malignant breast tumor from
histopathological images.
We can classify these approaches according to three propositions:
• The use of Hand craft features versus CNNs approaches
• The use of patches versus images as input to the CNN
• The use of Single CNN versus multiple CNNs

We start by the first proposition, the works based on the traditional approaches using the
hand craft features with machine learning are [5] [207] [175] [201] obtained less accuracy
compared to the works based on CNN methods [195] [197] [206] [199].
The strategy used by Alirezazadeh et al. [209] that used an adaptation method to overcome
the variance of hand craft features in the histopathological images achieved a remarkable
performance compared to the traditional approaches.
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In other hand, the single layer CNN proposed by Nejad et al. [200] proved that a CNN
with just one hidden layer can gave a result that exceed 70%. This is due to that the hand
craft features are very hard to define, because they were selected based on domain specific
knowledge, however, the CNN beat this problem by making the computer able to learn the
salient features.

Secondly, the use of patches or images as input to the CNN have an impact on prediction,
among the works that used the patch, we quote the works of [195] [202]. The statistical
analysis given Spanhol et al. [195] showed that the biggest size of patch gave a good
prediction, this result strengthens the idea of Sun and Binder [197] which they sad ”The
large size of image we use for training, the better performance we get”. They augmented
their saying by the fact that the tumor descriptor that discriminate between malignant and
benignant should be extracted from a large number of nuclei.
In other hand, the authors that used the patches as input to the CNN justify their chose to
the relevant nuclei features (color and shape) that can be captured using a small regions of
interest to differentiate between tumors type.
In our proposed method we have used the full size of images. We found that the images
contain mixed region with malignant, benignant and normal tissue, as the dataset contain the
annotation only at the image level, the extracted patches will receive the class of the image,
this can cause problem. Given a malignant image when a patch is extracted from this image
and it contain only the normal tissue, it will be considered as malignant because it belong to
malignant image.
A compromised solution was proposed recently by Zhu et al. [212] which they used both
concepts of the full image and the patches by using two separately branch in the CNN.
This approach allows to get all tissue structure information from the nuclei features to the
organization of several nuclei in the tissue.
However, even if the CNN capture the full image information, the obtained results were less
compared to the methods that used the full image. In fact, from the best four methods at the
image level accuracy three of them, were used the full image as input to the CNN [199] [210]
[299]. As well, at the patient level accuracy the best four methods used the full image [199]
[206] [299] and [198]. The method of Han et al. [199] outperform all the presented methods,
where they proposed a new loss function that take into account the relation of the intra-class
and inter-class instances, this function allows the model to be more general. In addition, we
remark that only the method proposed by Han et al. [199] and our method [299], are in the
four best results both at image level and patient level.

Finally, from the CNNs approaches we distingue the works that used single CNN [205]
[206] [208] against three works based on combined CNNs [195] [212] and our proposed
method.
The combined methods were based on different ideas, Spanhol et al. [195] used four CNNs
trained on different patches size, their idea was to get image class prediction using different
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parts information of a given image. The second method proposed by Zhu et al. [212] used
the bagging combination approach to reinforce the generalization of their model, where the
same model are duplicated and trained with different data and the final result is obtained by
using the vote.
In the model that we have proposed, we combine three different model namely InceptionV3,
ResNet50 and MobileNet. Our supposition is based on the fact that each CNN have it
capacity and methodology to extract the salient features from the image. The goal was to
give a confidant prediction score based on all different features. For this, we have applied
the vote on the final prediction given by each CNN.
As the three combination used different strategies to improve the accuracy, the proposed
strategy overcome the two previous method on the accuracy at the image level with a gap
around 5%, wherewe got 88.39% compared to 83.12% and 83.72% given by [195] and [212].
At the patient level, we obtained 88.81% compared to 87.27% [195] and 83.02% [212].
The presented comparison was based on BreaKhis dataset. In order to validate the proposed
approach on another dataset, we have participated to BACH challenge 2018. We will give
more detail about it in the next section.

5.6 BACH challenge

5.6.1 Objective of the challenge

The ICIAR 2018 Grand Challenge on BreAst Cancer Histology image (BACH) was
composed of two mains goals. The part A of the challenge consists of automatically
classifying Haemotoxylin and Eosin (H&E) stained breast histology microscopy images in
four classes: normal, benign, in situ carcinoma and invasive carcinoma. The part B consists
of performing pixel-wise labelling of whole-slide images in the same four classes [11].

We participated to the part A of the challenge, where the participants were asked to
submit CSV file containing the class prediction of all images in the test dataset, the assigning
prediction can be 0 , 1, 2 or 3 for Normal, Benign, in situ and Invasive, respectively.

5.6.2 Dataset

The dataset was composed of Hematoxylin and eosin (H&E) stained breast histology images
with .tiff format of size 2048 x1536 pixels.
The microscopy images were annotated as normal, benign, in situ carcinoma or invasive
carcinoma according to the predominant cancer type in each image.
The training dataset contains a total of 400microscopy images, distributed fairly between the
four classes, 100 images for each class. The test dataset contains a total of 100 microscopy
images.
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5.6.3 The model submitted

The model that we have submitted is the same model that we have presented above.

5.6.4 Results

Evaluation criteria
The performance on histology images is evaluated on the basis of the overall prediction
accuracy (the ratio between correct samples and the total number of evaluated images).
The challenge received a total of 51 submissions, out of 677 registrations and the
performance of each model was computed by the challenge organizers.
We obtained an accuracy of 81%, this allowed us to be in the 10 top performing challenge
methods. Four experts have classified test images, Expert 1 and Expert 3 are breast cancer
specialists, Expert 2 and Expert 4 are pathologists.
The organizers of challenge [10] mention that Expert 1 contributed in the construction of
dataset challenge, where the pathologists in this phase have used other information (of other
region and Immunohistochemistry (IHC) analysis2) to annotate the images.
Table 5.2 and 5.3 present the final results of the submission models to BACH challenge. We
remind the readers that the top performing methods are detailed in the state of the art chapter.

2Immunohistochemistry (IHC) analysis is a method for demonstrating the presence and location of proteins
in tissue.
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Team Authors Country Approach
Accuracy

(%)

216
Chennamsetty
et al. [225]

India
ResNet-101;
DenseNet-

161
87

248 Kwok [226] Hong Kong SAR
Inception-
ResNet-v2

87

1
Brancati et al.

[227]
Italy ResNet-34, 50, 101 86

16
Marami et al.

[228]
USA Inception-v3 84

54
Kohl et
al. [229]

UK|Germany DenseNet-161 83

157
Wang

et al. [230]
China VGG-16 83

186 Steinfeldt et al. - Xception 81

19
Koné and

Boulmane [231]
Morocco ResNeXt50 81

36
Nedjar et

al.
Algeria|Belgium

Inceptionv3,ResNet-50,
MobileNet

81

412 Ravi et al. India ResNet-152 80

22
Wang et
al. [300]

USA VGG-16 79

425
Cao et
al. [301]

Canada|France

PTFAS,GLCM,
ResNet-18, ResNeXt,
NASNet-A,ResNet-152,

VGG16, Random
Forest SVM

79

60 Seo et al. Korea
ResNet, Inception- V3,

Random Forests
79

370 Sidhom et al. USA ResNet-50 78

242
Guo et
al. [302]

China GoogLeNet 77

61 Ranjan et al. - AlexNet 77

73
Mahbod et
al. [303]

Austria|Sweden ResNet-50, ResNet-101 77

18
Ferreira et
al. [304]

Portugal Inception-ResNet-v2 76

256
Pimkin et
al. [305]

Russia
ResNet34, DenseNet169,
DenseNet201,XGBoost

76
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358 Sarker et al.
South Korea

Russia
Inception-v4 75

98
Rakhlin et
al. [306]

Russia|USA
VGG16,ResNet-50,

IcenptionV3
74

164
Iesmantas and
Alzbutas [307]

Lithuania
Custom CNN

(CapsuleNetwork)
72

253 Xie et al. China CNN 72

268
Weiss et
al. [308]

Germany
Xception, Logistic

Regression
72

6
Awan et
al. [309]

UK ResNet50,SVM 71

62 Liang -

VGG16,VGG19,
ResNet50,
InceptionV3,

Inception-ResNet,
k-NN

70

248 Kwok [226] Hong Kong SAR Inception-ResNet-v2 69

16
Marami et
al. [228]

USA
Inception-v3+adaptive

pooling
55

296 Jia et al. China
ResNet-50 + multiscale
atrous convolution

52

137 Li et al. -
VGG16,DeepLabV2

,ResNet50
52

91 Murata et al. Japan U-Net 50

264
Galal and

Sanchez-Freire
[310]

USA DenseNet 50

166 Vu et al. [311] Korea DenseNet,SENet,ResNet 49

54
Kohl et
al. [229]

UK|Germany DenseNet-161 42

Table 5.2: The final results of BACH challenge [10][11]
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Team Acc Normal Benign In situ Invasive
Se Sp Se Sp Se Sp Se Sp

216 0.87 0.96 0.88 0.8 0.96 0.84 1.0 0.88 0.99
248 0.87 0.96 0.93 0.72 0.96 0.88 0.97 0.92 0.96
1 0.86 0.96 0.91 0.68 0.97 0.84 0.99 0.96 0.95
16 0.84 0.92 0.95 0.64 0.96 0.84 0.99 0.96 0.89
54 0.83 0.96 0.92 0.52 0.97 0.88 0.92 0.96 0.96
157 0.83 0.96 0.91 0.64 0.99 0.92 0.91 0.8 0.97
186 0.81 0.96 0.92 0.68 0.96 0.76 0.95 0.84 0.92
19 0.81 1.0 0.95 0.4 0.99 0.92 0.92 0.92 0.89
36 0.81 0.88 0.92 0.6 0.96 0.88 0.95 0.88 0.92
412 0.8 0.92 0.96 0.48 0.97 0.84 0.92 0.96 0.88
Exp1 0.96 0.96 0.99 0.92 0.97 1.0 1.0 0.96 0.99
Exp2 0.94 0.96 0.99 0.88 0.96 1.0 1.0 0.92 0.97
Exp3 0.78 0.88 0.99 0.76 0.79 0.56 0.97 0.92 0.96
Exp4 0.73 0.40 0.99 0.84 0.71 0.76 0.97 0.92 0.97

Exp avg 0.85
±0.10

0.80
±0.23

0.99
±0.00

0.85
±0.06

0.86
±0.11

0.83
±0.18

0.99
±0.01

0.93
±0.02

0.97
±0.01

Table 5.3: Details results at sensitivity (Se) and specificity (SP) of the 10 top performing
challenge methods for the four classes [10]

5.6.5 Discussion

The histological images classification is a very difficult task. This is due to several reasons
in particular the intra-class variability, whether in the color and spatial arrangement of the
tissues structures, often experts use IHC analysis as additional information to classify the
images.
As deep learning methods have proven to be effective in the medical field, all participants
of the challenge used these methods to overcome the problem of histological images
classification.
The top 10 performing methods of the BACH challenge, outperform two expert (see Table
5.3) Expert 3 is breast cancer specialist and Expert 4 is pathologist. This prove that the IA
methods can bring a lot of reassuring in the medical field.

The two methods [225] [226] that won the challenge were based on using an ensemble of
CNNs for images classification, because the performance of deep learning methods depend
on the hyper parameters of the CNNs and the training dataset, using a combined CNNs with
different configuration and training on varying datasets, was the best strategy used by the
winners.

We recall that the CNNs need large amounts of training data to produce a generalizable
model, as the training dataset given by the challenge contain only 400 images, to overcome
this issue, some submitted methods used data augmentation approach to augment the training
data, others have used external dataset like BreakHis and some of them used the training data
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given in the part B of the challenge (10 Whole-slide images).
The 10 performing methods have used different architectures: ResNet, DenseNet,

Inception,VGG, XCeption, MobileNet. Despite to this, the results were very close with a
standard deviation of 0.026. We notice that some architectures have been more used than
others, for example ResNet was the most used, in which from the 10 methods 6 of them used
it, followed by Inception used in 3 methods and then DenseNet in 2 methods. This CNNs
were used in different manner but they give a good results in this specific classification
problem.
We also remark that the three best methods are based on combination of CNNs,
Chennamsetty et al. [225] used ResNet-101 and DenseNet-161, Kwok [226] used Inception
and ResNet-v2, Brancati et al. [227] used ResNet-34, 50, 101.

In our proposed method we have used the combination of the twomost used architectures
namely ResNet and Inception with MobileNet. A difficulty was found by our method
to predict the normal case (see Table 5.3), in which there was a remarkable difference
in sensitivity compared to others methods. We explains this by the fact that the images
in the benign and normal case have a great resemblance which make their classification
difficult. As was mentioned in the overview paper of the challenge [10] the benign class
presents considerable histological structures variability, where the tissue contains normal
and benign lesions structures, makes this class hard to distinguish from normal tissue. Also
the organizers report in [10] that in the image acquisition of normal tissue, the specialists tend
to capture non-relevant structures, such as fat cells; that affect the efficacy of the method.
Despite this, the method achieved the score of 0.88 for In situ sensitivity, that outperform
5 methods and is equal to 2 methods of the 10 performing methods. The same sensitivity
score is obtained for Invasive with a specificity of 92%.

We conclude that the efficacy of CNNdepend on the network architecture and the training
dataset used.
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5.7 Conclusion

We have presented the proposed method for tumor cancer detection using histopathological
image, as the method was based on convolutional neural networks in the first part of this
chapter, we have reviewed the history of deep learning and the fundamentals concept of
CNNs starting by defining layers types and the different architectures. Then, the proposed
method was detailed by the experimental results shown and the comparative study with
related works was achieved. In fact, among the 22 methods of the state of art that classify
histopathological image as malignant and benignant, our method outperform 19 methods at
the image level and 20 methods at the patient level. Also, the proposed method was among
the first 10 methods of BACH challenge for multiclass classification of the histopathological
images.
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Computer-aided detection and diagnosis CADe/CADx systems have been extensively
investigated in the clinical diagnoses, because they contribute to help the radiologists in
their diagnostic by reducing the perceptual errors, also by providing image analysis based
on computer image quantification resulting a comprehensive and exhaustive information.

In this thesis, the main aim was to develop several methods of CAD systems for liver
and breast lesions description and discrimination. To achieve these objectives, the proposed
work was partitioned on two axes, the first one is liver CT annotation, the second is breast
density and lesions classification.

In the first part of this thesis, we have developed three different methods for liver CT
images annotation.
The first method was based on the classification approach, in which the shape and texture
features extracted from the liver CT images are feed forward to random forest classifier,
where for each annotation a classifier was trained to predict the appropriate annotation.
The second method was based on content-based image retrieval approach, where we have
applied a binary indexation of the liver CT image to extract its signature. This last one was
used to retrieve similar images to the test image from the dataset. Thereafter the majority
vote was applied to assign the elected annotations to the adequate liver image properties.
The third method developed for liver CT annotation was based on spectral image textural
analysis, by using a combination of Bidimensional EmpiricalModeDecomposition (BEMD)
and Gabor wavelet transform to index the images content. Then the similarity distance was
applied to retrieve the most similar images to the test image, where the suitable annotations
were assigned to the test image.

The second part of this thesis concern breast study, where we focused on breast density
classification and breast lesions discrimination. In fact, we have developed a whole end
to end method for breast density classification according to the standard Breast Imaging
Reporting and Data System (BI-RADS) that classify the density into four classes, in addition
we have performed the two classes classification (fatty and dense). Given that the two
datasets used in the experimentation were unbalanced, we have also proposed a modification
to the existing equilibrate algorithm named Synthetic Minority Over-Sampling Technique
Algorithm (SMOTE). The obtained results showed that the modification introduced make
the SMOTE algorithm more efficient. In the breast lesions classification problem, we have
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used the Convolutional Neural Networks (CNNs) to give an efficient solution. The strategy
that we followed was based on the combination of three different CNN namely InceptionV3,
ResNet50 and MobileNet. Our supposition is based on the fact that each CNN have its
capacity and characteristics to extract the salient features from the image. The experiments
were carried out on two different datasets. Where, in the first dataset we used the method to
classify the benignant and malignant lesions. In the second dataset, the method was used to
classify the histopathology images into normal, benign, in situ and invasive cases.

All the proposed methods were evaluated on international challenges, in order to prove
their effectiveness compared to the newmethods that have been developed by the community
scientific. We concluded that the results achieved were satisfactory, despite the fact that we
found some limitations to realize them.

Limitations

Liver CT annotation

• The dataset that we have used contain a small number of images and some properties
didn’t have any sample in the dataset. Which affected the performance of the machine
learning used.

• There isn’t another public dataset for liver annotation, that led us to test the methods
only on the dataset given by challenge.

• The dataset contains only four common types of liver lesions namely Cysts,
Haemangiomas for benign cases and HCC, Metastases for malignant.

Breast lesion classification

• There isn’t a public annotated dataset for lesions in the histopathology images,
therefore we were limited to use the classification approaches.

• The BreakHis dataset was unbalanced, despite that we have used the augmentation
techniques to overcome this problem, but this technique doesn’t represent an effective
solution in the medical field.

• The dataset of BreAst Cancer Histology image (BACH) challenge contained a small
number of images, that conducted us to use the transfer learning approaches to train
the model.
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Future works

The methods presented can be extended and improved to enhance the computer-aided
diagnostic systems by investigating several aspects that include:

• The use of ontology not only in the annotations but also for inference to interpret the
annotations.

• The combination of different modalities to extract more precise information.

• The use of the CNN visualization methods to understand and improve the CNN
classification decision.

• The use of relevance feedback approaches to improve the retrieval accuracy.

• Investigate more recent deep learning methods.

• Explore more efficient low level features.

• Setting up an online platform for diagnosis based on content-based medical image
retrieval.

• Finally, to avoid the limited access to datasets. The necessity to collect, to organize
and to share an annotated database is an important step to facilitate the research for us
and also the scientific community.
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Appendix A

In this appendix, we will present the different CNNs architectures defined in section 5.3.3.
We recall that the architectures are: LeNet-5, AlexNet, Inception-v1, Inception-v3, Resnet,
Xception, DenseNet, MobileNet-v1, MobileNet-v2, EfficientNet, Noisy Student.
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Figure A.1: LeNet-5 architecture
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Figure A.2: AlexNet architecture
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Figure A.3: Inception-v1 architecture
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Figure A.5: Inception-v3 architecture
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Figure A.6: InceptionV3 module A-B-C and Stem
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Figure A.7: Reduction A-B of InceptionV3 architecture
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Figure A.8: ResNet architecture
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Figure A.9: Identity and convolution block of ResNet
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Figure A.10: Xception architecture
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Figure A.11: Conv A,B,C of Xception
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Figure A.12: DenseNet-121 architecture
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Figure A.13: MobileNet-v1 Architecture
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Figure A.14: MobileNet-v2 Architecture
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Figure A.15: EfficientNet architecture
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Abstract  

Computer aided detection and diagnosis CADe/CADx systems, are an essential tools used by physicians 
to assist them in their daily clinical diagnosis. In cancers diseases, these systems have an important role 
to perform the early detection and diagnosis, this allows to provide early treatment before it will be too 
late. In this thesis, we present several methods to be uses in a computer aided diagnosis system in order 
to generate structured reports of liver lesions including cancer using Computed Tomography (CT) 
images. In addition, we propose different methods for computer aided detection of breast cancer, by 
treating breast density classification using mammography and breast lesion classification using 
histopathology images. At this context we present three distingue contributions, the first one is related to 
the annotation of liver CT images by using a medical ontology, in which we propose three methods. The 
second contribution is about breast density classification according to the standard Breast Imaging 
Reporting and Data System (BI-RADS). In addition to that, we propose an improved version of 
Synthetic Minority Over-Sampling Technique Algorithm (SMOTE) used to equilibrate the dataset. The 
last contribution is about breast lesions classification in the histopathology images. Precisely, we 
propose a method to distinct benignant and malignant lesions, as well to classify the normal cases, 
benign cases, in situ and invasive cancer cases. 
Keywords 
Medical images; Computer-Aided Diagnosis; Image Retrieval; Liver annotation; BEMD; Gabor 
wavelet; Mammography; Breast tissue classification; SMOTE; Image classification; Histology images; 
Deep learning. 
 

 ملخص 

 .أدوات أساسیة یستخدمھا الأطباء لمساعدتھم في تشخیصھم الیومي CADe/CADxالكشف والتشخیص بمساعدة الكمبیوتر  أنظمة تعد
یسمح بتوفیر العلاج المبكر قبل فوات  مماالسرطان،  لأمراض تلعب ھذه الأنظمة دورًا مھمًا في إجراء الكشف والتشخیص المبكر بحیث
 .الأوان

لآفات الكبد بما في ذلك  منظمة تقاریرعدة الكمبیوتر لإنشاء في ھذه الأطروحة، نقدم العدید من الطرق للاستعمال في نظام التشخیص بمسا
ًا مختلفة للاستعمال في نظام الكشف  إضافة). CT(صور التصویر المقطعي  استخدام خلال من ھذا و ،السرطان  عنإلى ذلك، نقترح طرق

تصنیف آفات الثدي  كذلك الشعاعي للثدي ومعالجة تصنیف كثافة الثدي باستخدام التصویر  طریق عنسرطان الثدي بمساعدة الكمبیوتر، 
 .باستخدام صور الأنسجة

وجیا الطبیة، في ھذا السیاق نقدم ثلاث مساھمات متباینة، تتعلق الأولى بتقدیم تعلیقات على صور الأشعة المقطعیة للكبد باستخدام الأنطول
 .ثلاث طرق  ھنا نقترح حیث

ًا لتقریر تصویر الثدي النمودجي ونظام البیانات أما المساھمة الثانیة فتتعلق بتصنیف كثافة  بالإضافة إلى ذلك، ). BI-RADS(الثدي وفق
اً لخوارزمیة تقنیة الإفراط في أخذ العینات للأقلیات الاصطناعیة   .المستخدمة لموازنة مجموعة البیانات) SMOTE(نقترح تعدیلا محسن

على وجھ التحدید، نقترح طریقة لتمییز الآفات الحمیدة والخبیثة، . ور الأنسجةالمساھمة الأخیرة ھي في تصنیف آفات الثدي باستخدام ص
 .وكذلك لتصنیف الحالات الطبیعیة، الحالات الحمیدة، حالات السرطان الموضعیة والغزویة

 الدالة الكلمات
 تصویرال الغابور؛ مویجات ؛BEMD الكبد؛ صور على التعلیق الصورة؛ استرجاع ؛الحاسوب بمساعدة التشخیص الطبیة؛ الصور

 .عمیقال التعلم الأنسجة؛ صور  ؛BI-RADS ؛SMOTE الثدي؛ أنسجة تصنیف للثدي؛ الشعاعي
 
Résumé 

Les systèmes de détection et de diagnostic assistés par ordinateur CADe/CADx sont des outils essentiels 
utilisés par les médecins pour les aider dans leur diagnostic clinique quotidien. Ces systèmes ont un rôle 
important pour effectuer la détection et le diagnostic précoces des maladies cancéreuses, ce qui permet 
de fournir un traitement précoce avant qu'il ne soit trop tard. 
Dans cette thèse, nous présentons plusieurs méthodes à utiliser dans le système de diagnostic assisté par 
ordinateur pour générer des rapport structurés sur les lésions hépatiques, y compris le cancer, en utilisant 
les images de tomodensitométrie. De plus, nous proposons différentes méthodes à utiliser dans la 
détection assistée par ordinateur pour le cancer du sein, en traitant la classification de la densité 
mammaire par l'utilisation des images mammographiques et aussi la classification des lésions 
mammaires par l'utilisation des images histopathologiques. 
Dans ce contexte, nous présentons trois distinctes contributions, la première est liée à l'annotation des 
images CT du foie en utilisant une ontologie médicale, où nous proposons trois méthodes différentes. 
La deuxième contribution concerne la classification de la densité mammaire selon le système standard 
de rapport et de données d'imagerie mammaire (BI-RADS). De plus, nous proposons une version 
améliorée de l'algorithme SMOTE (Synthetic Minority Over-Sampling Technique Algorithm) utilisé 
pour équilibrer l'ensemble de données. 
La dernière contribution concerne la classification des lésions mammaires dans les images 
histopathologiques. Précisément, nous proposons une méthode pour distinguer les lésions bénignes et 
malignes, ainsi que pour classer les cas normaux, les cas bénins, les cas de cancer in situ et invasif. 
Mots clefs 
Images médicales; Diagnostic assisté par ordinateur; Récupération des images; Les annotations 
hépatique; BEMD; Ondelettes de Gabor; Mammographie; Classification des tissus mammaires; 
SMOTE; BI-RADS; Les images histopathologiques; Apprentissage profond. 

 


