République Algérienne Démocratique et populaire Ministère de l'enseignement Supérieur et de la Recherche Scientifique

UNIVERSITE ABOU BEKR BELKAID - TLEMCEN Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre et de L'Univers

Département d'Écologie et Environnement

Laboratoire de recherche n°13 « Écologie et Gestion des Écosystèmes Naturels »

THÈSE

Présentée par : **Mme BENKELFAT Khedoudja**

En vue de l'obtention du

Diplôme de Doctorat

En écologie végétale et environnement

Thème:

Les ripisylves de la région de Tlemcen, cas des groupements à Tamarix L.

Soutenue le : 30/06/2020, devant le jury composé de :

Président Mr MERZOUK Abdessamad Professeur Université de Tlemcen

Directrice de thèse Mme STAMBOULI-MEZIANE Hassiba Professeur Université de Tlemcen

Examinateurs Mr MAHDADI Zoheir Professeur Université de Sidi Bel Abbes

Mr BELKHODJA Moulay Professeur Université d'Oran 1

Mr ABOURA Rédda MCA Université de Tlemcen

Année Universitaire : 2019-2020

Manuscript Number: 2908 NAAS Rating: 4.96

Systematic Position of *Tamarix* in the Region of Tlemcen (Western Algeria)

Khedoudja Benkelfat and Hassiba Stambouli-Meziane

Department of Ecology and Environment, AbouBekr Belkaid University, BP 119, Tlemcen, Algeria *E-mail: izmir_night@hotmail.fr

Abstract: Plant groups in the region of Tlemcen are the subject of a large number of scientific studies, due to their important specific richness. The alluvial forest of this region form plant stands dominated by *Tamarix*. The objective of this study is to show the species that is actually present, between *Tamarix africana* and *T. gallica*, on the banks of Tafna wadi. Three stations were selected for sampling. The only species present and dominant was *Tamarix africana*, and *T. gallica* was not observed on the banks of Tafna wadi.

Keywords: Algeria, Systematic position, Tamarix africana, Tamarix gallica, Tafna wadi, Tlemcen

The Mediterranean basin is quite diverse in plant species and is of great interest to any scientific study, given its great wealth of flora linked to the heterogeneity of historical, paleogeography, geological and ecological factors. Riparian forests are veritable alluvial forests, which naturally border streams along river systems (Decamps 2003). They represent vegetation structures at least partly azonal (Quézel and Médail 2003). The vegetation of alluvial forests on the edge of the Mediterranean wadi is characterized by strong climatic and soil constraints, salinity, wind, drought and shallow or mobile soils. In the region of Tlemcen, alluvial forest form quite diverse plant stands; mainly dominated by the genus Tamarix (Quézel and Santa 1962-1963). This genus is mainly present by two species, Tamarix africana and T. gallica. Tamarix are common in salt edge, the study of this genus is extremely difficult. Tamaricaceae have a great interest as conservative plants of arid and semi-arid soils against various physical erosion. The objective of the study is to determine which of these two species (Tamarix africana and T. gallica) is present on the banks of Tafna wadi.

MATERIAL AND METHODS

Three study sites were selected at the Tafna wadi from western Algeria, specifically in north-western Algeria. They are located between 1°19' and 1°28' of western longitude and 34°37' and 35°17' north latitude (Fig. 1), geographically limited in the north by the Mediterranean Sea, in the south by the town of Sebdou, in the west via the Algerian-Moroccan border, to the east by the wilaya of AînTémouchent and to the south east by the wilaya of Sidi Belabbés. The choice is based on the presence of the genus *Tamarix*. The sampling was carried out of several such individuals, with the aim of identifying the species present in the field.

Study site 1: Located upstream of Beni-Bahdal Dam, on the road to Wilaya number 46, with an altitude of 675 m, latitude 34°41' north and longitude of 1°27' west. The recovery rate is 15-20 per cent a slope of 25-30 per cent.

Study site 2: Located 10 km from Maghnia, on the nation road 35, a few kilometers from the town of Hammam Boughrara. It settles at latitude of 34°53' north, a longitude of 1°38' west, an altitude of 296 m and a recovery of 30 per cent and a slope of 10 per cent.

Study site 3: Located at northern latitude of 35°17', a west longitude of 1°28' and an altitude of 10 m. The recovery rate is 25 per cent and the slope is 5 per cent.

To know the climate of the study sites the ombrothermic diagrams of Bagnouls and Gaussen on the one hand, and the rainwater quotient of Emberger (Q_2) , which is specific to the Mediterranean climate, on the other hand were shared. After several field trips and observations, the samples were identified using the following flora, the new flora of Algeria (Quézel and Santa 1963), -Flora and vegetation of the Sahara (Ozenda 1991) and Dobignard and Chatelain's synonymic floraindex.

RESULTS AND DISCUSSION

Dry period is observed for all the sites, extending from April to October (Fig. 2), and the Emberger climagram (Fig. 3) proved that since all three are in the semi-arid bioclimatic stage, temperate winter for the first site, cool winter for the second, and warm winter for the third site.

Botanical characters of the genus *Tamarix*: The genus *Tamarix* belongs to the Tamaricaceae family. *Tamarix* is usually trees or shrubs, acicular or ring-shaped squami form-reduced twigs, and dense cluster inflorescences usually gathered at the top of the stems. White or pink flowers, tetramers or pentamers; 5 to 10 stamens inserted on a

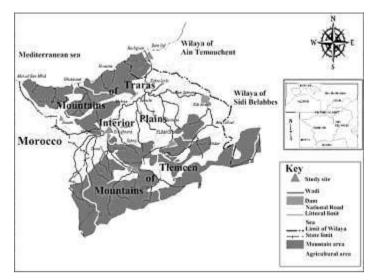


Fig. 1. Map of study station location

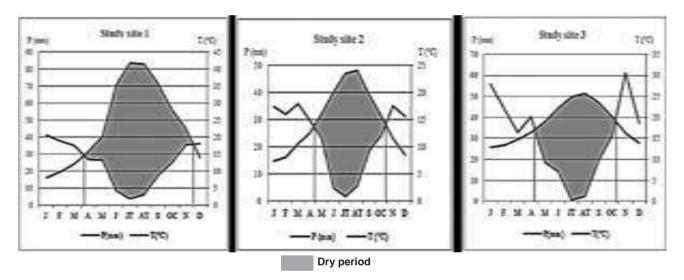


Fig. 2. Bagnouls and Gaussen ombrothermal diagram

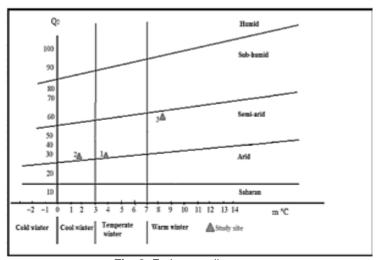


Fig. 3. Emberger climagram

glandular hypogyal disc more or less lobed. 3 styles more or less wide; the capsule is opened by three valves. Seeds topped with an egret and are frequent, and easily colonize land, especiallysalty.

Tamarix africana: 5-8mm wide inflorescence; obtuse anthers at the top. Pentamer flowers, sessile kittens, born of the previous year's wood, dense and scattered, short (2-3 mm), long style, almost linear narrow bract, short-tipped lanceolate leaves; 5x3 mm ovoid capsule; white flowers, pink or red (Fig. 4, Plate 1).

Fig. 4. The different parts of *Tamarix africana* (1: fruit; 2: kitten; 3: leaves; 4: twigs; 5: ovary; 6: stamens; 7: the petals of the flower)

Table 1. Comparative character of the two species of Tamarix

Tamarix africana	Tamarix gallica			
Shrub of 2 to 3 m and mature of 3-5 m Shrub of 1 to 8 m				
The trunk has a large width	No maintrunk			
Green sepals	Purple sepals			
Largeflowers	Small globular flowers			
Flowers have a pink and white color Flowers have a pink co				
Presence of5 stamens	5 stamens with inserted net			
3-4 mm wide kitten born on the shoots of the previous year	Kitten is 5-8 mm nascent on old woods			
5 lobed disc	10 lobeddisc			
Very common species in Algeria	Very common species except in the Sahara			
Biogeographic type: /W-Med/	Biogeographic type: /N-Trop/			

Plate 1. *Tamarix africana* inflorescence branch (Source: plank 194 of the great flora)

The characteristics observed on our samples are very similar to the characteristics of the species *Tamarix africana*, the leaves are lanceolate with a narrow bract, the capsule is ovoid, wide inflorescence, up to eight mm. These characteristics differ mainly at the flower level, they are pentameric and dense, with sessile kittens, scattered and short. The stamens are non-salient and the anthers are obtuse. Finally, we have noticed that the flowers are pink in the site 3, and they are white in the site 1 and 2.

CONCLUSIONS

Field observations of genus *Tamarix*, with its careful laboratory identification, indicate the presence of the species *Tamarix africana*. This presence is certainly due to the amount of rainfall and average temperatures. *Tamarix africana* dominates all the banks of Tafna wadi in the region of Tlemcen.

REFERENCES

Bonnier G and Gaston R 2009. The great flora in color LMD boards ecology and environment master. Volume 1, part 2. Ed. Belin. Paris. Pl.194.

Décamps H 2003. Ripisylves: Biodiversity through instability. Mediterranean Forest XXIV: 10.

Dobignard A and Chatelain C 2013. The synonymic index flora of North Africa. Volume 5 – Dicotyledoneae – Oleaceae –

zygophyllaceae. Conservatory and botanical garden. Ed City of Geneva.

Hamel A 2016. Systematic position in the region of Tlemcen. Master of plant ecology and environment. Department of Ecology and Environment. University, Tlemcen.

Ozenda P 1991. Flora and vegetation of the Sahara.3rd edition. CNRS

Received 19 July, 2019; Accepted 15 October, 2019

edition. Paris.

Quézel P and Santa S 1963. New flora of Algeria and southern desert regions. CNRS, Paris, Volume 2. 603 p.

Quézel P and Médail F 2003. Phytoecological and biological value of Mediterranean riparian forests. *Mediterranean Forest* **XXIV**(3): 18

ملخص

يشير المصطلح "حرجة شطية" إلى هامش من الغابات المرتبطة بالمناخ الرّطب المشبّع مؤقتًا على حافة النّهر. تشمل الدّراسة الحالية غابات النّهر في منطقة تلمسان، على ضفاف وادي تافنة، من المنبع إلى المصب مرورًا بوسطها.

الهدف من هذه الدّراسة هو وصف الموكب النّباتي للغابات النّهرية، لتشديد الضّوء على التّجمّعات النّباتية المختلفة لـ .Tamarix L. والعوامل البيئية التي تؤثّر على تطوّر هذه التّجمّعات، و هذا بأستخدام التّحليل الواقعي للمراسلات.

تظهر دراسة المناخ الحيوي إزاحة عمودية و أفقية طفيفة لجميع المحطّات، و بالتالي فإنّ الغطاء النّباتي الّذي تمّ تحديده يهيمن عليه النّوع البيولوجي "thérophyte"، حيث من الواضح أنّ كل الأفراد من أنواع مختلفة مع وفرة عالية، و موزّعة بآنتظام.

التَّحليل الواقعي للمر اسلات الَّذي أُجريَ سمح لنا بالتَّمييز بين التَّجمّعات التَّالية:

تجمّعات Thapsia garganica ،Nerium oleander و Calendula arvensis على مستوى منبع تافنة.

تجمّعات Eucalyptus globulus ، Populus alba و Eucalyptus globulus

تجمّعات Anacyclus valentinus ،Xanthium strumarium و Centaurea pullata على مستوى مصب تافنة.

أخيرًا تمكّنا من إجراء محاولة رسميّة لتوزيع .Tamarix L في منطقة تلمسان مع التّجمّعات النّباتية المحلّية.

كلمات مفتاحية

الغابات النّهرية، .Tamarix L. علم بيئة النّباتات، علم إجتماع النّباتات، رسم الخرائط، تلمسان (الجزائر).

Résumé

Le terme ripisylve signifie une frange forestière liée au pédo-climat humide temporairement saturé au bord d'un cours d'eau. La présente étude porte sur les ripisylves de la région de Tlemcen, sur les rives de Oued Tafna, depuis l'amont jusqu'à l'aval, en passant par la moyenne Tafna.

L'objectif de cette étude est de décrire le cortège floristique de la ripisylve, de souligner les différents groupements végétaux à *Tamarix* L., et les facteurs écologiques qui agissent sur le développement de ces derniers, et cela à l'aide de l'analyse factorielle des correspondances.

L'étude bioclimatique montre un léger déplacement vertical et horizontal des positions de chacune des stations, et en conséquence la végétation recensée est prédominée par le type biologique « thérophyte », les individus sont tous des espèces différentes avec des abondances élevée et régulièrement répartit.

L'analyse factorielle des correspondances réalisée nous a permis de distinguer les groupements suivants :

Groupement à *Nerium oleander*, *Thapsia garganica* et *Calendula arvensis* pour l'amont de la Tafna.

Groupement à *Populus alba*, *Eucalyptus globulus* et *Inula viscosa* dans la moyenne Tafna.

Groupement à *Xanthium strumarium*, *Anacyclus valentinus* et *Centaurea pullata* dans l'aval de la Tafna.

En dernier, on a pu faire un essai cartographique de la distibution du *Tamarix* L. dans la région de Tlemcen avec des groupements végétaux bien localisés.

Mots clés

Ripisylves, *Tamarix* L., phytoécologie, phytosociologie, cartographie, Tlemcen (Algérie).

Abstract:

The term « ripisylve » means a forest fringe linked to the wet climate temporarily saturated at the edge of a river. The present study cover riparian forests of the Tlemcen region, on the banks of Tafna Oued, from upstream to downstream, through the medium Tafna.

The aim of this study is to describe the floristic procession of riparian forest, to highlight the different plant communities of *Tamarix* L., and the ecological factors that affect the development these groups, and this, using the factorial analysis of the correspondences.

The bioclimatic study shows a slight vertical and horizontal displacement of the positions of each of the stations, and consequently the identified vegetation is predominated by the biological type « therophyte », the individuals are all different species with high abundances, regularly distributed.

The factorial analysis of the correspondences realized enabled us to distinguish the following communities :

Plant communities of *Nerium oleander*, *Thapsia garganica* and *Calendula arvensis* in Tafna upstream.

Plant communities of *Populus alba*, *Eucalyptus globulus* and *Inula viscosa* in the medium Tafna.

Plant communities of *Xanthium strumarium*, *Anacyclus valentinus* and *Centaurea pullata* in Tafna downstream.

Lastly, we were able to make a cartographic test of the distribution of *Tamarix* L. in the region of Tlemcen, with well-localized plant communities.

Key words

Riparian forests, *Tamarix* L., phytoecology, phytosociology, cartography, Tlemcen (Algeria).

Mes remerciements

En premier, a DIEU le tout puissant qui m'a guidé et facilité le chemin de la réussite de cette thèse, pour son aide, sa bénédiction et pour toutes ses bontés, pour la foi qu'il a mis dans mon cœur.

Je tiens à remercier très sincèrement mes parents, mes frères, ma sœur et ma nièce Wassila, pour leur indéfectible patience, leur croyance en moi, leurs encouragements constants et surtout pour leur disponibilité dont ils ont fait preuve tout au long de mes études.

J'adresse un grand remerciement à ma directrice de thèse, Madame la professeure STAMBOULI-MEZIANE Hassiba avec qui j'ai eu le privilège de travailler. Son soutien, ses encouragements, son expérience, sa patience, ainsi que ses conseils et ses remarques m'ont été d'une grande aide pour accomplir ce travail.

Je me permets d'adresser tous mes remerciements aux membres du jury, Mr MERZOUK Abdessamad, Mr MAHDADI Zoheir, Mr BELKHODJA Moulay et Mr ABOURA Rédda, de m'avoir fait l'honneur d'accepter d'évaluer mon travail.

Je remercíe aussí Mr HASSANI Faycal et Mr BABALI Brahím pour leurs précieux conseils et leurs disponibilité. Je tiens à remercier Mr AINAD TABET Mustapha et Mr KAID SLIMANE Lotfi qui ont cru en moi et m'ont soutenu avec leurs précieux encouragements.

Aínsí, je tiens à présenter mon profond respect et ma gratitude à tous les enseignants que j'ai pu avoir tout au long de mon cursus universitaire.

Comme je ne peux oublier de remercier très infiniment toutes les personnes que j'ai croisées durant ces années.

Table des matières

Introduction générale1		
Chapit	re I : Synthèse bibliographique	4
I.1.	Généralité sur les ripisylves méditerranéennes	5
I.1.1.	Introduction	5
I.1.2.	Caractères physionomiques et fonctionnels majeurs	5
I.1.3.	Caractères floristiques généraux	7
I.1.4.	Ripisylves liées aux cours d'eau permanents	10
I.1.5.	Ripisylves liées aux cours d'eau transitoires	12
I.1.6.	Conclusion	13
I.2.	Biodiversité par l'instabilité	14
I.2.1.	Introduction	14
I.2.2.	Renouvellement par les aléas hydrologiques	14
I.2.3.	Biodiversité riveraine	15
I.2.4.	Notion de richesse spécifique	16
I.2.5.	Conclusion	17
I.3.	Syntaxinomie générale des formations végétales des ripisylves méditérranéennes	17
I.3.1.	Querco roboris-fagetea sylvaticae BrBl. &Vlieger in Vlieger 1937	17
I.3.2.	Salicetea purpureae Moor 1958	18
I.3.3.	Nerio oleandri-tamaricetea africanae BrBl. & O. Bolòs 1958	18
I.4.	Généralité sur le genre Tamarix L.	19
I.4.1.	Caractères généraux de la famille des Tamaricaceae	19
I.4.2.	Description du genre Tamarix L.	23
I.4.3.	Caractères botaniques du genre Tamarix L.	25
I.5.	Biologie du genre Tamarix L	32
I.5.1.	Multiplication	32

I.5.2.	Rythme de croissance	34
I.5.3.	Longévité du gente Tamarix L.	35
I.6.	Ecologie du genre Tamarix L.	. 35
I.6.1.	Habitat	35
I.6.2.	Sol	35
I.6.3.	Salinité	35
I.6.4.	Pouvoir d'hydrolyse (dit pH)	36
I.6.5.	Acquisition de l'eau	36
I.6.6.	Résistance au feu	36
I.6.7.	Rôle hydrologique et sédimentaire	37
I.7.	Utilisation du genre Tamarix L.	. 38
I.7.1.	Comme aliment de bétail	38
I.7.2.	Comme plante miélifère	38
I.7.3.	Comme plante médicinale	38
I.8.	Position systématique du Tamarix L. dans la région de Tlemcen	. 40
I.8.1.	Introduction	40
I.8.2.	Caractères botaniques	40
I.8.3.	Résultats	43
I.8.4.	Conclusion	43
Chapitr	e II : Milieu physique	. 44
II.1.	Milieu physique	. 45
II.1.1.	Présentation du bassin versant de la Tafna	45
II.1.2.	Réseau hydrographique	46
II.1.3.	Géologie et géomorphologie	48
П.1.4.	Pédologie	50
II.1.5.	Végétation	51
II.2.	Etude bioclimatique	. 52

II.2.1. Méthodologie	53
II.2.2. Paramètres climatiques	54
II.2.3. Autres paramètres climatiques	61
II.2.4. Synthèse bioclimatique	62
II.3. Méthodologie	71
II.3.1. Méthode d'étude	71
II.3.2. Zonage écologique	71
II.3.3. Echantillonnage et choix des stations	72
II.3.4. Description des stations	73
Chapitre III : Biodiversité floristique	75
III.1. Diversité floristique	76
III.1.1 Introduction	76
III.1.2. Composition de la flore de la zone d'étude	76
III.1.3. Caractéristiques biologiques	85
III.1.4. Caractéristiques morphologiques	88
III.1.5. Caractéristiques biogéographiques	90
III.1.6. Indice de perturbation	98
III.1.7 Conclusion.	98
III.2. Indices de diversité	99
III.2.1 Introduction	99
III.2.2 Indices de Shannon	100
III.2.3 Indice de réciprocité de Simpson	101
III.2.4 Indice de Margalef	101
III.2.5 Conclusion	104
Chapitre IV : Analyse statistique de la végétation et essai cartographique	105
IV.1. Analyse statistique	106

IV.1.1 Introduction	
IV.1.2Méthode d'étude	106
IV.1.3 Interprétation des résultats	107
IV.1.4 Indice de caractérisation	122
IV.1.5 Conclusion	124
IV.2. Essai cartographique	
IV.2.1 Introduction	125
IV.2.2 Méthodologie	126
IV.2.3 Commentaire de la carte	126
IV.2.4 Conclusion	134
Conclusion générale	135
Références bibliographiques	138
ANNEXES	148
PHOTOS DES ESPECES	205

Liste des figures

Figure n°:	Titre	Numéro de page
1	Limites schématiques de l'aire de <i>Populus alba</i>	8
2	Limites schématiques de l'aire de <i>Ulmus minor</i>	8
3	Limites schématiques de l'aire de Alnus glutinosa	8
4	Limites de l'aire de <i>Platanus orientalis</i>	9
5	Limites schématiques de l'aire de <i>Nerium oleander</i> et de <i>Vitex agnus-castus</i>	9
6	Limites de l'aire de Rhododendron ponticum	9
7	Transect schématique de la végétation d'un vallon encaissé des monts Iblei	12
8	Représentation de la biodiversité des corridors riverains à différentes échelles d'espace	17
9	Position du clade des Caryophyllales dans les Angiospermes selon la classification angiosperms phylogeny group 2003 (APG 2003)	20
10	Position de la famille Tamaricaceae dans le clade des Caryophyllales selon la classification angiosperms phyloginy group 2003 (APG 2003)	21
11	Les principaux caractères botaniques de la famille des Tamaricaceae	22
12	La taxonomie du genre <i>Tamarix</i> selon la classification angiosperms phylogeny group 2003 (l'APG 2003)	23
13	La classification classique du genre <i>Tamarix</i> (classification de Cronquist, 1981)	24
14	L'aire d'origine de répartition du genre <i>Tamarix</i> selon (Nelroy E. Jackson, 1996)	25
15	Forme de feuilles formant un fourreau autour de rameau chez <i>Tamarix aphylla</i>	27
16	La structure d'une glande sécrétante des sels chez le <i>Tamarix sp</i>	27
17	Le système racinaire latéral chez des individus âgés de 4 ans de Tamarix sp	31
18	Le double système racinaire latéral et pivotant chez les jeunes pousses de <i>Tamarix sp</i>	32
19	Les différentes parties de <i>Tamarix africana</i> Poiret	41
20	Les différentes parties de <i>Tamarix gallica</i> L.	42
21	Localisation des stations d'étude	46
22	Réseau hydrographique de la Tafna	47
23	Carte géologique de la wilaya de Tlemcen (ANAT, 2009)	49
24	Carte des sols du bassin versant de la Tafna (par Mr Amin ZETTAM)	51
25	Carte occupation des sols du bassin versant de la Tafna (par Mr Amin ZETTAM)	52
26	Variations saisonnières des précipitations	57
27	Indice d'aridité de De Martonne	65
28	Diagrammes ombrothermiques de Bagnouls et Gaussen (Sebdou et Maghnia)	67
29	Diagrammes ombrothermiques de Bagnouls et Gaussen (Zenata et Béni-saf)	68
30	Climagramme pluviothermique d'Emberger (Q ₂)	70
31	Pourcentages des familles de l'amont de la Tafna	78
32	Pourcentages des familles de la moyenne Tafna	78
33	Pourcentages des familles de l'aval de la Tafna	79
34	Pourcentages des familles de la station 1	79

35	Pourcentages des familles de la station 2	80
36	Pourcentages des familles de la station 3	80
37	Pourcentages des familles de la station 4	81
38	Pourcentages des familles de la station 5	81
39	Pourcentages des familles de la station 6	82
40	Pourcentages des familles de la station 7	82
41	Pourcentages des familles de la station 8	83
42	Pourcentages des familles de la station 9	83
43	Pourcentages des familles de l'ensemble de la zone d'étude	84
44	Pourcentages des types biologiques de l'amont de la Tafna	86
45	Pourcentages des types biologiques de la moyenne Tafna	86
46	Pourcentages des types biologiques de l'aval de la Tafna	87
47	Pourcentages des types morphologiques de l'amont de la Tafna	88
48	Pourcentages des types morphologiques de la moyenne Tafna	89
49	Pourcentages des types morphologiques de l'aval de la Tafna	90
50	Pourcentages des types biogéographiques de l'amont de la Tafna	91
51	Pourcentages des types biogéographiques de la moyenne Tafna	93
52	Pourcentages des types biogéographiques de l'aval de la Tafna	96
53	Comparaison du nombre de la richesse spécifique et d'espèce	102
54	Indice de Shannon et équitabilité de Piélou	103
55	Indice de réciprocité de Simpson et équitabilité de Simpson	103
56	Indice de Margalef	104
57	Types biologiques du noyau A	107
58	Types biologiques du noyau B	108
59	Types biologiques du noyau C	108
60	Dendrogramme des espèces de l'amont de la Tafna	110
61	Plan factoriel des espèces de l'amont de la Tafna (axe2/axe1)	111
62	Plan factoriel des espèces de l'amont de la Tafna (axe3/axe1)	111
63	Types biologiques du noyau A	112
64	Types biologiques du noyau B	112
65	Types biologiques du noyau C	113
66	Dendrogramme des espèces de la moyenne Tafna	115
67	Plan factoriel des espèces de la moyenne Tafna (axe2/axe1)	116
68	Plan factoriel des espèces de la moyenne Tafna (axe3/axe1)	116
69	Types biologiques du noyau A	117
70	Types biologiques du noyau B	117
71	Types biologiques du noyau C	118
72	Dendrogramme des espèces de l'aval de la Tafna	120
73	Plan factoriel des espèces de l'aval de la Tafna (axe2/axe1)	121
74	Plan factoriel des espèces de l'aval de la Tafna (axe3/axe1)	121
75	Carte de répartition de <i>Tamarix africana</i> Poiret au niveau de l'amont de la Tafna	127
76	Carte de répartition de <i>Tamarix africana</i> Poiret au niveau de la moyenne Tafna	129
	¥	131
77	Carte de répartition de <i>Tamarix africana</i> Poiret au niveau de l'aval de la Tafna	131

Liste des tableaux

Tableau n°:	Titre	Numéro de page
I	Les différents usages de <i>Tamarix</i> L. dans la phytothérapie traditionnelle	39
II	Données géographiques des stations météorologiques	54
III	Moyennes mensuelles et annuelles des précipitations	55
IV	Coefficient relatif saisonnier de Musset	56
V	Moyennes mensuelles et annuelles des températures	59
VI	Moyennes des maxima du mois le plus chaud « M »	60
VII	Moyenne des minima du mois le plus froid « m »	60
VIII	Indice de continentalité de Debrach	61
IX	Classification des étages bioclimatiques en fonction des précipitations	62
X	Classification des étages de végétation en fonction de (T);(M);(m)	63
XI	Etages de végétation et types de climat	64
XII	Indice d'aridité de De Martonne	64
XIII	Indice xérothermique d' Emberger	66
XIV	Quotient pluviothermique d'Emberger et de Stewart	70
XV	Les types biologiques de l'amont de la Tafna en nombre et en pourcentage.	86
XVI	Les types biologiques de la moyenne Tafna en nombre et en pourcentage.	87
XVII	Les types biologiques de l'aval de la Tafna en nombre et en pourcentage	88
XVIII	Les types morphologiques de l'amont de la Tafna en nombre et en pourcentage.	88
XIX	Les types morphologiques de la moyenne Tafna en nombre et en pourcentage.	89
XX	Les types morphologiques de l'aval de la Tafna en	90
XXI	nombre et en pourcentage Les types biogéographiques de l'amont de la Tafna en nombre et en pourcentage	92
XXII	Les types biogéographiques de la moyenne Tafna en nombre et en pourcentage	94
XXIII	Les types biogéographiques de l'aval de la Tafna en nombre et en pourcentage	97
XXIV	Indice de perturbation des stations d'étude	98
XXV	Les indices de diversités calculés	102
XXVI	Inventaire floristique de l'amont de la Tafna	149 ANNEXE
XXVII	Inventaire floristique de la moyenne Tafna	153 ANNEXE
XXVIII	Inventaire floristique de l'aval de la Tafna	161 ANNEXE
XXIX	Inventaire floristique de la zone d'étude	166 ANNEXE

XXX	Contribution des espèces de l'amont de la Tafna	180
		ANNEXE
XXXI	Contribution des espèces de la moyenne Tafna	182
		ANNEXE
XXXII	Contribution des espèces de l'aval de la Tafna	186
		ANNEXE
XXXIII	Indice de caractérisation (IC) des espèces du	189
	groupement A de l'amont de la Tafna	ANNEXE
XXXIV	Indice de caractérisation (IC) des espèces du	191
	groupement B de l'amont de la Tafna	ANNEXE
XXXV	Indice de caractérisation (IC) des espèces du	192
	groupement C de l'amont de la Tafna	ANNEXE
XXXVI	Indice de caractérisation (IC) des espèces du	193
	groupement A de la moyenne Tafna	ANNEXE
XXXVII	Indice de caractérisation (IC) des espèces du	194
	groupement B de la moyenne Tafna	ANNEXE
XXXVIII	Indice de caractérisation (IC) des espèces du	197
	groupement C de la moyenne Tafna	ANNEXE
XXXIX	Indice de caractérisation (IC) des espèces du	199
	groupement A de l'aval de la Tafna	ANNEXE
XXXX	Indice de caractérisation (IC) des espèces du	201
	groupement B de l'aval de la Tafna	ANNEXE
XXXXI	Indice de caractérisation (IC) des espèces du	203
	groupement C de l'aval de la Tafna	ANNEXE

Les écosystèmes méditerranéens sont caractérisés par des contraintes climatiques et pédologiques dures.

Selon **Stambouli et al.**, (2010), depuis le littoral jusqu'à la steppe, la végétation de Tlemcen est un bon exemple d'étude de la diversité végétale. Elle présente une intéressante synthèse de la dynamique naturelle des écosystèmes.

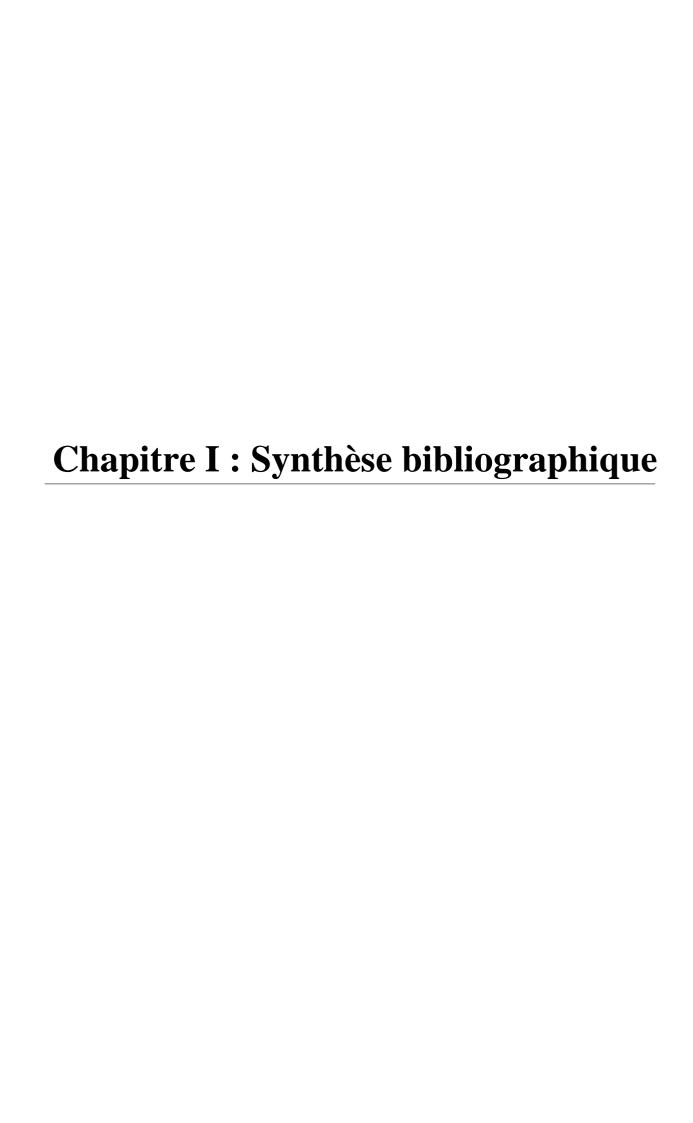
Certaines contraintes climatiques perturbe fortement la végétation naturelle, envahi progressivement ces écosystèmes par des groupements végétaux caractéristiques, dus à l'action de l'homme et à ses troupeaux.

La croissance démographique avec les changements climatiques engendre une évolution régressive du tapis végétal, aussi bien dans son architecture que dans sa structure.

Ajouté a cela, l'exploitation abusive des différents écosystèmes mène à la disparition des espèces ligneuses (= déforestation, dématorralisation), remplacées par des espèces vivaces (= steppisation), puis par des herbacées annuelles (= thérophytisation).

La thématique « Les ripisylves de la région de Tlemcen, cas des groupements à *Tamarix* L.» un sujet assez intéressant, m'a été proposée par ma directrice de thèse, pour ajouter quelques données à l'écologie ; sachant que ces milieux humides au niveau des cours d'eau de la région de Tlemcen ne sont malheureusement pas pris en compte par les forestiers dans leur gestion, leurs statistiques et surtout dans leur protection.

L'étude porte sur les ripisylves de la région de Tlemcen, sur les rives de Oued Tafna, depuis l'amont jusqu'à l'aval, en passant par la moyenne Tafna.


L'objectif de cette étude est de décrire le cortège floristique de la ripisylve, avec leur systématique et de souligner les différents groupements végétaux à *Tamarix* L.

Répondant aux objectifs que l'on s'est fixés, cette étude est répartie

en quatre grands chapitres:

- ➤ Un premier, consacré à un aperçu bibliographique sur les ripisylves méditerranéennes, des généralités sur le genre *Tamarix* L., et la position systématique du *Tamarix* L. dans la région de Tlemcen.
- ➤ Quant au second, présente le cadre physique avec l'étude bioclimatique et la méthodologie du travail.

- Le troisième est réservé à l'analyse de la biodiversité floristique, du point de vue taxonomique, biologique, morphologique et biogéographique d'une part, et du point de vue indices de diversité d'autre part.
- ➤ Et le quatrième chapitre assure une analyse statique de la végétation par une Analyse Factorielle des Correspondances, et un essai cartographique des groupements à *Tamarix* L. de la région de Tlemcen.

I.1. Généralité sur les ripisylves méditerranéennes

I.1.1. Introduction

Ripisylve, synonyme de forêt riveraine, c'est des formations arborées et arbustives, denses ou éparses, liées à la présence d'un cours d'eau permanent ou transitoire. Les premières sont d'une forte richesse spécifique en ligneux, avec un cortège floristique global très comparable.

Les deuxièmes connus sous le nom d' « Oued » au sud de la méditerranée, présentent des structures de végétation très particulières et sont répandus au sud de la méditerranée (Lavagne et Moutte, 1971 ; Loisel, 1976).

Historiquement parlant, des structures de végétation de mise en place post-glaciaire en méditerranée occidentale (**Beaulieu**, 1977). La recolonisation s'est faite progressivement à partir d'espèces adaptées de souche eurasiatique. Actuellement cantonnés à l'étage thermoméditerranéen. C'est seulement en méditerranée orientale, et dans le sud de la péninsule ibérique, que certains éléments mésothermes ont pu se maintenir, et étaient présents autour de la méditerranée avant le Pleistocène (**Roiron**, 1992).

I.1.2. Caractères physionomiques et fonctionnels majeurs

L'eau est le moteur de la dynamique des systèmes aquatiques. A l'heure actuelle, en région méditerranéenne, ces hydrosystèmes sont des écosystèmes hautement dynamiques et ouverts (Ward et al, 2002), parcourus par des flux de nature stochastique, et ne sont plus considérés comme des systèmes pocédant des conditions d'équilibre. Cette dynamique fluviale est la première force qui assure le maintien des connectivités biologiques au sein de ces hydrosystèmes tempérées (Ward et al., 2002).

Des processus spatio-temporels complexes interviennent dans le fonctionnement et le maintien des ripisylves, ces dernières constituent une réelle liaison entre écosystèmes terrestres et aquatiques.

Un cours d'eau peut-être subdivisé en plusieurs secteurs fonctionnels, des sous-systèmes de l'hydrosystème global, chacun sa dynamique fluviale propre qui dépendent des contraintes structurales, de la pente, du régime hydrique, de l'humidité et oxygénation du sol (Amoros et Petts, 1993; Ward et al., 2002). Ces secteurs abritent des structures de végétations variées et dynamiques propre, créant une mosaïque complexe à cause des profonds gradients climatiques, édaphiques, et de perturbations qui s'exercent à des échelles spatiales réduites.

D'une manière, deux types de végétation ripisylves :

✓ une végétation surtout arborée subissant moins les effets des perturbations hydrauliques. Cette végétation le plus souvent similaire à une forêt galerie, représente l'aspect

essentiel des ripisylves à base de *Populus, Alnus, Fraxinus, Ulmus, Platanus*..., mais elle reste sous la dépendance des cours d'eau permanents ou sub-permanents ;

✓ une végétation arbustive relativement instable et clairsemée puisque subissant des événements réguliers de perturbation, elle est essentiellement constituée par des représentants du genre *Salix*, au moins au nord de la méditerranée, ou *Tamarix* au sud.

Du point de vue écologique, les forêts riveraines échappent presque aux conditions climatiques générales méditerranéennes. La permanence de l'eau tout au long de l'année représente le facteur majeur, permettant à la végétation de prospérer pendant la saison chaude et théoriquement sèche, caractéristique du climat méditerranéen. Le second critère majeur est d'ordre thermique, puisque les ripisylves représentent en région méditerranéenne, des écosystèmes où les températures sont fortement tamponnées tout au long de l'année ; les maxima estivaux sont en particulier fortement atténués en raison de la présence au sol d'eau froide ou au moins fraîche. Aussi les maxima thermiques, de même que le faible ensoleillement qui est de règle dans les ripisylves en bon état, sont tamponnés par l'évapotranspiration intense. Ces facteurs écologiques tendent à atténuer le caractère méditerranéen de ces habitats. La richesse en matières organiques favorise des substrats alluviaux favorables au développement de la vie végétale en particulier. Les ripisylves en région méditerranéenne, comme dans les régions tempérées sont marquées par un cycle de végétation rapide. En effet, la croissance des essences constitutives majeures (peupliers, frênes, aulnes etc.) s'effectue sur des durées n'excédant pas 30 ans.

Les ripisylves ont différentes fonctions écologiques, et peuvent être résumées comme suit :

- ✓ constitution d'écosystèmes complexes et très diversifiés,
- ✓ apport trophique capital pour le développement et le maintien de l'ensemble de l'hydrosystème,
- ✓ rôle des racines en tant qu'élément anti-érosif des berges, en limitant le phénomène d'effondrement,
 - ✓ élément majeur de prévention des inondations,
- ✓ véritable " filtre anti-pollution ", aussi bien pour les composés chimiques adsorbés aux sédiments que pour les polluants dissous dans l'eau,
 - ✓ rôle de corridor biologique facilitant les flux d'espèces forestières.

Les ripisylves constituent donc de véritables zones tampons et des oasis de diversité, mais leurs efficacités biologiques et fonctionnelles seront d'autant plus fortes que la matrice paysagère du bassin versant sera gérée de façon correcte (**Décamps et Décamps, 2002**).

I.1.3. Caractères floristiques généraux

Généralement, il est important de faire la différence entre la végétation des cours d'eau permanents de celle des cours d'eau transitoires.

La végétation liée aux cours d'eau permanents est constituée d'éléments cosmopolites de souche européenne. Les arbres et arbustes des ripisylves de la méditerranée centro-occidentale s'inscrivent presque tous dans des genres essentiellement européens. C'est le cas en particulier des genres Salix, Populus, Alnus, Fraxinus, Ulmus. Et plusieurs espèces comme : Populus alba et Populus nigra, Fraxinus oxyphylla et Fraxinus excelsior, Ulmus minor et Ulmus scabra, voire Alnus glutinosa et Alnus incana (fig. 1, 2 et 3). Toutefois, aucune de ces espèces ne peut être considérée comme méditerranéenne voire même subméditerranéenne. Dans le genre Salix, très polymorphe, existent des espèces à répartition plus limitée, mais parmi les espèces présentes en région méditerranéenne, seuls les saules du groupe pedicellata peuvent être considérés comme réellement méditerranéens. Ce groupe comporte Salix pedicellata sensu stricto qui se rencontre en Afrique du Nord, Espagne, Sicilie et Malte, Salix antiatlantica dans le sud du Maroc, et trois saules décrits récemment en Italie : Salix gussonei au nord-est de la Sicile, Salix arrigonii en Sardaigne et Salix ionica en Calabre (Brullo et al. 2001).

Par contre, la végétation des ripisylves en méditerranée orientale, peuvent apparaître des éléments remarquables sur le plan floristique. Exemple : *Platanus orientalis, Juglans regia, Pterocarya fraxinifolia, Liquidambar orientalis* et *Rhododendron ponticum* sensu lato, les lianes plutôt d'affinités tropicales: *Periploca graeca, Cyprinia gracilis*. Quelques-unes de ces espèces sont résiduelles ou encore présentes très localement en méditerranée occidentale. Parmi les arbres constituants la ripisylve, existent aussi des éléments forestiers qui trouvent des conditions écologiques favorables ; c'est le cas des chênes et tout spécialement de *Quercus pedunculata, Ostrya carpinifolia, Carpinus betulus, Corylus avellana, Celtis australis, Laurus nobilis* et *Cercis siliquastrum*. C'est d'ailleurs dans ce groupe que rentre la majeure partie des espèces associées, herbacées ou lianes, présentes dans les ripisylves ; il s'agit d'espèces banales le plus souvent sylvatiques ou hygrophiles, parmi lesquelles les Rosacées (*Rosa, Rubus, Prunus*) jouent un rôle très important.

Au niveau des cours d'eau transitoires au contraire, même si la végétation est assez pauvre, les représentants de la ripisylve sont tous de souche méditerranéenne ou méridionale, et pratiquement tous sempervirents (sauf *Vitex agnus-castus*) : *Nerium oleander, Tamarix africana, Tamarix canariensis, Tamarix europaea, Tamarix tetrandra, Phoenix theophrasti, Securinega buxifolia.* Le cortège d'espèces associées est dans ce cas extrêmement réduit, et en

général apparaissent seulement quelques espèces hygrophiles (*Typha*, *Phragmites*, *Imperata*, *Juncus*, *Carex*...).

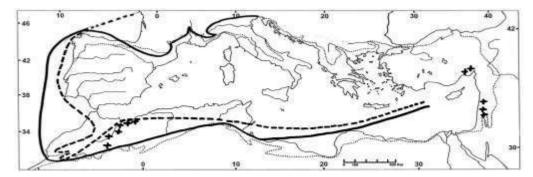


Fig. 1 : Limites schématiques de l'aire de *Populus alba* en traits pleins et de *Populus nigra* en tirets. Le premier est nettement plus méditerranéen que le second qui en particulier n'est présent que dans le tell en Afrique du Nord. Bien que largement présents en méditerranée orientale, leur indigénat y est contesté par de nombreux auteurs. Les croix indiquent les localités disjointes principales de *Populus euphratica*.

(Source: Quézel et Médail, 2003)

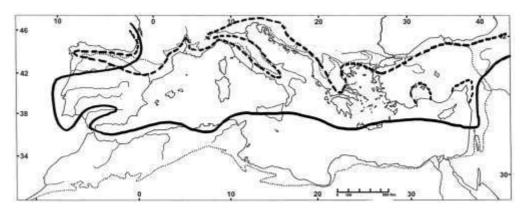


Fig. 2 : Limites schématiques de l'aire de *Ulmus minor*, en traits plein, de Gibraltar à la mer noire; limites schématiques de l'aire de *Ulmus scabra*, en tirets, des Pyrénées aux Balkans.

(Source : Quézel et Médail, 2003)

Fig. 3 : Limites schématiques de l'aire de *Alnus glutinosa*, en traits pleins du Portugal à la mer noire; limites schématiques de l'aire de *Alnus incana* en tirets, des Alpes aux Balkans; limites de l'aire de *Alnus orientalis* en tirets, au proche orient.

(Source: Quézel et Médail, 2003)

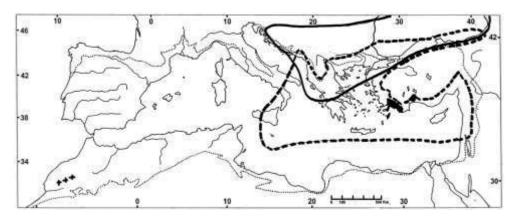


Fig. 4 : Limites de l'aire de *Platanus orientalis* en tirets, de la Sicile au proche orient; en traits pleins limites schématiques de l'aire présumée spontanée de *Juglans regia* des Balkans à la mer noire, avec quelques colonies peut-être spontanées sur le grand atlas au Maroc (+) ; en noir, limites schématiques de l'aire de *Liquidambar orientalis* en anatolie sud-occidentale.

(Source: Quézel et Médail, 2003)

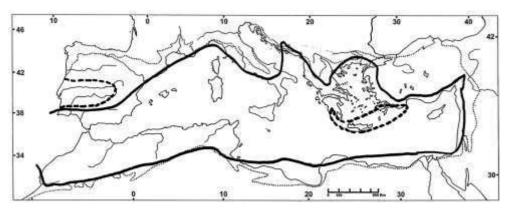


Fig. 5 : Sur l'ensemble du pourtour méditerranéen, en traits pleins, limites schématiques de l'aire de *Nerium oleander* et de *Vitex agnus-castus. Nerium* est également présent sur le Hoggar. En tirets, du péloponnèse à l'anatolie : limites de l'aire de *Phoenix theophrastii*, et dans la péninsule ibérique, de l'aire du genre *Securinega*.

(Source: Quézel et Médail, 2003)

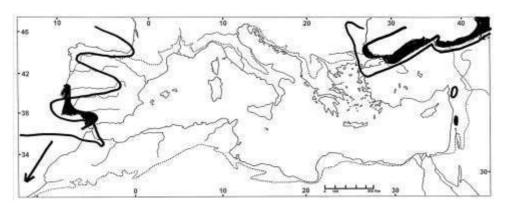


Fig. 6 : En grisé, limites de l'aire de *Rhododendron ponticum* avec au sud de la mer noire la subsp. *ponticum*, au Liban la subsp. *Brachycarpum* et en Bétique la subsp. *baeticum*; en traits pleins, limites de l'aire du genre *Laurocerasus*: en bordure de la mer noire ; *L. officinalis*, et sur l'Atlantique du Rif au Pays Basque : *L. lusitanicus*, avec extension sur les îles Macaronésiennes (Canaries, Madère, Açores).

(Source: Quézel et Médail, 2003)

I.1.4. Ripisylves liées aux cours d'eau permanents

Ces ripisylves s'organisent autour de *Populus alba*, et de diverses espèces d'aulnes, de frênes, d'ormes, et de *Platanus orientalis* en méditerranée orientale. Parfois considérées comme une classe particulière (*Salicipurpureae-Populeteanigrae*) (**Rivas-Martinez** *et al.*, **2001**), les ripisylves liées aux cours d'eaux permanent, s'insèrent avec les formations à chênes et hêtre (*Querco-Fagetea*), montrant leurs affinités avec les formations forestières. En région méditerranéenne, l'ensemble des forêts galeries, et forêts alluviales, s'organise autour de structures à *Populus alba* (*Populetalia albae*); regroupant les ripisylves à aulne et orme au (*Alnion incanae*) de type montagnard et submontagnard, *l'Osmondo-Alnion glutinosae* qui réunit les aulnaies méditerranéoatlantiques, le *Saponario-Populion albae* qui définit les populaies nord-méditerranéennes et le *Clematido cirrhosae-Populion albae* relatif aux populaies d'Afrique du Nord (**Bensettiti et Lacoste, 1999**). Enfin, en méditerranée centroorientale, les formations à *Platanus orientalis* définissent plusieurs formations originales qui s'intègrent au *Platanion orientalis* (**Karpati et Karpati, 1961**; **Barbagallo et al., 1979**).

Sur le pourtour méditerranéen, jusque sur les marges sahariennes, les ripisylves à base de *Populus alba* jouent un rôle important. Elles s'inscrivent dans de nombreux groupements ou associations présentes dans toute la région méditerranéenne nord-occidentale: l'association à *Populus alba (Populetum albae* **Br.-Bl. 1931 ex Tchou 1947**) et l'association plus méridionale à *Rubus caesius* et *Populus alba* **Br.-Bl. et Bolòs 1957**; *Populus nigra* et *Fraxinus angustifolia* subsp. *Oxycarpa* sont généralement présents.

Les aulnes structurent également divers groupements en région méditerranéenne, mais en ambiance beaucoup plus fraîche que le peuplier blanc. De nombreux groupements ont été décrits, où *Alnus orientalis* devient dominant (**Abi Saleh, 1978**). *Alnus glutinosa* est l'espèce la plus fréquente, en particulier au niveau de l'association à *Alnus glutinosa* et *Fraxinus angustifolia* subsp. *oxycarpa* très répandue sur les marges des plaines méditerranéennes (**Tchou, 1948-1949**), mais aussi l'association à *Alnus glutinosa* et *Tillia cordata* des Maures et de l'Estérel (**Loisel, 1976, 1983**).

Sur le littoral algérien centro-oriental, l'aulne glutineux est bien présent (ass. à *Rubus caesius* et *Alnus glutinosa* **Bensettiti 1999**), et s'associe à *Campanula alata* pour former de remarquables formations relictes en limite sud d'aire de répartition, en particulier dans la région d'El Kala (**Bensettiti, 1992**; **Géhu et** *al.*, **1994**).

Frênes et ormeaux, presque toujours présents dans les ripisylves, arrivent à jouer localement un rôle prépondérant, c'est le cas notamment en Corse (ass. à *Fraxinus angustifolia* subsp. *oxycarpa* et *Ulmus minor* **Gamisans 1991**), mais surtout en zone

continentale de la péninsule ibérique (ass. à *Arum italicum* et *Ulmus minor* **Rivas-Martínez** ex Lopez 1976).

Les ripisylves à *Platanus orientalis* se rencontrent sur les berges des cours d'eau permanents ou transitoires et dans les vallons humides depuis l'Italie méridionale jusqu'en Iran et Irak. Le platane d'Orient possède une amplitude écologique vaste, et les ripisylves qu'il individualise existent sous des conditions climatiques variées (précipitations annuelles situées entre 200 et 1270 mm) et à une altitude comprise entre 0 et 1500 m, c'est-à-dire depuis le thermoméditerranéen jusqu'au montagnard-méditerranéen (**Quézel et Médail, 2003**).

L'originale communauté à *Laurus nobilis* et *Celtis australis* (**Bensettiti, 1999**) présente sur l'Atlas tellien en Algérie, caractérisée par *Acanthus mollis, Ruscus hypoglossum, Aristolochia sempervirens* et *Iris foetidissima* (**Bensettiti & Lacoste, 1999**); il est possible d'y rattacher une formation voisine, mais appauvrie, présente dans certains vallons chauds et humides du sud-est de la France où le laurier et le micocoulier sont localement dominants (**Barbero et Loisel, 1983**).

Citons en particulier quelques autres types de ripisylves en région méditerranéenne :

- ✓ Les ripisylves ou plutôt les forêts hygromésophiles à tilleuls et érables (*Tilio-Acerion*), plus européennes que méditerranéennes,
- ✓ les ripisylves, mais aussi les forêts alluviales résiduelles à *Liquidambar orientalis* sont strictement localisées en Anatolie sud-occidentale (**Akman et** *al.*, **1993**) ;
- ✓ les ripisylves à *Rhododendron ponticum* présentes sur substrats siliceux au Liban (**Abi Saleh, 1978**) et dans le sud de la péninsule ibérique (ass. à *Frangula alnus* subsp. *baetica* et *Rhododendrum ponticum* subsp. *baeticum*);
- ✓ les ripisylves à *Prunus lusitanica* et *Betula pubescens* subsp. *fontqueri* du Rif : ass. à *Polystichum setiferum* et *Prunus lusitanica* (**Barbero***et al.*, 1981) ;
- ✓ les ripisylves à *Juglans regia* du Haut-Atlas marocain, arbre dont l'origine est douteuse en Afrique du Nord.

En région méditerranéenne et notamment en France sont présentes des forêts alluviales encore mal connues. Sur les rives du Rhône inférieur, la formation à *Ulmus* et *Fraxinus* excelsior, représente un vestige altéré d'une végétation typiquement européenne où *Quercus* pedunculata est encore présent.

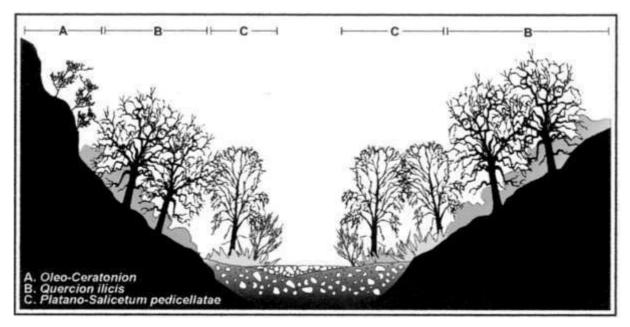


Fig. 7 : Transect schématique de la végétation d'un vallon encaissé des monts Iblei (Sicile sudorientale) :

A, matorral thermophile à sclérophylles (Oleo-Ceratonion);

B, boisement de *Quercus ilex*;

C, formation riveraine à *Platanus orientalis* et *Salix pedicellata*;

D, formations herbacées hygrophiles à *Cyperuslongus*, et aquatiques à *Apium nodiflorum* et *Zannichellia palustris* (d'après Barbagallo *et al.*, 1979, modifié).

(Source: Quézel et Médail, 2003)

I.1.5. Ripisylves liées aux cours d'eau transitoires

Moins diversifiées que les précédentes, elles apparaissent en méditerranée du sud, au niveau des systèmes hydrographiques à régime intermittent de type « Oued ». Du point de vue bioclimatique, elles sont liées à l'étage thermoméditerranéen, constituant une végétation pauvre où les espèces les plus importantes sont réduites à quelques unités et s'associent à un cortège banal d'espèces hygrophiles. Les arbres sont exceptionnels, et il s'agit plutôt de fourrés ne dépassant pas quelques mètres de hauteur. Ces ripisylves liées aux cours d'eau transitoires s'intègrent dans une classe particulière méditerranéenne (*Nerio-Tamaricetea*), définie par le laurier rose et divers tamarix. Ce type de formations joue un rôle pionnier semblable à celui des formations à saules (*Salicetea purpureae*), plus septentrionales (**Bensettiti et Lacoste, 1999**). Les fourrés à laurier rose - les nériaies - (*Rubo ulmifolii-Nerion oleandri*) existent sur la majeure partie de la région méditerranéenne et s'intègrent dans l'ass. à *Rubus inermis* et *Nerium oleander* O de **Bolòs 1956**.

Les formations à base de *Tamarix* L. sont plus complèxes et intégrées dans des unités différentes, les communautés varient puisque qu'elles sont liées soit à l'eau douce soit aux eaux saumâtres; ces formations sont formées de :

- ✓ Tamarix africana et Tamarix gallica (Tamaricion africanae) pour les tamariçaies halophiles,
- ✓ Tamarix canariensis, Tamarix boveana, ou Tamarix balansae pour les tamariçaies sub-halophiles (Tamaricion boveano-canariensis).

En France méditerranéenne et spécialement en Corse, Gamisans (1991) a défini divers groupements s'organisant autour de *Tamarix africana*. Les tamariçaies halophiles sont bien présentes en Espagne et au sud de la méditerranée (Rivas Martinez et al., 2001). Le taux de salinité des sols représente un facteur fondamental, dans la distribution de la végétation riveraine en bioclimats semi-aride et aride comme l'ont bien montré Salinas et al. (2000), dans le bassin de l'Andarax où *Tamarix canariensis* laisse progressivement la place à *Tamarix africana* quand la salinité augmente.

Certains autres types de végétation peuvent également être rattachés à cet ensemble, les formations à *Securinega buxifolia* en Espagne occidentale, *Phoenix theophrasti* présent sur le littoral de la Crète et du sud-est de la Turquie, *Phoenix dactylifera* en Afrique du Nord présaharienne. *Populus euphratica*, espèce irano-touranienne, apparaît épisodiquement en région méditerranéenne, notamment au Maroc oriental, dans la vallée de la Moulouya et de l'oued Ziz, et aussi depuis le Jourdain jusque dans la plaine de la Békaa au Liban (**Quézel et Médail, 2003**).

I.1.6. Conclusion

Du point de vue physionomique et floristique, il convient de distinguer l'existence de trois ensembles majeurs. Les deux premiers se rapportent à la végétation des cours d'eau permanents et répondent respectivement aux structures liées aux ripisylves ou forêts galeries ; à leurs niveaux, la flore est composée d'éléments essentiellement de type européen et à vaste aire de répartition (Quézel et Médail, 2003).

Le troisième ensemble, lié aux cours d'eau intermittents de type "Oued", est au contraire typiquement méditerranéen et bien que pauvre sur le plan floristique, il héberge un certain nombre d'espèces particulières souvent à répartition résiduelle et limitée (**Quézel et Médail**, **2003**).

Du point de vue biogéographique les deux premiers ensembles sont de mise en place récente ce qui explique aisément la présence d'une flore peu originale, sauf en région méditerranéenne orientale plus épargnée par les glaciations où ont pu subsister un certain nombre d'éléments plus anciens. Le dernier groupe, actuellement lié à l'étage thermo-

méditerranéen est au contraire composé d'éléments préglaciaires où l'endémisme résiduel apparaît localement (Quézel et Médail, 2003).

Du point de vue écologique, les ripisylves liées aux cours d'eau permanents échappent à peu près aux contraintes thermiques et xériques caractéristiques du climat méditerranéen ; ceci explique le caractère encore européen de leur flore et de leur végétation, ce qui n'est plus le cas des formations liées aux cours d'eaux transitoires, plus généralement présentes au sud de la Méditerranée (Quézel et Médail, 2003).

I.2. Biodiversité par l'instabilité

I.2.1. Introduction

L'existence des ripisylves dépend de la présence d'une nappe phréatique peu profonde et d'inondations périodiques. Cependant, elles diffèrent des zones humides par leur forme linéaire et par leur topographie tourmentée, qui est souvent bouleversée par les crues. Cette hétérogénéité dans l'espace et dans le temps leur confère une remarquable diversité spécifique et fonctionnelle.

I.2.2. Renouvellement par les aléas hydrologiques

Les régimes hydrologiques des cours d'eau adjacents influencent la dynamique de la végétation riveraine. Les crues modifient les berges des rivières, des mosaïques changeantes de communautés végétales imbriquées sont créées, les unes pionnières, les autres matures. Chaque communauté représente un des stades de la succession végétale riveraine. Sur les alluvions récentes déposées par les crues, se développent les communautés pionnières, formations dominées par des herbacées plus ou moins hautes selon la richesse du sol. Peu à peu, par sédimentation elles se dégagent, des conditions de vie aquatique pour laisser la place à des communautés boisées, passant des saulaies et des aulnaies aux peupleraies, puis aux chênaies-frênaies et enfin aux chênaies mixtes, ces dernières non soumises aux inondations.

Cette séquence peut durer une trentaine d'années au fur et à mesure que la sédimentation élève le substrat par rapport au niveau des cours d'eau. À tout moment, par érosion, de nouvelles crues peuvent ramener un stade donné au point de départ.

Des processus allogéniques dominent la dynamique des saulaies, aulnaies et peupleraies de la plaine inondable, tandis que des processus autogéniques dominent la dynamique des chênaies mixtes sur les terrasses (**Pautou et Décamps, 1985**). Premièrement le rajeunissement périodique dépend des régimes hydrologiques en place. Deuxièmement, les différents stades de la séquence coexistent, formant des mosaïques aux éléments juxtaposés et changeants. Cette hétérogénéité des systèmes riverains explique en grande partie leur

biodiversité. Aussi l'établissement initial des plantules des espèces pionnières dépend de la coïncidence de la dispersion des graines avec des événements hydrologiques précis (Décamps, 2003).

I.2.3. Biodiversité riveraine

Le profil longitudinal des rivières influence la richesse spécifique végétale. En partant des sources, généralement on observe une augmentation du nombre des espèces présentes le long des rives, jusqu'à atteindre un maximum dans les zones de piémont (Salo et al. 1986, Nilsson et al. 1989, 1994, Décamps et al. 1995, Planty Tabacchi et al. 1996). Ce maximum paraît correspondre à un niveau intermédiaire de perturbation hydrologique, créant une forte hétérogénéité spatiale.

D'autres facteurs peuvent toutefois intervenir, relevant de la géomorphologie ou des conditions climatiques. On a pu ainsi évoquer le degré de confinement (Ward, 1998), la taille des cours d'eau (Nilsson et al., 1994), les intersections avec le réseau routier. La variation longitudinale de la richesse spécifique dépend aussi du groupe végétal considéré (Baker, 1990).

La richesse spécifique végétale varie également, perpendiculairement par rapport aux rives des cours d'eau, avec un maximum atteint pour des niveaux intermédiaires de perturbation hydrologique et d'humidité du sol (Hupp et Osterkamp, 1985). Sur le terrain, le nombre d'espèces est en effet souvent peu élevé au voisinage immédiat des rives, augmente ensuite quand on s'en éloigne pour diminuer à l'approche de l'interface entre la zone inondable et la terrasse voisine. La forme fluviale, la géométrie du chenal, les caractéristiques hydrologiques et sédimentaires influencent largement cette variation (Gregory et al., 1991, Van Coller, 2000).

La biodiversité serait en effet maximale dans les communautés soumises à des niveaux intermédiaires de perturbation. Aux faibles niveaux, les interactions compétitives excluraient certaines espèces, formant des communautés de quelques espèces dominantes à longue durée de vie. Aux forts niveaux, le renouvellement fréquent des communautés exclurait les espèces à faible capacité de colonisation et longévives, conduisant à des communautés de quelques espèces petites et à courte durée de vie. Cependant, l'hypothèse de la perturbation intermédiaire est assimilable avec d'autres explications qui fait appel, par exemple, à un équilibre dynamique entre productivité et perturbation (Huston, 1979) ou à la compétition pour des ressources en environnement hétérogène (Tilman, 1982).

La productivité potentielle, le niveau de perturbation et l'hétérogénéité spatiale contrôlent les variations de la biodiversité le long des zones riveraines (**Décamps, 2003**).

I.2.4. Notion de richesse spécifique

La richesse spécifique correspond simplement au nombre d'espèces présentes dans une aire donnée, quelles que soient les abondances relatives de ces espèces. L'équitabilité, degré d'égalité de ces abondances, est maximale lorsque toutes les espèces présentes sont également abondantes. Quant au terme de biodiversité, les écologues l'utilisent traditionnellement comme synonyme d'indice de diversité de Shannon, mesure du nombre et de l'équitabilité des espèces.

La biodiversité alpha (α) fait référence au nombre d'espèces trouvées dans un habitat, tandis que la biodiversité bêta (β) correspond au taux de changement des espèces entre différents habitats. La biodiversité gamma (γ) décrit des niveaux de biodiversité sur de grandes aires, la biodiversité delta (δ) le taux de changement des espèces entre ces grandes aires. Enfin, la biodiversité epsilon (ϵ) fait référence au nombre total d'espèces observées dans une région. Les biodiversités alpha, gamma et epsilon correspondent à des biodiversités d'inventaire à propos d'aires données ; les biodiversités bêta et delta correspondent à des biodiversités de différenciation entre ces aires (fig. n°8) (**Décamps, 2003**).

- ✓ La biodiversité alpha est élevée car les zones riveraines des cours d'eau hébergent des espèces nombreuses dans des habitats relativement petites et proches ;
- ✓ la biodiversité bêta est modérée car beaucoup d'espèces riveraines ont des amplitudes écologiques telles que les compositions spécifiques de leurs habitats se recouvrent fortement;
- ✓ la biodiversité gamma est élevée car les zones riveraines hébergent une large gamme d'habitats différents et, même si les taux de changement sont faibles, le nombre d'habitats est suffisamment élevé pour permettre à de nouvelles espèces d'apparaître quand on passe du premier au dernier habitat ;
- ✓ la biodiversité delta, c'est-à-dire le changement de composition spécifique d'un bassin versant à l'autre, est relativement faible dans la mesure où l'endémisme est plutôt faible le long des cours d'eau;
- ✓ la biodiversité epsilon devient de plus en plus importante au fur et à mesure qu'on regroupe un nombre élevé de bassins versants et réunit par exemple l'est et l'ouest méditerranéen, ou les pays du nord et ceux du sud.

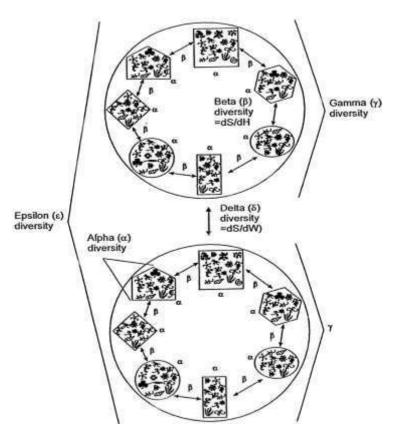


Fig. 8 : Représentation de la biodiversité des corridors riverains à différentes échelles d'espace. Les deux grands cercles figurent deux bassins versants, les dessins géométriques à l'intérieur des cercles des types d'habitats, les symboles dans chaque type d'habitat des espèces et les flèches des taux de changement d'espèces. Les expressions de la biodiversité - alpha, bêta, gamma, delta et epsilon – varient en fonction des échelles choisies (d'après Pollock, 1998).

(Source: Décamps, 2003)

I.2.5. Conclusion

Des facteurs hydrologiques et écologiques, qu'ils soient à petite ou grande échelle, ont une influence directe sur la biodiversité végétale des ripisylves méditerranéennes. Ces dernières constituent de véritables foyers de biodiversité, et doivent ce caractère à leur forte instabilité (**Décamps, 2003**).

I.3. Syntaxinomie générale des formations végétales des ripisylves méditérranéennes

I.3.1. Querco roboris-fagetea sylvaticae Br.-Bl. &Vlieger in Vlieger 1937

Citons un seul ordre:

- ❖ Populetalia albae Br.-Bl. ex Tchou 1948 : végétation des cours d'eau permanents, présentes en méditerranée centro-occidentale, mais aussi en méditerranée orientale où elles sont mal connues.
- Ripisylves dominées par *Alnus incana*: *Alnion incanae* Pawlowski in Pawlowski, Sokolowski & Wallisch 1928.

- Ripisylves d'affinité médio-européenne dominées par *Populus alba*, présentes en méditerranée occidentale et septentrionale, depuis l'Espagne jusqu'aux Balkans : *Saponario officinalis-Populion albae* Br.-Bl. ex Tchou 1948 *emend*. Bensettiti 1999.
- Ripisylves méditerranéennes dominées par *Populus alba* et *Fraxinus angustifolia* subsp. *oxycarpa*, présentes en Afrique du Nord : *Clematido cirrhosae-Populionalbae* Bensettiti 1999.
- Ripisylves méditerranéennes et ibéro-atlantiques présentes sur substrat siliceux, dominées par *Alnus glutinosa*: *Osmundo regalis-Alnion glutinosae* (Br.-Bl., P. Silva & Rozeira 1956) Dierschke & Rivas-Martínez in Rivas-Martínez 1975.
- Formations des bords de cours d'eau permanents ou semi-permanents, dominées par *Platanus orientalis* et présentes en méditerranée centro-orientale : *Platanion orientalis* I. Karpati & V. Karpati 1961.

I.3.2. Salicetea purpureae Moor 1958

Citons deux ordres:

- ❖ Salicetalia purpureae Moor 1958 : végétations ripicoles pionnières à saules des lits mineurs de cours d'eau permanents ou semi-permanents, intégrant diverses alliances surtout de valeur géographique et axée sur l'espèce ou les espèces de Salix dominantes : Salicion triandrae Th. Müller & Görs 1958. Salicion triandro-neotrichae Br.-Bl. & O. Bolòs 1958. Salicion incanae Aichinger 1933. Securinegion buxifoliae Rivas Goday 1964. Salicion salviifoliae Rivas-Martínez, T.E. Díaz, F. Prieto, Loidi & Penas 1984. Salicion pedicellatae Galán, A.V. Pérez & Cabezudo in A.V. Pérez, Galán, P. Navas, D. Navas, Y. Gil & Cabezudo 1999.
- ❖ Salicetalia albae Th. Müller & Görs 1958 ex Rameau : saulaies et peupleraies des étages méso- et supra-méditerranéens.
- Formations riveraines à *Salix alba* et *Populus nigra* des alluvions récents, en bordure du lit majeur : *Salicion albae* Soó 1930.
- Formations riveraines à *Populus nigra* occupant les niveaux topographiques élevés par rapport au cours d'eau : *Rubo caesii- Populion nigrae* Passarge 1985.

I.3.3. *Nerio oleandri-tamaricetea africanae* Br.-Bl. & O. Bolòs 1958 On distingue un ordre:

* Tamaricetalia africanae Br.-Bl. & O. Bolòs 1958 : végétations des cours d'eau transitoires ou à faible débit essentiellement de l'étage thermo-méditerranéen, dominées par divers *Tamarix* et *Nerium oleander* et présentes surtout au sud et à l'est de la méditerranée.

- Formations des bords de cours d'eau transitoires ou de bords d'étangs, dominées par Tamarix africana et T. gallica, sous influence d'eaux douces ou saumâtres : Tamaricion africanae Br.-Bl. & O. Bolòs 1958.

- Formations des bords de cours d'eau transitoires dominées par *Tamarix canariensis* et *T. boveana*, sur sols plus ou moins salés, présentes dans la péninsule ibérique et en Afrique du Nord : *Tamaricion boveano-canariensis* Izco, Fernández-González & A. Molina 1984.

- Formations riveraines des cours d'eau douce, transitoires ou à faible débit et dominées par *Nerium oleander*, avec souvent *Vitex agnus-castus : Rubo ulmifolii-Nerion oleandri* O. Bolòs 1985.

I.4. Généralité sur le genre Tamarix L.

I.4.1. Caractères généraux de la famille des Tamaricaceae

La famille des Tamaricaceae (Fig. 09 et 10) regroupe 112 espèces endémiques des régions de l'Eurasie et l'Afrique et introduites dans d'autres régions telle que l'Amérique du Nord. Ces espèces sont réparties en quatre genres qui sont :

- Reaumuria: 15 espèces;

- Tamarix : 85 espèces

- Myricaria : 10 espèces

- Hololachna: 2 espèces, (Wilken, 1993).

Dans l'Afrique du nord Ozenda a cité une vingtaine d'espèces de *Tamarix* L.

Les Tamaricaceae ont, généralement, des feuilles petites, alternes, souvent sessiles, rarement subsessiles, éricoïdes, dotées de glandes qui secrètent des sels.

L'inflorescence axillaire solitaire (*Reaumurieae*) ou simple composée de racèmes, en épis ou solitaires (*Tamariceae*).

Les fleurs sont souvent petites, bisexuelles et rarement unisexuelles, actinomorphes, bractéoles, penta ou tétramères (Caiser, 1976).

Sépales et pétales imbriqués. Etamines 5 ou plusieurs, insérées sur un disque nectarifère, libres ou unies à la base. Gynécée 5-2-carpellé avec autant de stigmates libres, à placentation pariétale ou pariétale-basale. Ovules de 2 à n, anatropes, ascendants. Le fruit est une capsule loculicide. Graine barbue entièrement ou seulement au sommet, rarement ailée, albuminée ou non, à embryon droit (Fig. 11) (**Crins, 1989**).

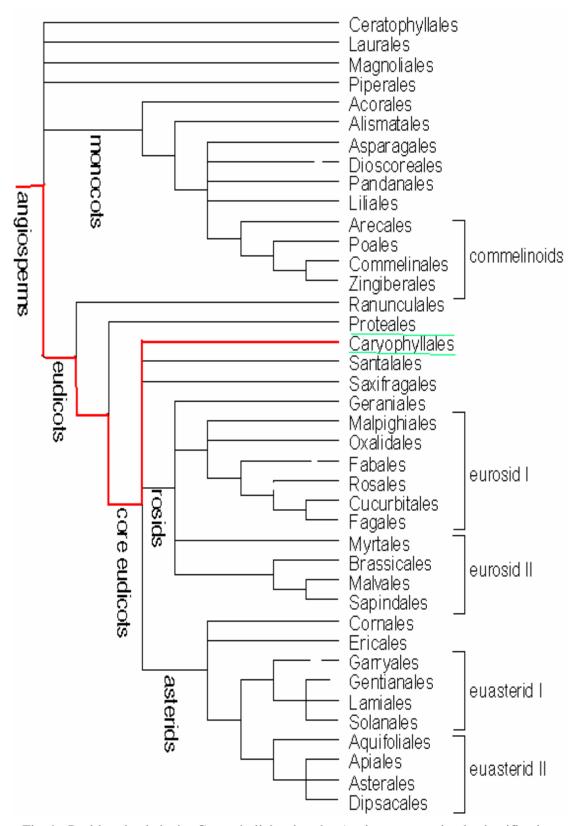


Fig. 9 : Position du clade des Caryophyllales dans les Angiospermes selon la classification angiosperms phylogeny group 2003 (APG 2003).

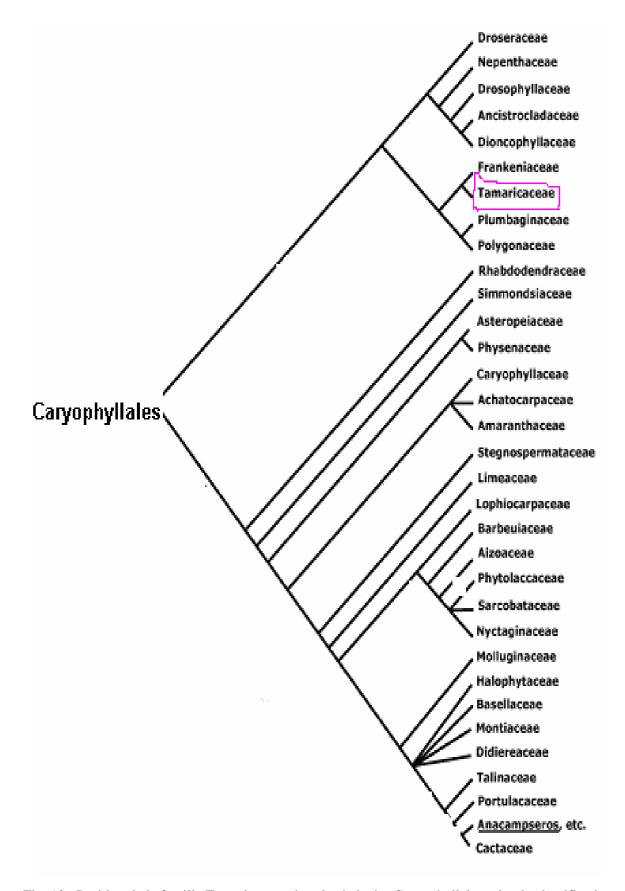


Fig. 10 : Position de la famille Tamaricaceae dans le clade des Caryophyllales selon la classification angiosperms phyloginy group 2003(APG 2003).

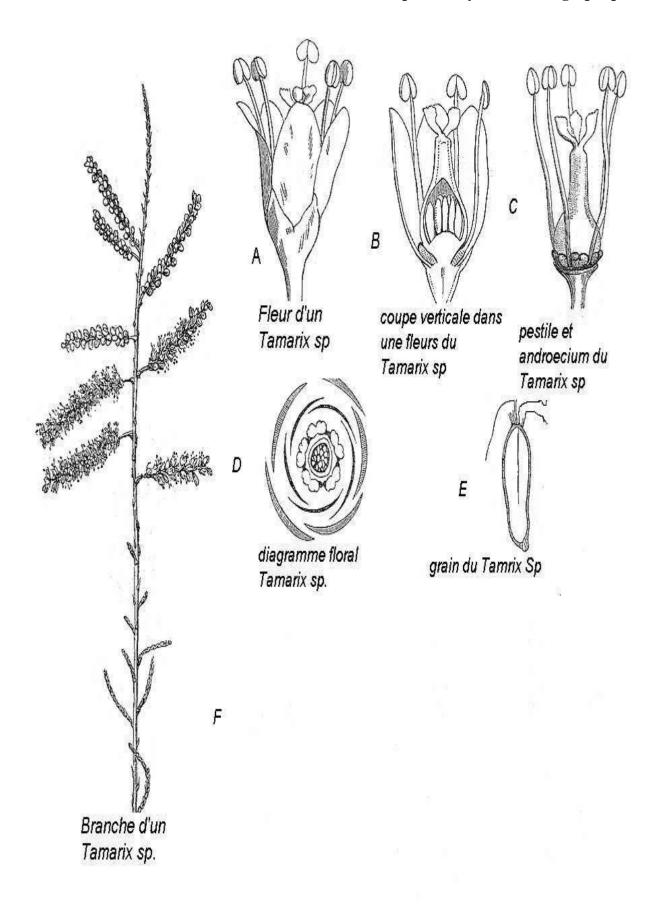


Fig. 11: Les principaux caractères botaniques de la famille des Tamaricaceae

I.4.2. Description du genre Tamarix L.

I.4.2.1. Historique

Le nom *Tamarix* L. dérivé du nom d'une rivière en Espagne appelée Tamaris, à la frontière des Pyrénées, où les espèces de *Tamarix* colonisent ses proximités.

Le terme *Tamarix* L. est adopté la première fois par Linné en 1753-1754, où il a cité seulement deux espèces dans son « herbier », (**Baum, 1967**).

I.4.2.2. Synonymes de Tamarix L.

- Nom scientifique : Tamarix L.

- Nom Français: Tamaris, Tamarin

- Nom Anglais : Salt Cedar, Tamarisk

- Nom Arabe : Athal, Tarfa, Arich (العربش) (**Trabut, 1935**)

- Nom Amazigh : Amammythe

I.4.2.3. Taxonomie du genre *Tamarix* L.

I.4.2.3.1. Selon la classification phylogénétique « Angiosperms Phylogeny Group 2003 » (APG 2003) :

La classification phylogénétique (APG 2003), est une classification botanique des Angiospermes établie selon les travaux de l'Angiosperms Phylogeny Group. Elle se base sur l'affinité génétique entre les espèces, est devenue la classification botanique la plus importante aujourd'hui (**Silvie, 2004**).

Fig. 12 : La taxonomie du genre *Tamarix* selon la classification Angiosperms Phylogeny Group 2003 (1'APG 2003)

I.4.2.3.2. Selon la classification classique

Plusieurs classifications classiques qui existent et qui s'opposent à la classification moderne de l'APG. Comme nous citeron : la classification classique de Cronquist, 1981, la classification des Angiospermes, créée par Robert Folger Thorne en 1992 adoptée en 2000 ; puis 2002 et la classification d'Armen Takhtajan en 1954 rectifiée en 1997.

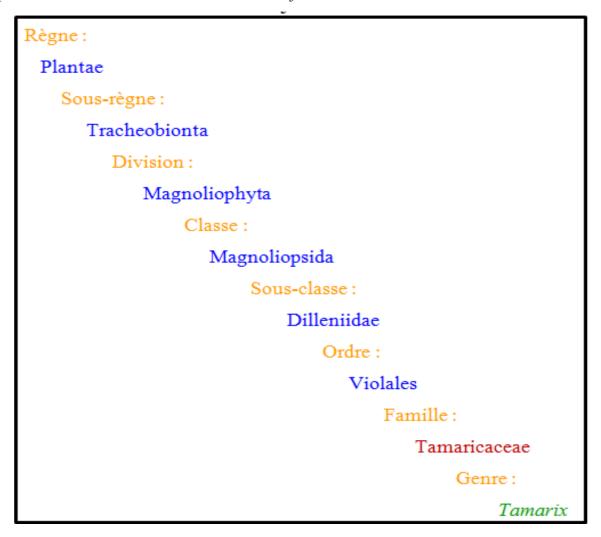


Fig. 13: La classification classique du genre *Tamarix* (classification de Cronquist, 1981)

I.4.2.4. Aire de répartition du genre *Tamarix* L.

Le genre *Tamarix* L. est représenté par des espèces phréatophytes facultatives et généralement halophytes. Originaire des régions d'Europe, de la Méditerranée, de l'Afrique du Nord, du Sahara et de l'Asie (Fig. 14). Les espèces du *Tamarix* L. sont considérées comme espèces envahissantes en Amérique du Nord et en Australie (**Nelroy E. Jackson, 1996**).

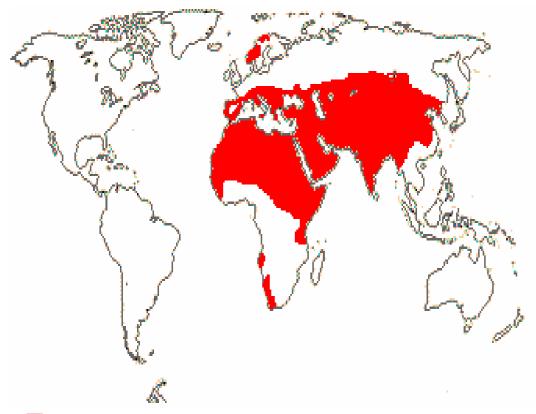


Fig.14: L'aire d'origine de répartition du genre *Tamarix* selon (Nelroy E. Jackson, 1996).

I.4.3. Caractères botaniques du genre Tamarix L.

I.4.3.1. Forme générale

Arbres ou arbustes de 2-10 m d'hauteur, quelques fois 12 m, avec un système racinaire puissant, une ramification dense. Il a deux formes de croissance : l'une normale et lui donne un aspect d'un arbre ordinaire avec une tige principale quand il existe dans des milieux normaux ; la seconde se caractérise par une ramification abondante quand les pieds se trouvent dans un milieu stressant ou dans le cas d'accumulation des sédiments alluviaux (McDaniel, 2007).

Photo n°1: Les deux formes de croissance chez le *Tamarix* sp.;

A: forme normale, B: forme ramifiante (Source: Khabtane, 2010)

I.4.3.2. Rameaux

Ils sont généralement nombreux, fins, glabres, ou écorces de différentes couleurs, souvent marron ou marron noirâtre.

Photo n°2 : Les rameaux de *Tamarix sp*. (Source : Khabtane, 2010)

I.4.3.3. Feuilles

Elles sont petites de 0.5 à 0.7 mm de long, écailleuses, souvent imbriquées, alternées, donnants aux rameaux l'apparence de ceux de certains Genévriers, sessiles, glabres. Elles sont souvent ponctuées de minuscules trous correspondant à des entonnoirs au fond desquels se trouvent placés les stomates et par où exsude un mucus contenant du sel et du calcaire. Elles sont caduques chez certaines espèces est persistantes chez d'autres (Wilkinson, R.E, 1966).

Selon les espèces on distingue les formes suivantes :

- a) Feuilles formant un fourreau complet autour des rameaux, de sorte que ceux-ci paraissent articulés et dépourvus de feuilles (exemple : *Tamarix aphylla* (Ozenda, 1991).
- b) Feuilles étroites ou larges, embrassant le rameau, mais ne l'entourant pas complètement :
- 1. Feuilles larges très embrassantes, imbriqués, très serrées sur les jeunes rameaux, et portant des ponctuations bien visibles :
 - Feuilles plus larges que longues, exemple : Tamarix pauciovulata ;
 - feuilles un peu plus longues que larges, à pointe aigue recourbée en dehors exemple : Tamarix balansae;
- 2. Feuilles allongées non ou peu embrassantes, moins imbriquées à ponctuation peu visible, exemple : *Tamarix gallica*

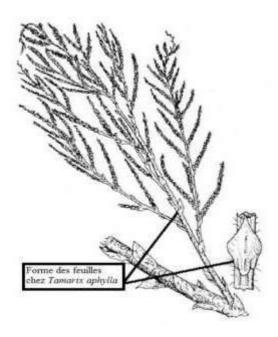


Fig. 15: Forme de feuilles formant un fourreau autour de rameau chez *Tamarix aphylla* (Source: Jessop J.P. et Toelken H.R. (Ed.) 1986. Flora of South Australia)

I.4.3.4. Glandes sécrétrices de sel

Toutes les espèces du genre *Tamarix* L. possèdent des glandes sécrétrices des sels qui se trouvent sur la face inférieure de la feuille, chaque glande est composée de huit cellules :

- a) Deux (02) cellules intérieures appelées cellules collectrices, qui possèdent des vacuoles, le rôle de ces deux cellules est la collecte d'excès des sels qui l'acheminent vers les cellules sécréteuses ;
- b) six (06) cellules externes appelées cellules sécréteuses, ces cellules ont un cytoplasme volumineux par rapport aux cellules de collecte.

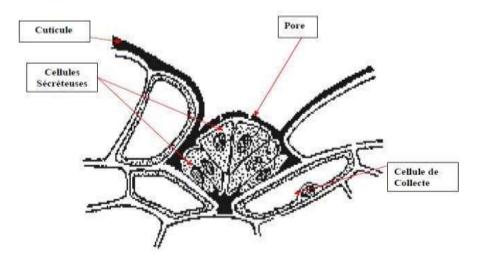


Fig. 16 : La structure d'une glande sécrétante des sels chez le *Tamarix sp.*(Source Curtis E.Swift, Saltcedar (*Tamarix*) Physiology - a Primer Colorado State University Cooperative Extension)

I.4.3.5. Inflorescence

L'inflorescence est simple ou composée de racèmes ou bien de chatons de 1 à 15 cm de longueur, sur les nouvelles pousses de l'année ou sur les pousses anciennes (**Allred, 2002**).

Photo n°3: L'inflorescence chez: (A) *Tamarix africana*, (B) *Tamarix gallica* (Source: Khabtane, 2010)

I.4.3.6. Fleurs

Les fleurs sont petites, généralement moins de 2 mm de diamètre, penta ou tétramères, souvent bisexuelles, rarement unisexuelles. Les fleurs sont régulières à sépales très petits et pétales scarieux roses, rarement blancs. Les étamines, en nombre égal à celui des pétales ou en nombre double, sont insérés sur les bords d'un épaississement de l'axe de la fleur appelé disque floral dont la forme est utilisée dans la détermination et la classification des espèces du *Tamarix* L. Généralement il y a trois carpelles soudés en un ovaire pyramidal ; celui-ci donne à maturité une capsule qui s'ouvre par trois fentes (rarement 2 ou 4) alternant avec les placentas (**DiTomaso, 1996**).

Les capsules se développent de la base vers l'apex du racème ou du chaton ; la période de la floraison débute à partir de la mi-avril pour se givrer en début de Novembre avec un maximum de floraison en fin du printemps et le début d'Eté. Il a été remarqué que la période de la floraison dépend de l'âge des branches et que les branches du même individu fleurissent différemment (**Kerpez et Smith, 1987**).

Photo n°4 : Les fleurs d'un *Tamarix sp.* (Source : Khabtane, 2010)

Photo n°5 : Capsules qui contiennent des graines avant maturation chez *Tamarix africana* (Source : Khabtane, 2010)

I.4.3.7. Graines

Les graines sont de formes variables d'une espèce à une autre. La graine de *Tamarix* L. est quelque peu cylindrique et très petite (0.17 millimètre sur 0.45 millimètre, pèse 1µg), (**Baker**, 1972).

Les graines de *Tamarix* L. sont caractérisées par l'absence de la dormance, mais avec une durée de vie très courte : par exemple les graines produites en été ne vivent que 45 jours dans les conditions idéales du milieu, mais si les conditions sont défavorables, cette durée de vie ne dépasse pas 24 jours. Par contre les graines produites en début d'hiver peuvent vivre 130 jours dans les conditions idéales du milieu.

Un plant mûr de *Tamarix* L. peut produire 500.000 à 600.000 graines à chaque saison de floraison (**Wilgus and Hamilton, 1962**).

Mais ce grand nombre de graines n'arrive pas à germer à cause de leur durée de vie très courte et qui généralement coïncide avec les conditions du milieu défavorables pour la germination.

I.4.3.8. Système racinaire

Le *Tamarix* L. est doté d'un système racinaire puissant et adapté pour l'acquisition de l'eau de la nappe ou les eaux superficielles même dans les sols manquant d'humidité où il a été rapporté que la racine principale peut atteindre une profondeur de 53 m. (Waisel and Kafkafi, 1996).

Pour déterminer les variations de profondeur des racines, de leur développement latéral et le degré de leur ramification : **Tomanek et Ziegler (1960)** ont réalisé des excavations pour 35 plantes de *Tamarix* L., d'âge variable: de quelques jours à quatre ans où ils ont constaté les cas suivants:

- Des racines principales qui se prolongent en profondeur jusqu'à ce qu'elles arrivent audessus d'une source constante d'eau où ces racines se ramifiaient pour qu'elles puissent absorber plus d'eau par capillarité (Photo n°6).
- Des racines qui n'avancent pas en profondeur formant un système racinaire adventif dans le cas où la source d'eau est plus proche de la surface (Fig. 17).
- Dans le troisième cas, où il existe deux sources d'eau dans le sol; l'une superficielle (en saison des pluies) et la seconde plus profonde (en cas de sécheresse prolongée), le *Tamarix* L. développe un système racinaire qui lui permet l'acquisition de l'eau dans les deux situations en formant des ramifications superficielles pour bénéficier de l'eau de surface pendant la saison humide et en même temps, une racine qui se prolonge en profondeur pour assurer l'acquisition de l'eau de profondeur pendant la saison sèche (Fig. 18).

Ces résultats ont permis à ces deux chercheurs de constater que le facteur déterminant dans la formation et le développement de la racine et de ses ramifications peut probablement être le lieu et la profondeur de la nappe d'eau.

Selon **Tomanek et Ziegler (1960)**, ce sont les conditions environnementales qui laissent le *Tamarix* L. développer un système racinaire répandu et profond.

Ils ont trouvé des racines latérales écartées de 9.14 m par rapport à l'axe de la plante et la plupart des racines étaient de 3.04 cm à 4.06 cm au-dessous de la surface du sol.

Sur une autre plante excavée, la racine pivotante s'est prolongée à 4.87 m de profondeurs et de 0.47 cm de diamètre. Bien qu'ils n'ont pas déterminé la profondeur totale des racines, mais ils l'ont estimée être de 7.62 m ou plus.

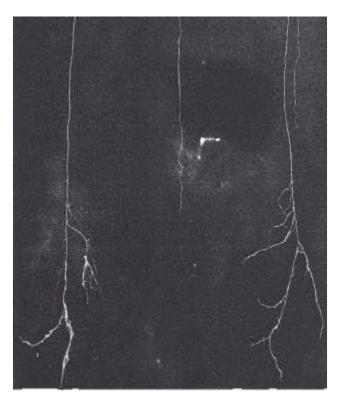


Photo n°6: Le système racinaire pivotant chez les jeunes pousses de *Tamarix sp.* (Source : Tomanek et Ziegler 1960 in Mcdaniel K. C. 2007)

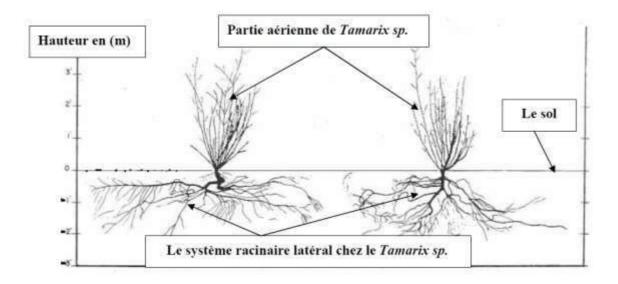


Fig. 17 : Le système racinaire latéral chez des individus âgés de 4 ans de *Tamarix sp.* (Source : Tomanek et Ziegler 1960 in Mcdaniel K. C. 2007)

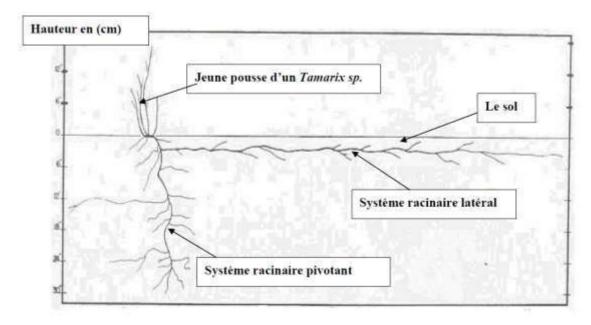


Fig. 18 : Le double système racinaire latéral et pivotant chez les jeunes pousses de *Tamarix sp.* (Source : Tomanek et Ziegler 1960 in Mcdaniel K. C. 2007)

❖ La couronne du système racinaire :

Le système racinaire de *Tamarix* L. est doté d'une partie importante qui se situe entre 0 et 30 cm à 45 cm au-dessous de la surface du sol, cette zone est appelée la couronne racinaire. Cette couronne joue un rôle essentiel dans la repousse des individus abattus soit par les incendies ou par tous autres facteurs défavorables, en effet au niveau de cette zone se trouvent plusieurs bourgeons dormants qui permettent la régénération des individus touchés.

I.5. Biologie du genre *Tamarix* L.

I.5.1. Multiplication

I.5.1.1. Multiplication par les graines

Les graines de *Tamarix* L. se caractérisent par leur faculté de germination juste après leur arrivée sur le sol si les conditions du milieu sont favorables. En effet, elles n'entrent pas en dormance ou vie latente, mais la durée de leur viabilité, est très limitée, de 19 semaines environ, et quelques semaines en submersion dans l'eau.

Une étude réalisée par **Tomanek et Ziegler en 1960** qui visait à estimer la quantité des jeunes graines qui survivent après chaque saison de floraison, cette quantité est estimée de moins de 10% de la quantité des graines produites.

Pour compenser la courte durée de la vie de ces graines, le *Tamarix* L. développe une stratégie qui consiste à produire des graines en abondance. Une étude réalisée par **Young et**

al., **2004**, a montré une abondance des graines à la source est estimée à 4600 graines par m², environ 2400 graines par m² à 0.1 km, et 51 graines par m² à 8 Km du pied de l'arbre.

Photo n°7: La multiplication par graines chez le genre *Tamarix* (Source: Khabtane, 2010)

I.5.1.2. Multiplication par la voie végétative

La multiplication végétative se fait par la croissance secondaire de la tige ou par le rejet des racines et des tiges (Wilhelm N, 1998). Les pousses basiques sont capables de produire des racines adventices à partir de n'importe quelle partie de la tige pourvue qu'elles soient en contact avec un sol humide.

Les pousses ancrées envoient des branches donnant vers le haut un aspect multi-refoulé dense et produisent les nouvelles plantes qui semblent superficiellement indépendantes. Seulement par l'examen des pièces souterraines qu'ont constate qu'elles sont des plantes partagées. Les rejets à la base sont l'un des mécanismes primaires qui empêche la croissance supérieure de *Tamarix* L. à cause de l'absence de la dominance de bourgeons apicaux (**Taylor, Mc Daniel et Kirk, 1998**).

En pépinière, ils procèdent à la reproduction végétative par bouturage, en effets cette méthode permet de gagner du temps et d'avoir des individus de taille assez importante en grande quantité.

Photo n°8 : La multiplication par bouture de *Tamarix sp.* (Source : Khabtane, 2010)

I.5.2. Rythme de croissance

Il est prouvé que la germination des graines de *Tamarix* L. peut se dérouler après 24 heures si les conditions suivantes sont réunies :

- La saturation du sol en humidité pendant les 2 ou les 4 semaines de la vie de la graine ;
- Un sol poreux et bien airé (sableux);
- Absence d'autres espèces compétitives dans le milieu (DiTomaso, 1996).

Dans les premiers stades de croissance, les racines se développent avec un rythme très long durant les 4 premières semaines et ne survivent qu'un seul jour si le sol est sec.

Les résultats obtenus montrent que la profondeur idéale pour la germination des graines du *Tamarix* L. est de 2.58 cm (**Young, 2004**).

Une expérience réalisée par **DiTomaso** en **1996**, sous serre dans des pots contenant un sol limoneux, a montré que la croissance des racines primaires est de 1 mm par jour, soit 21 mm en moyenne après 3 semaines.

Les racines secondaires commencent à se développer à partir de la troisième semaine après la germination, et parfois est retardée jusqu'à la cinquième ou la sixième semaine (**McDaniel**, **2007**).

Après le premier mois, les racines primaires lancent la croissance latérale, si les plants sont maintenus dans une bonne humidité du sol (sol presque saturé). Après la sixième semaine de l'étude, les racines primaires atteignent environ 35 mm et une moyenne de 6 à 7 racines secondaires sur la plupart des plants. Entre la $10^{\text{ème}}$ et la $11^{\text{ème}}$ semaine les racines atteignent

76.2 cm; dans la plupart des cas les racines étaient légèrement embranchées entre les 40 cm et 60 cm. Au dela de 60 cm les racines ont été intensivement embranchées (**McDaniel, 2007**).

A la 8^{ème} semaine la partie aérienne croit de 11,7 cm, et la tige continue à croître d'une moyenne de 2 à 5 mm/jour durant le premier mois de germination. Avec une production de biomasse de l'ordre de 0.25 mg/jour.

Dans une autre étude réalisée par **Horton** en **1960**, où il a démontré qu'une plante qui fait 38 cm de hauteur, développe une racine primaire de 76 cm et des racines latérales sur une distance de 244 cm.

I.5.3. Longévité du gente *Tamarix* L.

La longévité des espèces de genre *Tamarix* n'a pas fait l'objet d'une étude jusqu' à ce jour, mais il présente des signes de longue vie : au New Mexico (USA), ils ont trouvé des individus bien venants qui ont entre 75 et 100 ans (**Horton, 1977**).

I.6. Ecologie du genre Tamarix L.

I.6.1. Habitat

Le *Tamarix* L. se trouve dans des systèmes fluviaux, oueds, lacs surtout salés, aux bords des routes et des chemins de fer, marécages saisonniers ; les plantes mûres peuvent résister à de longues périodes d'inondation de l'eau (70-90 jours, et même plus de 500 jours) et d'autres situations de montagnes, et les déserts arides etc. (**McDaniel et Taylor, 2003**).

En effet c'est un phréatophyte facultatif qui se développe mieux quand il y a une source possible des eaux souterraines, il peut survivre dans des secteurs arides sans abondance d'humidité extérieure.

Le *Tamarix* L. peut se développer sur des altitudes allant de 0 à 2100 m, mais préfère les sols salins en dessous de 500 m (**DiTomaso 1996**).

Les espèces du genre *Tamarix* L. sont rencontrées dans des milieux chauds, arides, des environnements des déserts froids, et des habitats de montagne (**Khabtane**, **2010**).

I.6.2. Sol

Le *Tamarix* L. préfère les zones alluviales. Il occupe les sites à sols en mélange de sable et de limon ou sable, limon, argile, et matière organique, à humidité intermédiaire, et peu d'érosion (**Brotherson et Winkel 1986**).

I.6.3. Salinité

Le *Tamarix* L. n'est pas un halophyte d'obligation, c'est-à-dire il peut se développer sur des sols non salés comme il peut se développer sur des sols salés, mais il peut tolérer de grandes variations de concentrations d'éléments minéraux dans les différents types de sol. Il est bien adapté aux sols salins et alcalins où il se développe typiquement dans les secteurs ayant un taux de salinité de 600 mg/l. Dans la solution du sol, il peut survivre dans des concentrations de sels excédant les 5000 mg/l (**Stevens, 1989**).

Après les incendies, la salinité des sols ravagés par le feu devient plus élevée, surtout les concentrations des sels de Bore quand ils dépassent 3 mg/l, qui peuvent retarder la remontée biologique et le rejet des arbres et des arbustes concurrents, en particulier *Populus* et *Salix*. Ces milieux sont très susceptibles d'être colonisés par le *Tamarix* L. (**Busch et Smith 1993**).

I.6.4. Pouvoir d'hydrolyse (dit pH)

La plupart des oligo-éléments se dissolvent mieux dans des conditions modérément acides (pH d'environ 6.5) mais une grande proportion des plantes poussent dans un sol normal quelconque, qui peut varier de légèrement acide à légèrement alcalin (**Pontoppidan**, A. 2004).

Tamarix L. a une légère préférence pour des conditions alcalines (pH = 7.5) comparées à d'autres espèces (**Brotherson et Winkel, 1986**).

I.6.5. Acquisition de l'eau

La consommation de l'eau par *Tamarix* L. est généralement considérée comme élevée, mais les taux d'évapotranspiration peuvent changer avec la profondeur de la nappe de l'eau et la salinité du sol, c'est-à-dire plus l'eau est profonde, plus l'évapotranspiration est réduite.

Dans des conditions de sécheresse ou extrêmement chaudes, *Tamarix* L. ne transpire pas toujours aux taux potentiels (**Davenport et al, 1982**). La conservation de l'eau sous ces situations est d'une grande importance écologique. Elle permet aux espèces du *Tamarix* L. qui se développent dans les environnements chauds du désert, d'ouvrir leurs stomates justes pendant les heures les plus fraîches et les plus humides du jour. Ceci permet aux *Tamarix* L. d'acquérir du CO₂ proportionné sans perdre beaucoup d'eau.

Comme phréatophyte facultatif, les espèces du *Tamarix* L. sont capables d'extraire l'humidité du sol à partir des sols les moins saturés dans les zones où la nappe d'eau est plus profonde.

Ceci semble être une adaptation qui oblige les phréatophytes concurrents : tel que *Populus* et *Salix* qui ne possèdent pas cette faculté (**Busch et** *al.*, **1992**), et peut partiellement expliquer l'exclusion concurrentielle de ces espèces par le *Tamarix* L. dans les secteurs ripicoles.

I.6.6. Résistance au feu

Le *Tamarix* L. adapte des mécanismes plus efficaces qui lui permettent de se rajeunir plus rapidement après des incendies à cause de la couronne racinaire dont on a évoqué plus haut, presque mieux que toutes les autres espèces ripicoles (**Anderson et al., 1979 ; Busch et Smith, 1993).**

Après le feu, *Tamarix* L. peut mieux résister aux augmentations des concentrations des éléments minéraux du sol, l'augmentation du pH du sol, et la réduction d'humidité disponible (**Busch et Smith, 1993**). Cette adaptation a probablement été un facteur significatif favorisant sa colonisation rapide des terrains touchés par le feu (**Busch et Smith, 1992, 1993**; **Wiesenborn, 1996**).

Dans les communautés ripisylves dominées par *Populus et Salix*, les feux de forêt sont peu fréquents (**Busch et Smith, 1993**). En revanche, les intervalles entre les feux sont considérablement plus courts dans des secteurs infestés par *Tamarix* L.

On pense que *Tamarix* L., a développé des caractéristiques adaptatives qui augmentent l'inflammabilité des communautés où il se développe (**Zouhar**, **2003**). Ceci lui permet de remplacer les communautés non-adaptées au feu, qui sont dominées par *Populus* et *Salix* (**Kerpez et Smith**, **1987**; **Busch et Smith**, **1992**).

À l'appui de ceci, **Anderson et** *al.*, **(1979)** ont démontré que 21 de 25 peuplements le long du fleuve inférieur du Colorado (USA) sont ravagés par les feux au cours d'une période de 15 ans (entre 1981 et 1992). Les feux ont brûlé 35% de la végétation dominée par *Tamarix* L., comparé seulement à 2% des autres communautés pendant la même période de temps (**Busch**, **1995**).

I.6.7. Rôle hydrologique et sédimentaire

Grâce à son système racinaire étendu et profond, *Tamarix* L. est plus stable et résistant à l'érosion, ce qui lui permet d'être l'une des plantes les plus efficace pour :

- La réduction de l'érosion hydrique sur les monts sensibles à ce phénomène et pour la fixation des berges des fleuves et des Oueds ;
 - La réduction de l'érosion éolienne grâce à son refoulement de branches basales.

Robinson en **1965** (in Mcdaniel, 2007), a démontré que le genre *Tamarix* L. limite progressivement la largeur des rivières et des Oueds en augmentant le dépôt de sédiment.

Pendant que le fleuve ou l'Oued recule et perd de sa largeur sous l'effet de sédimentation, *Tamarix* L. s'établit plus sur les anciennes berges. Ce processus continu jusqu'à ce que l'écoulement soit sévèrement réduit.

Les infestations du *Tamarix* L. ont augmenté sur le fleuve de Brazos dans le Texas (USA) qui ont commencées en 1941, où la largeur moyenne du fleuve était de 155 m, en 1979 la largeur moyenne avait été réduite à 66 m, soit une réduction de 42.5% de la largeur initiale pendant une durée de 38 ans.

Photo n°9 : Effet sédimentaire de *Tamarix sp*. A sur un Oued à écoulement saisonnier, B sur un Oued à écoulement permanent (**Source : Khabtane, 2010**)

I.7. Utilisation du genre Tamarix L.

I.7.1. Comme aliment de bétail

Le *Tamarix* L. peut être utilisé comme aliment de bétail où les moutons par exemple tendent à consommer les jeunes pousses et même les plantes mûres.

Généralement, le bétail tend à consommer les autres plantes, donnant au *Tamarix* l'avantage concurrentiel dans les secteurs fréquentés par le bétail.

La valeur nutritive du *Tamarix* L. n'est pas connue, bien qu'on rapporte que la teneur en protéines brutes est très basse (**Johnson R., 1999**).

I.7.2. Comme plante miélifère

Dans les régions arides, le *Tamarix* L. est d'importance majeur pour les apiculteurs à cause de son nectar et du pollen qu'il fournit aux abeilles, grâce à sa double floraison en une année.

Le miel du *Tamarix* L. est typique avec sa couleur et son goût désagréable fort, il altère parfois la couleur et la saveur du miel d'autres sources.

La gestion de *Tamarix* L. pour la production de miel a besoin de plus de recherche (**Knutson**, et *al.*, 2003).

I.7.3. Comme plante médicinale

Plusieurs peuples l'utilisent comme plante médicinale, à cause de ses vertues thérapeutiques pour plusieurs maladies (Bikbulatova et Korul'kina, 2001).

Le *Tamarix* L. est l'un des bourgeons qui active le métabolisme du fer, puisqu'il stimule la formation des hématies. Il est recommandé dans les syndromes hémogéniques aigus, l'anémie hypochrome, l'érythropénie tant hypoplaquettaire que médullaire. Il agit comme

hypercoagulant total et est, de ce fait, indiqué dans les hypocoagulations sanguines (**Depoërs**, 2002).

C'est un remède des thrombopénies acquises par suite d'infection virale et s'indique dans la mononucléose infectieuse. Il lutte contre l'histiocytose diffuse chronique (maladie de Hand-Schuller) et active le métabolisme du cholestérol (**Philippe**, **2007**).

Dans une enquête ethnobotanique réalisée au Maroc en **2004** par **El Rahffari** et **Zaid**, où ils ont illustré l'usage des espèces de *Tamarix* L. dans la médecine traditionnelle marocaine comme il est mentionné dans le tableau I.

Tableau I : Les différents usages de *Tamarix* L. dans la phytothérapie traditionnelle (**source : El Rahffari et Zaid, 2004**)

Parties de la plante du	Forme de médicament	Forme administrée	Maladies traitées				
Tamarix utilisées							
1. Galles	 Tisane ou sirop Décoction Mélange avec d'autres plantes Infusion décoction 	 Orale Bain de bouche Application sur peau et cheveux Bain de bouche 	 Diarrhée Douleurs dentaires, gingivite, ulcère buccal, muguet Poux, acariens Maux d'estomac, ulcère gastrique 				
2. Feuilles	- Teinture en mélange avec des minéraux	- Application sur peau	- Parasites cutanés				
3. Branches + feuilles	- Décoction	- Orale	- Gastro-entérite				
4. Feuilles + galles	- Décoction ou teinture	- Orale	- Douleurs et gonflement de la rate				
5. Racines	- Décoction - Poudre	MassageApplication locale	TuberculoseLèpre, variole				
6. Partie aérienne + galles	- Décoction ou tisane	- Orale	- Bronchite, asthme, tuberculose				
7. Tige feuillée	 Décoction ou tisane Mélange dans le henné 	OraleApplication sur cheveux	 Inflammation de l'utérus, douleurs et gonflement de la rate Soins des cheveux 				

I.8. Position systématique du Tamarix L. dans la région de Tlemcen

I.8.1. Introduction

Dans la région de Tlemcen, les ripisylves forment des peuplements végétaux assez diversifiés, dominés par les *Tamarix* L. D'après **Quézel** et **Santa 1962-1963**, ces ripisylves sont représentées surtout par deux espèces de *Tamarix* L. : *Tamarix africana* et *Tamarix gallica*.

I.8.2. Caractères botaniques

I.8.2.1. Tamarix africana Poiret

Inflorescence larges de 5-8 mm. Anthères obtuses au sommet. Fleurs pentamères, chatons sessiles naissant du vieux bois ou du bois de l'année précédente, denses et épars, court (2-3 mm). Style long. Bractée étroite prèsque linéaire. Feuilles lancéolées à pointe courte. Capsule ovoïdes de 5x3 mm. Fleurs blanches, rosées ou rouges (Fig. 19) et (Photo n°10).

I.8.2.2. Tamarix gallica L.

Feuilles peu ou pas embrassantes à la base, plus longues que larges, dépourvues en générale de ponctuations. Disque à 10 lobes. 5 étamines à filets insérés dans les lobes d'un sinus. Fleurs petites globuleuses dans le bouton d'un chaton, large de 3-4 mm, naissant sur les pousses de l'année, denses. Bractée florales linéaires lancéolée, acuminées au sommet en général aussi longue que la fleur. Capsule de 3-4 mm de long. Fleurs roses (Fig. 20) et (Photo n°11).

Fig. 19 : Les différentes parties de *Tamarix africana* Poiret (source : Tela Botanica)

Photo $n^{\circ}10$: Rameau avec inflorescence de *Tamarix africana* Poiret

(Source : planche 194 de la grande flore) **Ozenda, 1991**

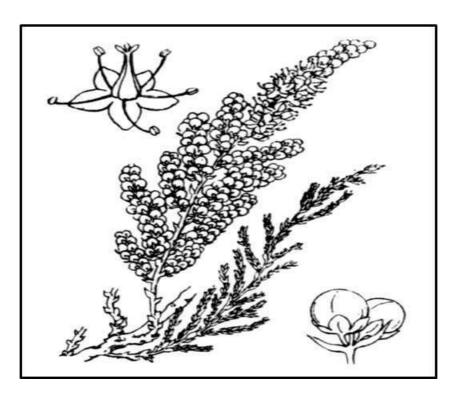


Fig. 20 : Les différentes parties de *Tamarix gallica* L. (source : Tela Botanica)

Photo n°11 : Rameau avec inflorescence de *Tamarix gallica* L.

(Source : planche 194 de la grande flore) Ozenda, 1991

I.8.3. Résultats

Après plusieurs sorties et observations sur le terrain, l'identification des échantillons a été faite à l'aide des flores suivantes :

- La nouvelle flore de l'Algérie (T2) de **Quézel et Santa (1963).**
- Flore et végétation du Sahara d'**Ozenda** (1991).
- L'index synonymique flore d'Afrique du Nord (V5) de **Dobignard et Chatelain** (2013).

Les caractéristiques observés sur nos échantillons sont très proches des caractéristiques de l'espèce *Tamarix africana*, ces caractères diffèrent surtout au niveau de la fleur, et sont les suivants :

- Feuilles lancéolée,
- > bractée étroite,
- > capsule ovoïde,
- inflorescence large pouvant atteindre 8 mm,
- Fleurs pentamères, denses, éparses et courtes, chatons sessiles,
- > anthères obtuses, étamines non-saillantes,
- Fleurs roses dans la station 3, et blanches dans la station 1 et 2.

I.8.4. Conclusion

Les premières observations sur le terrain, confirmées par la description du *Tamarix* L. de Quézel et Santa (1963), et vérifiées par des observations microscopiques au laboratoire, nous ont permis de retenir, pour notre zone d'étude qu'il s'agit bien de l'espèce Tamarix africana Poiret. C'est la seule espèce qui domine les ripisylves sur les rives de Oued Tafna. Nous signalons de prime abord que cette espèce possèderait son propre cortège floristique (Benkelfat et Stambouli, 2019).

Chapitre II : Milieu physique

II.1. Milieu physique

II.1.1. Présentation du bassin versant de la Tafna

Le bassin versant de la Tafna est situé au Nord-Ouest du territoire algérien, et s'étend sur toute la wilaya de Tlemcen, sur une superficie de 7245 km², il appartient à l'ensemble Oranie-Chott Cherguie selon la nouvelle structuration des unités hydrologiques en Algérie. L'oued Tafna est un cours d'eau de 170 km de long, sa source est dans les Monts de Tlemcen. Le cours de ce Oued peut-être subdivisé en trois partie : la haute Tafna, la moyenne Tafna et la basse Tafna (**Bouanani, 2000**).

II.1.1.1. La haute Tafna

L'Oued prend naissance dans Ouled Ouriach et s'affirme après la jonction d'un grand nombre de ramifications creusées dans les terrains Jurassiques et descendent de crêtes atteignant 1500 m. Ces ramifications se réunissent aux environs de Sebdou à une altitude de 900 m. A partir de cet endroit et jusqu'à Sidi Medjahed, l'Oued suit un cours dans une vallée encaissée creusée dans les terrains Jurassiques. Dans cette région montagneuse, l'Oued Tafna reçoit Oued Khemis et Oued Sebdou (**Bouanani, 2000**).

II.1.1.2. La moyenne Tafna

A partir de Sidi Medjahed, l'Oued pénètre dans le bassin Tertiaire et coule dans une vallée peu profonde dans des terrains plus ou moins argileux. Cette partie du bassin Tertiaire est sillonnée par de nombreux affluents (**Bouanani**, 2000).

II.1.1.3. La basse Tafna

Le cours inférieur de la Tafna s'étend depuis les gorges de Tahouaret, vers le village de Pierreduchat jusqu'à la plage de Rachgoun sur la mer Méditerranée, sur 20 km de distance (**Bouanani**, 2000).

La région d'étude se situe entre les latitudes 34°41' et 35°17' N et les longitudes 1°27' et 1°36' W, et est limitée géographiquement :

- ➤ Au Nord par les Monts de Traras,
- ➤ Au Sud par les Monts de Tlemcen,
- ➤ A l'Est par Djebel Sebaâ Chioukh,
- ➤ A l'Ouest par les Monts de Béni Snassen du Maroc.

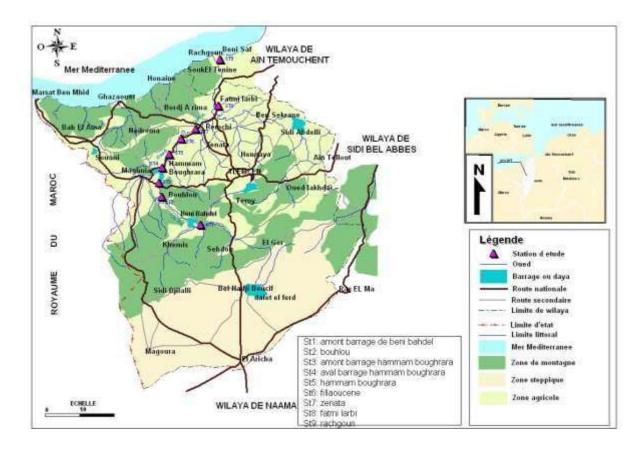


Fig. 21 : Carte de situation et répartition des stations d'étude (par Mr BENZAIM).

II.1.2. Réseau hydrographique

La disposition du réseau hydrographique est liée, en grande partie, à l'évolution des phénomènes structuraux qui ont affecté la région au cours des temps géologiques.

Ce réseau hydrographique suit pratiquement les accidents importants qui ont affecté les formations carbonatées du Jurassique et se modifie avec l'évolution de la tectonique.

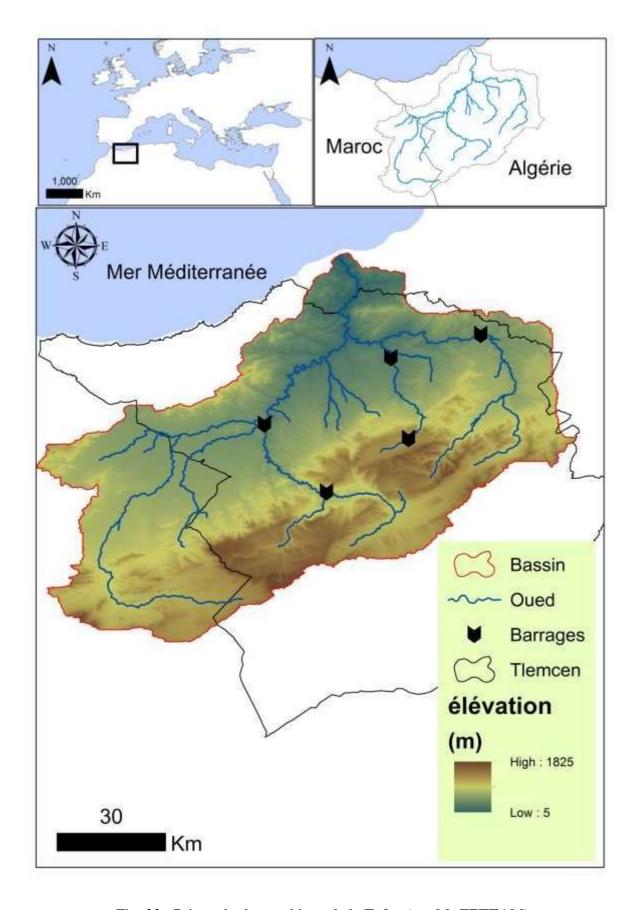


Fig. 22 : Réseau hydrographique de la Tafna (par Mr ZETTAM)

II.1.3. Géologie et géomorphologie

Le bassin versant de la Tafna renferme une richesse géologique très complexe, pour la simplifier on peut la diviser en deux principales structures géologiques (Fig. 23):

II.1.3.1. Le bassin amont

Représenté par les Monts de Tlemcen qui sont en réalité une barre montagneuse de 800 à 1400 m d'altitude alignée WSW-ENE, constituée de dolomies riches en carbonates de Magnésium (Collignon, 1986), datant du secondaire et plus précisément du Jurassique supérieure. Il domine au Nord, les plaines de Maghnia et d'Hennaya, les plateaux de Zenata et de Sidi Abdelli.

Selon **Collignon** (1986), en général, le Jurassique au niveau des Monts de Tlemcen est représenté par :

II.1.3.1.1. Les grès de Boumédine

C'est un ensemble à dominance gréseuse, truffé de passées argileuses camouflées généralement derrière les éboulis et la végétation. Ce sont des grès à ciment calcaire se présentant sous forme de bancs assez durs, dont les épaisseurs varient et qui peuvent atteindre 500 m. On les trouve au Sud du bassin de l'Oued Sikkak.

II.1.3.1.2. Les dolomies de Tlemcen

Ce sont des dolomies cristallines grises dont les nombreuses cavités sont remplies de calcite. Cette formation va jusqu'à atteindre 200 m aux environs de Tlemcen notamment à El Ourit, elle est répandue dans tous les bassins versants de la Tafna.

II.1.3.1.3. Les dolomies de Terny

Lesquelles ayant un aspect très massif qui permet de les différencier des dolomies de Tlemcen, ce sont des dolomies parfois vacuolaires qui renferment de nombreuses stratifications obliques avec une épaisseur qui atteint 100 m dans le plateau de Terny. Elles sont présentes au niveau des bassins de l'Oued Sebdou, Terny et Sikkak.

II.1.3.2. Le bassin aval

D'une orientation Nord, il conjugue la zone de piémont ainsi que les plaines d'Hennaya, de Remchi et de l'Isser. Il souligne les formations tertiaires du Miocène composées de marne et de grès (Gentil, 1903) qui succèdent à celles du Jurassique et dominent la moyenne et la basse Tafna, dans les fonds des vallées, des dépôts d'alluvions récentes du Quaternaire composées de sédiments fins.

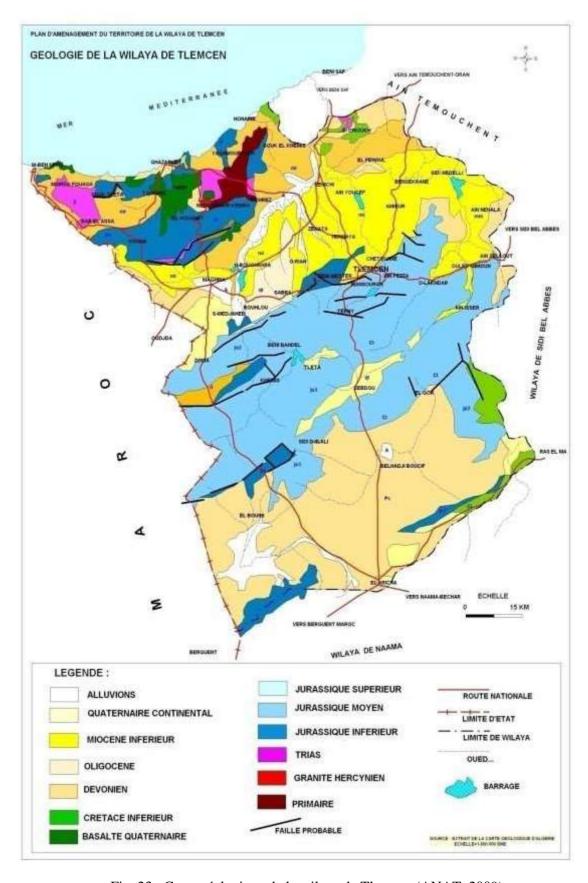


Fig. 23 : Carte géologique de la wilaya de Tlemcen (ANAT, 2009)

La géomorphologie est considérée comme une expression synthétique de l'intersection entre les facteurs climatiques et géologiques (Adi, 2001).

La région est caractérisée par une certaine salinité dont l'étude géomorphologique permet de décrire les diverses formations que l'on observe dans la région (**Hadj Allal, 2014**) :

II.1.3.3. Littoral

Il constitue le massif montagneux des Traras, qui présente un relief avec une topographie accentuée. Ce massif est composé de deux substrats de natures différentes (Hadj Allal, 2014):

- Le premier est représenté par des roches calcaires ou dolomitiques,
- Le deuxième est représenté par les marnes allant de l'Est à l'Ouest, surmonté pratiquement sur l'ensemble de la chaine montagneuse par des schistes, du calcaire et des grès friables ou des alluvions qui sont localisés sur les piémonts Sud du massif.

II.1.3.4. Plaines telliennes

Situées entre le littoral et les Monts de Tlemcen. Elles hébergent le grand cours de la Tafna. Le plateau Nord-Ouest de Remchi est constitué par les marnes et caractérisé par une mosaïque dû surement à l'apparition d'autres formations rocheuses volcaniques ou dolomitiques (Hadj Allal, 2014).

II.1.3.5. Moyenne et basse Tafna

La moyenne Tafna est une dépression tertiaire comprise entre le massif secondaire des Monts de Tlemcen au Sud, le massif des Traras et la moitié de la chaine de Tessala au Nord. Cette vallée est formée en majorité par des terrains miocènes et argileux d'âge serravallien.

La basse Tafna est comprise entre le massif des Traras à l'Ouest et la région volcanique d'Ain Témouchent à l'Est. Elle est caractérisée par ses terrains tertiaires et surtout par le développement de larves et de toufs de basalte de volcans récents.

II.1.4. Pédologie

Le bassin versant de la Tafna est composé majoritairement de sol calcaire (Fig. 24). Les petites terrasses et les fonds de vallées fertiles qui bordent les rives de la Tafna, dans la moyenne et la basse Tafna présentent des sols alluviaux et salins. Les ripisylves laissent par endroit la place à des cultures maraichères ou céréalières.

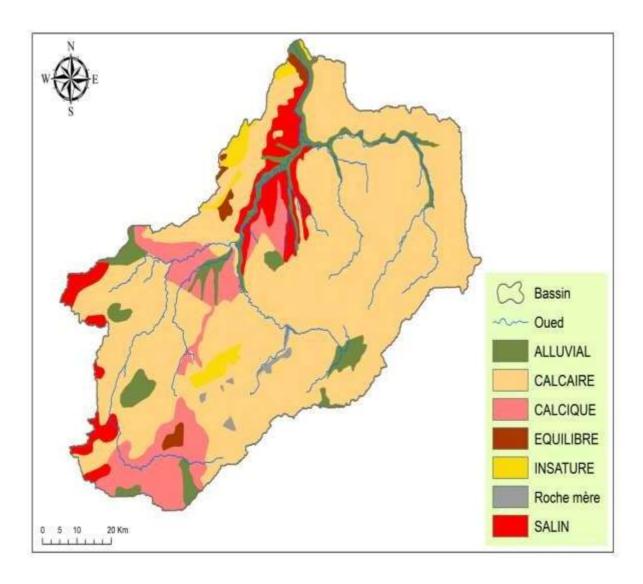


Fig. 24 : Carte des sols du bassin versant de la Tafna (par Mr ZETTAM)

II.1.5. Végétation

Le paysage végétal du bassin versant de la Tafna à été largement dégradé et défriché en montagne par les incendies (Fig. 25), par une agriculture extensive et un sûrpaturage abusif, ce qui à entraîné une perte d'eau par évaporation et une accélération de l'érosion (**Bouanani**, 2000).

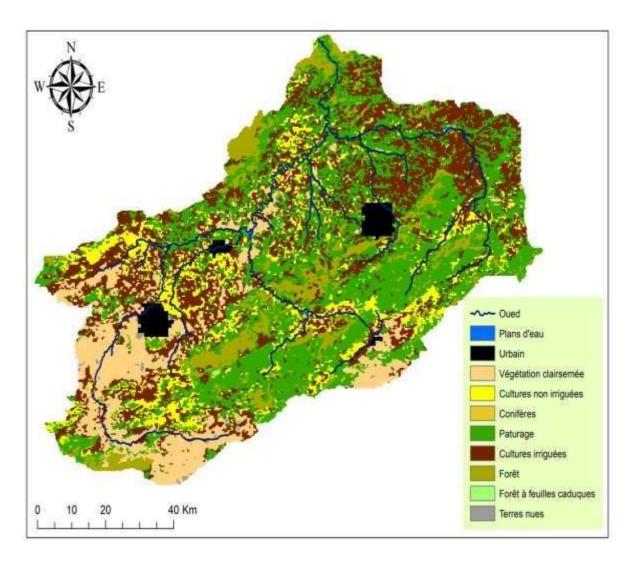


Fig. 25 : Carte occupation des sols du bassin versant de la Tafna (par Mr ZETTAM)

II.2. Etude bioclimatique

La climatologie est la science qui étudie l'atmosphère, d'une part, elle se situe au niveau du sol, c'est-à-dire au niveau des processus morphologiques, hydrologiques et pédologiques qui font du climat l'un des facteurs premiers de toute réalité géographique; mais aussi au niveau de la végétation ou des organismes supérieurs d'autre part. C'est bien souvent dans des perspectives biologiques que la climatologie devra placer ses spéculations (**Péguy in Kadik, 1983**).

La diversité et la dynamique végétale, qui sont constamment modifiées, dépendent sévèrement des facteurs de l'environnement ; en particulier le climat et les actions de l'homme.

Le climat est un ensemble de phénomènes météorologiques (température, précipitations, pression atmosphérique et les vents); caractérisant l'état moyen de l'atmosphère et son

évolution en un lieu donné. Le climat est donc un élément principal pour toute étude sur l'environnement.

Le climat méditerranéen est caractérisé par un climat sec et long (d'environ 7 mois), il est défini comme un climat extratropical à photopériodisme saisonnier et quotidien, à pluviosité concentrée durant les saisons froides, et l'été qui est une saison plus chaude, tout en étant sèche (**Emberger**, 1955).

Le climat de l'Algérie devient de plus en plus aride, grâce au régime pluviométrique d'une part et aux fortes températures estivales qui entraînent une évaporation excessive d'autre part.

Selon **Bouazza** et **Benabadji**, **2010**, la région de l'Ouest algérien se caractérise par de faibles précipitations avec une grande variabilité inter-mensuelle et inter-annuelle.

Le climat de la région de Tlemcen est du type méditerranéen influencé par une sécheresse estivale marquée et une période hivernale pluvieuse.

De nombreux travaux ont été réalisés sur l'Algérie et sur la région de Tlemcen, citons : (Mac Garthy, 1853), (Sainthillier et Qabaud, 1861), (Angot, 1881), (Thinthoin, 1948), (Emberger, 1930-a), (Conrad, 1943), (Seltzer, 1946), (Bagnouls et Gaussen, 1953), (Sauvage, 1961), (Borteli et al., 1969), (Le Houerou, 1975), (Medail et Quézel, 1996), (Benabadji et Bouazza, 2000), (Bestaoui, 2001); (Stambouli, 2010 et 2015); (Merzouk, 2010).

Notre étude porte sur une comparaison entre l'ancienne période de **Seltzer** et la nouvelle période, afin d'observer l'évolution du climat de la région et les réactions de la végétation ripisylve.

II.2.1. Méthodologie

II.2.1.1. Choix des stations météorologiques

L'Oued Tafna étant dépourvu de station météorologique qui lui sont propre, on a eu recours aux données climatiques des stations météorologiques les plus avoisinantes, celle de Sebdou, Maghnia, Zenata et Béni-saf (tableau II).

II.2.21.2. Choix de la durée d'observation

Pour avoir des résultats fiables, il faut une durée d'observation d'au moins 20 ans, surtout qu'en Algérie occidentale, les précipitations sont particulièrement irrégulières d'une année à une autre. L'ancienne période de Seltzer (1913-1938) pour les quatre stations météorologiques et la nouvelle période obtenue de l'office national de météorologie, (1980-2011) pour la station de Sebdou, (1985-2016) pour les stations de Béni-saf et Zenata et (1990-2016) pour la station de Maghnia.

Tableau II : Données géographiques des stations météorologiques

STATIONS	Latitude N	Longitude W	Altitude (m)	Wilaya			
BENI-SAF	35°18'	1°21'	68	Ain Temouchent			
ZENATA	35°01'	1°27'	249	Tlemcen			
MAGHNIA	34°52'	1°47'	426	Tlemcen			
SEBDOU	34°38'	1°20'	720	Tlemcen			

Source: O.N.M (2016)

II.2.2. Paramètres climatiques

Les paramètres climatiques permettent de définir des climats régionaux, locaux et des microclimats.

La pluviosité et la température sont la charnière du climat (**Bary Lenger et al., 1979**). Ces paramètres varient nettement en fonction de : l'altitude, de l'exposition et de l'orientation des chaînes de montagnes (**Kadik, 1983**).

II.2.2.1. Pluviosité

La pluviosité est un facteur primordial pour déterminer le type de climat, elle conditionne le maintien et la répartition du tapis végétal (**Djebaili**, **1978**).

L'altitude, la longitude et la latitude sont les principaux gradients qui définissent la variation de la pluviosité. En effet, en Algérie la quantité de pluie diminue du Nord au Sud, de l'Est à l'Ouest et devient importante au niveau des montagnes (**Chaâbane**, 1993).

D'une manière générale, l'origine des pluies en Algérie et celle de sa partie Nord occidentale en particulier proviennent de deux sources différentes :

- 1ère source, « celle des vents pluvieux de direction Ouest et Nord-Ouest abordant le littoral durant la saison froide » (**Seltzer, 1946**);
- 2ème source, « ce sont les précipitations orageuses dûes aux perturbations atmosphériques engendrées par les dépressions en provenances des régions sahariennes surtout à la fin du printemps » (**Dubief**, 1959).

La répartition des précipitations est irrégulière au niveau des quatre stations (voir tableau III). Les précipitations oscillent entre 326 mm (Sebdou) et 474 mm (Zenata) et ce pendant l'ancienne période. Alors que pour la nouvelle période, elles sont comprises entre 277.4 mm (Maghnia) et 358.5 mm (Béni-saf), on remarque une légère diminution des précipitations. La saison estivale, qui s'étale de Juin à Août, est la saison la moins arrosée.

Tableau III : Moyennes mensuelles et annuelles des précipitations AP : ancienne période NP : nouvelle période

Stations	Périodes	Jan	Fev	Mars	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Dec	P (mm)
Sebdou	AP (1913- 1938)	43	41	37	25	34	15	5	7	19	32	35	42	326
	NP (1980- 2011)	41,1	37,9	35,2	27,1	26,5	8,7	4	6,2	17,5	25	35,3	36,1	300,5
Maghnia	AP (1913- 1938)	60	52	49	41	37	10	1	4	22	35	49	58	418
	NP (1990- 2016)	34,8	32	35,9	29,9	23,3	4,8	1,8	5,6	18,5	24,1	35,0	31,2	277,4
Zenata	AP (1913- 1938)	65	62	49	44	38	11	1	4	23	42	68	67	474
	NP (1985- 2016)	44,0	41,1	41,8	30,5	23,2	4,4	1,0	3,7	16,8	25,1	43,7	36,4	312,1
Béni-saf	AP (1913- 1938)	49	40	37	30	24	9	1	2	15	39	57	68	371
	NP (1985- 2016)	55,9	43,9	33,0	40,3	18,6	14,2	0,7	2,4	19,5	31,0	61,3	37,1	385,5

Source : O.N.M (2016)

Régime

saisonnier

II.2.2.2. Régime saisonnier

Le premier qui a défini la notion du régime saisonnier est **Musset** en **1953**, cette méthode consiste à un aménagement des saisons par ordre décroissant de la pluviosité, ce qui permet de définir un indicatif saisonnier de chaque station. Cette répartition saisonnière est particulièrement importante pour le développement des espèces végétales annuelles, dont le rôle est souvent prédominant dans la physionomie de la végétation.

$$Crs = Ps \times 4 / Pa$$

Ps: précipitations saisonnières (mm)

Pa: précipitations annuelles (mm)

Crs: Coefficient relatif saisonnier de Musset

Pour faciliter les traitements des données climatiques, il est indispensable de faire un découpage en saisons de la pluviosité annuelle.

L'année est ainsi divisée en quatre parties de durée égale par regroupement de mois entiers.

- La saison d'hiver regroupe les mois de Décembre, Janvier et Février.
- La saison de printemps regroupe les mois de Mars, Avril et Mai
- La saison d'été regroupe les mois de juin, juillet et Août
- La saison d'automne regroupe les mois de Septembre, Octobre et Novembre.

Pour la nouvelle période, le tableau IV nous montre que le régime saisonnier des stations de Sebdou, Maghnia et Zenata, est de type HPAE, et pour la station de Béni-saf, il est du type HAPE.

Les histogrammes des régimes saisonniers (Fig. 26), montrent une diminution des quantités de précipitations dans chacune des stations, sauf pour la station de Béni-saf où l'on note une légère augmentation.

Tableau IV : Coefficient relatif saisonnier de Musset

NP: nouvelle période

Pa Saison Hiver **Printemps** Eté Automne Station Ps Crs Ps Ps Crs Ps (mm) Crs Crs (mm) (mm) (mm) (mm) 115,1 1.0 1,5 88,8 1,1 18,9 0.277,8

Sebdou 300,5 **HPAE** Maghnia 98,1 89,2 12,2 277,4 HPAE 1,4 1,2 0,177,7 1,1 Zenata 121,5 1,5 95,5 1,2 9,2 0,185,7 1,0 312,1 **HPAE** Béni-saf 137,0 1,5 92,0 1,0 17,3 0,1 112,0 1,2 358,5 HAPE

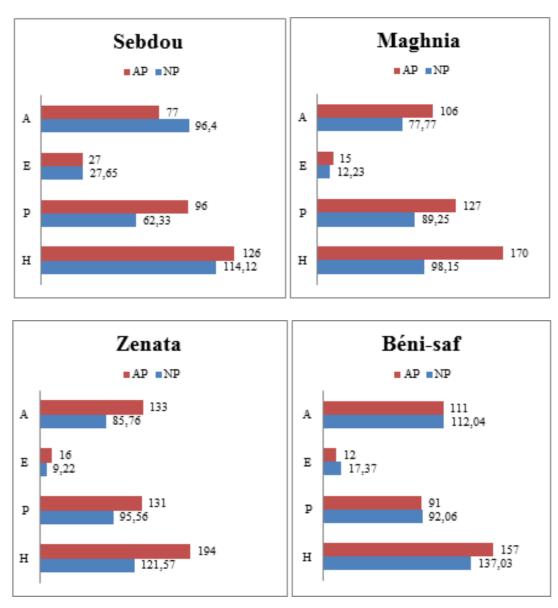


Fig. 26 : Variations saisonnières des précipitations. (AP : ancienne période, NP : nouvelle période)

II.2.2.3. Températures

La température est un facteur écologique fondamental et un élément vital pour les formations végétales. Ce facteur climatique a été défini par **Peguy** (1970) comme une qualité de l'atmosphère et non une grandeur physique mesurable (tableau V).

L'une de nos préoccupations dans cette étude est de montrer l'importance des fluctuations et des variations thermiques dans l'installation et la répartition des espèces ripisylves.

L'examen des températures nous amène à distinguer les variables suivantes :

- Les températures moyennes mensuelles (T),
- Les températures maximales (M),
- Les températures minimales (m),
- L'amplitude thermique (M-m).

II.2.2.3.1. Températures moyennes mensuelles

Les températures moyennes mensuelles de la station de Sebdou sont comprises entre 7.5 °C et 30.5 °C, pour l'ancienne période, mais pour la nouvelle période, les températures sont comprises entre 8.1 °C et 41.4 °C.

Pour la station de Maghnia, durant l'ancienne période, les températures moyennes mensuelles varient entre 2.9 °C et 26.4 °C, alors que durant la nouvelle période, les températures varient entre 7.4 °C et 24.1 °C.

Pour la station de Zenata, les températures moyennes mensuelles sont entre 9.9 °C et 26 °C pour l'ancienne période, et sont entre 10.7 °C et 26.9 °C pour la nouvelle période.

Dans l'ancienne période, les températures moyennes mensuelles de la station de Béni-saf sont comprises entre 12.9 °C et 25.0 °C, et dans la nouvelle période les températures sont comprises entre 12.9 °C et 25.7 °C.

Pour l'ensemble des stations, pendant l'ancienne et la nouvelle période, Août est le mois le plus chaud, à l'exception des stations de Sebdou et Maghnia dans l'ancienne période, le mois le plus chaud est Juillet.

Et le mois le plus froid est Janvier pour les quatre stations, dans les deux périodes, la station de Maghnia fait esception et c'est pendant le mois de Novembre que cette valeur est enregistrée. (Tableau V)

Tableau V : Moyennes mensuelles et annuelles des températures ➤ AP : ancienne période

➤ NP : nouvelle période

							111 . 1101	a vene pe	11000							1
Stations	Périodes	Jan	Fev	Mars	Avr	Mai	Juin	Juil	Août	Sep	Oct	Nov	Dec	\mathbf{M}	m	T Moy
														(° C)	(° C)	(°C)
Sebdou	AP (1913- 1938)	7,5	9,9	8,5	12,2	12,1	21	30,5	23	23,2	18,8	14,5	19,1	36,7	3,8	16,7
	NP (1980- 2011)	8,1	9,8	12,1	15,7	20,1	35,4	41,7	41,4	35,7	28,1	22,6	14,0	36,8	3,9	23,7
Maghnia	AP (1913- 1938)	9	10,2	12,2	14,6	18,1	21,7	25,9	26,4	22,9	18,1	2,9	9,8	32,0	3,3	15,9
	NP (1990- 2016)	7,4	8,1	10,5	12,6	16,0	20,1	23,5	24,1	19,4	15,7	11,51	8,5	32,8	1,8	14,8
Zenata	AP (1913- 1938)	9,9	10	10,5	13	15	21	24	26	21,5	17	13	10	32	9,7	15,9
	NP (1985- 2016)	10,7	11,8	13,7	15,8	19,0	22,8	26,3	26,9	24,6	20,2	15,2	12,3	35,5	3,7	18,3
Béni-saf	AP (1913- 1938)	12,9	13	14,4	15,5	18,3	21,1	24,3	25,0	22,9	19,7	16,3	13,9	29,3	9,1	18,1
	NP (1985- 2016)	12,9	13,4	14,7	16,4	18,9	22,1	24,8	25,7	23,4	20,1	16,3	13,9	30,3	8,4	18,5

Source : O.N.M (2016)

II.2.2.3.2. Températures moyennes des maxima du mois le plus chaud (M)

Le tableau VI nous montre que les températures maximales varient entre 29.3 °C (Bénisaf) et 36.7 °C (Sebdou) pour l'ancienne période. Alors que pour la nouvelle période, elles varient entre 30.3 °C (Bénisaf) et 36.8 °C (Sebdou). On note une légère augmentation pour l'ensemble des stations. Le mois le plus chaud est Août pour les quatre stations, dans les deux période, sauf dans l'ancienne période, le mois le plus chaud est celui de Juillet pour les stations de Sebdou et Maghnia.

Tableau VI : Moyennes des maxima du mois le plus chaud « M » (AP : ancienne période, NP : nouvelle période)

	(Fir Functional periode) (Fir Functional periode)						
Stations	Altitude	M (° C)		Mo	ois		
	(m)	AP	NP	AP	NP		
Sebdou	720	36,7	36,8	Juillet	Août		
Maghnia	426	32,0	32,8	Juillet	Août		
Zenata	249	32	35,5	Août	Août		
Béni-saf	68	29,3	30,3	Août	Août		

II.2.2.3.3. Températures moyennes des minima du mois le plus froid (m)

Dans une classification des climats, **Emberger** utilise la moyenne des minima pour exprimer le degré et la durée de la période critique des gelés.

Le minimum « m » joue un rôle déterminant dans la répartition spatiale des espèces végétales.

Alcaraz (1969) considère que la valeur m = 1°C reste comme valeur « seuil » dans la répartition de certaines formations végétales.

Dans le tableau VII, on remarque que les températures minimales de l'ancienne période sont comprises entre 3.3 °C (Maghnia) et 9.7 °C (Zenata). Le mois le plus froid de cette période est Janvier pour les stations de Sebdou, Zenata et Béni-saf, pour la station de Maghnia le mois le plus froid est Novembre.

Alors que pendant la nouvelle période, les températures minimales varient entre 1.8 °C (Maghnia) et 8.4 °C (Béni-saf), et le mois le plus froid pour cette période est le mois de Janvier pour les quatre stations.

Tableau VII : Moyenne des minima du mois le plus froid « m » (AP : ancienne période, NP : nouvelle période)

Stations	Altitude	m (°C)		Mois	
	(m)	AP	NP	AP	NP
Sebdou	720	3,8	3,9	Janvier	Janvier
Maghnia	426	3,3	1,8	Novembre	Janvier

Zenata	249	9,7	3,7	Janvier	Janvier
Béni-saf	68	9,1	8,4	Janvier	Janvier

II.2.2.3.4. Amplitude thermique moyenne (indice de continentalité)

Selon **Djebaili** en **1984**, l'amplitude thermique par la différence entre les moyennes des maximums extrêmes, et des minimums extrêmes, sa valeur est écologiquement importante à connaître. Elle représente la limite thermique à laquelle, les végétaux doivent résister.

La continentalité est définie par rapport à l'amplitude thermique moyenne (M-m), elle permet à son tour de préciser l'influence maritime ou au contraire continentale d'une région.

Debrach (1953); *in* **Alcaraz (1982)** a défini le climat en fonction des écarts thermiques (M-m), selon cet auteur les climats retenus sont :

• Climat insulaire : M-m <15°C.

• Climat littoral : 15°C <M-m<25°C

• Climat semi continental : 25°C < M-m < 35°C

• Climat continental : M-m > 35°C

Les stations Sebdou, Maghnia et Zenata sont influencées par un climat semi-continental, alors que la station de Béni-saf présente un climat littoral (tableau VIII).

Tableau VIII : Indice de continentalité de **Debrach** (AP : ancienne période, NP : nouvelle période)

	,	<u> </u>	1 /
Stations	Période	Amplitude thermique	Type du climat
Sebdou	AP	32,9	Semi-continental
	NP	32,9	Semi-continental
Maghnia	AP	28,77	Semi-continental
	NP	31	Semi-continental
Zenata	AP	22,3	Littoral
	NP	31,8	Semi-continental
Béni-saf	AP	20,2	Littoral
	NP	21,9	Littoral

II.2.3. Autres paramètres climatiques

II.2.3.1. Le vent

Les vents estivaux de terre, caractérisés par une grande violence et un fort pouvoir desséchant, tel que le sirocco au Maghreb, font tomber l'humidité atmosphérique à moins de 30 % et contribuent à propager les incendies en transportant des étincelles et surtout des brandons sur de grandes distances. Par ailleurs, l'action du vent accélère l'évapotranspiration, accentue l'aptitude des végétaux à s'enflammer et facilite la propagation des incendies (Quézel et Médail, 2003).

C'est le sirocco qui intervient de 15 jours environ au Nord à 22 jours au Sud. Ce courant chaud, toujours sec, est une des causes principales de la quasi-stérilité des hautes plaines. Le sirocco est plus fréquent à l'Est (30 j) qu'à l'Ouest 15 j/an en moyenne, il souffle surtout en été, son maximum de fréquence à lieu en juillet (**Djebaili**, **1984**).

II.2.3.2. La neige

Selon **Hadjad Aoul** en **1995**, au dessus de 600-700 m, la neige apparaît presque régulièrement chaque hiver où elle fond très rapidement. Ce n'est que sur les sommets au-delà de 1000 m que l'enneigement peut durer. Dans les hautes plaines, la neige ne dépasse guère 10 cm (**Djebailli, 1984**).

II.2.4. Synthèse bioclimatique

Les différents éléments du climat n'agissent jamais indépendamment les uns des autres, l'une des préoccupations des phytogéographes, climatologues et écologues est de chercher en manipulant les données climatiques disponibles, des expressions susceptibles de traduire au mieux et de façon globale la combinaison des variables climatiques influençant la vie végétale (**Djellouli, 1981**).

Cette synthèse bioclimatique établie à partir des travaux d'Emberger (1930 – 1955) ; Bagnouls et Gaussen (1953) ; De Martonne (1926), nous allons l'appliquer sur nos données afin de mieux caractériser le bioclimat de la zone d'étude.

II.2.4.1. Classification des étages bioclimatiques en fonction des précipitations annuelles En fonction des valeurs des précipitations (P) moyennes annuelles, Quézel (2000) propose la classification suivante :

- Un bioclimat aride: P etre 100 et 400 mm,
- semi-aride: P entre 400 et 600 mm,
- sub-humide: P entre 600 et 80mm,
- humide: P entre 800 et 1200 mm,
- et hyper humide : P > 1200 mm.

Chaque étage comprend une stratification verticale ; l'étage bioclimatique aride est subdivisé en aride supérieur, aride moyen et aride inférieur en fonction des précipitations, d'après Le Houerou et *al.*, (1977) cité par (Benabadji et Bouazza, 2000).

Tableau IX : Classification des étages bioclimatiques en fonction des précipitations

Etages bioclimatiques	Sous étages bioclimatiques	Précipitations
Saharien (S)		<100 mm
Aride (A)		100 – 400 mm
	Aride inferieur (A-F)	100 – 200 mm

	Aride moyen (A-M)	200 – 300 mm
	Aride superieur (A-S)	300 – 400 mm
Semi-aride (S-A)		400 – 600 mm
	Semi-aride inferieur (S-A-I)	400 – 466 mm
	Semi-aride moyen (S-A-M)	466 – 533 mm
	Semi-aride superieur (S-A-S)	533 – 600 mm
Sub-humide (S-H)		600 – 800 mm
	Sub-humide inférieur (S-H-I)	600 – 666 mm
	Sub-humide moyen (S-H-H)	666 – 733 mm
	Sub-humide superieur (S-H-S)	733 – 800 mm
Humide (H)		800 – 1200 mm

II.2.4.2. Classification en fonction des moyennes des minima « m » :

C'est grâce à « m », qui est considéré comme un élément fondamental pour le redémarrage de la végétation, qu'**Emberger (1955), Sauvage** et **Daget (1963)** subdivisent les ambiances bioclimatiques en six sous étages entre -5°C et +15°C, pour le mois le plus froid. On admet que :

Si 15° C > T > 10° C.	Le climat est tempéré chaud.
Si 10° C > T > 0° C.	Le climat est tempéré moyen.
Si 0° C > T > -5 $^{\circ}$ C.	Le climat est tempéré froid.

Un autre type de classification a été proposé par **Rivas Martinez** (1981) porte sur la moyenne des températures annuelles et la moyenne des maxima et des minima.

Tableau X : Classification des étages de végétation en fonction de (T) ;(M) ;(m)

Etage de végétation	T(C°)	M (°C)	m (°C)
Thermo méditerranéen	> 16	>13	>+3
Méso méditerranéen	12 à 16	8 à 13	0 à 3
Supra- méditerranéen	8 à 12	3 à 8	-3 à 0

Rivas-Martinez (1982), précise qu'il y a un décalage vers les minima hivernaux plus faible à partir du méso méditerranéen, ce qui a pour effet d'attribuer une vaste amplitude en fonction de ce facteur, à l'étage thermo-méditerranéen et de décaler par ailleurs, l'étage thermo-méditerranéen vers des températures plus chaudes.

Pour notre cas, toutes nos stations sont dans le thermo-méditerranéen, à l'exception de la station de Maghnia pendant la nouvelle période, elle est dans le méso-méditerranéen (tableau XI)

Tableau XI : Etages de végétation et types de climat (AP : ancienne période, NP : nouvelle période)

Stations	Période	T (°C)	m (°C)	Etages de végétation
Sebdou	AP	16,7	3,8	Thermo-méditerranéen
	NP	23,7	3,9	Thermo-méditerranéen
Maghnia	AP	15,9	3,3	Thermo-méditerranéen
	NP	14,8	1,8	Méso-méditerranéen
Zenata	AP	15,9	9,7	Thermo-méditerranéen
	NP	18,3	3,7	Thermo-méditerranéen
Béni-saf	AP	18,1	9,1	Thermo-méditerranéen
	NP	18,5	8,4	Thermo-méditerranéen

II.2.4.3. Indice d'aridité de De Martonne

De Martonne (1926) a défini un indice d'aridité utile pour évaluer l'intensité de la sécheresse exprimée par la relation suivante :

$$I = P / (T + 10)$$

P: précipitations moyennes annuelles (mm).

T: températures moyennes annuelles (C°).

Cet indice permet d'étudier spécialement les rapports du climat avec la végétation et de positionner les stations d'étude dans un climat précis.

Cet indice est d'autant plus faible que le climat est plus aride et d'autant plus grand que le climat est plus humide. Cet indice est proportionnel aux précipitations.

On remarque que la station de Sebdou à changé de climat semi aride à climat désertique vu que son indice est inférieur à 10, par contre les autres stations restent dans le semi aride (tableau XII).

Tableau XII : Indice d'aridité de **De Martonne** (AP : ancienne période, NP : nouvelle période)

				1	
Stations	Période	P (mm)	T (°C)	Indice	Types de climat
				d'aridité	
Sebdou	AP	326	16,7	12,2	Climat Semi aride
	NP	300,5	23,7	8,8	Climat Désertique
Maghnia	AP	418	15,9	16,0	Climat Semi aride
	NP	277,4	14,8	11,1	Climat Semi aride
Zenata	AP	474	15,9	18,3	Climat Semi aride
	NP	312,1	18,3	11,0	Climat Semi aride
Béni-saf	AP	371	18,1	13,1	Climat Semi aride
	NP	358,5	18,5	12,5	Climat Semi aride

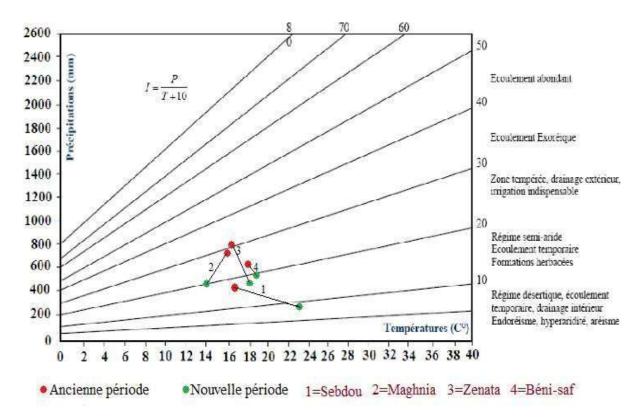


Fig. 27 : Indice d'aridité de **De Martonne**

II.2.4.4. Indice xérothermique d'Emberger

Emberger (1942), a caractérisé l'importance et l'intensité de la sécheresse estivale par l'indice S.

$$S = PE / M$$

PE : la somme des précipitations moyennes estivales.

M : la moyenne de températures maximales du mois le plus chaud.

Un climat ne peut être réputé méditerranéen du point de vue phytogéographique que si l'indice xérothermique S < 7.

Pour **Daget** (1977), le seuil est fixé à S < 5 car entre 5 et 7, on inclut les zones étrangères à l'aire isoclimatique méditerranéenne.

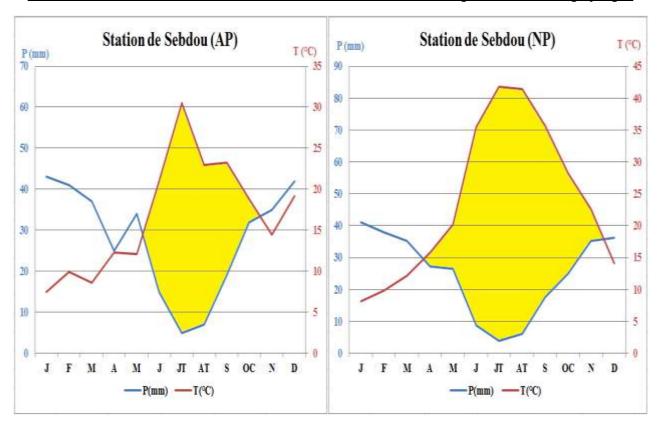
Les faibles valeurs de S, confirment la rareté des pluies, les fortes chaleurs ainsi que l'étendue de la saison sèche de 4 à 6 mois, d'où une aridité apparente et une sécheresse accentuée.

Les valeurs de S varient entre 0.34 à Zenata et 0.67 à Béni-saf (tableau XIII).

Tableau XIII : Indice xérothermique d'Emberger

Stations	PE (mm)	M (°C)	S=PE/M
Sebdou	18,9	41,7	0,45
Maghnia	12,2	24,1	0,50
Zenata	9,2	26,9	0,34
Béni-saf	17,3	25,7	0,67

II.2.4.5. Diagramme ombrothermique de Bagnouls et Gaussen (1953)


Bagnouls et **Gaussen** (1953) ont établi ce diagramme qui permet de dégager la durée de la période sèche en s'appuyant sur la comparaison des moyennes mensuelles des températures en $^{\circ}$ C avec celles des précipitations en mm ; en admettant que le mois est sec lorsque « $P \le 2T$ ».

P: précipitation moyenne du mois en mm,

T : température moyenne du mois même en °C.

Pour visualiser ces diagrammes ; **Bagnouls** et **Gaussen** (1953), proposent une méthode qui consiste à porter sur un même graphe la température et la pluviométrie de sorte que l'échelle des températures soit le double des précipitations, en considérant la période de sécheresse lorsque la courbe des précipitations passe en dessous de la courbe de température.

Pour l'ensemble des stations, la période sèche s'étale de 4 à 6 mois pendant l'ancienne période ; alors que pour la nouvelle période, elle s'étale de 6 à 8 mois (Fig. 28).

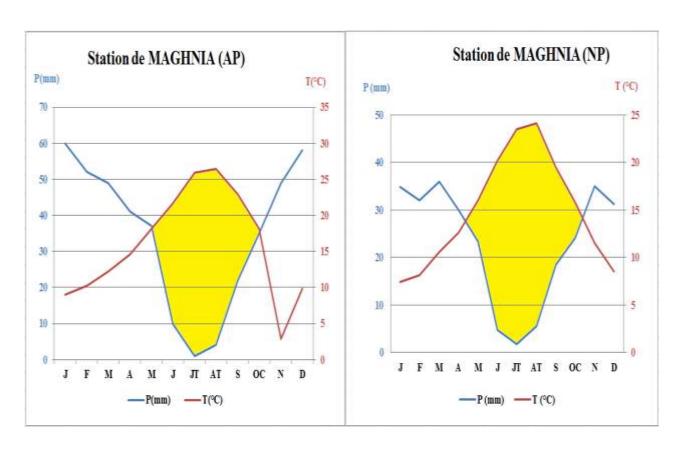
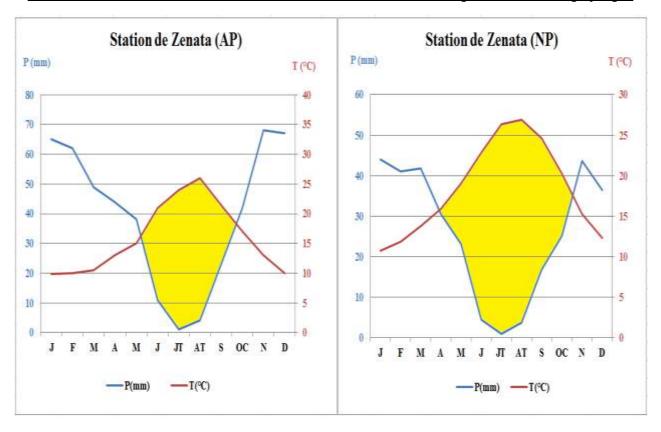



Fig. 28 : Diagrammes ombrothermiques de **Bagnouls** et **Gaussen** (Sebdou et Maghnia) (AP : ancienne période, NP : nouvelle période)

Période sèche

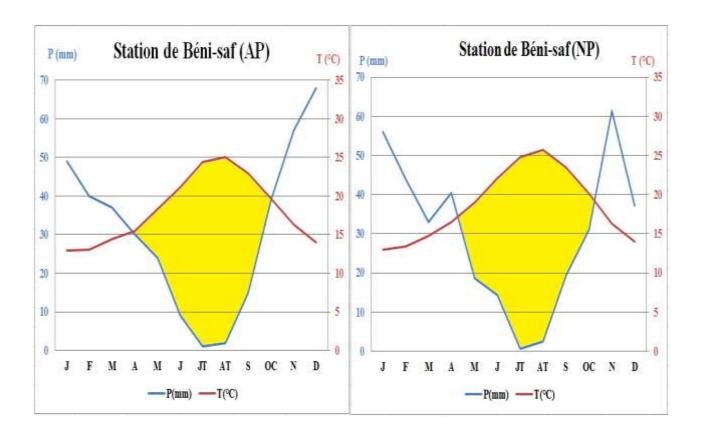


Fig. 29 : Diagrammes ombrothermiques de **Bagnouls** et **Gaussen** (Zenata et Béni-saf) (AP : ancienne période, NP : nouvelle période)

Période sèche

II.2.4.6. Quotient pluviothermique et climagramme d'Emberger (1952)

Emberger (1930 -1955) a établi un quotient pluviothermique le « Q_2 » qui est spécifique au climat méditerranéen. Il est le plus utilisé en Afrique du Nord.

Le quotient d'**Emberger** prend en compte les précipitations annuelles P, la moyenne des maxima de température du mois le plus chaud (M en °C) et la moyenne des minima de température du mois le plus froid (m°C).

Ce quotient permet de localiser les stations météorologiques, et permet aussi d'apprécier l'aridité des régions méditerranéennes, les valeurs du Q₂ étant d'autant plus basses que le climat est plus sec.

Ce quotient a été formulé de la façon suivante :

$$Q_2 = 2000 \text{ P} / \text{M}^2 - \text{m}^2 = 1000 \text{ P} / ((\text{M} + \text{m}) (\text{M} - \text{m}) / 2)$$

P: pluviosité moyenne annuelle

M: moyenne des maxima du mois le plus chaud

m: moyenne des minima du mois le plus froid

(M+m) traduit les conditions moyennes de la vie végétale, alors que (M-m) donne une l'amplitude thermique. Ce quotient est plus faible quand la sécheresse est sévère.

En Algérie **Stewart (1969)** a développé une reformulation du quotient pluviothermique d'**Emberger (1952)** de la manière suivante :

$$Q_3 = 3.43 * P / M - m$$

(M et m sont exprimés en degrés celsius °C)

Stewart (1969) a montré que les valeurs du Q_3 et celles obtenues par la formule du Q_2 sont très peu différentes, l'erreur maximale est inférieur à 2%.

L'écart entre les résultats donnés par Q_3 et Q_2 est plus grand de 1,7% pour toutes les stations météorologiques en Algérie.

Dans la figure 30 on note que la station de Sebdou est dans l'étage bioclimatique semiaride inférieur à hiver tempéré pour les deux périodes. La station de Maghnia est dans l'étage semi-aride moyen à hiver tempéré pour l'ancienne période, et dans le semi-aride inférieur à hiver frais pour la nouvelle période. La station de Zenata se situe dans l'étage semi-aride supérieur à hiver chaud pendant l'ancienne période, alors que pour la nouvelle période, la station se situe dans le semi-aride inférieur à hiver tempéré. Béni-saf, durant l'ancienne période est dans l'étage sub-humide inférieur à hiver chaud, et dans l'étage semi-aride supérieur à hiver chaud durant la nouvelle période.

Tableau XIV : Quotient pluviothermique d'Emberger et de Stewart

(AP : ancienne	période,	NP:	nouvelle	période)
----------------	----------	-----	----------	----------

Stations	P		N	M		m		Q_2		Q_3	
	AP	NP	AP	NP	AP	NP	AP	NP	AP	NP	
Sebdou	326	300,5	36,7	36,8	3,8	3,9	33,7	31,1	33,0	30,5	
Maghnia	418	277,4	32,0	32,8	3,3	1,8	48,8	30,8	48,5	29,8	
Zenata	474	312,1	32	35,5	9,7	3,7	63,9	33,5	70,9	32,7	
Béni-saf	371	358,5	29,3	30,3	9,1	8,4	62,8	55,9	61,3	54,6	

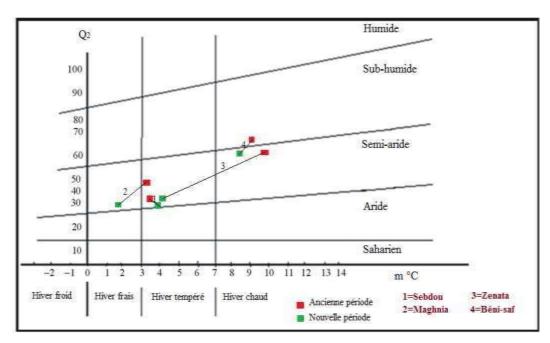


Fig. 30 : Climagramme pluviothermique d'**Emberger** (Q₂)

Les principales composantes du climat contribuant à la désertification des zones arides est la pluviométrie. Un déficit de cette dernière par rapport à l'évapotranspiration, est géré par les températures durant une période plus ou moins longue mène à une aridité sûre.

Dans cette partie de l'étude, nous comparons entre deux périodes différentes, une ancienne et une nouvelle période. De cette étude bioclimatique, nous retenons une éventuelle évolution du climat pour l'ensemble des stations.

❖ Le climat de la zone d'étude est de type méditerranéen, avec deux étages bioclimatiques prédominants qui sont le sub-humide et le semi-aride, caractérisés par deux saisons :

La saison hivernale qui est courte et froide, elle s'étale de Novembre à Mars, et caractérisée par l'irrégularité de la pluviométrie.

Et la saison estivale, longue et sèche, elle est caractérisée par une faible moyenne des précipitations et de fortes chaleurs et peut aller jusqu'à 8 mois.

- Le régime saisonnier de la majorité des stations est de type HPAE,
- Une remarquable diminution des précipitations au niveau des quatre stations,
- ❖ Généralement, le mois le plus frois est Janvier avec une température de 1.8°C, alors qu'avec des températures maximales de 36.8 °C, le mois le plus chaud est Août.

En comparant les deux périodes d'étude au niveau des quatre stations, et avec une nette diminution du quotient pluviothermique d'**Emberger** (Q_2), nous observons un décrochement vertical et horizontal des positions de chacune des stations, et qui se situent actuellement dans le semi-aride.

II.3. Méthodologie

La végétation est définie comme un ensemble de plantes réuni dans une même station par suite d'exigences écologiques identiques ou voisines. Elle permet de caractériser l'état d'un écosystème et de mettre en évidence ses modifications naturelles ou provoquées (**Blandin**, 1986), car elle est la meilleure résultante du climat et des sols. (**Ozenda**, 1986).

II.3.1. Méthode d'étude

Ce présent travail porte sur les ripisylves de la région de Tlemcen, cas des groupements à *Tamarix* L. Une diversité floristique importante liée à la conjugaison des facteurs écologiques variés caractérisent notre zone d'étude. Notre objectif étant de faire une mise au point des groupements ripisylves, mais aussi leur systématique. Pour cela, on à pris en compte les méthodes de la phytosociologie et de la phytoécologie. Ces dernières aident à mieux comprendre la dynamique de la végétation d'une part, et les facteurs écologiques qui la gèrent d'autre part.

II.3.2. Zonage écologique

Le zonage écologique a été réalisé en fonction des différentes variables environnementales :

La localisation géographique,

Le climat,

La topographie,

L'altitude,

Le recouvrement,

Les facteurs anthropiques,

La nature du substrat,

La diversité végétale et le type physionomique de la végétation.

Ce zonage écologique nous procure la possibilité d'identifier les espèces végétales de la zone d'étude, et de pouvoir mettre en évidence les principaux groupements végétaux à *Tamarix* L. La zone d'étude a été divisée en trois grandes parties :

L'amont de la Tafna

La moyenne Tafna

L'aval de la Tafna

Chaque partie présente le même type de végétation, des herbacées annuelles et des herbacées vivaces, mais très peu de ligneux vivaces. Citons par exemple :

Tamarix africana Poiret

Anacyclus valentinus

Sinapis arvensis

Malva parviflora

Bromus rubens

Chrysanthemum coronarium

Nerium oleander

Salix alba

II.3.3. Echantillonnage et choix des stations

Un échantillonnage reste l'opération qui prélève un certain nombre d'éléments que l'on peut observer ou traiter (**Dagnelie**, **1970**). C'est la seule méthode permettant les études des phénomènes à grande étendue telle que la végétation, le sol et éventuellement leurs relations. **Gounot** (**1969**) a proposé quatre types d'échantillonnage:

II.3.3.1. L'échantillonnage subjectif

Consiste à choisir les échantillons qui paraissent les plus représentatifs et suffisamment homogènes, de sorte que le phytoécologue ne fait généralement que reconnaître quelques-uns des principaux aspects de la végétation.

II.3.3.2. L'échantillonnage systématique

Consiste à disposer des échantillons selon un mode répétitif pouvant être représenté par un réseau de mailles régulières de bandes ou de transects, de segments consécutifs, de grilles de points ou de points quadrat aligné.

II.3.3.3. L'échantillonnage aléatoire

Consiste à prendre au hasard les diverses localisations des échantillons à étudier.

II.3.3.4. L'échantillonnage stratifié

Cette technique permet d'obtenir des stations susceptibles de traduire le maximum de situations écologiques tout en étant représentatives du plus grand nombre de cas.

Pour notre étude, on a utilisé l'échantillonnage stratifié qui se base sur la consultation des différentes photos aériennes et les cartes thématiques (climat, végétation, sol, pentes, etc), dans le but de faire ressortir une station homogène du point de vue des facteurs écologiques stationnels.

Pour arriver à analyser la structure végétale de la zone d'étude et connaître les groupements végétaux à *Tamarix* L., on a pu effectuer des relevés floristiques. Chaque relevé a été effectué dans une surface floristiquement homogène suivant la méthode d'aire minimale (**Gounot, 1969**).

Kadik (1983), a utilisé des surfaces de relevé en général de l'ordre de 100 m² et d'un seul tenant qui à la pratique s'est avérée suffisante pour l'aire minimale du groupement végétal.

Gehu et al., en (1987), a décrit la taille et la forme du relevé, ils découlent de ces exigences d'homogénéité, il est admis maintenant qu'en région méditerranéenne, la surface du relevé varie de 100 à 300 m² en forêt, et de 50 à 100 m² dans les matorrals et quelques mètres carrés dans les pelouses.

Sur les rives de la Tafna, dans la région de Tlemcen, la surface de 100 m² est d'une représentativité suffisante de l'aire minimale des formations végétales.

II.3.4. Description des stations

Dans notre étude, on a choisi neuf stations qui se basent sur un pourcentage d'homogénéité de la végétation assez élevée, en relation avec l'existence de l'espèce *Tamarix africana* Poiret et sur la possibilité d'accéder au cours d'eau, pour prélever le maximum d'espèces qui y sont présentes.

On a effectué 234 relevés floristiques à travers toute la zone d'étude, et pour chaque station on a réalisé 26 relevés floristiques, avec plusieurs sorties sur terrain, régulièrement pendant la saison de végétation (allant de février jusqu'à octobre de l'année 2017), pour recenser toutes les espèces présentes et établir par la même occasion la liste complète des espèces (photos des espèces dans l'annexe).

II.3.4.1. Station n°1 : Amont Barrage Béni-Bahdel :

Notre première station se situe sur la route de wilaya RW46, à 675 m d'altitude, 34°41' latitude Nord et 1°27' longitude Ouest. Cette station présente un taux de recouvrement d'environ 15%, et une pente de 30%.

II.3.4.2. Station $n^{\circ}2$: Bouhlou:

Cette station est sur la route wilaya RW110, elle s'installe sur 34°46' latitude Nord et 1°36' longitude Ouest, à 450 m d'altitude. La pente est de 10% et le taux de recouvrement est de 25%.

II.3.4.3. Station n°3: Amont barrage Hammam Boughrara:

La station se trouve à 345 m d'altitude, 34°49' latitude Nord et 1°37' longitude Ouest. Elle présente un recouvrement d'environ 25% et une pente de 5%.

II.3.4.4. Station n°4: Aval barrage Hammam Boughrara:

Cette station est située dans l'Ouest algérien à 10 Km de Maghnia. Elle se trouve sur la route nationale RN35 à quelques Km de la localité Hammam Boughrara, elle s'installe à 296 m, sur 34°53' latitude Nord et 1°38' longitude Ouest. Elle a un recouvrement de 20% et une pente de 5%.

II.3.4.5. Station n°5: Hammam Boughrara:

La cinquième station se trouve à 232 m d'altitude, 34°55' latitude Nord et 1°37' longitude Ouest, avec un recouvrement de 35% et une pente de 15%.

II.3.4.6. Station n°6: Fellaoucen:

La station est située sur la route nationale RN35, à 191 m d'altitude, 34°58' latitude Nord et 1°35' longitude Ouest. Le recouvrement est d'environ 35% et la pente est de 10%.

II.3.4.7. Station n°7: Zenata:

La station se localise à 115 m d'altitude, 35°02' latitude Nord et 1°30' longitude Ouest. Le taux de recouvrement est de 25% et la pente est de 15%.

II.3.4.8. Station n°8: Fatmi larbi:

Cette station se trouve sur la route nationale RN22, à 53 m d'altitude, 35°08' latitude Nord et 1°26' longitude Ouest. Le taux de recouvrement de cette station est estimé à 35% et la pente 15%.

II.3.4.9. Station n°9: Rachgoun:

La dernière station se situe à l'embouchure de la Tafna à la plage de Rachgoun, à 10 m d'altitude, 35°17' latitude Nord et 1°28' longitude Ouest. Le recouvrement est de 25% et la pente 5%.

III.1. Diversité floristique

III.1.1. Introduction

La biodiversité qui est un terme composé de « diversité et biologie » comprend trois niveaux de variabilité biologique : complexité de l'écosystème, richesse en espèces et variation générique. (Roberto et al., 2000).

La biodiversité végétale méditerranéenne est produite pour beaucoup, d'une utilisation traditionnelle et harmonieuse du milieu par l'homme (**Quézel** *et al.*, 1999).

Mesurer la biodiversité, telle qu'elle a été définie à l'origine par **Wilsson** (1988), signifie compter l'ensemble des espèces présentes dans un lieu précis.

Selon **Beguin et** *al.*, **1979**, **et Rameau**, **1987** la végétation est utilisée comme le reflet fidèle des conditions stationnelles, elle en est l'expression synthétique

Le bassin méditerranéen est le troisième hotspot le plus riche du monde en diversité végétale. **Mittermeier et al. (2004) in Derneği (2010)** affirme qu'on y trouve environ 30.000 espèces, dont plus de 13.000 endémiques.

En Afrique du Nord-occidentale méditerranéenne, un premier bilan a été tenté, en **1978** par **Quézel**, a montré la présence, en dehors des portions sahariennes des trois pays, 916 genres, 4034 espèces, dont 1038 endémiques (**Quézel**, **2000**).

La flore d'Algérie est caractérisée par un taux d'endémisme assez remarquable de 12.6% soit 653 espèces sur les 3.139 répertoriées, on dénombre 7 espèces arborées à caractère endémique (**Quézel et Santa, 1962**).

Dobignard et **Chatelain**, **2010-2013** donnent pour l'Algérie un chiffre de 904 espèces, dont 507 sont endémiques du Maghreb, 303 sont endémiques en Algérie et 4 espèces endémiques au Sahara occidental.

Plus des trois quarts (77,9%) des taxons endémiques stricts d'Algérie ou sub-endémiques sont des plantes plus ou moins rares en Algérie, les endémiques plus ou moins communes représentent moins du quart du total (**Véla et Benhouhou, 2007**).

La région de Tlemcen n'échappe pas aux lois naturelles circum-méditerranéennes. Les études établies sur la végétation de Tlemcen témoignent que son patrimoine végétal est très riche et diversifié (**Benabadji et** *al.*, **1996 ; Bouazza et** *al.*, **2001**).

III.1.2. Composition de la flore de la zone d'étude

L'échantillonnage de la végétation ripisylve réalisé dans la région de Tlemcen, sur les rives de la Tafna, nous a permis de réaliser 234 relevés de l'amont jusqu'à l'embouchure a Rachgoun, et de mettre en évidence une intéressante richesse floristique.

Selon les relevés floristiques, notre zone d'étude compte plus de 236 espèces, répartie en 159 genres et 52 familles (**Fig. 43**).

III.1.2.1. L'amont de la Tafna

Il s'agit des stations 1 et 2, on a énuméré 105 espèces, réparties dans 90 genres et 37 familles. Les familles les plus dominantes sont les Asteraceae avec 18%, les Poaceae avec 12% et les Fabaceae avec 11%, viennent ensuite les Brassicaceae avec 8%, les Polygonaceae et les Boraginaceae avec 5% chacune, 4% pour les Lamiaceae et 3% pour les Apiaceae, 2% pour l'ensemble de ces familles (Caryophylaceae, Chenopodiaceae, Cyperaceae, Geraniaceae, Juncaceae, Malvaceae, Plantaginaceae, Rubiaceae, Scrofulariaceae). Le reste des familles sont mono-spécifiques et avec un pourcentage globale de 1%. (Fig. 31), (Fig. 34), (Fig. 35).

III.1.2.2. La moyenne Tafna

C'est la partie la plus riche de la zone d'étude avec les stations 3, 4, 5, 6 et 7, comprennent 157 espèces avec 119 genres et 41 familles. Les Asteraceae, les Fabaceae et les Poaceae dominent avec 19%, 12% et 11% respectivement. Suivi des Brassicaceae et les Chenopodiaceae avec 6% chacune. Ensuite les Apiaceae avec 4%, 3% pour les Boraginaceae, les Caryophylaceae, les Lamiaceae, les Malvaceae, les Plantaginaceae et les Polygonaceae. Et en dernier, tout le reste des familles avec 1%. (Fig. 32), (Fig. 36), (Fig. 37), (Fig. 38), (Fig. 39), (Fig. 40).

III.1.2.3. L'aval de la Tafna

Les stations 8 et 9, avec 121 espèces, réparties en 91 genres et 33 familles. Les Asteraceae dominent avec 19%, les Poaceae avec 14% et les Chenopodiaceae avec 9%, 7% pour les Apiaceae et les Fabaceae, 6% pour les Brassicaceae. Le reste des familles présente des pourcentages assez faibles. (**Fig. 33**), (**Fig. 41**), (**Fig. 42**).

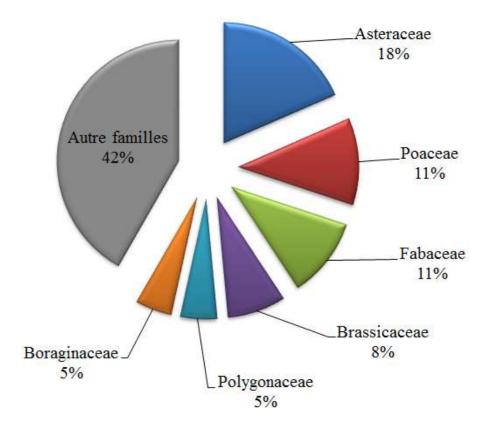


Fig. 31 : Pourcentages des familles de l'amont de la Tafna

Fig. 32: Pourcentages des familles de la moyenne Tafna

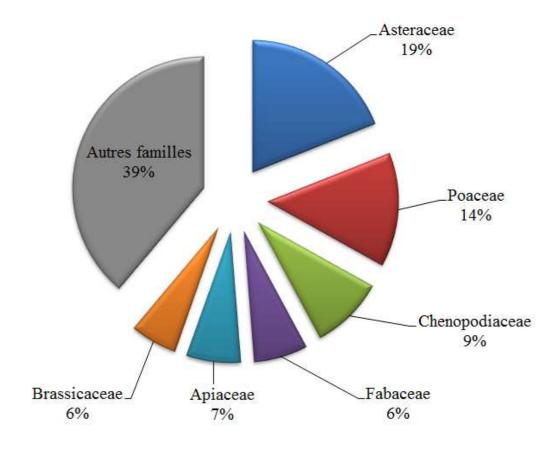


Fig. 33 : Pourcentages des familles de l'aval de la Tafna

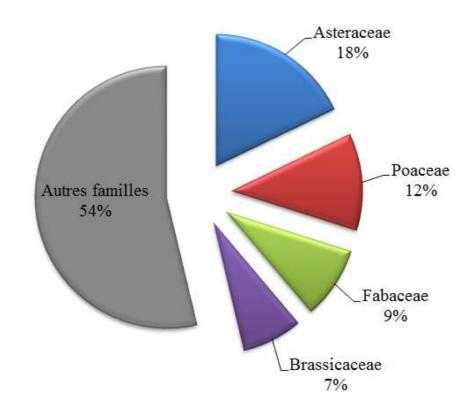


Fig. 79 : Pourcentages des familles de la station 1.



Fig. 80 : Pourcentages des familles de la station 2.

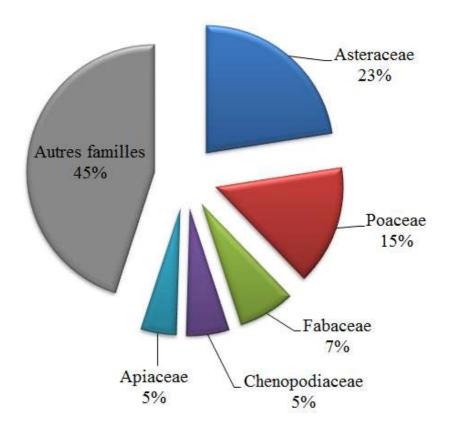


Fig. 36 : Pourcentages des familles de la station 3.

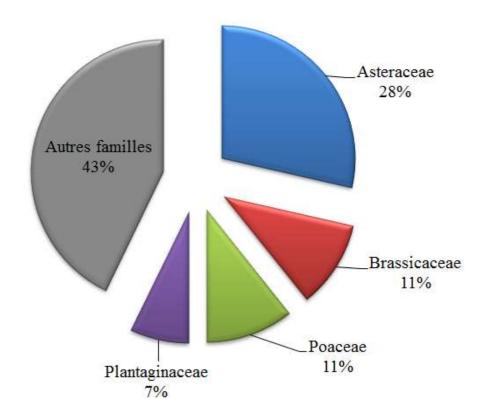


Fig. 37 : Pourcentages des familles de la station 4.

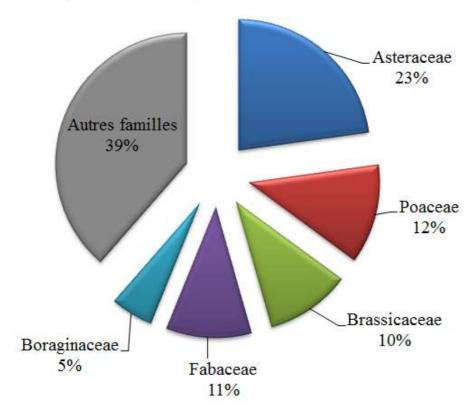


Fig. 38 : Pourcentages des familles de la station 5.

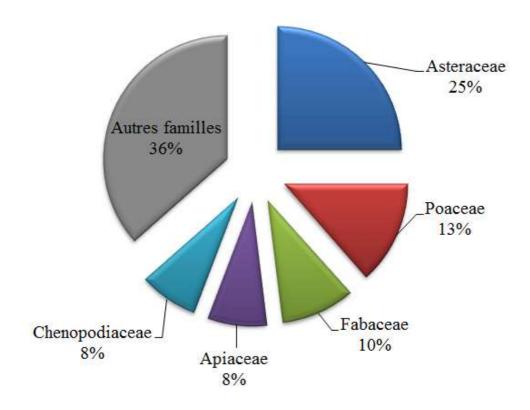


Fig. 39 : Pourcentages des familles de la station 6.

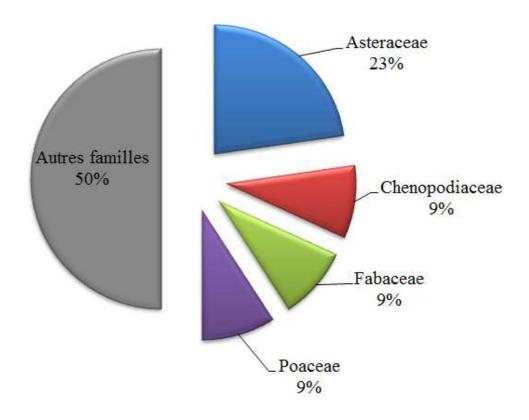


Fig. 40 : Pourcentages des familles de la station 7.

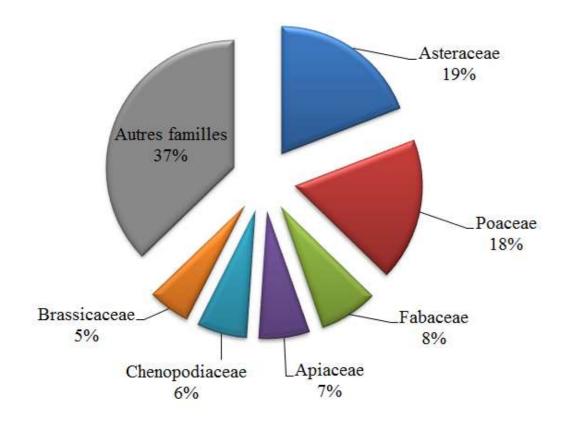


Fig. 41 : Pourcentages des familles de la station 8.

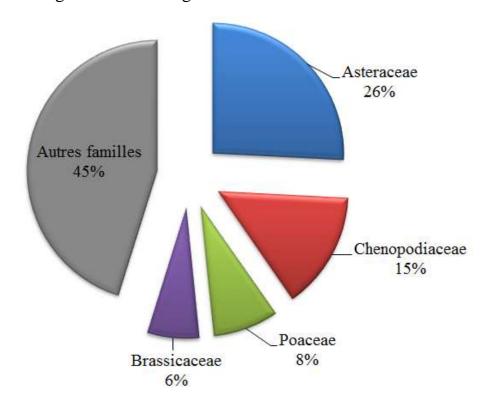


Fig. 42: Pourcentages des familles de la station 9.

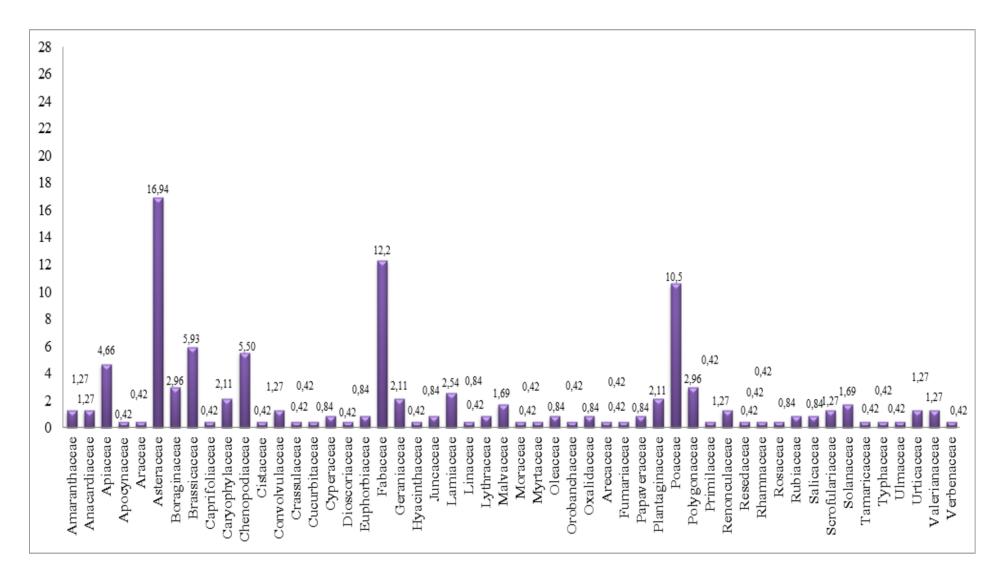


Fig. 43 : Pourcentages des familles de l'ensemble de la zone d'étude.

III.1.3. Caractéristiques biologiques

L'expression physionomique et la structure de la végétation sont le résultat des différentes formes de vie des végétaux. Ces dernières sont considérées comme une figure de la stratégie d'adaptation de la végétation aux conditions du milieu (**Rankiaer 1904-1907**).

Selon Gaussen et al., 1982, le spectre biologique est le pourcentage des divers types biologiques. Définis par Rankiaer (1904), les principaux types biologiques sont :

III.1.3.1. Phanérophytes (phaneros = visible) noté Ph

Plantes vivaces, principalement arbres et arbrisseaux, les bourgeons pérennes sont situés sur les tiges aériennes dressées et ligneuses, à une hauteur de plus de 25 cm au-dessus du sol. On peut les subdiviser en Nanophanérophytes avec une hauteur inférieure à 2 m ; en Microphanérophytes chez lesquels la hauteur peut atteindre 2 à 8 cm et les Mésophanérophytes qui peuvent arriver à 30cm et plus.

III.1.3.2. Chamæphytes (chamai = à terre) noté Ch

Herbe vivace et sous-arbrisseau dont les bourgeons hibernants sont à moins de 25 cm audessus du sol.

III.1.3.3. Hémicryptophytes (cryptos = caché) noté He

Plante vivace à feuilles en rosettes étalées sur le sol. Les bourgeons sont au ras du sol ou dans la couche superficielle du sol. La partie aérienne est herbacée et disparaît à la mauvaise saison.

III.1.3.4. Géophytes noté Ge

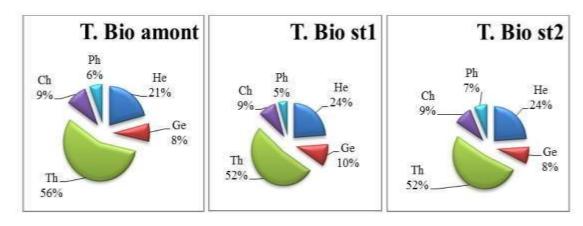
Plantes à organes vivaces (bulbes, tubercules ou rhizomes). Les organes sont bien ancrés dans le sol et ne sont pas exposés pendant les saisons défavorables. Elles sont très communes dans les régions tempérées.

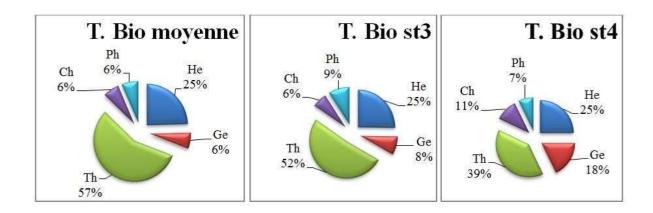
III.1.3.5. Thérophytes (théros = été) noté Th

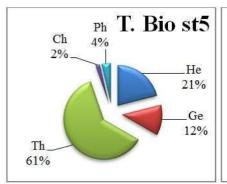
Plantes annuelles à cycle végétatif complet, de la germination à la graine mûre. Elles comprennent une courte période végétative et ne subsistent plus à la mauvaise saison qu'à l'état de graines, de spores ou autres corps reproducteurs spéciaux.

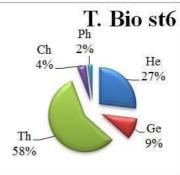
A. L'amont de la Tafna

Selon la figure 44 et le tableau XV, Les thérophytes dominent avec 56%, un nombre de 59 espèces sur 105, ensuite les hémicryptophytes avec 21% (22 espèces), 8% pour les géophytes (9 espèces) et 9% pour les chaméphytes (10 espèces), et 6% pour les phanérophytes (5 espèces).



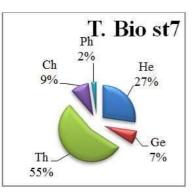

Fig. 44 : Pourcentages des types biologiques de l'amont de la Tafna.

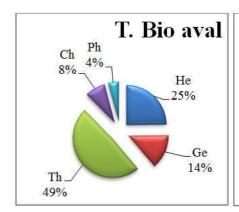

Tableau XV : Les types biologiques de l'amont de la Tafna en nombre et en pourcentage.

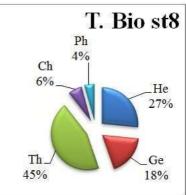

Types biologiques	He				Т	Th Ch			Ph	
	Nbre	%	Nbre	%	Nbre	%	Nbre	%	Nbre	%
amont de la Tafna	22	21%	9	9%	59	56%	10	9%	5	5%
St 1	16	24%	7	10%	35	52%	6	9%	3	5%
St 2	18	24%	6	8%	39	52%	7	9%	5	7%

B. La moyenne Tafna

Sur 157 espèces, 88 espèces sont des thérophytes avec un pourcentage de 57%, 25% pour les hémicryptophytes (39 espèces), 6% pour les géophytes, les chaméphytes (10 espèces) et les phanérophytes (10 espèces) (Fig. 45).




Fig. 45: Pourcentages des types biologiques de la moyenne Tafna.


Tableau XVI: Les types biologiques de la moyenne Tafna en nombre et en pourcentage.

Types biologiques	He		He Ge Th		Ch		Ph			
	Nbre	%	Nbre	%	Nbre	%	Nbre	%	Nbre	%
La moyenne Tafna	39	25%	10	6%	88	57%	10	6%	10	6%
St 3	28	25%	9	8%	57	52%	7	6%	10	9%
St 4	7	25%	5	18%	11	39%	3	11%	2	7%
St 5	12	21%	7	12%	35	61%	1	2%	2	4%
St 6	14	27%	5	9%	30	58%	2	4%	1	2%
St 7	12	27%	3	7%	24	55%	4	9%	1	2%

C. L'aval de la Tafna

La figure 46 et le tableau XVII montrent que les thérophytes sont dominantes avec 59 espèces et un pourcentage de 49%, suivis par 30 espèces d'hémicryptophytes (25%), 17 espèces sont géophytes avec 14%, 10 espèces de chaméphytes (8%), et 5 espèces de phanérophytes (4%).

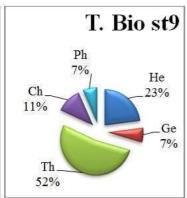


Fig. 46 : Pourcentages des types biologiques de l'aval de la Tafna.

Types biologiques	Не				G	e	Т	h	С	h	Pl	h
	Nbre	%	Nbre	%	Nbre	%	Nbre	%	Nbre	%		
L'aval de la Tafna	30	25%	17	14%	59	49%	10	8%	5	4%		
St 8	25	27%	17	18%	42	45%	6	6%	4	4%		
St 9	14	23%	4	7%	32	52%	7	11%	4	7%		

Tableau XVII: Les types biologiques de l'aval de la Tafna en nombre et en pourcentage.

Selon les figures et les tableaux, la zone d'étude est dominée par des espèces thérophytiques annuelles, à cycle végétatif complet : Th > He > Ge > Ch > Ph

III.1.4. Caractéristiques morphologiques

Le type biologique conduit à la forme naturelle de la plante, l'aspect précis de la forme obtenue est dépendant des variations de l'environnement. (Gadrat, 1999), (Romane, 1987) in (Dahmani-Megrerouche, 1997), mettent en évidence l'existence d'une bonne corrélation entre les types biologiques et de nombreux caractères morphologiques.

La forme de la plante est l'un des critères de base de la classification des espèces en type biologique. La phytomasse est composée des espèces pérennes, ligneuses ; herbacées et annuelles. L'état de la physionomie d'une formation végétale peut se définir par la dominance et l'absence des espèces à différents types morphologiques.

III.1.4.1. L'amont de la Tafna

59 espèces sont des herbacées annuelles dont un pourcentage de 56%, 31 espèces sont herbacées vivaces (29%), et 15 espèces sont des espèces ligneuses (15%) (Fig. 47).

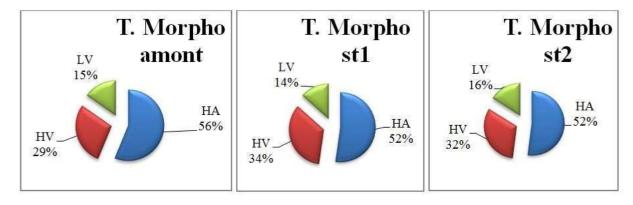
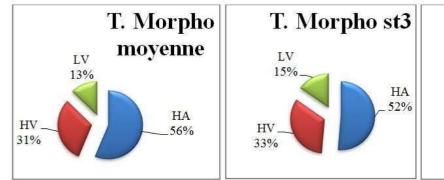
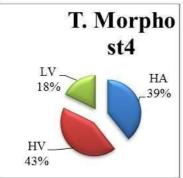
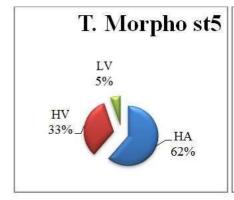
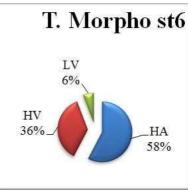


Fig. 47 : Pourcentages des types morphologiques de l'amont de la Tafna.


Tableau XVIII : Les types morphologiques de l'amont de la Tafna en nombre et en pourcentage.


		F * '	#1 T T 111 C C C C C C C C C C C C C C C			
Types	HA		H	HV		V
morphologiques	Nbre	%	Nbre	%	Nbre	%
L'amont de la Tafna	59	56%	31	29%	15	15%


St 1	35	52%	23	34%	9	14%
St 2	39	52%	24	32%	12	16%


III.1.4.2. La moyenne Tafna

D'après le tableau XIX, 56% des espèces sont herbacées annuelles (88 espèces), 49 espèces sont herbacées vivaces (31%), et 20 espèces sont ligneuses (13%) (Fig. 48).

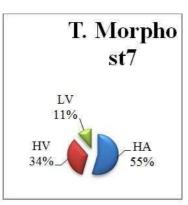
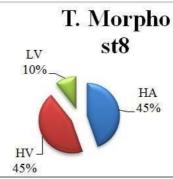


Fig. 48: Pourcentages des types morphologiques de la moyenne Tafna.


Tableau XIX : Les types morphologiques de la moyenne Tafna en nombre et en pourcentage.

Types	HA		Н	V	LV	
morphologiques	Nbre	%	Nbre	%	Nbre	%
La moyenne Tafna	88	56%	49	31%	20	13%
St 3	57	52%	37	33%	17	15%
St 4	11	39%	12	43%	5	18%
St 5	35	62%	19	33%	3	5%
St 6	30	58%	19	36%	3	6%
St 7	24	55%	15	34%	5	11%

III.1.4.3. L'aval de la Tafna

La figure 49 et le tableau XX montrent que 59 espèces sont des herbacées annuelles avec un pourcentage de 49%, 39% pour les herbacées vivaces, et 12% d'espèces ligneuses.

T. Morpho aval LV 12% HA 49%

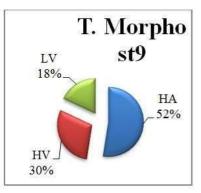


Fig. 49: Pourcentages des types morphologiques de l'aval de la Tafna.

Tableau XX: Les types morphologiques de l'aval de la Tafna en nombre et en pourcentage.

Types	HA		H	V	LV	
morphologiques	Nbre	%	Nbre	%	Nbre	%
L'aval de la Tafna	59	49%	47	39%	15	12%
St 8	42	45%	42	45%	10	10%
St 9	32	52%	18	30%	11	18%

L'ensemble des figures et des tableaux montre que la zone d'étude a une dominance bien évidente des herbacées annuelles, avec des pourcentages assez élevés : HA > HV > LV

III.1.5. Caractéristiques biogéographiques

Selon **Hengeveld**, **1990**, la géobotanique est l'étude de la répartition des végétaux dans le monde. Elle est définie comme étant l'étude et la compréhension de la répartition des organismes vivants à la lumière des facteurs et processus présents et passés.

L'étude phytogéographique constitue également un véritable modèle pour interpréter les phénomènes de régression (**Olivier** *et al.*, 1995).

Pour (Quézel, 1991), une étude phytogéographique constitue une base essentielle à toute tentative de conservation de la biodiversité.

III.1.5.1. L'amont de la Tafna

D'après les calculs, le type biogéographique méditerranéen est le plus dominant avec un pourcentage de 35% (37 espèces sur 105), ensuite paléo-tempéré et eurasiatique avec 7%, en troisième place et avec 6% le cosmopolite et européen-méditerranéen, le reste des types biogéographiques ont un pourcentage faible inférieur à 5% (Fig. 50).

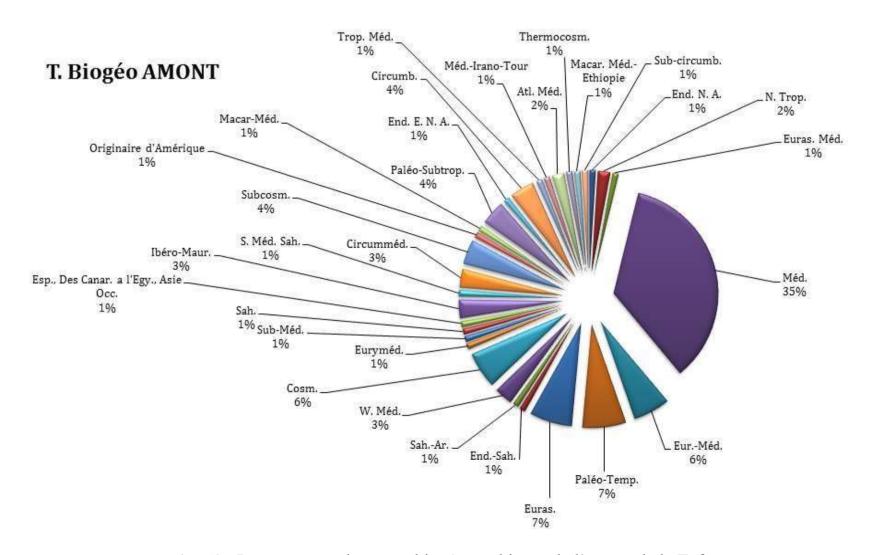


Fig. 50 : Pourcentages des types biogéographiques de l'amont de la Tafna.

Tableau XXI : Les types biogéographiques de l'amont de la Tafna en nombre et en pourcentage.

Types biogéographiques	pourcentage. Signification	Nombre	Pourcentages
Méd.	Méditerranéen	37	35%
Paléo-Temp.	Paléo-Tempéré	7	7%
Euras.	Eurasiatique	7	7%
Cosm.	Cosmopolite	6	6%
EurMéd.	Européen-Méditerranéen	6	6%
Subcosm.	Sub-Cosmopolite	4	4%
Paléo-Subtrop.	Paléo-Sub-Tropical	4	4%
Circumb.	Circum-boréale	4	4%
Circum-Méd.	Circum-Méditerranéen	3	3%
Ibéro-Maur.	Ibéro Mauritanien	3	3%
W. Méd.	Ouest-Méditerranéen	3	3%
N. Trop.	Nord-Tropical	2	2%
Atl. Méd.	Atlantique-Méditerranéen	2	2%
End. N. A.	Endémique. Nord-Africain	1	1%
Euras. Méd.	Eurasiatique-Méditerranéen	1	1%
EndSah.	Endémique-Saharien	1	1%
SahAr.	Saharo-Arabien	1	1%
Euryméd.	Eury-méditerranéen	1	1%
Sub-Méd.	Sub-Méditerranéen	1	1%
Sah.	Saharien	1	1%
Esp., Des Canar. a l'Egy.,	Espagne, Des Canaries a l'Egypte,	1	1%
Asie Occ.	Asie Occidentale		
S. Méd. Sah.	Sud-Méditerranée-Saharien	1	1%
Originaire d'amérique	Originaire d'amérique	1	1%
Macar-Méd.	Macaronésien-Méditerranéen	1	1%
End. E. N. A.	E. N. A. Endémique-Est-Nord-Africain		1%
Trop. Méd.	Trop. Méd. Tropical-Méditerranéen		1%
MédIrano-Tour	Méditerranéen-Irano-Touranien	1	1%
Thermocosm.	Thermo-cosmopolite	1	1%
Macar. MédEthiopie	Macaronésien-Méditerranéen- Ethiopie	1	1%
Sub-circumb.	Sub-Circum-boréale	1	1%

III.1.5.2. La moyenne Tafna

L'analyse du tableau XXII révèle la prédominance du type biogéographique méditerranéen avec 46 espèces sur 157 et un pourcentage de 30%, en suite le paléo-tempéré avec 7%, le cosmopolite avec 6% (Fig. 51).

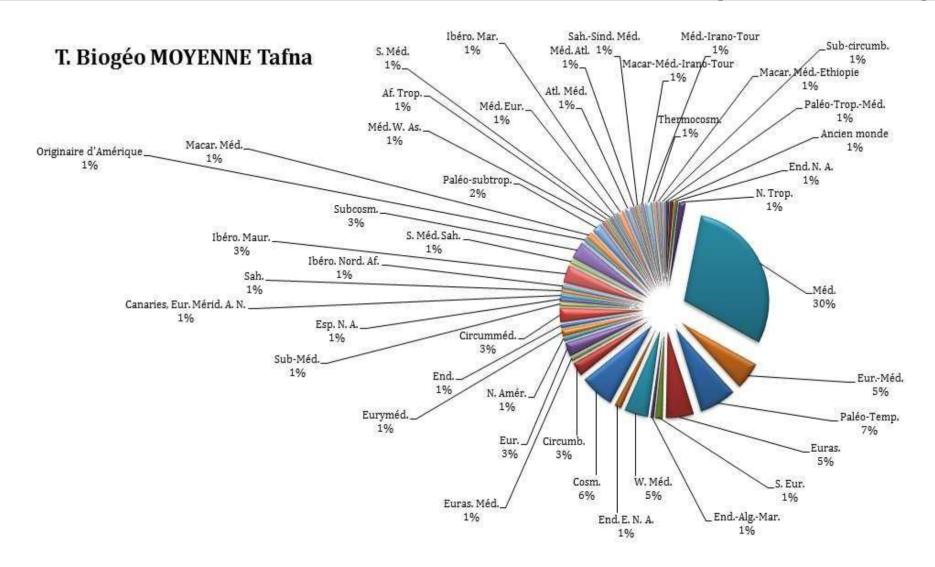


Fig. 51: Pourcentages des types biogéographiques de la moyenne Tafna

Tableau XXII : Les types biogéographiques de la moyenne Tafna en nombre et en pourcentage.

m 1' / 1'	pourcentage.	NT 1	D 4
Types biogéographiques	Signification	Nombre	Pourcentages
Méd.	Méditerranéen	46	30%
Paléo-Temp.	Paléo-Tempéré	11	7%
Cosm.	Cosmopolite	10	6%
EurMéd.	Européen-Méditerranéen	8	5%
Euras.	Eurasiatique	8	5%
W. Méd.	Ouest-Méditerranéen	7	5%
Subcosm.	Sub-Cosmopolite	5	3%
Ibéro. Maur.	Ibéro Mauritanien	5	3%
Circum-Méd.	Circum-Méditerranéen	4	3%
Eur.	Européen	4	3%
Circumb.	Circum-boréale	4	3%
Paléo-subtrop.	Paléo-Sub-Tropical	3	2%
N. Trop.	Nord-Tropical	2	1%
S. Eur.	Sud-Européen	2	1%
End. E. N. A.	Endémique-Est-Nord-Africain	2	1%
Euryméd.	Eury-méditerranéen	2	1%
Macar. Méd.	Macaronésien-Méditerranéen	2	1%
Ibéro. Mar.	Ibéro-Marocain	2	1%
Atl. Méd.	Atlantique-Méditerranéen	2	1%
MédIrano-Tour	Méditerranéen-Irano-	2	1%
	Touranien		
Paléo-TropMéd.	Paléo-Tropical- Méditerranéen	1	1%
Ancien monde	Ancien monde	1	1%
End. N. A.	Endémique. Nord-Africain	1	1%
EndAlgMar.	Endémique-Algéro-Marocain	1	1%
Euras. Méd.	Eurasiatique-Méditerranéen	1	1%
N. Amér.	Nord Amérique	1	1%
End.	Endémique	1	1%
Sub-Méd.	Sub-Méditerranéen	1	1%
Esp. N. A.	Espagne Nord-Africain.	1	1%
Canaries, Eur. Mérid. A. N.	Canaries, Europe Méridionale. A. N.	1	1%
Sah.	Saharien	1	1%
Ibéro. Nord. Af.	Ibéro. Nord. Africain	1	1%
S. Méd. Sah.	Sud-Méditerranée-Saharien	1	1%
Originaire d'Amérique	Originaire d'Amérique	1	1%
Méd. W. As.	Méditerranée-Ouest-Asie	1	1%
Af. Trop.	Afrique-Tropicale	1	1%
S. Méd.	Sud-Méditeranéen	1	1%
Méd. Eur.	Méditerranéen-Européen	1	1%
Méd. Atl.	Méditerranéen-Atlantique	1	1%
SahSind. Méd.	Saharo-Sindien-Méditerranéen	1	1%
Macar-MédIrano-Tour	Macaronisien-Méditerranéen- Irano-Touranien	1	1%
Thermocosm.	Thermo-cosmopolite	1	1%
Macar. MédEthiopie	Macaronisien-Méditerranéen- Ethiopie	1	1%

Sub-circumb	Sub Circum borágla		1%
Sub-circumb.	Sub-Circum-boréale	1	1%

III.1.5.3. L'aval de la Tafna

On remarque que le type biogéographique méditerranéen domine avec 26%, puis 11% pour le cosmopolite, eurasiatique et sub-cosmopolite avec 6% chacun, 5% pour le paléo-tempéré et le circum-boréale, et le reste des types biogéographiques avec un pourcentage en-dessous de 5% (Fig. 52).

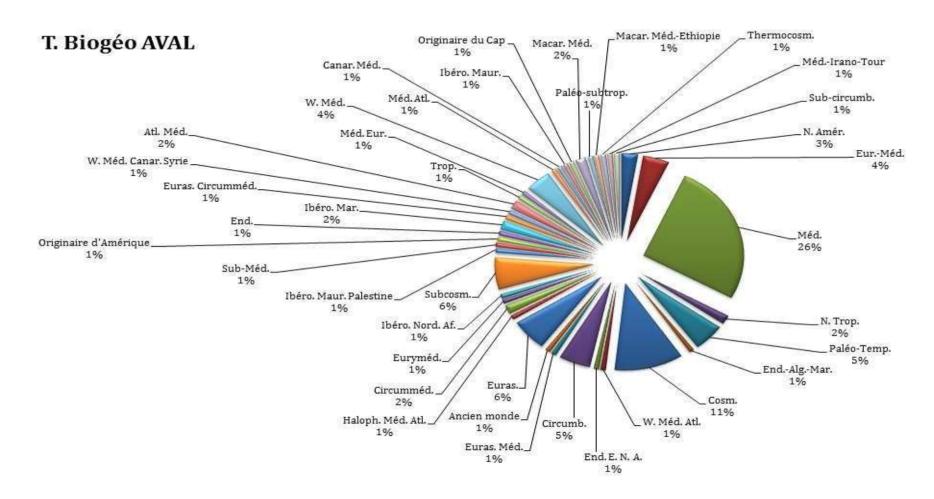


Fig. 52 : Pourcentages des types biogéographiques de l'aval de la Tafna.

Tableau XXIII : Les types biogéographiques de l'aval de la Tafna en nombre et en pourcentage.

		Pourcentages
Méditerranéen	31	26%
Cosmopolite	13	11%
Eurasiatique	7	6%
Sub-Cosmopolite	7	6%
Paléo-Tempéré	6	5%
Circum-boréale	6	5%
Ouest-Méditerranéen	5	4%
Européen-Méditerranéen	5	4%
Nord Amérique	3	3%
Nord Tropical	2	2%
Circum-Méditerranéen	2	2%
Ibéro-Marocain	2	2%
Atlantique-Méditerranéen	2	2%
Macaronésien-Méditerranéen	2	2%
Endémique-Algéro-Marocain	1	1%
Ouest-Méditerranéen-	1	1%
Atlantique		
Endémique-Est-Nord-Africain	1	1%
Eurasiatique-Méditerranéen	1	1%
Ancien monde	1	1%
Halophyte-Méditerranéen-	1	1%
Atlantique		
Eury-méditerranéen	1	1%
Ibéro Nord-Africain	1	1%
Ibéro Mauritanien-Palestine	1	1%
Sub-Méditerranéen	1	1%
Originaire d'Amérique	1	1%
Endémique	1	1%
Eurasiatique- Circum- Méditerranéen	1	1%
Ouest-Méditerranéen- Canaries-Syrie	1	1%
_	1	1%
1	1	1%
	1	1%
		1%
Ibéro Mauritanien 1		1%
		1%
<u> </u>		1%
Macaronésien-Méditerranéen-	1	1%
Ethiopie		
Ethiopie Thermo-cosmopolite	1	1%
Ethiopie Thermo-cosmopolite Méditerranéen-Irano- Touranien	1	1% 1%
	Cosmopolite Eurasiatique Sub-Cosmopolite Paléo-Tempéré Circum-boréale Ouest-Méditerranéen Européen-Méditerranéen Nord Amérique Nord Tropical Circum-Méditerranéen Ibéro-Marocain Atlantique-Méditerranéen Macaronésien-Méditerranéen Endémique-Algéro-Marocain Ouest-Méditerranéen Endémique-Est-Nord-Africain Eurasiatique-Méditerranéen Ancien monde Halophyte-Méditerranéen Alantique Eury-méditerranéen Ibéro Nord-Africain Ibéro Mauritanien-Palestine Sub-Méditerranéen Originaire d'Amérique Eurasiatique- Circum- Méditerranéen Ouest-Méditerranéen Ouest-Méditerranéen Ouest-Méditerranéen Canaries-Syrie Tropical Méditerranéen-Européen Méditerranéen-Européen Méditerranéen-Atlantique Canarien-Méditerranéen Ibéro Mauritanien Originaire du Cap Paléo-Sub-Tropical Macaronésien-Méditerranéen-	SignificationNombreMéditerranéen31Cosmopolite13Eurasiatique7Sub-Cosmopolite7Paléo-Tempéré6Circum-boréale6Ouest-Méditerranéen5Européen-Méditerranéen5Nord Amérique3Nord Tropical2Circum-Méditerranéen2Ibéro-Marocain2Atlantique-Méditerranéen2Macaronésien-Méditerranéen1Atlantique-Algéro-Marocain1Ouest-Méditerranéen-Atlantique1Endémique-Est-Nord-Africain1Eurasiatique-Méditerranéen1Ancien monde1Halophyte-Méditerranéen-Atlantique1Eury-méditerranéen1Ibéro Nord-Africain1Ibéro Mauritanien-Palestine1Sub-Méditerranéen1Originaire d'Amérique1Eurasiatique-Circum-Méditerranéen1Ouest-Méditerranéen-Circum-Méditerranéen1Ouest-Méditerranéen-Circum-Méditerranéen-Européen1Méditerranéen-Européen1Méditerranéen-Européen1Méditerranéen-Atlantique1Canarien-Méditerranéen1Ibéro Mauritanien1Originaire du Cap1Paléo-Sub-Tropical1Macaronésien-Méditerranéen-I1Macaronésien-Méditerranéen-I1

III.1.6. Indice de perturbation

Selon **Loisel et** *al.*, **1993**, une fois l'indice de perturbation calculé, il quantifie la thérophitisation d'un milieu.

L'indice de perturbation est proportionnel à la dominance des thérophytes, ce qui reflète un milieu ouvert. Cet indice montre la thérophytisation d'une zone, suite à une steppisation qui est considérée comme le stade ultime de dégradation des différents écosystèmes avec la dominance des espèces sub-nitrophiles liées aux surpâturages (**Barbero et al., 1990**).

Grâce aux 236 espèces ripisylves recensée dans les relevés floristiques réalisés, on a pu calculer cet indice (Tableau XXIV). On voit bien que les valeurs ne dépassent pas les 65%, cette dernière a été obtenue au niveau de l'amont de la Tafna. 62% pour la moyenne Tafna et 57% pour son aval. Il est aux alentours de 63% pour toute la zone d'étude.

Le défrichement, les incendies, les pâturages et l'urbanisation, qui se résument à l'action de l'homme, n'engendrent pas une très forte dégradation dans ces formations végétales.

Stations	Indice de perturbation
Station 1 (Amont Barrage Béni-Bahdal)	61%
Station 2 (Bouhlou)	61%
Amont Tafna (station 1+2)	65%
Station 3 (Amont Barrage Hammam Boughrara)	57%
Station 4 (Aval Barrage Hammam Boughrara)	50%
Station 5 (RN35 pont 1)	63%
Station 6 (RN35 pont 2)	61%
Station 7 (RN35 pont 3)	63%
Moyenne Tafna (station 3+4+5+6+7)	62%
Station 8 (Fatmi Larbi)	51%
Station 9 (Rachgoun)	63%
Aval Tafna (station 8+9)	57%
Zone d'étude	63%

Tableau XXIV : Indice de perturbation des stations d'étude.

III.1.7. Conclusion

L'étude floristique de la végétation ripisylve dans la région de Tlemcen, sur les rives de la Tafna, révèle une intéressante biomasse végétale.

La zone d'étude abrite plus de 236 espèces, réparties dans 52 familles et 159 genres. Les familles qui dominent largement le terrain sont les Asteraceae, les Poaceae, les Fabaceae et les Chenopodiaceae.

La végétation recensée est dominée par le type biologique « thérophyte », suivi par les hémicryptophytes, puis en troisième position viennent les chaméphytes, ensuite les géophytes et les phanérophytes en dernier. Le type morphologique est très hétérogène et il est de type : HA > HV > LV.

Le type biogéographique méditerranéen vient en première place, ensuite le cosmopolite, et en troisième place le paléo-tempéré.

L'indice de perturbation calculé, en relation directe avec la dominance des espèces thérophytes, montre qu'il n'y a pas un très grand envahissement des espèces annuelles dans nos stations d'étude.

Les espèces ripisylves qu'on peut qualifier d'espèces fidèles à ces milieux humides sont les suivantes :

Typha angustifolia

Tamarix africana

Populus alba

Juncus acutus

Juncus maritimus

Nerium oleander

Apium graveolens

Torilis arvensis

Inula viscosa

Sonchus maritimus

Beta vulgaris

Cyperus longus

Cyperus fuscus

Ricinus communis

Mentha rotundifolia

Arundo donax

Phragmites communis

Rubus ulmifolius

Ranunculus muricatus

Salix alba

Verbascum sinuatum

Solanum nigra

Datura stramonium

Urtica urens

Plantago major

III.2. Indices de diversité

III.2.1. Introduction

La diversité des éléments d'une communauté est une qualité qui s'impose d'emblée a l'analyse (**Frontier et Pichod-Viale, 1993**).

Le mot « Biodiversité », désigne la diversité naturelle des organismes vivants. Pour l'évaluer, on utilise des mesures relatives à des tendances ou objectifs précis d'utilisation ou d'application appelés « indices de biodiversité » (Callon et al. 2001).

Dans le même ordre d'idée, **Frontier et Pichod-Viale** (1991,1993) signalent qu'il existe une façon complètement différente de caractériser la diversité spécifique d'une collection, c'est de quantifier l'information qu'elle apporte. La diversité peut être définie comme une mesure de la composition en espèces d'un écosystème, en nombre d'espèces et de leur abondance relative (**Legendre et Legendre**, 1984). Il est donc commode de caractériser la diversité d'une collection ou d'un recensement par un nombre, que l'on appellera indice de diversité.

III.2.2. Indices de Shannon

L'entropie H de Shannon est l'un des indices de diversité le plus couramment utilisé, et qui a l'avantage de tenir compte de l'abondance relative de chaque espèce (**Dajoz**, **1982**).

Walter (1994) définit l'abondance comme étant le nombre d'individus présents dans une communauté. Cet indice de diversité se calcule à l'aide de la formule suivante :

$$H = -\sum Pi \log_2 Pi$$

Pi : étant l'abondance relative de chaque espèce égale à Ni / N

Ni : abondance de l'espèce « i » et N le nombre total d'espèces

- H est nul quand l'échantillon ne contient qu'une seule espèce. La diversité H augmente à mesure que s'accroit le nombre d'espèces.
- H atteint sa valeur maximale (H= log2 N) lorsque toutes les espèces ont la même abondance, elles sont donc, également représentées dans l'échantillon.
- La formule **H** de Shannon n'est strictement valide que lorsque l'échantillon dont on veut mesurer la diversité, est représentatif d'une population théoriquement infinie ou du moins, suffisamment grande pour ne pas être modifiée par l'échantillonnage.

L'indice de Shannon est souvent accompagné par l'indice d'équitabilité de Piélou:

$$E_{\rm H} = H / H_{\rm max}$$

 $\mathbf{H}_{\text{max}} = \mathbf{log} \mathbf{S}$ (S= nombre total des familles).

L'indice d'équitabilité permet de mesurer la répartition des individus au sein des espèces, indépendamment de la richesse spécifique. Sa valeur varie de 0 (dominance d'une des espèces) à 1 (équirépartition des individus dans les espèces).

III.2.3. Indice de réciprocité de Simpson

Cet indice permet la mesure du nombre effectif d'individus très abondants. La formule est la suivante :

$$I_s = 1 / \sum Pi^2$$

La valeur de cet indice commence par 1 comme chiffre le plus bas possible (communauté contenant une seule espèce), une valeur plus élevée indique une plus grande diversité. La valeur maximale est le nombre d'espèces dans l'échantillon.

Un autre indice d'équitabilité accompagne l'indice de réciprocité de Simpson :

$$E_{S} = (I_{S} - 1) / (S - 1)$$

Cet indice varie entre 0 et 1, si $E_s=0$ les différences d'abondance des individus entre chaque espèce sont fort, et si $E_s=1$ les différences d'abondance des individus entre chaque espèce sont égales.

III.2.4. Indice de Margalef

Cet indice présente l'avantage d'être simple à calculer. Toutefois, il peut s'avérer malgré tout, sensible à l'effort d'échantillonnage (**Magurran, 2004**). Il est moins fréquent dans les travaux se rapportant à la diversité et se calcule à l'aide de la formule suivante :

$$\boxed{D_{mg} = (S-1) / LnN}$$

 $D_{\rm mg}$ = 0 quand tous les individus appartiennent à la même espèce.

 \mathbf{D}_{mg} est maximum quand chaque individu appartient à une espèce différente (S = N).

Le tableau XXV regroupe les indices des neuf stations d'étude.

Stations	Indice de	Equitabilité	Indice de	Equitabilité	Indice de
	Shannon (H)	de Piélou	réciprocité de	de Simpson	Margalef
	,	(E_H)	Simpson (I _S)	(E_S)	(D_{mg})
St 1	4.27	0.88	13.51	0.46	6.42
St 2	4.30	0.86	12.30	0.37	6.96
Amont	4.52	0.86	13.74	0.35	7.74
Tafna					
St 3	4.27	0.82	10.74	0.27	7.65
St 4	3.33	0.83	8	0.46	4.50
St 5	2.10	0.45	9.93	0.38	5.69
St 6	3.64	0.85	8.77	0.43	4.55
St 7	3.85	0.89	10.40	0.49	5.02
Moyenne	3.71	0.69	12.33	0.28	7.90
Tafna					
St 8	4.11	0.83	10.82	0.32	6.60
St 9	3.72	0.84	8.63	0.38	4.86
Aval Tafna	4.22	0.83	11.97	0.34	6.68
Zone d'étude	4.63	0.81	14.22	0.25	9.34

Tableau XXV : Les indices de diversités calculés

La zone d'étude compte 236 espèces végétales, réparties dans 52 familles, divisée en trois parties (amont, moyenne et aval). On note que la moyenne Tafna, compte 158 espèces avec 41 familles, et est la plus riche. Suivie de l'aval de la Tafna avec 121 espèces et en dernier l'amont de la Tafna avec 105 espèces. Sauf que l'amont de la Tafna est en deuxième position en ce qui concerne le nombre de familles qui la constituent, et en troisième position l'aval de la Tafna avec 33 familles (Fig. 53).

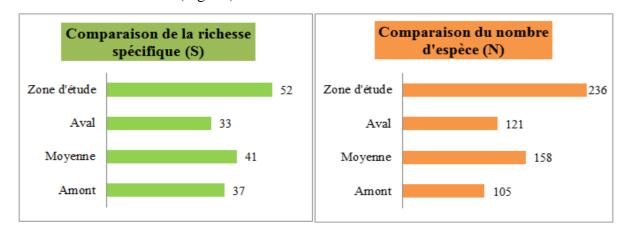


Fig. 53 : Comparaison de la richesse spécifique et du nombre d'espèce

L'abondance relative de la totalité des espèces est relativement élevée (H = 4.63). L'amont de la Tafna en première place avec H = 4.52, vient ensuite l'aval de la Tafna avec H = 4.22, et H = 3.71 pour la moyenne Tafna. Il est de même en ce qui concerne l'équitabilité de Piélou,

pour les trois parties, l'amont avec $E_S = 0.86$, ensuite $E_H = 0.83$ pour l'aval de la Tafna, et en dernier $E_H = 0.69$ pour la moyenne Tafna (Fig. 54).

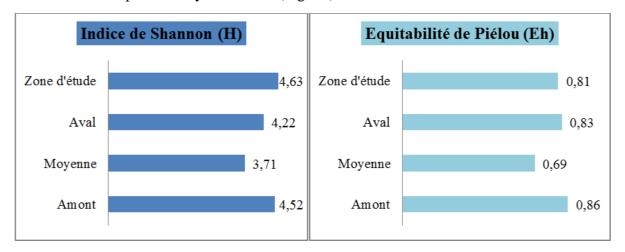


Fig. 54 : Indice de Shannon et équitabilité de Piélou

De cette figure, on voit bien que l'amont de la Tafna est en premier avec $I_s=13.74$, suivi par la moyenne Tafna avec $I_s=12.33$, et $I_s=11.97$ pour l'aval de la Tafna. Et pour la zone d'étude $I_s=14.22$ et $E_s=0.25$ (Fig. 55). $E_s=0.28$ pour la moyenne Tafna, ensuite l'aval avec $E_s=0.34$, et $E_s=0.35$ pour l'amont de la Tafna.

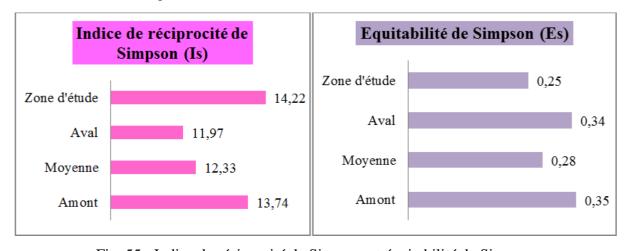


Fig. 55 : Indice de réciprocité de Simpson et équitabilité de Simpson

 D_{mg} = 9.34 pour la zone d'étude. En première place vient la moyenne Tafna avec D_{mg} = 7.9, ensuite l'amont avec D_{mg} = 7.74, et l'aval de la Tafna est en troisième place avec D_{mg} = 6.68 (Fig. 56).

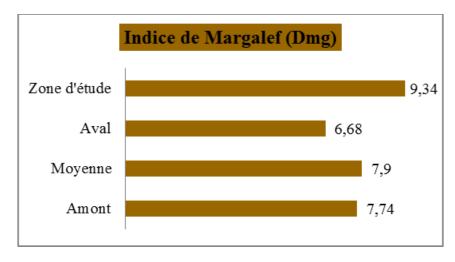


Fig. 56: Indice de Margalef

III.2.5. Conclusion

Les indices de diversité cités ci-dessus et calculés, nous ont permis de retenir les points suivants :

- ✓ La moyenne Tafna est la plus riche et diversifiée du point de vu richesse spécifique (S) et nombre total d'espèce (N).
- ✓ L'abondance relative de chaque espèce est assez élevée dans l'amont de la Tafna avec H = 4.52, et que leur répartition est presque régulière et équilibrée vu que l'équitabilité de Piélou est de l'ordre de 0.8.
- ✓ Le nombre effectif des individus très abondants est retenu pour l'amont de la Tafna grâce a son chiffre qui est élevé ($I_s = 13.74$), et les différences d'abondance des individus entre chaque espèce sont fortes au niveau de la moyenne Tafna ($E_s = 0.28$).
- \checkmark L'indice de Margalef montre bien que chaque individu appartient à une espèce différente, dans la moyenne Tafna grâce à $D_{mg} = 7.9$.

Notre zone d'étude présente une richesse assez importante et diversifiée, l'abondance relative des espèces est élevée, et leur répartition est régulière, avec des individus très abondant (I_s = 14,22), et des différences d'abondance bien fortes. Et D_{mg} = 9,34 prouve clairement que ce sont des individus d'espèces différentes.

Chapitre IV : Analyse statistique de la végétation et essai cartographique

IV.1. Analyse statistique

IV.1.1. Introduction

L'étude de la dynamique végétale, dans un milieu naturel, nécessite une analyse floristique des espèces à fortes contributions puis un traitement par des logiciels statistiques.

Cette étude a été effectuée sur la base des relevés floristiques, afin de déterminer les affinités des différents groupes végétaux.

L'Analyse statistique des formations végétales dans le circum-méditerranéen et en Algérie en particulier a fait l'objet de nombreux travaux, citons quelques-uns d'entre eux : Molinier (1934) in Loisel (1976), Bonnin et Roux (1975), Loisel (1976), Djebaili (1984), Bonin et Tatoni (1990), Dahmani (1997), Benabadji et al. (2004), Merzouk (2009-2010), (Stambouli, 2010), Aboura (2011), Hassaine (2011-2014), Sari-Ali (2012). Il s'agit de mettre en évidence les différents facteurs écologiques responsables de l'installation des taxons inventoriés dans les plans factoriels.

Cette analyse est considérée comme étant le traitement statistique inévitable sur des données de végétations, soit en abondance-dominance-sociabilité soit en présence-absence. Et c'est à partir de cette technique que l'on a pu identifier des gradients écologiques qui agissent sur la distribution des végétaux **Chessel et Gauthier (1979).**

IV.1.2. Méthode d'étude

Pour assurer le traitement des données pour notre étude, on a choisi la Classification Hiérarchique Ascendante (C.H.A.) et l'analyse Factorielle des Correspondances (A.F.C), qui permettent d'apporter des visions complémentaires, en particulier en construisant des arbres de classification des lignes ou des colonnes.

Sur les rives de la Tafna, on a recensé 236 espèces, réparties dans 234 relevés réalisés sur toute l'année 2017. Les relevés sont numérotés au départ suivant l'ordre chronologique de leur réalisation. De même les espèces ont été codées par les deux premières lettres du genre et d'espèce pour faciliter la lecture sur les plans factoriels suivants le modèle ci-dessous.

Genres espèces	Code
Tamarix africana	taa
Inula viscosa	i2
Nerium oleander	no

D'une manière générale, l'interprétation des résultats est basée sur l'inertie du système (Tableau XXX, tableau XXXI et tableau XXXII - annexe) qui indique le pouvoir explicatif

d'un axe factoriel et la contribution qui mesure l'importance d'un point ligne (espèce) ou d'un point colonne (relevé) par rapport à un axe factoriel.

En utilisant l'A.F.C., nous avons pu mettre en relief :

- Analyse des espèces à fortes contributions dans les A.F.C. sur les facteurs écologiques de la diversité du tapis végétal (**Bonin** et **Vedrenne**, **1979**).
 - La dynamique de végétation et la nature de leur évolution dans le milieu d'étude.
- Individualiser des ensembles de relevés qui présentent les mêmes affinités, c'est-à-dire de préciser les structures de végétation différenciées au niveau de ces peuplements.

IV.1.3. Interprétation des résultats

IV.1.3.1. Amont de la Tafna

Noyau A : il est représenté par la quasi-totalité des espèces, appartenant à différentes familles. Ce noyau renferme les cinq différents types biologiques, dominé par les thérophytes, ensuite les hémicryptophytes, puis les chaméphytes, les géophytes et les phanérophytes en dernière place (Fig. 57).

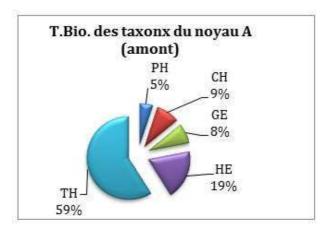


Fig. 57: Types biologiques du noyau A

Noyau B : représenté par deux espèces seulement qui sont *Inula viscosa* et *Tamarix africana*. La première est hémicryptophyte et la seconde Phanérophyte (Fig. 58). Dans ce noyau les types biologiques thérophytes, géophytes et chaméphytes sont complètement absents.

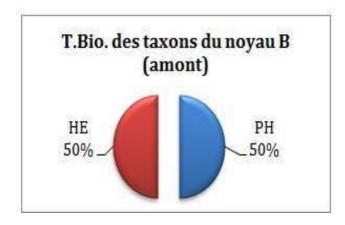


Fig. 58: Types biologiques du noyau B

Noyau C : absence totale des phanérophytes, géophytes et des thérophytes. Représenté par trois différentes espèces : *Apium graveolens*, *Mentha rotundifolia* et *Nerium oleander*. Les deux premières sont hémicryptophytes et la troisième est une chaméphyte (Fig. 59).

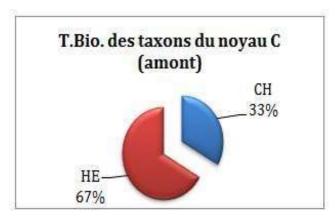


Fig. 59: Types biologiques du noyau C

Nous constatons une évolution régressive des types biologiques du substrat, du noyau A vers le noyau C.

▶ Plan 2/1 (Fig. 61)

Côté négatif

- Anacyclus valentinus (ava)
- Pistacia lentiscus (pi2)
- Torilis arvensis (ta)
- Sinapis alba (si1)
- *Carduus pycnocephalus* (cp)
- Anagallis arvensis (aar)

Côté positif

- Populus alba (pa)
- Cynodon dactylon (cyd)
- Rorippa nasturtium aquatica (rna)
- *Apium graveolens* (ag)
- *Mentha retundifolium* (mr)
- Tamarix africana (taa)

Le côté négatif est dominé surtout par les espèces xérophytes ; le côté positif est marqué par la présence des espèces hygrophiles ripisylves.

La présence de *Rorippa nasturtium aquatica*, *Apium graveolens* et *Mentha retundifolium* confirment l'existence d'un gradient d'humidité croissant dans le sens de l'axe.

> Plan 3/1 (Fig. 62)

Côté négatif - Torilis arvensis (ta) - Heliotropium europaeum (he) - Filago spathulata (fs) - Capsella bursa pastoris (cb) - Paronychia argentea (pa) - Malva sylvestris (ma3) - Côté positif - Calendula arvensis (ca1) - Juncus maritimus (j2) - Nerium oleander (no) - Populus alba (pa) - Tamarix africana (taa)

Du côté positif de cet axe, on remarque la présence d'espèces vivaces chaméphytiques et ripisylves : *Typha angustifolia* et *Nerium oleander*, et des espèces thérophytiques annuelles du côté négatif de l'axe. On peut dire que ce dernier présente un gradient d'évolution régressive dans le sens inverse de l'axe.

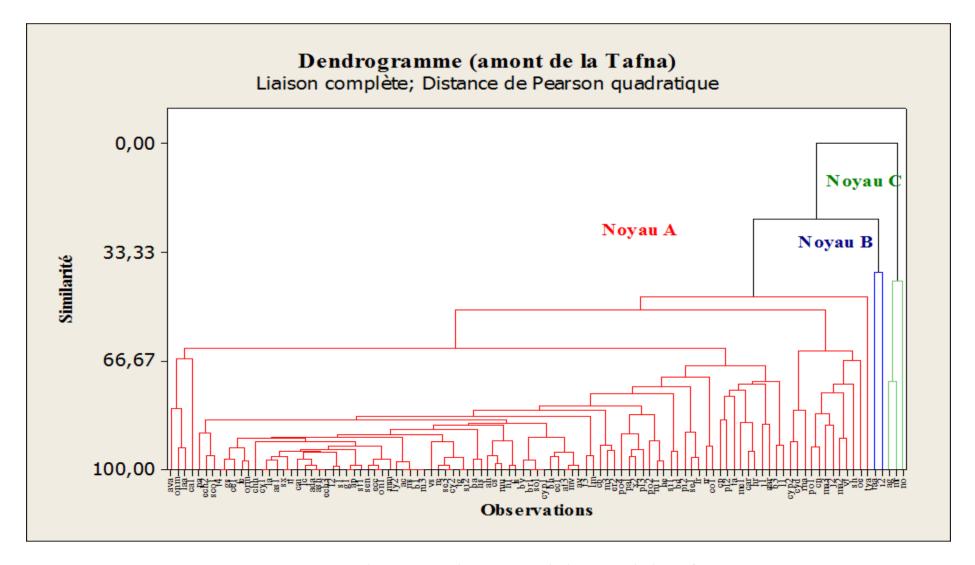


Fig. 60 : Dendrogramme des espèces de l'amont de la Tafna

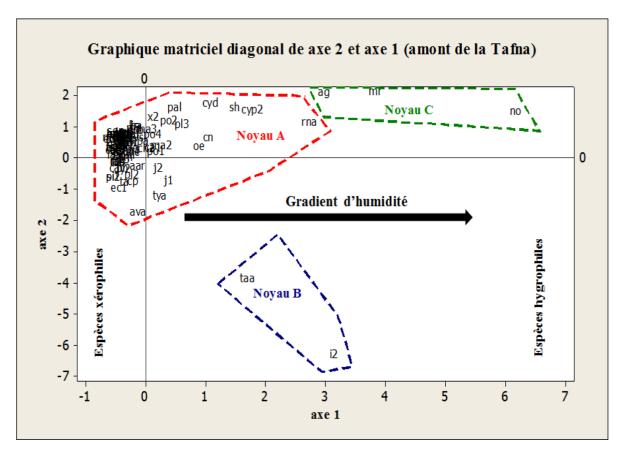


Fig. 61 : Plan factoriel des espèces de l'amont de la Tafna (axe2/axe1)

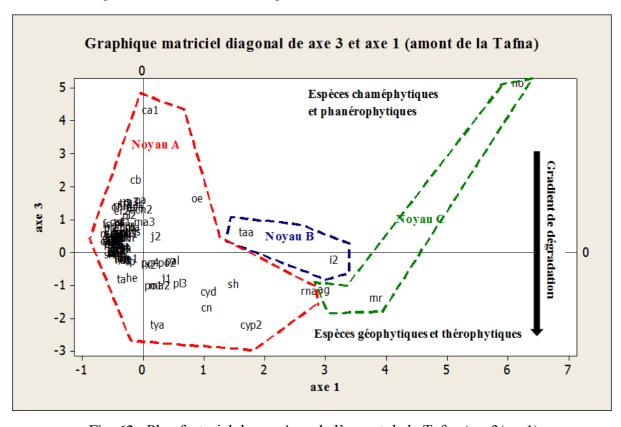


Fig. 62 : Plan factoriel des espèces de l'amont de la Tafna (axe3/axe1)

IV.1.3.2. Moyenne Tafna

Noyau A : ce noyau regroupe 152 espèces, de différentes familles, avec les cinq différents types biologiques. On remarque une dominance des thérophytes, ensuite les hémicryptophytes. Les phanérophytes, les chaméphytes et les géophytes prennent des pourcentages assez faibles (Fig. 63).

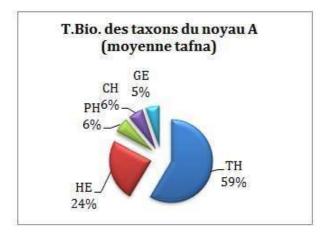


Fig. 63: Types biologiques du noyau A

Noyau B : représenté par quatre espèces différentes, une chaméphyte (*Nerium oleander*), une hémicryptophyte (*Silybum murianum*) et deux géophytes (*Juncus acutus* et *Phragmites communis*) (Fig. 64). Absence des thérophytes et des phanérophytes.

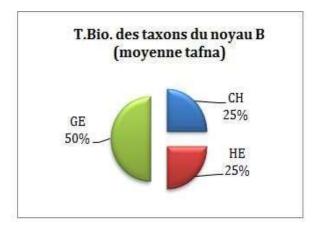


Fig. 64: Types biologiques du noyau B

Noyau C : dans la figure 65 on a deux espèces, *Inula viscosa* (hémicryptophyte) et *Tamarix africana* (phanérophyte). Les chaméphytes, les thérophytes et les géophytes sont absents.

Fig. 65: Types biologiques du noyau C

Allant du noyau A vers le noyau C, on remarque une régression des types biologiques, le noyau A étant bien diversifié, le noyau B avec trois types biologiques (hémicryptophytes, géophytes et chaméphytes), et le noyau C avec les hémicryptophytes et les phanérophytes seulement.

> Plan 2/1 (Fig. 67)

Côté négatif

- Apium graveolens (ag)
- *Atriplex halimus* (at2)
- *Malva parviflora* (ma2)
- Anagallis arvensis (aar)
- Polygonum convolvulus (po1)
- Datura stramonium (ds)
- *Urtica membranacea* (ur1)

Côté positif

- *Astragalus scorpioides* (as3)
- Ferula communis (fc)
- Paronychia argentea (pa)
- Lythrum junceus (ly2)
- Plantago coronopus (pl)
- Centaurea calcitrapa (ce1)
- *Oryzopsis miliacea* (orm)

Les espèces du côté négatif de l'axe poussent sur le sol moyennement salées et ceux par la présence de l'espèce *Atriplex halimus*, et les espèces du côté positif on les rencontres sur un sol plus ou moins sableux. Le plan 2/1 traduit un gradient d'évolution structurale dans le sens de l'axe.

Côté positif

> Plan 3/1 (Fig. 68)

Côté négatif

Xanthium strumarium (x2)
 Xanthium spinosum (x1)
 Bromus rubens (b3)
 Chenopodium album (c1)
 Rumex bucephalophorus (ru1)
 Scolymys hispanicus (sh)
 Tamarix africana (taa)
 Nerium oleander (no)
 Marrubium vulgare (mv)
 Phragmites communis (phc)
 Atriplex halimus (at2)
 Oryzopsis miliacea (orm)

Bryonia dioica (bd) - Raphanus raphanistrum (rr)

Du côté négatif de cet axe, on remarque la dominance des espèces thérophytiques se rapportant à la classe des *Théro-brachypodietea*, et du côté positif des espèces chaméphytiques ripisylves. Le plan 3/1 traduit un gradient d'évolution du substrat dans le sens inverse de l'axe.

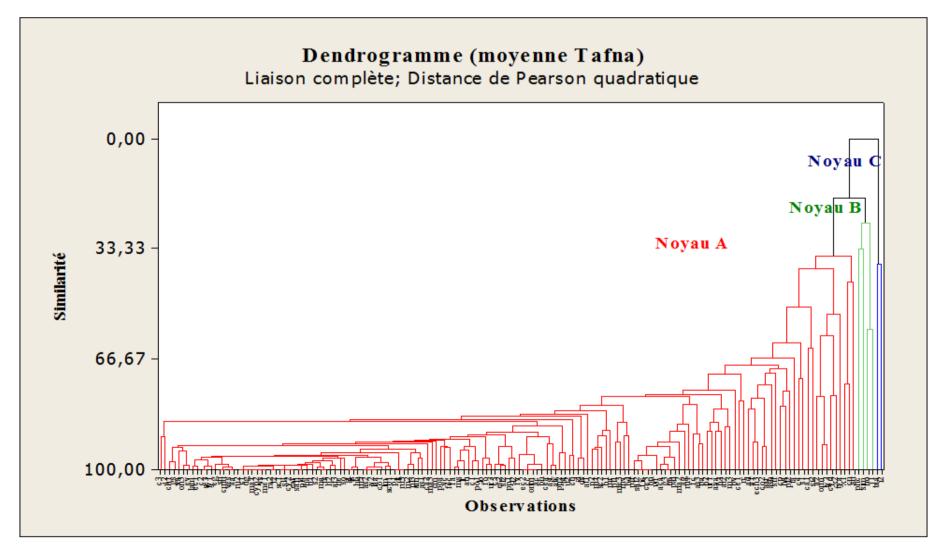


Fig. 66 : Dendrogramme des espèces de la moyenne Tafna

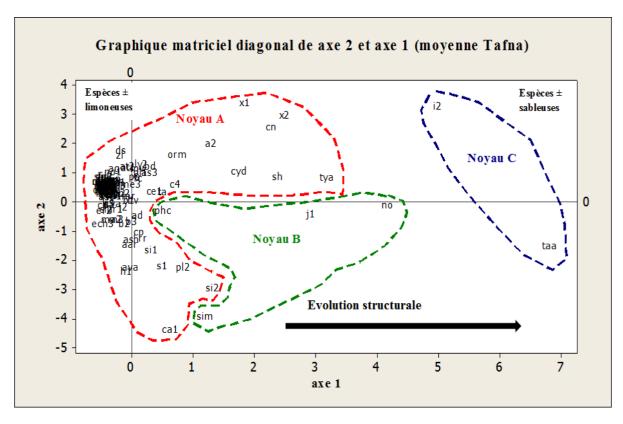


Fig. 67 : Plan factoriel des espèces de la moyenne Tafna (axe2/axe1)

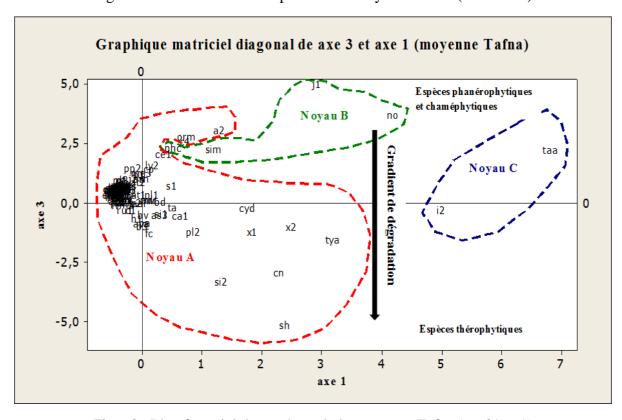


Fig. 68 : Plan factoriel des espèces de la moyenne Tafna (axe3/axe1)

IV.1.3.3. Aval de la Tafna

Noyau A: 116 espèces de différentes familles se regroupent dans ce noyau. Les thérophytes dominent de moitié (50%), ensuite les hémicryptophytes avec 25%, puis 14% pour les géophytes, 8% pour les chaméphytes et 3% pour les phanérophytes (Fig. 69).

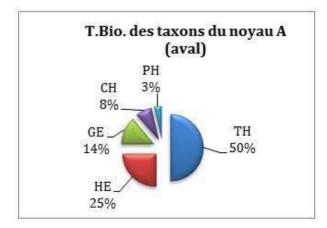


Fig. 69: Types biologiques du noyau A

Noyau B : quatre espèces avec quatre différents types biologiques, *Nerium oleander* (chaméphyte), *Inula viscosa* (hémicryptophyte), *Juncus acutus* (géophyte) et *Xanthium strumarium* (thérophyte) (Fig. 70). Les phanérophytes sont nuls.

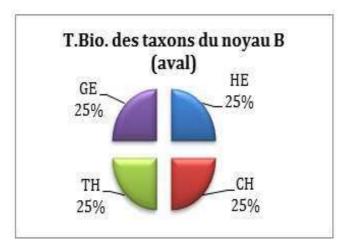


Fig. 70: Types biologiques du noyau B

Noyau C : une seule espèce de phanérophyte dans ce noyau, qui est *Tamarix africana*. Absence de tous les autres types biologiques, tels que les thérophytes, les géophytes, les hémicryptophytes et les chaméphytes (Fig. 71).



Fig.71 : Types biologiques du noyau C

Evolution régressive des types biologiques, en ce qui concerne cette partie, du noyau A (avec 5 types biologiques) au noyau C (1 type biologiques seulement).

▶ Plan 2/1 (Fig. 73)

Côté négatif		Côté positif		
-	Capsella bursa pastoris (cb)	-	Polygonum maritimum (po3)	
-	Cichorium intybus (ci)	-	Salsola kali (sk)	
-	Datura stramonium (ds)	-	Arthrocnemum indicum (ai)	
-	Atriplex patula (at4)	-	Inula crithmoides (i1)	
-	Echinops strigosus (ec2)	-	Atriplex halimus (at2)	

Le côté positif domine par les espèces halophiles alors que le côté négatif présente surtout les espèces faiblement ou non halophiles.

Le plan 2/1 de la partie aval traduit un gradient de salinité croissante dans le sens de l'axe.

> Plan 3/1 (Fig. 74)

Côté négatif		Côté positif		
-	Xanthium spinosum (x1)	- Brachypodium phoenicoides (br2)		
-	Malva parviflora (ma2)	- Phragmites communis (phc)		
-	Anacyclus valentinus (ava)	- Polygonum maritimum (po3)		
-	Calendula arvensis (ca1)	- Arthrocnemum indicum (ai)		
-	Anagallis arvensis (aar)	- Nerium oleander (no)		

Nous remarquons un gradient de dégradation du substrat pour cet axe, allant du côté positif vers le côté négatif. Car on remarque la présence d'espèces chaméphytiques dans le côté positif et des espèces thérophytiques dans le côté négatif de l'axe.

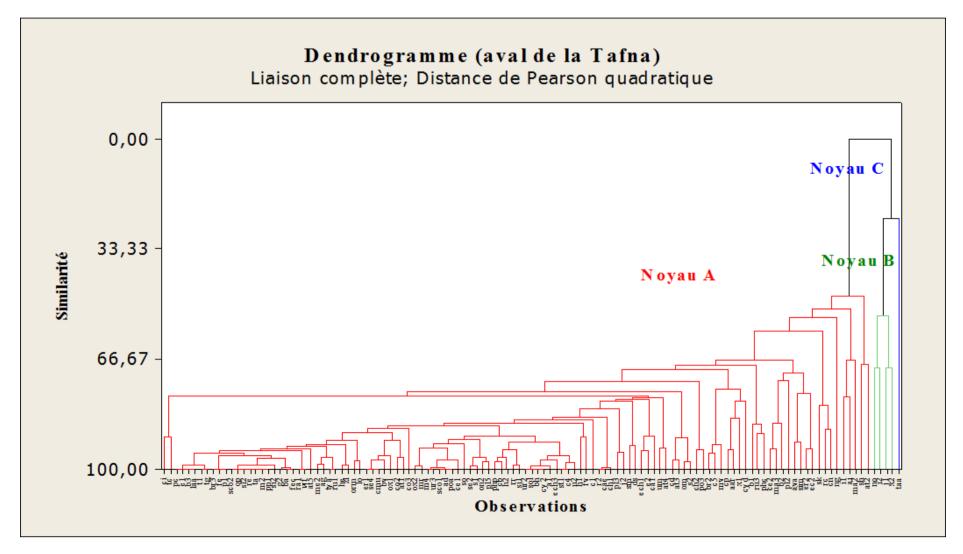


Fig. 72 : Dendrogramme des espèces de l'aval de la Tafna

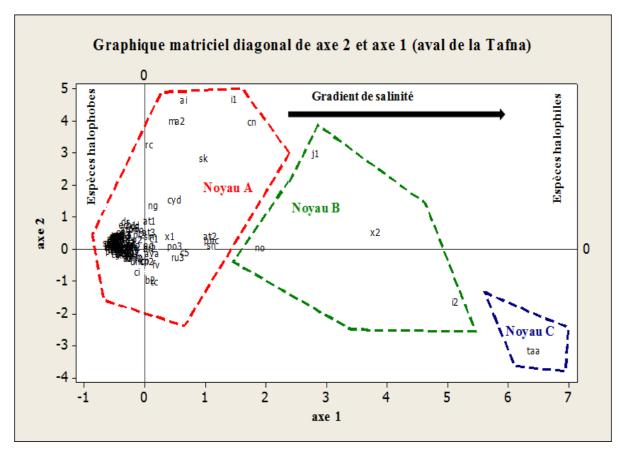


Fig. 73 : Plan factoriel des espèces de l'aval de la Tafna (axe2/axe1)

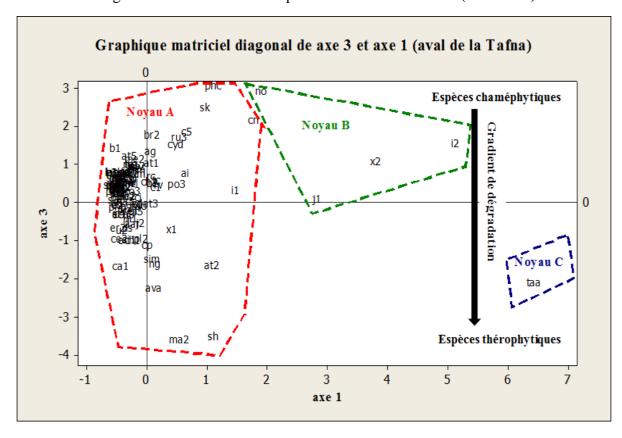


Fig. 74 : Plan factoriel des espèces de l'aval de la Tafna (axe3/axe1)

IV.1.4. Indice de caractérisation

Une espèce est dite caractéristique du groupement auquel elle appartient, quand sa fréquence générale (dans le tableau brut de l'AFC) est égale à sa fréquence dans le groupement, elle-même égale au nombre de relevés formant cet ensemble (**Vedrenne**, 1982). Cela se traduit par le rapport suivant :

$$IC = 2. f(x) / F(X) + N$$

Où:

- f(x) : fréquence de l'espèce dans le groupement.
- F(X) : fréquence générale de l'espèce (dans le tableau brut de l'AFC).
- N : le nombre de relevés du groupement.
- ❖ Plus ce rapport tend vers 1, plus l'espèce « x » est caractéristique du groupement considéré.
- ❖ Les groupements A, B et C ont été subdivisés à partir du dendrogramme des relevés de chaque partie de notre région d'étude, et par la même occasion faisant ressortir les groupements végétaux à *Tamarix*.

IV.1.4.1. Partie Amont de la Tafna

➢ Groupement A

Selon le tableau XXXIII (annexe), les espèces les plus caractéristiques sont : *Apium graveolens, Cyperus longus, Nerium oleander, Rorippa nasturtium aquaticum, Scolymus hispanicus*, et *Mentha rotundifolia*. Leur indice de caractérisation est compris entre 0,01 et 0,03.

- *Nerium oleander* est une espèce chaméphyte qui caractérise très bien les milieux humides et les ripisylves. Avec d'autres espèces hémicryptophytes telles que : *Apium graveolens* et *Mentha rotundifolia*.

> Groupement B

Pour ce groupement (tableau XXXIV-annexe), les espèces caractéristiques avec un indice de caractérisation plus ou moins élevée sont : *Nerium oleander, Plantago lagopus, Reseda alba, Calendula arvensis, Melilotus macrocarpa, Sinapis arvensis, Capsella borsa pastoris, Sedum nevadense, Cladanthus arabicus* et *Helianthemum racemosum*. L'indice de caractérisation de ces espèces est compris entre 0,1 et 0,3.

- Les espèces de ce groupement sont presque toutes des espèces thérophytiques.

> Groupement C

Les espèces qui caractérisent ce groupement sont : *Anacyclus valentinus* (0,13), *Carduus pycnocephalus* (0,13) et *Plantago lagopus* (0,11). Le tableau XXXV (annexe) fait ressortir tous les résultats.

- Ce groupement renferme les espèces qui résistent à la sécheresse. Exemples : Centaurea calcitrapa et Onopordon macracanthum.
- La présence de *Calicotome intermedia* indique que c'est un milieu de surpâturage, lié au matorral.

IV.1.4.2. Partie moyenne Tafna

➢ Groupement A

Ce groupement est caractérisé par les espèces suivantes : *Ferula communis, Acacia albida, Populus alba, Rumex bucephalophorus* et *Echium vulgare*. L'indice de caractérisation de ces espèces est compris entre 0,09 et 0,14 (tableau XXXVI-annexe).

- Ferula communis indique les milieux dégradés.

➢ Groupement B

Le tableau XXXVII (annexe) regroupe les espèces qui caractérisent ce groupement. Citons-les : Eucalyptus globulus, Scolymus hispanicus, Plantago lagopus, Calendula arvensis, Sinapis arvensis, Typha angustifolia et Sonchus asper.

- Eucalyptus globulus indique la présence d'eau en grande quantité. Aussi avec Typha angustifolia et Arundo donax.

➢ Groupement C

Pour ce groupement, les espèces retenues comme caractéristiques (tableau XXXVIII-annexe) : Silybum murianum, Phragmites communis, Xanthium spinosum, Amaranthus angustifolius, Inula viscosa et Nerium oleander. L'indice de caractérisation est compris entre 0,004 et 0,013.

- *Phragmites communis* plante des milieux humides. Les autres espèces sont des espèces indifférentes à la nature du substrat.

IV.1.4.3. Partie Aval de la Tafna

> Groupement A

Citons: *Inula crithmoides, Inula viscosa, Juncus acutus, Xanthium strumarium, Conyza naudini* et *Malva parviflora* (tableau XXXIX-annexe).

- Ce groupement renferme des espèces qui affectent des conditions écologiques différentes. Et la quasi-totalité de ces espèces sont thérophytes.

➢ Groupement B

Peu d'espèces caractérisent ce groupement ; citons : *Anacyclus valentinus, Carduus pycnocephalus, Scolymus hispanicus* et *Anagallis arvensis* (tableau XXXX).

- Les espèces de ce groupement sont des espèces qui résistent à la sécheresse et sont indifférentes au substrat.

➢ Groupement C

Selon le tableau XXXXI (annexe), ce groupement regroupe les espèces présentes au niveau de la station de Rachgoun. Les espèces caractéristiques sont les suivantes : *Polygonum maritimum*, *Urtica pilulifera*, *Senecio leucanthemifolius*, *Centaurea pullata*, *Calendula arvensis*, *Chenopodium murale*, *Stellaria media*, *Anacyclus valentinus*, *Malva parviflora*, *Malva sylvestris*, *Ballota hirsuta*, *Silybum murianum* et *Xanthium strumarium*.

- Dans ce groupement, on remarque bien la présence d'espèces qui préfèrent des sols plus ou moins salés.

IV.1.5. Conclusion

L'Analyse Factorielle des Correspondances (A.F.C) réalisées, à l'aide des données sur les relevées floristiques, des trois parties des ripisylves de la région de Tlemcen, sur les rives de la Tafna, nous a permis de distinguer, les différents facteurs écologiques agissant sur la répartition et le développement du tapis végétal. Ces facteurs sont : la thérophytisation, la dégradation, la salinité, l'humidité, les facteurs édaphiques, etc.

Nos investigations ont montré une nette différenciation entre les trois parties (amont de la Tafna, moyenne Tafna et aval de la Tafna), tant sur le plan de la composition floristique, que sur le plan des conditions écologiques marquant ce milieu.

La détermination des types biologiques de la totalité des espèces de chaque partie, ensuite de chaque noyau, permet de remarquer une diversité des types biologiques d'une part, avec une évolution régressive de ces derniers des noyaux d'autre part. Cette détermination met en évidence la prédominance des thérophytes, ce qui explique la thérophytisation des trois parties étudiées des ripisylves, et le gradient de dégradation des espèces au niveau des trois axes factoriels (plan 3/1) de chaque partie.

Les résultats du traitement statistique des relevées floristiques, après avoir calculé l'indice de caractérisation de chaque espèce, on souligne les différents groupements végétaux à *Tamarix*:

- ✓ Groupement à *Nerium oleander, Thapsia garganica* et *Calendula arvensis*. C'est le groupement de l'Amont de la Tafna.
- ✓ Groupement à *Populus alba*, *Eucalyptus globulus* et *Inula viscosa*. C'est le groupement de la moyenne Tafna.
- ✓ Et le groupement de l'Aval de la Tafna est un groupement à *Xanthium strumarium*, *Anacyclus valentinus* et *Centaurea pullata*.

Nerium oleander est présent dans six groupements sur neuf, on conclut que c'est une espèce caractéristique fidèle de *Tamarix africana*, sur les rives de la Tafna dans la région de Tlemcen.

On a pu voir aussi que le couvert végétal est constitué majoritairement d'espèces thérophytiques, indifférentes aux conditions écologiques, qu'elles soient climatiques ou édaphiques

IV.2. Essai cartographique

IV.2.1. Introduction

Les représentations cartographiques du tapis végétal constituent des documents de travail indispensables pour de nombreuses études.

Une carte de la végétation peut être considérée sous différents aspects, en tant que carte de la physionomie montrant l'état présent de la végétation, ou comme, une carte de l'utilisation du territoire. Selon (**Burger**, **1957**) : « Une carte aussi complète soit-elle n'est toujours qu'une schématisation de la réalité »

Il est maintenant établi que la cartographie de la végétation constitue une approche efficace pour réaliser le plus rapidement une représentation spatiale des écosystèmes et en particulier l'échelle régionale ou géographique, selon **Ozenda** (1982).

Les cartes thématiques restent des outils nécessaires pour toutes formes d'aménagement et de compréhensions d'un écosystème.

La cartographie est la base de l'aménagement écologique des écosystèmes (Long, 1975); (Ozenda, 1982; 1986); (Mediouni et Letreuch-Belarouci, 1987); (Ferka Zazou, 2006)). Elle permet une connaissance approfondie du milieu, de ses potentialités et de ses utilisations optimales.

L'objectif de l'essai cartographique de la végétation est de décrire la biodiversité et son agencement spatial sur un territoire donné à un moment donné (Renze et al., 2012).

IV.2.2. Méthodologie

La carte réalisée rassemble les groupements à *Tamarix* des trois parties (amont de la Tafna, moyenne Tafna et aval de la Tafna) des ripisylves, sur les rives de la Tafna dans la région de Tlemcen.

Cette carte procure une idée générale pour les différentes espèces qui existent dans notre région, et met en évidence l'état actuel des formations ripisylves de la région de Tlemcen.

Pour l'élaboration de la carte, plusieurs étapes ont été effectuées :

Plusieurs sorties sur le terrain, avec la récolte du maximum d'informations, concernant notre zone d'étude.

On a sollicité la contribution de Monsieur BENZAIM, ancien cartographe à l'université de Tlemcen, qui à son tour avait utilisé plusieurs supports cartographiques :

- La carte d'occupation des sols de Tlemcen réalisée par les services de l'Agence Nationale d'Aménagement du Territoire.
 - Logiciel de traitement des données Map Info 7,5.
 - Photos satellites Landsat E.T.M .prises en 2002.
- Photos aériennes de la région de Tlemcen les vols réalisés sur la zone (1973 et 1981) : labo de cartographie, Université de Tlemcen.
 - Les relevés floristiques réalisés sur le terrain.

IV.2.3. Commentaire de la carte

La carte de la répartition de *Tamarix africana* dans la région de Tlemcen (Fig. 75), nous laisse citer quelques points et souligner les nombreuses espèces ripisylves qui accompagnent *Tamarix africana* le long de Oued Tafna, depuis l'amont jusqu'à l'aval, en passant par la moyenne Tafna. Le cortège floristique de cette espèce varie considérablement d'une partie a une autre. Et ci-dessous trois groupements végétaux qui lui sont liés :

Pour l'amont de la Tafna, un groupement formé par (Fig. 75) :

Calendula arvensis, Thapsia garganica, Sinapis arvensis, Capsella borsa-pastoris, Melilotus macrocarpa, Sedum nevadense, Cladanthus arabicus, Plantago lagopus, Anacyclus valentinus, Carduus pycnocephalus.

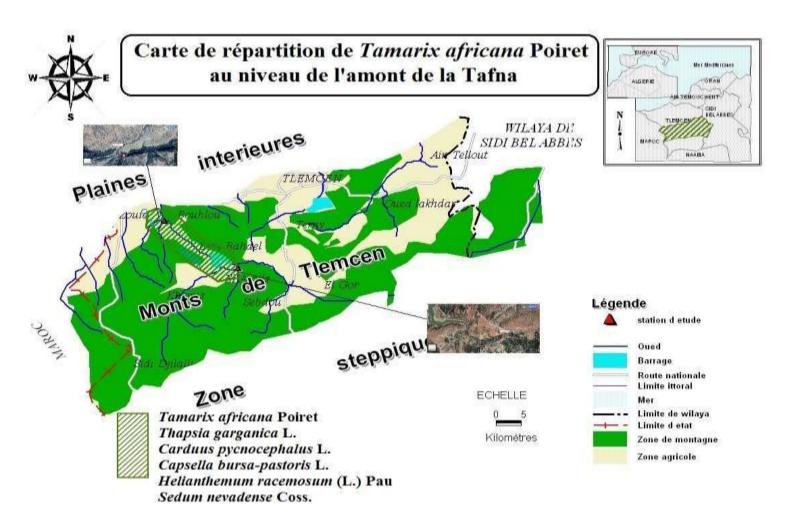


Fig. 75 : Carte de répartition de Tamarix africana Poiret au niveau de l'amont de la Tafna

La moyenne Tafna est constituée essentiellement de (Fig. 76) :

Sonchus asper, Anagallis arvensis, Cynodon dactylon, Xanthium spinosum, Populus alba, Acacia albida, Arundo donax, Rumex bucephalophorus, Ferula communis, Echium vulgare.

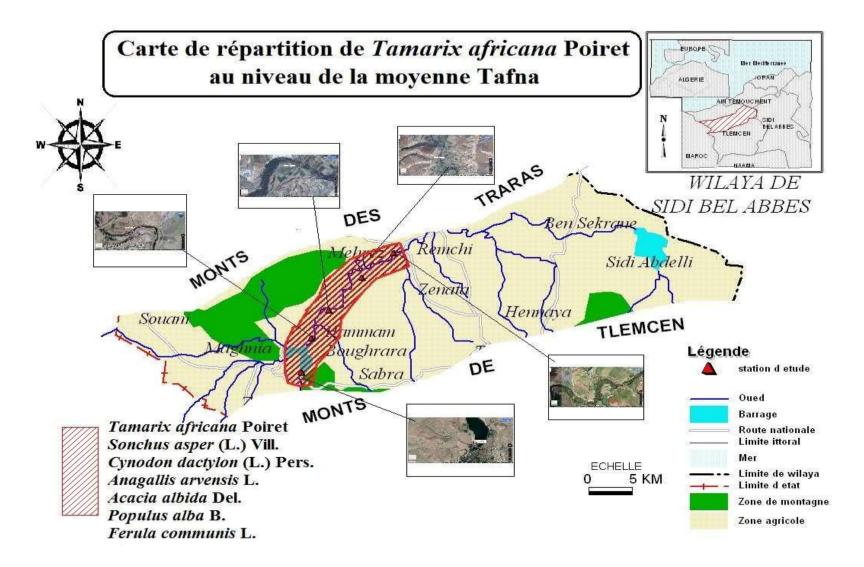


Fig. 76 : Carte de répartition de *Tamarix africana* Poiret au niveau de la moyenne Tafna

L'aval de la Tafna est formé de (Fig. 77) :

Centaurea pullata, Stellaria media, Chenopodium murale, Ulex parviflorus, Solanum nigrum, Urtica pillulifera, Arthrocnemum indicum, Plantago serraria, Siapis alba, Salsola kali.

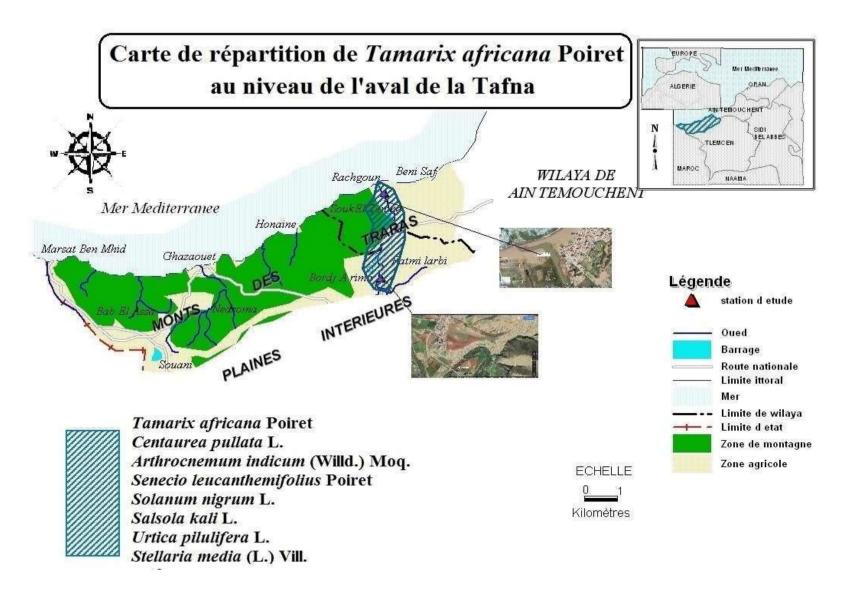


Fig. 77 : Carte de répartition de Tamarix africana Poiret au niveau de l'aval de la Tafna

Les espèces communes entre les trois parties de la région de Tlemcen, qui sont caractéristiques de l'espèce *Tamarix africana*, et qu'on peut qualifiées d'espèces fidèles sont les suivantes : *Nerium oleander, Inula viscosa, Juncus acutus, Typha angustifolia, Calendula arvensis, Plantago lagopus*.

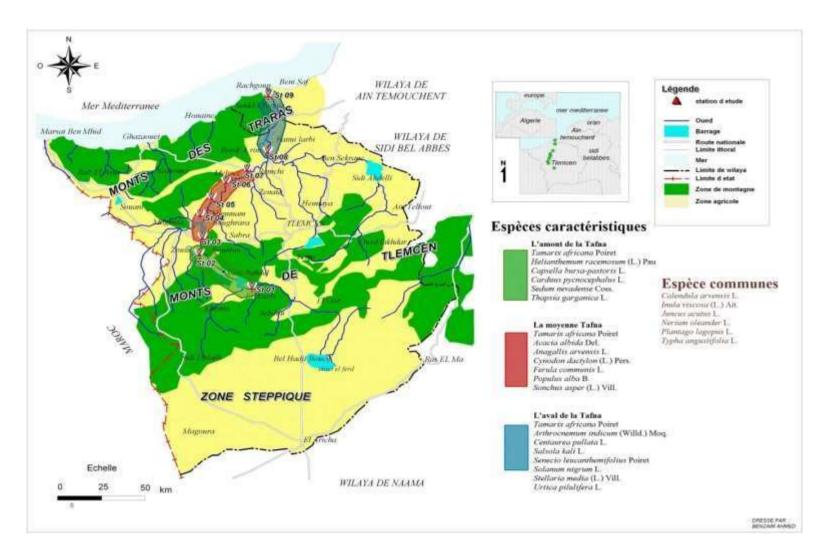


Fig. 78 : Carte de répartition de Tamarix africana Poiret au niveau de la zone d'étude

IV.2.4. Conclusion

La zone d'étude est occupée par un grand nombre d'espèces thérophytiques : matorral dégradé et groupement végétal à thérophytes (une dizaine de phanérophytes et très peu de chaméphytes). La quasi-totalité des espèces qui s'y trouvent sont bien indifférentes aux conditions écologiques. Pour cela, il est nécessaire d'établir des instructions avec des réglementations sur le terrain, pour assurer une régénération naturelle de ces écosystèmes « ripisylves », et l'augmentation de la biodiversité végétale (du point de vue richesse spécifique, abondance-dominance).

Conclusion générale

La végétation de la région de Tlemcen est un excellent exemple d'étude concernant la phytodiversité, depuis le littoral jusqu'à la steppe, la dynamique naturelle des écosystèmes qui s'y trouve fait l'objet d'une intéressante synthèse, surtout la végétation ripisylve située spécialement sur les rives de la Tafna.

Cette diversité est contrôlée par des facteurs écologiques qui influencent la végétation, telle que le facteur climatique. L'étude de ce dernier nous montre clairement que le climat de la zone d'étude est de type méditerranéen, dont deux étages bioclimatiques (sub-humide et semi-aride), avec la saison hivernale qui est caractérisée par l'irrégularité de la pluviométrie, et la saison estivale marquée par de fortes chaleurs combinées à de longues périodes de sécheresse.

Le quotient pluviothermique diminue considérablement, et le positionnement de chacune des stations étudiées se trouve dans le semi-aride.

Le résultat de l'étude climatique confirme nettement la présence et l'installation d'espèces xérophytes, surtout thérophytiques. Ces espèces thérophytiques recensées dans la zone d'étude, sur les rives de la Tafna, appartiennent essentiellement aux familles des Asteraceae, des Poaceae, des Fabaceae, et des Chenopodiaceae.

Sur le plan biogéographique, l'élément méditerranéen prend la première place, ensuite le cosmopolite et enfin le paléo-tempéré.

Les espèces étudiées sont dominées par des thérophytes, puis les hémicryptophytes, suivis par les chaméphytes, les géophytes et les phanérophytes en dernier. La dominance des thérophytes par rapport des autres types biologiques prouve la présence d'une éventuelle dynamique régressive au niveau de la zone d'étude, et l'analyse statistique en A.F.C. des 236 espèces végétales recensées dans 234 relevés floristiques, nous a bien montré cette dégradation et cette thérophytisation.

L'évaluation de la biodiversité végétale par le calcul des différents indices de diversité de Shanon, de Piélou, l'indice réciproque de Simpson et son équitabilité et celui de Margalef, nous amène à dire que la région d'étude présente une richesse appréciable et variée, l'abondance relative des espèces est élevée, avec une répartition régulière des individus abondants et appartenant à des espèces diverses.

L'Analyse Factorielle des Correspondances effectuée pour la zone d'étude nous permet de distinguer les différents facteurs écologiques agissant sur le développement de la végétation,

tel que la salinité, l'humidité, les facteurs édaphiques, etc. Aussi, cette analyse met en évidence la prédominance des thérophytes, ce qui provoque la thérophytisation du milieu et la dégradation du tapis végétal (ce que montrent tous les plans factoriels 3/1 de la zone d'étude : gradient d'évolution régressive).

L'indice de caractérisation de chaque espèce à été calculé pour souligner les différents groupements à *Tamarix* L., nous avons retenu les groupements suivants :

- Groupement à Nerium oleander, Thapsia garganica et Calendula arvensis pour l'Amont de la Tafna.
- Groupement à *Populus alba*, *Eucalyptus globulus* et *Inula viscosa* dans la moyenne Tafna.
- Groupement à *Xanthium strumarium*, *Anacyclus valentinus* et *Centaurea pullata* dans l'Aval de la Tafna.

L'A.F.C. réalisées nous a pemis de faire un essai cartographique de la distribution du *Tamarix* L. dans la zone d'étude, sur les rives de la Tafna, et de voir les différents groupements végétaux, avec le cortège floristique de l'espèce *Tamarix africana*.

La présence de *Tamarix africana* sous forme de quelques pieds peu abondants, avec son cortège floristique dominé par les espèces thérophytiques, prouve facilement que ce sont des milieux perturbés par le surpâturage, fréquenté par l'homme et ses énormes engins, pour placer des pompes pour des systèmes d'irrigation de leur cultures avoisinantes le cours d'eau. Tous ces facteurs causent la dégradation de ces milieux et mènent à la vulnérabilité de l'écosystème naturel. Pour éviter cela, il est nécessaire que les forestiers les prennent en considération en établissant des perspectives et des réglementations, pour la gestion et la protection de ces écosystèmes naturels humides.

REFERENCES BIBLIOGRAPHIQUES

A

- **Abi-Saleh B., 1978.** Etude phytosociologique, phytodynamique et écologique des peuplements sylvatiques du Liban. Signification bioclimatique et essai de cartographie dynamique. Marseille, Thèse Doct. Etat, Univ. Aix-Marseille III, 186 p. + annexes.
- **Aboura R., 2011.** Contribution à l'étude des Atriplexaies en Algérie occidentale, aspects physionomiques et phytodynamiques. Thèse. Doc. Ecol. Univ. Tlemcen. 156 p.
- **Adi N., 2001.** Contribution à l'étude bioclimatique des formations à Salsola vermiculata le long d' un gradient de salinité dans la région du chott chergui (Sud oranais). Thèse Mag. Fac. Bio. Univ. Alger, 118p.
- **Akman Y., Quézel P., Ketenoglu O. et Kurt L., 1993.** Analyse syntaxonomique des forêts de *Liquidambar orientalis* en Turquie. Ecol. Medit. 19, 49-57.
- **Alcaraz C., 1969.** Etude géobotanique du pin d'Alep dans le telle Oranais. Th. Doc 3ème cycle. Fac. Sci. Montpellier.183p.
- **Alcaraz C., 1982.** La végétation de l'ouest Algérien. Thèse Doc .D'état Univ. Perpignan 415 p+ annexes.
- **Allred, K.W., 2002.** Identification and taxonomy of *Tamarix* (Tamaricaceae) in New Mexico, (USA) Desert Plants 18:26-32.
- Amoros C. & Petts G.E., 1993. Hydrosystèmes fluviaux. Paris, Masson, 300 p.
- **Angot A., 1881.** Etude sur le climat de l'Algérie (température, pression barométrique et pluie). Ann. Bull. Cent. Météo Paris B7-36.

R

- **Bagnouls F. et Gaussen H., 1953.** Saison sèche et indice xérothermique. Bull. Soc. Hist. Nat. Toulouse (88). P: 3-4 et 193-239
- **Baker H. G., 1972.** Seed weight in relation to environment conditions in California, ecol. 53 (6), 997-1010.
- **Baker W.L., 1990.** Species richness of Colorado riparian vegetation. Journal of Vegetation Science 1, 119-124.
- **Barbero M. et Loisel R., 1983.** Les chênaies vertes du sud-est de la France méditerranéenne; valeurs phytosociologiques, dynamiques et potentielles. *Phytocoenologia* 11, 225-244.
- **Barbero M., Loisel R., et Quézel P., 1990.** Les apports de la phyto-écologie dans l'interprétation des changements et perturbations induits par l'homme sur les écosystèmes forestiers méditerranéen. Forêts méditerranéenne, SII : 194-215.
- Barbero M., Quézel P. et Rivas-Martínez S., 1981. Contribution à l'étude des groupements forestiers et préforestiers du Maroc. *Phytocoenologia* 9, 311-412.
- Bary lenger A., Evrard R., et Gathy P., 1979. La forêt vaillant carmane Imprim liège, 611 p.
- **Baum, B. R., 1967.** Introduced and naturalized tamarisks in the United States and Canada [Tamaricaceae]. Baileya 15:19-25
- **Beaulieu de J.L., 1977.** Contribution pollenanalytique à l'histoire tardiglaciaire et holocène de la végétation des Alpes méridionales françaises. Marseille, Thèse Doct. Etat, Univ. Aix-Marseille III, 358 p. + annexes.
- **Beguin C., Gehu J.M. et Hegg O., 1979.** La symphytosociologie : une approche nouvelle des paysages végétaux. *Doc. Phytos.* N.S. 4. pp 49-68. Lille.
- **Benabadji N., Bouazza M., Metge G. et Loisel R., 1996.** Description et aspect des sols en région semi-aride et aride au Sud de Sebdou (Orranie-Algérie): Bull. Inst .Sci .Rabat; 1996, n°20 p:77-86.
- **Benabadji N. et Bouazza M., 2000.** Quelques modifications climatiques intervenues dans la Sud-Ouest de l'Oranie (Algérie occidentale) Rev Energ.Ren.vol 3 (2000) pp 117.125.

- **Benabadji N., Bouazza M., Merzouk A., et Ghezlaoui SBE., 2004.** Aspects phytoécologiques des Atriplexaies au Nord de Tlemcen (Oranie Algerie). Sciences et Technologie C n°22 p 62-79 Université Mantouri Constantine Algérie. ISSN-1111-5041.
- **Benkelfat K. et Stambouli H., 2019.** Systematic position of Tamarix in the region of Tlemcen (Western Algeria). Indian Journal of Ecology (2019) 46(4):729 732.
- **Bensettiti F., 1992.** Approche phytosociologique des aulnaies de la région d'El Kala (Algérie). Doc. Phytosociol. 14, 231-240.
- **Bensettiti F. et Lacoste A., 1999.** Les ripisylves du nord de l'Algérie : essai de synthèse synsystématique à l'échelle de la Méditerranée occidentale. *Ecol. Medit.* 25, 13-39.
- **Bestaoui Kh., 2001.** Contribution à une étude syntaxonomique et écologique des Matorrals de la région de Tlemcen. Th. Magistère en biologie. Ecol. Vég. Dép. Bio. Fac. Sci. Univ. Abou Bakr Belkaïd. Tlemcen. 184 p + annexes.
- **Bikbulatova. T.N. et Korul'kina. L.M., 2001.** Composition of Tamarix hokenakeri and Tamarix ramosissima. Chemistry of Natural Compounds 37:216-218.
- **Bonin G. et Roux M., 1975.** Utilisations de l'analyse factorielle des correspondances dans l'étude écologique de quelques pelouses de l'Apenin lucano —calabrais. Oecol. Plant. 13(2): 121 –138
- **Bonin G. et Vedrenne G., 1979.** Les pelouses culminales du Gransasso d'Italie. Analyse dynamique et relation avec les facteurs du milieu. Eco. Méd. n°4. p95–108.
- **Bonin G. et Tatoni T., 1990.** Réflexions sur l'apport de l'analyse factorielle des correspondances dans l'étude des communautés végétales et de leur environnement. Ecol. Méd. Vol. Jub. Pr. P. Quezel. XVI. p: 403 –414
- **Bortoli C., Gounot M., et Jacquiot J.C.I., 1969.** Climatologie et bioclimatologie de la Tunisie septentrionale. Ann. Inst. Rech. Agron de Tunisie. 42.1 ;235 p+ annexes.
- **Bouanani A., 2000.** Hydrologie, Solide et Modélisation, Etude de quelque sous bassins de la Tafna (NW-Algérie). Thèse Doctorat. Univ. Tlemcen ,249p
- **Bouazza M. et Benabadji N., 2000.** Contribution à une étude bioclimatique de la steppe à *Artemisia herba-alba* Asso. Dans l'Oranie (Algérie occidentale). Revue sécheresse. 11(2) p:117-123.
- **Bouazza M., Loisel R. et Benabadji N., 2001.** Bilan de la flore de la région de Tlemcen (Oranie –Algérie), fort medi t. Xxii, n° 2, juin 2001 p: 130-136
- **Brotherson, J.D. and Winkel V., 1986.** Habitat relationships of saltcedar (*Tamarix ramosissima*) in central Utah. Great Basin Nat. 46:535-541.
- **Brotherson J.D. et Field D., 1987.** *Tamarix*: impacts of a successful weed. Rangelands, New Mexico 3:110-112.
- **Brullo S., Scelsi F. et Spampinato G., 2001.** *Salix ionica* (Salicaceae), a new species from S. Italy. *Bocconea* 13, 419-423.
- **Burger 1957.** Photographie aérienne et aménagement de territoire. Ed. dunod. Paris, C.N.R.S. Paris, 297p.
- **Busch D. E., Ingraham N. L., et Smith S. D., 1992.** Water uptake in woody riparian phreatophytes of the southwestern United States: A stable isotope study. Ecological Applications 2:450-459.
- Busch D.E. et Smith S.D., 1993. Effects of fire on water and salinity relationships of riparian woody taxa. Oecologia 94:186-194.
- Caiser M. 1976. Biosystimatic stady of the family of *Tamaricaceae* from Pakistan, thesis submitted for the requirement of degree of D Ph, department of botany, University of Karachi, Pakistan, 409p.

- **Callon M., Lascoumes P. et Barthes Y., 2001.** ≪ Agir dans un monde incertain. Essai sur la demoncratie technique ≫ in ≪ Biodiversite et developpement durable : Quels indicateurs ? ≫, Levrel H., These, Ecole des Hautes Etudes en Sciences Sociales, 406 p.
- **Chaâbane A., 1993.** Etude de la végétation du littoral septentrionale de Tunisie : Typologie, syntaxonomie et éléments d'aménagements.thèse Doct. Sc. Univ. Aix-Marseille III, 205p+annexes.
- Chessel D. et Gautier N., 1979. La description des communautés végétales: exemples d'utilisation de deux techniques statistiques adaptées aux mesures sur grilles ou transects. Pages 87 -102 in Actes du 7ème Colloque Informatique et Biosphère. Association Informatique et Biosphère. Paris.
- **Collingnon B., 1986.** Hydrologie appliquée des aquifères karstiques des monts de Tlemcen. Thèse de Doctorat. Univ. D'Avignon. pp 33-105.
- **Conrad V., 1943.** Usual formulas of continentality and their limits of Validity. Frans. Ann. Geog-Union, XXVII, 4. p: 663 -664.
- Crins W.J., 1989. The *Tamaricaceae* in the Southeastern United States. J. Arboretum 70:403-425.
- **Curtis E. S**, **2006.** Saltcedar (*Tamarix*) Physiology a Primer Colorado State University Cooperative Extension.

D

- **Daget PH., 1977.** Le bioclimat méditerranéen, caractères généraux, méthodes de classification. Végétation, 34,1 :1-20 p
- Dagnelie P., 1970. Théorie et méthode statistique-Vol.2 Ducolot, Gembloux, 415p.
- **Dahmani M., 1997.** Diversité biologique et phytogéographique des chênaies vertes d'Algérie, Ecol. Méd., XXII (3/4) .19-38
- **Dahmani-Megrerouche M., 1997.** Le chêne vert en Algérie. Syntaxonomie, phytosociologie et dynamique des peuplements. Thèse doct. ès-sciences. Univ. Houari Boumediene. Alger. 329 P + annexes.
- **Dajoz R., 1982.** Precis d'écologie. ''Ecologie fondamentale et appliquée''. Quatrieme Ed. Gauthiers villars. Bordas. Paris. 493p.
- **Davenport, D. C., Martin P. E. et Hagan R. M., 1982.** Evapotranspiration from riparian vegetation: Water relations and irrecoverable losses for saltcedar. J. Soil Water Conserv. 37:233-236.
- **De Martonne E., 1926.** Une nouvelle fonction climatologique. L'indice d'aridité. La météo : 449-45 p.
- **Debrach J., 1953.** Notes sur les climats du Maroc occidental, Maroc méridional- 32- 342, 1122-1134.
- **Décamps H., Planty-Tabacchi A.M. et Tabacchi E, 1995.** Changes in the hydrological regime and invasions by plant species along riparian systems of the Adour River, France. Regulated Rivers 11, 23-33.
- **Décamps H. et Décamps O., 2002.** Ripisylves méditerranéennes. Conservation des zones humides méditerranéennes, numéro 12. Arles, Tour du Valat, 140 p.
- **Décamps H., 2003.** Ripisylves : la biodiversité par l'instabilité. L'écologie de la ripisylve. Forêt méditerranéenne t.XXIV, n°3.
- **Depoërs P., 2002.** La phytothérapie entre science et tradition, éditions Amarys et Inspir, Bruxelles, Belgique, 615p.
- **DiTomaso J. M., 1996.** Identification, Biology and Ecology of Saltcedar, Saltcedar Management Workshop, Cooperative Extension Non-Crop Weed Ecologist University of California, Davis, CA.

- **Djebaili S., 1978.** Recherches phytoécologique et phytosociologique sur la végétation des hauts plains steppiques de l'Atlas saharien Algérien, thèse. Doct. Univ. Sci et Tech. Du Langue doc. Montpellier, 299 p+ annexes.
- **Djebaili S., 1984.** Steppe algérienne, phytosociologie et écologie. O.P.U. Alger. 127-171-177-178 p.
- **Djellouli Y., 1981.** Etude climatique et bioclimatique des hautes plateaux au sud Oranais (Wilaya de Saïda) " comportement des espèces vis avis des éléments du climat" Thèse, Doct, en Science Biologique, Université des Sciences et de la Technologie Houari Boumediène El Djazaïr.
- **Dobignard A. et Chatelain C., 2010-2013.** Index synonymique de la Flore d'Afrique du Nord, Éditions Des Conservatoire Et Jardin Botaniques. Genève, 5 Volumes.
- **Dubief J., 1959.** Le climat du Sahara : tome I. Inst. Rech. Sah. Mém. h.s, 314 p.

 \mathbf{E}

- **Emberger L., 1930-a.** Sur une formule climatique applicable en géographie botanique. C. R. A. Sc.1991.p: 389-390
- **Emberger L., 1942.** Un projet de classification des climats du point de vue phytogéographique. Bull. Soc. Hist. Nat. Toulouse, 77 : 97-124
- **Emberger L., 1952.** Sur le quotient pluviothermique. C.R. Acad. Sci. France, Paris, 234 : 2508 2511
- **Emberger L., 1955.** Une classification biogéographique des climats. Recueils. Trav .Lobo. Géol. Zool. Fac. Sci. Montpellier 48p.

F

- **Ferka Zazou N., 2006**. Impact de l'occupation spatio-temporelle des espaces sur la conservation de l'écosystème forestier cas de la commune de Tessala, willaya de Sidi-Bel-Abbès, Algérie. Mem. Mag. Forest. Univ. Tlemcen. 126p+ annexes.
- **Frontier S. et Pichod-Viale D., 1991.** Ecosystèmes, structure-fonctionnement, évolution. Coll. d'Ecol. 21. 1eme Ed. Masson. 373 p.
- **Frontier S. et Pichod-Viale D., 1993.** Ecosystèmes, structure-fonctionnement, évolution. Coll. d'Ecol. 21. 2eme Ed. Masson. 447 p.

G

- Gadrat B., 1999. Forme des plantes. Site web.
- **Gamisans J., 1991.** La végétation de la Corse. Compléments au Prodrome de la Flore Corse, annexe 2. Genève, Conservatoire & Jardins botaniques de Genève, 391 p.
- **Gaussen H., Leroy JF. et Ozenda P., 1982.** Précis botanique 2. Les végétaux supérieurs. Edit Masson. Paris. pp. 500-501.
- **Géhu J.M., Costa M., Biondi E., Franck. J. et Arnold N., 1987.** Données sur la végétation littorale de la Crète (Grèce). Ecol. Médite. T. XII. Fasc. 1 et 2, 93-105.
- **Géhu J.M., Kaabeche M. et Gharzouli R., 1994.** L'aulnaie glutineuse de la région d'El Kala (La Calle) Annaba, Algérie : une remarquable irradiation biogéographique européenne en Afrique du Nord. *Fitosociologia* 27, 67-71.
- **Gentil L., 1903.** Esquisse stratigraphique et pétrographique du bassin de la Tafna (Algérie). Serv. Carte géol. France. et Carte géol. Algérie. 521. p., 121fig. 5. pl., 2 cartes géol.
- **Gounot M., 1969.** Méthode d'étude quantitative de la végétation. Edi Masson et Cie. Paris. 314p.
- Gregory S.V., Swanson S.V., McKee W.A. et Cummins K.W., 1991. An ecosystem perspective of riparian zones. BioScience 41, 540-551.

H

Hadjadj Aouel S., 1995. Les peuplements du thuya de Berbérie (*Tetraclinis articulata* Vahl. Master) en Algérie. Phyto-écologie, syntaxonomie, potentialités sylvicoles. Thèse Doct. Es - Sci. Univ. Aix-Marseille III, 155 p. + annexe.

- **Hadj Allal FZ., 2014.** Contribution à l'étude du genre Tamarix : aspects botanique et phytoécologique dans la région de Tlemcen. Mag. Ecologie. Univ. Tlemcen. p 170.
- **Hassaine Cha., 2011.** Etude floristique à partir d'un model linéaire dans la région Nord de Tlemcen.mag Univ de Tlemcen p 145.
- **Hassaine Cha., Aboura R., Merzouk A. et Benmansour Dj., 2014.** Study of Halophytes Dispersion in the North-West Region of Algeria, Open Journal of Ecology, 2014, 4, p 628-640 Published Online July 2014 in SciRes.
- Hengevel D., 1990. Dynamique Biogéography. Cambridge University Press, Cambridge.
- **Horton, J. S. 1977**. The development and perpetuation of the permanent *Tamarix* type in the phreatophyte zone of the Southwest. In: Johnson, R. Roy; Jones, Dale A., tech. coords. Importance, preservation and management of riparian habitat: a symposium: Proceedings; 1977 July 9; Tucson, AZ. General Technical Report RM-43. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: 124-127.
- **Horton, J. S. et al, 1960.** Seed germination and seedling establishment of phreatophyte species. Station Paper No. 48. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 26 p. [4495]
- **Hupp C.R. et Osterkamp W.R., 1985.** Bottomland vegetation distribution along Passage Creek, Virginia, in relation to fluvial landforms. Ecology 6, 670-681.
- **Huston M.A., 1979.** A general hypothesis of species diversity. American Naturalist 113, 81-101.

J

- Jessop J.P. et Toelken H.R., 1986. Flora of South Australia.
- **Johnson R., 1999.** Tamarisk control in southwestern United States: Proceedings; Tucson, AZ. Special Report No. 9. Tucson, AZ: National Park Service, Cooperative National Park Resources Studies Unit, School of Renewable Natural Resources: 116-125. [11357].

K

- **Kadik B., 1983.** Contribution à l'étude du pin d'Alep en Algérie : Ecologie dendrométries, morphologie. Thèse Doc Etat AIX-MarseilleIII, 313 p + annexes. .
- **Karpati I. et Karpati V., 1961**. Die zönologischen Verhältnisse der Auenwälder Albaniens. *Acta Bot. Acad. Sci. Hung.* 7, 235-301.
- **Kerpez, T.A. et Smith N. S., 1987.** Saltcedar control for wildlife habitat improvement in the southwestern United States. USDI Fish and Wildlife Service. Publ. N°169. 16 p.
- **Khabtane A., 2010.** Contribution à l'étude du comportement écophysiologique du genre *Tamarix* dans différents biotopes des zones arides de la région de Khenchela. Mag.Eco.Vég. Univ. Mentouri Constantine. p. 183
- **Knutson, A. M. et al. 2003.** Insects associated with saltcedar, Baccharis and willow in west Texas and their value as food for insectivorous birds: Preliminary results. Pages 41-50 in Proc. Salt cedar and Water Resources in the West Conf., San Angelo, TX.

L

- **Lavagne A. et Moutte P., 1971.** Premières observations chorologiques et phénologiques sur les ripisylves à *Nerium oleander* (nériaies) en Provence. *Ann. Univ. Provence* 45, 135-175.
- **Le Houerou H.N., 1975.** Le cadre bioclimatique des recherches sur les herbacées méditerranéennes. Geografili. Florence XXI.
- **Le Houerou H. N., Claudin J; et Pouget M., 1977.** Etude bioclimatique des steppes algériennes avec une carte bioclimatique au 1/1000.000. Bull. Soc. Hist. Afr. Nord, pp: 36-40.
- **Legendre L., et Legendre P., 1984.** Ecologie numerique. (1): Le traitement multiple des donnees ecologiques. (2): La structure des donnees ecologiques Coll. Ecol. 12 et 13. 2eme Ed. Masson et Presses de l'Universite du Quebec. (1): 260p; (2): 336.

- **Loisel R., 1976.** La végétation de l'étage méditerranéen dans le Sud-Est continental français. Marseille, Thèse Doct. Etat, Univ. Aix-Marseille III, 384 p. + annexes.
- **Loisel R., 1983**. Les ripisylves à aulne glutineux et tilleul cordé en Provence orientale. *Ann. Soc. Sci. nat. Archéol. Toulon et Var* 35, 137-143.
- **Loisel R. et Gamila H., 1993.** Traduction des effets du débroussaillement sur les écosystèmes forestiers et pré-forestier par un indice de perturbation. Ann. Soc. Sci. Nat. Archéol. De Toulon du var. pp: 123-132.
- **Long G., 1975**. Diagnostic phytoécologique et aménagement du territoire: principles généraux et methods. Collection Ecologie, Ed. Masson, T 1. 225 p.

M

- Mac Garthy O., 1853. Observations sur le climat de Tlemcen .revue orientale
- **Magurran AE. 2004.** Measuring Biological diversity. Oxford and Victoria: Blackwell Publishing, Malden, p.256.
- **McDaniel. K. C. 2007**. Salt cedar Information, Department of animal range and sciences, New Mexico state University. 44p.
- **Médail F. et Quézel P., 1996.** Signification climatique et phytoécologique de la redécouverte en France méditerranéenne de *Chamaerops humilis*L. C. R. Acad. Sci. Paris. Sciences de la vie. 1996. 319. p: 139-145.
- **Mediouni K. et Letreuch-Belarouci N., 1987**. Problématique de l'aménagement agro-sylvopastoral: cas d'une zone pilote de 5000 Ha du massif de Hassasna. Ann. d'Inst. Nat. Agro. Vol. 11(2). p: 79-121.
- Merzouk A., Benabadji N., Benmansour D. et Thinon M., 2009. Quelques aspects édaphofloristiques des peuplements halophiles de l'Algérie occidentale. Bull. Soc. Linn. Provence, N° 60, pp : 58-98.
- **Merzouk A., 2010.** Contribution à l'étude phytoécologique et bio-morphologique des peuplements végétaux halophiles de la région occidentale de l'Oranie (Algérie). Thèse. Doc. Univ. Abou Bakr Belkaid-Tlemcen. Fac. Sci. Départ. Bio. Lab. Ges. Ecosys. Nat. 261 p + annexes.
- Mittermeier R. A., Gil P. R., Hoffmann M., Pilgrim J., Brooks T., Mittermeier C.G., Lamoreux J. et Da Fonseca G.A.B., 2004. Hotspots Revisited: Earth's Biologically Richest and Most Endangered Terrestrial Ecoregions. Univ. Chicago Press for Intern. Conserv.
- **Molinier R., 1934.** Etudes phytosociologiques et écologiques en Provence occidentale. Th. Sc. Paris, 237P.
- **Musset R., 1953.** *In* Chaabane A., 1993. Etude de la végétation du littoral septentrional de Tunisie: Typologie, syntaxonomie et éléments d'aménagements. Thèse Doct. Es Sci. Univ. Aix-Marseille III, 205 p. + annexe.

N

- **Nelroy E. Jackson 1996.** Chemical Control of Saltcedar (*Tamarix ramosissima*), Saltcedar Management Workshop, The Agricultural Group, Monsanto Company.
- Nilsson C., Grelson G., Johansson M. et Sperens U., 1989. Patterns of plant species richness along riverbanks. Ecology 70, 77-84.
- Nilsson C., Ekblad A. Dynesius M., Backe S., Gardfjell M., Carlburg B., Hellqvist S. et Jansson R, 1994. A comparison of species richness and traits of riparian plants between a main river channel and its tributaries. Journal of Ecology 82, 281-295.

0

Olivier L., Muracciole M. et Ruderon J.P., 1995. Premier bilan sur la flore des îles de la Méditerranée. Etat des connaissances et observations diagnostics et proposition relatifs aux flores insulaires de méditerranée par les participants au colloque d'Ajaccio. Corse .France (5-8 octobre, 1993) à l'occasion des débats et conclusions. PP. 356-358.

- Ozenda P., 1982. Les végétaux dans la biosphère. Doin Editeurs. Paris. 431p.
- **Ozenda P., 1986**. La cartographie écologique et ses applications. Ed. Masson. Paris. 160 p.
- Ozenda, P. 1991, Flore et végétation du Sahara, 3eme édition, CNRS éditions, Paris, 660p.

P

- **Pautou G. et Décamps H., 1985.** Ecological interactions between the alluvial forests and hydrology of the upper Rhône. Archiv für Hydrobiologie 104, 13-37.
- Peguy Ch.P., 1970. Précis de climatologie. Ed Masson et Cie, 444p
- **Philippe A., 2007.** La gemmothérapie « médecine des bourgeons, douce alternative » éditions Amyris, Belgique, 208p.
- Planty-Tabacchi A.M., Tabacchi E., Naiman R.J., Deferrari C. et Décamps H., 1996. Invasibility of species rich communities in riparian zones. Conservation Biology 10, 598-607.
- **Pontoppidan, A. 2004**. Le tamaris et l'olivier de Bohême, Arles (Bouches-du-Rhône) : Actes Sud, France, 582p.

Q

- **Quézel P., et Santa S., 1962-1963.** Nouvelle flore de l'Algérie et des régions désrtiques méridionales. C.N.R.S., Paris, 2 Vol. 1170p.
- **Quézel P., 1978.** Analysis of the flora of the Mediterranean and Saharian Africa. Ann. Missouri Bot. Gard., 65: 479-534.
- **Quézel P., 1991.** Structures de végétations et flore en Afrique du Nord: leurs incidences sur les problèmes de conservation. Actes Editions. p: 19-32.
- **Quézel P., 2000.** Réflexions sur l'évolution de la flore et de la végétation au Maghreb méditerranéen. Ibis Press. Paris, 117 p.
- Quézel P., Médail F., Loisel R. et Barbero M., 1999. Biodiversité et conservation des essences forestières du bassin méditerranéen. Unasylva, 197:21-28.
- **Quézel P. et Médail F., 2003.** Ecologie et biogéographie des forêts du bassin méditerranéen. Paris, Elsevier, édit : 592 p.
- **Quézel P. et Médail F., 2003.** Valeur phytoécologique et biologique des ripisylves méditerranéennes. L'écologie de la ripisylve. Forêt méditerranéenne t.XXIV, n°3.

R

- Rameau J-C., 1987. Contribution phytoécologique et dynamique à l'étude des écosystèmes forestiers. Applications aux forêts du Nord-Est de la France. Université de Besançon. Thèse d'Etat.
- **Rankiaer C., 1904.** Biological types with reference to the adaptation of plants to survive the unfavourable season. In Raunkiaer, 1934, pp. 1-2.
- **Rankiaer C., 1907.** The life from of plants and their bearing on geography, clarendon. Press, Oxford (1934).
- **Riva-Martinez S., 1981**. Nation Fondamental de phytosociologie. Berichte. ntern.sym. verein.végétation.sk Suntaxonomie Rinteln.1980 pp5-33 Vaduz.
- **Rivas-Martinez S., 1982.** Etage Bioclimatiques, secteurs chololigiques et series devégéttaion de l'Espagne méditerranéenne. Ecol. Medit. (Marseille) 8:275-288.Marseille.
- Rivas-Martínez S., Fernández-González F., Loidi J., Lousã M. et Penas A., 2001. Syntaxonomical checklist of vascular plant communities of Spain and Portugal to association level. *Itinera Geobot.* 14, 5-341.
- **Roberto D., et Leila da costa F., 2000.** Sustainability in the Period of conferences on the, environment and development an insight into ecology and economics.
- **Roiron P., 1992.** Flores, végétations et climats du Néogène méditerranéen : apports de macroflores du sud de la France et du nord-est de l'Espagne. Montpellier, Thèse Doct. Etat. Univ. Montpellier II, 296 p. + 35 pl.h.-t.

Romane F., 1987. Efficacité de la distribution des formes de croissance pour l'analyse de la végétation à l'échelle régionale. Thèse Doct. Es. Science. Marseille

S

- Sainthillier A. et Qabaud P. A., 1861. Note météorologique sur Tlemcen.
- **Salinas M.J., Blanca G. et Romero A.T., 2000.** Riparian vegetation and water chemistry in a basin under semiarid Mediterranean climate, Andarax, Spain. *Environ. Manage.* 26, 539-552.
- Salo J., Kalliola R., Häkkinen I., Mäkinen Y., Niemelä P., Puhakka M. et Coley P.D., 1986. River dynamics and the diversity of Amazon lowland forest. Nature 322, 254-258.
- **Sari-Ali A., 2012.** Contribution à l'étude des Peuplements à *Arthrocnemum glaucum* (Del.) Ung. de l'Oranie (Algérie occidentale) taxonomie et bio-écologie. Thèse. Doc. Ecol. Univ. Tlemcen. 245p + annexes
- **Sauvage CH., 1961.** Recherches géobotaniques sur le chêne liège au Maroc. Thèse Doct. Etat, Montpellier, Trav. Inst. Sci. Chérifien, Série Botanique, PP. 21–462.
- **Sauvage Ch. et Dajet P., 1963.** Le quotient pluviothermique d'Emberger, son utilisation et la représentation de ses variations au Maroc. Ann. Serv. Phys. Gl. Meteorol. 20: 11-23.
- Seltzer P., 1946. Le climat de l'Algérie. Inst. Météor. et de Phys. du Globe. Alger.219P.
- Silvie. M. et al., 2004. Botanique « biologie et physiologie végétale », Maloine, Paris, 775p.
- **Stambouli-Meziane H., 2010.** Contribution à l'étude des groupements à psammophiles de la région de Tlemcen (Algérie occidentale). Thèse. Doct. Univ. Abou Bakr Belkaid-Tlemcen. 226 p.
- **Stambouli-Meziane H, Merzouk A et Bouazza M., 2015.** Phytosociological Study and Phytoecologique of Psammophytes of the Coastline of The Region of Tlemcen (Oranie-Algeria) International Journal of Biology; Vol. 7, No. 2; 2015 ISSN 1916-9671 E-ISSN 1916-968XPublished by Canadian Center of Science and Education
- **Stevens L. E. 1989.** The status of ecological research on tamarisk (*Tamaricaceae: Tamarix ramosissima*) in Arizona. In: Kunzmann, Michael R.; Johnson, R. Roy; Bennett, Peter, technical coordinators. Tamarisk control in southwestern United States: Proceedings; 1987 September 2-3; Tucson, AZ. Special Report No. 9. Tucson, AZ: National Park Service, Cooperative National Park Resources Studies Unit, School of Renewable Natural Resources: 99-105. [11356].
- **Stewart P., 1969.** Quotient pluviothermique et dégradation biosphérique. Bull. Soc. Hist. Nat. Afri. Nord (59): 23-36.

T

- **Taylor, John P. McDaniel, et Kirk C., 1998.** Restoration of saltcedar (*Tamarix sp.*)-infested floodplains on the Bosque del Apache National Wildlife Refuge. Weed Technology. 12(2): 345-352. [29776].
- **Tchou Y.T., 1948-1949.** Etudes écologiques et phytosociologiques sur les forêts riveraines du Bas-Languedoc. *Vegetatio* 1 & 2, 2-28, 93-128, 217-257, 347-384.
- **Trabut L., 1935**-Répertoire des noms indigènes des plantes spontanées, cultivées et utilisées dans le nord de l'Afrique -Alger, 254p
- **Thinthoin R., 1948.** Les aspects physiques du Tell Oranais. Essai de morphologie de pays semi-aride. Ed. Fouque. Oran, 638p.
- Tilman D., 1982. Resource competition and community structure. Princeton University Press.

T/

- Van Coller A.L., Rogers K.H. et Heritage G.L., 2000. Riparian vegetation-environment relationships: complimentarity of gradient versus patch hierarchy approaches. Journal of Vegetation Science 11, 337-350.
- **Vela E. et Benhouhou S., 2007**. Evaluation d'un nouveau point chaud de biodiversité végétale dans le bassin méditerranéen (Afrique du Nord). C. R. Biologies, 330 : 589-605.

W

- Waisel, Y, Eshel, A., and Kafkafi, U. 1996. Plant Roots: the hidden half. Marcel Dekker, Inc. New York, pp.
- Walter J-M. N., 1994-2006. Methodes d'etude de la vegetation. Methodes du releve floristique. 1ere partie : Introduction ; 2eme partie : Exercice.Institut de Botanique-Faculte des sciences de la Vie- Universite Louis Pasteur. Strasbourg. Jean-michel.walter@bota-ulp.u-strasbg.fr
- **Ward J.V., 1998.** Riverine landscapes: biodiversity patterns, diversity regimes and aquatic conservation. Biological Conservation 83, 269-278.
- Ward J.V., Tockner K., Arscott D.B. et Claret C., 2002. Riverine landscape diversity. Freshwater Biol. 47, 517-539.
- Wilgus F. et Hamilton K. L., 1962. Germination of saltcedar seed. Weeds pp:332-333.
- Wilken, D. H., 1993. Tamaricaceae. P. 1080 in J. C. Hickman (ed). The Jepson Manual. Univ. California Press. Berkeley.
- **Wilkinson, R.E., 1966.** Seasonal development of anatomical structures of saltcedar foliage. Bot. Gaz. Pp,231-234.
- Wilson E.O., 1988. Biodiversity. National Academy Press. Washington. D.C. USA.
- Wlihelm N., 1998. Botanique générale, traduction de la 10eme édition allemande, 382 p.

Y

Young W. et al., 2004. Stopover ecology of landbirds migrating along the Middle Rio Grande in spring and fall. Gen. Tech. Rep. RMRS-GTR-99. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 52 p

\mathbf{Z}

Zouhar, Kris 2003. *Tamarix sp.* In: Fire Effects Information System, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer) USA.

Tableau XXVI : Inventaire floristique de l'amont de la Tafna

Familles	Taxons	T.bio	T.morpho	T.biogéo	Rareté	Répartition
ANACARDIACEAE	Pistacia lentiscus	PH	LV	Méd.	CC	Dans toute l'Algérie
APIACEAE	Apium graveolens	HE	HV	N. Trop	С	Dans toute l'Algérie
	Thapsia garganica	HE	HV	Méd.	CC	Dans toute l'Algérie
	Torilis arvensis	TH	HA	Paléo-Temp.	R	Montagnes – R : A2, K1-2
APOCYNACEAE	Nerium oleander	CH	LV	Méd.	CC	Dans toute l'Algérie. RR : SS, SC
ARECACEAC = PALMACEAE	Chamaerops humilis	CH	LV	W. Méd.	CC	Dans le Tell
ARACEAE	Arisarum vulgare	GE	HV	Circumméd.		Tell occidental
BORAGINACEAE	Cynoglossum creticum	HE	HV	Méd.	CC	Dans tout le Tell. RR : Ailleurs
	Cynoglossum cheirifolium	TH	HA	Méd.	С	Dans toute l'Algérie
	Echium plantagium	CH	LV	Méd.	CC	Dans tout le Tell
	Echium vulgare	HE	HV	Méd.	AC	Dans tout le Tell
	Heliotropium europaeum	TH	HA	N. Trop.	AC	Dans toute l'Algérie, sauf en Oranie. SS:
						Biskra
BRASSICACEA	Lobularia maritima	TH	HA	Méd.	CC	Dans toute l'Algérie, surtout sur le littoral
	Rorippa nasturtium-	TH	HA	Cosm.	C	Dans tous les eaux de l'Algérie, surtout
	aquaticum					littoral
	Alyssum parviflorum	TH	HA	Méd.	C	Dans le Tell. R : Ailleurs
	Matthiola maroccana	TH	HA	EndSah	AR	Atl. Saharien, Sahara septentrional et Central
	Raphanus rhaphanistrum	TH	HA	Méd.	AC	Dans tout le Tell, R : Ailleurs
	Sinapis arvensis	TH	HA	Paléo-Temp.	AC	Dans le Tell. R : Ailleurs
	Capsilla borsa-pastoris	TH	HA	Méd.	CC	Partout
	Sinapis alba	TH	HA	Paléo-Temp.	C	Dans le Tell
CARYOPHYLACEAE	Stellaria media	TH	HA	Cosm.	C	Dans le Tell et sur les Hts Pl.
	Paronychia argentea	TH	HA	Méd.	C	Dans toute l'Algérie
CHENOPODIACEAE	Atriplex hastata	TH	HA	Circumb.	AC	Dans le Tell. RR: Ailleurs
	Beta vulgaris	GE	HV	Euras Méd.	C	Dans le Tell et sur les Hts PL.
CISTACEAE	Helianthemum racemosum	СН	LV	Eur. Méd.	CC	Dans le Tell
COMPOSITEAE =	Anacyclus valentinus	HE	HV	Méd.	AC	H1, AS1, SS. R ; SC ;
ASTERACEAE	Artemisia herba alba	СН	LV	Esp., Des	CCC	H, SS, AR: O1-2-3, C1, SC: en montagnes
				Canaries a		
				l'Egypte, Asie		

				Occ.		
	Atractilys carduus	TH	НА	Sah.	CC	SS1-2
	Bellis annua	TH	HA	Circumméd	CCC	Tell
	Calendula arvensis	TH	HA	Sub-méd.	CCC	Partout en Algérie
	Carduus pycnocephalus	HE	HV	Euras.	CCC	Tout le Tell. R : Dans le Sud
	Centaurea calcitrapa	HE	HV	Euryméd.	CCC	Partout Partout
	Cladanthus arabicus	TH	HA	Méd.	R	O1 : Marnia, Nemours, H1
		TH	HA		K	
	Conyza naudini	IH	нА	Originaire		Un peu partout
	E 1:	TII	1137	d'Amérique	CC	D-11-4-12 A1-4-1-
	Echinops spinosus	TH	HV	S. Méd. Sah.	CC	Dans toute l'Algérie
	Filago spathulata	TH	НА	Méd.	CC	Dans toute l'Algérie
	Inula viscosa	HE	HV	Circumméd.	CC	Tell; RR: Ailleurs
	Mantisalca salmantica	HE	HV	EurMéd.	CC	Partout
	Onopordon macracanthum	HE	HV	Ibéro-Maur.	CC	Dans tout le Tell
	Scolymus hispanicus	HE	HV	Méd.	CC	Dans toute l'Algérie
	Senecio lividus	TH	НА	EurMéd.	AR	Dans le Tell
	Senecio giganteus	TH	НА	End. N. A.	CC	Tell
	Sonchus asper	TH	НА	Cosm.	CC	Partout
	Xanthium strumarium	TH	НА	Subcosm.	CCC	Partout
CONVOLVULACEAE	Convolvulus althaeoides	TH	НА	Macar-Méd.	CC	Dans toute l'Algérie surtout en montagnes
CRASSULACEAE	Sedum nevadense	TH	HA	Ibéro-Maur	RR	Aurès et Mts du Hodna, Mts de Tlemcen
CUCURBITACEAE	Bryonia dioica	TH	HA	Euras.	CC	Dans tout le Tell. R : Ailleurs
CYPERACEAE	Cyperus fuscus	TH	НА	Paléo-Temp.	CC	Tell, Hts. Pl., Atl. Sah., Oasis du pied de l'Atl. Sah.
	Cyperus longus	GE	HV	Paléo et Subtrop.	CC	Tell, Hts. Pl., Atl. Sah.
FABACEAE	Astragalus epiglottis	TH	HA	Méd.	С	Dans le Tell
	Calicotome intermedia	СН	LV	Méd.	С	Tell Oranais
	Ceratonia siliqua	PH	LV	Méd.	С	Dans le Tell. R : Ailleurs
	Lotus glinoides	TH	HA	SahAr.	AC	SC dans les zones montagneuses
	Lotus ornithopodioides	TH	HA	Méd.	С	Dans le Tell
	Medicago minima	TH	HA	EurMéd.	С	Dans le Tell. AC : AS1-2-3. R : H1-2
	Melilotus macrocarpa	TH	HA	End. E.N.A	AC	Dans le Tell. RR : Ailleurs : Sétif

	Ononis biflora	TH	НА	Méd	AC	C1, O1-2-3
	Scorpiurus muricatus	TH	HA	Méd.	С	Dans le Tell
	Trifolium stellatum	TH	HA	Méd.	CC	Dans le Tell. RR : Ailleurs : Aurès, Bellezma
	Trifolium tomentosum	TH	HA	Méd.	С	Dans le Tell. AR : Ailleurs
GERANIACEAE	Erodium moschatum	HE	HV	Méd.	CC	Dans toute l'Algérie
	Geranium molle	HE	HV	Euras.	CC	Dans toute l'Algérie
JUNCACEAE	Juncus acutus	GE	HV	Subcosm.	CC	Du litt. Aux Hts.Pl.
	Juncus maritimus	GE	HV	Subcosm.	С	Du Litt. Au Sahara central
LAMIACEAE	Ballota hirsuta	HE	HV	Ibéro-Maur.	AC	O1-2-3, A1, SS, SC
	Lamium amplexicaule L.	TH	HA	Cosm.	CC	Dans toute l'Algérie
	Marrubium vulgare	CH	LV	Cosm.	CC	Dans toute l'Algérie
	Mentha rotundifolia	HE	HV	Atl. Méd.	CC	Dans toute l'Algérie
LINACEAE	Linum strictum	CH	LV	Méd.	AC	Dans toute l'Algérie
LYTHRACEAE	Lythrum junceum	TH	HA	Méd.	CC	Dans toute l'Algérie
MALVACEAE	Malva parviflora	TH	HA	Méd.	CC	Dans toute l'Algérie, SS, SC
	Malva sylvestris	TH	HA	Euras.	CC	Dans toute l'Algérie, SS
OLEACEAE	Olea europea	PH	LV	Méd.	CC	Dans toute l'Algérie. R : SS
PLANTAGINACEAE	Plantago lagopus	HE	HV	Méd.	CC	Dans toute l'Algérie
	Plantago major	HE	HV	Euras.	CC	Dans tout le Tell, R : Ailleurs
POACEAE	Brachypodium distachyum	TH	HA	Paléo-Subtrop.	CC	Du littoral au grand Erg occidental
	Brachypodium sylvaticum	GE	HV	Paléotemp.	С	Dans le Tell
	Bromus hordeaceus	TH	НА	Paléo-Temp.	С	Tell, Hts Pl. Atl. Sah. (Aurès compris), Sah. Central
	Bromus rubens	TH	HA	Paléo-Subtrop.		Du littoral au Sahara central
	Festuca elatior	GE	HV	Circumbor.	RR	O2 : La Macta
	Cynodon dactylon	GE	HV	Thermocosm.	CC	Partout en Algérie, Lieux humides du Sahara
	Echinaria capitata	TH	HA	AtlMéd	С	Tell, Hts Pl., Atl. Sah.
	Gastridium scabrum	TH	HA	Méd.	CC	Dans tout le Tell
	Hordeum murinum	TH	HA	Circumb.	AR	O: Oran, O3, AS1-2
	Lamarkia aurea	TH	НА	Macar. Méd Ethiopie	CC	Dans tout le Tell
	Lolium rigidum	TH	HA	Paléo-subtrop.	С	Dans toute l'Algérie
	Oryzopsis miliacea	СН	LV	MédIrano- Tour	С	Du Littoral au Sahara

Annexes

POLYGONACEAE	Polygonum convolvulus	TH	НА	Circumb.	AC	Dans le Tell, R : AS
	Polygonum equisetiforme	TH	НА	Méd.	R	O1-2-3. A1. H1-2. Oasis du sahara
						septentrional
	Polygonum salicifolium	TH	НА	Trop. Méd.	AC	Dans le Tell
	Rumex bucephalophorus	TH	HA	Méd.	CC	Dans le Tell. AC : Ailleurs, jusque sur l'Atl.
						Sah.
	Rumex pulcher	HE	HV	Méd.	CC	Dans le Tell. R : Ailleurs
PRIMULACEAE	Anagallis arvensis	TH	HA	Sub. Cosmop	CC	Dans toute l'Algérie, surtout dans le Tell. R :
						SS : Oasis
RENONCULACEAE	Adonis aestivalis	TH	HA	Euras.	AC	Dans le Tell. R : Ailleurs
RESEDACEAE	Reseda alba	TH	HA	Euras.	AC	Dans le Tell jusque dans le Sahara
						Septentrional
ROSACEAE	Rubus ulmifolius	CH	LV	EurMéd.	C	Dans le Tell ; Aurès
RUBIACEAE	Asperula hirsuta	HE	HV	W. Méd.	CC	Dans le Tell et toutes les régions
						montagneuses
	Rubia tinctorum	HE	HV	Méd.	AR	Dans le Tell. RR : Ailleurs
SALICACEA	Salix alba	PH	LV	Paléo-Temp.	С	Dans le Tell
SCROFULARIACEAE	Linaria commutata	TH	HA	EurMéd.	AC	Surtout dans le Tell
	Verbascum sinuatum	HE	HV	Méd.	CC	Dans toute l'Algérie
SOLANACEAE	Solanum nigrum	TH	HA	Cosm.	CC	Dans toute l'Algérie, R : SC, CC
TAMARICACEAE	Tamarix africana	PH	LV	W. Méd	CC	En Algérie, R : SS
TYPHACEAE	Typha angustifolia	GE	HV	Sub-circumb.	CC	Tell, Hts. Pl., SS, SC
VALERIANACEAE	Valeriana tuberosa	HE	HV	Méd.	AC	Dans le Tell littoral et sur les Montagnes

Tableau XXVII : Inventaire floristique de la moyenne Tafna

Familles	Taxons	T.bio	T.morpho	T.biogéo	Rareté	Répartition
AMARANTHACEAE	Achyranthes aspera	HE	HV	Paléo-Trop Méd.	AC	Dans le Tell, surtout Algéro-Constantinois
	Amaranthus angustifolius	TH	НА	Ancien monde	С	Dans le Tell
ANACARDIACEAE	Pistacia atlantica	PH	LV	End. N. A.	AC	Dans toute l'Algérie, sauf dans les zones très arrosées
APIACEAE	Apium graveolens	HE	HV	N. Trop	С	Dans toute l'Algérie
	Ferula communis	HE	HV	Méd.	CC	Dans toute l'Algérie, sauf dans l'extrême Sud
	Foeniculum vulgare	HE	HV	Méd.	CC	Dans toute l'Algérie
	Scandix australis	TH	HA	Méd.	CC	Sauf dans le Tell Littoral
	Scandix pecten- veneris	TH	НА	Eur. Méd.	CC	Dans toute l'Algérie
	Smyrnium olusatrum	HE	HV	Méd.	CC	Dans toute l'Algérie
	Torilis arvensis	TH	HA	Paléo-Temp.	R	Montagnes – R : A2, K1-2
APOCYNACEAE	Nerium oleander	СН	LV	Méd.	CC	Dans toute l'Algérie. RR : SS, SC
BORAGINACEAE	Cerinthe major	TH	HA	Méd.	CC	Dans tout le Tell
	Cynoglossum creticum	HE	HV	Méd.	CC	Dans tout le Tell. RR : Ailleurs
	Echium vulgare	НЕ	HV	Méd.	AC	Dans tout le Tell
	Heliotropium europaeum	ТН	НА	N. Trop.	AC	Dans toute l'Algérie, sauf en Oranie. SS : Biskra
BRASSICACEAE	Brassica nigra	TH	HA	Euras.	R	Ça et là dans le Tell Algérien
	Sinapis alba	TH	HA	Paléo-Temp.	С	Dans le Tell

	Raphanus raphanistrum	TH	НА	Méd.	AC	Dans tout le Tell, R : Ailleurs
	Sinapis arvensis	TH	HA	Paléo-Temp.	AC	Dans le Tell. R : Ailleurs
	Diplotaxis tenuifolia	TH	HA	Sud-Eur.	RR	AS1 : Sahel d'Alger
	Lobularia maritima	TH	HA	Méd.	CC	Dans toute l'Algérie, surtout sur le littoral
	Eruca vesicaria	TH	HA	Méd.	С	Dans toute l'Algérie. AR : SS
	Capsilla borsa- pastoris	TH	НА	Méd.	CC	Partout
	Cordylocarpus muricatus	TH	НА	EndAlg Mar.	AC	O1-2-3, H1-2. R : SS
CAPRIFOLIACEAE	Sambucus nigra	СН	LV	S. Eur.	R	Paraît spontané dans les montagnes du constantinois.
CARYOPHYLACEAE	Herniaria hirsuta	TH	HA	Paléo-Temp.	AC	Dans toute l'Algérie
	Paronychia argentea	TH	HA	Méd.	С	Dans toute l'Algérie
	Silene coeli-rosa	TH	HA	W. Méd.	R	C :Tell Algéro-Constantinois. R : en Oranie
	Silene colorata	TH	HA	Méd.	C	O1-2-3, R : Ailleurs
CHENOPODIACEAE	Atriplex chenopodioides	TH	НА	End. E.N.A.	RR	Bouhanifia près de Mascara
	Atriplex halimus	СН	LV	Cosmop.	С	Dans toute l'Algérie, SS, SO, SC : Commun en montagne
	Atriplex hastata	TH	HA	Circumb.	AC	Dans le Tell. RR : Ailleurs
	Beta vulgaris	GE	HV	Euras Méd.	C	Dans le Tell et sur les Hts PL.
	Chenopodium album	TH	HA	Cosm.	AC	Dans le Tell. R : Ailleurs
	Chenopodium chenopodioides	TH	HA	Eur.	RR	Le Kreider
	Chenopodium multifidum	TH	HA	N. Amér.	R	Oran, Alger
	Chenopodium murale	TH	НА	Cosm.	С	Dans toute l'Algérie. R : Sahara
	Chenopodium vulvaria	TH	НА	EurMéd.	С	Dans le Tell. R : Ailleurs
COMPOSITEAE =	Picris echioides	TH	НА	Euryméd.	CC	Dans le Tell

ASTERACEAE	Picris duriaei	HE	HV	End.	CC	
	Bellis annua	TH	HA	Circumméd	С	C1, H1, AS. R : O1 : Oran
	Calendula arvensis	TH	HA	Sub-méd.	CCC	Partout en Algérie
	Calendula suffruticosa	HE	HV	Esp. N. A.	CC	Partout en Algérie
	Asteriscus maritimus	HE	HV	Canaries, Eur. Mérid. A.N.	CCC	Tell
	Anacyclus valentinus	HE	HV	Méd.	AC	H1, AS1, SS. R; SC;
	Atractylis carduus	TH	HA	Sah.	CC	SS1-2
	Echinops strigosus	HE	HV	Ibéro. Nord. Af.	CCC	De Ténès a la frontière Marocaine
	Onopordon macracanthum	HE	HV	Ibéro-Maur.	CC	Dans tout le Tell
	Echinops spinosus	TH	HA	S. Méd. Sah.	CC	Dans toute l'Algérie
	Carduus pycnocephalus	HE	HV	Euras.	CCC	Tout le Tell. R : Dans le Sud
	Chrysanthemum coronarium	TH	НА	Méd.	CC	Dans le Tell
	Cynara cardunculus	HE	HV	Méd.		Toute la zone cultivable
	Galactites tomentosa	HE	HV	Circumméd.	CCC	Tout le Tell
	Inula viscosa	HE	HV	Circumméd.	CC	Tell; RR: Ailleurs
	Mantisalca salmantica	HE	HV	EurMéd.	CC	Partout
	Reichardia picroides	TH	HA	Méd.	CCC	Dans le Tell
	Scolymus hispanicus	HE	HV	Méd.	CC	Dans toute l'Algérie
	Senecio lividus	TH	HA	EurMéd.	AR	Dans le Tell
	Silybum murianum	HE	HV	Cosm.	CCC	Dans tout le Tell
	Sonchus asper	TH	HA	Cosm.	CC	Partout
	Xanthium spinosus	TH	HA	Subcosm		Naturalisé un peu partout
	Xanthium strumarium	TH	НА	Subcosm.	CCC	Partout
	Centaurea	HE	HV	Euryméd.	CCC	Partout

	calcitrapa					
	Centaurea tenuifolia	HE	HV	Ibéro-Maur.		Oranie, O3: Bossuet, Ghar-Rouban, H1:Sersou, AS2: Djebel Amou
	Cladanthus arabicus	TH	HA	Méd.	R	O1 : Marnia, Nemours, H1
	Lactuca seriola	HE	HV	Paléo-Temp.	AC	Tell, Hts. Pl.
	Conyza naudini	TH	НА	Originaire d'Amérique		Un peu partout
	Filago spathulata	TH	HA	Méd.	CC	Dans toute l'Algérie
CONVOLVULACEAE	Convolvulus althaeoides	TH	НА	Macar-Méd.	CC	Dans toute l'Algérie, surtout en montagnes
	Convolvulus arvensis	GE	HV	Euras.	CC	Dans toute l'Algérie
CUCURBITACEAE	Bryonia dioica	TH	HA	Euras.	CC	Dans tout le Tell. R : Ailleurs
CYPERACEAE	Cyperus longus	GE	HV	Paléo et Subtrop.	CC	Tell, Hts. Pl., Atl. Sah.
EUPHORBIACEAE	Mercurialis annua	TH	НА	Méd. W. As.	CC	Dans toute l'Algérie jusque à la lisière du Sahara
FABACEAE	Acacia albida	PH	LV	Af. Trop.	R	SS Dans les massifs montagneux SO
	Astragalus narbonensis	HE	HV	W. Méd.	R	Aurès, Biban, Ouarsenis, Steppes d'Alfa du Sud Oranais
	Medicago minima	TH	HA	EurMéd.	С	Dans le Tell. AC : AS1-2-3. R : H1-2
	Melilotus sulcata	TH	HA	Méd.	С	Dans le Tell
	Ononis serrata	TH	НА	S. Méd.	AC	H. SS. Tell oranais
	Ulex parviflorus	СН	LV	W. Méd.	AR	01
	Lotus ornithopodioides	TH	НА	Méd.	С	Dans le Tell
	Astragalus scorpioides	TH	НА	IbéroMaur.	AR	H1-2. Tell oranais
	Astragalus epiglottis	TH	HA	Méd.	С	Dans le Tell
	Medicago lupulina	TH	HV	Méd. Eur.	С	Dans le Tell, Aurès
	Vicia sativa	TH	НА	Eur. Méd	С	Dans le Tell. R : Ailleurs.

	Medicago hispida	TH	НА	Méd.	С	Dans le Tell. RR : Ailleurs. SS dans les Oasis
	Medicago scutellata	TH	HA	Méd.	AC	Dans le Tell. R : AS1-2-3
	Melilotus	TH	HA	End. E.N.A.	AC	Dans le Tell, RR : Ailleurs
	macrocarpa					
	Trifolium campestre	TH	HA	Paléo-Temp.	CC	Dans le Tell. R : Ailleurs : AS
	Trifolium	TH	HA	Méd.	С	Dans le Tell. AR : Ailleurs
	tomentosum					
	Ulex boivini	CH	LV	Ibéro. Mar.	R	Mts de Tlemcen, Sebdou
	Vicia sicula	TH	HA	W. Méd.	CC	Dans tout le Tell. R: H1-2
	Scorpiurus muricatus	TH	НА	Méd.	С	Dans le Tell
GERANIACEAE	Erodium moschatum	HE	HV	Méd.	CC	Dans toute l'Algérie
	Geranium rotundifolium	HE	HV	Eur.	R	Ça et là en Algérie, surtout en montagnes
JUNCACEAE	Juncus acutus	GE	HV	Subcosm.	CC	Du litt. Aux Hts.Pl.
	Juncus maritimus	GE	HV	Subcosm.	С	Du Litt. Au Sahara central
LAMIACEAE	Ballota hirsuta	HE	HV	Ibéro-Maur.	AC	O1-2-3, A1, SS, SC
	Marrubium vulgare	СН	LV	Cosm.	CC	Dans toute l'Algérie
	Mentha rotundifolia	HE	HV	Atl. Méd.	CC	Dans toute l'Algérie
	Salvia officinalis	СН	LV	Eur.	CC	Cultivé
	Salvia verbenaca	HE	HV	Méd. Atl.	CC	Dans toute l'Algérie
LYTHRACEAE	Lythrum	TH	HA	Ibéro-Maur.	AR	O1-2-3, A2
	acutangulum					
	Lythrum junceum	TH	HA	Méd.	CC	Dans toute l'Algérie
MALVACEAE	Lavatera maritima	CH	LV	W. Méd.	AC	Dans tout le Tell et sur le littoral
	Malva aegyptiaca	TH	НА	SahSind. Méd.	С	H1-2, SS
	Malva parviflora	TH	HA	Méd.	CC	Dans toute l'Algérie, SS, SC
	Malva sylvestris	TH	HA	Euras.	CC	Dans toute l'Algérie, SS
MORACEAE	Ficus carica	PH	LV	Circumméd.	CC	Cultivé
MYRTACEAE	Eucalyptus globulus	PH	LV			Originaire d'Australie

OLEACEAE	Fraxinus angustifolia	PH	LV	Eur.	С	Dans toute l'Algérie
	Olea europea	PH	LV	Méd.	CC	Dans toute l'Algérie. R : SS
PAPAVERACEAE	Papaver hybridum	TH	HA	Méd.	С	Dans toute l'Algérie.
	Papaver rhoeas	TH	HA	Paléo-Temp.	С	Dans toute l'Algérie
FUMARIACEAE	Fumaria officinalis	TH	HA	Paléo-Temp.	С	Dans toute l'Algérie
PLANTAGINACEAE	Plantago coronopus	HE	HV	Euras.	AR	Dans toute l'Algérie
	Plantago lagopus	HE	HV	Méd.	CC	Dans toute l'Algérie
	Plantago major	HE	HV	Euras.	CC	Dans tout le Tell, R : Ailleurs
	Plantago ovata	HE	HV	Méd.	CC	Dans toute l'Algérie, sauf dans le Tell Algéro-Constantinois, SS
POACEAE	Arundo donax	GE	HV	Méd.	С	Tell, Hts. Pl., SS2 : Biskra
	Hordeum murinum	TH	HA	Circummbor.	AR	O: Oran, O3, AS1-2
	Avena sterilis	TH	НА	Macar-Méd Irano-Tour	CC	Partout
	Aegilops triuncialis	TH	НА	MédIrano- Tour	С	Tell (plus rare à l'Est)
	Gastridium scabrum	TH	HA	Méd.	CC	Dans tout le Tell
	Lolium rigidum	TH	HA	Paléo-subtrop.	С	Dans toute l'Algérie
	Phragmites communis	GE	HV	Cosm.	С	Dans toute l'Algérie. Sahara
	Alopecurus utriculatus	TH	НА	Atl. Méd.		A1 :Alger, O1-O3 : Mascara
	Bromus madritensis	TH	HA	EurMéd.	CC	Dans tout le Tell
	Bromus rubens	TH	НА	Paléo- Subtrop.		Du littoral au Sahara central
	Lagurus ovatus	TH	HA	Macar-Méd.	CC	Du littoral a l'Atl. Sah.
	Bromus hordeaceus	TH	НА	Paléo-Temp.	С	Tell, Hts Pl. Atl. Sah. (Aurès compris), Sah. Central
	Cynodon dactylon	GE	HV	Thermocosm.	CC	Partout en Algérie, Lieux humides du Sahara
	Dactylis glomerata	GE	HV	Paléo-Temp.	С	Du littoral a l'Atl. Sah.

	Oryzopsis miliacea	СН	LV	MédIrano- Tour	С	Du Littoral au Sahara
	Poa annua	TH	HA	Cosm.	С	Tell
	Hordeum vulgare	TH	HA		CC	Cultivé
	Lamarkia aurea	TH	НА	Macar. Méd Ethiopie	CC	Dans tout le Tell
POLYGONACAEA	Polygonum convolvulus	TH	НА	Circumbor.	AC	Dans le Tell, R : AS
	Rumex bucephalophorus	TH	НА	Méd.	CC	Dans le Tell. AC : Ailleurs, jusque sur l'Atl. Sah.
	Rumex conglomeratus	TH	НА	Cosmop.	С	Dans toute l'Algérie
	Rumex pulcher	HE	HV	Méd.	CC	Dans le Tell. R : Ailleurs
PRIMULACEAE	Anagallis arvensis	TH	НА	Sub. Cosmop	CC	Dans toute l'Algérie, surtout dans le Tell. R : SS : Oasis
RENONCULACEAE	Ranunculus muricatus	TH	НА	Méd.	С	Dans le Tell. R : Ailleurs
RHAMNACEAE	Ziziphus lotus	РН	LV	Méd.	CC	Dans toute l'Algérie, sauf sur le Tell Algéro-Constantinois
RUBIACEAE	Asperula hirsuta	HE	HV	W. Méd.	CC	Dans le Tell et toutes les régions montagneuses.
SALICACEAE	Populus alba	PH	LV	Paléo-Temp.	CC	Dans toute l'Algérie
SCROFULARIACEAE	Verbascum sinuatum	HE	HV	Méd.	CC	Dans toute l'Algérie
	Veronica anagallis- aquatica	TH	НА	Euras.	AC	Dans les régions montagneuses. R : en plaine.
SOLANACEAE	Daruta stramonium	HE	HV	Cosm.	AC	Dans toute l'Algérie. AR : SS, SC
	Withania frutescens	СН	LV	Ibéro-Mar.	CC	O1-2
TAMARICACEAE	Tamarix africana	PH	LV	W. Méd.	CC	En Algérie. R : SS
ТҮРНАСЕАЕ	Typha angustifolia	GE	HV	Sub-circumb.	CC	Tell, Hts. Pl., SS, SC
ULMACEAE	Celtis australis	PH	LV	Eur. Méd.	AC	Dans le Tell. RR : Ailleurs
URTICACEAE	Urtica membranacea	TH	HA	Méd.	С	Dans le Tell

Annexes

	Urtica urens	TH	НА	Circumb.	С	Dans le Tell. R : Ailleurs jusque dans le Sah. Sept.
VALERIANACEAE	Valerianella coronata	TH	НА	Méd.	С	Dans la zone montagneuse
	Fedia cornucopiae	HE	HV	Méd.	CC	Dans toute l'Algérie
VERBENACEAE	Verbena supina	HE	HV	Méd.	AR	Dans toute l'Algérie

Tableau XXVIII : Inventaire floristique de l'aval de la Tafna

Familles	Taxons	T.bio	T.morpho	T.biogéo	Rareté	Répartition
AMARANTHACEAE	Amaranthus albus	TH	HA	N. Amér.	AC	Dans le Tell
ANACARDIACEAE	Schinus molle	PH	LV			
APIACEAE	Eryngium campestre	HE	HV	Eur. Méd.	RR	H1-2, RR : dans le Tell
	Eryngium maritimum	HE	HV	EurMéd.	С	Sur le littoral
	Thapsia garganica	HE	HV	Méd.	CC	Dans toute l'Algérie
	Foeniculum vulgare	HE	HV	Méd.	CC	Dans toute l'Algérie
	Apium graveolens	HE	HV	N. Trop	С	Dans toute l'Algérie
	Torilis arvensis	TH	HA	Paléo-Temp.	R	Montagnes – R : A2, K1-2
	Smyrnium olusatrum	HE	HV	Méd.	CC	Dans toute l'Algérie
	Orlaya maritima	TH	HA	Méd.	CC	Sur tout le littoral, AR : H1-2, SS, RR : Ailleurs
APOCYNACEAE	Nerium oleander	CH	LV	Méd.	CC	Dans toute l'Algérie. RR : SS, SC
BORAGINACEAE	Cynoglossum creticum	HE	HV	Méd.	CC	Dans tout le Tell. RR : Ailleurs
	Echium confusum	TH	HV	Méd.	CC	Littoral, surtout dans les sables maritimes
	Echium vulgare	HE	HV	Méd.	AC	Dans tout le Tell
	Heliotropium europaeum	TH	HA	N. Trop.	AC	Dans toute l'Algérie, sauf en Oranie. SS: Biskra
BRASSICACEAE	Sinapis alba	TH	HA	Paléo-Temp.	С	Dans le Tell
	Capsilla bursa-pastoris	TH	HA	Méd.	CC	Partout
	Sinapis arvensis	TH	HA	Paléo-Temp.	AC	Dans le Tell. R : Ailleurs
	Raphanus rhaphanistrum	TH	HA	Méd.	AC	Dans tout le Tell, R : Ailleurs
	Cakile aegyptiaca	TH	HA	EurMéd.	AR	Sur tout le littoral
	Coronopus didymus	TH	HA	N. Amer.	R	Alger (naturalisé)
	Cordylocarpus muricatus	TH	HA	EndAlg	AC	O1-2-3, H1-2. R : SS
				Mar.		
CARYOPHYLACEAE	Silene colorata	TH	HA	Méd.	С	O1-2-3, R : Ailleurs
	Stellaria media	TH	HA	Cosm.	С	Dans le Tell et sur les Hts Pl.
CHENOPODIACEAE	Atriplex halimus	CH	LV	Cosmop.	C	Dans toute l'Algérie, SS, SO, SC : commun en montagne
	Atriplex tornabeni	TH	НА	W. Méd. Atl.	RR	A1 : Sahel d'Alger, O1 : golfe d'Arzew
	Atriplex chenopodioides	TH	HA	End. E.N.A.	RR	Bouhanifia près de Mascara
	Atriplex hastata	TH	HA	Circumb.	AC	Dans le Tell. RR : Ailleurs
	Atriplex patula	TH	HA	Circumb.	AC	Dans le Tell. RR : Ailleurs : Aflou
	Beta vulgaris	GE	HV	Euras. Méd.	С	Dans le Tell et sur les Hts Pl.
	Chenopodium murale	TH	HA	Cosm.	С	Dans toute l'Algérie. R : Sahara

	Chenopodium vulvaria	TH	HA	Eur. Méd.	С	Dans le Tell. R : Ailleurs
	Chenopodium album	TH	HA	Cosm.	AC	Dans le Tell. R : Ailleurs
	Arthrocnemum glaucum	СН	LV	Ancien monde	С	Jusque à la lisière sud du Sahara septentrional
	Salsola kali	TH	HA	Paléo-Temp.	С	Sur tout le littoral. RR : dans l'intérieur : O2, H1
COMPOSITEAE =	Anacyclus valentinus	HE	HV	Méd.	AC	H1, AS1, SS. R : SC.
ASTERACEAE	Carduus pycnocephalus	HE	HV	Euras.	CCC	Dans le Tell. R : dans le Sud
	Inula crithmoides	СН	LV	Haloph. Méd. Atl.	R	SS
	Inula viscosa	HE	HV	Circumméd.	CC	Tell. RR: Ailleurs
	Centaurea calcitrapa	HE	HV	Euryméd.	CCC	Partout
	Echinops strigosus	HE	HV	Ibéro. Nord. Af.	CCC	De Ténès à la frontière Marocaine
	Scolymus hispanicus	HE	HV	Méd.	CC	Dans toute l'Algérie
	Silybum murianum	HE	HV	Cosm.	CCC	Dans tout le Tell
	Xanthium spinosus	TH	HA	Subcosm.		Naturalisé un peu partout
	Xanthium strumarium	TH	HA	Subcosm.	CCC	Partout
	Chrysanthemum coronarium	TH	НА	Méd.	CC	Dans le Tell
	Chrysanthemum viscido- hirtum	TH	НА	Ibéro-Maur. Palestine	С	O1-2
	Cichorium intybus	HE	HV	1 diestine	CC	Partout
	Centaurea pullata	HE	HV	Méd.	CCC	Tout le Tell
	Calendula arvensis	TH	HA	Sub-méd.	CCC	Partout en Algérie
	Conyza naudini	TH	НА	Originaire d'Amérique		Un peu partout
	Picris duriaei	HE	HV	End.	CC	
	Bellis annua	TH	HA	Circumméd.	С	C1, H1, AS. R : O1 : Oran
	Reichardia tingitana	TH	HA	IbéroMar.	CC	Littoral oranais
	Sonchus asper	TH	HA	Cosm.	CC	Partout
	Sonchus maritimus	TH	НА	Euras. Circumméd.	AC	Tell.H1-2,SS
	Senecio leucanthemifolius	TH	НА	W. Méd. Canar. Syrie	AC	O1, A1

	Senecio vulgaris	TH	HA	Subcosm.	CCC	Partout
CONVOLVULACEAE	Convolvulus arvensis	GE	HV	Euras.	CC	Dans toute l'Algérie
	Convolvulus humilis	TH	HA	Méd.	CC	Dans tout le Tell
DIOSCOREACEAE	Tamus communis	GE	HV	Atl. Méd.	С	Dans le Tell
EUPHORBIACEAE	Ricinus communis	PH	LV	Trop.	AC	Dans toute l'Algérie et le Sahara
FABACEAE	Trifolium angustifolium	TH	HA	Méd.	С	Dans le Tell, Aurès
	Melilotus sicula	TH	HA	Méd.	С	Dans le Tell
	Medicago sativa	TH	HA	Eur. As.	CC	Dans toute l'Algérie, sauf dans le Tell, littoral.
	_			Devenue sub-		
				cosmop.		
	Medicago lupulina	TH	HA	Méd. Eur.	С	Dans le Tell, Aurès
	Ononis natrix	CH	LV	Méd.	AC	Hd. AS. SS
	Scorpiurus muricatus	TH	HA	Méd.	С	Dans tout le Tell
	Scorpiurus vermiculatus	TH	HA	Méd.	С	Dans le Tell
	Ulex parviflorus	CH	LV	W. Méd.	AR	01
GERANIACEAE	Erodium moschatum	HE	HV	Méd.	CC	Dans toute l'Algérie
	Erodium ciconium	HE	HV	Méd.	С	En oranie, AR : Ailleurs
	Geranium robertianum	HE	HV	Méd. Atl.	CC	En montagne dans toute l'Algérie
HYACINTHACEAE	Urginea maritima	GE	HV	Canar. Méd.	С	Tell
JUNCACEAE	Juncus acutus	GE	HV	Subcosm.	CC	Du Litt. Aux Hts. Pl.
	Juncus maritimus	GE	HV	Subcosm.	С	Du Litt. Au Sahara central
LAMIACEAE	Ballota hirsuta	HE	HV	IbéroMaur	AC	O1-2-3, A1, SS, SC
	Mentha rotundifolia	HE	HV	Atl. Méd.	CC	Dans toute l'Algérie
	Marrubium vulgare	CH	LV	Cosm.	CC	Dans toute l'Algérie
MALVACEAE	Malva parviflora	TH	HA	Méd.	CC	Dand toute l'Algérie, SS, SC.
	Mala sylvestris	TH	HA	Euras	CC	Dans toute l'Algérie, SS
OROBANCHACEAE	Orobanche purpurea	TH	HA	Euras.	RR	O2 : Ste Barbe du tlélat, AS3 : Aurès
OXALIDACEAE	Oxalis corniculata	GE	HV	Cosm.	CC	Dans toute l'Algérie
	Oxalis cernua	GE	HV	Originaire du	CC	Dans tout le Tell. R : Ailleurs
				Cap		
PAPAVERACEAE	Papaver hybridum	TH	HA	Méd.	С	Dans toute l'Algérie
PLANTAGINACEAE	Plantago lagopus	HE	HV	Méd.	CC	Dans toute l'Algérie
	Plantago major	HE	HV	Euras.	CC	Dans tout le Tell. R : Ailleurs
	Plantago serraria	HE	HV	W. Méd.	CC	Dans tout le Tell

POACEAE	Arundo donax	GE	HV	Méd.	С	Tell, Hts. Pl., SS2 : Biskra		
	Brachypodium	GE	HV	W. Méd.	С	Dans le Tell, AS3 : Aurès, R : Ailleurs		
	phoenicoides							
	Brachypodium sylvaticum	GE	HV	Paléotemp.	С	Dans le Tell		
	Phalaris caerulescens	GE	HV	MacarMéd.	С	Dans le Tell		
	Bromus madritensis	TH	HA	EurMéd.	CC	Dans tout le Tell		
	Phragmites communis	GE	HV	Cosm.	С	Dans toute l'Algérie. Sahara		
	Bromus rubens	TH	HA	Paléo-		Du littoral au Sahara central		
				Subtrop.				
	Lamarkia aurea	TH	HA	Macar. Méd.	CC	Dans tout le Tell		
				-Ethiopie				
	Bromus hordeaceus	TH	HA	Paléo-Temp.	С	Tell, Hts Pl. Atl. Sah. (Aurès compris), Sah. Central		
	Festuca elatior	GE	HV	Circumbor.	RR	O2 : La Macta		
	Cynodon dactylon	GE	HV	Thermocosm.	CC	Partout en Algérie, Lieux humides du Sahara		
	Hordeum murinum	TH	HA	Circummbor.	AR	O: Oran, O3, AS1-2		
	Hordeum vulgare	TH	HA		CC	Cultivé		
	Lagurus ovatus	TH	HA	Macar-Méd.	CC	Du littoral a l'Atl. Sah.		
	Phleum pratense	GE	HV	Circumbor.	AC	K1-2-3, A1-2, C1, O2, AS		
	Oryzopsis miliacea	СН	LV	MédIrano-	С	Du Littoral au Sahara		
				Tour				
	Poa annua	TH	HA	Cosm.	С	Tell		
POLYGONACEAE	Polygonum maritimum	CH	LV	Cosm.	AC	Sur tout le littoral		
	Rumex pulcher	HE	HV	Méd.	CC	Dans le Tell. R : Ailleurs		
	Rumes bucephalophorus	TH	HA	Méd.	CC	Dans le Tell. AC : Ailleurs, jusque sur l'Atl. Sah.		
PRIMULACEAE	Anagallis arvensis	TH	HA	Sub. Cosmop	CC	Dans toute l'Algérie, surtout dans le Tell. R : SS : Oasis		
RESEDACEAE	Reseda alba	TH	HA	Euras.	AC	Dans le Tell jusque dans le Sahara Septentrional		
RENONCULACEAE	Ranunculus macrophyllus	HE	HV	W. Méd.	CC	Dans le Tell. R : Ailleurs		
RHAMNACEAE	Ziziphus lotus	PH	LV	Méd.	CC	Dans toute l'Algérie, sauf sur le Tell Algéro-		
	-					Constantinois		
SOLANACEAE	Nicotiana glauca	PH	LV	N Am	AC	Dans toute l'Algérie		
	Withania frutescens	CH	LV	Ibéro-Mar.	CC	01-2		
	Datura stramonium	HE	HV	Cosm.	AC	Dans toute l'Algérie. AR : SS, SC		
	Solanum nigrum	TH	HA	Cosm.	CC	Dans toute l'Algérie. R : SC, CC		
TAMARICACEAE	Tamarix africana	PH	LV	W. Méd.	CC	En Algérie, R: SS		

TYPHACEAE	Typha angustifolia	GE	HV	Sub-circumb.	CC	Tell, Hts. Pl., SS, SC
URTICACEAE	Urtica pilulifera	TH	HA	Euras.	AC	Dans le Tell
	Urtica urens	TH	HA	Circumb.	С	Dans le Tell. R : Ailleurs jusque dans le Sah. Sept.
VALERIANACEAE	Fedia cornucopiae	HE	HV	Méd.	CC	Dans toute l'Algérie

Tableau XXIX : Inventaire floristique de la zone d'étude

Familles	Taxons	T. Bio.	T. Morpho.	T. Biogéo.	Rareté	Répartition
AMARANTHACEAE	Achyranthes aspera L.	HE	HV	Paléo-Trop Méd.	AC	Dans le Tell, surtout Algéro- Constantinois
	Amaranthus albus L.	TH	HA	N. Amér.	AC	Dans le Tell
	Amaranthus angustifolius Lamk.	TH	НА	Ancien monde	С	Dans le Tell
ANACARDIACEAE	Pistacia atlantica Desf.	PH	LV	End. N. A.	AC	Dans toute l'Algérie, sauf dans les zones très arrosées
	Pistacia lentiscus L.	PH	LV	Méd.	CC	Dans toute l'Algérie
	Schinus molle					
APIACEAE	Apium graveolens L.	HE	HV	N. Trop	С	Dans toute l'Algérie
	Eryngium campestre L.	HE	HV	Eur. Méd.	RR	H1-2, RR : dans le Tell
	Eryngium maritimum L.	HE	HV	EurMéd.	C	Sur le littoral
	Ferula communis L.	HE	HV	Méd.	CC	Dans toute l'Algérie, sauf dans l'extrême Sud
	Foeniculum vulgare (Miller) Gaertner	HE	HV	Méd.	CC	Dans toute l'Algérie
	Orlaya maritima Koch.	TH	НА	Méd.	CC	Sur tout le littoral, AR : H1-2, SS, RR : Ailleurs
	Scandix pecten-veneris L.	TH	НА	Eur. Méd.	CC	Dans toute l'Algérie
	Scandix australis L.	TH	HA	Méd.	CC:	sauf dans le Tell littoral.
	Smyrnium olusatrum L.	HE	HV	Méd.	CC	Dans toute l'Algérie
	Thapsia garganica L.	HE	HV	Méd.	CC	Dans toute l'Algérie
	Torilis arvensis (Huds.) Link.	TH	НА	Paléo-Temp.	R	Montagnes – R : A2, K1-2
APOCYNACEAE	Nerium oleander L.	PH	LV	Méd.	CC	Dans toute l'Algérie. RR : SS, SC
ARACEAE	Arisarum vulgare Targ- Tozz.	GE	HV	Circum-Méd.		Tell occidental
ASTERACEAE	Anacyclus valentinus L.	HE	HV	Méd.	AC	H1, AS1, SS. R; SC;
	Artemisia herba-alba Asso.	СН	LV	Esp., Des Canaries a	CCC	H, SS, AR: O1-2-3, C1, SC: en montagnes

			l'Egypte, Asie Occ.		
Asteriscus maritimus (L.) Less.	HE → CH	HV → LV	Canaries, Eur. Mérid. A.N.	CCC	Tell
Atractylis carduus (Forsk.) Christ.	TH	НА	Sah.	CC	SS1-2
Bellis annua L.	TH	HA	Circumméd	CCC:	Tell.
Calendula arvensis L.	TH	HA	Sub-méd.	CCC	Partout en Algérie
Calendula suffruticosa Vahl.	HE	HV	Esp. N. A.	CC	Partout en Algérie
Carduus pycnocephalus L.	HE	HV	Euras.	CCC	Tout le Tell. R : Dans le Sud
Centaurea calcitrapa L.	HE	HV	Euryméd.	CCC	Partout
Centaurea pullata L.	HE	HV	Méd.	CCC	Tout le Tell
Centaurea tenuifolia Dufour	HE	HV	Ibéro-Maur.		Oranie, O3 : Bossuet, Ghar-Rouban, H1 :Sersou, AS2 : Djebel Amou
Chrysanthemum coronarium L.	TH	НА	Méd.	CC	Dans le Tell
Chrysanthemum viscido- hirtum (Scott.) Thell.	TH	НА	Ibéro-Maur. Palestine	С	O1-2
Cichorium intybus L.	HE	HV		CC	Partout
Cladanthus arabicus (L.) Cass.	TH	НА	Méd.	R	O1 : Marnia, Nemours, H1
Conyza naudini Bonnet	TH	НА	Originaire d'Amérique		Un peu partout
Cynara carduncelus L.	HE	HV	Méd.		Toute la zone cultivable
Echinops spinosus L.	TH	HA	S. Méd. Sah.	CC	Dans toute l'Algérie
Echinops strigosus L.	HE	HV	Ibéro. Nord. Af.	CCC	De Ténès a la frontière Marocaine
Filago spathulata Presl.	TH	HA	Méd.	CC	Dans toute l'Algérie
Galactites tomentosa (L.) Moench.	HE	HV	Circumméd.	CCC	Tout le Tell

	Inula crithmoides L.	СН	LV	Haloph. Méd. Atl.	CC:	dans toute l'Algérie; R :SS
	Inula viscosa (L.) Ait.	HE	HV	Circumméd.	CC	Tell; RR: Ailleurs
	Lactuca serriola L.	HE	HV	Paléo-Temp.	AC	Tell, Hts. Pl.
	Mantisalca salmantica (L.) Briq. et Cavill.	HE	HV	EurMéd.	CC	Partout
	Onopordon macracanthum Schousb.	HE	HV	Ibéro-Maur.	CC	Dans tout le Tell
	Picris duriaei Sch. Bip.	HE	HV	End.	CC	
	Picris echioides L.	TH	HA	Euryméd.	CC	Dans le Tell
	Reichardia picrioides (L.) Roth	TH	НА	Méd.	CCC	Dans le Tell
	Reichardia tingitana (L.) Roth	TH	HV	IbéroMar.	CC	Littoral oranais
	Scolymus hispanicus L.	HE	HV	Méd.	CC	Dans toute l'Algérie
	Senecio giganteus Desf.	TH	HA	End. N. A.	CC	Tell
	Senecio	TH	HA	W. Méd.	AC	O1, A1
	leucanthemifolius Poiret			Canar. Syrie		
	Senecio lividus L.	TH	HA	EurMéd.	AR	Dans le Tell
	Senecio vulgare L.	TH	HA	Subcosm.	CCC	Partout
	Silybum murianum (L.) Gaertner	HE	HV	Cosm.	CCC	Dans tout le Tell
	Sonchus asper (L.) Vill.	TH	HA	Cosm.	CC	Partout
	Sonchus maritimus L.	TH	НА	Euras. Circumméd.	AC	Tell.H1-2,SS
	Xanthium spinosus L.	TH	HA	Subcosm.		Naturalisé un peu partout
	Xanthium strumarium L.	TH	HA	Subcosm.	CCC	Partout
BORAGINACEAE	Cynoglossum cheirifolium L.	TH	НА	Méd.	С	Dans toute l'Algérie
	Cynoglossum creticum Miller	HE	HV	Méd.	CC	Dans tout le Tell. RR : Ailleurs
	Cerinthe major L.	TH	НА	Méd.	CC	Dans tout le Tell

	Echium confusum de Coincy	TH	HV	Méd.	CC	Littoral, surtout dans les sables maritimes
	Echium plantagium L.	СН	LV	Méd.	CC	Dans tout le Tell
	Echium vulgare	HE	HV	Méd.	AC	Dans tout le Tell
	Heliothropium europaeum L.	TH	HA	N. Trop.	AC	Dans toute l'Algérie, sauf en Oranie. SS : Biskra
BRASSICACEAE	Alyssum parviflorum Fisch.	TH	НА	Méd.	С	Dans le Tell. R : Ailleurs
	Brassica nigra (L.) Koch.	TH	НА	Euras.	R	Ça et là dans le Tell Algérien
	Cakile aegyptiaca Maire et Weiller	TH	НА	EurMéd.	AR	Sur tout le littoral
	Capsilla borsa-pastoris L.	TH	НА	Méd.	CC	Partout
	Cordylocarpus muricatus Desf.	TH	НА	EndAlg Mar.	AC	O1-2-3, H1-2. R : SS
	Coronopus didymus (L.) Smith.	TH	HV	N. Amer.	R	Alger (naturalisé)
	Diplotaxis tenuifolia (L.) DC.	TH	HV	Sud-Eur.	RR	AS1 : Sahel d'Alger
	Eruca vesicaria (L.) Car.	TH	НА	Méd.	С	Dans toute l'Algérie. AR : SS
	Lobularia maritima (L.) Desv.	TH	HV	Méd.	CC	Dans toute l'Algérie, surtout sur le littoral
	Matthiola maroccana Coss.	TH	НА	EndSah	AR	Atl. Saharien, Sahara septentrional et Central
	Raphanus raphanistrum L.	TH	НА	Méd.	AC	Dans tout le Tell, R : Ailleurs
	Rorripa nasturtium- aquaticum (L.) Hayek	TH	HV	Cosm.	С	Dans tous les eaux de l'Algérie, surtout littoral
	Sinapis alba L.	TH	HA	Paléo-Temp.	C	Dans le Tell
	Sinapis arvensis L.	TH	НА	Paléo-Temp.	AC	Dans le Tell. R : Ailleurs

CAPRIFOLIACEAE	Sambucus nigra L.	СН	LV	S. Eur.	R	Paraît spontané dans les montagnes du constantinois.
CARYOPHYLACEAE	Herniaria hirsuta L.	TH	HA	Paléo-Temp.	AC	Dans toute l'Algérie
	Paronychia argentea (Pourr.) Lamk.	TH	НА	Méd.	С	Dans toute l'Algérie
	Silene coeli-rosa (L.) A. Br.	TH	НА	W. Méd.	R	C :Tell Algéro-Constantinois. R : en Oranie
	Silene colorata Poiret	TH	HA	Méd.	С	O1-2-3, R : Ailleurs
	Stellaria media (L.) Vill.	TH	HA	Cosm.	С	Dans le Tell et sur les Hts Pl.
CHENOPODIACEAE	Arthrocnemum indicum (Willd.) Moq.	СН	LV	Ancien monde	С	Jusque à la lisière sud du Sahara septentrional
	Atriplex chenopodioides Batt.	TH	НА	End. E.N.A.	RR	Bouhanifia près de Mascara
	Atriplex halimus L.	СН	LV	Cosmop.	С	Dans toute l'Algérie, SS, SO, SC : commun en montagne
	Atriplex hastata L.	TH	HA	Circumb.	AC	Dans le Tell. RR : Ailleurs
	Atriplex patula L.	TH	HA	Circumb.	AC	Dans le Tell. RR : Ailleurs : Aflou
	Atriplex tornabeni Tineo.	TH	HA	W. Méd. Atl.	RR	A1 : Sahel d'Alger, O1 : golfe d'Arzew
	Beta vulgaris L.	GE	HV	Euras Méd.	С	Dans le Tell et sur les Hts PL.
	Chenopodium album L.	TH	HA	Cosm.	AC	Dans le Tell. R : Ailleurs
	Chenopodium chenopodioides (L.) Aell.	TH	НА	Eur.	RR	Le Kreider
	Chenopodium multifidum L.	TH	HV	N. Amér.	R	Oran, Alger
	Chenopodium murale L.	TH	HA	Cosm.	С	Dans toute l'Algérie. R : Sahara
	Chenopodium vulvaria L.	TH	НА	EurMéd.	С	Dans le Tell. R : Ailleurs
	Salsola kali L.	TH	НА	Paléo-Temp.	С	Sur tout le littoral. RR: dans l'intérieur: O2, H1
CISTACEAE	Helianthemum	СН	LV	Eur. Méd.	CC	Dans le Tell

	racemosum (L.) Pau					
CONVOLVULACEAE	Convolvulus althaeoides L.	TH	НА	Macar-Méd.	CC	Dans toute l'Algérie surtout en montagnes
	Convolvulus arvensis L.	GE	HV	Euras.	CC	Dans toute l'Algérie
	Convolvulus humilis Sacq.	TH	НА	Méd.	CC	Dans tout le Tell
CRASSULACEAE	Sedum nevadense Coss.	TH	НА	Ibéro-Maur	RR	Aurès et Mts du Hodna, Mts de Tlemcen
CUCURBITACEAE	Bryonia dioica Jacq.	TH	HV	Euras.	CC	Dans tout le Tell. R : Ailleurs
CYPERACEAE	Cyperus fuscus L.	TH	НА	Paléo-Temp.	CC	Tell, Hts. Pl., Atl. Sah., Oasis du pied de l'Atl. Sah.
	Cyperus longus L.	GE	HV	Paléo et Subtrop.	CC	Tell, Hts. Pl., Atl. Sah.
DIOSCOREACEAE	Tamus communis L.	GE	HV	Atl. Méd.	C	Dans le Tell
EUPHORBIACEAE	Mercurialis annua L.	TH	НА	Méd. W. As.	CC	Dans toute l'Algérie jusque à la lisière du Sahara
	Ricinus communis L.	PH	LV	Trop.	AC	Dans toute l'Algérie et le Sahara
FABACEAE	Acacia albida Del.	PH	LV	Af. Trop.	R	SS Dans les massifs montagneux SO
	Astragalus epiglottis L.	TH	HA	Méd.	С	Dans le Tell
	Astragalus narbonensis Gouan.	HE	HV	W. Méd.	R	Aurès, Biban, Ouarsenis, Steppes d'Alfa du Sud Oranais
	Astragalus scorpioides Pourret.	TH	НА	IbéroMaur.	AR	H1-2. Tell oranais
	Calicotome intermedia (Salzm.) Maire	СН	LV	Méd.	С	Tell Oranais
	Ceratonia siliqua L.	PH	LV	Méd.	С	Dans le Tell. R : Ailleurs
	Lotus glinoides Del.	TH	HA	SahAr.	AC	SC dans les zones montagneuses
	Lotus ornithopodioides L.	TH	НА	Méd.	С	Dans le Tell
	Medicago hispida Gaertner.	TH	НА	Méd.	С	Dans le Tell. RR : Ailleurs. SS dans les Oasis
	Medicago lupulina L.	TH	HV	Méd. Eur.	С	Dans le Tell, Aurès

	Medicago minima Grufb.	TH	HA	EurMéd.	С	Dans le Tell. AC : AS1-2-3. R : H1-2
	Medicago sativa L.	TH	HV	Eur. As. Devenue sub- cosmop.	CC	Dans toute l'Algérie, sauf dans le Tell, littoral.
	Medicago scutellata (L.) All.	TH	НА	Méd.	AC	Dans le Tell. R : AS1-2-3
	Melilotus macrocarpa Coss. et Dur.	TH	НА	End. E.N.A.	AC	Dans le Tell, RR : Ailleurs
	Melilotus sicula (Turra) Jackson	TH	НА	Méd.	С	Dans le Tell
	Melilotus sulcatus Desf.	TH	HA	Méd.	C	Dans le Tell
	Ononis biflora Desf.	TH	HA	Méd	AC	C1, O1-2-3
	Ononis natrix L.	СН	LV	Méd.	AC	C: dans le Tell.
	Ononis serrata Forsk.	TH	НА	S. Méd.	AC	H. SS. Tell oranais
	Scorpiurus muricatus L.	TH	HA	Méd.	C	Dans le Tell
	Scorpiurus vermiculatus L.	TH	НА	Méd.	С	Dans le Tell
	Trifolium angustifolium L.	TH	НА	Méd.	С	Dans le Tell, Aurès
	Trifolium campestre Schreb.	TH	НА	Paléo-Temp.	CC	Dans le Tell. R : Ailleurs : AS
	Trifolium stellatum L.	TH	НА	Méd.	CC	Dans le Tell. RR : Ailleurs : Aurès, Bellezma
	Trifolium tomentosum L.	TH	НА	Méd.	С	Dans le Tell. AR : Ailleurs
	Ulex boivini Webb	CH	LV	Ibéro. Mar.	R	Mts de Tlemcen, Sebdou
	Ulex parviflorus Pourret	СН	LV	W. Méd.	AR	01
	Vicia sativa L.	TH	HA	Eur. Méd	С	Dans le Tell. R : Ailleurs.
	Vicia sicula (Raf.) Guss.	TH	HA	W. Méd.	CC	Dans tout le Tell. R: H1-2
GERANIACEAE	Erodium ciconium Willd.	HE	HV	Méd.	C	En oranie, AR: Ailleurs
	Erodium moschatum	HE	HV	Méd.	CC	Dans toute l'Algérie

	(Burm.) L'Her					
	Geranium molle L.	HE	HV	Euras.	CC	Dans toute l'Algérie
	Geranium robertianum L.	HE	HV	Méd. Atl.	CC	En montagne dans toute l'Algérie
	Geranium rotundifolium L.	HE	HV	Eur.	R	Ça et là en Algérie, surtout en montagnes
HYACINTHACEAE	Urginea maritima (L.) Baker.	GE	HV	Canar. Méd.	С	Tell
JUNCACEAE	Juncus acutus L.	GE	HV	Subcosm.	CC	Du litt. Aux Hts. Pl.
	Juncus maritimus Lamk.	GE	HV	Subcosm.	С	Du Litt. Au Sahara central
LAMIACEAE	Ballota histuta Benth.	HE	HV	Ibéro-Maur.	AC	O1-2-3, A1, SS, SC
	Lamium amplexicaule L.	TH	НА	Cosm.	CC	Dans toute l'Algérie
	Marrubium vulgare L.	СН	LV	Cosm.	CC	Dans toute l'Algérie
	Mentha rotundifolia L.	HE	HV	Atl. Méd.	CC	Dans toute l'Algérie
	Salvia officinalis L.	СН	LV	Eur.	CC	Cultivé
	Salvia verbenaca (L.) Briq.	HE	HV	Méd. Atl.	CC	Dans toute l'Algérie
LINACEAE	Linum strictum L.	СН	LV	Méd.	AC	Dans toute l'Algérie
LYTHRACEAE	Lythrum acutangulum Lag.	TH	НА	Ibéro-Maur.	AR	O1-2-3, A2
	Lythrum junceum Soland.	TH	HV	Méd.	CC	Dans toute l'Algérie
MALVACEAE	Lavatera maritima Gouan	СН	LV	W. Méd.	AC	Dans tout le Tell et sur le littoral
	Malva aegyptiaca L.	TH	НА	SahSind. Méd.	С	H1-2, SS
	Malva parviflora L.	TH	HA	Méd.	CC	Dans toute l'Algérie, SS, SC
	Malva sylvestris L.	TH	HA	Euras.	CC	Dans toute l'Algérie, SS
MORACEAE	Ficus carica L.	PH	LV	Circumméd.	CC	Cultivé
MYRTACEAE	Eucalyptus globulus	PH	LV			Originaire d'Australie
OLEACEAE	Fraxinus angustifolia	PH	LV	Eur.	С	Dans toute l'Algérie

	Vahl.					
	Olea europea L.	PH	LV	Méd.	CC	Dans toute l'Algérie. R : SS
OROBANCHACEAE	Orobanche purpurea Jacq.	TH	НА	Euras.	RR	O2 : Ste Barbe du tlélat, AS3 : Aurès
OXALIDACEAE	Oxalis cernua Thumb.	GE	HV	Originaire du Cap	CC	Dans tout le Tell. R : Ailleurs
	Oxalis corniculata L.	GE	HV	Cosm.	CC	Dans toute l'Algérie
PALMACEAE	Chamaerops humilis L.	CH	LV	W. Méd.	CC	Dans le Tell
FUMARIACEES	Fumaria officinalis L.	TH	HA	Paléo-Temp.	С	Dans toute l'Algérie
PAPAVERACEAE	Papaver hybridum L.	TH	HA	Méd.	С	Dans toute l'Algérie
	Papaver rhoas L.	TH	HA	Paléo-Temp.	С	Dans toute l'Algérie
PLANTAGINACEAE	Plantago coronopus L.	HE	HV	Euras.	CC	Dans toute l'Algérie
	Plantago lagopus L.	HE	HV	Méd.	CC	Dans toute l'Algérie
	Plantago major L.	HE	HV	Euras.	CC	Dans tout le Tell, R : Ailleurs
	Plantago ovata Forsk.	HE	HV	Méd.	CC	Dans toute l'Algérie, sauf dans le Tell Algéro-Constantinois, SS
	Plantago serraria L.	HE	HV	W. Méd.	CC	Dans tout le Tell
POACEAE	Aegelops triuncialis L.	TH	НА	MédIrano- Tour	С	Tell (plus rare à l'Est)
	Alopecurus utriculatus (L.) Pers.	TH	НА	Atl. Méd.		A1 :Alger, O1-O3 : Mascara
	Arundo donax L.	GE	HV	Méd.	С	Tell, Hts. Pl., SS2 : Biskra
	Avena sterilis L.	TH	НА	Macar-Méd Irano-Tour	CC	Partout
	Brachypodium distachyum (L.) P.B.	TH	НА	Paléo- Subtrop.	CC	Du littoral au grand Erg occidental
	Brachypodium phoenicoides (L.) R. et S.	GE	HV	W. Méd.	С	Dans le Tell, AS3 : Aurès, R : Ailleurs
	Brachypodium sylvaticum (Huds.) P.B.	GE	HV	Paléotemp.	С	Dans le Tell
	Bromus hordeaceus L.	TH	HA	Paléo-Temp.	С	Tell, Hts Pl. Atl. Sah. (Aurès compris),

						Sah. Central
	Bromus madritensis L.	TH	HA	EurMéd.	CC	Dans tout le Tell
	Bromus rubens L.	TH	НА	Paléo- Subtrop.		Du littoral au Sahara central
	Cynodon dactylon (L.) Pers.	GE	HV	Thermocosm.	CC	Partout en Algérie, Lieux humides du Sahara
	Dactylis glomerata L.	GE	HV	Paléo-Temp.	С	Du littoral a l'Atl. Sah.
	Echinaria capitata (L.) Desf.	TH	НА	AtlMéd	С	Tell, Hts Pl., Atl. Sah.
	Festuca elatior L.	GE	HV	Circumbor.	RR	O2 : La Macta
	Gastridium scabrum Presl.	TH	НА	Méd.	CC	Dans tout le Tell
	Hordeum murinum L.	TH	НА	Circummbor.	AR	CC: du littoral à la lisière du Sahara sept. Oasis de ce dernier.
	Hordeum vulgare	TH	HA		CC	Cultivé
	Lagurus ovatus L.	TH	HA	Macar-Méd.	CC	Du littoral a l'Atl. Sah.
	Lamarkia aurea L.	TH	НА	Macar. Méd Ethiopie	CC	Dans tout le Tell
	Lolium rigidum Gaud.	TH	НА	Paléo- subtrop.	С	Dans toute l'Algérie
	Oryzopsis miliacea (L.) Asch. et Schw.	СН	LV	MédIrano- Tour	С	Du Littoral au Sahara
	Phalaris caerulescens Desf.	GE	HV	MacarMéd.	С	Dans le Tell
	Phleum pratense L.	GE	HV	Circumbor.	AC	K1-2-3, A1-2, C1, O2, AS
	Phragmites communis Trin	GE	HV	Cosm.	С	Dans toute l'Algérie. Sahara
	Poa annua L.	TH	HA	Cosm.	С	Tell
POLYGONACEAE	Polygonum convolvulus L.	TH	НА	Circumbor.	AC	Dans le Tell, R : AS
	Polygonum equisetiforme S. et Sm.	TH	НА	Méd.	R	O1-2-3. A1. H1-2. Oasis du sahara septentrional

	Polygonum maritimum L.	СН	LV	Cosm.	AC	Sur tout le littoral
	Polygonum salicifolium Brouss.	TH	НА	Trop. Méd.	AC	Dans le Tell
	Rumex bucephalophorus L.	TH	НА	Méd.	CC	Dans le Tell. AC : Ailleurs, jusque sur l'Atl. Sah.
	Rumex conglomeratus Murr.	TH	HV	Cosmop.	С	Dans toute l'Algérie
	Rumex pulcher L.	HE	HV	Méd.	CC	Dans le Tell. R : Ailleurs
PRIMULACEAE	Anagallis arvensis L.	TH	НА	Sub. Cosmop	CC	Dans toute l'Algérie, surtout dans le Tell. R : SS : Oasis
RENONCULACEAE	Adonis aestivalis L.	TH	HA	Euras.	AC	Dans le Tell. R : Ailleurs
	Ranunculus macrophyllus Desf.	HE	HV	W. Méd.	CC	Dans le Tell. R : Ailleurs
	Ranunculus muricatus L.	TH	HV	Méd.	С	Dans le Tell. R : Ailleurs
RESEDACEAE	Reseda alba L.	TH	HA	Euras.	AC	Dans le Tell jusque dans le Sahara Septentrional
RHAMNACEAE	Ziziphus lotus (L.) Desf.	PH	LV	Méd.	CC	Dans toute l'Algérie, sauf sur le Tell Algéro-Constantinois
ROSACEAE	Rubus ulmifolius Schott.	CH	LV	EurMéd.	C	Dans le Tell ; Aurès
RUBIACEAE	Asperula hirsuta Desf.	HE	HV	W. Méd.	CC	Dans le Tell et toutes les régions montagneuses
	Rubia tinctorum L.	HE	HV	Méd.	AR	Dans le Tell. RR : Ailleurs
SALICACEAE	Populus alba B.	PH	LV	Paléo-Temp.	CC	Dans toute l'Algérie
	Salix alba L.	PH	LV	Paléo-Temp.	С	Dans le Tell
SCROFULARIACEAE	Linaria commutata Chaz.	TH	HA	EurMéd.	AC	Surtout dans le Tell
SCROPHILIACEAE	Verbascum sinuatum L.	HE	HV	Méd.	CC	Dans toute l'Algérie
	Veronica anagallis- aquatica L.	TH	НА	Euras.	AC	Dans les régions montagneuses. R : en plaine.
SOLANACEAE	Datura stramonium L.	HE	HV	Cosm.	AC	Dans toute l'Algérie. AR : SS, SC

	Nicotiana glauca	PH	LV	N Am.	AC	Dans toute l'Algérie
	Graham					
	Solanum nigrum L.	TH	HA	Cosm.	CC	Dans toute l'Algérie, R : SC, CC
	Withania frutescens	CH	LV	Ibéro-Mar.	CC	O1-2
	Panquy					
TAMARICACEAE	Tamarix africana Poiret	PH	LV	W. Méd.	CC	En Algérie. R : SS
TYPHACEAE	Typha angustifolia L.	GE	HV	Sub-circumb.	CC	Tell, Hts. Pl., SS, SC
ULMACEAE	Celtis australis L.	PH	LV	Eur. Méd.	AC	Dans le Tell. RR : Ailleurs
URTICACEAE	Urtica membranacea	TH	HA	Méd.	С	Dans le Tell
	Poir.					
	Urtica pilulifera L.	TH	HA	Euras.	AC	Dans le Tell
	Urtica urens L.	TH	HA	Circumb.	С	Dans le Tell. R : Ailleurs jusque dans le
						Sah. Sept.
VALERIANACEAE	Fedia cornucopiae (L.) Gaertner	HE	HV	W. Méd.	CC	Dans le Tell. R : Ailleurs
	Valeriana tuberosa L.	НЕ	HV	Méd.	AC	Dans le Tell littoral et sur les Montagnes
	Valerianella coronata (L.) DC.	TH	НА	Méd.	С	Dans la zone montagneuse
VERBENACEAE	Verbena supina L.	HE	HV	Méd.	AR	Dans toute l'Algérie

Tableau XXX : Contribution des espèces de l'amont de la Tafna

Taxons	CODE	axe 1	axe 2	axe 3
Anacyclus valentinus L.	ava	-0,117132	-2,070198	1,0321102
Apium graveolens L.	ag	2,978467	1,7580733	-1,432996
Cyperus longus L.	cyp2	1,7804604	1,1871268	-2,527819
Nerium oleander L.	no	6,1687729	1,1696571	4,8356105
Rorippa nasturtium-aquaticum (L.) Hayek	rna	2,7381134	0,7888355	-1,494153
Paronychia argentea (Pourr.) Lamk.	pa	-0,035767	0,2072338	1,2650134
Trifolium tomentosum L.	t4	-0,28964	0,4053237	-0,16256
Polygonum salicifolium Brouss.	po4	0,1267162	0,4076026	-0,638899
Centaurea calcitrapa L.	ce1	-0,214073	0,4267588	0,2393005
Gastridium scabrum Presl.	gs	-0,28964	0,4053237	-0,16256
Carduus pycnocephalus L.	ср	-0,211261	-1,087824	-0,597799
Polygonum convolvulus L.	po1	0,1763464	-0,125791	-1,328332
Scolymus hispanicus L.	sh	1,486891	1,2828253	-1,302875
Malva sylvestris L.	ma3	0,0229956	0,5741109	0,6110308
Cynodon dactylon (L.) Pers.	cyd	1,0748852	1,3969126	-1,527694
Mentha rotundifolia L.	mr	3,8415777	1,7756506	-1,68723
Conyza naudini Bonnet	cn	1,0533688	0,3072605	-1,987487
Tamarix africana Poiret	taa	1,7084795	-4,206803	0,2894805
Malva parviflora L.	ma2	0,2718839	0,0458763	-1,328615
Juncus acutus L.	j1	0,396327	-1,071054	-1,119511
Chamaerops humilis L.	chh	-0,235435	0,4018357	0,4477822
Inula viscosa (L.) Ait.	i2	3,1449631	-6,633916	-0,540284
Olea europea L.	oe	0,8888446	0,0270622	1,325517
Populus alba B.	pal	0,4849535	1,2773628	-0,569108
Verbascum sinuatum L.	VS	-0,109381	0,3053936	0,3197172
Xanthium strumarium L.	x2	0,1310699	0,9470301	-0,698633
Plantago major L.	pl3	0,609012	0,7403323	-1,261224
Beta vulgaris L.	bv	-0,272012	0,1501994	0,0986171
Brachypodium distachyum (L.) P.B.	br1	-0,352072	0,4444274	0,2583125
Solanum nigrum L.	sol	-0,352072	0,4444274	0,2583125
Onopordon macracanthum Schousb.	onm	-0,338253	-0,249955	1,0765383
Bromus rubens L.	b3	-0,343871	-0,381957	-0,274688
Festuca elatior L.	fe	-0,338163	0,4042465	0,0437323
Oryzopsis miliacea (L.) Asch. et Schw.	orm	-0,296193	0,1317276	0,1018311
Juncus maritimus Lamk.	j2	0,2204177	-0,665806	0,1723953
Cyperus fuscus L.	cyp1	-0,352072	0,4444274	0,2583125
Polygonum equisetiforme S. et Sm.	po2	0,3909214	0,8356186	-0,638552
Plantago lagopus L.	pl2	-0,222885	-0,891775	0,8146024
Reseda alba L.	re	-0,383641	0,2705582	0,564964
Calendula arvensis L.	ca1	0,1251364	-0,01361	4,0014426

Anagallis arvensis L.	aar	-0,128573	-0,609844	1,1431417
Cynoglossum cheirifolium L.	cy1	-0,391406	0,1742398	0,2816723
Thapsia garganica L.	tg	-0,301193	0,3822194	1,1645012
Ballota hirsuta Benth.	bh	-0,375596	-0,658625	0,5325822
Senecio lividus L.	se3	-0,454825	0,4158616	0,1095062
Melilotus macrocarpa Coss. et Dur.	me1	-0,245267	-0,113297	-0,520406
Sinapis arvensis L.	si2	-0,301193	0,3822194	1,1645012
Capsella borsa-pastoris L.	cb	-0,107376	0,5382737	1,8817361
Cynoglossum creticum Miller	cy2	-0,454825	0,4158616	0,1095062
Medicago minima Grufb.	m3	-0,189685	0,6173749	1,2130684
Bellis annua L.	ba	-0,145978	0,6771185	0,4411776
Calicotome intermedia (Salzm.) Maire	cai	-0,429003	0,3679364	0,6100942
Sedum nevadense Coss.	sen	-0,486621	0,5116622	0,2088185
Cladanthus arabicus (L.) Cass.	car	-0,467107	-0,663225	0,0907326
Matthiola maroccana Coss.	mm	-0,549851	0,3226838	0,2295589
Echinaria capitata (L.) Desf.	ecc	-0,494386	0,4153438	-0,074473
Ononis biflora Desf.	on1	-0,494386	0,4153438	-0,074473
Valeriana tuberosa L.	vt	-0,515422	0,3604393	-0,313663
Helianthemum racemosum (L.) Pau	hr	-0,55291	0,3836966	-0,13474
Linum strictum L.	lis	-0,18554	0,6766007	0,2571982
Geranium molle L.	g1	-0,382172	0,4227771	0,1452248
Erodium moschatum (Burm.) L'Her	er2	-0,339416	0,2320957	0,9379205
Lotus glinoides Del.	11	-0,435736	0,4283262	0,1208196
Stellaria media (L.) Vill.	st1	-0,310987	0,2774736	0,6006826
Lamium amplexicaule L.	la	-0,391406	0,1742398	0,2816723
Alyssum parviflorum Fisch.	ap	-0,382172	0,4227771	0,1452248
Raphanus raphanistrum L.	rr	-0,422327	-0,376641	1,1193123
Convolvulus althaeoides L.	co1	-0,530778	-0,089103	0,1036392
Pistacia lentiscus L.	pi2	-0,52929	-0,965898	0,4400891
Echinops spinosus L.	ec1	-0,438692	-1,310567	-0,099865
Sinapis alba L.	si1	-0,527259	-0,958171	-0,379707
Senecio giganteus Desf.	se1	-0,42848	0,0018326	-0,34278
Lolium rigidum Gaud.	lr	-0,534308	-0,120764	-0,089501
Lamarkia aurea L.	laa	-0,509944	-0,239588	0,1509383
Lythrum junceum Soland.	ly2	-0,351377	-0,708015	-0,520603
Atractylis carduus (Forsk.) Christ.	ac	-0,454501	-0,477702	-0,350775
Torilis arvensis (Huds.) Link	ta	-0,345261	-1,131436	-1,148161
Mantisalca salmantica (L.) Briq. et Cavill.	ms	-0,454501	-0,477702	-0,350775
Bromus hordaceus L.	b1	-0,454501	-0,477702	-0,350775
Rumex pulcher L.	ru3	-0,454501	-0,477702	-0,350775
Typha angustifolia L.	tya	0,2454622	-1,569857	-2,520635
Atriplex hastata L.	at3	-0,422296	0,019822	-0,216455
Marrubium vulgare L.	mv	-0,422296	0,019822	-0,216455

Bryonia dioica Jacq.	bd	-0,49235	-0,107737	-0,328838
Arisarum vulgare Targ. Tozz.	av	-0,444077	-0,160412	-0,006327
Rumex bucephalophorus L.	ru1	-0,313256	0,0832477	-0,545803
Heliothropium europeum L.	he	-0,179288	-0,166727	-1,084876
Artemisia herba alba Asso	ah	-0,277423	-0,143739	-0,180006
Ceratonia siliqua L.	cs	-0,42062	0,0470244	-0,115687
Rubus ulmifolius Schott.	ruu	-0,476085	-0,045636	0,1883454
Salix alba L.	SX	-0,263928	0,2214395	-0,542137
Rubia tinctorum L.	rt	-0,263928	0,2214395	-0,542137
Linaria commutata Chaz.	lc	-0,471685	0,2617684	-0,106469
Hordeum murinum L.	h1	-0,548931	-0,011125	0,4076921
Astragalus epiglottis L.	as1	-0,484371	0,1393095	0,036343
Filago spathulata Presl.	fs	-0,588697	-0,016619	0,5247177
Echium plantaginum L.	ech2	-0,029527	-0,05855	0,9972063
Trifolium stellatum L.	t3	-0,425844	-0,112603	-0,143611
Lotus ornithopodioides L.	12	-0,337399	0,0468523	-0,456577
Lobularia maritima (L.) Desv.	lm	-0,291558	-0,327519	-0,49372
Sonchus asper (L.) Vill.	s1	-0,38626	-0,016416	-0,272235
Adonis aestivalis L.	ada	-0,511451	0,2562752	0,010557
Asperula hirsuta Desf.	ash	-0,511451	0,2562752	0,010557
Echium vulgare	ech3	-0,511451	0,2562752	0,010557
Scorpiurus muricatus L.	sco1	-0,289579	0,1824403	0,4705384

Tableau XXXI : Contribution des espèces de la moyenne Tafna

Taxons	CODE	axe 1	axe 2	axe 3
Chenopodium multifidum L.	c3	-0,334375	0,2456613	-0,229455
Chrysanthemum coronarium L.	ch1	-0,357148	-0,126231	-0,052357
Pistacia atlantica Desf.	pi1	-0,452262	0,0118175	-0,191134
Foeniculum vulgare (Miller) Gaertner	fv	-0,435893	-0,066027	-0,533389
Echinops strigosus L.	ec2	-0,451677	0,0626066	-0,104297
Arundo donax L.	ad	0,0920007	-0,832118	-0,280648
Ferula communis L.	fc	0,1135376	0,4642432	-1,72699
Salvia verbenaca (L.) Briq.	sal2	-0,445653	0,5018297	0,1592983
Withania frutescens Panquy	wf	-0,249083	0,2552585	0,1327546
Picris echioides L.	p2	-0,297553	-0,104546	0,3436861
Celtis australis L.	cea	-0,423393	0,2621913	0,0877676
Lavatera maritima Gouan	lam	-0,41013	0,3347082	0,1061579
Avena sterilis L.	ast	-0,412346	-0,175764	-0,05435
Aegilops triuncialis L.	atr	-0,40379	0,1494381	0,2085331
Cynara cardunculus L.	сс	-0,451677	0,0626066	-0,104297
Eucalyptus globulus	eg	-0,386822	0,0051424	0,082871

Chenopodium vulvaria L.	c5	-0,357202	-0,438332	0,2092567
Ziziphus lotus (L.) Desf.	zl	-0,184141	1,239978	0,0882777
Rumex conglomeratus Murr.	ru2	-0,461224	0,3580823	0,1600212
Fraxinus angustifolia Vahl	fa	-0,386459	-0,015925	0,1808799
Phragmites communis Trin	phc	0,5182491	-0,668673	1,8824392
Silybum murianum (L.) Gaertner	sim	1,2009554	-4,263978	1,8172228
Acacia albida Del.	aca	-0,40883	0,0508881	-0,345506
Geranium rotundifolium L.	g3	-0,392674	0,2454246	-0,259391
Reichardia picroides (L.) Roth.	r1	-0,461224	0,3580823	0,1600212
Alopecurus utriculatus (L.) Pers.	au	-0,266622	0,0586256	0,3774655
Bromus madritensis L.	b2	-0,10113	-1,08894	-0,477773
Chenopodium album L.	c1	-0,180358	0,324442	-0,737268
Chenopodium chenopodioides (L.) Aell.	c2	-0,428476	0,3349351	0,1871543
Lythrum acutangulum Lag.	ly1	-0,368581	0,1117383	0,1967122
Galactites tomentosa (L.) Moench.	gt	-0,443682	0,3337583	0,1974855
Salvia officinalis L.	sal1	-0,446354	0,2072718	0,171322
Lagurus ovatus L.	lo	-0,47088	0,359099	0,1980743
Plantago ovata Forsk.	pl4	-0,446354	0,2072718	0,171322
Ficus carica L.	fic	-0,445653	0,5018297	0,1592983
Dactylis glomerata L.	dg	-0,461224	0,3580823	0,1600212
Malva aegyptiaca L.	ma1	-0,461224	0,3580823	0,1600212
Centaurea tenuifolia Dufour	ce3	-0,445653	0,5018297	0,1592983
Brassica nigra (L.) Koch.	bn	-0,445653	0,5018297	0,1592983
Fumaria officinalis L.	fo	-0,40522	0,2024189	0,1941849
Urtica urens L.	ur3	-0,45883	0,31397	0,1091946
Scandix pecten-veneris L.	sc1	-0,436836	0,2761634	0,0831541
Silene coeli-rosa (L.) A. Br.	sl1	-0,436836	0,2761634	0,0831541
Herniaria hirsuta L.	hh	-0,41321	0,2001447	0,1364763
Sambucus nigra L.	sn	-0,446717	0,2283392	0,0733131
Verbena supina L.	ves	-0,437938	0,0719209	-0,034056
Cordylocarpus muricatus Desf.	cmu	-0,446717	0,2283392	0,0733131
Veronica anagallis-aquatica L.	va	-0,25156	-0,400053	-0,142581
Ulex boivini Webb	u1	-0,393391	0,1544672	0,0045679
Lactuca seriola L.	ls	-0,443682	0,3337583	0,1974855
Chenopodium murale L.	c4	0,7152813	0,2628595	2,1432228
Achyranthes aspera L.	aa	-0,437938	0,0719209	-0,034056
Medicago scutellata (L.) All.	m5	-0,412649	0,2541955	0,0975773
Astragalus narbonensis Gouan	as2	-0,412649	0,2541955	0,0975773
Vicia sicula (Raf.) Guss.	v2	-0,412649	0,2541955	0,0975773
Urtica membranacea Poir.	ur1	-0,258935	-0,592807	-0,438195
Sonchus maritimus L.	s2	-0,355436	0,2194505	0,1373259
Mercurialis annua L.	ma	-0,434343	0,2313907	0,0512169
Hordeum vulgare	h2	-0,353671	0,215592	0,0347837

Datura stramonium L. ds -0,171877 1,3951432 0,2844522	Plantago coronopus L.	pl1	0,1613738	0,6550534	-0,075479
Amaranthus angustifolius Lamk. a2 1,2953819 1,6476727 2,6252668	Xanthium spinosum L.	x1	1,8446648	3,0408375	-1,668719
Convolvulus arvensis L. co2 -0,226029 -0,045825 -0,028548 Papaver rhoeas L. pp2 -0,155788 -0,051547 1,0339474 Picris duriaci Sch. Bip. p1 -0,341806 0,32909 0,5314373 Ramunculus muricatus L. ra2 -0,401648 0,2260852 0,2470592 Diplotaxis tenuifolia (L.) DC. dt -0,341806 0,32909 0,5314373 Cerinthe major L. cm -0,302246 0,4302602 0,1712841 Trifolium campestre Schreb. t2 -0,401648 0,2260852 0,2470592 Poa annua L. poa -0,346604 -0,013095 0,3268975 Melitotus sulcata Desf. on3 -0,347475 0,3151363 0,2147284 Eruca vesicaria (L.) Car. ev -0,380621 0,3078501 -0,010904 Valerianella coronata (L.) DC. vc -0,306706 0,2465525 0,2399708 Fedia cornucopiae (L.) Gaertner fec -0,294316 0,1624802 0,145873 Scandix australis L. sc2 -0,302961 <t< td=""><td>Datura stramonium L.</td><td>ds</td><td>-0,171877</td><td>1,3951432</td><td>0,2844522</td></t<>	Datura stramonium L.	ds	-0,171877	1,3951432	0,2844522
Papaver rhoeas L.	Amaranthus angustifolius Lamk.	a2	1,2953819	1,6476727	2,6252668
Picris duriaei Sch. Bip.	Convolvulus arvensis L.	co2	-0,226029	-0,045825	-0,028548
Picris duriaei Sch. Bip.	Papaver rhoeas L.	pp2	-0,155788	-0,051547	1,0339474
Diplotaxis tenuifolia (L.) DC.	Picris duriaei Sch. Bip.	p1	-0,341806	0,32909	0,5314373
Cerinthe major L. cm -0,302246 0,4302602 0,1712841 Trifolium campestre Schreb. 12 -0,401648 0,2260852 0,2470592 Poa annua L. poa -0,346604 -0,013095 0,3268975 Melilous sulcata Desf. me3 -0,002017 0,2486132 0,8429289 Ononis serrata Forsk. on3 -0,347475 0,3151363 0,2147280 Eruca vesicaria (L.) Car. ev -0,380621 0,3078501 -0,010904 Valerianella coronata (L.) DC. vc -0,306706 0,2465525 0,2399708 Fedia cornucopiae (L.) Gaertner fec -0,294316 0,1624802 0,1458738 Scandix australis L. sc2 -0,302963 0,2236277 0,2104522 Medicago hispida Gaertner. m1 -0,388057 0,2706012 0,2147357 Atriplex chenopodioides Batt. at1 -0,046019 0,8185428 -0,084066 Medicago lupulina L. m2 -0,283311 0,3844662 0,072309 Asteriscus maritimus (L.) Less. am -0,377457 <td>Ranunculus muricatus L.</td> <td>ra2</td> <td>-0,401648</td> <td>0,2260852</td> <td>0,2470592</td>	Ranunculus muricatus L.	ra2	-0,401648	0,2260852	0,2470592
12	Diplotaxis tenuifolia (L.) DC.	dt	-0,341806	0,32909	0,5314373
Poa annua L.	Cerinthe major L.	cm	-0,302246	0,4302602	0,1712841
Melilotus sulcata Desf. me3 -0,002017 0,2486132 0,8429289 Ononis serrata Forsk. on3 -0,347475 0,3151363 0,2147284 Eruca vesicaria (L.) Car. ev -0,380621 0,3078501 -0,010904 Valerianella coronata (L.) DC. vc -0,306706 0,2465525 0,2399708 Fedia cornucopiae (L.) Gaertner fec -0,294316 0,1624802 0,1458738 Scandix australis L. sc2 -0,302963 0,2236277 0,2104522 Medicago hispida Gaertner. m1 -0,388057 0,2706012 0,2147357 Atriplex chenopodioides Batt. at1 -0,046019 0,8185428 -0,084066 Medicago lupulina L. m2 -0,283311 0,3844662 0,072096 Asteriscus maritimus (L.) Less. am -0,377457 0,0181172 0,142665 Vicia sativa L. v1 -0,445932 0,20144 0,1167846 Calendula suffruticosa Vahl ca2 -0,457219 0,1260423 0,1420652 Atriplex halimus L. at2 -0,067296	Trifolium campestre Schreb.	t2	-0,401648	0,2260852	0,2470592
Ononis serrata Forsk. on3 -0,347475 0,3151363 0,2147284 Eruca vesicaria (L.) Car. ev -0,380621 0,3078501 -0,010904 Valerianella coronata (L.) DC. vc -0,306706 0,2465525 0,2399708 Fedia cornucopiae (L.) Gaertner fec -0,294316 0,1624802 0,1458738 Scandix australis L. sc2 -0,302963 0,2236277 0,2104522 Medicago hispida Gaertner. m1 -0,388057 0,2706012 0,2147357 Atriplex chenopodioides Batt. at1 -0,046019 0,8185428 -0,084066 Medicago lupulina L. m2 -0,283311 0,3844662 0,0723096 Asteriscus maritimus (L.) Less. am -0,377457 0,0181172 0,1442652 Vicia sativa L. v1 -0,445932 0,20144 0,1167846 Calendula suffruticosa Vahl ca2 -0,427219 0,1260423 0,1420605 Atriplex halimus L. at2 -0,067296 0,8613262 0,4103572 Ulex parviflorus Pourret u2 -0,3655	Poa annua L.	poa	-0,346604	-0,013095	0,3268975
Eruca vesicaria (L.) Car. ev -0,380621 0,3078501 -0,010904 Valerianella coronata (L.) DC. vc -0,306706 0,2465525 0,2399708 Fedia cornucopiae (L.) Gaertner fec -0,294316 0,1624802 0,1458738 Scandix australis L. sc2 -0,302963 0,2236277 0,2104522 Medicago hispida Gaertner. m1 -0,388057 0,2706012 0,2147357 Atriplex chenopodioides Batt. at1 -0,046019 0,8185428 -0,084066 Medicago lupulina L. m2 -0,283311 0,3844662 0,0723096 Asteriscus maritimus (L.) Less. am -0,377457 0,0181172 0,1442552 Vicia sativa L. v1 -0,445932 0,20144 0,1167846 Calendula suffruticosa Vahl ca2 -0,427219 0,1260423 0,1420605 Atriplex halimus L. at2 -0,067296 0,8613262 0,4103572 Ulex parviflorus Pourret u2 -0,365525 -0,428657 -0,406185 Astragalus scorpioides Pourret as3 <t< td=""><td>Melilotus sulcata Desf.</td><td>me3</td><td>-0,002017</td><td>0,2486132</td><td>0,8429289</td></t<>	Melilotus sulcata Desf.	me3	-0,002017	0,2486132	0,8429289
Valerianella coronata (L.) DC. vc -0,306706 0,2465525 0,2399708 Fedia cornucopiae (L.) Gaertner fec -0,294316 0,1624802 0,1458738 Scandix australis L. sc2 -0,302963 0,2236277 0,2104522 Medicago hispida Gaertner. m1 -0,388057 0,2706012 0,2147357 Atriplex chenopodioides Batt. at1 -0,046019 0,8185428 -0,084066 Medicago lupulina L. m2 -0,283311 0,3844662 0,0723096 Asteriscus maritimus (L.) Less. am -0,377457 0,0181172 0,1442552 Vicia sativa L. v1 -0,445932 0,20144 0,1167846 Calendula suffruticosa Vahl ca2 -0,427219 0,1260423 0,1420603 Atriplex halimus L. at2 -0,067296 0,8613262 0,4103572 Ulex parviflorus Pourret u2 -0,365525 -0,428657 -0,406183 Astragalus scorpioides Pourret as3 0,3050666 0,6517132 -0,923176 Papaver hybridum L. pp1 -0,	Ononis serrata Forsk.	on3	-0,347475	0,3151363	0,2147284
Fedia cornucopiae (L.) Gaertner fec -0,294316 0,1624802 0,1458738 Scandix australis L. sc2 -0,302963 0,2236277 0,2104522 Medicago hispida Gaertner. m1 -0,388057 0,2706012 0,2147357 Atriplex chenopodioides Batt. at1 -0,046019 0,8185428 -0,084066 Medicago lupulina L. m2 -0,283311 0,3844662 0,0723096 Asteriscus maritimus (L.) Less. am -0,377457 0,0181172 0,1442552 Vicia sativa L. v1 -0,445932 0,20144 0,1167846 Calendula suffruticosa Vahl ca2 -0,427219 0,1260423 0,1420605 Atriplex halimus L. at2 -0,067296 0,8613262 0,4103572 Ulex parviflorus Pourret u2 -0,365525 -0,428657 -0,406185 Astragalus scorpioides Pourret as3 0,3050666 0,6517132 -0,923176 Papaver hybridum L. p1 -0,360578 -0,068673 0,0904295 Smyrnium olusatrum L. ava -0,12773 <td>Eruca vesicaria (L.) Car.</td> <td>ev</td> <td>-0,380621</td> <td>0,3078501</td> <td>-0,010904</td>	Eruca vesicaria (L.) Car.	ev	-0,380621	0,3078501	-0,010904
Scandix australis L. sc2 -0,302963 0,2236277 0,2104522 Medicago hispida Gaertner. m1 -0,388057 0,2706012 0,2147357 Atriplex chenopodioides Batt. at1 -0,046019 0,8185428 -0,084066 Medicago lupulina L. m2 -0,283311 0,3844662 0,0723096 Asteriscus maritimus (L.) Less. am -0,377457 0,0181172 0,1442552 Vicia sativa L. v1 -0,445932 0,20144 0,1167846 Calendula suffruticosa Vahl ca2 -0,427219 0,1260423 0,1420605 Atriplex halimus L. at2 -0,067296 0,8613262 0,4103572 Ulex parviflorus Pourret u2 -0,365525 -0,428657 -0,406185 Astragalus scorpioides Pourret as3 0,3050666 0,6517132 -0,923176 Papaver hybridum L. pp1 -0,360578 -0,068673 0,090429 Smyrnium olusatrum L. ava -0,012773 -2,569355 -1,293505 Apium graveolens L. ag -0,281143 <t< td=""><td>Valerianella coronata (L.) DC.</td><td>vc</td><td>-0,306706</td><td>0,2465525</td><td>0,2399708</td></t<>	Valerianella coronata (L.) DC.	vc	-0,306706	0,2465525	0,2399708
Medicago hispida Gaertner. m1 -0,388057 0,2706012 0,2147357 Atriplex chenopodioides Batt. at1 -0,046019 0,8185428 -0,084066 Medicago lupulina L. m2 -0,283311 0,3844662 0,0723096 Asteriscus maritimus (L.) Less. am -0,377457 0,0181172 0,1442552 Vicia sativa L. v1 -0,445932 0,20144 0,1167846 Calendula suffruticosa Vahl ca2 -0,427219 0,1260423 0,1420605 Atriplex halimus L. at2 -0,067296 0,8613262 0,4103572 Ulex parviflorus Pourret u2 -0,365525 -0,428657 -0,406185 Astragalus scorpioides Pourret as3 0,3050666 0,6517132 -0,923176 Papaver hybridum L. pp1 -0,360578 -0,088673 0,0904295 Smyrnium olusatrum L. ava -0,012773 -2,569355 -1,293505 Anacyclus valentinus L. ava -0,012773 -2,569355 -1,293505 Apium graveolens L. ag -0,281143	Fedia cornucopiae (L.) Gaertner	fec	-0,294316	0,1624802	0,1458738
Atriplex chenopodioides Batt. at1 -0,046019 0,8185428 -0,084066 Medicago lupulina L. m2 -0,283311 0,3844662 0,0723096 Asteriscus maritimus (L.) Less. am -0,377457 0,0181172 0,1442552 Vicia sativa L. v1 -0,445932 0,20144 0,1167846 Calendula suffruticosa Vahl ca2 -0,427219 0,1260423 0,1420605 Atriplex halimus L. at2 -0,067296 0,8613262 0,4103572 Ulex parviflorus Pourret u2 -0,365525 -0,428657 -0,406185 Astragalus scorpioides Pourret as3 0,3050666 0,6517132 -0,923176 Papaver hybridum L. p1 -0,360578 -0,088673 0,0904295 Smyrnium olusatrum L. ava -0,295918 0,4058753 -0,298015 Anacyclus valentinus L. ava -0,012773 -2,569355 -1,293505 Apium graveolens L. ag -0,281143 0,7971129 -0,338342 Cyperus longus L. cyp2 -0,461224 0,	Scandix australis L.	sc2	-0,302963	0,2236277	0,2104522
Medicago lupulina L. m2 -0,283311 0,3844662 0,0723096 Asteriscus maritimus (L.) Less. am -0,377457 0,0181172 0,1442552 Vicia sativa L. v1 -0,445932 0,20144 0,1167846 Calendula suffruticosa Vahl ca2 -0,427219 0,1260423 0,1420605 Atriplex halimus L. at2 -0,067296 0,8613262 0,4103572 Ulex parviflorus Pourret u2 -0,365525 -0,428657 -0,406185 Astragalus scorpioides Pourret as3 0,3050666 0,6517132 -0,923176 Papaver hybridum L. pp1 -0,360578 -0,068673 0,0904299 Smyrnium olusatrum L. so -0,295918 0,4058753 -0,298015 Anacyclus valentinus L. ava -0,012773 -2,569355 -1,293505 Apium graveolens L. ag -0,281143 0,7971129 -0,338342 Cyperus longus L. cyp2 -0,461224 0,3580823 0,1600212 Nerium oleander L. no 4,1874255 -0,457555	Medicago hispida Gaertner.	m1	-0,388057	0,2706012	0,2147357
Asteriscus maritimus (L.) Less. am	Atriplex chenopodioides Batt.	at1	-0,046019	0,8185428	-0,084066
Vicia sativa L. v1 -0,445932 0,20144 0,1167846 Calendula suffruticosa Vahl ca2 -0,427219 0,1260423 0,1420605 Atriplex halimus L. at2 -0,067296 0,8613262 0,4103572 Ulex parviflorus Pourret u2 -0,365525 -0,428657 -0,406185 Astragalus scorpioides Pourret as3 0,3050666 0,6517132 -0,923176 Papaver hybridum L. pp1 -0,360578 -0,068673 0,0904295 Smyrnium olusatrum L. so -0,295918 0,4058753 -0,298015 Anacyclus valentinus L. ava -0,012773 -2,569355 -1,293505 Apium graveolens L. ag -0,281143 0,7971129 -0,338342 Cyperus longus L. cyp2 -0,461224 0,3580823 0,1600212 Nerium oleander L. no 4,1874255 -0,457555 3,2850982 Paronychia argentea (Pourr.) Lamk. pa 0,055056 0,5039263 -1,274945 Trifolium tomentosum L. t4 -0,359886 -0,098125	Medicago lupulina L.	m2	-0,283311	0,3844662	0,0723096
Calendula suffruicosa Vahl ca2 -0,427219 0,1260423 0,1420605 Atriplex halimus L. at2 -0,067296 0,8613262 0,4103572 Ulex parviflorus Pourret u2 -0,365525 -0,428657 -0,406185 Astragalus scorpioides Pourret as3 0,3050666 0,6517132 -0,923176 Papaver hybridum L. pp1 -0,360578 -0,068673 0,0904299 Smyrnium olusatrum L. so -0,295918 0,4058753 -0,298015 Anacyclus valentinus L. ava -0,012773 -2,569355 -1,293505 Apium graveolens L. ag -0,281143 0,7971129 -0,338342 Cyperus longus L. cyp2 -0,461224 0,3580823 0,1600212 Nerium oleander L. pa 0,055056 0,5039263 -1,274945 Paronychia argentea (Pourr.) Lamk. pa 0,055056 0,5039263 -1,274945 Trifolium tomentosum L. t4 -0,359886 -0,098125 0,3524122 Centaurea calcitrapa L. cel 0,3741626	Asteriscus maritimus (L.) Less.	am	-0,377457	0,0181172	0,1442552
Atriplex halimus L. at2 -0,067296 0,8613262 0,4103572 Ulex parviflorus Pourret u2 -0,365525 -0,428657 -0,406185 Astragalus scorpioides Pourret as3 0,3050666 0,6517132 -0,923176 Papaver hybridum L. pp1 -0,360578 -0,068673 0,0904299 Smyrnium olusatrum L. so -0,295918 0,4058753 -0,298015 Anacyclus valentinus L. ava -0,012773 -2,569355 -1,293505 Apium graveolens L. ag -0,281143 0,7971129 -0,338342 Cyperus longus L. cyp2 -0,461224 0,3580823 0,1600212 Nerium oleander L. no 4,1874255 -0,457555 3,2850982 Paronychia argentea (Pourr.) Lamk. pa 0,055056 0,5039263 -1,274945 Trifolium tomentosum L. t4 -0,359886 -0,098125 0,3524122 Centaurea calcitrapa L. gs -0,399432 0,2497376 0,1924067 Carduus pycnocephalus L. po -0,290701 0,6	Vicia sativa L.	v1	-0,445932	0,20144	0,1167846
Ulex parviflorus Pourret u2 -0,365525 -0,428657 -0,406185 Astragalus scorpioides Pourret as3 0,3050666 0,6517132 -0,923176 Papaver hybridum L. pp1 -0,360578 -0,068673 0,0904299 Smyrnium olusatrum L. so -0,295918 0,4058753 -0,298015 Anacyclus valentinus L. ava -0,012773 -2,569355 -1,293505 Apium graveolens L. ag -0,281143 0,7971129 -0,338342 Cyperus longus L. cyp2 -0,461224 0,3580823 0,1600212 Nerium oleander L. no 4,1874255 -0,457555 3,2850982 Paronychia argentea (Pourr.) Lamk. pa 0,055056 0,5039263 -1,274945 Trifolium tomentosum L. t4 -0,359886 -0,098125 0,3524122 Centaurea calcitrapa L. gs -0,3741626 0,0137749 1,5988258 Gastridium scabrum Presl. gs -0,399432 0,2497376 0,1924067 Carduus pycnocephalus L. po -0,290701 <	Calendula suffruticosa Vahl	ca2	-0,427219	0,1260423	0,1420605
Astragalus scorpioides Pourret Papaver hybridum L. pp1	Atriplex halimus L.	at2	-0,067296	0,8613262	0,4103572
Papaver hybridum L. pp1 -0,360578 -0,068673 0,0904299 Smyrnium olusatrum L. so -0,295918 0,4058753 -0,298015 Anacyclus valentinus L. ava -0,012773 -2,569355 -1,293505 Apium graveolens L. ag -0,281143 0,7971129 -0,338342 Cyperus longus L. cyp2 -0,461224 0,3580823 0,1600212 Nerium oleander L. no 4,1874255 -0,457555 3,2850982 Paronychia argentea (Pourr.) Lamk. pa 0,055056 0,5039263 -1,274945 Trifolium tomentosum L. t4 -0,359886 -0,098125 0,3524122 Centaurea calcitrapa L. ce1 0,3741626 0,0137749 1,5988258 Gastridium scabrum Presl. gs -0,399432 0,2497376 0,1924067 Carduus pycnocephalus L. po1 -0,290701 0,6900233 -0,328848 Scolymus hispanicus L. sh 2,3873332 0,5125375 -5,590368 Malva sylvestris L. cyd 1,7601327 0,7188111	Ulex parviflorus Pourret	u2	-0,365525	-0,428657	-0,406185
Smyrnium olusatrum L. so -0,295918 0,4058753 -0,298015 Anacyclus valentinus L. ava -0,012773 -2,569355 -1,293505 Apium graveolens L. ag -0,281143 0,7971129 -0,338342 Cyperus longus L. cyp2 -0,461224 0,3580823 0,1600212 Nerium oleander L. no 4,1874255 -0,457555 3,2850982 Paronychia argentea (Pourr.) Lamk. pa 0,055056 0,5039263 -1,274945 Trifolium tomentosum L. t4 -0,359886 -0,098125 0,3524122 Centaurea calcitrapa L. ce1 0,3741626 0,0137749 1,5988258 Gastridium scabrum Presl. gs -0,399432 0,2497376 0,1924067 Carduus pycnocephalus L. cp 0,1287352 -1,374662 1,0056451 Polygonum convolvulus L. po1 -0,290701 0,6900233 -0,328848 Scolymus hispanicus L. sh 2,3873332 0,5125375 -5,590368 Malva sylvestris L. ma3 -0,426513 -0,00	Astragalus scorpioides Pourret	as3	0,3050666	0,6517132	-0,923176
Anacyclus valentinus L. ava -0,012773 -2,569355 -1,293505 Apium graveolens L. ag -0,281143 0,7971129 -0,388342 Cyperus longus L. cyp2 -0,461224 0,3580823 0,1600212 Nerium oleander L. no 4,1874255 -0,457555 3,2850982 Paronychia argentea (Pourr.) Lamk. pa 0,055056 0,5039263 -1,274945 Trifolium tomentosum L. t4 -0,359886 -0,098125 0,3524122 Centaurea calcitrapa L. ce1 0,3741626 0,0137749 1,5988258 Gastridium scabrum Presl. gs -0,399432 0,2497376 0,1924067 Carduus pycnocephalus L. cp 0,1287352 -1,374662 1,0056451 Polygonum convolvulus L. po1 -0,290701 0,6900233 -0,328848 Scolymus hispanicus L. sh 2,3873332 0,5125375 -5,590368 Malva sylvestris L. ma3 -0,426513 -0,000165 -0,176572 Cynodon dactylon (L.) Pers. cyd 1,7601327 <t< td=""><td>Papaver hybridum L.</td><td>pp1</td><td>-0,360578</td><td>-0,068673</td><td>0,0904299</td></t<>	Papaver hybridum L.	pp1	-0,360578	-0,068673	0,0904299
Apium graveolens L. ag -0,281143 0,7971129 -0,338342 Cyperus longus L. cyp2 -0,461224 0,3580823 0,1600212 Nerium oleander L. no 4,1874255 -0,457555 3,2850982 Paronychia argentea (Pourr.) Lamk. pa 0,055056 0,5039263 -1,274945 Trifolium tomentosum L. t4 -0,359886 -0,098125 0,3524122 Centaurea calcitrapa L. ce1 0,3741626 0,0137749 1,5988258 Gastridium scabrum Presl. gs -0,399432 0,2497376 0,1924067 Carduus pycnocephalus L. cp 0,1287352 -1,374662 1,0056451 Polygonum convolvulus L. po1 -0,290701 0,6900233 -0,328848 Scolymus hispanicus L. sh 2,3873332 0,5125375 -5,590368 Malva sylvestris L. ma3 -0,426513 -0,000165 -0,176572 Cynodon dactylon (L.) Pers. cyd 1,7601327 0,7188111 -0,676168	Smyrnium olusatrum L.	so	-0,295918	0,4058753	-0,298015
Cyperus longus L. cyp2 -0,461224 0,3580823 0,1600212 Nerium oleander L. no 4,1874255 -0,457555 3,2850982 Paronychia argentea (Pourr.) Lamk. pa 0,055056 0,5039263 -1,274945 Trifolium tomentosum L. t4 -0,359886 -0,098125 0,3524122 Centaurea calcitrapa L. ce1 0,3741626 0,0137749 1,5988258 Gastridium scabrum Presl. gs -0,399432 0,2497376 0,1924067 Carduus pycnocephalus L. cp 0,1287352 -1,374662 1,0056451 Polygonum convolvulus L. po1 -0,290701 0,6900233 -0,328848 Scolymus hispanicus L. sh 2,3873332 0,5125375 -5,590368 Malva sylvestris L. ma3 -0,426513 -0,000165 -0,176572 Cynodon dactylon (L.) Pers. cyd 1,7601327 0,7188111 -0,676168	Anacyclus valentinus L.	ava	-0,012773	-2,569355	-1,293505
Nerium oleander L. no 4,1874255 -0,457555 3,2850982 Paronychia argentea (Pourr.) Lamk. pa 0,055056 0,5039263 -1,274945 Trifolium tomentosum L. t4 -0,359886 -0,098125 0,3524122 Centaurea calcitrapa L. cel 0,3741626 0,0137749 1,5988258 Gastridium scabrum Presl. gs -0,399432 0,2497376 0,1924067 Carduus pycnocephalus L. cp 0,1287352 -1,374662 1,0056451 Polygonum convolvulus L. pol -0,290701 0,6900233 -0,328848 Scolymus hispanicus L. sh 2,3873332 0,5125375 -5,590368 Malva sylvestris L. ma3 -0,426513 -0,000165 -0,176572 Cynodon dactylon (L.) Pers. cyd 1,7601327 0,7188111 -0,676168	Apium graveolens L.	ag	-0,281143	0,7971129	-0,338342
Paronychia argentea (Pourr.) Lamk. pa 0,055056 0,5039263 -1,274945 Trifolium tomentosum L. t4 -0,359886 -0,098125 0,3524122 Centaurea calcitrapa L. ce1 0,3741626 0,0137749 1,5988258 Gastridium scabrum Presl. gs -0,399432 0,2497376 0,1924067 Carduus pycnocephalus L. cp 0,1287352 -1,374662 1,0056451 Polygonum convolvulus L. po1 -0,290701 0,6900233 -0,328848 Scolymus hispanicus L. sh 2,3873332 0,5125375 -5,590368 Malva sylvestris L. ma3 -0,426513 -0,000165 -0,176572 Cynodon dactylon (L.) Pers. cyd 1,7601327 0,7188111 -0,676168	Cyperus longus L.	cyp2	-0,461224	0,3580823	0,1600212
Trifolium tomentosum L. t4 -0,359886 -0,098125 0,3524122 Centaurea calcitrapa L. ce1 0,3741626 0,0137749 1,5988258 Gastridium scabrum Presl. gs -0,399432 0,2497376 0,1924067 Carduus pycnocephalus L. cp 0,1287352 -1,374662 1,0056451 Polygonum convolvulus L. po1 -0,290701 0,6900233 -0,328848 Scolymus hispanicus L. sh 2,3873332 0,5125375 -5,590368 Malva sylvestris L. ma3 -0,426513 -0,000165 -0,176572 Cynodon dactylon (L.) Pers. cyd 1,7601327 0,7188111 -0,676168	Nerium oleander L.	no	4,1874255	-0,457555	3,2850982
Centaurea calcitrapa L. ce1 0,3741626 0,0137749 1,5988258 Gastridium scabrum Presl. gs -0,399432 0,2497376 0,1924067 Carduus pycnocephalus L. cp 0,1287352 -1,374662 1,0056451 Polygonum convolvulus L. po1 -0,290701 0,6900233 -0,328848 Scolymus hispanicus L. sh 2,3873332 0,5125375 -5,590368 Malva sylvestris L. ma3 -0,426513 -0,000165 -0,176572 Cynodon dactylon (L.) Pers. cyd 1,7601327 0,7188111 -0,676168	Paronychia argentea (Pourr.) Lamk.	pa	0,055056	0,5039263	-1,274945
Gastridium scabrum Presl. gs -0,399432 0,2497376 0,1924067 Carduus pycnocephalus L. cp 0,1287352 -1,374662 1,0056451 Polygonum convolvulus L. po1 -0,290701 0,6900233 -0,328848 Scolymus hispanicus L. sh 2,3873332 0,5125375 -5,590368 Malva sylvestris L. ma3 -0,426513 -0,000165 -0,176572 Cynodon dactylon (L.) Pers. cyd 1,7601327 0,7188111 -0,676168	Trifolium tomentosum L.	t4	-0,359886	-0,098125	0,3524122
Carduus pycnocephalus L. cp 0,1287352 -1,374662 1,0056451 Polygonum convolvulus L. po1 -0,290701 0,6900233 -0,328848 Scolymus hispanicus L. sh 2,3873332 0,5125375 -5,590368 Malva sylvestris L. ma3 -0,426513 -0,000165 -0,176572 Cynodon dactylon (L.) Pers. cyd 1,7601327 0,7188111 -0,676168	Centaurea calcitrapa L.	ce1	0,3741626	0,0137749	1,5988258
Carduus pycnocephalus L. cp 0,1287352 -1,374662 1,0056451 Polygonum convolvulus L. po1 -0,290701 0,6900233 -0,328848 Scolymus hispanicus L. sh 2,3873332 0,5125375 -5,590368 Malva sylvestris L. ma3 -0,426513 -0,000165 -0,176572 Cynodon dactylon (L.) Pers. cyd 1,7601327 0,7188111 -0,676168	Gastridium scabrum Presl.	gs	-0,399432	0,2497376	0,1924067
Scolymus hispanicus L. sh 2,3873332 0,5125375 -5,590368 Malva sylvestris L. ma3 -0,426513 -0,000165 -0,176572 Cynodon dactylon (L.) Pers. cyd 1,7601327 0,7188111 -0,676168	Carduus pycnocephalus L.		0,1287352	-1,374662	1,0056451
Malva sylvestris L. ma3 -0,426513 -0,000165 -0,176572 Cynodon dactylon (L.) Pers. cyd 1,7601327 0,7188111 -0,676168	Polygonum convolvulus L.	po1	-0,290701	0,6900233	-0,328848
Malva sylvestris L. ma3 -0,426513 -0,000165 -0,176572 Cynodon dactylon (L.) Pers. cyd 1,7601327 0,7188111 -0,676168	Scolymus hispanicus L.	sh	2,3873332	0,5125375	-5,590368
	Malva sylvestris L.	ma3	-0,426513	-0,000165	-0,176572
Mentha rotundifolia L. mr -0,037023 -0,144814 0,5806924	Cynodon dactylon (L.) Pers.	cyd	1,7601327	0,7188111	-0,676168
	Mentha rotundifolia L.	mr	-0,037023	-0,144814	0,5806924

Conyza naudini Bonnet	cn	2,2867449	2,2026865	-3,395662
Tamarix africana Poiret	taa	6,8255721	-1,844284	1,7709295
Malva parviflora L.	ma2	-0,316917	-0,951969	-0,308185
Juncus acutus L.	j1	2,9252088	-0,76003	4,5507712
Inula viscosa (L.) Ait.	i2	4,9918401	2,9409374	-0,747934
Olea europea L.	oe	-0,392674	0,2454246	-0,259391
Populus alba B.	pal	-0,405076	0,053263	-0,420226
Verbascum sinuatum L.	vs	-0,461224	0,3580823	0,1600212
Xanthium strumarium L.	x2	2,5004179	2,6365981	-1,46648
Plantago major L.	pl3	-0,205009	0,2037715	0,1144598
Beta vulgaris L.	bv	0,0329736	-0,305508	-0,933993
Onopordon macracanthum Schousb.	onm	-0,451677	0,0626066	-0,104297
Bromus rubens L.	b3	0,0057587	-1,025256	-1,406679
Oryzopsis miliacea (L.) Asch. et Schw.	orm	0,7476626	1,2773618	2,346705
Juncus maritimus Lamk.	j2	-0,132232	-0,530906	0,5952455
Plantago lagopus L.	pl2	0,8532685	-2,588094	-1,665744
Calendula arvensis L.	ca1	0,6406761	-4,723938	-0,968483
Anagallis arvensis L.	aar	-0,024177	-1,786693	-0,46448
Ballota hirsuta Benth.	bh	-0,412401	-0,10214	-0,232158
Senecio lividus L.	se3	-0,428476	0,3349351	0,1871543
Melilotus macrocarpa Coss. et Dur.	me1	-0,461224	0,3580823	0,1600212
Sinapis arvensis L.	si2	1,3276261	-3,306023	-3,741389
Capsella borsa-pastoris L.	cb	-0,465496	-0,463629	-0,002449
Cynoglossum creticum Miller	cy2	-0,436836	0,2761634	0,0831541
Medicago minima Grufb.	m3	-0,23696	-0,97337	-0,497947
Bellis annua L.	ba	-0,434794	0,218799	0,0214271
Cladanthus arabicus (L.) Cass.	car	-0,436836	0,2761634	0,0831541
Erodium moschatum (Burm.) L'Her	er2	-0,44008	-0,66642	-0,023922
Raphanus raphanistrum L.	rr	0,1933301	-1,600081	-0,311534
Convolvulus althaeoides L.	co1	-0,430752	0,2244687	0,099012
Echinops spinosus L.	ec1	-0,350235	0,1115114	0,1157157
Sinapis alba L.	si1	0,3251841	-1,985298	-0,894002
Lolium rigidum Gaud.	lr	-0,413117	-0,370854	-0,080569
Lamarkia aurea L.	laa	-0,412649	0,2541955	0,0975773
Lythrum junceum Soland.	ly2	0,168599	0,9206587	1,1465155
Atractylis carduus (Forsk.) Christ.	ac	-0,451677	0,0626066	-0,104297
Torilis arvensis (Huds.) Link	ta	0,5140877	-0,003813	-0,623053
Mantisalca salmantica (L.) Briq. et				
Cavill.	ms	-0,383226	0,1646123	0,1681443
Bromus hordaceus L.	b1	-0,044633	-0,282616	0,7694487
Rumex pulcher L.	ru3	-0,341806	0,32909	0,5314373
Typha angustifolia L.	tya	3,1937565	0,4730311	-1,995936
Atriplex hastata L.	at3	-0,283542	0,3600701	0,2282622

Marrubium vulgare L.	mv	0,1019988	0,7761851	-0,346594
Bryonia dioica Jacq.	bd	0,3038016	0,852868	-0,451536
Rumex bucephalophorus L.	ru1	-0,276229	-0,151524	-0,714191
Heliothropium europeum L.	he	-0,307925	0,3837054	0,4000901
Hordeum murinum L.	h1	-0,079551	-2,704035	-1,091282
Astragalus epiglottis L.	as1	-0,359697	0,1320521	0,1338088
Filago spathulata Presl.	fs	-0,434343	0,2313907	0,0512169
Lotus ornithopodioides L.	12	-0,356088	-0,074276	0,2004441
Lobularia maritima (L.) Desv.	lm	-0,402469	0,2482992	0,0948366
Asperula hirsuta Desf.	ash	-0,000696	-1,625079	0,5899245
Echium vulgare	ech3	-0,473547	-1,109348	-0,161256
Scorpiurus muricatus L.	sco1	-0,363218	-0,041733	-0,073542
Sonchus asper (L.) Vill.	s1	0,5048071	-2,557838	0,2949149
Silene colorata Poiret	sl2	-0,401019	-0,590941	-0,137212

Tableau XXXII : Contribution des espèces de l'aval de la Tafna

Taxons	CODE	axe 1	axe 2	axe 3
Cichorium intybus L.	ci	-0,122908	-1,030164	-0,151442
Phalaris caerulescens Desf.	pc	-0,569924	-0,252779	0,5181302
Erodium ciconium Willd.	er1	-0,341963	-0,253015	0,2657369
Oxalis cernua Thumb.	ox1	-0,202943	-0,508798	-0,326287
Senecio vulgaris L.	se4	-0,341963	-0,253015	0,2657369
Eryngium campestre L.	e1	-0,569924	-0,252779	0,5181302
Trifolium angustifolium L.	t1	-0,475595	-0,458473	0,4306922
Brachypodium phoenicoides (L.) R. et S.	br2	0,0906185	-0,296249	1,487687
Brachypodium sylvaticum (Huds.) P.B.	br3	-0,352388	-0,425347	0,5093095
Melilotus sicula (Turra) Jackson	me2	-0,19866	-0,237139	0,8453895
Urginea maritima (L.) Baker	um	-0,136597	-0,681034	0,4688434
Atriplex patula L.	at4	-0,368868	-0,430557	0,389517
Oxalis corniculata L.	ox2	-0,276348	-0,120129	0,4622527
Tamus communis L.	tc	0,1658939	-1,321405	0,2827107
Nicotiana glauca Graham	ng	0,1451686	1,0534406	-1,908775
Scorpiurus vermiculatus L.	sco2	-0,528961	-0,098182	0,1666672
Geranium robertianum L.	g2	-0,423034	-0,326524	0,4006774
Ranunculus macrophyllus Desf.	ra1	-0,295492	-0,495191	0,5198514
Orobanche purpurea Jacq.	op	-0,528961	-0,098182	0,1666672
Silene colorata Poiret	s12	-0,528961	-0,098182	0,1666672
Medicago sativa L.	m4	-0,482866	-0,20469	0,0417273
Phleum pratense L.	php	-0,490573	-0,0576	-0,403247
Convolvulus humilis Sacq.	соЗ	-0,226644	-0,370649	-0,003242
Chrysanthemum viscido-hirtum (Schott.)	ch2	0,0363621	-0,694437	0,2746312

Thell.				
Polygonum maritimum L.	po3	0,5021341	-0,22328	0,2039343
Inula crithmoides L.	i1	1,4856013	4,3424041	0,0226367
Salsola kali L.	sk	0,9792235	2,4900448	2,1982215
Arthrocnemum indicum (Willd.) Moq.	ai	0,6499419	4,3367104	0,4814429
Atriplex tornabeni Tineo	at5	-0,285696	0,302235	0,9276881
Schinus molle	sm	-0,317131	-0,388227	0,2190944
Ricinus communis L.	rc	0,0783649	2,9499873	0,4058107
Echium confusum de Coincy	ech1	-0,282435	0,445084	-1,285349
Eryngium maritimum L.	e2	-0,483438	-0,034655	-0,348602
Urtica pilulifera L.	ur2	-0,468918	0,095831	-0,056975
Senecio leucanthemifolius Poiret	se2	-0,314261	0,0557905	-0,121174
Ononis natrix L.	on2	-0,33801	0,2190818	-0,125304
Plantago serraria L.	pl5	-0,171797	0,3329842	-0,536443
Centaurea pullata L.	ce2	-0,44814	0,0938256	-1,233783
Amaranthus albus L.	a1	-0,534999	0,0075414	0,1265928
Reichardia tingitana (L.) Roth.	r2	-0,484205	-0,127444	0,3403186
Cakile aegyptiaca Maire et Weiller	cae	-0,484205	-0,127444	0,3403186
Coronopus didymus (L.) Smith.	cd	-0,160697	0,4100951	-0,309606
Orlaya maritima Koch.	om	-0,466258	0,0623231	-0,157464
Anacyclus valentinus L.	ava	0,1193737	-0,439985	-2,533643
Apium graveolens L.	ag	0,0637642	-0,205974	1,0654163
Nerium oleander L.	no	1,9073703	-0,290224	2,629402
Centaurea calcitrapa L.	ce1	-0,263954	-0,444884	-0,516608
Carduus pycnocephalus L.	ср	0,0145515	-0,669831	-1,40493
Scolymus hispanicus L.	sh	1,1028663	-0,206813	-3,816213
Malva sylvestris L.	ma3	-0,370716	0,124902	-0,270798
Cynodon dactylon (L.) Pers.	cyd	0,4824965	1,2225561	1,2407913
Mentha rotundifolia L.	mr	-0,230254	-0,226637	0,3373128
Conyza naudini Bonnet	cn	1,7748437	3,6416682	1,8775056
Tamarix africana Poiret	taa	6,4372241	-3,470985	-2,396506
Malva parviflora L.	ma2	0,5388007	3,6514254	-3,874753
Juncus acutus L.	j1	2,8313495	2,673376	-0,197679
Inula viscosa (L.) Ait.	i2	5,1355079	-1,97777	1,2535039
Xanthium strumarium L.	x2	3,8117786	0,2127101	0,7974365
Plantago major L.	pl3	-0,549287	-0,356787	-0,01236
Beta vulgaris L.	bv	-0,1591	-0,41045	-0,37072
Solanum nigrum L.	sol	-0,468918	0,095831	-0,056975
Bromus rubens L.		-0,569924	-0,252779	0,5181302
	b3	0,507724	0,232117	- ,
Festuca elatior L.	fe	-0,352388	-0,425347	0,5093095
Festuca elatior L. Oryzopsis miliacea (L.) Asch. et Schw.		1		
	fe	-0,352388	-0,425347	0,5093095

Reseda alba L.	re	-0,528961	-0,098182	0,1666672
Calendula arvensis L.	ca1	-0,422638	0,1424876	-1,952355
Anagallis arvensis L.	aar	-0,239337	-0,609654	-0,836595
Thapsia garganica L.	tg	-0,475595	-0,458473	0,4306922
Ballota hirsuta Benth.	bh	-0,468918	0,095831	-0,056975
Sinapis arvensis L.	si2	-0,530365	-0,041762	-0,212979
Capsella borsa-pastoris L.	cb	-0,500767	-0,091372	-0,345048
Cynoglossum creticum Miller	cy2	-0,468918	0,095831	-0,056975
Bellis annua L.	ba	-0,434632	-0,303877	0,0792292
Erodium moschatum (Burm.) L'Her	er2	-0,46689	-0,330345	-0,952404
Stellaria media (L.) Vill.	st1	-0,440724	0,1026408	-0,568691
Raphanus raphanistrum L.	rr	-0,318057	-0,034368	-0,749058
Sinapis alba L.	si1	-0,289864	-0,027558	-1,260774
Lamarkia aurea L.	laa	-0,569924	-0,252779	0,5181302
Torilis arvensis (Huds.) Link	ta	-0,528961	-0,098182	0,1666672
Bromus hordaceus L.	b1	-0,518046	-0,340835	1,1228209
Rumex pulcher L.	ru3	0,5438024	-0,589921	1,4140089
Typha angustifolia L.	tya	-0,254938	-0,089664	0,7081421
Atriplex hastata L.	at3	0,0739508	0,2297114	-0,304362
Marrubium vulgare L.	mv	-0,163535	-0,285215	0,6419776
Rumex bucephalophorus L.	ru1	-0,254938	-0,089664	0,7081421
Heliothropium europeum L.	he	-0,188985	-0,25136	0,5993532
Hordeum murinum L.	h1	-0,242616	-0,405908	-0,705143
Sonchus asper (L.) Vill.	s1	-0,380342	-0,032499	0,0623942
Echium vulgare	ech3	-0,380384	0,1440909	-0,605994
Scorpiurus muricatus L.	sco1	-0,471268	-0,227337	0,3631754
Chrysanthemum coronarium L.	ch1	-0,495803	-0,104797	0,0188705
Foeniculum vulgare (Miller) Gaertner	fv	0,1999894	-0,794889	0,1771697
Echinops strigosus L.	ec2	-0,40101	-0,342713	0,1254657
Arundo donax L.	ad	-0,471268	-0,227337	0,3631754
Withania frutescens Panquy	wf	-0,295492	-0,495191	0,5198514
Chenopodium vulvaria L.	c5	0,6600105	-0,426079	1,5730622
Ziziphus lotus (L.) Desf.	zl	-0,190389	-0,19494	0,2197068
Phragmites communis Trin	phc	1,1084086	-0,052028	2,7654666
Silybum murianum (L.) Gaertner	sim	0,0931487	0,0860099	-1,772556
Bromus madritensis L.	b2	0,103833	-1,269852	0,2288041
Chenopodium album L.	c1	0,1588191	-0,002096	0,1145092
Lagurus ovatus L.	lo	-0,267007	-0,602079	0,7060887
Urtica urens L.	ur3	-0,482866	-0,20469	0,0417273
Cordylocarpus muricatus Desf.	cmu	-0,341963	-0,253015	0,2657369
Chenopodium murale L.	c4	-0,440724	0,1026408	-0,568691
Sonchus maritimus L.	s2	-0,354293	-0,271742	0,1166203
Hordeum vulgare	h2	-0,322956	-0,000117	-0,434739
	•	•		•

Xanthium spinosum L.	x1	0,4206658	0,0912957	-0,988796
Datura stramonium L.	ds	-0,30111	0,5285911	-0,94754
Convolvulus arvensis L.	co2	-0,151822	-0,021691	0,6659031
Picris duriaei Sch. Bip.	p1	-0,352388	-0,425347	0,5093095
Poa annua L.	poa	-0,471268	-0,227337	0,3631754
Fedia cornucopiae (L.) Gaertner	fec	-0,434632	-0,303877	0,0792292
Atriplex chenopodioides Batt.	at1	0,0863541	0,5456844	0,7400959
Medicago lupulina L.	m2	-0,528961	-0,098182	0,1666672
Atriplex halimus L.	at2	1,0913418	0,0881335	-1,930604
Ulex parviflorus Pourret	u2	-0,406228	0,01878	-1,015079
Papaver hybridum L.	pp1	-0,528961	-0,098182	0,1666672
Smyrnium olusatrum L.	so	-0,083211	0,2744182	-0,37806

Tableau XXXIII : Indice de caractérisation (IC) des espèces du groupement A de l'amont de la Tafna

G/Esp	f(x)	N	F(X)	IC
Anacyclus valentinus L.	0,05405405	37	0,19230769	0,002906733
Apium graveolens L.	0,2972973		0,25	0,015962271
Cyperus longus L.	0,24324324		0,17307692	0,013087065
Nerium oleander L.	0,56756757		0,44230769	0,030316912
Rorippa nasturtium-aquaticum (L.) Hayek	0,27027027		0,19230769	0,014533665
Paronychia argentea (Pourr.) Lamk.	0,05405405		0,07692308	0,002915779
Trifolium tomentosum L.	0,02702703		0,01923077	0,001460161
Polygonum salicifolium Brouss.	0,05405405		0,07692308	0,002915779
Centaurea calcitrapa L.	0,05405405		0,05769231	0,002917292
Gastridium scabrum Presl.	0,02702703		0,01923077	0,001460161
Carduus pycnocephalus L.	0,02702703		0,15384615	0,001454871
Polygonum convolvulus L.	0,08108108		0,07692308	0,004373668
Scolymus hispanicus L.	0,24324324		0,19230769	0,013080298
Malva sylvestris L.	0,05405405		0,07692308	0,002915779
Cynodon dactylon (L.) Pers.	0,13513514		0,09615385	0,007285668
Mentha rotundifolia L.	0,2972973		0,25	0,015962271
Conyza naudini Bonnet	0,16216216		0,11538462	0,008738272
Tamarix africana Poiret	0,27027027		0,26923077	0,014503668
Malva parviflora L.	0,08108108		0,09615385	0,004371401
Juncus acutus L.	0,10810811		0,15384615	0,005819484
Chamaerops humilis L.	0,02702703		0,01923077	0,001460161
Inula viscosa (L.) Ait.	0,37837838		0,36538462	0,020252883
Olea europea L.	0,13513514		0,11538462	0,007281893
Populus alba B.	0,10810811		0,07692308	0,005831558
Verbascum sinuatum L.	0,02702703		0,05769231	0,001458646
Xanthium strumarium L.	0,05405405		0,03846154	0,002918807

Plantago major L.	0,10810811
Beta vulgaris L.	0,05405405
Brachypodium distachyum (L.) P.B.	0,02702703
Solanum nigrum L.	0,02702703
Onopordon macracanthum Schousb.	0,02702703
Bromus rubens L.	0,05405405
Festuca elatior L.	0,02702703
Oryzopsis miliacea (L.) Asch. et Schw.	0,05405405
Juncus maritimus Lamk.	0,08108108
Cyperus fuscus L.	0,02702703
Polygonum equisetiforme S. et Sm.	0,10810811
Plantago lagopus L.	0,02702703
Calendula arvensis L.	0,08108108
Anagallis arvensis L.	0,05405405
Ballota hirsuta Benth.	0,02702703
Melilotus macrocarpa Coss. et Dur.	0,02702703
Capsella borsa-pastoris L.	0,02702703
Medicago minima Grufb.	0,05405405
Bellis annua L.	0,02702703
Cladanthus arabicus (L.) Cass.	0,02702703
Linum strictum L.	0,02702703
Geranium molle L.	0,02702703
Erodium moschatum (Burm.) L'Her	0,02702703
Lotus glinoides Del.	0,05405405
Stellaria media (L.) Vill.	0,02702703
Alyssum parviflorum Fisch.	0,02702703
Raphanus raphanistrum L.	0,05405405
Convolvulus althaeoides L.	0,02702703
Pistacia lentiscus L.	0,08108108
Echinops spinosus L.	0,02702703
Sinapis alba L.	0,02702703
Senecio giganteus Desf.	0,02702703
Lolium rigidum Gaud.	0,02702703
Torilis arvensis (Huds.) Link	0,05405405
Typha angustifolia L.	0,13513514
Atriplex hastata L.	0,02702703
Marrubium vulgare L.	0,02702703
Bryonia dioica Jacq.	0,05405405
Arisarum vulgare Targ. Tozz.	0,02702703
Rumex bucephalophorus L.	0,02702703
Heliothropium europeum L.	0,05405405
Artemisia herba alba Asso	0,05405405
Ceratonia siliqua L.	0,02702703

0,09615385	0,005828535
0,05769231	0,002917292
0,01923077	0,001460161
0,01923077	0,001460161
0,07692308	0,001457889
0,09615385	0,002914267
0,01923077	0,001460161
0,03846154	0,002918807
0,05769231	0,004375938
0,01923077	0,001460161
0,07692308	0,005831558
0,17307692	0,001454118
0,19230769	0,004360099
0,07692308	0,002915779
0,07692308	0,001457889
0,09615385	0,001457134
0,07692308	0,001457889
0,09615385	0,002914267
0,03846154	0,001459403
0,11538462	0,001456379
0,03846154	0,001459403
0,01923077	0,001460161
0,05769231	0,001458646
0,03846154	0,002918807
0,03846154	0,001459403
0,01923077	0,001460161
0,11538462	0,002912757
0,03846154	0,001459403
0,11538462	0,004369136
0,09615385	0,001457134
0,07692308	0,001457889
0,03846154	0,001459403
0,03846154	0,001459403
0,11538462	0,002912757
0,09615385	0,007285668
0,01923077	0,001460161
0,01923077	0,001460161
0,03846154	0,002918807
0,03846154	0,001459403
0,01923077	0,001460161
0,03846154	0,002918807
0,05769231	0,002917292
0,01923077	0,001460161

Rubus ulmifolius Schott.	0,02702703
Salix alba L.	0,02702703
Rubia tinctorum L.	0,02702703
Echium plantaginum L.	0,05405405
Trifolium stellatum L.	0,02702703
Lotus ornithopodioides L.	0,02702703
Lobularia maritima (L.) Desv.	0,05405405
Sonchus asper (L.) Vill.	0,02702703
Scorpiurus muricatus L.	0,02702703

0,03846154	0,001459403
0,01923077	0,001460161
0,01923077	0,001460161
0,05769231	0,002917292
0,05769231	0,001458646
0,01923077	0,001460161
0,03846154	0,002918807
0,03846154	0,001459403
0,01923077	0,001460161

Tableau XXXIV : Indice de caractérisation (IC) des espèces du groupement B de l'amont de la Tafna

G/Esp	f(x)	N	F(X)	IC
Anacyclus valentinus L.	0,2	5	0,19230769	0,07703704
Apium graveolens L.	0,2		0,25	0,07619048
Nerium oleander L.	0,4		0,44230769	0,14699647
Paronychia argentea (Pourr.) Lamk.	0,2		0,07692308	0,07878788
Scolymus hispanicus L.	0,2		0,19230769	0,07703704
Malva sylvestris L.	0,2		0,07692308	0,07878788
Inula viscosa (L.) Ait.	0,2		0,36538462	0,07455197
Olea europea L.	0,2		0,11538462	0,07819549
Verbascum sinuatum L.	0,2		0,05769231	0,07908745
Plantago lagopus L.	0,4		0,17307692	0,15464684
Reseda alba L.	0,4		0,03846154	0,15877863
Calendula arvensis L.	0,8		0,19230769	0,30814815
Anagallis arvensis L.	0,2		0,07692308	0,07878788
Cynoglossum cheirifolium L.	0,2		0,01923077	0,07969349
Thapsia garganica L.	0,6		0,05769231	0,23726236
Ballota hirsuta Benth.	0,2		0,07692308	0,07878788
Senecio lividus L.	0,2		0,01923077	0,07969349
Melilotus macrocarpa Coss. et Dur.	0,4		0,09615385	0,15698113
Sinapis arvensis L.	0,6		0,05769231	0,23726236
Capsella borsa-pastoris L.	0,6		0,07692308	0,23636364
Cynoglossum creticum Miller	0,2		0,01923077	0,07969349
Medicago minima Grufb.	0,2		0,09615385	0,07849057
Bellis annua L.	0,2		0,03846154	0,07938931
Calicotome intermedia (Salzm.) Maire	0,2		0,03846154	0,07938931
Sedum nevadense Coss.	0,4		0,03846154	0,15877863
Cladanthus arabicus (L.) Cass.	0,4		0,11538462	0,15639098
Matthiola maroccana Coss.	0,2		0,03846154	0,07938931
Echinaria capitata (L.) Desf.	0,2		0,01923077	0,07969349
Ononis biflora Desf.	0,2		0,01923077	0,07969349

Valeriana tuberosa L.	0,2
Helianthemum racemosum (L.) Pau	0,4
Linum strictum L.	0,2
Stellaria media (L.) Vill.	0,2
Lamium amplexicaule L.	0,2

0,03846154	0,07938931
0,03846154	0,15877863
0,03846154	0,07938931
0,03846154	0,07938931
0,01923077	0,07969349

Tableau XXXV : Indice de caractérisation (IC) des espèces du groupement C de l'amont de la Tafna

G/Esp	f(x)	N	F(X)	IC
Anacyclus valentinus L.	0,7	10	0,192307692	0,137358491
Apium graveolens L.	0,1		0,25	0,019512195
Paronychia argentea (Pourr.) Lamk.	0,1		0,076923077	0,019847328
Polygonum salicifolium Brouss.	0,2		0,076923077	0,039694656
Centaurea calcitrapa L.	0,1		0,057692308	0,019885277
Carduus pycnocephalus L.	0,7		0,153846154	0,137878788
Polygonum convolvulus L.	0,1		0,076923077	0,019847328
Malva sylvestris L.	0,1		0,076923077	0,019847328
Mentha rotundifolia L.	0,2		0,25	0,03902439
Tamarix africana Poiret	0,4		0,269230769	0,077902622
Malva parviflora L.	0,2		0,096153846	0,039619048
Juncus acutus L.	0,4		0,153846154	0,078787879
Inula viscosa (L.) Ait.	0,4		0,365384615	0,077179963
Verbascum sinuatum L.	0,1		0,057692308	0,019885277
Plantago major L.	0,1		0,096153846	0,019809524
Beta vulgaris L.	0,1		0,057692308	0,019885277
Onopordon macracanthum Schousb.	0,3		0,076923077	0,059541985
Bromus rubens L.	0,3		0,096153846	0,059428571
Plantago lagopus L.	0,6		0,173076923	0,117958412
Calendula arvensis L.	0,3		0,192307692	0,058867925
Anagallis arvensis L.	0,1		0,076923077	0,019847328
Ballota hirsuta Benth.	0,2		0,076923077	0,039694656
Melilotus macrocarpa Coss. et Dur.	0,2		0,096153846	0,039619048
Medicago minima Grufb.	0,2		0,096153846	0,039619048
Calicotome intermedia (Salzm.) Maire	0,1		0,038461538	0,019923372
Cladanthus arabicus (L.) Cass.	0,3		0,115384615	0,059315589
Matthiola maroccana Coss.	0,1		0,038461538	0,019923372
Valeriana tuberosa L.	0,1		0,038461538	0,019923372
Erodium moschatum (Burm.) L'Her	0,2		0,057692308	0,039770554
Raphanus raphanistrum L.	0,4		0,115384615	0,079087452
Convolvulus althaeoides L.	0,1		0,038461538	0,019923372
Pistacia lentiscus L.	0,3		0,115384615	0,059315589
Echinops spinosus L.	0,4		0,096153846	0,079238095

Sinapis alba L.	0,3
Senecio giganteus Desf.	0,1
Lolium rigidum Gaud.	0,1
Lamarkia aurea L.	0,2
Lythrum junceum Soland.	0,3
Atractylis carduus (Forsk.) Christ.	0,2
Torilis arvensis (Huds.) Link	0,4
Mantisalca salmantica (L.) Briq. et Cavill.	0,2
Bromus hordaceus L.	0,2
Rumex pulcher L.	0,2
Arisarum vulgare Targ. Tozz.	0,1
Artemisia herba alba Asso	0,1
Rubus ulmifolius Schott.	0,1
Linaria commutata Chaz.	0,2
Hordeum murinum L.	0,4
Astragalus epiglottis L.	0,1
Filago spathulata Presl.	0,3
Echium plantaginum L.	0,1
Trifolium stellatum L.	0,2
Sonchus asper (L.) Vill.	0,1
Adonis aestivalis L.	0,1
Asperula hirsuta Desf.	0,1
Echium vulgare	0,1

0,076923077	0,059541985
0,038461538	0,019923372
0,038461538	0,019923372
0,038461538	0,039846743
0,057692308	0,059655832
0,038461538	0,039846743
0,115384615	0,079087452
0,038461538	0,039846743
0,038461538	0,039846743
0,038461538	0,039846743
0,038461538	0,019923372
0,057692308	0,019885277
0,038461538	0,019923372
0,038461538	0,039846743
0,076923077	0,079389313
0,019230769	0,019961612
0,057692308	0,059655832
0,057692308	0,019885277
0,057692308	0,039770554
0,038461538	0,019923372
0,019230769	0,019961612
0,019230769	0,019961612
0,019230769	0,019961612

Tableau XXXVI : Indice de caractérisation (IC) des espèces du groupement A de la moyenne Tafna

G/Esp	f(x)	N	F(X)	IC
Chrysanthemum coronarium L.	0,11111111	9	0,03076923	0,024607231
Pistacia atlantica Desf.	0,33333333		0,03846154	0,073758865
Foeniculum vulgare (Miller) Gaertner	0,11111111		0,03846154	0,024586288
Ferula communis L.	0,4444444		0,08461538	0,097845517
Salvia verbenaca (L.) Briq.	0,2222222		0,01538462	0,049298445
Withania frutescens Panquy	0,33333333		0,04615385	0,073696145
Picris echioides L.	0,11111111		0,03846154	0,024586288
Celtis australis L.	0,11111111		0,01538462	0,024649223
Rumex conglomeratus Murr.	0,11111111		0,00769231	0,024670272
Phragmites communis Trin	0,33333333		0,12307692	0,073074761
Silybum murianum (L.) Gaertner	0,33333333		0,2	0,072463768
Acacia albida Del.	0,4444444		0,03076923	0,098428923
Geranium rotundifolium L.	0,2222222		0,01538462	0,049298445
Reichardia picroides (L.) Roth.	0,11111111		0,00769231	0,024670272
Bromus madritensis L.	0,11111111		0,08461538	0,024461379

Chenopodium album L.	0,2222222
Lagurus ovatus L.	0,2222222
Ficus carica L.	0,2222222
Dactylis glomerata L.	0,11111111
Malva aegyptiaca L.	0,11111111
Centaurea tenuifolia Dufour	0,2222222
Brassica nigra (L.) Koch.	0,2222222
Vicia sativa L.	0,11111111
Apium graveolens L.	0,2222222
Cyperus longus L.	0,11111111
Scolymus hispanicus L.	0,2222222
Malva parviflora L.	0,33333333
Olea europea L.	0,2222222
Populus alba B.	0,66666667
Verbascum sinuatum L.	0,11111111
Xanthium strumarium L.	0,2222222
Beta vulgaris L.	0,2222222
Bromus rubens L.	0,2222222
Oryzopsis miliacea (L.) Asch. et Schw.	0,2222222
Juncus maritimus Lamk.	0,11111111
Melilotus macrocarpa Coss. et Dur.	0,11111111
Sinapis arvensis L.	0,33333333
Convolvulus althaeoides L.	0,11111111
Lolium rigidum Gaud.	0,11111111
Typha angustifolia L.	0,2222222
Bryonia dioica Jacq.	0,11111111
Rumex bucephalophorus L.	0,66666667
Hordeum murinum L.	0,2222222
Echium vulgare	0,4444444

0,04615385	0,049130763
0,03076923	0,049214461
0,01538462	0,049298445
0,00769231	0,024670272
0,00769231	0,024670272
0,01538462	0,049298445
0,01538462	0,049298445
0,01538462	0,024649223
0,04615385	0,049130763
0,00769231	0,024670272
0,25384615	0,048028078
0,07692308	0,073446328
0,01538462	0,049298445
0,05384615	0,147267063
0,00769231	0,024670272
0,2	0,048309179
0,08461538	0,048922758
0,09230769	0,048881369
0,09230769	0,048881369
0,05384615	0,024544511
0,00769231	0,024670272
0,22307692	0,072282458
0,01538462	0,024649223
0,04615385	0,024565382
0,24615385	0,048068035
0,06923077	0,024502874
0,08461538	0,146768275
0,16153846	0,048511988
0,08461538	0,097845517

Tableau XXXVII : Indice de caractérisation (IC) des espèces du groupement B de la moyenne Tafna

G/Esp	f(x)	N	F(X)	IC
Chenopodium multifidum L.	0,0555556	54	0,02307692	0,002056734
Chrysanthemum coronarium L.	0,0555556		0,03076923	0,002056441
Pistacia atlantica Desf.	0,03703704		0,03846154	0,001370766
Foeniculum vulgare (Miller) Gaertner	0,07407407		0,03846154	0,002741532
Echinops strigosus L.	0,01851852		0,01538462	0,000685676
Arundo donax L.	0,12962963		0,07692308	0,004794268
Ferula communis L.	0,0555556		0,08461538	0,002054394
Withania frutescens Panquy	0,0555556		0,04615385	0,002055856
Picris echioides L.	0,01851852		0,03846154	0,000685383
Celtis australis L.	0,01851852		0,01538462	0,000685676

Lavatera maritima Gouan	0,01851852
Avena sterilis L.	0,0555556
Aegilops triuncialis L.	0,01851852
Cynara cardunculus L.	0,03703704
Eucalyptus globulus	0,0555556
Chenopodium vulvaria L.	0,07407407
Fraxinus angustifolia Vahl	0,0555556
Phragmites communis Trin	0,03703704
Silybum murianum (L.) Gaertner	0,16666667
Alopecurus utriculatus (L.) Pers.	0,03703704
Bromus madritensis L.	0,16666667
Chenopodium album L.	0,03703704
Chenopodium chenopodioides (L.)	0,03703704
Aell.	0,01851852
Lythrum acutangulum Lag.	0,0555556
Salvia officinalis L.	0,01851852
Lagurus ovatus L.	0,01851852
Plantago ovata Forsk.	0,01851852
Fumaria officinalis L.	0,03703704
Urtica urens L.	0,01851852
Scandix pecten-veneris L.	0,01851852
Silene coeli-rosa (L.) A. Br.	0,01851852
Herniaria hirsuta L.	0,01851852
Sambucus nigra L.	0,01851852
Verbena supina L.	0,03703704
Cordylocarpus muricatus Desf.	0,01851852
Veronica anagallis-aquatica L.	0,09259259
Ulex boivini Webb	0,01851852
Chenopodium murale L.	0,07407407
Achyranthes aspera L.	0,03703704
Medicago scutellata (L.) All.	0,01851852
Astragalus narbonensis Gouan	0,01851852
Vicia sicula (Raf.) Guss.	0,01851852
Urtica membranacea Poir.	0,09259259
Sonchus maritimus L.	0,01851852
Mercurialis annua L.	0,01851852
Hordeum vulgare	0,01851852
Plantago coronopus L.	0,01851852
Xanthium spinosum L.	0,07407407
_	0,03703704
Amaranthus angustifolius Lamk. Convolvulus arvensis L.	
Ranunculus muricatus L.	0,0555556
	0,01851852
Trifolium campestre Schreb.	
Poa annua L. Malilotus sulasta Dosf	0,0555556
Melilotus sulcata Desf.	0,01851852
Ononis serrata Forsk.	0,03703704
Eruca vesicaria (L.) Car.	0,03703704

0,00769231	0,000685773
0,03076923	0,002056441
0,01538462	0,000685676
0,01538462	0,001371351
0,02307692	0,022120129
0,03846154	0,002741532
0,02307692	0,002056734
0,12307692	0,001368623
0,12307032	0,006150062
0,02307692	0,000130002
<u> </u>	
0,08461538	0,006163182
0,04615385	0,001370571
0,00769231	0,000685773
0,02307692	0,002056734
0,00769231	0,000685773
0,03076923	0,00068548
0,00769231	0,000685773
0,02307692	0,001371156
0,01538462	0,000685676
0,00769231	0,000685773
0,00769231	0,000685773
0,01538462	0,000685676
0,00769231	0,000685773
0,01538462	0,001371351
0,00769231	0,000685773
0,03846154	0,003426914
0,00769231	0,000685773
0,1	0,002738413
0,01538462	0,001371351
0,00769231	0,000685773
0,00769231	0,000685773
0,00769231	0,000685773
0,05384615	0,003425939
0,01538462	0,000685676
0,00769231	0,000685773
0,01538462	0,000685676
0,03846154	0,000685383
0,15384615	0,00273569
0,12307692	0,001368623
0,02307692	0,002056734
0,00769231	0,000685773
0,00769231	0,000685773
0,02307692	0,002056734
0,03076923	0,00068548
0,01538462	0,001371351
0,01538462	0,001371351
5,51555102	3,0010,1001

Valerianella coronata (L.) DC.	0,03703704
Fedia cornucopiae (L.) Gaertner	0,01851852
Scandix australis L.	0,01851852
Atriplex chenopodioides Batt.	0,01851852
Medicago lupulina L.	0,01851852
Asteriscus maritimus (L.) Less.	0,03703704
Vicia sativa L.	0,01851852
Calendula suffruticosa Vahl	0,01851852
Atriplex halimus L.	0,01851852
Ulex parviflorus Pourret	0,07407407
Astragalus scorpioides Pourret	0,03703704
Papaver hybridum L.	0,03703704
Smyrnium olusatrum L.	0,01851852
Anacyclus valentinus L.	0,24074074
Apium graveolens L.	0,01851852
Nerium oleander L.	0,2037037
Paronychia argentea (Pourr.) Lamk.	0,0555556
Trifolium tomentosum L.	0,03703704
Centaurea calcitrapa L.	0,0555556
Gastridium scabrum Presl.	0,01851852
Carduus pycnocephalus L.	0,14814815
Scolymus hispanicus L.	0,37037037
Malva sylvestris L.	0,03703704
Cynodon dactylon (L.) Pers.	0,2037037
Mentha rotundifolia L.	0,03703704
Conyza naudini Bonnet	0,14814815
Tamarix africana Poiret	0,40740741
Malva parviflora L.	0,12962963
Juncus acutus L.	0,2222222
Inula viscosa (L.) Ait.	0,25925926
Populus alba B.	0,01851852
Xanthium strumarium L.	0,14814815
Plantago major L.	0,0555556
Beta vulgaris L.	0,07407407
Onopordon macracanthum Schousb.	0,03703704
Bromus rubens L.	0,16666667
Juncus maritimus Lamk.	0,07407407
Plantago lagopus L.	0,38888889
Calendula arvensis L.	0,38888889
Anagallis arvensis L.	0,2037037
Ballota hirsuta Benth.	0,07407407
Senecio lividus L.	0,01851852
Sinapis arvensis L.	0,4444444
Capsella borsa-pastoris L.	0,07407407
Cynoglossum creticum Miller	0,01851852
Medicago minima Grufb.	0,12962963
The state of the s	5,12702703

0,01538462	0,001371351
0,01538462	0,000685676
0,02307692	0,000685578
0,02307692	0,000685578
0,01538462	0,000685676
0,01538462	0,001371351
0,01538462	0,000685676
0,01538462	0,000685676
0,03076923	0,00068548
0,03846154	0,002741532
0,06153846	0,001370181
0,03076923	0,001370961
0,01538462	0,000685676
0,11538462	0.008897312
0,04615385	0,000685285
0,29230769	0,007503962
0,05384615	0,002055563
0,02307692	0,001371156
0,08461538	0,002054394
0,00769231	0,000685773
0,09230769	0,005477605
0,25384615	0,013653239
0,01538462	0,001371351
0,13846154	0,007525286
0,03846154	0,001370766
0,16153846	0,005470603
0,49230769	0,014952841
0,07692308	0,004794268
0,25384615	0,008191944
0,34615385	0,009541034
0,05384615	0,000685188
0,2	0,005466721
0,03076923	0,002056441
0,08461538	0,002739192
0,01538462	0,001371351
0,09230769	0,006162306
0,05384615	0,002740751
0,18461538	0,014354218
0,2	0,014350144
0,09230769	0,007531707
0,03076923	0,002741922
0,00769231	0,000685773
0,22307692	0,016393184
0,03846154	0,002741532
0,00769231	0,000685773
0,06153846	0,004795632
	<u> </u>

Bellis annua L.	0,01851852
Cladanthus arabicus (L.) Cass.	0,01851852
Erodium moschatum (Burm.) L'Her	0,09259259
Raphanus raphanistrum L.	0,16666667
Convolvulus althaeoides L.	0,01851852
Echinops spinosus L.	0,0555556
Sinapis alba L.	0,14814815
Lolium rigidum Gaud.	0,09259259
Lamarkia aurea L.	0,01851852
Atractylis carduus (Forsk.) Christ.	0,03703704
Torilis arvensis (Huds.) Link	0,09259259
Mantisalca salmantica (L.) Briq. et	
Cavill.	0,03703704
Bromus hordaceus L.	0,03703704
Typha angustifolia L.	0,35185185
Marrubium vulgare L.	0,01851852
Bryonia dioica Jacq.	0,0555556
Rumex bucephalophorus L.	0,09259259
Hordeum murinum L.	0,35185185
Astragalus epiglottis L.	0,03703704
Filago spathulata Presl.	0,01851852
Lotus ornithopodioides L.	0,03703704
Lobularia maritima (L.) Desv.	0,01851852
Asperula hirsuta Desf.	0,16666667
Echium vulgare	0,12962963
Scorpiurus muricatus L.	0,0555556
Sonchus asper (L.) Vill.	0,33333333
Silene colorata Poiret	0,09259259

0,00769231	0,000685773
0,00769231	0,000685773
0,03846154	0,003426914
0,1	0,006161429
0,01538462	0,000685676
0,02307692	0,002056734
0,12307692	0,005474491
0,04615385	0,003426427
0,00769231	0,000685773
0,01538462	0,001371351
0,12307692	0,003421557
0,01538462	0,001371351
0,06153846	0,001370181
0,24615385	0,012972417
0,03846154	0,000685383
0,06923077	0,002054979
0,08461538	0,00342399
0,16153846	0,012992683
0,01538462	0,001371351
0,00769231	0,000685773
0,02307692	0,001371156
0,00769231	0,000685773
0,1	0,006161429
0,08461538	0,004793586
0,02307692	0,002056734
0,16923077	0,01230711
0,03846154	0,003426914

Tableau XXXVIII : Indice de caractérisation (IC) des espèces du groupement C de la moyenne Tafna

G/Esp	f(x)	N	F(X)	IC
Arundo donax L.	0,02985075	67	0,07692308	0,000890045
Ferula communis L.	0,05970149		0,08461538	0,001779886
Picris echioides L.	0,04477612		0,03846154	0,001335834
Avena sterilis L.	0,01492537		0,03076923	0,000445329
Aegilops triuncialis L.	0,01492537		0,01538462	0,000445431
Chenopodium vulvaria L.	0,01492537		0,03846154	0,000445278
Ziziphus lotus (L.) Desf.	0,04477612		0,02307692	0,00133614
Phragmites communis Trin	0,1641791		0,12307692	0,004891883
Silybum murianum (L.) Gaertner	0,20895522		0,2	0,006218905
Alopecurus utriculatus (L.) Pers.	0,01492537		0,02307692	0,00044538
Bromus madritensis L.	0,01492537		0,08461538	0,000444972
Chenopodium album L.	0,02985075		0,04615385	0,000890454
Galactites tomentosa (L.) Moench.	0,01492537		0,00769231	0,000445482

Lagurus ovatus L.	0,01492537
Fumaria officinalis L.	0,01492537
Urtica urens L.	0,01492537
Herniaria hirsuta L.	0,01492537
Lactuca seriola L.	0,01492537
Chenopodium murale L.	0,13432836
Urtica membranacea Poir.	0,02985075
Sonchus maritimus L.	0,01492537
Hordeum vulgare	0,01492537
Plantago coronopus L.	0,05970149
Xanthium spinosum L.	0,23880597
Datura stramonium L.	0,05970149
Amaranthus angustifolius Lamk.	0,20895522
Papaver rhoeas L.	0,04477612
Picris duriaei Sch. Bip.	0,02985075
Diplotaxis tenuifolia (L.) DC.	0,02985075
Cerinthe major L.	0,02985075
Melilotus sulcata Desf.	0,04477612
Fedia cornucopiae (L.) Gaertner	0,01492537
Scandix australis L.	0,02985075
Medicago hispida Gaertner.	0,04477612
Atriplex chenopodioides Batt.	0,02985075
Medicago lupulina L.	0,01492537
Calendula suffruticosa Vahl	0,01492537
Atriplex halimus L.	0,04477612
Ulex parviflorus Pourret	0,01492537
Astragalus scorpioides Pourret	0,08955224
Papaver hybridum L.	0,02985075
Smyrnium olusatrum L.	0,01492537
Anacyclus valentinus L.	0,02985075
Apium graveolens L.	0,04477612
Nerium oleander L.	0,40298507
Paronychia argentea (Pourr.) Lamk.	0,05970149
Trifolium tomentosum L.	0,01492537
Centaurea calcitrapa L.	0,11940299
Carduus pycnocephalus L.	0,05970149
Scolymus hispanicus L.	0,1641791
Cynodon dactylon (L.) Pers.	0,10447761
Mentha rotundifolia L.	0,04477612
Conyza naudini Bonnet	0,19402985
Tamarix africana Poiret	0,62686567
Juncus acutus L.	0,31343284
Inula viscosa (L.) Ait.	0,46268657
Xanthium strumarium L.	0,23880597
Plantago major L.	0,01492537
Beta vulgaris L.	0,07462687

0,03076923	0,000445329
0,02307692	0,00044538
0,01538462	0,000445431
0,01538462	0,000445431
0,00769231	0,000445482
0,1	0,004003826
0,05384615	0,000890352
0,01538462	0,000445431
0,01538462	0,000445431
0,03846154	0,001781112
0,15384615	0,007112205
0,03076923	0,001781316
0,12307692	0,006226032
0,02307692	0,00133614
0,01538462	0,000890862
0,01538462	0,000890862
0,01538462	0,000890862
0,03076923	0,001335987
0,01538462	0,000445431
0,02307692	0,00089076
0,02307692	0,00133614
0,02307692	0,00089076
0,01538462	0,000445431
0,01538462	0,000445431
0,03076923	0,001335987
0,03846154	0,000445278
0,06153846	0,002670748
0,03076923	0,000890658
0,01538462	0,000445431
0,11538462	0,000889535
0,04615385	0,00133568
0,29230769	0,011977151
0,05384615	0,001780703
0,02307692	0,00044538
0,08461538	0,003559773
0,09230769	0,001779682
0,25384615	0,004882371
0,13846154	0,003112303
0,03846154	0,001335834
0,16153846	0,005778005
0,49230769	0,018575915
0,25384615	0,00932089
0,34615385	0,013740549
0,2	0,007107321
0,03076923	0,000445329
0,08461538	0,002224858

Bromus rubens L.	0,01492537
Oryzopsis miliacea (L.) Asch. et Schw.	0,14925373
Juncus maritimus Lamk.	0,02985075
Plantago lagopus L.	0,04477612
Calendula arvensis L.	0,07462687
Anagallis arvensis L.	0,01492537
Sinapis arvensis L.	0,02985075
Capsella borsa-pastoris L.	0,01492537
Medicago minima Grufb.	0,01492537
Raphanus raphanistrum L.	0,05970149
Sinapis alba L.	0,11940299
Lythrum junceum Soland.	0,07462687
Torilis arvensis (Huds.) Link	0,1641791
Bromus hordaceus L.	0,08955224
Rumex pulcher L.	0,02985075
Typha angustifolia L.	0,1641791
Atriplex hastata L.	0,02985075
Marrubium vulgare L.	0,05970149
Bryonia dioica Jacq.	0,07462687
Heliothropium europeum L.	0,01492537
Lotus ornithopodioides L.	0,01492537
Asperula hirsuta Desf.	0,05970149
Sonchus asper (L.) Vill.	0,05970149

0,09230769	0,000444921
0,09230769	0,004449205
0,05384615	0,000890352
0,18461538	0,001332928
0,2	0,002221038
0,09230769	0,000444921
0,22307692	0,00088811
0,03846154	0,000445278
0,06153846	0,000445125
0,1	0,001779478
0,12307692	0,003557733
0,03846154	0,00222639
0,12307692	0,004891883
0,06153846	0,002670748
0,01538462	0,000890862
0,24615385	0,004882929
0,01538462	0,000890862
0,03846154	0,001781112
0,06923077	0,002225368
0,00769231	0,000445482
0,02307692	0,00044538
0,1	0,001779478
0,16923077	0,001777644

Tableau XXXIX : Indice de caractérisation (IC) des espèces du groupement A de l'aval de la Tafna

G/Esp	f(x)	N	F(X)	IC
Brachypodium phoenicoides (L.) R. et S.	0,07894737	38	0,05769231	0,004148826
Brachypodium sylvaticum (Huds.) P.B.	0,02631579		0,01923077	0,001384341
Melilotus sicula (Turra) Jackson	0,02631579		0,01923077	0,001384341
Urginea maritima (L.) Baker	0,05263158		0,05769231	0,002765884
Atriplex patula L.	0,05263158		0,03846154	0,002767282
Oxalis corniculata L.	0,02631579		0,01923077	0,001384341
Tamus communis L.	0,05263158		0,05769231	0,002765884
Nicotiana glauca Graham	0,15789474		0,13461538	0,008280914
Ranunculus macrophyllus Desf.	0,02631579		0,01923077	0,001384341
Convolvulus humilis Sacq.	0,02631579		0,01923077	0,001384341
Chrysanthemum viscido-hirtum (Schott.)				
Thell.	0,05263158		0,03846154	0,002767282
Polygonum maritimum L.	0,10526316		0,11538462	0,005523395
Inula crithmoides L.	0,26315789		0,21153846	0,01377374
Salsola kali L.	0,15789474		0,11538462	0,008285092
Arthrocnemum indicum (Willd.) Moq.	0,18421053		0,15384615	0,009656197
Atriplex tornabeni Tineo	0,02631579		0,01923077	0,001384341

Schinus molle	0,05263158
Ricinus communis L.	0,10526316
Echium confusum de Coincy	0,07894737
Eryngium maritimum L.	0,02631579
Senecio leucanthemifolius Poiret	0,02631579
Ononis natrix L.	0,02631579
Plantago serraria L.	0,05263158
Reichardia tingitana (L.) Roth.	0,05263158
Cakile aegyptiaca Maire et Weiller	0,05263158
Coronopus didymus (L.) Smith.	0,07894737
Orlaya maritima Koch.	0,05263158
Anacyclus valentinus L.	0,02631579
Apium graveolens L.	0,05263158
Nerium oleander L.	0,18421053
Scolymus hispanicus L.	0,18421053
Malva sylvestris L.	0,02631579
Cynodon dactylon (L.) Pers.	0,10526316
Mentha rotundifolia L.	0,02631579
Conyza naudini Bonnet	0,23684211
Tamarix africana Poiret	0,52631579
Malva parviflora L.	0,21052632
Juncus acutus L.	0,28947368
Inula viscosa (L.) Ait.	0,42105263
Xanthium strumarium L.	0,34210526
Plantago major L.	0,02631579
Beta vulgaris L.	0,02631579
Festuca elatior L.	0,02631579
Oryzopsis miliacea (L.) Asch. et Schw.	0,02631579
Juncus maritimus Lamk.	0,02631579
Plantago lagopus L.	0,05263158
Calendula arvensis L.	0,05263158
Erodium moschatum (Burm.) L'Her	0,02631579
Raphanus raphanistrum L.	0,02631579
Sinapis alba L.	0,02631579
Bromus hordaceus L.	0,02631579
Rumex pulcher L.	0,10526316
Typha angustifolia L.	0,02631579
Atriplex hastata L.	0,10526316
Marrubium vulgare L.	0,05263158
Rumex bucephalophorus L.	0,02631579
Heliothropium europeum L.	0,02631579
Hordeum murinum L.	0,02631579
Sonchus asper (L.) Vill.	0,02631579

0,01923077	0,002768682
0,07692308	0,005528974
0,05769231	0,004148826
0,03846154	0,001383641
0,05769231	0,001382942
0,03846154	0,001383641
0,07692308	0,002764487
0,03846154	0,002767282
0,03846154	0,002767282
0,05769231	0,004148826
0,05769231	0,002765884
0,21153846	0,001377374
0,03846154	0,002767282
0,15384615	0,009656197
0,23076923	0,009636768
0,05769231	0,001382942
0,07692308	0,005528974
0,03846154	0,001383641
0,17307692	0,012408856
0,5	0,02734108
0,23076923	0,011013449
0,30769231	0,015113084
0,40384615	0,021927628
0,34615385	0,017843003
0,03846154	0,001383641
0,07692308	0,001382243
0,01923077	0,001384341
0,03846154	0,001383641
0,05769231	0,001382942
0,13461538	0,002760305
0,11538462	0,002761697
0,09615385	0,001381546
0,09615385	0,001381546
0,11538462	0,001380849
0,03846154	0,001383641
0,09615385	0,005526183
0,01923077	0,001384341
0,07692308	0,005528974
0,05769231	0,002765884
0,01923077	0,001384341
0,01923077	0,001384341
0,09615385	0,001381546
0,03846154	0,001383641

Echium vulgare	0,02631579
Chrysanthemum coronarium L.	0,05263158
Foeniculum vulgare (Miller) Gaertner	0,05263158
Echinops strigosus L.	0,02631579
Withania frutescens Panquy	0,02631579
Chenopodium vulvaria L.	0,13157895
Ziziphus lotus (L.) Desf.	0,02631579
Phragmites communis Trin	0,15789474
Silybum murianum (L.) Gaertner	0,02631579
Bromus madritensis L.	0,05263158
Chenopodium album L.	0,07894737
Lagurus ovatus L.	0,02631579
Sonchus maritimus L.	0,05263158
Hordeum vulgare	0,02631579
Xanthium spinosum L.	0,10526316
Datura stramonium L.	0,07894737
Convolvulus arvensis L.	0,02631579
Picris duriaei Sch. Bip.	0,02631579
Atriplex chenopodioides Batt.	0,05263158
Atriplex halimus L.	0,13157895
Smyrnium olusatrum L.	0,05263158

	1
0,07692308	0,001382243
0,05769231	0,002765884
0,05769231	0,002765884
0,03846154	0,001383641
0,01923077	0,001384341
0,09615385	0,006907729
0,03846154	0,001383641
0,11538462	0,008285092
0,13461538	0,001380152
0,13461538	0,002760305
0,05769231	0,004148826
0,03846154	0,001383641
0,05769231	0,002765884
0,05769231	0,001382942
0,11538462	0,005523395
0,05769231	0,004148826
0,01923077	0,001384341
0,01923077	0,001384341
0,05769231	0,002765884
0,13461538	0,006900762
0,05769231	0,002765884

Tableau XXXX : Indice de caractérisation (IC) des espèces du groupement B de l'aval de la Tafna

G/Esp	f(x)	N	F(X)	IC
Cichorium intybus L.	0,33333333	9	0,05769231	0,073602265
Phalaris caerulescens Desf.	0,11111111		0,01923077	0,024638711
Erodium ciconium Willd.	0,11111111		0,01923077	0,024638711
Oxalis cernua Thumb.	0,4444444		0,07692308	0,097928437
Senecio vulgaris L.	0,11111111		0,01923077	0,024638711
Eryngium campestre L.	0,11111111		0,01923077	0,024638711
Trifolium angustifolium L.	0,2222222		0,03846154	0,049172577
Urginea maritima (L.) Baker	0,11111111		0,05769231	0,024534088
Tamus communis L.	0,11111111		0,05769231	0,024534088
Scorpiurus vermiculatus L.	0,11111111		0,01923077	0,024638711
Geranium robertianum L.	0,11111111		0,01923077	0,024638711
Orobanche purpurea Jacq.	0,11111111		0,01923077	0,024638711
Silene colorata Poiret	0,11111111		0,01923077	0,024638711
Medicago sativa L.	0,2222222		0,03846154	0,049172577
Phleum pratense L.	0,11111111		0,03846154	0,024586288
Centaurea pullata L.	0,11111111		0,11538462	0,024378809
Anacyclus valentinus L.	0,66666667		0,21153846	0,144745999

Nerium oleander L.	0,11111111
Centaurea calcitrapa L.	0,33333333
Carduus pycnocephalus L.	0,5555556
Scolymus hispanicus L.	0,5555556
Mentha rotundifolia L.	0,11111111
Tamarix africana Poiret	0,5555556
Malva parviflora L.	0,2222222
Juncus acutus L.	0,33333333
Inula viscosa (L.) Ait.	0,4444444
Xanthium strumarium L.	0,33333333
Plantago major L.	0,11111111
Beta vulgaris L.	0,33333333
Bromus rubens L.	0,11111111
Oryzopsis miliacea (L.) Asch. et Schw.	0,11111111
Juncus maritimus Lamk.	0,2222222
Plantago lagopus L.	0,4444444
Reseda alba L.	0,11111111
Calendula arvensis L.	0,2222222
Anagallis arvensis L.	0,5555556
Thapsia garganica L.	0,2222222
Sinapis arvensis L.	0,2222222
Capsella borsa-pastoris L.	0,11111111
Bellis annua L.	0,2222222
Erodium moschatum (Burm.) L'Her	0,33333333
Raphanus raphanistrum L.	0,33333333
Sinapis alba L.	0,33333333
Lamarkia aurea L.	0,11111111
Torilis arvensis (Huds.) Link	0,11111111
Bromus hordaceus L.	0,11111111
Rumex pulcher L.	0,11111111
Marrubium vulgare L.	0,11111111
Hordeum murinum L.	0,2222222
Echium vulgare	0,11111111
Scorpiurus muricatus L.	0,11111111
Chrysanthemum coronarium L.	0,11111111
Foeniculum vulgare (Miller) Gaertner	0,11111111
Echinops strigosus L.	0,11111111
Arundo donax L.	0,11111111
Ziziphus lotus (L.) Desf.	0,11111111
Silybum murianum (L.) Gaertner	0,33333333
Bromus madritensis L.	0,33333333
Lagurus ovatus L.	0,11111111
Urtica urens L.	0,2222222

0,15384615	0,024276377
0,05769231	0,073602265
0,09615385	0,12215175
0,23076923	0,12037037
0,03846154	0,024586288
0,5	0,116959064
0,23076923	0,048148148
0,30769231	0,071625344
0,40384615	0,094523972
0,34615385	0,07133059
0,03846154	0,024586288
0,07692308	0,073446328
0,01923077	0,024638711
0,03846154	0,024586288
0,05769231	0,049068176
0,13461538	0,097309942
0,01923077	0,024638711
0,11538462	0,048757618
0,09615385	0,12215175
0,03846154	0,049172577
0,03846154	0,049172577
0,03846154	0,024586288
0,03846154	0,049172577
0,09615385	0,07329105
0,09615385	0,07329105
0,11538462	0,073136428
0,01923077	0,024638711
0,01923077	0,024638711
0,03846154	0,024586288
0,09615385	0,02443035
0,05769231	0,024534088
0,09615385	0,0488607
0,07692308	0,024482109
0,01923077	0,024638711
0,05769231	0,024534088
0,05769231	0,024534088
0,03846154	0,024586288
0,01923077	0,024638711
0,03846154	0,024586288
0,13461538	0,072982456
0,13461538	0,072982456
0,03846154	0,024586288
0,03846154	0,049172577

Cordylocarpus muricatus Desf.	0,11111111
Sonchus maritimus L.	0,11111111
Xanthium spinosum L.	0,2222222
Poa annua L.	0,11111111
Fedia cornucopiae (L.) Gaertner	0,2222222
Atriplex chenopodioides Batt.	0,11111111
Medicago lupulina L.	0,11111111
Atriplex halimus L.	0,11111111
Ulex parviflorus Pourret	0,2222222
Papaver hybridum L.	0,11111111
Smyrnium olusatrum L.	0,11111111

0,01923077	0,024638711
0,05769231	0,024534088
0,11538462	0,048757618
0,01923077	0,024638711
0,03846154	0,049172577
0,05769231	0,024534088
0,01923077	0,024638711
0,13461538	0,024327485
0,09615385	0,0488607
0,01923077	0,024638711
0,05769231	0,024534088

Tableau XXXXI : Indice de caractérisation (IC) des espèces du groupement C de l'aval de la Tafna

G/Esp	f(x)	N	F(X)	IC
Nicotiana glauca Graham	0,2	5	0,13461538	0,077902622
Phleum pratense L.	0,2		0,03846154	0,079389313
Polygonum maritimum L.	0,4		0,11538462	0,156390977
Inula crithmoides L.	0,2		0,21153846	0,076752768
Arthrocnemum indicum (Willd.) Moq.	0,2		0,15384615	0,07761194
Eryngium maritimum L.	0,2		0,03846154	0,079389313
Urtica pilulifera L.	0,4		0,03846154	0,158778626
Senecio leucanthemifolius Poiret	0,4		0,05769231	0,158174905
Ononis natrix L.	0,2		0,03846154	0,079389313
Plantago serraria L.	0,4		0,07692308	0,157575758
Centaurea pullata L.	1		0,11538462	0,390977444
Amaranthus albus L.	0,2		0,01923077	0,079693487
Orlaya maritima Koch.	0,2		0,05769231	0,079087452
Anacyclus valentinus L.	0,8		0,21153846	0,30701107
Malva sylvestris L.	0,4		0,05769231	0,158174905
Tamarix africana Poiret	0,2		0,5	0,072727273
Malva parviflora L.	0,4		0,23076923	0,152941176
Juncus acutus L.	0,4		0,30769231	0,150724638
Inula viscosa (L.) Ait.	0,2		0,40384615	0,074021352
Xanthium strumarium L.	0,4		0,34615385	0,149640288
Solanum nigrum L.	0,4		0,03846154	0,158778626
Plantago lagopus L.	0,2		0,13461538	0,077902622
Calendula arvensis L.	0,4		0,11538462	0,156390977
Ballota hirsuta Benth.	0,4		0,03846154	0,158778626
Capsella borsa-pastoris L.	0,2		0,03846154	0,079389313
Cynoglossum creticum Miller	0,4		0,03846154	0,158778626
Erodium moschatum (Burm.) L'Her	0,2		0,09615385	0,078490566

Stellaria media (L.) Vill.	0,6
Raphanus raphanistrum L.	0,2
Sinapis alba L.	0,4
Hordeum murinum L.	0,4
Sonchus asper (L.) Vill.	0,2
Echium vulgare	0,4
Silybum murianum (L.) Gaertner	0,6
Bromus madritensis L.	0,4
Chenopodium murale L.	0,6
Hordeum vulgare	0,4
Atriplex halimus L.	0,2
Ulex parviflorus Pourret	0,6

0,05769231	0,237262357
0,09615385	0,078490566
0,11538462	0,156390977
0,09615385	0,156981132
0,03846154	0,079389313
0,07692308	0,157575758
0,13461538	0,233707865
0,13461538	0,155805243
0,05769231	0,237262357
0,05769231	0,158174905
0,13461538	0,077902622
0,09615385	0,235471698

PHOTOS DES ESPECES (Photos prises par BENKELFAT Khedoudja lors des sorties sur terrain)

Calendula arvensis

Bellis annua

Calycotome intermedia

Nerium oleander

Erodium moschatum

Raphanus raphanistrum

Thapsia garganica

Reseda alba Sedum nevadense

Station 1

Sonchus asper

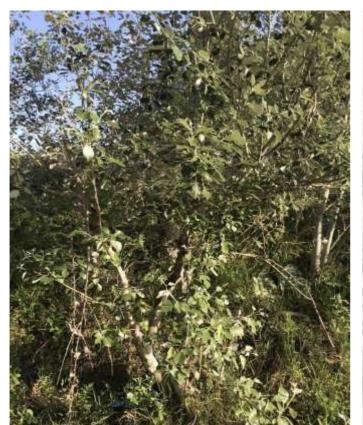
Lotus ornithopodioides

Lobularia maritima

Echium plantaginum

Centaurea calcitrapa

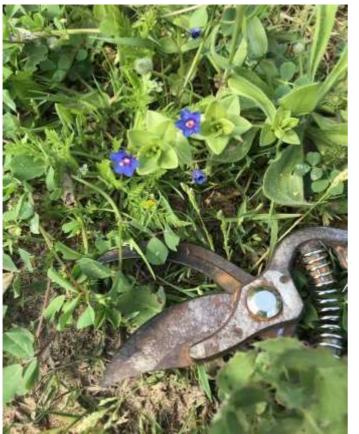
Artemisia herba-alba



Station 2

Chrysanthemum coronarium

Cynoglossum creticum



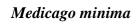
Populus alba

Vicia sativa

Station 3

Anagallis arvensis

Anacyclus valentinus


Cladanthus arabicus

Geranium molle

Veronica anagallis aquatica

Mentha rotundifolia

Sinapis alba

Station 5

Trifolium tomentosum

Marrubium vulgare

Station 6

Capsella borsa-pastoris

Carduus pycnocephalus

Nicotiana glauca

Papaver hybridum

Plantago lagopus

Station 7 (Tamarix africana)

Oxalis cernua

Trifolium angustifolium

Echium confusum

Sinapis arvensis

Centaurea pullata

Tamarix africana

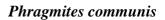
Station 8

Ononis natrix

Arthrocnemum indicum

Cakile aegyptiaca

Reichardia tingitana



Rumex bucephalophorus

Chrysanthemum viscido-hirtum

Polygonum maritimum

Plantago serraria

ملخص: يشير المصطلح "حرجة شطية" إلى هامش من الغابات المرتبطة بالمناخ الرّطب المشبّع مؤقّتًا على حافّة النّهر. تشمل الدّراسة الحالية غابات النّهر في منطقة تلمسان، على ضفاف وادي تافنة، من المنبع إلى المصب مرورًا بوسطها.

— ---- عى --- ودي حدم س المسبع إلى المصلب مرور الموسطها. الهدف من هذه الدّراسة هو وصف الموكب النّباتي الغابات النّهرية، لتشديد الضّوء على النّجمّعات النّباتية المختلفة لـ .Tamarix L و العوامل البيئية التي تؤثّر على تطوّر هذه النّجمّعات، و هذا بأستخدام التّحليل الواقعي للمراسلات.

تظهر دراسة المناخ الحيوي إزاحة عمودية و أفقية طفيفة لجميع المحطّات، و بالتالي فإنّ الغطاء النّباتي الّذي تمّ تحديده يهيمن عليه النّوع البيولوجي "thérophyte"، حيث من الواضح أنّ كل الأفراد من أنواع مختلفة مع وفرة عالية، و موزّعة بآنتظام.

التّحليل الواقعي للمراسلات الّذي أُجري سمح لنا بالتّمييز بين التّجمّعات التّالية:

تجمّعات Thapsia garganica ،Nerium oleander و Calendula arvensis على مستوى منبع تافنة.

تجمّعات Eucalyptus globulus ، Populus alba و Eucalyptus globulus

تجمّعات Anacyclus valentinus ،Xanthium strumarium و Centaurea pullata على مستوى مصب تافنة.

أخيرًا تمكّنا من إجراء محاولة رسمية لتوزيع .Tamarix L في منطقة تلمسان مع التّجمّعات النّباتية المحلّية .

كلمات مفتاحية: الغابات النّهرية، .Tamarix L. علم بيئة النّباتات، علم إجتماع النّباتات، رسم الخرائط، تلمسان (الجزائر).

Résumé : Le terme ripisylve signifie une frange forestière liée au pédo-climat humide temporairement saturé au bord d'un cours d'eau. La présente étude porte sur es ripisylves de la région de Tlemcen, sur les rives de Oued Tafna, depuis l'amont jusqu'à l'aval, en passant par la moyenne Tafna. L'objectif de cette étude est de décrire le cortège floristique de la ripisylve, de souligner les différents groupements végétaux à *Tamarix* L., et les facteurs écologiques qui agissent sur le développement de ces derniers, et cela à l'aide de l'analyse factorielle des correspondances. L'étude bioclimatique montre un léger déplacement vertical et horizontal des positions de chacune des stations, et en conséquence la végétation recensée est prédominée par le type biologique « thérophyte », les individus sont tous des espèces différentes avec des abondances élevée, répartit régulièrement. L'analyse factorielle des correspondances réalisée nous a permis de distinguer les groupements suivants :

Groupement à Nerium oleander, Thapsia garganica et Calendula arvensis pour l'amont de la Tafna.

Groupement à Populus alba, Eucalyptus globulus et Inula viscosa dans la moyenne Tafna.

Groupement à *Xanthium strumarium*, *Anacyclus valentinus* et *Centaurea pullata* dans l'aval de la Tafna.

En dernier, on a pu faire un essai cartographique de la distibution du Tamarix L. dans la région de Tlemcen avec des groupements végétaux bien localisés.

Mots clés: Ripisylves, *Tamarix* L., phytoécologie, phytosociologie, cartographie, Tlemcen (Algérie).

Abstract : The term « ripisylve » means a forest fringe linked to the wet climate temporarily saturated at the edge of a river. The present study cover riparian forests of the Tlemcen region, on the banks of Tafna Oued, from upstream to downstream, through the medium Tafna. The aim of this study is to describe the floristic procession of riparian forest, to highlight the different plant communities of *Tamarix* L., and the ecological factors that affect the development these groups, and this, using the factorial analysis of the correspondences. The bioclimatic study shows a slight vertical and horizontal displacement of the positions of each of the stations, and consequently the identified vegetation is predominated by the biological type « therophyte », the individuals are all different species with high abundances, distributed regularly. The factorial analysis of the correspondences realized enabled us to distinguish the following communities:

Plant communities of Nerium oleander, Thapsia garganica and Calendula arvensis in Tafna upstream.

Plant communities of *Populus alba*, *Eucalyptus globulus* and *Inula viscosa* in the medium Tafna.

Plant communities of *Xanthium strumarium*, *Anacyclus valentinus* and *Centaurea pullata* in Tafna downstream.

Lastly, we were able to make a cartographic test of the distribution of *Tamarix* L. in the region of Tlemcen, with well-localized plant communities.

Key words: Riparian forests, *Tamarix* L., phytoecology, phytosociology, cartography, Tlemcen (Algeria).