République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Aboubakr Belkaid Tlemcen

Faculté de Technologie

Département de Génie Civil

Mémoire pour l'Obtention du Diplôme de Master en Génie Civil

Spécialité : Construction Métallique et Mixte

Thème :

ÉTUDE D'UN HALL METALLIQUE AVEC PONT ROULANT ET POTENCE

Présenté par :

Achouri Abdelhamid Nazih

Moussi Mohammed El Hedi

Devant le jury composé de :

Pr. BOUMECHRA Nadir Dr. MISSOUM Abdelghani Dr. KAZI TANI Nabil

Président

Examinateur

Encadreur

Année universitaire 2019-2020

Tout d'abord merci au bon dieu de nous avoir accordé cette vie, de nous permettre de nous instruire de grandir d'évoluer et de prendre soin des nôtres

Merci à nos parents pour tout, tout simplement

Merci à notre encadreur Dr. KAZI TANI Nabil, il a été pour nous ces derniers mois comme un grand frère, il nous a assister dans notre travail, appris beaucoup de chose et nous a donné sans compter de son temps et de son savoir

Merci à Djelti Abdessamad et Merad Sofiane pour leur aide sur différents points de ce modeste travail.

A.ACHOURI et E.MOUSSI

Je dédie ce Modeste travaille

A ma mère, ma raison d'être, ma raison de vivre, la lanterne qui éclaire mon chemin et m'illumine de douceur et d'amour.

A mon père, en signe d'amour, de reconnaissance et de gratitude pour tous les soutiens et les sacrifices dont il a fait preuve à mon égard.

À mon cousin ami et frère Djelti Abdesamad pour son aide inestimable.

À Mr. KAZI TANI Nabil qui nous a encadré, nous a guidé et nous a tellement appris durant ces derniers mois en partageant avec nous ses astuces ses retours d'expériences et son savoir. Aucun mot ne pourra décrire son dévouement et ses sacrifices, encore merci.

À tous mes amis, en témoignage de l'amitié sincère qui nous a liées et des bons moments passés ensemble, en particulier mon binôme Achouri Abdelhamid.

Et enfin à tous les enseignants qui m'ont instruit durant ces cinq dernières années spécialement monsieur Boumechra Nadir le plus dévoué de tous.

Mr. Moussi Mohammed El Hadi

ONédicace

Je dédie ce modeste travail

A mes chers parents, pour tous leurs sacrifices, leur amour, leur tendresse, leur soutien et leurs prières tout au long de mes études.

A toute ma famille qui vit loin de moi pour leur soutien moral tout au long de mon parcours universitaire

A Mr. Kazi Tani Nabil, notre encadreur qui à toujours été présent pour le suivi pas à pas de notre travail, ses conseils et sa compétence nous ont beaucoup appris dans la réalisation de ce manuscrit ainsi que dans le monde pratique du génie civil

A tous les enseignants qui m'ont tant appris durant mon cursus universitaire

A tous mes amis pour leur appui et leur encouragement, spécialement à mon binôme Moussi El Hedi avec qui j'ai partagé des moments inestimables

A tous ceux qui ont contribué de prés ou de loin pour que ce projet soit possible, je vous dis merci

Que ce travail soit l'accomplissement de vos vœux tant allégués, et le fruit de votre soutien infaillible

Mr.Achouri Abdelhamid Nazih

RÉSUMÉ

Notre projet de fin d'études consiste en l'étude et dimensionnement d'une halle industrielle, avec pont roulant. Cet ouvrage destiné à la maintenance d'engins mécaniques est composé de deux halles. Il est situé dans la commune de Hassi Messaoud, Wilaya de « Ouargla ». elle est constitué de plusieurs portiques stabilisés par des contreventements et couvert par une toiture à quatre versants symétriques.

Ce projet fut élaboré en plusieurs étapes regroupant l'évaluation des charges, surcharges et effets des actions climatiques 'sable et vent' selon le règlement Algérien « RNV 99 V2013 ».

Le dimensionnement des différents éléments (principaux et secondaires), ainsi que leurs assemblages en se basant sur les règlements Algériens « RPA 99 V 2003 », « CCM 97 » et « BAEL 91 ». Enfin pour notre simulation numérique nous avons eu recours au logiciel «ROBOT ANALYSIS STRUCTURAL».

Mots clés : Charpente métallique - Halle industrielle – Assemblage – Prédimensionnement – Pont roulant

ملخص

مشروعنا النهائي يتكون من دراسة وتحجيم قاعة صناعية، مع رافعة. يتكون هذا العمل لصيانة الأجهزة الميكانيكية من قاعتين. ويقع في بلدية حسي مسعود، ولاية ورقلة. وهو يتألف من عدة أروقة استقرت بواسطة الأقواس ومغطاة بسقف متناظر من أربعة جوانب.

وقد تم تطوير هذا المشروع على عدة مراحل يجمع بين تقييم الأحمال والحمولات الزائدة وآثار الإجراءات المناخية "الرملية و الريحية" وفقا للائحة الجزائرية «RNV 99 V2003». تحجيم مختلف العناصر (الرئيسية والثانوية)، فضلا عن تجمعاتها استنادا إلى اللوائح الجزائرية "BAEL 91" و "CCM 97"، "RPA 99 V 2003" وأخيرا، لمحاكاة الرقمية لدينا، استخدمنا«ROBOT ANALYSIS STRUCTURAL» الكلمات الرئيسية: الإطار المعدني - القاعة الصناعية – التجميع – التحجيم المسبق – رافعة علوية

Abstract

Our project of end of studies is about study and design a building industrial having a travelling crane, he consists of two halls located in the commune of Hassi Messaoud, Wilaya of «Ouargla». it is composed of several frames, stabilized by bracing, and covered by a roof with four symmetrical slopes. The work is developed through several stages ;

first of all, the assessment of loadings as climate effects under the Algerian climatic rules «RNV 99 V2013 », and the evaluation of the structural steel's secondary and principal elements according to their resistances, then, the dynamic analysis study according to the Algerian earthquake codes « RPA99 V2003 » to choose the bracing system those ensure the stability of the structure, then, the assemblies are studied by the « CCM 97 ».

Finally, the foundations are dimensioned according to the code « BAEL 91 ».

For the structural analysis, «ROBOT ANALYSIS STRUCTURAL».

Keywords: Steel structure – Assembly – Pre-sizing – Industrial hall – Overhead crane.

Tables des matières

Cha	pitre-1 G	énéralité et présentation de l'ouvrage	16		
1.1	Introduc	tion	16		
1.2	2 L'état limite ultime ELU				
1.3	L'état lin	nite de service ELS			
1.4	Etude pa	irasismique	18		
1.5	L'effet d	u vent	19		
1.6	Présenta	tion de l'ouvrage	20		
1.7	Caractér	istiques géométriques	20		
1.8	Matériau	JXXI	21		
	1.8.1	Acier	21		
	1.8.2	Béton armé	22		
	1.8.3	Ferraillages et armatures	22		
Cha	pitre-2 D	étermination des charges climatiques	23		
2.1	Introduc	tion	23		
2.2	Détermi	nation de l'action du vent	23		
	2.2.1	Détermination de la pression aérodynamique	24		
	2.2.2	Calcul de la pression dynamique de pointe qp	24		
	2.2.3	Coefficient de pression extérieure			
	2.2.4	Coefficient de pression intérieure	31		
	2.2.5	Détermination de la pression statique du vent			
2.3	Détermi	nation de l'action de la neige			
2.4	4 Détermination de l'action du sable				
2.5	5 Charge permanente				
2.6	Charge d	l'exploitation	36		
Cha	pitre-3 D	imensionnement des éléments secondaires			
3.1	Dimensio	onnement des pannes pour la toiture à plusieurs versants	38		
	3.1.1	Fonctionnement de base	38		
	3.1.2	Choix du bardage de couverture			
	3.1.3	Redimensionnement des pannes avec IPE200	43		
	3.1	.3.1 Évaluation des charges et surcharges	43		
3.2	Dimensio	onnement de l'échantignole	49		
3.3	Dimensio	onnement des lisses de bardages	51		
	3.3.1	Choix du bardage	51		
	3.3.2	Détermination de l'espacement entre lisse	51		
	3.3.3	Le dimensionnement se fait par la condition de limitation de la flèche	53		
	3.3.4	Vérification des différentes conditions de résistances	54		
3.4	Dimensio	onnement des liernes	56		

3.5	Calcul des chéneaux	57
3.6	Prédimensionnement des potelets	59

Cha	Chapitre-4 Etude du pont roulant64				
4.1	1 Introduction				
	4.1.1	Caractéristiques des ponts roulants	.65		
4.2	Classificat	ion des ponts roulants	.66		
	4.2.1	Coefficient et classements des ponts roulants selon CTICM	.66		
	4.2.2	Description générale du calcul	.66		
	4.2.3	Définition des charges	.67		
	4.2.4	Calcul des réactions des galets du pont roulant	.67		
	4.2.5	Le choix du rail de roulement	.69		
4.3	Prédimen	sionnement de la poutre de roulement	.70		
	4.3.1	Condition de la flèche	.70		
	4.3.2	Classe du profilé HEB 300	.72		
	4.3.3	Vérification de la résistance de la poutre de roulement	.74		
	4.3.4	Résistance de l'âme à la charge transversale	.75		
	4.3.5	Calcul du support du chemin de roulement	.77		

Cha	pitre-5 Etu	ude sismique	82			
5.1	Introduction					
5.2	2 Analyse de la structure					
	5.2.1	Méthode de calcul	83			
	5.2.2	Calcul de la force sismique totale	83			
	5.2.3	Estimation de la période fondamentale	84			
	5.2.4	Méthode modale spectrale	85			
	5.2.5	Résultat de calcul dynamique				
	5.2.6	Vérification de la résultante des forces sismiques	87			
	5.2.7	Vérification de la période	87			
	5.2.8	Vérification des déplacements	87			
Cha	pitre-6 Véi	rification des éléments structuraux				
6.1	Introducti	ion	90			
6.2	5.2 Vérification de la traverse IPE40090					
6.3	5.3 Vérification des poteaux (HEA320)					
6.4	.4 Vérification des éléments de stabilités CAE (120x12)					
6.5	5.5 Vérification des potelets (IPE300)102					
Cha	pitre-7 Cal	lcul des assemblages	107			
7.1	7.1 Introduction					
7.2	7.2 Assemblage poteau-traverse (HEA320-IPE400)107					

	7.2.1	Vérification de la soudure de la semelle à la traction	109
	7.2.2	Vérification de la soudure de l'âme au cisaillement	109
	7.2.3	Détermination des efforts dans les boulons	109
	7.2.4	Détermination de diamètre requis des boulons	110
	7.2.5	Vérification à la résistance de l'assemblage	110
	7.2.6	Vérification des boulons à l'interaction cisaillement-traction	110
	7.2.7	Vérification au poinçonnement de la semelle du poteau	111
	7.2.8	Vérification de la pression diamétrale	111
	7.2.9	Vérification de la résistance de l'âme du poteau dans la zone tendue	111
	7.2.10	Vérification de la résistance de l'âme du poteau dans la zone comprimée	112
	7.2.11	Vérification de la résistance de l'âme du poteau dans la zone cisaillée	113
7.3	Assembla	ge Traverse-Traverse (IPE400)	113
	7.3.1	Vérification de la soudure de la semelle à la traction	115
	7.3.2	Vérification de la soudure de l'âme au cisaillement	115
	7.3.3	Détermination des efforts dans les boulons	115
	7.3.4	Détermination du diamètre requis pour les boulons	116
	7.3.5	Vérification à la résistance de l'assemblage	116
	7.3.6	Vérification des boulons à l'interaction cisaillement-traction	116
	7.3.7	Vérification au poinçonnement de la semelle du poteau	117
	7.3.8	Vérification de la pression diamétrale	117
7.4	Assembla	ge des palés de stabilité (2L 120x120 X12)	118
	7.4.1	Vérification de la soudure gousset-semelle du poteau à la traction	119
	7.4.2	Vérification au cisaillement des boulons	119
	7.4.3	Vérification de la pression diamétrale	119
	7.4.4	Vérification à la résistance du bloc	120
7.5	Assembla	ge Panne-Traverse (Echantignole)	120
	7.5.1	Résistance des boulons au cisaillement	121
	7.5.2	Résistance des boulons à l'effort combinée traction-cisaillement	121
Cha	pitre-8 Vé	rification des ancrages et calcul de fondations	122
8.1	Vérificatio	on d'ancrage des pieds de poteaux HEA320	122
	8.1.1	Introduction	122
	8.1.2	Dimensionnement de la plaque d'assise	123
	8.1.3	Resistance du béton à la compression	123
	8.1.4	Resistance de calcul à l'écrasement du matériau de scellement	123
	8.1.5	Calcul de l'aire de la plaque	123
	8.1.6	Cordon de soudure	124
	8.1.7	Calcul de la résistance à la flexion en présence de l'effort axial	124
	8.1.8	Vérification de la résistance de tiges d'ancrage	127
	8.1.9	Résistance de la partie tendue de l'assemblage	128
	8.1.10	Resistance à la flexion de la plaque d'assise (par unité de longueur)	.128
	8.1.11	Vérification de la résistance en flexion	.129
8.2	Etude des	fondations	129

Introduction	129
Détermination des sollicitations	130
Dimensionnement de la semelle	130
Vérification des contraintes	131
Vérification de la stabilité au renversement	131
Détermination des armatures de la semelle	131
Calcul des longrines	134
Vérification de la condition de non-fragilité	134
Ferraillage transversal	135
Calcul d'espacement des cadres	135
	Introduction Détermination des sollicitations Dimensionnement de la semelle Vérification des contraintes Vérification de la stabilité au renversement Détermination des armatures de la semelle Calcul des longrines Vérification de la condition de non-fragilité Ferraillage transversal Calcul d'espacement des cadres

Liste des tableaux

Tableau 1.1 : Valeur des coefficients partiels de sécurité	18
Tableau 1.2 : Classification des zones sismiques	19
Tableau 2.1 : Données relatives au site d'implantation	24
Tableau 2.2 : Légende relative pour les parois verticales (direction V1)	27
Tableau 2.3 : Coefficient de pression extérieur Cpe pour le versant 1 face au vent de toiture	28
Tableau 2.4 : Coefficient de pression extérieur C _{pe10} pour les parois verticales direction V2	30
Tableau 2.5 : Coefficient de pression extérieur pour la toiture (direction V2)	31
Tableau 2.6 : Pressions du vent sur parois vertical	33
Tableau 2.7 : Pressions du vent sur toiture	34
Tableau 2.8 : Pressions du vent sur parois vertical	34
Tableau 2.9 : Pressions du vent sur toiture	35
Tableau 3.1 : Caractéristiques de la section IPE180	41
Tableau 3.2 : Portée maximale de la nervure TL75 en fonction des charges appliquées	44
Tableau 3.3 : Caractéristiques de la section IPE200	46
Tableau 3.4 : Caractéristiques géométriques du profilé UPN140	53
Tableau 3.5 : Caractéristiques géométriques d'IPE 300	60
Tableau 4.1 : Caractéristiques du pont roulant. (Annexe5)	65
Tableau 4.2 : Caractéristiques géométriques du pont roulant	66
Tableau 4.3 : Coefficient et classement des ponts roulants	66
Tableau 4.4 : Caractéristiques géométriques du rail	69
Tableau 4.5 : Caractéristiques du profilé HEB360	71
Tableau 4.6 : Caractéristiques du profilé HEB400	72
Tableau 4.7 : Caractéristiques du profilé IPE300	79
Tableau 4.8 : Caractéristiques du profilé IPE360	80
Tableau 5.1 : Pénalités de vérification	84
Tableau 5.2 : Vérification de l'effort tranchant à la base	87
Tableau 5.3 : Tableau des périodes	87
Tableau 5.4 : Déplacement ultime en situation durable	88
Tableau 5.5 : Déplacement relatif en situation accidentelle	89
Tableau 6.1 : Caractéristiques du profilé IPE400	91
Tableau 6.2 : Caractéristiques du profilé HEA320	96
Tableau 6.3 : Caractéristiques du profilé 2CAE (120x12)	100
Tableau 6.4 : Caractéristiques du profilé IPE 300	103
Tableau 7.1 : Caractéristiques géométriques du boulon M18	110
Tableau 7.2 : Caractéristiques géométrique des boulons	116
Tableau 7.3 : Caractéristiques géométrique des boulons	118
Tableau 8.1 : Caractéristique de boulon M30	125
Tableau 8.2 : Ferraillage choisis pour la semelle au-dessous de poteau	133

Listes des figures

Figure 1.1 : Notre structure est présente à Hassi Messaoud dans la wilaya de Ouargla	19
Figure 1.2 : Zone de Ouargla (RPA)	20
Figure 1.3 : Vue sur pignon de l'ouvrage	21
Figure 1.4 : Vue en perspective de la structure	21
Figure 2.1 : Représentation et dénominations des directions du vent	23
Figure 2.2 : Légende relative pour les parois verticale (direction V1)	26
Figure 2.3 : Légende relative pour les parois verticale (direction V1)	27
Figure 2.4 : Légende pour les toitures à versant multiple (directionV1-V3)	28
Figure 2.5 : Légende pour les toitures à versant multiple (directionV1-V3)	28
Figure 2.6 : Zone de vent pour les parois verticales (V2) (V4)	29
Figure 2.7 : Zone de vent pour les parois verticales (V2) (V4)	29
Figure 2.8 : Légende pour les toitures à versant multiple (V2)	30
Figure 2.9 : Légende pour les toitures à versant multiple (V2)	30
Figure 2.10 : Coefficient de pression intérieure C _{pi} pour la direction V1,V3	32
Figure 2.11 : Coefficient de pression intérieure C _{pi} pour la direction V2,V4	
Figure 3.1 : La position des deux pannes par rapport aux zones H et F	
Figure 3.2 : Répartition de la charge d'entretien sur la panne	43
Figure 3.3 : Répartition des pannes sur un versant	44
Figure 3.4 : Assemblage poutre-traverse avec échantignole	49
Figure 3.5 : choix de l'epaisseur du bardage	51
Figure 3.6 : Répartition des lisses	52
Figure 3.7 : Disposition des liernes sur le bardage	56
Figure 3.8 : Coupe vertical sur le chéneau	58
Figure 3.9 : Disposition des potelets	59
Figure 4.1 : Schéma 3D du pont roulant	65
Figure 4.2 : Schéma 2D du pont roulant	65
Figure 4.3 : Moment max pour deux charges égales (Théorème de Barré)	67
Figure 4.4 : Coupe transversale du rail	68
Figure 4.5 : Schéma de la poutre de roulement avec le rail	69
Figure 4.6 : Schéma statique de la poutre de roulement	70
Figure 4.7 : Illustrations des efforts appliqués sur la poutre de roulement par le galet et P la vorticale max	réaction
Figure 4.8 : Schéma statique de la poutre de reulement sur deux appuis	70
Figure 4.0 : Illustration des galots sur la poutre de roulement sur deux appuis	71 76
Figure 4.9 : Industration des galets sur la pour e de roulement	70
Figure 4.10 : Coupe verticale sur le support du chemin de roulement	70 70
Figure 4.11 : Schema statique du support de chemin de roulement	
Figure 4.12 : Diagramme du moment nechissant du support de chemin de roulement Figure 4.13 : Coupe verticale sur la répartition des charges sur le support du chemin de	80
roulement	81
Figure 5.1 : Spectre de réponse suivant la direction X	86
Figure 5.2 : Spectre de réponse suivant la direction Y	86

Figure 5.3 : Valeur limite des flèches horizontales des bâtiments industriels	88
Figure 6.1 : Illustration de la traverse la plus sollicitée	90
Figure 6.2 : Vue en 3D de la structure illustration des poteaux	95
Figure 6.3 : Vue en 3D illustrant la position des contreventements et stabilités	100
Figure 6.4 : Ratio des éléments structuraux (à partir du logiciel ROBOT)	102
Figure 6.5 : Vue en 3D de la structure illustration des potelets	102

Figure 7.1 : vue en plan de l'assemblage poteau-traverse	107
Figure 7.2 : Désignation des entraxes et des pinces	108
Figure 7.3 : Vu en plan de l'assemblage traverse-traverse	114
Figure 7.4 : Désignation des entraxes et des pinces	114
Figure 7.5 : Assemblage des diagonales doubles cornières avec gousset	118
Figure 7.6 : Assemblage panne-échantignole/ échantignole-traverse	120
	422
Figure 8.1 : Assemblage au pied de poteau rigide	122
Figure 8.2 : Illustration moment + effort normal	124
Figure 8.3 : Illustration de la partie comprimée du pied de poteau	125
Figure 8.4 : Dispositions constructives	126
Figure 8.5 : Longueur d'allongement des boulons d'ancrages	128
Figure 8.6 : Les dimensions de la semelle sous poteau	130
Figure 8.7 : Ferraillage des semelles	133
Figure 8.8 : le ratio réalisé par cet assemblage de pied de poteau selon ROBOT	135

LISTE DES NOTATIONS

Majuscules latines

A : Section brute d'une pièce.

Anet : Section nette d'une pièce.

A_w : Section de l'âme.

 A_v : Aire de cisaillement.

Ct : Coefficient de topographie.

Cr : Coefficient de rugosité.

C_{p,net} : Coefficient de pression nette.

- C_e : Coefficient d'exposition.
- C_d : Coefficient dynamique.
- E : Module d'élasticité longitudinale de l'acier (E=2.1 10⁵ MPa).
- F : Force en générale.
- G : Module d'élasticité transversale de l'acier (G=81000 MPa).
- G : Charge permanente.
- I : Moment d'inertie.
- K_0 : Coefficient de flambement.
- K_t : Facteur de terrain.
- L : Longueur.
- M : Moment de flexion.
- M_{Sd} : Moment fléchissant sollicitant.
- M_{Rd} : Moment résistant par unité de longueur dans la plaque d'assise.
- M_{Pl} : Moment plastique.
- M_{b,Rd} : Moment de la résistance au déversement .
- $N_{\text{pl},\text{Rd}}$: Effort normal de la résistance plastique de la section transversale brute.
- $N_{b,Rd}$: Effort normal d'un élément comprimé au flambement.
- N_{Sd} : Effort normal sollicitant.
- $N_{t,sd}$: Effort normale de traction.
- N_{csd} : Effort normal de compression.
- $N_{c,Rd}$: Valeur de calcul de la résistance de la section transversale à la compression.
- Q : Charge d'exploitation.
- R : Coefficient de comportement de la structure.
- S : La charge de la neige.
- V_{sd} : Valeur de calcul de l'effort tranchant.
- V_{réf} : Vitesse de référence du vent.
- W_{pl} : Module de résistance plastique.
- W : Poids de la structure.

Minuscules latines

- f : La flèche.
- $f_{y}: Limite \ d'élasticité.$

h : Hauteur d'une pièce.

- L: Longueur d'une pièce (Poutre, Poteau).
- L_f : Longueur de flambement.
- t : Épaisseur d'une pièce.
- t_f : Épaisseur d'une semelle de poutre.
- t_w : Épaisseur de l'âme de poutre.
- Z : Hauteur au-dessus du sol.
- Z_{0 :} Paramètre de rugosité. Z_{eq :} Hauteur équivalente.

Minuscules grecques

 λ_{LT} : Élancement de déversement.

 $Ø_{LT}$: Rotation de déversement.

 τ : Contrainte limite de cisaillement en élasticité.

 ε : Coefficient de réduction élastique de l'acier.

 σ_a : Contrainte de l'acier.

 σ_b : Contrainte du béton.

 ξ : Pourcentage d'amortissement critique. η : Facteur de correction d'amortissement. δek :

Déplacement dû aux forces sismiques.

 $\boldsymbol{\mu}$: coefficient de forme de la charge de neige.

Introduction Générale

Ce projet de fin d'études est l'occasion pour nous de mettre en pratique l'ensemble des connaissances théoriques acquises durant notre cursus universitaire tout en nous familiarisant avec les règlements nationaux et internationaux régissant les principes de conception et de calcul d'ouvrages métalliques ou autres comme le « RNV 2013, RPA 99v2003, BAEL91 et l'EUROCODE 3» ainsi qu'à utiliser des outils de calcul et de simulation numérique.

L'étude d'une structure métallique comme toutes les autres structures est réalisée par un dimensionnement aux états limites ultimes et une vérification des déplacements aux états limites de services en tenant compte des actions qui s'appliquent sur elle, qu'elles soient de nature permanentes, variables ou accidentelles.

Notre projet plus précisément consiste au dimensionnement d'une halle industrielle en charpente métallique dans la wilaya de Ouargla à des fins de maintenances industrielles avec la vérification de chaque pièce, profilé ou assemblage conformément aux règlements en vigueur.

Notre travail est composé de la façon suivante :

D'abord une introduction sur l'état des lieux, la superficie de l'ouvrage, sa position, son environnement, puis on déterminera grâce à la règlementation citée ci-dessus les différentes charges qui peuvent s'appliquer à notre ouvrage.

En fonction de ces charges on fera un prédimensionnement des différents éléments secondaires existants dans l'ouvrage, ensuite on introduira toutes ces données dans le logiciel et on exécutera la simulation numérique.

Cette simulation va nous donner les sections des différents éléments principaux de la halle, ces sections vont soit être gardées soit être remplacées par d'autre sections plus disponibles sur le marché, puis on les revérifiera manuellement avec les différentes exigences du CCM97.

on dimensionnera les assemblages adéquats à chaque réunion d'éléments ainsi que les fondations.

Enfin nous verifirons tout nos élements et tout nos assemblages a l'aide du robot ,on peut prevoir d'autres vérifications de la structure tel que la torsion global de la structure ou bien simuler une explosion ou un accident dans notre ouvrage.

Chapitre-1

Généralité et présentation de l'ouvrage

1.1 Introduction

Le domaine de la construction métallique est un domaine vaste, qui a connu dans son histoire plusieurs évolutions, non seulement dans les procédés de conception et de réalisation, mais également dans les techniques et les matériaux utilisés dans les structures. Ainsi on a désormais une variété de choix allant du béton a l'acier, en passant par l'aluminium, la maçonnerie ou encore le bois.

En Europe, le fer a commencé à faire son apparition comme élément de construction au 18^{ième} siècle, alors que les matériaux usuels à cette époque étaient le bois et la pierre au 14^{ième} siècle. Avec l'introduction du fer comme élément de construction, les méthodes de conception furent bouleversées le concepteur ne travaillait plus en effet avec des éléments singuliers, mais avec des profilés standards en I, T, L, etc...

Un peu plus tard, les progrès techniques dans le domaine sidérurgique contribuèrent à l'apparition d'un nouveau matériau, l'acier.

À la Première moitié du 20^{ième} siècle, l'acier a subi principalement en Europe une forte concurrence du béton armé. L'engouement pour ce nouveau matériau entraîna une baisse significative du nombre d'ouvrages en métal construit durant cette période, cependant, de l'autre côté de l'atlantique la situation était toute autre, aux États-Unis où l'acier répondait précisément au besoin de la création d'immeubles de grande hauteur, il fut massivement utilisé. **(tiré de notech.franceserv.com)**

Actuellement, en Algérie l'utilisation de la charpente métallique est principalement employée dans le secteur industriel, pour ses avantages de rapidité d'exécution, pour les longues portées qu'elle offre et pour son amovibilité.

Notre projet traité ici ne fait pas exception, il a fallu pour le réaliser devoir calculer les charges qui lui sont appliquées, dimensionner ses éléments, le modéliser numériquement et revérifier toutes ces sections par rapport aux normes et règlements actuels en vigueur.

Les différents règlements et documents utilisés pour nos calculs :

- Règlement Neige et Vent 2013 DTR C 2-47 « RNV 2013 »

- Règlement parasismique algérien DTR B.C 2.48 « RPA99v2003 »

- Règles de conception et de calcul des structures en acier DTR B.C 2.44 « CCM97 »
- Charges permanentes et charges d'exploitations DTR B.C 2.2.
- Règles de conception et de calcul des structures en béton armé DTR B.C 2.41 « CBA93 »
- Calcul des structures en acier ENV 1993-1-1« Eurocode3 »
- Conception et dimensionnement des structures mixtes acier-béton ENV1994-1-1 «Eurocode4»
- Rapport géotechnique du site d'implantation de la structure.

Le principal document utilisé est Le CCM97 document technique réglementaire qui a pour objectif de fournir une codification du dimensionnement pour calcul et des vérifications des structures de bâtiments à ossatures métalliques.

Les combinaisons qu'il propose dépendent des actions suivantes :

Actions permanentes Gi

Comprenant :

- Le poids propre des éléments structuraux
- Le poids propre des éléments fixes
- Les poussés et pression des terres et hydrostatiques

- Les déformations permanentes imposées à la construction tels que les déplacements différentiels des appuis.

Actions variable Qi

Comprenant :

- Les charges d'exploitations
- Les charges appliquées en cours d'exécution
- Les actions climatiques

Actions accidentelles Ai

Comprenant :

Les actions sismiques, les explosions, le calcul au feu, les chocs, etc... En ce qui concerne les états limites, le CCM97 explique que les états limites permettent de combiner les charges G, Q, S, W, E, afin de simuler au mieux un phénomène qui peut se produire, en prenant en compte ce qui représente la limite maximale considérée pour les charges.

Grace à ces combinaisons, nous pourront déterminer les efforts maximaux et les déplacements ultimes afin de les comparer à l'effort ou au déplacement toléré.

Les valeurs des coefficients partiels de sécurité à prendre en considération sont représentées dans le tableau suivant :

	Action	Action variable (γ_Q)	
	permanente (γ_G)	Action variable de base	Action variable
			d'accompagnement
Effet favorable	1,0	1	0
$\gamma_{G,inf}$			
Effet défavorable	1,35	1,5	1,5
$\gamma_{G,sup}$			

Tableau 1.1: Valeur des coefficients partiels de sécurité

1.2 Pour l'état limite ultime ELU :

- Prise en compte d'une seule action variable la plus défavorable, la combinaison sera représentée comme suit : $\gamma_{Gi,sup}$. G_{kj} + 1,50. $Q_{k,max}$

$$1,35G_{kj} + 1,5Q_{k,max}$$

- Prise en compte de plusieurs actions variables défavorables, la combinaison sera représentée comme suit : $\sum_{j} \gamma_{Gi,sup} \cdot G_{kj} + 1,35 \sum_{i>1} Q_{ki}$

$$\begin{array}{l} 1,35G_{kj} + 1,35Q_{k,max} + 1,35W \\ 1,35G_{kj} + 1,35Q_{k,max} + 1,35S \end{array}$$

- Prise en compte d'une seule action variable dirigée vers le haut exemple vent en dépression : $\gamma_{Gi,inf}$. G_{ki} + 1,50 W^-

$$1. G_{ki} + 1,50W^{-1}$$

1.3 Pour l'état limite de service ELS :

- Prise en compte uniquement de l'action variable la plus défavorable

$$\sum_{j} G_{kj} + Q_{k,max}$$
$$G_{kj} + Q_{k,max}$$

- Prise en compte de toutes les actions variables défavorables

$$\sum_{j} G_{kj} + 0.9 \sum_{i>1} Q_{ki}$$
$$G_{kj} + 0.9 Q_{k,max} + 0.9S$$
$$G_{kj} + 0.9 Q_{k,max} + 0.9W$$

1.4 Etude parasismique :

La réglementation relative à la construction parasismique se compose de texte d'origine législative et de texte technique, les présentes règles viennent garantir une protection satisfaisante des vies humaines et des constructions vis-à-vis des effets des actions sismiques par des conceptions et dimensionnements appropriés. Ainsi pour les ouvrages courants, le but visé c'est de limiter les dommages non structuraux, et d'éviter les dommages structuraux en dotant la structure d'une ductilité et d'une capacité de dissipation d'énergie produite par le séisme.

Zones de sismicités		
Zone 0	Sismicité négligeable	
Zone I	Sismicité faible	
Zone lla et llb	Sismicité moyenne	
Zone III	Sismicité élevée	

Tableau 1.2 : Classification des zones sismiques

1.5 L'effet du vent :

Le vent est considéré comme une force toujours perpendiculaire a la surface sur laquelle il est appliqué, il peut engendrer des pressions sur les surfaces en soufflant de l'extérieur mais aussi des dépressions par phénomène de succion ou juste en soufflant de l'intérieur de la structure.

Le vent a une vitesse de référence calculée et répertoriée par le RNV sur la base de relations empiriques, cette vitesse diffère d'une région à une autre, la carte ci-dessous montre les différentes valeurs de cette vitesse dans le territoire nationale.

Figure 1.1 : Notre structure est présente à Hassi Messaoud dans la wilaya de Ouargla

27	MOSTAGANEM	11
28	M'SILA	111
29	MASCARA	
30	OUARGLA : Commune de : HASSI MESSAOUD	IV
	Toutes les autres communes	111
31	ORAN	11
2.2	DI BAVADI	

Figure 1.2 : Zone de Ouargla (RPA)

1.6 Présentation de l'ouvrage :

Notre projet traite le dimensionnement d'une halle en charpente métallique avec ponts roulants et potences, implanté dans la wilaya de Ouargla, un site ou la sismicité ainsi que les charges dues à la neige sont négligeables, mais par contre le vent souffle très fort et le sable peut se déposer sur certaine partie de la toiture.

La surface totale de notre ouvrage fait 1080 m^2 , la hauteur du halle est de 8.9m alors que celle de la faîtière est de 10.25m. L'ouvrage dispose de six portails de dimension (5x4), 8 ouvertures pour l'éclairage ainsi que pour le renouvèlement d'air de la structure ou de fumée en cas d'incendie.

1.7 Caractéristiques géométriques :

Suivant les plans architecturaux, les dimensions de la structure se présentent comme suit :

- Longueur de l'ouvrage (Long-pan) L= 30m
- Largeur (Pignon) l= 36m
- Hauteur totale H=8.9 m
- Hauteur de lanterneau a=1.35m
- Pente du versant est 15%

Figure 1.3 : Vue sur pignon de l'ouvrage

Figure 1.4 : Vue en perspective de la structure

1.8 Matériaux :

Les différents matériaux de constructions utilisés dans notre construction sont :

1.8.1 Acier :

En construction métallique, l'acier fait l'objet d'une normalisation rigoureuse, dans laquelle on spécifie la limite d'élasticité f_v , la résistance à la rupture f_u et l'allongement à la rupture \mathcal{E} .

Le choix de la nuance d'aciers dépend des facteurs techniques et économiques :

Limite d'élasticité f_y =235MPa La contrainte de rupture f_u =360 MPa Le module de Young E = 210 000 MPa Le coefficient de poisson v=0.3 Le module de cisaillement G = 80769 MPa La masse volumique de l'acier p=7850 Kg/m³

1.8.2 Béton armé :

Caractéristiques mécaniques :

Résistance à la compression fc₂₈=25 MPa Résistance à la traction f_{t28}=0.6+0.06f_{c28}= 2.1 MPa Le poids volumique ρ =2500 Kg/m³

1.8.3 Ferraillages et armatures :

- La limite d'élasticité f_e=400 MPa.
- Le coefficient de sécurité pour les situations courantes γ_s = 1.15
- La contrainte admissible à l'ELU $f_{sc} = f_e/\gamma_s = 348$ MPa
- Le module de Young E_s=210 000 MPa.

Chapitre-2

Évaluation des surcharges climatiques

2.1 Introduction

Les effets climatiques sur une structure métallique sont souvent prépondérants. Une étude approfondie et détaillée doit être menée minutieusement afin de déterminer les différentes actions et sollicitations.

La réglementation nationale Neige et Vent (RNV 2013) met à notre disposition les principes généraux et procédures à suivre afin de mieux prévoir ces surcharges et de mener à bien des calculs. Les pressions du vent appliquées sur les structures métalliques dépendent des facteurs suivants.

- La région (Zone 0).
- Les reliefs du site d'implantation.
- La hauteur de la construction.
- La configuration géométrique de la structure.
- La forme de la toiture.

2.2 Détermination de l'action du vent

- Effet de la région :

Notre halle industrielle se situe à la wilaya d'Ouargla dans la commune de Hassi Messaoud selon le règlement RNV 2013 la région est classée comme zone 4, la pression dynamique de référence est de 575 N/m

Figure 2.1: Représentation et dénominations des directions du vent

Effet du site : -

Le règlement RNV2013 prévoit également l'effet de la nature du terrain. Notre ouvrage se trouve dans une zone « à couverture végétale négligeable » donc nous nous situons dans une catégorie de terrain 1 avec un facteur de terrain $K_t = 0.170$, paramètre de rugosité $Z_0 = 0.01$ m, $Z_{min} = 1$ m et le coefficient $\xi = 0.44$

Les données relatives au site telle que la pression de référence ainsi que la vitesse de référence sont représentées dans le tableau suivant :

Site plat	C _t (Z)=1	RNV2013 chapitre2.4.5 §2.4.5.1
Ouargla	q _{réf} =575 N/m²	RNV2013 chapitre2.3,
(Zone 4)	V _{réf} =31m/s	§2.3.1
Terrain de	Kt=0.17	RNV2013 chapitre2.4.4
catégorie 1	Z ₀ =0.01m	§Tableau 2.4
	Z _{min} =1m	
	ξ=0.44	

Tableau 2.1: Données relatives au site d'implantation

2.2.1 Détermination de la pression aérodynamique

La pression aérodynamique W(Zj) agissant sur une paroi est obtenue comme suit :

$$W(zj) = q_p(Ze) \times [C_{pe} - C_{pi}]$$
 (daN/m) **RNV2013 chapitre2**. 5. 2, §2. 6

Avec :

C_{Pe} est le coefficient de pression extérieure -

C_{Pi} est le coefficient de pression intérieure -

2.2.2 Calcul de la pression dynamique de pointe q_p

La pression dynamique de pointe $q_p(z)$ est la pression dynamique utilisée dans les calculs, elle dépend du climat, du lieu, de la hauteur de référence, de la rugosité du terrain et du coefficient de topographie.

$$q_p(Z) = q_{ref} \times C_e$$

Avec :

 $-q_{\rm ref} = 57.5 \ daN/m^2$

Coefficient d'exposition

 $C_e = C_r^2(Z) \times [1 + 7I_v]$ RNV2013 chapitre 2.4, §2.4.2 a

Coefficient de rugosité

RNV2013 chapitre 2.4.4

Terrain de catégorie 1 : Kt=0,17 ; z_0=0,01m ; z_min=1m ; ξ =0.44 (g

$$C_{r}(z) \begin{cases} K_{t} . Ln\left(\frac{z_{min}}{z_{0}}\right) pour \ z < z_{min} \\ K_{t} . Ln\left(\frac{z}{z_{0}}\right) pour \ z_{min} \le z \le 200m \end{cases}$$

Parois vertical (z ≤ z_{min})
$$C_r(z) = K_t \cdot Ln\left(\frac{z_{min}}{z_0}\right) = 0.783$$

Parois et toiture (z_{min}C_r(z) = K_t \cdot Ln\left(\frac{z}{z_0}\right) = 1.178

On retient $C_r = 1.178$

- Intensité de turbulence *RNV2013 chapitre2.4.6*

$$I_{v}(z) \begin{cases} \frac{1}{C_{t}(z) \cdot Ln\left(\frac{z}{z_{0}}\right)} \text{ pour } z > z_{min} \\ \frac{1}{C_{t}(z) \cdot Ln\left(\frac{z_{min}}{z_{0}}\right)} \text{ pour } z \le z_{min} \end{cases}$$

Pour z > z_{min}
$$I_{\nu}(z) = \frac{1}{1.\text{Ln}(\frac{1}{0.01})} = 0.217$$

Pour z < z_{min} $I_{\nu}(z) = \frac{1}{1.\text{Ln}(\frac{10.25}{0.01})} = 0.144$

On retient $I_{arphi}=0.144$ pour l'ensemble de la structure

- Coefficient d'exposition :

$$C_e(z_j) = C_r(z_j)^2 [1+7.I_V]$$

Pour $z > z_{min}$

$$C_e(z) = 1.178^2 \times 1^2 \times [1 + 7(0.144)] = 2.786$$

Pour $z < z_{min}$

$$C_e(z) = 0.783^2 \times 1^2 \times [1 + 7(0.217)] = 1.54$$

- Pression dynamique de pointe q_p

Avec :

 $-q_{ref} = 57.5 \ daN/m^2$

 $q_p = 1601.95 N/m^2 = 1.6 kN/m^2$

2.2.3 Coefficient de pression extérieure

Les valeurs des coefficients de pression extérieure données dans les tableaux du RNV2013 sont relatives à des zones bien définies. Ces coefficients dépendent de la dimension, de la surface chargée produisant l'action du vent dans la section à calculer.

Pour un vent perpendiculaire au long-pan (V1)

-Parois verticale : RNV2013 chapitre5.2.1

Pour cette direction du vent, les dimensions sont les suivantes :

	b=30 m
-	d=36 m
	h=8.9 m

 $C_p = C_{pe} 10 \text{ car S} < 10m^2$ avec S la surface chargé (chapitre2013 chapitre5, §5.1.1.2)

e = min (d, 2h)

d=32 ou 36 m selon la direction du vent ,mais toujours > e =2h

Donc e = 2x10,25 = 20.5m

Toiture a versant multiple : Cas où d > e : se présente ainsi :

Figure 2.2 : Légende relative pour les parois verticale (direction V1)

Figure 2.3 : Légende relative pour les parois verticale (direction V1)

Le calcul des coefficients de pressions extérieures est obtenu à partir des formules suivantes :

$$\begin{split} C_{pe} &= C_{pe.1} & Si \quad S \leq 1m^2 \\ C_{pe} &= C_{pe.1} + (C_{pe.10} - C_{pe.1}) \times \log_{10}(S) & Si \quad 1m^2 < S < 10m^2 \\ C_{pe} &= C_{pe.10} & Si \quad S \geq 10m^2 \\ \text{RNV2013 Chapitre 5 § 5.1.1.1} \end{split}$$

Les coefficients de pression extérieures pour les parois verticales sont présentés dans le tableau suivant :

Zone	Parois latérale			Parois au vent	Parois sous le vent
	A.A'	B.B'	C.C'	D	E
C _{pe,10}	-1.0	-0.8	-0.5	+0.8	-0.3

Tableau 2.2 : Légende relative pour les parois verticales (direction V1)

Versant de Toiture :

Les zones pour les toitures et les coefficients de pression extérieure c_{pe10} qui y sont attachées, sont définies dans le RNV2013 Chapitre 5, §5.1.8, le cas d'une toiture à versant multiple est celui de notre projet.

Figure 2.4: Légende pour les toitures à versant multiple (directionV1-V3)

Figure 2.5: Légende pour les toitures à versant multiple (directionV1-V3)

Le règlement RNV2013 cite dans son paragraphe 5.1.8.2 que « pour un vent perpendiculaire aux génératrices, on prendra les valeurs de C_{pe} des toitures à double versant pour $\alpha < 0^{\circ}$ »

Les coefficients de pression extérieure C_{pe} pour le versant face au vent sont déterminés à partir d'une interpolation linéaire entre l'angle -15 et -5, les valeurs des coefficients sont présentées dans le tableau suivant :

Angle de pente α	C_{pe} pour vent de direction $\theta=0^{\circ}$			
0 52°	F	G	Н	
0.00	-2.37	-1.23	-0.83	

Tableau 2.3: Coefficient de pression extérieur Cpe pour le versant 1 face au vent de
toiture

- Pour un vent perpendiculaire au pignon (V2) (V4)
- Parois verticales :

Pour cette direction du vent, les dimensions sont les suivantes :

-b=36 m

e=Min (b, 2h) = Min (36, 20.5) = 20.5 m

Figure 2.6 : Zone de vent pour les parois verticales (V2) (V4)

Figure 2.7 : Zone de vent pour les parois verticales (V2) (V4)

Les coefficients de pression extérieurs pour les parois verticales sont présentés dans le tableau suivant :

		Parois latérale	Parois au	Parois sous	
Zone				vent	le vent
	A.A'	B.B'	C.C'	D	E
C _{pe,10}	-1.0	-0.8	-0.5	+0.8	-0.3

Tableau 2.4 : Coefficient de pression extérieur « Cpe10 » pour les paroisverticales direction V2

- Versant de toiture :

Les zones pour les toitures et les coefficients de pression extérieure $C_{pe,10}$ qui y sont attachées, sont définies dans le RNV2013 Chapitre 5 ,§5.1.8.

Figure 2.8 : Légende pour les toitures à versant multiple (V2)

Figure 2.9 : Légende pour les toitures à versant multiple (V2)

Le règlement RNV2013 cite dans son paragraphe 5.1.8.1 que pour « un vent dont la direction est parallèle aux génératrices, les coefficients de pression pour chaque versant

s'obtiennent en utilisant les valeurs de toiture à un versant pour θ =90° »

Les coefficients de pression extérieure C_{Pe10} pour un angle de 8.53° sont déterminés à partir de l'interpolation linéaire entre l'angle de 5° et 15°

Angle α	F_{sup}	F _{inf}	G	Н	I
8.53°	-2.2	-1.92	-1.83	-0.67	-0.57

Tableau 2.5 : Coefficient de pression extérieur pour la toiture (direction V2)

2.2.4 Coefficient de pression intérieure

Le coefficient de pression intérieure C_{pi} dépend de la dimension et de la répartition des ouvertures dans l'enveloppe du bâtiment.

- Pour les 2 cas de direction du vent (V1 et V3)
- Pour cette direction le taux d'ouverture est de :

$$\frac{2(5 \times 4)}{30 \times 8.9} = 0.14 = 14\%$$

On commence tout d'abord à déterminer l'indice de perméabilité $\mu_{\rm p}$

 $\mu_{p}\underline{\sum} des \ surfaces \ des \ ouvertures \ sous \ le \ vent \ et \ paralléles \ au \ vent } \\ \underline{\sum} des \ surfaces \ de \ toutes \ les \ ouvertures }$

$$\mu_p = \frac{120}{160} = 0,75$$

Le coefficient de pression intérieure C_{pi} est donné en fonction de l'indice de perméabilité : Figure 5.14 du Règlement RNV2013 en fonction du rapport :

h/d = 10.25/36 = 0.28 > 0.25 => Interpolation nécessaire

Pour μ_p =0,75 on lit C_{pi} =-0.16

Figure 2.10 : Coefficient de pression intérieure C_{pi} pour la direction V1 ,V3 Pour les 2 cas de direction du vent (V2 et V4)

Pour cette direction le taux d'ouverture est de :

 $\frac{2 \times (5 \times 4)}{36 \times 9.575} = 0.116 = 11.6\%$

h/d = 10.25/30 = 0.34 > 0.25 => Interpolation nécessaire

Pour μ_p =0.75 \rightarrow C_{pi} =-0,2

2.2.5 Détermination de la pression statique du vent

Après avoir défini tous les coefficients tels que la pression dynamique, coefficient de pression intérieure et extérieure, on peut calculer la pression due au vent pour :

Direction	V1	V3
-----------	----	----

Zone	q _{dyn} (daN/m ²⁾	Cpe	Cpi	Cpe - Cpi	q _{fin} (daN/m ²)
A	160.2	-1.0	-0.154	-0.846	-135.529
В	160.2	-0.8	-0.154	-0.646	-103.489
С	160.2	-0.5	-0.154	-0.346	-55.429
D	160.2	+0.8	-0.154	+0.954	+152.831
E	160.2	-0.3	-0.154	-0.146	-23.389

Parois verticales :

Tableau 2.6 : Pressions du vent sur parois vertical

Toiture :

Zone	q _{dyn} (daN/m ²⁾	Cpe	Cpi	C _{pe} - C _{pi}	q _{fin} (daN/m ²)
F	160.2	-2.37	-0.154	-2.276	-355.003
G	160.2	-1.23	-0.154	-1.076	-172.375
Н	160.2	-0.84	-0.154	-0.676	-108.295
Z ₁	160.2	-1	-0.154	-0.846	-135.529
Z ₂	160.2	-0.6	-0.154	-0.446	-71.449

Tableau 2.7 : Pressions du vent sur toiture

Direction V2 et V4

Parois verticales

Zone	q _{dyn} (daN/m ²⁾	Cpe	C _{pi}	C _{pe} - C _{pi}	q _{fin} (daN/m ²)
A	160.2	-1.0	-0.162	-0.838	-134.247
В	160.2	-0.8	-0.162	-0.638	-102.207
С	160.2	-0.5	-0.162	-0.338	-54.147
D	160.2	+0.8	-0.162	+0.962	+154.112
E	160.2	-0.3	-0.162	-0.138	-22.107

Tableau 2.8 : Pressions du vent sur parois vertical

Toiture :

Zone	q _{dyn} (daN/m ²⁾	Cpe	Cpi	C _{pe} - C _{pi}	q _{fin} (daN/m ²)
Finf	160.2	-1.2	-0.162	-1.038	-166.2876
Fsup	160.2	-2.2	-0.162	-2.038	-326.4876
G	160.2	-1.83	-0.162	-1.668	-267.2136
H	160.2	-0.67	-0.162	-0.508	-81.3816
	160.2	-0.57	-0.162	-0.408	-65.3616

Fableau 2.9 : Pressions du vent sur toiti
--

2.3 Détermination de l'action de la neige :

Le calcul de la surcharge climatique de la neige est en fonction de la localisation géographique et de l'altitude du lieu.

Notre projet se situe dans la Wilaya de Ouargla (Hassi Messaoud), l'altitude est de 171 m. La wilaya de Ouargla est considérée comme une zone D => Pas de neige dans cette région

2.4 Détermination de l'action du sable :

La Pente du toit = $\frac{1.35}{9} = 0.15$

La pente est de 15% soit > a 5% =>Le toit ne peut être considéré comme plat

=>La charge due au sable ne peut être considérée uniformément répartie

Deux charges linéaire q1 et q2 seront pris en compte

q₁= 300 N/ml

q₂= 500 N/ml

Toitures à un ou plusieurs versants

2.5 Charge permanente :

- Couverture et bardage :
 - > Choix du système de couverture :

Notre choix pour la toiture et le bardage de notre halle sera axé sur les panneaux sandwich car ils assurent le minimum requis pour notre halle c.à.d.:

- Une bonne isolation thermique.
- Une bonne résistance au feu

Le système panneaux sandwich de type TL-75 qui est constitué d'un parement extérieur et un parement intérieur qui sont collés à une mousse rigide en polyuréthane sera retenu.

Ces caractéristiques se présentent comme suit :

- Epaisseur totale 75mm
- Largeur de panneau 1000mm
- Poids du panneau 14.2 daN/m²

Choix du système de bardage

Le bardage répondant à l'exigence d'une isolation thermique est le système panneaux sandwich de type LL50 les caractéristiques sont les suivantes :

- Epaisseur 50 mm
- Largeur 1000 mm
- Poids volumique du panneau G= 12.9 kg/m²

2.6 Charge d'exploitation :

Notre toiture est inaccessible donc la seule charge d'exploitation que peut avoir notre toiture c'est la charge d'entretien

Selon le DTR BC2.2

La porté L=6m (distance entre portique) => les charges d'entretien seront deux charges ponctuelles de 1kN appliqué a 1/3 de chaque appuis

On peut les convertir en une charge uniformément répartie équivalente ainsi :

$$q = \frac{8P}{3L} = 0.44 \ kN/m$$

$$q = 44.4 \ daN/m$$

Ceci juste pour avoir une charge lineaire et pouvoir faire un predimensionnement de la panne, Sur la modélisation avec ROBOT les deux charges serons introduitents comme charges ponctuels.

- Effet du frottement

Pour les cas V1 et V3

L'effet du frottement du vent sur la surface peut être négligé car même en prenant la toiture comme faiblement inclinée ce qui n'est pas le cas, on vérifie la condition de négligence du frottement du vent qui dit :

 \sum surfaces parallèles au vent \leq 4 × \sum surfaces perpendiculaires au vent

Cas de vent sur long pan :

 $[(36+36)\times9.575]+4[9.1\times30]=1781.4 \text{ m}^2 \le 4\times(30+30)\times8.9=2136\text{m}^2$ C.V

Cas de vent sur pignon :

 $[(30+30)\times 8.9]+4[9.1\times 30]=1626m^2 \le 4\times (36+36)\times 9.575=2757.6 m^2$ C.V

Chapitre-3

Dimensionnement des éléments secondaires

3.1 Dimensionnement des pannes pour la toiture à plusieurs versants :

3.1.1 Fonctionnement de base :

La fonction des pannes de toiture est d'assurer le transfert des actions appliquées à la couverture d'un bâtiment et à sa structure principale, les lisses jouent le même rôle en façades. Les pannes et les lisses sont des constituants importants de la structure secondaire du bâtiment. Un empannage comprend non seulement les pannes elles-mêmes mais également les éventuelles éclisses qui réalisent la continuité des pannes, les échantignoles qui assurent la liaison entre pannes et structure principale ainsi que les liernes et brettelles qui maintiennent les pannes latéralement.

3.1.2 Choix du bardage de couverture :

Pour le choix de notre système de couverture il s'est avéré qu'une couverture de type TL 75 remplie correctement les critères de conception, à savoir :

- Assurer la fonction élémentaire de protection face aux intempéries

- Satisfaire les exigences acoustiques

- Satisfaire à l'exigence nationale imposée par les documents réglementaires relatifs aux charges de neige, de vent et aux autres charges d'exploitation.

Les charges supportées par la toiture :

- Charge d'entretien Q=44.44 daN/ml

- Action du sable q_1 =30 daN/ml q_2 =50 daN/ml

- Action du vent W= -355 daN/m² et W=-172.3 daN/m²

- Poids propre de la couverture $G = 14.2 \text{ daN/m}^2$

Charge équivalente du vent sur une panne de 6m dans la partie du toit où l'effet du vent est le plus défavorable :

$$\left(-354 \times \frac{5.125}{6}\right) + \left(-172.3 \times \frac{0.875}{6}\right) = -327.54 \ daN/m^2$$

 Q_{eq} (vent) = 327.6 daN/ m^2

-la charge de dépression du vent sur la panne est largement supérieure aux autres charges,

C'est donc la combinaison G-1.5W qu'il faut prendre en compte, (pour le plan z-z seulement).

Figure 3.1 : La position des deux pannes par rapport aux zones H et F

En essayant plusieurs valeurs d'espacement entre pannes, et en faisant toutes les vérifications nécessaires à chaque fois, on arrive aux résultats suivants :

Pour : e=1.2m -> panne 2 la plus chargée -> section minimum nécessaire (IPE180)

-> nbr de panne nécessaires :8 par versant

```
Pour : e=1.4m 1.6m 1.8m 2m -> panne 1 la plus chargée -> section minimum nécessaire (IPE200)
```

-> nbr de panne nécessaires :5 par versant (pour e=2m)

C'est donc par souci d'économie et de poids total qu'on prend un espacement entre panne de 2m et un choix de section IPE200 pour les pannes mais seuls les deux derniers choix faits seront développés ci-dessus, c.a.d. :

```
-IPE180 + liernes avec e =2m (ce qui ne vérifie pas toutes les conditions de sécurité)
```

```
-IPE200 avec e =2m (le choix final retenu celui qui vérifie toutes les conditions)
```


Actions par mètre linéaire sur cette panne : (G IPE180 = 18.8 dan/ml)

G = (14.2+18.8)x1.4 =46.2 daN/ml W= -327.6x1.4=-458.64 daN/ml E=44.4 daN/ml Angle d'inclinaison de la panne :8.53°

Les combinaisons possibles dans les deux plans et pour les deux états limites :

Pour l'état limite de service :

Remarque : Dans notre projet il n y'a de charge de neige possible et aussi la charge de sable ne s'applique pas sur les pannes donc pas de combinaison avec trois charges possible.

Plan z-z :

 $\label{eq:G+E} \begin{array}{l} \mathsf{G+E}: (46.2+44.4) \cos 8.53 = 89.59 \ da \text{N/ml} \\ \mathsf{G+W}: 46.2 \cos 8.53 - 458.64 = -413 \ da \text{N/ml} \\ \mathsf{Q}_{sz} = 4.13 \text{kN} \\ \mathsf{Plan} \ y \text{-y}: \\ \mathsf{G+E}: (46.2+44.4) \sin 8.53 = 13.28 \ da \text{N/ml} \\ \mathsf{Q}_{sy} = 0.135 \ \text{kN} \end{array}$

Pour l'état limite ultime :

Plan z-z : G+E : 1.35(46.2+44.4)cos8.53=120.95 daN/ml G+W : (1x46.2cos8.53)-(1.5x458.64)=-642 daN/ml Q_{uz}=6.42 kN **Plan y-y :** G+E : 1.35(46.2+44.4)sin8.53 =18 daN/ml Q_{uy}=0.18 kN

Calcul des différentes sollicitations sur la panne : L=6m

$$V_{zsd} = \frac{q_{uz} \times l}{2} = 18.78 \text{ kN}$$

$$M_{ysd} = \frac{q_{uz} \times l^2}{8} = 28.17 \text{ kN.m}$$

$$M_{zsd} = \frac{q_{uy} \times l^2}{8} = 0.81 \text{ kN.m}$$

Apres ajout de liernes : $L_z=3m$ M_{zsd}=0.20 kN.m

Caractéristiques du profilé :

Profilé		PARAMETRES DE LA SECTION										
IPE 180	A Cm ²	h mm	b mm	<i>t</i> f mm	<i>t</i> w mm	<i>Iy</i> Cm⁴	I₂ Cm⁴	W _{ply} cm ³	W _{plz} cm ³			
MATERIAU ACIER S235	23.9	180	91	8	5.3	1317	101	146	34.6			

Tableau 3.1 : Caractéristiques de la section IPE180

Classe de la section : Tableau 53.1 CCM97 Classe de l'âme :

 $d/t_w = 146/5.3=27.54 < 72E=72 \rightarrow ame de classe 1$

Classe de la semelle :

c/t_f= 45.5/8=5.68 < 10E=10 \rightarrow semelle de classe 1

La section de la panne est de classe 1

Vérifications de la flèche a l'ELS : Tableau 4. 1 CCM 97

Plan y-y :

 $\frac{5 \times q_{sz} \times l^4}{384 \times E \, l_y} < \frac{l}{200} = \frac{5 \times 4.13 \times 300^4}{384 \times 21 \times 10^5 \times 1317} = 0.15 < \frac{l}{200} = 3 \quad Condition \ verifie$

Plan z-z :

$$\frac{5 \times q_{sy} \times l^4}{384 \times E I_z} < \frac{l}{200} = \frac{5 \times 0.135 \times 300^4}{384 \times 21 \times 10^5 \times 101} = 0.06 < \frac{l}{200} = 3 \quad Condition \ verifier$$

Vérification de la panne au déversement : Art 5. 5. 2 (5. 48) CCM97

Relation à vérifier :

$$M_{brd} = \frac{\chi_{LT} \times \beta_w \times W_{pl,y} \times f_y}{\gamma_{M1}} > M_{ysd} = 28.17 \ kN. m$$

Calcul de M_{brd} :

 $> \beta_w = 1$ Section de classe I

$$\chi_{lt} = \frac{1}{(\phi_{Lt} + \sqrt{\phi_{LT}^2 - \lambda_{LT}^2})}$$

- $\sum_{\mathbf{\lambda}_{\rm Lt}} = \left[\frac{\lambda_{\rm LT}}{\lambda_1}\right] \times \sqrt{\beta_{\rm w}}$
- \succ Pour des sections transversales constantes et doublement symétriques l'expression de $\lambda_{
 m Lt}$ s'écrit sous la forme suivante :

$$\lambda_{LT} = \frac{\frac{L}{i_z}}{c_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{L}{\frac{l}{i_z}}\right)^2\right]^{0.25}}$$

Avec :

- \succ C₁ Facteur dépendant de condition de charge et d'encastrement : C₁= 1,132 (Tableau B.1.2 CCM97)
- ▶ i₂ = 22.4mm tf =8.5mm
- ▶ L=L₂=3000mm h=200mm

$$\lambda_{LT} = \frac{\frac{L}{i_z}}{c_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{L}{i_z}}{\frac{h}{t_f}} \right)^2 \right]^{0.25}} = 94.57 \rightarrow \lambda_{LT} = \frac{98.9}{93.9} = 1.007$$

$$\rightarrow \emptyset_{Lt}=0, 5\times [1+\alpha_{Lt}(\overline{\lambda_{LT}}-0,2)+\overline{\lambda_{LT}}^2] =1.092$$

Avec $\alpha_{\text{LT}} = 0,21$ car profile laminer

 $23.4 < M_{ysd} = 28.17$ condition non vérifiée, on augmente la section ou changer de nuance d'acier, c'est la premiére option qu'on vas choisir par souci de disponibilité sur le marché.

3.1.3 Redimensionnement des pannes avec IPE200 :

- Chaque panne repose sur deux appuis d'une distance de L= 6 m
- On dispose 5 fils de pannes sur chaque versant de la toiture
- La pente de la toiture : 15%
- Espacement entre pannes adopté est de 2 m

3.1.3.1 Évaluation des charges et surcharges

- Poids propre de la couverture (panneau sandwich) :14,2 daN/m²
- La charge du vent dépression : -327.5 daN/m²
- Surcharge d'entretien (P) §7.3.1 DTR BC 2.2

Dans le cas des toitures inaccessibles on considère uniquement une charge d'entretien qui est égale à 100Kg chacune située à 1/3 et 2/3 de la portée de la panne. La charge uniformément repartie P due aux surcharges d'entretien est obtenue en égalisant les deux moments maximaux dus à P.

Figure 3.2 : Répartition de la charge d'entretien sur la panne

$$M_{MAX} = \frac{p'.l}{3} = \frac{p.l^2}{8} \Longrightarrow p = \frac{8.p'}{3l} = \frac{800}{18} = 44,44 \ daN/ml$$

POUTRES A 02 TRAVEES

charges daNin2 Type	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300
TL 75	8.75	6.95	6.07	5.52	5.12	4.82	4.58	4.38	4.21	4.07	3.94	3.83	3.73	3.63	3.55

Tableau 3.2: Portée maximale de la nervure TL75 en fonction des charges appliquées

(ANNEXE - 1)

Soit :

$$Q_{eq} = \frac{327 + 108.2}{2} = 217.6 \ daN/m^2$$

Les valeurs 327 et 108,2 daN/m² sont les valeurs de depressions des deux zones de vent F/G et H repris par la panne 2 ,(regarder Figure3.1).

D'après le tableau ci-dessus, on peut aller jusqu'à un espacement en appuis de 3.94m sans risquer que la nervure cède sous les charges appliquées.

La charge supportée par la panne :

- Charge d'entretien Q=44.44 daN/ml

- Action du vent W= -327.6 daN/m²
- Poids propre de la couverture $G = 14.2 \text{ daN/m}^2$

-Poids propre de la panne IPE200 (après que IPE180 n'a pas vérifier toutes les conditions) G=22.4 daN/ml

La panne la plus défavorable :

Bien que l'espacement entre panne soit de 2m, la panne la plus défavorable c'est-à-dire celle de rive ne reprend qu'une largeur de bardage de 1.4m seulement.

Actions par mètre linéaire sur cette panne :

```
G = (14.2+22.4)x1.4 =51.24 daN/ml
```

W= -327.6x1.4=-458.64 daN/ml E=44.4 daN/ml Angle d'inclinaison de la panne :8.53°

Les combinaisons possibles dans les deux plans et pour les deux états limites :

Pour l'état limite de service :

 $\begin{array}{l} \mbox{Plan z-z:} \\ \mbox{G+E}: (51.24+44.4) cos8.53=94.58 \ daN/ml \\ \mbox{G+W}: 51.24 cos8.53 - 458.64=-407.96 \ daN/ml \\ \mbox{Q}_{sz}=4.07 kN \\ \mbox{Plan y-y:} \\ \mbox{G+E}: (51.24+44.4) sin8.53=14.18 \ daN/ml \\ \mbox{Q}_{sy}=0.14 \ kN \end{array}$

Pour l'état limite ultime :

 $\begin{array}{l} \textbf{Plan z-z:} \\ \text{G+E: } 1.35(51.24+44.4)cos8.53=127.68 \ daN/ml \\ \text{G+W: } (1.35x51.24cos8.53)-(1.5x458.64)=-619.55 \ daN/ml \\ \text{Q}_{uz}=6.2 \ kN \\ \textbf{Plan y-y:} \\ \text{G+E: } 1.35(51.24+44.4)sin8.53=19.15 \ daN/ml \\ \text{Q}_{uy}=0.19 \ kN \end{array}$

Calcul des différentes sollicitations sur la panne : L=6m

 $V_{zsd} = \frac{q_{uz} \times l}{2} = 18.6 \text{ kN}$ $M_{ysd} = \frac{q_{uz} \times l^2}{8} = 27.9 \text{ kN.m}$ $M_{zsd} = \frac{q_{uy} \times l^2}{8} = 0.855 \text{ kN.m}$

Caractéristique du profilé :

Profilé		PARAMETRES DE LA SECTION											
IPE 200	A Cm ²	h mm	b mm	<i>t</i> f mm	<i>t_w</i> mm	<i>Iy</i> Cm⁴	<i>I</i> z Cm⁴	W _{ply} cm ³	W _{plz} cm ³				
MATERIAU ACIER S235	28,5	200	100	8.5	5.6	1943	142	221	44.6				

Tableau 3.3	: Caractéristiques de la section	IPE200
-------------	----------------------------------	--------

Classe de la section : Tableau 53.1 CCM97 Classe de l'âme :

d/t_w = 159/5.6=28.39 < 72E=72 → Âme de classe 1

Classe de la semelle :

c/t_f= 38/8.5=4.47 < 10E=10 \rightarrow Semelle de classe 1

La section de la panne est de classe 1

Vérification de la flèche a l'ELS : Tableau 4. 1 CCM 97

Plan y-y :

$$\frac{5 \times q_{sz} \times l^4}{384 \times E I_y} < \frac{l}{200} = \frac{5 \times 4.07 \times 600^4}{384 \times 21 \times 10^5 \times 1943} = 1.68 < \frac{l}{200} = 3$$
 Condition vérifiée

Plan z-z :

$$\frac{5 \times q_{sy} \times l^4}{384 \times E I_z} < \frac{l}{200} = \frac{5 \times 0.14 \times 600^4}{384 \times 21 \times 10^5 \times 142} = 0.79 < \frac{l}{200} = 3 \quad Condition \ verifier$$

Vérification de la panne au déversement : Art 5. 5. 2 (5. 48) CCM97

Relation a vérifier :

 $M_{brd} = \frac{\chi_{lt} \times \beta_w \times W_{pl,y} \times f_y}{\gamma_{M1}} > M_{ysd} = 27.9 \text{ kN. m}$ Calcul de M_{brd} :

$$> \beta_w = 1$$
 Section de classe I

$$\chi_{lt} = \frac{1}{(\emptyset_{Lt} + \sqrt{\emptyset_{LT}^2 - \lambda_{LT}^2)}}$$

> $\emptyset_{Lt} = 0, 5 \times [1 + \alpha_{Lt}(\overline{\lambda_{LT}} - 0, 2) + \overline{\lambda_{LT}}^2]$

 $> \alpha_{Lt} = 0.21$ Pour les profilés laminés

$$\sum_{\mathbf{\lambda}_{\rm Lt}} = \left[\frac{\lambda_{\rm LT}}{\lambda_1}\right] \times \sqrt{\beta_{\rm W}}$$

> Pour des sections transversales constantes et doublement symétriques l'expression de λ_{Lt} s'écrit sous la forme suivante :

$$\lambda_{LT} = \frac{\frac{L}{i_z}}{c_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{L}{\frac{i_z}{h_f}} \right)^2 \right]^{0.25}}$$

Avec :

 $_{\text{-}}\text{C}_{1}$ Facteur dépendant de condition de charge et d'encastrement : C_1= 1,132

(Tableau B.1.2 CCM97)

-iz =22.4mm	-tf =8.5mm
-------------	------------

-L=Lz=6000mm -h=200mm

$$\lambda_{LT} = \frac{\frac{L}{i_z}}{c_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{L}{i_z} \right)^2 \right]^{0.25}} = 98.9 \longrightarrow \lambda_{LT} = \frac{98.9}{93.9} = 1.05$$

$$\rightarrow \emptyset_{Lt}=0, 5\times [1+\alpha_{Lt}(\overline{\lambda_{LT}}-0,2)+\overline{\lambda_{LT}}^2] =1.14$$

Avec
$$\alpha_{LT} = 0,21$$
 car profilé laminé

$$\rightarrow \chi_{lt} = \frac{1}{\left(\phi_{lt} + \sqrt{\phi_{lt}^2 - \lambda_{lt}^2}\right)} = 0.63 \le 1$$

$$\rightarrow M_{brd} = \frac{\chi_{lt} \times \beta_w \times W_{pl,y} \times f_y}{\gamma_{M1}} = \frac{0.63 \times 1 \times 221 \times 23.5}{1.1} = 29.74 \text{kN.m}$$

29.74 kN.m > M_{sd} =27.9 kN.m condition vérifiée

Vérification au cisaillement :

Relation à vérifier : $V_{z,sd} < 0.5 V_{plzrd}$ Art 5. 4. 6(2)CCM97

Avec :

$$V_{plzrd} = \frac{A_{vz} \cdot \left(\frac{f_y}{\sqrt{3}}\right)}{1.1} \qquad et \qquad A_{vz} = 1400 \ mm^2$$

Donc :

$$0.5V_{plzrd} = 0.5 \frac{1400.\left(\frac{235}{\sqrt{3}}\right)}{1.1} = 86.34 \ kN$$

V_{zsd} =18.6kN < 0.5 V_{plzrd} = 86.34kN Condition vérifiée

Resistance au voilement par cisaillement :

Si $\frac{d}{t_{uv}}$ < 69 \mathcal{E} il n'est pas nécessaire de vérifier le voilement par cisaillement CCM97 art 5.6.1(1)

 $\frac{d}{tw} = \frac{159}{5.6} = 28.4 < 69 \mathcal{E}$ Condition vérifiée

Donc, il n'est pas nécessaire de vérifier le voilement par cisaillement.

Vérification a la flexion déviée composée:

On doit vérifier la relation suivante :

$$\left(\frac{M_{ysd}}{M_{ply,rd}}\right)^{\alpha} + \left(\frac{M_{zsd}}{M_{plz,rd}}\right)^{\beta} \le 1 \quad Art \ 5.4.8 \ (11) CCM \ 97$$

Avec : B= 1 a = 2 pour les sections en I et H

$$\begin{split} M_{ply,rd} &= \frac{W_{ply} \times f_y}{1.1} = \frac{221 \times 23.5}{1.1} = 47.21 \ kN. m \\ M_{plz,rd} &= \frac{W_{plz} \times f_y}{1.1} = \frac{44.6 \times 23.5}{1.1} = 9.52 \ kN. m \\ M_{ysd} &= 27.9 \ kN. m \\ M_{zsd} &= 0.855 \ kN. m \\ \left(\frac{27.9}{47.21}\right)^2 + \left(\frac{0.855}{9.52}\right) = 0.44 < 1 \qquad condition \ vérifiée \end{split}$$

Conclusion : la panne **IPE 200** vérifie les différentes conditions de sécurité par rapport aux différents cas d'instabilités, elle est donc largement convenable pour notre structure.

3.2 Dimensionnement de l'échantignole

Calcul des charges revenant à une échantignole :

Effort de soulèvement :

 $q_{uz}=G \times \cos \alpha -1.5W^{--}$ avec

G=39 daN/ml $W^{--}=-426 \text{ daN/ml}$ E = 44.4 daN/ml

 $q_{uz} = 39 \times \cos 8.53 - 1.5 \times 426$

 q_{uz} = -600.43 daN/ml = -6 kN

Effort rampant :

 q_{uv} =(1.35G+1.5E)sin α =(1.35×39+1.5×44.4)sin 8.53 = 17.68 daN/ml =0.18 kN

L'excentrement :

L'excentrement (t) est limité par la condition suivante :

$$2\left(\frac{b}{2}\right) \le t \le 3\left(\frac{b}{2}\right)$$

Avec : b=10 cm pour un profilé IPE200

$$2\left(\frac{10}{2}\right) = 10 \le t \le 3\left(\frac{10}{2}\right) = 15$$

On prend t=10 cm

Pour l'échantignole de rive :

$$R_z = q_{uz} \times \frac{l}{2} = 6 \times \frac{6}{2} = 18 \ kN$$
$$R_y = q_{uy} \times \frac{l}{2} = 0.54 \ kN$$

Pour l'échantignole intermédiaire :

$$R_z = 18 \times 2 = 36 \ kN$$
$$R_y = 0.54 \times 2 = 1.08 \ kN$$

Calcul du moment de renversement :

$$M_R = R_Z \times t + R_y \times \frac{h}{2} = 36 \times 10 + 1.08 \times 10 = 370.8 \ kN.\ cm = 3.7kN.\ m$$

Choix de la section brute :

$$\begin{split} M_{elRd} &= \frac{w_{el} \times f_y}{\gamma_{M0}} \qquad \text{Art 5.4.5.1 (2)} \text{CCM97} \\ M_{elRd} &= \frac{w_{el} \times f_y}{\gamma_{M0}} => w_{el} \ge \frac{M_{elRd} \times \gamma_{M0}}{f_y} => w_{el} \ge \frac{0.0037 \times 1.1}{235} \\ &= 1.73 \times 10^{-5} m^3 \\ w_{el} &= 17.32 cm^3 \end{split}$$

Détermination de la largeur et l'épaisseur de l'échantignole :

b :largeur de l'échantignole

e :épaisseur de l'échantignole

$$w_{el} = \frac{b \cdot e^2}{6} \Longrightarrow e \ge \sqrt{\frac{6 \times 17.32}{b}} = \sqrt{\frac{6 \times 17.32}{180}}$$
$$e \ge 0.76$$

b est prise égale à 180 mm soit la largeur de la traverse. (Calculer dans le chapitre 6) Donc on prend e=1cm

3.3 Dimensionnement des lisses de bardages :

Les lisses de bardages sont constituées de poutrelles (UPN, UAP, UPE) de profils minces pliés. Étant disposées horizontalement, elles sont portées soit par les poteaux de portiques, soit par les potelets intermédiaires. L'entre-axe des lisses est déterminé par la portée admissible des bacs de bardage, pour notre structure un UPN à étaitadopté.

3.3.1 Choix du bardage

Le choix du bardage se fait en fonction des charges du vent (pression/dépression) qui lui sont appliqués. Pour notre halle les valeurs maximums de pression et dépression que subissent les parois sont :

```
W+ = 154.1 \text{ daN/m}^2 W- = -135.5 \text{ daN/m}^2 (regarder chapitre 2)
```

D'après le tableau ci-dessous **(ANNEXE 3)**, le bardage choisi doit être d'au moins de 50mm d'épaisseur ,un LL50 pour un poids de 13,3 daN/m² sur 3 appuis avec pas plus de 3m d'entre appuis est le meilleur choix.

	2 APPUIS Control of the second				PORTÉE	Epaisseurs nominales de l'âme					No.					
	1.20	100	80	60	50	40	30	(m)	30	40	5.0	60	80	100	12.0	
ĺ	16	1212	105	1004	141	119	101		149	26	1200	10.00		1978	1200	PRESSION
1		1		156	142	128	96	3,00	109	132	148					DEPRESSION
ĺ	1.5225-1	(a longer	-43	142	123	103	84	11214	130	150	160	i des	10-20	1.521	Sec. 1	PRESSION
ĺ			151	139	124	109	84	3,20	97	119	133	148			1	DEPRESSION
1	2.64CU	1.1.1	145	127	109	90	71		115	132	153	160				PRESSION
ĺ	158	158	133	124	109	94	74	3,40	86	107	120	132	127			DEPRESSION
	-	and the second se		-	_					-						

Figure 3.5 : choix de l'épaisseur du bargade en fonction des pressions et depressions

3.3.2 Détermination de l'espacement entre lisse :

Toujours d'après le tableau ci-dessus, on peut aller jusqu'à 3m de distance d'entre axe pour le bardage qu'on a choisi.

Après plusieurs essais empiriques le nombre optimal de lisses nécessaire est de 4, ce qui donne un espacement de :longueur de paroi 8.9m – longueur mur maçonnerie 4m (8.9 - 4 = 5m)

5m/4lisse \rightarrow e =1.25m

Figure 3.6 : Répartition des lisses

Détermination des charges et surcharges

Données de calcul :

- Chaque lisse repose sur deux appuis
- Espacement entre lisse = 1.25 m
- On dispose 4 lignes de lisse entre portique.
- Longueur des lisses: 6,00 m

Les charges permanentes :

- Poids propre de bardage (panneau sandwich) : 13.3 daN / m²
- Poids propre des accessoires d'attache : 5 daN / m²

G=g sy=(P_{bardage}+P_{accessoire})×e

 $q_{sy} = (13.3 + 5) \times 1.25 = 22.88 daN/ml$ $q_{sy} = 0.228 kN$ $q_{uy} = 1.35G = 0.3 kN$ La surcharge climatique due au vent

On calcul les lisses de bardage avec la valeur max sur long- pan

W+= 154.1 daN/m^2

 Charges appliquées à L'ELU : q_{uz}=1.5W q_{uz}=2.88kN - Charge appliquée à L'ELS : $q_{sz}=W\times e=154.1\times 1.25$ $q_{sz}=192.62daN=1.92kN$

3.3.3 Le dimensionnement se fait par la condition de limitation de la flèche

$$f_z = \frac{5 \times q_{s,z} \times l^4}{384 \times E_y \times l} \le f_{adN} = \frac{l}{200} = \frac{600}{200} = 3 \ cm$$
$$I_y \ge \frac{5 \times 1.92 \times 600^4}{384 \times 21 \times 10^5 \times 3} = 514.28 \ cm^4$$

On opte pour un UPN 140 avec les caractéristiques suivantes :

Profilé		PARAMETRES DE LA SECTION									
UPN 140	A Cm ²	h mm	b mm	t _f mm	t _w mm	I _y Cm ⁴	I_z Cm ⁴	₩ _{psy} cm ³	$\mathcal{W}_{ m pSz}$ cm ³		
MATERIAU ACIER S235	20	140	60	10	7	605	62.7	103	28.3		

Tableau 3.4: Caractéristiques géométriques du profilé UPN140

Recalcul des charges avec le poids propre de la lisse ajouté :

- Poids propre de la lisse UPN 140 : 15,68 daN / ml
- Poids propre de bardage (panneau sandwich) : 13.3 daN / m²
- Poids propre des accessoires d'attache : 5 daN / m²

G=q_{sy}=(P_{bardage}+P_{accessoire})×e

 $\label{eq:q_sy} \begin{array}{l} q_{sy} = (13.3 + 5) \times 1.25 \ + 15.68 = 38.56 daN/ml \\ q_{sy} = 0.38 \ kN \end{array}$

q_{uy}=1.35G q_{uy} =0.53kN

 q_{sz} =W×e=154.1×1.25=192.62daN q_{sz} =1.92kN

q_{uz}=1.5W q_{uz}=2.88kN

3.3.4 Vérification des différentes Conditions de résistances :

Détermination de la Classe :

- Classe de l'âme fléchie :

$$\frac{c}{t_f} = \frac{60}{10} = 6 < 10\varepsilon \Longrightarrow classe 1$$

- Classe de la semelle (comprimée) :

$$\frac{d}{t_w} = \frac{98}{7} = 14 < 72\varepsilon \Longrightarrow classe 1$$

Condition de résistance :

$$\left(\frac{M_{ysd}}{M_{elyRd}}\right)^1 + \left(\frac{M_{zsd}}{M_{elzRd}}\right)^1 \le 1$$

- En présence de l'action du vent :

$$M_{y} = \frac{q_{uz} \times l^{2}}{8} = \frac{2.88 \times 6^{2}}{8} = 12.96 \text{ kN. m}$$

- Sous l'effet des charges verticales permanentes :

$$M_{z} = \frac{q_{uy} \times l^{2}}{8} = \frac{0.58 \times 6^{2}}{8} = 2.61 kN.m$$
$$M_{elyRd} = \frac{w_{ely} \times f_{y}}{\gamma_{M0}} = \frac{86.4 \times 10^{3} \times 235}{1.1} = 18.45 kN.m$$
$$M_{elzRd} = \frac{w_{elz} \times f_{y}}{\gamma_{M0}} = \frac{14.8 \times 10^{3} \times 235}{1.1} = 3.16 kN.m$$

Donc :

$$\left(\frac{12.96}{18.45}\right)^1 + \left(\frac{2.61}{3.16}\right)^1 = 1.52 > 1$$
 Condition non vérifiée

On rajoute des liernes pour réduire L_z : (L_z=3m)

Nouveau M_z

$$M_z = \frac{q_{uy} \times l^2}{8} = \frac{0.58 \times 3^2}{8} = 0.65 kN.m$$
$$\left(\frac{12.96}{18.45}\right)^1 + \left(\frac{0.65}{3.16}\right)^1 = 0.9 < 1 \quad \text{Condition vérifiée}$$

Vérification au cisaillement :

Condition à vérifier : $V_{sd} < V_{plrd}$

$$V_{zsd} = \frac{1.5WL}{2} = 12.96 \, kN$$
$$V_{plRd} = \frac{A_{vz} \times f_y}{\sqrt{3} \times \gamma_{M0}} = 128.55 \, kN$$

 $V_{zsd} = 12.96 \ kN < V_{plRd} = 128.55 \ kN \rightarrow$ condition vérifiée

Vérification au déversement

On doit vérifier :

$$M_{brd} = \frac{\chi_{lt} \times \beta_w \times W_{pl,y} \times f_y}{\gamma_{M1}} > M_{ysd} \qquad Art \ 5. \ 5. \ 2 \ (5. \ 48) CCM97$$

Avec :

$$M_{cr} = C_1 \cdot \frac{\pi^2 \cdot E \cdot I_z}{L^2} \sqrt{\frac{I_w}{I_z} + \frac{L^2 \cdot G \cdot I_t}{\pi^2 \cdot E \cdot I_z}} \qquad ANNEXE B \cdot (B. 1.3) - CCM97$$

M_{cr}=3117137.62 N.cm

$$\lambda_{lt} = \sqrt{\frac{\beta_w \times W_{ply} \times f_y}{M_{cr}}}$$

 β_w = 1 car la section est de classe 1

$$W_{ply}$$
 (upn140) =103 cm³

$$\rightarrow \lambda_{lt} = 0.881$$

$$\phi_{lt} = 0.5 \times \left[1 + \alpha_{lt} \left(\overline{\lambda}_{LT}^2 - 0.2\right) + \overline{\lambda}_{LT}^2\right]$$

 α_{lt} =0.21 Car profilé laminé

 $\Rightarrow \phi_{lt} = 0.959$

$$\chi_{lt} = \frac{1}{\left(\phi_{lt} + \sqrt{\phi_{lt}^2 - \overline{\lambda_{lt}^2}}\right)} \le 1$$

 $\rightarrow \chi_{lt} = 0.75$

 $\rightarrow M_{brd} = 16.52 \ kN.m$

 $M_{brd} = 16.52 \ kN.m > M_{ysd} = 12.96 \ kN.m$ Condition vérifiée

Conclusion : La section **UPN140** assure une bonne résistance vis à vis des différents cas d'instabilité, elle est convenable pour les lisses de notre structure.

3.4 Dimensionnement des liernes :

Figure 3.7 : Disposition des liernes sur le bardage

Calcul de l'effort de traction dans les liernes :

La réaction R au niveau du lierne :

$$R = 1.25q_y \times \frac{l}{2}$$

Avec: $q_y = [1.35(G_{UPN140} + G_{couverture})]$ $q_y = 0.837kN$ l = 6 m $R = 1.25q_y \times \frac{l}{2} = 1.25 \times 0.837 \times 3 = 3.2kN$

Effort de traction dans chaque lierne

$$T_{1} = \frac{R}{2} = 1.6kN$$

$$T_{2} = T_{1} + R = 4.8 \text{ kN}$$

$$T_{3} = \frac{T_{2}}{2\sin\theta} = 3.74 \text{ kN} \qquad Avec \qquad \theta = arc \ tg \frac{2.5 \ m}{3 \ m} = 39.8^{\circ}$$

C'est $T_2 = 4.8 \ kN$ la tension la plus défavorable donc on dimensionne par rapport à elle nos liernes.

Dimensionnement de la lierne :

$$N_{tsd} = \frac{A \times f_y}{\gamma_{M0}} = 4800 \ N => A \ge \frac{1.1 \times 4800}{235} => A \ge 22.46 mm^2$$
$$A = \frac{\pi \phi^2}{4} => \phi \ge \sqrt{\frac{4A}{\pi}} = \sqrt{\frac{4 \times 22.46}{3.14}} = 5.34 \ mm$$

On prend $\phi = 12 \, mm$ soit un **T12** car c'est le diamètre le plus courant sur le marché.

3.5 Calcul des chéneaux

Introduction

Le chéneau a pour rôle l'évacuation des eaux pluviales et d'éviter leur stagnation afin d'assurer une bonne étanchéité de la toiture et de la construction.

Figure 3.8: Coupe vertical sur le chéneau

La section du chêneau sera déterminée comme suit : $\frac{s}{S} \ge \frac{63}{\sqrt{\frac{s}{d} \times P}}$

Avec:

- s : Section transversale du chéneau en cm².
- S: Surface couverte du chêneau en m².
- d : Périmètre de la section mouillée du chêneau en cm.
- p : Pente du chêneau.

Remarque : on prévoit 4 points de descente d'eau sur le long pan au niveau du portique intérieur

Dimensionnement du chéneau de rive :

S=9.1×30=273 m² avec P= 5mm/m (pour éviter l'accumulation du sable aussi)

$$S' = \frac{273}{4} = 68.25 \text{ m}^2$$

Suivant l'abaque (Annexe 2) => S=100 cm² => d=10 cm

On prend un tuyau de PVC de diamètre 100mm

Dimensionnement de chéneau intermédiaire

Surface en plan des combles desservis en m² :

S'=68.25×2= 136.5 et P= 5 mm/m

Suivant l'abaque (Annexe 4) => S=75 cm² => d=9 cm

On prend un tuyau de PVC de diamètre 90 mm ou 100 mm

3.6 Prédimensionnement des potelets :

Les potelets sont des profilés laminés, qui ont pour rôle de transmettre les différents efforts horizontaux à la poutre au vent et les efforts verticaux vers le sol.

Ce sont des profilés disposés verticalement sur le pignon, comme indiqué sur la figure ci-dessous, et sont surtout sujet à la flexion composée sous les efforts suivant :

- Effort normal produit par le poids propre du potelet du bardage et des lisses.
- Effort de flexion produit par l'action du vent sur le pignon.

Figure 3.9 : Disposition des potelets

Ils sont considérés comme articulés dans les deux extrémités.

Évaluations des charges et surcharges revenantes à un potelet :

Charges permanentes G : (verticale concentrée) :

- Poids propre de bardage (panneau sandwich) 13,3 daN/m²
- Poids propre des accessoires d'attaches 5 daN/m²
- Poids propre de la lisse UPN 140 15.68 daN/ml

Nous avons 4 lisses de 6m de long

 $G = (G_{\text{UPN}} \times e \times n) + (G_{\text{bardage}} + pp_{\text{a}}) \times S$ $G = (15.68 \times 6 \times 4) + [(13.3 + 5) \times (6 \times 5.6)] = 9.91 \text{ kN/ml}$

Charge due au vent W :

 $W=(154.1\times5.6) = q_{eq}\times9.6 => q_{eq}=\frac{154.1\times5.6}{9.6}=89.89 \text{ daN/m}^2$

Donc : W = 89.89 x 6 = 539 daN/ml = 5.39 kN/ml

Prédimensionnement de la section du potelet :

Sous la condition de la limite de la flèche (ELS) tableau 4.1 CCM 97

Les potelets étant articulés en tête et en pied, la flèche max est :

$$f_y = \frac{5 \times W \times l^4}{384 \times E \times I_y} \le f_{adm} = \frac{l}{200}$$
$$I_y > \frac{1000 \times W \times I^3}{384 \times E} = 5913.6 \ cm^4$$

Ce qui correspond à un profilé : IPE300 avec $I_y = 8356 cm^4$

Profilé	N S		PAR	AMETRE	ES DE L <i>i</i>	A SECTIO	ON		
IPE300	A Cm ²	h mm	b mm	t _f mm	t _w mm	Iy Cm⁴	I₂ Cm⁴	₩ _{₽¹.y} cm ³	$\mathbf{W}_{\mathbf{P}^{1,\mathbf{Z}}}$ cm ³
MATERIAU ACIER S235	53.8	300	150	10.7	7.1	8356	746	628	125

Tableau 3.5 : Caractéristiques géométriques d'IPE 300

Vérification de la résistance du profilé :

Classe de la section :

Classe de la semelle :

$$\frac{c}{t_f} = \frac{75}{10.7} = 7 < 10 = 10$$
 Semelle de classe 1

Classe de l'âme :

$$\frac{d}{t_w} = \frac{248.6}{7.1} = 35 < 38 = 38$$
 Âme de classe 1

Vérification a l'effort tranchant :

Pour la vérification de l'effort tranchant, on doit vérifier la condition suivante :

Si : $V_{sd} \le 0.5 V_{plrd} \Longrightarrow M_{sd} \le M_{c,rd}$ Art5. 4. 7 CCM 97

$$V_{sd} = \frac{1.5 \times W \times l}{2} = \frac{1.5 \times 5.39 \times 9.6}{2} = 38.8 \ kN < 0.5 \ V_{plrd} = 0.5 \left(\frac{2570 \times 235}{\sqrt{3} \times 1.1}\right) = 158.5 \ kN$$

Condition vérifiée

Donc pas d'incidence de l'effort tranchant sur le moment résistant

Vérification a l'effort axial :

On utilise la condition suivante :

Si :

$$N_{sd} \le Min\left(0,25N_{pl,rd};0,5A_w,\frac{f_y}{\gamma_{m0}}\right)$$

Pas d'interaction entre le moment résistant et l'effort axial

$$0.25N_{plrd} = 0.25 \frac{A \times f_y}{\gamma_{M_0}} = 0.25 \frac{5380 \times 235}{1.1} = 287.34 \ kN$$
$$0.5 \frac{A_w \times f_y}{\gamma_{M_0}} = 0.5 \frac{2170 \times 235}{1.1} = 231.7 \ kN$$
$$N_{sd} = 1.35G = 13.37 \ kN < min\left(0.25N_{plrd}, 0.5 \frac{A_w \times f_y}{\gamma_{M_0}}\right)$$

Condition vérifiée

Donc on doit vérifier la relation suivante :

L'indice de l'effort axial sur le moment fléchissant est négligé

Vérification a la flexion composée :

$$M_{ysd} = \frac{1.5W \times l^2}{8} = 93.13kN.m \qquad M_{zsd} = 0 \qquad M_{plyrd} = 134.16 \, kN.m$$
$$\lambda_{lt} = \frac{\frac{L_z}{l_z}}{c_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{L_z}{\frac{l_z}{l_f}} \right)^2 \right]^{0.25}}$$

*C*₁*=*1.132 Annexe B. Tableau B.1.2 CCM97

$$L_z = 1250 \ mm$$
 $i_z = 33.5 \ mm$ $h = 300 \ mm$ $t_f = 10.7 \ mm$

 $\lambda_{lt} = 34.33 => \overline{\lambda}_{lt} = 0.36 < 0.4$ Pas de risque de déversement

Donc on doit vérifier la relation suivante :

Flexion composée sans risque de déversement : Art 5.5.4 (5.51) CCM97

$$\frac{N_{sd}}{\chi_{min} \cdot N_{pl,rd}} + \frac{K_y \cdot M_{ysd}}{M_{ply,rd}} + \frac{K_z \cdot M_{zsd}}{M_{plz,rd}} \le 1.0 \quad \dots \dots (1)$$

Avec :

$$\begin{split} \lambda_y &= \frac{L_y}{i_y} = \frac{960}{12.5} = 76.8 \rightarrow \bar{\lambda}_y = \frac{76.8}{93.9} = 0.81 \\ &=> \mu_y = \lambda_y (2B_{my} - 4) + \frac{W_{ply} - W_{ely}}{W_{ely}} = -1.134 + 0.127 = -1.007 < 0.9 \\ \alpha &= 0.21 \qquad \qquad \lambda_y = 0.81 \\ \phi_y &= 0.5 \left[1 + \alpha_y (\bar{\lambda}_y - 0.2) + \bar{\lambda}_y^2 \right] \\ \phi_y &= 0.5 [1 + 0.21(0.81 - 0.2) + 0.81^2] = 0.89 \end{split}$$

$$\chi_{y} = \frac{1}{\left(\phi_{y} + \sqrt{\phi_{y}^{2} - \overline{\lambda_{y}^{2}}}\right)}$$

$$\chi_{y} = 0.794 \rightarrow K_{y} = 1 - \frac{-1 \times 1.35 \times 9.91}{0.794 \times 53.8 \times 2350} = 1.01$$

$$\lambda_{z} = \frac{125}{3.35} = 37.31 => \overline{\lambda_{z}} = 0.397 \rightarrow \phi_{z} = 0.611 => \chi_{z} = 0.92$$

$$\chi_{min} = \chi_{y} = 0.794$$

$$N_{plrd} = \frac{Af_{y}}{\gamma_{m0}} = \frac{5380 \times 235}{1.1} = 1149.36 \, kN$$

$$M_{ysd} = \frac{1.5WL^{2}}{8} = 93.13 \, kN.m$$

$$M_{plyrd} = 134.16 \, kN.m$$

$$N_{sd} = 1.35G = 13.37 \, kN$$

$$k_{y} = 1.01$$

$$M_{z,sd} = 0$$

$$\begin{aligned} \frac{N_{sd}}{\chi_{min}.N_{pl,rd}} + \frac{k_y.M_{y,sd}}{M_{ply,rd}} + \frac{k_z.M_{z,sd}}{M_{plz,rd}} &\leq 1.0 \\ \frac{13.37}{0.794 \times 1148.36} + \frac{1.01 \times 93.13}{134.16} = 0.71 < 1 \quad Condition \ vérifiée \end{aligned}$$

Conclusion : le profilé **IPE300** vérifie toutes les conditions de résistances des différentes instabilités auxquels il peut être sujet.

Donc il convient parfaitement comme potelet pour notre structure.

Chapitre 4

Etude du pont roulant

4.1 Introduction

La vocation de notre halle nécessite deux ponts roulants d'une capacité de 12.5t chacun, il est nécessaire donc de leur dimensionner des poutres porteuses ainsi que les rails sur lesquelles il va glisser.

- Le pont roulant

Est un engin de levage mobile circulant sur une voie de roulement. Il est constitué, d'un palan de transfert équipé d'un treuil pour le levage de la charge.

- La voie de roulement

Est la structure porteuse de l'engin de levage, constituée de deux poutres de roulement et ses supports, les deux poutres parallèles sont surmontées d'un rail spécial sur lesquelles circule le pont roulant.

- La poutre de roulement

Est l'élément porteur longitudinal de la voie, les poutres de roulement sont des poutres simples ou continues. Leurs appuis sont constitués par corbeaux (consols) fixés sur les poteaux de la halle.

4.1.1 Caractéristiques des ponts roulants :

Figure 4.1 : Schéma 3D du pont roulant

Figure 4.2 : Schéma 2D du pont roulant

Soit le pont roulant avec la portée de 18 m :

Puissances	Portée		Vitesse (m/		Poids (t)		Réaction (t)		
N (t)	L(m)	Levage	Direction	Translation	Pont B	Chariot Tot K B+		R _{max}	R _{min}
12.5	18	0.8/5	5/20	10/40	6.809	1.151	7.96	8.14	1.94

 Tableau 4.1 : Caractéristiques du pont roulant. (Annexe5)

a min (m)	b(m)	c(m)	d(m)	e(m)
1	0,35	0,6	2	3.6

Tableau 4.2 : Caractéristiques géométriques du pont roulant

Groupe	с	Ψ1	Ψ2	Classe
Ι	0.2	1.1	1.1	A-2

Tableau 4.3 : Coefficient et classement des ponts roulants

4.2 Classification des ponts roulants

Les ponts roulants sont classés selon deux critères :

- Intensité de l'usage du pont.
- La variation de la charge soulevée.

4.2.1 Coefficient et Classements des ponts roulants selon le CTICM

- Les ponts roulants à usage intensif, (les poutres de roulement roulants doivent être conçues et calculées avec soin).
- Les ponts roulants d'usage peu fréquent, (le calcul de poutre de roulement est similaire à celui d'une poutre quelconque sous charge statique).
- Utilisation régulière en service intensif suivant l'état de charge.

C: Coefficient d'adhérence d'un galet sur son rail.

 Ψ : Coefficient de majoration dynamique des réactions verticales. Dans

ce projet le pont roulant utilisé est de Type A classe 2

Groupes II.

Remarque: Les ponts roulant à crochet sont classé dans le groupe II.

4.2.2 Description générale du calcul

En général, les poutres de roulements sont conçues sur deux appuis particulièrement celles destinées à recevoir les ponts de type A, pour que l'alternance de sollicitations M(+), M(-) conduit à réduire les contraintes admissibles en fatigue. Le moment maximum est déterminé par le théorème de BARRE, il est défini comme suit :

$$M_{max} = M_B = P.\frac{(L-\frac{e}{2})^2}{4L}$$

Figure 4.3 : Moment max pour deux charges égales (Théorème de Barré).

4.2.3 Définition des charges

Charges verticales (R_{Vmax})

- Le poids des poutres de roulement.
- Le poids du pont, du chariot et de la charge soulevée.
- Les surcharges sur passerelles si elles existent.

Charges horizontales transversales (*R_{Hmax}*)

- Réaction transversale provoquée par le roulement.
- Freinage de direction.
- Vent sur la poutre dans le cas des poutres de roulement à l'extérieur du hangar.

Charges horizontales longitudinales (RLmax)

- Freinage longitudinale (de translation).
- Effet de tamponnement.
- Vent sur pont s'il est à l'extérieur du hangar.

4.2.4 Calcul des réactions des galets du pont roulant

Charges statiques (réaction par galet) :

$$R_{max} = 81.4 \ KN \qquad \qquad R_{min} = 19.4 \ KN$$

Charges verticales :

$$R_{Vmax} = \Psi_1. R_{max} = 1.15 \times 81.4 = 89.54 \text{ KN}$$
$$R_{Vmin} = \Psi_2. R_{min} = 1.1 \times 19.4 = 21.34 \text{ KN}$$

Charges horizontale longitudinale :

$$R_{Lmax} = C.R_{max} = 0.2 \times 81.4 = 16.28 \text{ KN}$$

 $R_{Lmin} = C.R_{min} = 0.2 \times 19.4 = 3.88 \text{ KN}$

Charges horizontales transversales :

Palan au milieu de la portée du pont :

$$R_{H1max} = \pm \left[0.024(K+N+B)\frac{L}{e} + 0.021(N+K) \right]$$
$$= \pm \left[0.024(1.151+12.5+6.809)\frac{18}{3.6} + 0.021(12.5+1.151) \right]$$

 $R_{H1max} = \pm 2.74 t$

$$R_{H1min} = \pm \left[0.024(K+N+B)\frac{L}{e} - 0.021(N+K) \right]$$
$$= \pm \left[0.024(1.151+12.5+6.809)\frac{18}{3.6} - 0.021(12.5+1.151) \right]$$

 $R_{H1min} = \pm 2.168 t$

Palan à distance minimale du chemin de roulement

$$R_{H2max} = \pm \left[0.0052(K + N + 5B) \frac{L}{e} + 0.021(N + K) \right]$$
$$= \pm \left[0.0052(1.151 + 12.5 + 5 \times 6.809) \frac{18}{3.6} + 0.021(12.5 + 1.151) \right]$$

 $R_{H2max} = \pm 1.526 t$

$$R_{H2min} = \pm \left[0.0052(K + N + 5B) \frac{L}{e} - 0.021(N + K) \right]$$
$$= \pm \left[0.0052(1.151 + 12.5 + 5 \times 6.809) \frac{18}{3.6} - 0.021(12.5 + 1.151) \right]$$

 $R_{H2min} = \pm 0.953 t$

Les premiers membres de ces formules correspondent aux efforts induits par la marche appelée marche en crabe du pont roulant, les deuxièmes membres de ces formules correspondent aux efforts dus au freinage du palan charge.

4.2.5 Le choix du rail de roulement

Pour notre cas, on a un pont roulant de 12.5T, on va utiliser des rails A55, maintenues avec des crapauds.

Figure 4.4 : Coupe transversale du rail

Rail	Poids (Kg/m)	B (mm)	H (mm)	P (mm)	Section A (cm2)	I	l _y (cm⁴)
A55	31,8	55	65	150	40,7	178	337

Tableau 4.4: Caractéristiques géométriques du rail.

Figure 4.5 : Schéma de la poutre de roulement avec le rail.

4.3 Prédimensionnement de la poutre de roulement

Le dimensionnement de la poutre du chemin de roulement se fait selon le règlement « CCM97 », et le calcul se fait avec les charges les plus défavorables.

4.3.1 Condition de la flèche

D'après le CTICM le dimensionnement de la poutre de roulement se fait avec la condition de flèche.

La flèche admissible est obtenue quand les deux charges sont en position symétrique par rapport au milieu de la poutre, il faut vérifier donc que :

$$f_z \le f_{adm} = \frac{l}{750} = 0.8 \ cm$$

La longueur de travée est de 6.00 m (sur deux appuis simple), comme indiquée sur le schéma:

Figure 4.6 : Schéma statique de la poutre de roulement

galet et P la réaction verticale max.

$$f_z = \frac{p.\,a.\,l^2}{24EI} \left(3 - \frac{4.\,a^2}{l^2}\right)$$

Avec :

➤ L= 6000 mm.

➤ a= 2100 mm.

➢ P=89540 N.

➢ E=21.10⁴ N/mm².

$$I_{y} \geq \frac{p.a.l^{2}(3l^{2} - 4a^{2})}{f_{z}.24El^{2}} = \frac{89540 \times 2100 \times 6000^{2}(3 \times 6000^{2} - 4 \times 2100^{2})}{8 \times 24 \times 21 \times 10^{4} \times 6000^{2}}$$

 $I_y \ge 421397625 \ mm^4$

→ Donc HEB360 vérifie la condition de la flèche.

	poids	section	Dimensions				Caractéristiques			
profilé	G Kg/m	A cm ²	h mm	b mm	t _f mm	tw mm	Iy cm ⁴	I_z cm ⁴	Wply cm ³	W _{plz} cm 3
HEB360	142	180.6	360	300	22.5	12.5	43190	10140	2683	1032

Tableau 4.5 : Caractéristiques du profilé HEB360

Vérification de la flèche :

Poids propre inclue (rail+poutre)

Figure 4.8 : Schéma statique de la poutre de roulement sur deux appuis

 $q = G_{poutre} + G_{rail} = 1.42 + 0.31 = 1.73 \ kn/ml$

$$f_z = \frac{p.a.l^2}{24EI} \left(3 - \frac{4.a^2}{l^2}\right) + \frac{5.q.l^4}{384EI}$$

$$f_z = \frac{89540 \times 2100 \times 6000^2}{24 \times 21 \times 10^4 \times 43190 \times 10^4} \times \left(3 - \frac{4 \times 2100^2}{6000^2}\right) + \frac{5 \times 1.73 \times 6000^4}{384 \times 21 \times 10^4 \times 43190 \times 10^4}$$

$$f_z = 8.12 \ mm \le f_{adm} = 8 \ mm$$

La condition n'est pas vérifiée

Donc on augmente la section

	poids	section	Dimensions				Caractéristiques			
profilé	G Kg/m	A cm ²	h mm	b mm	t _f mm	t _w mm	Iy cm ⁴	Iz cm ⁴	W _{ply} cm ³	W _{plz} cm 3
HEB400	155	197.8	400	300	24	13.5	57680	10820	3232	1104

Tableau 4.6 : Caractéristiques du profilé HEB400

 $q = G_{poutre} + G_{rail} = 1.55 + 0.31 = 1.86 KN/ml$

$$f_z = \frac{p.a.l^2}{24EI} \left(3 - \frac{4.a^2}{l^2}\right) + \frac{5.q.l^4}{384EI}$$

 $f_z = \frac{89540 \times 2100 \times 6000^2}{24 \times 21 \times 10^4 \times 57680 \times 10^4} \times \left(3 - \frac{4 \times 2100^2}{6000^2}\right) + \frac{5 \times 1.86 \times 6000^4}{384 \times 21 \times 10^4 \times 57680 \times 10^4}$

 $f_z = 5.37 \ mm \ \leq \ f_{adm} = 8 \ mm$ La condition est vérifiée

4.3.2 Classe du profilé HEB 400

Tableau 53.1 CCM97

Classe de l'âme fléchie

$$\frac{d}{t_w} \le 72\varepsilon$$

Avec:

$$\varepsilon = \sqrt{\frac{235}{f_y}}$$

 $\frac{298}{13.5} \le 72\sqrt{\frac{235}{235}} \implies 22.07 \le 72$

L'âme est de classe 1

- Classe de la semelle comprimée

$$\frac{c}{t_f} = \frac{b/2}{t_f} \le 10\varepsilon \implies \frac{150}{24} = 6.25 \le 10$$

La semelle est de classe 1

Donc la section du profilé global est de classe 1

Vérification au cisaillement (ELU)

La vérification au cisaillement est donnée par les formules suivantes :
$$V_{ysd} \le V_{pl,rd} \qquad Art \ 5. \ 4. \ 6 \ (5.20) CCM97$$
$$V_{pl,rd} = \frac{A_{vz} \cdot f_y}{\sqrt{3} \cdot \gamma_{m0}} = \frac{69.98 \times 235}{\sqrt{3} \times 1.1} = 863154 \ N = 863.15 \ KN$$

- Effort tranchant du à la réaction (R_{Vmax})

$$V_V = R_{Vmax} \times \frac{4a}{l} = \frac{89.54 \times 4 \times 2.1}{6} = 125.35 \ KN$$

- Effort tranchant du au pp (rail + HEB400)

$$V_{PP} = \frac{G.l}{2} = \frac{1.86 \times 6}{2} = 5.58 \ KN$$

D'où

$$V_{ysd} = 1.35V_{PP} + 1.5V_V = 195.56 \, KN$$

$$V_{ysd} \le V_{pl,rd}$$

Condition vérifiée

Moment sollicitant sous charges verticales

Suivant (z-z)

_

Moment du a la réaction
$$(R_{Vmax})$$

 $M_V = R_{Vmax} \times \frac{(6 - \frac{e}{2})^2}{4l} = 89.54 \times \frac{(6 - \frac{3.6}{2})^2}{4 \times 6} = 65.81 \text{ KN. m}$

- Moment du au poids propre (rail + HEB400)

$$M_{PP} = \frac{G.\,l^2}{8} = 8.37 \, KN.\,m$$

Avec : G=(rail+HEB400)=1.86 KN/ml

D'où

$$M_{ysd} = 1.35M_{PP} + 1.5M_V = 110 \ KN. m$$

Moment sollicitant sous charges horizontales

Suivant(y-y)

- Moment du a la réaction (R_{H1})

$$M_{z,sd} = M_H = \frac{2R_{H1}}{L} \left(\frac{L}{2} - \frac{e}{4}\right)^2$$

$$M_{z,sd} = M_H = \frac{2 \times 27.4}{6} \times \left(\frac{6}{2} - \frac{3.6}{4}\right)^2 = 40.28 \text{ KN}. m$$

4.3.3 Vérification de la résistance de la poutre de roulement

Pour raison de la forte sensibilité des poutres de roulement à l'instabilité élastique, leurs dimensionnements par le calcul en plasticité n'est pas admis.

$$\begin{aligned} \frac{N_{sd}}{N_{pl,rd}} + \frac{M_{y,sd}}{M_{el,y}} + \frac{M_{z,sd}}{M_{el,z}} &\leq 1 \\ N_{sd} &= 1.5R_{Lmax} = 1.5 \times 16.28 = 24.42 \ KN \\ M_{el,y} &= \frac{w_{el,y} \cdot f_y}{\gamma_{M0}} = 616.13 \quad ; \quad M_{el,z} = \frac{w_{el,z} \cdot f_y}{\gamma_{M0}} = 154.1 \quad ; \quad N_{pl,rd} = \frac{A \cdot f_y}{\gamma_{M0}} = 4225.73 \\ &= \frac{24.42}{4225.73} + \frac{110}{616.13} + \frac{40.28}{154.1} = 0.44 \leq 1 \end{aligned}$$

Condition vérifiée

La condition de résistance est vérifiée pour la poutre de roulement

Résistance de l'âme au voilement par cisaillement CCM97 art 5.6.1(1)
Si $\frac{d}{t_w} \leq 72\varepsilon$, il n'est pas nécessaire de vérifier le voilement par cisaillement

Avec :

$$\varepsilon = \sqrt{\frac{235}{f_y}} = 1$$

$$\frac{d}{t_w} = \frac{298}{13.5} = 22.07 < 69$$

Donc, il n'y a pas lieu de vérifier le voilement par cisaillement

Résistance au déversement

Le moment résistant de déversement est donné par la relation suivante :

$$M_{brd} = \frac{\chi_{LT} \times \beta_w \times W_{pl,y} \times f_y}{\gamma_{M1}}$$

Avec : $\beta_w = 1$ (section de classe 1)

 χ_{LT} : Le facteur de réduction pour le déversement

Pour les poutres à section constante et doublement symétriques (profilés laminés I et H), l'élancement λ_{lt} vaut :

$$\lambda_{lt} = \frac{\frac{L}{i_z}}{c_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{L}{\frac{i_z}{h}} \right)^2 \right]^{0.25}} = 65.22$$

ANNEXE. B. CCM97

Avec : L = 600 cm

 $c_1 = 1.046$ Annexe B tableau B.1.2 CCM97

$$\lambda_{lt} = 65.22$$
 ; $\lambda_1 = 93.9\varepsilon$

$$\lambda_{LT} = \left[\frac{\lambda_{lt}}{\lambda_1}\right] \cdot \left[\beta_w\right]^{0.5} \qquad \qquad \varepsilon = \sqrt{\frac{235}{f_y}} = 1$$

$$\lambda_{LT} = \frac{65.22}{93.9} = 0.694$$

On calcule :

$$\chi_{LT} = \frac{1}{\left(\phi_{lt} + \sqrt{\phi_{lt}^2 - \lambda_{lt}^2}\right)} \le 1$$
$$\phi_{lt} = 0.5 \times \left[1 + \alpha_{lt}(\lambda - 0.2) + \lambda^2\right]$$

 $\alpha_{lt} = 0.21$ Pour les profilés laminés

$$\phi_{lt} = 0.5 \times [1 + 0.21(0.694 - 0.2) + 0.694^2] = 0.79$$

Donc :

$$\chi_{LT} = \frac{1}{\left(0.79 + \sqrt{0.79^2 - 0.694^2}\right)} = 0.856$$

$$M_{brd} = \frac{0.856 \times 1 \times 32.32 \times 23.5}{1.1} = 591.04 \text{ KN. } m$$
$$M_{ysd} = 110 \text{ KN. } m$$
$$M_{ysd} \le M_{brd} \qquad \text{Condition vérifiée}$$

4.3.4 Résistance de l'âme à la charge transversale

Resistance à l'écrasement

Figure 4.9 : Illustration des galets sur la poutre de roulement

L'effort résistant à l'écrasement : ART 5.73-CCM97

$$f_{sd} \leq R_{yRd}$$

Avec :

- Sy: Longueur d'appui rigide
- $h_{\rm R}$ = 65 mm : La hauteur durail
- $\sigma_{fEd} = 3.81 kN/cm^2$: La contrainte longitudinale dans la semelle

$$\sigma_{fEd} = \frac{M_{ysd}}{W_{ely}} = 3.81 \, KN/cm^2$$

$$S_{y} = 2(h_{R} + t_{f}) \sqrt{\left[1 - \left(\gamma_{M0} \cdot \frac{\sigma_{fEd}}{f_{yf}}\right)^{2}\right]} = 17.51 \ cm$$

$$R_{y,Rd} = \frac{S_y \times t_w \times f_{yw}}{\gamma_{M0}} = 505 \ KN > f_{sd} = R_{vmax} = 89.54 \ KN$$

Condition vérifiée

Vérification à enfoncement local

Selon le CCM97, il faut satisfaire les conditions suivantes :

$$f_{sd} \leq R_{a,Rd}$$

$$\frac{f_{sd}}{R_{a,Rd}} + \frac{M_{Sd}}{M_{c,Rd}} \le 1 \qquad \text{ART 5. 78} - \text{CCM97}$$

Avec :

$$R_{a,Rd} = \frac{0.5t_w^2 (E.f_{yw})^{0.5} \left[\left(\frac{t_f}{t_w}\right)^{0.5} + 3\left(\frac{t_w}{t_f}\right) \left(\frac{S_s}{d}\right) \right]}{\gamma_{M0}} \qquad \text{ART 5.77 - CCM97}$$

$$R_{a,Rd} = 1082.84 \text{ KN}$$

$$f_{sd} = 1.5R_{Lmax} = 1.5 \times 16.28 = 24.42 \text{ KN}$$

$$M_{c,Rd} = \frac{3232 \times 10^3 \times 235}{1.1} = 690.47 \text{ KN.m}$$

$$\frac{f_{sd}}{R_{a,Rd}} + \frac{M_{Sd}}{M_{c,Rd}} = \frac{24.42}{1082.84} + \frac{110}{690.47} = 0.18 \le 1.5$$
Condition vérifiée

Résistance au voilement de l'âme

Selon le règlement CCM97 :

$$b_{eff} \le b$$
 ART 5.79 – CCM97

$$b_{eff} = \sqrt{h^2 + S_s^2} = 410 \ mm \ > b = 300 \ mm$$

Condition non vérifiée

4.3.5 Calcul du support du chemin de roulement

Le chemin de roulement est supporté par une console qui est sollicité par les efforts suivants :

- Le poids propre de la poutre de roulement et du rail.
- Les actions verticales et horizontales des galets du pont roulant.
- Le poids propre de la console elle-même.

> Charge verticale

Charge verticale non pondérée :

$$p' = Q.L + R_{max} \left(2 - \frac{e}{L}\right) \psi_2 = 1.86 \times 6 + 81.4 \times \left(2 - \frac{3.6}{6}\right) \times 1.1$$
$$p' = 136.51 \ KN$$

Charge verticale pondérée :

$$p = 1.35Q.L + 1.5R_{max} \left(2 - \frac{e}{L}\right) \psi_2 = 1.35 \times 1.86 \times 6 + 1.5 \times 81.4 \times \left(2 - \frac{3.6}{6}\right) \times 1.1$$
$$p = 203.1 \ KN$$

Charge horizontale

Figure 4.10 : Coupe verticale sur le support du chemin de roulement

> Dimensionnement du support de chemin de roulement

La flèche du support de roulement est limitée

$$f_z \le f_{adm} = \frac{l}{500}$$

Figure 4.11: Schéma statique du support de chemin de roulement

$$f_z = \frac{p'.d^3}{3EI} \le f_{adm}$$

$$I_y = \frac{500.\,p'.\,d^2}{3E} \ge 7826.67\,\,cm^4$$

Selon le moment d'inertie obtenu, on choisira un IPE 300

	poids	section		Dimensions				Caractér	ristiques	
profilé	G Kg/m	A cm ²	h mm	b mm	t _f mm	tw mm	${I_y} {cm^4}$	$I_z \ cm^4$	W _{ply} cm ³	W _{plz} cm 3
IPE 300	42.2	53.80	300	150	10.7	7.1	8353	604	628	125

Tableau 4.7 : Caractéristiques du profilé IPE300

Classe de la section

- Classe de l'âme fléchie

$$\frac{d}{t_w} \le 72\varepsilon$$

Avec :

$$\varepsilon = \sqrt{\frac{235}{f_y}}$$
$$\frac{248.6}{7.1} \le 72 \sqrt{\frac{235}{235}} \implies 35.01 \le 72$$

L'âme est de classe 1

- Classe de la semelle comprimée

$$\frac{c}{t_f} = \frac{b/2}{t_f} \le 10\varepsilon \implies \frac{75}{10.2} = 7.35 \le 10$$

La semelle est de classe 1

Donc la section du profilé global est de classe 1

> Vérification au cisaillement (ELU)

 $A_{vz} = 25.7 \text{ cm}^2$

La vérification au cisaillement est donnée par les formules suivantes :

$$V_{ysd} \le V_{pl,rd}$$

Avec :

$$V_{pl,rd} = \frac{A_{vz} f_y}{\sqrt{3} \cdot \gamma_{m0}} = \frac{25.7 \times 235}{\sqrt{3} \times 1.1} = 317 \text{ KN}$$
$$V_{sd} = p = 203.1 < 0.5 V_{pl,Rd}$$

Condition vérifiée

Résistance à la flexion (ELU)

$$M_{c,rd} = \frac{w_{pl,y} \cdot f_y}{\gamma_{M0}} = \frac{628 \times 23.5}{1.1} = 134.16 \text{ KN. m}$$
$$M_{y,sd} = p. d = 203.1 \times 0.85 = 172.635 \text{ KN. m}$$

$$M_{y,sd} < M_{c,rd}$$

Condition non vérifiée

Donc on augmente la section

poids	section		Dime	nsions			Car	actéristic	lues
G	А	h	b	t_{f}	tw	Iy	Iz	W _{ply}	W _{plz}
Kg/m	cm^2	mm	mm	mm	mm	cm^4	cm ⁴	cm ³	cm ³
57.1	72.7	360	170	12.7	8	16270	1043	1019	191
	poids G Kg/m 57.1	poidssectionGAKg/mcm²57.172.7	poidssectionGAKg/mcm²57.172.7360	poidssectionDimeGAhbKg/mcm²mmmm57.172.7360170	poidssectionDimensionsGAhbtfKg/mcm²mmmmmm57.172.736017012.7	poidssectionDimensionsGAhbtftwKg/mcm²mmmmmmmm57.172.736017012.78	poidssectionDimensionsIGAhbtftw I_y Kg/m cm^2 mmmmmmmmcm457.172.736017012.7816270	poidssectionDimensionsCarGAhbtftw I_y I_z Kg/mcm²mmmmmmmmcm⁴cm⁴57.172.736017012.78162701043	poidssectionDimensionsCaractéristionGAhbtftw I_y I_z W_{ply} Kg/mcm²mmmmmmmmcm4cm4cm357.172.736017012.781627010431019

Tableau 4.8 : Caractéristiques du profilé IPE 360

➢ Résistance à la flexion (ELU)

$$M_{c,rd} = \frac{w_{pl,y} \cdot f_y}{\gamma_{M0}} = \frac{1019 \times 23.5}{1.1} = 217.7 \text{ KN. m}$$
$$M_{y,sd} = p. d = 203.1 \times 0.85 = 172.635 \text{ KN. m}$$

$$M_{y,sd} < M_{c,rd}$$

Condition vérifiée

Figure 4.12 : Diagramme du moment fléchissant du support de chemin de roulement

> Vérification de la flèche

Figure 4.13 : Coupe verticale sur la répartition des charges sur le support du chemin de roulement

$$\begin{split} f_z &\leq f_{adm} = \frac{d}{500} = 0.17 \\ q &= q_{IPE \ 360} = 57.1 \ daN/ml \\ f_z &= \frac{p'.d^3}{3EI} + \frac{q.l^4}{8EI} = 0.082 + 0.021 = 0.103 \ cm \ < 0.17 \ cm \end{split}$$

Conclusion : Donc, on adopte un profilé IPE360 comme un support de chemin de roulement.

Chapitre-5

Etude Sismique

5.1 Introduction

Parmi les catastrophes naturelles, le séisme est le plus proche et le plus destructeur des constructions en zone urbaine ou rurale.

Notre pays est l'un des pays les plus concernés par les tremblements de terre d'où, l'obligation de l'étude sismique pour n'importe quelle construction aussi minime soit son importance.

En Algérie, les deux tremblements de terre de 1980 survenus à la wilaya de Chlef et de

2003 à Boumerdes ont certainement contribué à la prise en compte de ces phénomènes dans la construction. Lors de toute catastrophe naturelle, on se doit de protéger avant tout la vie humaine présente dans et autour des constructions.

Cela implique à la fois une connaissance scientifique du phénomène ainsi que la maîtrise des moyens techniques pour y faire face. Les risques du séisme dépendent de l'activité tectonique ainsi que de la nature du sol, les caractéristiques régionales.

Pour notre ouvrage implanté dans la wilaya de Ouargla, le règlement national parasismique RPA99v2003 classe cette zone comme zone 0, (zone de sismicité négligeable). Ce dernier propose trois méthodes de calcul dont les conditions d'applications différentes et cela selon, le type de la structure à étudier, le choix des méthodes de calcul et la modélisation de la structure doivent avoir pour objectif de s'approcher au mieux au comportement réel de l'ouvrage, ces méthodes sont les suivantes :

- Méthode statique équivalente

- Méthode d'analyse modale spectrale
- Méthode d'analyse dynamique par accélérogramme

Concernant notre projet l'analyse de la structure est effectuée par le logiciel Robot conçu à base de la méthode des éléments finis.

Notre projet ne nécessite pas d'étude sismique approfondie, pour les raisons suivantes :

-Classé en zone 0, considérée zone où l'activité sismique est très faible.

-La construction est légère et entièrement en charpente métallique

-La hauteur de la construction est faible (10.25m seulement)

Dans ce chapitre, nous allons aborder l'étude sismique en supposant que la construction est implantée en zone 1

Afin d'avoir des données pratique à partir du RPA99v2003 et pouvoir effectuer les calculs dynamiques.

5.2 Analyse de la structure

L'analyse élastique globale peut être statique ou dynamique, selon la satisfaction des conditions imposées par les règlements sur les cas de chargement.

Chargement statique :

- Le poids propre de la structure

- Les effets dus aux actions climatiques

Chargement dynamique :

- Les effets sismiques

5.2.1 Méthode de calcul

- Calcul de l'effort tranchant statique par la méthode statique équivalente :

La méthode de calcul la plus adaptée pour le calcul dynamique des structures est celle qui est basée sur l'utilisation des spectres de réponse. Mais le RPA exige que l'effort tranchant dynamique soit supérieur à 80% de l'effort tranchant statique donc on va calculer l'effort tranchant statique par la méthode statique équivalente.

- Principe de la méthode :

Les forces réelles dynamiques qui se développent dans la construction sont remplacées par un système de forces statiques fictives dont les effets sont considérés équivalents à ceux de l'action sismique.

5.2.2 Calcul de la force sismique totale

La force totale (V) appliquée à la base de la structure doit être calculée successivement dans les deux directions horizontales et orthogonales selon la formule :

$$V = \frac{A.D.Q}{R}W$$

Avec :

A : coefficient d'accélération en fonction de la zone sismique et du groupe d'usage du bâtiment. Dans notre cas, on est dans la zone 0, une zone de sismicité négligeable selon le RPA, donc on va prendre la plus faible valeur celle pour la zone 1 dans le tableau « chapitre3§3.1 » RPA99V2003 et un groupe d'usage 3 « chapitre3§3.2 »RPA99V2003 A=0.05

D : facteur d'amplification dynamique moyen qui est en fonction de la catégorie du site et du facteur d'amortissement (η) ainsi que de la période fondamentale de la structure (T)

$$D = \begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta (T_2/T)^{\frac{2}{3}} & T_2 \le T \le 3s \\ 2.5\eta \left(\frac{T_2}{3}\right)^{\frac{2}{3}} \cdot (3/T)^{\frac{5}{3}} & T > 3s \end{cases}$$

T₁, T₂ : périodes caractéristiques associées à la catégorie du site et données par le tableau (4.7) RPA99V2003

Pour notre cas, en se place dans le site (S3) : $T_1=0.15$ s ; $T_2=0.50$ s

Le facteur de correction d'amortissement est donné par la formule :

$$\eta = \sqrt{\frac{7}{(2+\xi)}} \ge 0.7$$

D'après le tableau (4.2) RPA99V2003 on a : ξ = 5%

D'après le RPA99V2003 article 4.3 si : ξ = 5% alors η = 1

5.2.3 Estimation de la période fondamentale

$T = C_T \cdot h_N^{3/4}$ FORMULE (4.6)RPA V2003

 $h_{
m N}$: Hauteur mesurée à partir de la base jusqu'au sommet de la structure

h_N= 10.25 m

 C_t : Coefficient, il est en fonction du système de contreventement et du type de remplissage ; portique auto-stable en acier sans remplissage en maçonnerie. D'où

 $C_{\rm t} = 0.085$

Donc : $T = 0.085 \times 10.25^{3/4} = 0.487 \ s$ 1.3T=0.633 s On a : $0 \le T \le T_{\mathbb{Z}} = 0 \le 0.487 \le 0.5$

Donc : $D = 2.5\eta = 2.5 \times 1 = 2.5$

R : coefficient de comportement global de la structure, sa valeur est donnée par le tableau (4.3) de RPA99V2003 en fonction du système de contreventement
 Sens transversal : R=4

Sens longitudinal : R=4

Q : facteur de qualité, il est en fonction de la redondance, géométrie, régularité en plan et en élévation et la qualité de control de construction. **(ANNEXE – 4)**

$$Q = 1 + \sum_{1}^{6} P_q$$

	Pq	
Critère q »	Observé	N/observé
1. Conditions minimales sur les files de contreventement	0	0,05
2. Redondance en plan	0	0,05
3. Régularité en plan	0	0,05
4. Régularité en élévation	0	0,05
5. Contrôle de la qualité des matériaux	0	0,05
6. Contrôle de la qualité de l'exécution	0	0,10

Tableau 5.1 : Pénalités de vérification

1-Condition minimale sur les files de contreventement non observée : 0.05

2-Redondance en plan observée :0

3-Régularité en plan observée :0

4-Régularité en élévation observée :0

5-Contrôle de qualité des matériaux 0.05 « supposé non vérifié »

6-Contrôle de qualité de l'exécution non observé : 0.1

$$Q = 1 + \sum_{1}^{6} P_q = 1 + 0.2 = 1.2$$

W : poids total de la structure,

W est égal à la somme des poids W_i, Calculés à chaque niveau (i) :

 $W = \sum_{i=1}^{n} W_i$

Avec : $W_i = W_{Gi} + \beta W_{Qi}$

- W_{Gi} : poids dû aux charges permanentes et à celles d'équipement fixes éventuels, solidaire de la structure.

- W_{Oi} : charges d'exploitation.

- β : Coefficient de pondération, fonction de la nature et de la durée de la charge d'exploitation, pris égal à 0.50 « tableau 4.5 du RPA99V2003 »

Le poids total de la structure peut être obtenu directement à partir du Logiciel ROBOT ANALYSE STRUCTURAL en introduisent la Combinaison $W_i = W_{Gi} + \beta W_{Qi}$ Le poids total de la structure est de : 1894,75KN

Force sismique totale V :

$$V = \frac{A.D.Q}{R}W$$

A = 0.05; D = 2.5; Q = 1.2; R = 4; W = 1894.75kN

$$V_x = V_y = \frac{0.05 \times 2.5 \times 1.2}{4} \times 1894.75 = 71.05kN$$

5.2.4 Méthode modale spectrale

Par cette méthode, il est recherché pour chaque mode de vibration le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de réponse de calcul. Ces effets sont par la suite combinés pour obtenir la réponse de la structure.

L'action sismique est représentée par le spectre de calcul (4.13) du RPA2003

$$\frac{s_a}{g} = \begin{cases} 1,25A\left(A + \frac{T}{T_1}\left(2,5\eta\frac{Q}{R} - 1\right)\right) & 0 \le T \le T_1\\ 2,5\eta(1,25A)\left(\frac{Q}{R}\right) & T_1 \le T \le T_2\\ 2,5\eta(1,25A)\left(\frac{Q}{R}\right)\left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3,0s\\ 2,5\eta(1,25A)\left(\frac{T_2}{3}\right)^{\frac{2}{3}}\left(\frac{3}{T}\right)^{\frac{5}{3}}\left(\frac{Q}{R}\right) & T > 3,0s \end{cases}$$

Avec les Coefficients A, η , R, T_1 , T_2 , Q qui sont déjà déterminés

5.2.5 Résultat du calcul dynamique

 Schématisation du spectre de réponse suivant X et Y : Paramètres du spectre :

 $\eta = 1,00$; A=0,05; T₁=0.15; T₂=0,50

Figure 5.1: Spectre de réponse suivant la direction X

Figure 5.2 : Spectre de réponse suivant la direction Y

5.2.6 Vérification de la résultante des forces sismiques

Selon **l'article 4.3.6 du RPA99V2003**, la résultante de la force sismique à la base Vt obtenue par la combinaison des valeurs modales doit être supérieure à 80% de la résultante des forces sismiques déterminée par la méthode statique équivalente.

Force sismique	V statique	0.8 V statique	V dynamique	Observation
Sens x-x	71.05 KN	56.84 KN	65.01	Vérifiée
Sens y-y	71.05 KN	56.84 KN	63.78	Vérifiée

Tableau 5.2 : Vérification de l'effort tranchant à la base

L'effort tranchant dynamique est supérieur à 80% de l'effort tranchant statique dans les deux sens, il n'y a pas lieu d'augmenter les paramètres de réponse

5.2.7 Vérification de la période :

La période numérique donnée par le logiciel ROBOT ANALYSIS STRUCTURAL est de 0.62 s alors que la période fondamentale calculée est de 0,487 s.

Aussi on ne prend pas en compte les périodes des quatre premiers modes car leurs masses cumulées sont nuls ou presque nuls.

T_{empirique} = 0.60 < 1.3 x T_{fondamental}=1.3x0.487 = 0.633s condition vérifiée

Cas/M	ode	Fréquence [Hz]	Période [sec]	Masses Cumulées UX [%]	Masses Cumulées UY [%]	Masses Cumulées UZ [%]	Masse Modale UX [%]	Masse Modale UY [%]	Masse Modale UZ [%]	Tot.mas.UX [kg]	Tot.mas.UY [kg]	Tot.mas.UZ [kg]
15/	1	1,04	0,96	0,00	0,00	0,0	0,00	0,00	0,0	122906,13	122906,13	0,0
15/	2	1,45	0,69	0,00	3,88	0,0	0,00	3,88	0,0	122906,13	122906,13	0,0
15/	3	1,46	0,69	0,00	8,46	0,0	0,00	4,58	0,0	122906,13	122906,13	0,0
15/	4	1,67	0,60	76,50	8,46	0,0	76,50	0,00	0,0	122906,13	122906,13	0,0
15/	5	1,67	0,60	82,19	8,46	0,0	5,69	0,00	0,0	122906,13	122906,13	0,0
15/	6	1,81	0,55	88,06	8,46	0,0	5,87	0,00	0,0	122906,13	122906,13	0,0
15/	7	1,96	0,51	88,06	8,46	0,0	0,00	0,00	0,0	122906,13	122906,13	0,0
15/	8	4,98	0,20	88,06	8,47	0,0	0,00	0,02	0,0	122906,13	122906,13	0,0
15/	9	4,98	0,20	88,07	8,47	0,0	0,01	0,00	0,0	122906,13	122906,13	0,0
15/	10	5,53	0,18	88,07	8,47	0,0	0,00	0,00	0,0	122906,13	122906,13	0,0
15/	11	5,55	0,18	88,07	8,70	0,0	0,00	0,23	0,0	122906,13	122906,13	0,0
15/	12	5,57	0,18	88,07	8,70	0,0	0,00	0,00	0,0	122906,13	122906,13	0,0
15/	13	5,58	0,18	88,07	8,70	0,0	0,00	0,00	0,0	122906,13	122906,13	0,0
15/	14	5,59	0,18	88,07	8,70	0,0	0,00	0,00	0,0	122906,13	122906,13	0,0
15/	15	5,59	0,18	88,07	8,70	0,0	0,00	0,00	0,0	122906,13	122906,13	0,0
15/	16	5,59	0,18	88,07	8,70	0,0	0,00	0,00	0,0	122906,13	122906,13	0,0
15/	17	5,59	0,18	88,07	8,70	0,0	0,00	0,00	0,0	122906,13	122906,13	0,0
15/	18	5,60	0,18	88,07	8,70	0,0	0,00	0,00	0,0	122906,13	122906,13	0,0
15/	19	5,60	0,18	88,07	8,70	0,0	0,00	0,00	0,0	122906,13	122906,13	0,0
15/	20	5,60	0,18	88,07	8,71	0,0	0,00	0,00	0,0	122906,13	122906,13	0,0

Tableau 5.3 : Tableau des périodes

5.2.8 Vérification des déplacements :

1er Cas : situation durable :

D'après l'article 4.2.2.2 du CCM97, les déplacements horizontaux sont limités à :

h/150 ; sans charge du vent

h/125 ; avec charge du vent

Figure 5.3 : Valeur limite des flèches horizontales des bâtiments industriels

	Combi	naison	Déplacement max (cm)			
	Avec vent	Sans vent	Avec vent	Sans vent		
Suivant X	G+ V1	G+Q	3.2	3.9		
Suivant Y	G+ V2	G+Q	2.0	1.0		

Tableau 5.4 : Déplacement ultime en situation durable

$$\frac{h}{150} = \frac{890}{150} = 5.94cm$$
 sans vent

$$\frac{h}{125} = \frac{890}{125} = 7.12cm$$
 avec vent

Les déplacements suivant les deux directions sont inférieurs aux déplacements admissibles.

2éme cas : situation accidentelle :

Le RPA 99V2003 précise que le déplacement horizontal est calculé sous les forces sismiques, seul l'article 4.4.3 préconise de limiter les déplacements relatifs latéraux d'un étage par rapport aux étages qui lui sont adjacents à 1% de la hauteur d'étage article 5.10.

Le déplacement horizontal à chaque niveau K de la structure est calculé comme suit : $\delta_{\rm k}$ = $R.~\delta_{\rm ek}$

 $\delta_{
m ek}$: déplacement dû aux forces sismiques

R: Coefficent de comp R = 4

Il s'agit de vérifier le point le plus haut de la toiture par rapport au sol.

Niveau	Déplace	ement (cm)	Déplacement relatif (cm)		
	Suivant X	Suivant Y	Suivant X	Suivant Y	
Toiture	0.29	0.76	1.16	3.04	

Tableau 5.5 : Déplacement relatif en situation accidentelle

$$\frac{h}{100} = \frac{1025}{100} = 10.25 \ cm$$

Tous les déplacements sont inférieurs à 10.25 cm, donc cette condition est satisfaite.

Conclusion : Les actions du vent sont les plus défavorables dans les structures métalliques. Les systèmes de contreventement lui assurent un bon comportement vis-à-vis à l'action du vent et le séisme.

Chapitre-6

Vérifications des éléments structuraux

6.1 Introduction

Après avoir modélisé notre structure sur le logiciel Robot, on passe aux différentes vérifications exigés par le CCM97. Le calcul d'une structure exige que sous toutes les combinaisons d'actions définies réglementairement, la stabilité doit être assurée tant globalement, au niveau de la structure, qu'individuellement au niveau de chaque élément. Il faut que les barres résistent aux instabilités, c'est-à-dire, successivement au flambement dû à l'action d'une compression axiale, au déversement qui se développe sous l'action d'un moment fléchissant et au voilement dû à une sollicitation d'effort tranchant.

6.2 Vérification de la traverse IPE 400

La traverse de notre structure est un élément porteur constituant la partie supérieur du portique, supportant la panne et la couverture. Sa fonction principale est de transmettre les actions agissantes sur la toiture aux poteaux. La vérification se fait pour la traverse la plus sollicitée sous la combinaison d'action la plus défavorable.

Figure 6.1 : Illustration de la traverse la plus sollicitée

Pour la traverse d'une longueur de 9,1 m désignée en bleu qui est supposée encastrée encastrée et sollicitée par la combinaison d'action suivante (G+1.5V1), les efforts sollicitant déterminés par cette combinaison sont donnés par le logiciel Robot :

 $M_{ysd} = 219.02 \text{ kN.m}$

V_{sd} =72.49 kN

 $N_{sd} = 20.18 \text{ kN}$

Profilé		PARAMETRES DE LA SECTION									
IPE 400	A cm ²	h mm	b mm	t _f mm	t _w mm	I _γ cm ⁴	Iz Cm ⁴	W _{ply} cm ³	w _{plz} cm ³		
MATERIAU ACIER S235	84.46	400	180	14	90	23128.4	1317.82	1238.32	225.6		

Tableau 6.1: Caractéristiques du profilé IPE 400

Détermination de la classe du profilé

- Classe de la semelle (comprimée) :

$$\frac{c}{t_f} = \frac{60}{14} = 5.9 < 10\varepsilon \implies classe \ 1$$

- Classe de l'âme fléchie :

$$\frac{d}{t_w} = \frac{98}{9} = 11 < 72\varepsilon \Longrightarrow classe 1$$

Donc la section est de classe 1

Vérification de la section à la résistance

- Vérification à l'effort tranchant :

Pour la vérification de l'effort tranchant, on applique la condition suivante :

Si : $V_{sd} \le 0.5V_{pl,rd} \Longrightarrow M_{sd} \le M_{c,rd}$ Art5. 4. 7 CCM 97

M_{c,rd}:Moment résistant plastique

 $V_{max} = V_{sd} = 72.48$ kN

$$V_{plz,rd} = \frac{A_{vz} \cdot \left(\frac{f_y}{\sqrt{3}}\right)}{\gamma_{m0}} = \frac{4270 \cdot \frac{235}{\sqrt{3}}}{1.1} = 526.674 kN$$

 $V_{sd} = 72.47 \le 0.5 V_{plz,rd} = 526.67 kN$

L'incidence de l'effort tranchant sur le moment résistant est négligée.

- Vérification de l'effort normal :

On utilise la condition suivante :

$$N_{sd} \leq Min(0.25N_{pl,rd}; 0.5A_w.\frac{f_y}{\gamma_{M0}})$$

Pas d'interaction entre le moment résistant et l'effort normal.

$$N_{sd} = 20.18kN$$

$$N_{pl,rd} \le \frac{A.f_y}{\gamma_{M0}} = \frac{8446.235}{1.1} = 1804.37kN$$

$$0.25N_{pl,rd} = 451 kN$$

$$A_w = A - 2b. t_f = 3406mm^2$$

$$0.5A_w.\frac{f_y}{\gamma_{M0}} = 363.82kN$$

$$N_{sd} = 20.18 \le 363.82kN$$

L'indice de l'effort normal sur le moment fléchissant est négligé

- Vérification au moment fléchissant :

$$M_{ysd} = 219kN.m$$

$$M_{c,rd} = M_{ply,rd} = \frac{w_{ply} f_y}{\gamma_{M0}} = \frac{1238320 \cdot 235}{1.1} = 264.55kN.m$$

$$M_{ysd} = 219 \le M_{c,rd} = 264.55kN.m$$
Condition vérifiée

Vérification d'élément au phénomène d'instabilité

Pour les éléments comprimés et fléchis, deux cas se présentent :

- Flexion composée sans risque de déversement Art 5.5.4 (5.51) CCM97 N_{cd} k_v . $M_{v,sd}$ k_z . $M_{z,sd}$

$$\frac{N_{sd}}{\chi_{min} \cdot N_{pl,rd}} + \frac{\kappa_y \cdot M_{y,sd}}{M_{ply,rd}} + \frac{\kappa_z \cdot M_{z,sd}}{M_{plz,rd}} \le 1.0 \dots \dots (2)$$

- Flexion composée avec risque de déversement Art 5.5.4 (5.52) CCM97

$$\frac{N_{sd}}{\chi_z. N_{pl,rd}} + \frac{k_{LT}. M_{y,sd}}{\chi_{LT} M_{ply,rd}} + \frac{k_z. M_{z,sd}}{M_{plz,rd}} \le 1.0 \dots \dots (2)$$

> Calcul du coefficient de réduction minimal pour le flambement

$$\chi_{min} = Min(\chi_y, \chi_z)$$

- Flambement par rapport à l'axe (y-y) :

$$\chi_{y} = \frac{1}{(\phi_{y} + \sqrt{\phi_{y}^{2} - \overline{\lambda_{y}^{2}}})}$$

$$\phi_y = 0.5 \left[1 + \alpha_y (\lambda_y - 0.2) + \lambda_y^2 \right]$$
$$\overline{\lambda_y} = \left(\frac{\lambda_y}{\lambda_1} \right) \sqrt{\beta_A} = \frac{\lambda_y}{\lambda_1}$$

Avec: $eta_A=1$ Classe 1

$$\lambda_1 = 93.9$$

$$\lambda_y = \frac{0.5I_y}{i_y} = \frac{455}{16.6} = 27.4$$

$$\overline{\lambda_y} = \frac{27.4}{93.9} = 0.29$$

Courbe de flambement : Figure 5.5.2 du CCM97

$$\frac{h}{b} = \frac{400}{180} = 2.22 > 1.2 \text{ implique } \alpha = 0.21$$

$$\phi = 0.5 [1 + \alpha_y (\lambda_y - 0.2) + \lambda_y^2] = 0.55$$

$$\chi_y = \frac{1}{(0.55 + \sqrt{0.55^2 - 0.29^2})} = 0.98$$

- Flambement par rapport à l'axe (z-z) :

$$\chi_z = \frac{1}{(\phi_z + \sqrt{\phi_z^2 - \overline{\lambda_z^2}})}$$
$$\phi_z = 0.5 [1 + \alpha_z (\overline{\lambda_z} - 0.2) + \overline{\lambda_z^2}]$$
$$\overline{\lambda_z} = \left(\frac{\lambda_z}{\lambda_1}\right) \sqrt{\beta_A} = \frac{\lambda_z}{\lambda_1}$$

 $\operatorname{Avec}:\beta_A=1$

Classe 1

$$\lambda_z = \frac{l_z}{i_z} = \frac{200}{3.95} = 50.63$$
$$\lambda_z = \frac{50.63}{93.9} = 0.54$$

Courbe de flambement : Figure 5.5.2 du CCM97

$$\frac{h}{b} = 2.22 > 1.2 \ (z - z) \text{ implique } \alpha = 0.34$$
$$\phi = 0.5 [1 + 0.34(0.54 - 0.2) + 0.54^2] = 0.7$$
$$\chi_z = \frac{1}{(0.7 + \sqrt{0.7^2 - 0.54^2})} = 0.87$$
$$\chi_{min} = Min(\chi_y, \chi_z) = 0.87$$

> Calcul de l'élancement réduit vis-à-vis du déversement

Pour les poutres à section constante et doublement symétrique (profilés laminés I et H), l'élancement λ_{lt} vaut :

$$\lambda_{lt} = \frac{\frac{L}{i_z}}{c_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{L}{i_z}}{\frac{h}{t_f}} \right)^2 \right]^{0.25}} = 43.67$$

ANNEXE. B . CCM97

Avec :

IPE400: $t_f = 14mm$; $i_z = 3.95cm$; h = 400mmK = 1 $c_{1=}1.134$ Tableau B.1.1. CCM97

L= 2 m avec L : entre axe des pannes

$$\lambda_{1} = 93,9\varepsilon$$

$$\varepsilon = \sqrt{\frac{235}{f_{y}}} = 1$$

$$\overline{\lambda_{LT}} = \left[\frac{\lambda_{lt}}{\lambda_{1}}\right] \cdot \left[\beta_{w}\right]^{0.5}$$

$$\lambda_{lt} = 43.67$$

$$\overline{\lambda_{LT}} = \frac{43.67}{93.9} = 0.46 > 0.4$$

Il y a risque de déversement.

Donc on doit vérifier que :

$$\frac{N_{sd}}{\chi_z.N_{pl,rd}} + \frac{k_{LT}.M_{y,sd}}{\chi_{LT}M_{ply,rd}} + \frac{k_z.M_{z,sd}}{M_{plz,rd}} \le 1.0\dots\dots(2)$$

Calcul de χ_{LT} :

 α_{lt} =0.21 et $\overline{\lambda_{LT}}$ = 0.46 implique : ϕ_{LT} = 0.63

implique :
$$\chi_{LT} = 0.94$$

Calcul de k_{LT} :

 ψ =-0.48 >>>> β_{MLT} =2.136 >>>>> μ_{LT} =0.02 ≤1.5

$$K_{LT} = 1 - \frac{\mu_{LT} \cdot N_{sd}}{\chi_z \cdot A \cdot f_y} = 0,99 < 1,5$$

On remplace dans (2) :

Donc :

$$\begin{split} N_{sd} = & 72.49 \text{ kN} ; \ M_{y,sd} = & 219 \text{ kN.m} ; \ M_{ply,rd} = & 264.55 \text{ kN.m} ; \ \chi_z = & 0.87 ; \ M_{plz,rd} = & 48.19 \text{ kN.m} ; \\ \chi_{lt} = & 0.94 ; \ N_{pl,rd} = & 1804.37 \text{ kN} ; \ k_{LT} = & 0.99 ; \ k_z = & 1 \\ \end{split}$$

$$\frac{N_{sd}}{\chi_z \cdot N_{pl,rd}} + \frac{k_{LT} \cdot M_{y,sd}}{\chi_{LT} M_{ply,rd}} + \frac{k_z \cdot M_{z,sd}}{M_{plz,rd}}$$

En considérant $M_{z,sd}$ =0

$$\frac{72.49}{0.87.\ 1804.37} + \frac{0.99.219}{0.94.\ 264.55} = 0.55$$

Conclusion : Le profilé choisi IPE400 convient comme traverse pour la structure.

6.3 Vérification des poteaux (HEA320)

Les poteaux de la structure ont pour fonction de transférer aux fondations les efforts provenant des actions agissantes sur le portique. Ces efforts introduits par la traverse sont principalement un effort normal de compression et/ou un moment de flexion. Il peut y avoir des actions transversales dues au vent sur la façade. Pour le poteau d'une longueur de 8.9 m sollicité par la combinaison d'action suivant (1.35G+1.35Q+1.35V1), les efforts sollicitant déterminer de cette combinaison donnée par le logiciel Robot sont :

Figure 6.2 : Vue en 3D de la structure illustration des poteaux

 $M_{ysd} = 320.83 \ kN. m$ $V_{sd} = 120 \ kN$ $N_{sd} = 60.2 \ kN$

Profilé		PARAMETRES DE LA SECTION										
HEA320	A cm ²	h mm	b mm	t _f mm	t _w mm	I _y cm ⁴	I _z cm ⁴	w _{ply} cm ³	w _{plz} cm ³			
MATERIAU ACIER S235	12437	310	300	16	9	22928.6	6985.24	1628.23	709.75			

Tableau 6.2 : Caractéristiques du profilé HEA 320

Détermination de la classe du profilé

- Classe de la semelle (comprimée) :

$$\frac{c}{t_f} = \frac{60}{16} = 3.75 < 10\varepsilon => classe 1$$

- Classe de l'âme fléchie :

$$\frac{d}{t_w} = \frac{98}{9} = 10.9 < 72\varepsilon \Longrightarrow classe 1$$

Donc la section est de classe 1

Vérification de la section à la résistance

- Vérification a l'effort tranchant :

Pour la vérification de l'effort tranchant, on applique la condition suivante :

Si :
$$V_{sd} \le 0.5 V_{pl,rd} \Longrightarrow M_{sd} \le M_{c,rd}$$
 Art5. 4. 7 CCM 97

M_{c,rd}:Moment résistant plastique

 $V_{max} = V_{sd} = 120$ kN

$$V_{plz,rd} = \frac{A_{vz} \cdot \left(\frac{f_y}{\sqrt{3}}\right)}{\gamma_{m0}} = \frac{4113 \cdot 235/\sqrt{3}}{1.1} = 507.31kN$$

 $V_{sd} \leq 0.5 V_{plz,rd}$

L'incidence de l'effort tranchant sur le moment résistant est négligée

- Vérification de l'effort normal :

On utilise la condition suivante :

$$N_{sd} \le Min(0.25N_{pl,rd}; 0.5A_w.\frac{f_y}{\gamma_{M0}})$$

Pas d'interaction entre le moment résistant et l'effort normal.

 $N_{sd} = 60.2$ kN

$$\begin{split} N_{pl,rd} &\leq \frac{A.f_y}{\gamma_{M0}} = \frac{12437.235}{1.1} = 2656,995 \ kN\\ &0.25N_{pl,rd} = 664.248 kN\\ A_w &= A - 2b. \ t_f = 2837 \ mm^2\\ &0.5A_w.\frac{f_y}{\gamma_{M0}} = 303.04 kN\\ &N_{sd} = 60.2 kN \leq 303.04 kN \end{split}$$

L'indice de l'effort normal sur le moment fléchissant est négligé.

- Vérification au moment fléchissant :

$$M_{c,rd} = M_{ply,rd} = \frac{M_{ysd} = 320.83kN.m}{\frac{W_{ply} \cdot f_y}{\gamma_{M0}}} = \frac{1628000 \times 235}{1.1} = 347.8kN.m$$

$$M_{ysd} \le M_{c,rd}$$
Condition vérifiée

> Vérification d'élément au phénomène d'instabilité

Pour les éléments comprimés et fléchis, deux cas se présente :

- Flexion composée sans risque de déversement **Art 5.5.4 (5.51) CCM97**

$$\frac{N_{sd}}{\chi_{min}.N_{pl,rd}} + \frac{k_y.M_{y,sd}}{M_{ply,rd}} + \frac{k_z.M_{z,sd}}{M_{plz,rd}} \le 1.0\dots\dots(2)$$

- Flexion composée avec risque de déversement Art 5.5.4 (5.52) CCM97

$$\frac{N_{sd}}{\chi_z.N_{pl,rd}} + \frac{k_{LT}.M_{y,sd}}{\chi_{LT}M_{ply,rd}} + \frac{k_z.M_{z,sd}}{M_{plz,rd}} \le 1.0\dots\dots(2)$$

> Calcul du coefficient de réduction minimal pour le flambement

$$\chi_{min} = Min(\chi_y, \chi_z)$$

- Flambement par rapport à l'axe (y-y) :

$$\chi_{y} = \frac{1}{(\phi_{y} + \sqrt{\phi_{y}^{2} - \overline{\lambda_{y}^{2}}})}$$
$$\phi_{y} = 0.5 [1 + \alpha_{y} (\lambda_{y} - 0.2) + \lambda_{y}^{2}]$$
$$\overline{\lambda_{y}} = \left(\frac{\lambda_{y}}{\lambda_{1}}\right) \sqrt{\beta_{A}} = \frac{\lambda_{y}}{\lambda_{1}}$$

Avec: $\beta_A = 1$ Classe 1

$$\lambda_1 = 93.9$$

$$\lambda_y = \frac{0.5I_y}{i_y} = \frac{0.5 \cdot 890}{13.58} = 32.76$$
$$\overline{\lambda_y} = \frac{32.76}{93.9} = 0.34$$

Courbe de flambement : Figure 5.5.2 du CCM97

$$\frac{h}{b} = \frac{310}{300} = 1 < 1.2 (y - y) \text{ implique } \alpha = 0.34$$
$$\phi = 0.5 [1 + \alpha_y (\lambda_y - 0.2) + \lambda_y^2] = 0.58$$
$$\chi_y = \frac{1}{0.58 + \sqrt{0.58 - 0.34}} = 0.95$$

- Flambement par rapport à l'axe (z-z)

$$\chi_z = \frac{1}{(\phi_z + \sqrt{\phi_z^2 - \overline{\lambda_z^2}})}$$
$$\phi_z = 0.5 [1 + \alpha_z (\overline{\lambda_z} - 0.2) + \overline{\lambda_z^2}]$$
$$\overline{\lambda_z} = \left(\frac{\lambda_z}{\lambda_1}\right) \sqrt{\beta_A} = \frac{\lambda_z}{\lambda_1}$$

Avec : $\beta_A = 1$

Classe 1

$$\lambda_z = \frac{I_z}{i_z} = \frac{0.7 \cdot 5.9}{7.49} = 0.55$$

 $\lambda_1 = 93.9$

Courbe de flambement : Figure 5.5.2 du CCM97

$$\frac{h}{b} = 1 < 1.2 \ (z - z) \quad implique \ \alpha = 0.49$$
$$\phi = 0.5[1 + 0.49(0.55 - 0.2) + 0.55^2] = 0.73$$

$$\chi_z = \frac{1}{0.73 + \sqrt{0.73 - 0.55}} = 0.82$$
$$\chi_{min} = Min(\chi_y, \chi_z) = 0.82$$

Calcul de l'élancement réduit vis-à-vis du déversement

$$\lambda_{lt} = \frac{\frac{L}{i_z}}{c_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{L}{i_z}}{\frac{h}{t_f}} \right)^2 \right]^{0.25}} = 35.36$$

HEA320: $t_f = 16mm$; $i_z = 7.49cm$; h = 310mmK = 0.7; $c_1 = 1.134$ **Tableau B.1.1. CCM97**

L=5.9m avec L : la hauteur du bardage au-dessus du mur de maçonnerie

$$\lambda_{1} = 93,9\varepsilon$$

$$\varepsilon = \sqrt{\frac{235}{f_{y}}} = 1$$

$$\overline{\lambda_{LT}} = \left[\frac{\lambda_{lt}}{\lambda_{1}}\right] \cdot \left[\beta_{w}\right]^{0.5}$$

$$\lambda_{lt} = 35.36$$

$$\overline{\lambda_{LT}} = \frac{35.36}{93.9} = 0.37 < 0.4 \text{ pas de risque de deversement}$$

Donc on doit vérifier que :

$$\frac{N_{sd}}{\chi_{min}.N_{pl,rd}} + \frac{k_{y}.M_{y,sd}}{M_{ply,rd}} + \frac{k_{z}.M_{z,sd}}{M_{plz,rd}} \le 1.0\dots\dots(2)$$

Avec :

 N_{sd} =60.2kN ; $M_{y,sd}$ =320.83kN.m ; $M_{z,sd}$ =0.49kN.m ; $M_{ply,rd}$ =347.8kN.m $M_{plz,rd}$ =151.6kN.m ; χ_{min} = 0.82 ; $N_{pl,rd}$ =26570kN k_y = 0.5 k_z = 0.7

$$\frac{60.2}{0.82 \cdot 26570} + \frac{0.5 \cdot 320.83}{347.8} + \frac{0.7 \cdot 0.49}{151.6} = 0.34 \le 1.0$$
 Condition vérifiée

Conclusion : Le profilé choisi HEA320 convient comme poteau pour la structure.

6.4 Vérification des éléments de stabilités CAE (120x12)

Les contreventements sont des pièces qui ont pour objet d'assurer la stabilité de l'ossature en s'opposant à l'action des forces horizontales, ils sont généralement placés pour garantir le cheminement des charges horizontales jusqu'aux fondations, ils sont disposés en toiture, dans le plan des versants « poutres au vent » et doivent reprendre les efforts horizontaux appliqués tant sur les pignons que sur les longs pans. Les contreventements sont placés le plus souvent dans les travées de rive, leurs diagonales sont généralement des cornières doubles qui sont fixées sur la traverse et leur rôle principal est de transmettre les efforts du vent aux fondations.

La diagonale est sollicitée sous la combinaison suivante donnée par le logiciel Robot (1.35G+1.5V1)

Figure 6.3 : Vue en 3D illustrant la position des contreventements et stabilités

$N_{sd} = 698.37$ kN

L= 7.5m avec L est la longueur de la diagonale la plus sollicité

Profilé	PARAMETRES DE LA SECTION								
2CAE (120x12)	A Cm ²	h mm	b mm	A _{net} Cm ²	d mm				
MATERIAU ACIER S235	55.08	120	248	46.58	8				

Tableau 6.3 : Caractéristiques du profilé 2CAE (120x12)

Vérification à la traction

$$N_{sd} \le N_{t,rd} = Min[N_{pl,rd}; N_{u,rd}; N_{net,rd}]$$
100

 $N_{pl,rd} = \frac{A.f_y}{\gamma_{M0}} = 1176.71kN$ $N_{u,rd} = 0.9 \frac{A_{net}.f_u}{\gamma_{M2}} = 1371.9kN$ $N_{net,rd} = \frac{A_{net}.f_y}{\gamma_{M0}} = 995.118kN$

 $N_{sd} = 698.37 < 995.1$ Condition vérifiée

Conclusion : Le profilé choisi L (120x12) convient comme diagonale de la poutre au vent .

Les différents éléments principaux vérifiés dans ce chapitre ont des sections satisfaisantes avec des ratios convenables selon le modèle développer sous le logiciel ROBOT AUTODESK.

ésultats Messag	es					
Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas
Famille: 3 po	oteau					
35 Poteaux_35	K HEA 320	ACIER E24	32.77	83.13	0.88	11 1.35G+1.35Q+1.
Famille: 4 st	abilité					
401 stabilités_40	2 CAE 120x1	ACIER E24	102.63	71.13	0.85	6 1.35G+1.5V1
Famille : 5 tr	averse					
67 traverses_67	K IPE 400	ACIER E24	49.94	229.95	0.91	26 G+1.5V1

📕 NF EN 1993-1:2005/NA:2007/AC:2009 - Vérification des familles (ELU) 3A5

Figure 6.4 : Ratio des éléments structuraux (à partir du logiciel ROBOT)

6.5 Vérification des potelets (IPE300) :

Figure 6.5 : Vue en 3D de la structure illustration des potelets

La combinaison la plus défavorable : 1.35G+1.5Q

$$M_{ysd} = 0.2 \ kN. m$$
$$V_{sd} = 0.048 \ kN$$
$$N_{sd} = 56.28 \ kN$$

Profilé		PARAMETRES DE LA SECTION										
IPE300	A cm ²	h mm	b mm	t _f mm	t _w mm	I _y cm ⁴	I _z cm ⁴	w _{ply} cm ³	w _{plz} cm ³			
MATERIAU ACIER S235	53.8	300	150	10.7	7.1	8356	746	628	125			

Tableau 6.4 : Caractéristiques du profilé IPE 300

Détermination de la classe du profilé

- La classe de la section a déjà était déterminer comme section de classe 1 dans le chapitre trois.

Vérification de la section à la résistance

- Vérification à l'effort tranchant :

Pour la vérification de l'effort tranchant, on applique la condition suivante :

Si : $V_{sd} \le 0.5 V_{pl,rd} \Longrightarrow M_{sd} \le M_{c,rd}$ Art5. 4. 7 CCM 97

M_{c.rd}:Moment résistant plastique

 $V_{max} = V_{sd} = 0.048$ kN

$$V_{plz,rd} = \frac{A_{vz} \cdot \left(\frac{f_y}{\sqrt{3}}\right)}{\gamma_{m0}} = \frac{2570 \cdot 235/\sqrt{3}}{1.1} = 316.9kN$$

 $V_{sd} \leq 0.5 V_{plz,rd}$

L'incidence de l'effort tranchant sur le moment résistant est négligée

- Vérification de l'effort normal :

On utilise la condition suivante :

$$N_{sd} \le Min(0.25N_{pl,rd}; 0.5A_w.\frac{f_y}{\gamma_{M0}})$$

Pas d'interaction entre le moment résistant et l'effort normal.

 $N_{sd} = 56.28$ kN

$$\begin{split} N_{pl,rd} &\leq \frac{A \cdot f_y}{\gamma_{M0}} = \frac{5380 \cdot 235}{1.1} = 1149.36 \, kN \\ & 0.25N_{pl,rd} = 287.34 \, kN \\ A_w &= A - 2b \cdot t_f = 2170 \, mm^2 \\ & 0.5A_w \cdot \frac{f_y}{\gamma_{M0}} = 231.79 kN \\ N_{sd} &= 56.28 kN \leq 231.79 kN \end{split}$$

L'indice de l'effort normal sur le moment fléchissant est négligé.

- Vérification au moment fléchissant :

$$\begin{split} M_{ysd} &= 0.2kN.m\\ M_{c,rd} &= M_{ply,rd} = \frac{W_{ply}.f_y}{\gamma_{M0}} = \frac{628000 \times 235}{1.1} = 134.163\,kN.m\\ M_{ysd} &\leq M_{c,rd} \end{split}$$

Vérification d'élément au phénomène d'instabilité

Pour les éléments comprimés et fléchis, deux cas se présente :

- Flexion composée sans risque de déversement Art 5.5.4 (5.51) CCM97

$$\frac{N_{sd}}{\chi_{min}.N_{pl,rd}} + \frac{k_y.M_{y,sd}}{M_{ply,rd}} + \frac{k_z.M_{z,sd}}{M_{plz,rd}} \le 1.0\dots\dots(2)$$

- Flexion composée avec risque de déversement Art 5.5.4 (5.52) CCM97

$$\frac{N_{sd}}{\chi_z.N_{pl,rd}} + \frac{k_{LT}.M_{y,sd}}{\chi_{LT}M_{ply,rd}} + \frac{k_z.M_{z,sd}}{M_{plz,rd}} \le 1.0\dots\dots(2)$$

> Calcul du coefficient de réduction minimal pour le flambement

$$\chi_{min} = Min(\chi_y, \chi_z)$$

- Flambement par rapport à l'axe (y-y) :

$$\chi_y = \frac{1}{(\phi_y + \sqrt{\phi_y^2 - \overline{\lambda}_y^2})}$$

$$\phi_{y} = 0.5 \left[1 + \alpha_{y} (\lambda_{y} - 0.2) + \lambda_{y}^{2} \right]$$
$$\overline{\lambda_{y}} = \left(\frac{\lambda_{y}}{\lambda_{1}} \right) \sqrt{\beta_{A}} = \frac{\lambda_{y}}{\lambda_{1}}$$

Avec: $\beta_A = 1$ Classe 1

$$\lambda_1 = 93.9$$

$$\lambda_y = \frac{Ly}{i_y} = \frac{960}{12.5} = 76.8$$
$$\overline{\lambda_y} = \frac{76.8}{93.9} = 0.81$$

Courbe de flambement : Figure 5.5.2 du CCM97

$$\frac{h}{b} = \frac{300}{150} = 0.5 < 1.2 (y - y) \text{ implique } \alpha = 0.21$$
$$\phi = 0.5 [1 + \alpha_y (\lambda_y - 0.2) + \lambda_y^2] = 0.89$$
$$\chi_y = \frac{1}{0.58 + \sqrt{0.58 - 0.34}} = 0.79$$

- Flambement par rapport à l'axe (z-z)

$$\chi_z = \frac{1}{(\phi_z + \sqrt{\phi_z^2 - \overline{\lambda_z^2}})}$$
$$\phi_z = 0.5 [1 + \alpha_z (\overline{\lambda_z} - 0.2) + \overline{\lambda_z^2}]$$
$$\overline{\lambda_z} = \left(\frac{\lambda_z}{\lambda_1}\right) \sqrt{\beta_A} = \frac{\lambda_z}{\lambda_1}$$

Avec : $eta_A = 1$

Classe 1

$$\lambda_1 = 93.9$$
$$\lambda_z = \frac{I_z}{i_z} = \frac{125}{3.35} = 37.31 \Rightarrow \overline{\lambda_z} = 0.39$$

Courbe de flambement : Figure 5.5.2 du CCM97

$$\frac{h}{b} = 1 < 1.2 \ (z - z) \quad implique \ \alpha = 0.21$$
$$\phi = 0.5[1 + 0.21(0.39 - 0.2) + 0.39^2] = 0.61$$
$$\chi_z = \frac{1}{0.61 + \sqrt{0.61 - 0.39}} = 0.92$$
$$\chi_{min} = Min(\chi_y, \chi_z) = 0.79$$

> Calcul de l'élancement réduit vis-à-vis du déversement

$$\lambda_{lt} = \frac{\frac{L}{i_z}}{c_1^{0.5} \left[1 + \frac{1}{20} \left(\frac{L}{i_z}}{\frac{h}{t_f}} \right)^2 \right]^{0.25}} = 34.33$$

IPE300: $t_f = 10.7mm$; $i_z = 3.35cm$; h = 300mmK = 1 $c_1 = 1.134$ **Tableau B.1.1.CCM97**

L=5.9m avec L : la hauteur du bardage au-dessus du mur de maçonnerie

$$\lambda_{1} = 93,9\varepsilon$$

$$\varepsilon = \sqrt{\frac{235}{f_{y}}} = 1$$

$$\overline{\lambda_{LT}} = \left[\frac{\lambda_{lt}}{\lambda_{1}}\right] \cdot \left[\beta_{w}\right]^{0.5}$$

$$\lambda_{lt} = 34.33$$

 $\overline{\lambda_{LT}} = \frac{34.33}{93.9} = 0.36 < 0.4 \text{ pas de risque de deversement}$

Donc on doit vérifier que :

$$\frac{N_{sd}}{\chi_{min}.N_{pl,rd}} + \frac{k_y.M_{y,sd}}{M_{ply,rd}} + \frac{k_z.M_{z,sd}}{M_{plz,rd}} \le 1.0\dots\dots(2)$$

Avec :

$$\begin{split} N_{sd} = & 56.28 \text{kN} \text{ ; } M_{y,sd} = & 0.2 \text{kN.m} \text{ ; } M_{z,sd} = & 0.18 \text{kN.m} \text{ ; } M_{ply,rd} = & 134.163 \text{kN.m} \text{ } \\ M_{plz,rd} = & 26.7 \text{kN.m} \text{ ; } \chi_{min} = & 0.79 \text{ ; } N_{pl,rd} = & 1149 \text{kN} \text{ } k_y = & 1 \text{ } k_z = & 1 \end{split}$$

$$\frac{56.28}{0.79.\ 1149} + \frac{0.2}{134.163} + \frac{0.18}{26.7} = 0.07 \le 1.0$$
 Condition vérifiée

Conclusion : Le profilé choisi IPE300 convient largement comme potelet pour la structure .

Résultats Messages						
Pièce	Profil	Matériau	Lay	Laz	Ratio	Cas
Famille : 2 potelet						
294 Potelets_29	IPE 300	ACIER E24	32.58	173.15	0.19	5 1.35G+1.5Q

Chapitre-7

Calcul des assemblages

7.1 Introduction

Après avoir vérifié les éléments porteurs nous allons étudier les assemblages. Ces derniers ont un double rôle, d'une part ils assurent la liaison entre les pièces et la transmission des sollicitations divers entre les pièces. Un assemblage mal conçu ou mal réalisé peut conduire à des dommages importants sur la structure voir même à son effondrement. De ce fait cette étape est d'une importance cruciale. Le CCM97 cite que le dimensionnement des assemblages doit être effectué de sorte que la structure garde son efficacité et satisfait les exigences fondamentales telles que la sécurité, l'aptitude au service et la durabilité.

7.2 Assemblage poteau – traverse (HEA320-IPE400)

L'assemblage poteau – traverse est réalisé à l'aide d'une platine soudée à la traverse et boulonnée au poteau.

Figure 7.1: vue en plan de l'assemblage poteau-traverse

L'assemblage est sollicité par un moment fléchissant, un effort tranchant et un effort normal.

Les efforts sollicitant sur l'assemblage sont obtenus de la combinaison 1,35G + 1.35Q + 1,35V1 donnée par le logiciel Robot.

 $M_{sd} = 289.61kN.m$; $N_{sd} = 178.78kN$; $V_{sd} = 89.41kN$

- Disposition constructive

L'assemblage est réalisé par 12 boulons HR de classe 8.8 de diamètre ø18 mm ainsi que les dimensions de la platine d'about sont 300mm x 664mm ; épaisseur platine = 20mm

L'épaisseur la plus mince pour la détermination des pinces est :

$$t = Min(t_f; t_{platine}) = 13.5mm$$

Avec :

- *t_f* est l'épaisseur de la semelle (13.5mm)
- *t*_{platine} est l'épaisseur de la platine (20mm)

Distance entre les axes des boulons tableau 6.5.1-CCM97

Figure 7.2 : Désignation des entraxes et des pinces.

 $1.2d_0 = 24 \ mm \le e_1 \le 12t = 186 \ mm \qquad \Rightarrow e_1 = 110 \ mm$ $1.5d_0 = 30 \ mm \le e_2 \le 12t = 186 \ mm \qquad \Rightarrow e_2 = 105 \ mm$ $2.2d_0 = 44 \ mm \le p_1 \le 14t = 217 \ mm \qquad \Rightarrow p_1 = 100 \ mm$ $3d_0 = 60 \ mm \le p_2 \le 14t = 217 \ mm \qquad \Rightarrow p_2 = 90 \ mm$ Reverification avec l'ANEXE J de l'EC3 :
ex> max (mx, 1.5do) $1.5do < e < 2.625 \ mx$ $3 \ do < w < 5.25 \ mx$ Avec do = 20mm et mx = 80mm (distance entre la semelle de la traverse et le trou le plus prés)

```
ex> max (mx, 1.5do) =80mm
ex = 110 mm > 80mm CV
1.5do=30mm<e<2.625mx=210mm
30mm < e= 105mm < 210mm CV
3do=60mm<w<5.25mx=420mm
60mm<w=90mm<420mm CV
```

- Distribution des efforts sur les different cordons

On va choisir le cordon de soudure platine-traverse à l'aide de l'abaque de prédimensionnement de la gorge (Annexe 10).

IPE 400 : $t_{\rm f} = 13.5 \ mm$; $t_{\rm w} = 8.6 \ mm$

 $a_{\min} = 2.6 \leq t_w \leq a_{\max} = 8$

 $a_{\min}=3.5 \leq t_f \leq a_{\max}=8$

On choisit un cordon de soudure de a=7mm.

7.2.1 Vérification de la soudure de la semelle à la traction

$$N_{sd} \le F_{w,rd} = \frac{a \times \sum l \times f_u}{\sqrt{2} \times \beta_w \times \gamma_{MW}}$$

Avec : pour Fe360 $\beta_w = 1.25$; $\gamma_{MW} = 0.8$ donc : $\beta_w \ge \gamma_{MW} = 1$

La longueur totale des cordons de soudure des semelles :

$$\sum l = 2b + 4(b - t_w) = 2.180 + 4(180 - 8.6) = 1045mm$$
$$F_{w,rd} = \frac{7 \times 1045 \times 360}{\sqrt{2}} = 1862kN$$

$$N_{sd} = \frac{M_{sd}}{h} = \frac{\mathbf{289.61}}{\mathbf{0.9}} = \mathbf{321.78}$$

 $N_{sd} = 321.78 \le F_{w,rd} = 1862 \ kN$ Condition vérifiée

7.2.2 Vérification de la soudure de l'âme au cisaillement

$$V_{sd} \le F_{v,rd} = \frac{a \times \sum l \times f_u}{\sqrt{3} \times \beta_w \times \gamma_{MW}}$$

Avec : $\beta_w = 1.25$; $\gamma_{MW} = 0.8$

La longueur totale des cordons de soudure des âmes :
$$\sum l = 4h_i = 4 \times 373 = 1492mm$$
$$F_{v,rd} = \frac{7 \times 1492 \times 360}{\sqrt{3}} = 2170.74kN$$

 $V_{sd} = 89.41 \leq F_{v,rd} = 2170.74$ kN Condition vérifiée

7.2.3 Détermination des efforts dans les boulons

$$N_i = \frac{M_{sd} \cdot d_i}{\sum d_i^2}$$

Calcul de la hauteur de la partie comprimée :

$$x = t_f \sqrt{\frac{b}{t_w}} = 13.5 \sqrt{\frac{180}{8.6}} = 61.76$$

L'axe neutre se trouve au-dessous de la dernière rangée de boulons ce qui fait que tous les boulons travaillent à la traction.

-
$$d_1 = 712 \, mm$$

- $d_2 = 612 \, mm$
- $d_3 = 512 mm$ $\Rightarrow \Sigma d_1^2 = 1.29m^2$
- $d_4 = 312 \, mm$
- $d_5 = 212 \, mm$

-
$$d_6 = 112 \, mm$$

L'effort de traction dans les deux boulons supérieurs :

$$N_1 = \frac{289.61 \times 0.712}{1.29} = 159.84kN$$

7.2.4 Détermination du diamètre requis des boulons

Resistance des boulons au cisaillement ::

 $F_{v,rd} = 0.6 \times f_{ub} \times A_s$ tableau 65.3 : resistance de calcul des boulons

$$N_1 = n. F_{v,rd} \Longrightarrow A_s \ge \frac{N_{sd}}{0.6 \times f_{ub} \times n} = \frac{15984}{0.6 \times 800 \times 2} = 166.5 mm^2$$

Donc on adopte des boulons M18 de classe 8.8 ordinaire (ANNEXE – 5)

Boulons	d (mm)	d ₀ (mm)	A (mm²)	A _S (mm ²)	f _{ub} (mpa)	d _m (mm)
M18	18	20	254	192	800	29.1

Tableau 7.1 : Caractéristiques géométriques du boulon M18

7.2.5 Vérification à la résistance de l'assemblage

Moment résistant effectif de l'assemblage :

Remarque :(notre assemblage est classé comme rigide pour les sollicitations causés par le deplacement des futurs ponts roulants)

$$F_p = 0.7 \times f_{ub} \times A_s = 0.6 \times 800 \times 192 = 107.52 \text{kN}$$
$$M_{rd} = \frac{n.F_p.\sum d_i^2}{d_i} = \frac{2 \times 107.52 \times 1.29}{0.712} = 389.6 > M_{sd} = 289.61 \text{ kN.m}$$

Condition vérifiée

7.2.6 Vérification des boulons à l'interaction cisaillement-traction

La résistance au glissement par boulons doit satisfaire la condition suivante :

$$F_{v,sd} \le F_{s,rd} = \frac{K_s.\,m.\,\mu}{\gamma_{M2}} (F_{p,cd} - 0.8N_{sd})$$
 FORMULE 6.7 - CCM97

Avec :

 $K_s = 1.0$: Trous normaux

 $\mu = 0.3$: Classe de surface D

m = 1.0: Plans de glissement

$$F_{s,rd} = 0.24 \left(107.52 - 0.8 \times \frac{159.84}{2} \right) = 10.46kN$$
$$F_{v,sd} = \frac{89.41}{12} = 7.45kN < 10.46kN$$

Condition vérifiée

7.2.7 Vérification au poinçonnement de la semelle du poteau

$$F_{t,sd} \le B_{p,rd} = \frac{0.6\pi \times d_m \times t_p \times f_u}{\gamma_{M2}} \qquad \text{FORMULE 6.2} - \text{CCM97}$$

$$t_p = t_f = 13.5mm$$
 Épaisseur de la pièce poinçonnée

$$B_{p,rd} = \frac{0.6 \times 3.14 \times 29.1 \times 13.5 \times 360}{1.25} = 213.157 \ kN$$
$$F_{t,sd} = \frac{Fp}{2} = \frac{107.52}{2} = 53.76 \ kN < Bp, rd = 213.157 \ kN$$

Condition vérifiée

7.2.8 Vérification de la pression diamétrale

$$F_{v,sd} \le F_{b,rd} = \frac{K_s \times \alpha_b \times d \times t \times f_u}{\gamma_{M2}}$$
 TABLEAU 6.5.3 - CCM97

Avec : $K_s = 2.5$

$$\alpha_b = \min\left(\frac{e_1}{3d_0}; \left(\frac{p_1}{3d_0} - 0.25\right); \frac{f_{ub}}{f_u}; 1\right) = 1$$

t= 20+15.5=35.5 : épaisseur platine +semelle poteau

$$F_{b,rd} = \frac{2.5 \times 1 \times 18 \times 35.5 \times 360}{1.25} = 460.08kN > \frac{F_{v,sd}}{12} = 7.45kN$$

Condition vérifiée

7.2.9 Vérification de la résistance de l'âme du poteau dans la zone tendue

$$F_{v} \leq F_{t,rd} = t_{wc} \cdot b_{eff} \frac{f_{y}}{\gamma_{M0}}$$

Avec :

 $F_{t,rd}$: Résistance de l'âme du poteau à la traction

 t_{wc} : Épaisseur de l'âme du poteau =9mm

 $b_{eff} = p$: Entraxe des boulons (p=90mm)

$$\Rightarrow F_{t,rd} = 9 \times 90 \times \frac{235}{1.1} = 173.045 \ kN$$

L'effort de cisaillement vaut :

$$F_{v} = \frac{M_{sd}}{h - t_{f}} = \frac{289.61}{0.29} = 998.65 > Ftrd = 173.045kN$$

Condition non vérifiée

Donc on prévoit un raidisseur d'épaisseur 14mm.

7.2.10 Vérification de la résistance de l'âme du poteau dans la zone comprimée

$$N_{sd} \le F_{c,rd} = \frac{k_c.\,\rho.\,b_{eff}.\,t_{wc}.\,f_y}{\gamma_{M1}\sqrt{1 + 1.3\left(\frac{b_{eff}}{h}\right)^2}}$$
$$b_{eff} = t_{fb} + 2a_p\sqrt{2} + 5(t_{fc} + r_c) + 2t_p$$

Avec :

 t_{fb} : Épaisseur semelle-poutre = 13.5mm

 t_{fc} : Épaisseur semelle-poteau = 15.5mm

 t_p : Épaisseur platine = 20 mm

 r_c : Rayon de raccordement âme-semelle du poteau = 21mm

 a_p : Épaisseur de la gorge de la soudure =5mm

$$b_{eff} = 250.14$$
 mm

Contrainte normale de compression dans l'âme du poteau dûe à l'effort de compression et au moment fléchissant

$$\sigma_{c,sd} = \frac{V_{sd}}{A} + \frac{M_{sd}}{W_{ely}} = \frac{89.41 \times 10^3}{124.4} + \frac{289.61 \times 10^6}{1479} = 196.533MPa$$
$$\sigma_{c,sd} = 196.53MPa < f_y = 235MPa \implies k_c = 1$$

Élancement réduit de la partie efficace de l'âme

$$\begin{split} \bar{\lambda}_p &= 0.932 \sqrt{\frac{b_{eff} \cdot d_{wc} \cdot f_y}{E \cdot t_{wc}^2}} = 0.932 \sqrt{\frac{25.01 \times 22.5 \times 235}{2.1 \times 10^4 \times 0.9^2}} = 2.54 \\ \bar{\lambda}_p &> 0.72 \Longrightarrow \rho = \frac{\bar{\lambda}_p - 0.2}{\bar{\lambda}_p^2} = \frac{2.54 - 0.2}{2.54^2} = 0.36 \\ \Longrightarrow F_{c,rd} &= \frac{1 \times 0.36 \times 25.01 \times 0.9 \times 23.5}{1.1 \cdot \sqrt{1 + 1.3 \left(\frac{25.01}{31}\right)^2}} = 127.41 kN \\ N_{sd} &= 1N_i = \frac{M_{sd} \cdot \sum d_i}{\sum d_i^2} = \frac{298.61 \times 2.47}{1.29} = 571.75 kN \\ N_{sd} &= 571.75 > F_{c,rd} = 127.41 kN \text{ Condition non vérifiée} \end{split}$$

La résistance de l'âme du poteau en compression est faible. Il faut donc prévoir un raidisseur d'épaisseur 14mm.

7.2.11 Vérification de la résistance de l'âme du poteau dans la zone cisaillée

$$F_{v} \leq V_{rd} = 0.58 f_{y} \cdot h \cdot \frac{t_{w}}{\gamma_{M0}} = 0.58 \times 23.5 \times 31 \times \frac{0.9}{1.1} = 345.7 kN$$

L'effort de cisaillement vaut :

$$F_{v} = \frac{M_{sd}}{h - t_{f}} = 462.16 \ kN > Vrd = 345.7 \ kN \ condition \ non \ v\acute{e}rifi\acute{e}$$

On peut rajouter des éclisses bilatérales de 2mm d'épaisseur pour augmenter tw

$$F_{v} = 462.16kN \le V_{rd} = 0.58f_{y}.h.\frac{t_{w} + 0.4}{\gamma_{M0}} = 0.58.235.31.\frac{(0.9 + 0.4)}{1.1} = 499.35kN$$

Condition vérifiée

7.3 Assemblage Traverse-Traverse (IPE400)

L'assemblage traverse-traverse est réalisé à l'aide de deux platines boulonnées entre elles et soudées avec les deux traverses.

L'assemblage est sollicité par un moment fléchissant, effort tranchant et un effort normal.

Les efforts sollicitant sur l'assemblage sont obtenus par la combinaison G+1.5V1 donnée par le logiciel robot.

$$M_{sd} = 151.35kN.m$$
; $N_{sd} = 13,24kN$; $V_{sd} = 2.73kN$

Figure 7.3: Vu en plan de l'assemblage traverse-traverse.

- Dispositions constructives

L'assemblage est réalisé par 12 boulons HR de classe 8.8 de diamètre $\phi 18mm$.

Les dimensions de la platine d'about :180 mm x 830 mm ; épaisseur t=20mm

L'épaisseur la plus mince :

$$t = \min(t_f; t_{platine}) = 13.5mm$$

Distance entre les axes des boulons :

tableau 6.5.1-CCM97

Figure 7.4 : Désignation des entraxes et des pinces.

1.2	$2 d_0 = 24$	mm < e1 <12t	=162	mm	>>> e ₁ =100	mm
1.5	5 d ₀ = 30	mm < e ₂ <12t	=162	mm	>>> e ₂ =45	mm
2.2	2 d ₀ = 44	mm < p ₁ <14t	=189	mm	>>> p1 =100	mm
3	d ₀ = 60	mm < p ₂ <14t	=189	mm	>>> p ₂ =90	mm

- Distribution des efforts sur les différents cordons

On va choisir le cordon de soudure platine-traverse à l'aide de l'abaque de prédimensionnement de la gorge (Annexe 10)

IPE400:

 $t_f = 13.5 \text{ mm}$; $t_w = 8.6 \text{ mm}$ $a_{min} = 2.8 \text{mm} < t_w < a_{max} = 6 \text{ mm}$ $a_{min} = 3.4 \text{mm} < t_f < a_{max} = 8 \text{ mm}$

On choisit un cordon de soudure de 5mm

7.3.1 Vérification de la soudure de la semelle à la traction

$$N_{sd} \le F_{w,rd} = \frac{a \times \Sigma L \times f_u}{\sqrt{2} \times B_w \gamma_{mw}}$$

Avec : $B_w = 0.8$ $\gamma_{mw} = 1.25$ $\Sigma L = 2b + 4(b-t_w) = 1045.6$ mm

Donc :

$$F_{w,rd} = \frac{A \times \sum L \times f_u}{\sqrt{2} \times B_w \times \gamma_{mw}} = \frac{5 \times 1045.6 \times 360}{\sqrt{2} \times 1} = 1330.83kN$$
$$N_{sd} = \frac{M_{sd}}{h} = \frac{72.83}{0.8} = 91.03kN$$

$$N_{sd} = 91.03 \leq F_{w,rd} = 1330kN$$

Condition vérifiée

7.3.2 Vérification de la soudure de l'âme au cisaillement

$$V_{sd} \le F_{v,rd} = \frac{a \times \sum L \times f_u}{\sqrt{3} \times B_w \times \gamma_{mw}}$$

Avec : $B_w = 0.8$ $\gamma_{mw} = 1.25$ $\Sigma L = 4h_i = 1492 \text{ mm}$

Donc :

$$F_{v,rd} = \frac{a \times \sum L \times f_u}{\sqrt{3} \times B_w \times \gamma_{mw}} = \frac{5 \times 1492 \times 360}{\sqrt{3} \times 1} = 1550.53kN$$

 $V_{sd} = 43.7$ kN < $F_{v,rd} = 1550.53$ kN

condition vérifiée

7.3.3 Détermination des efforts dans les boulons

$$N_i = \frac{M_{sd} \cdot d_i}{\sum d_i^2}$$

Calcul de la hauteur de la partie comprimée :

$$x = t_f \sqrt{\frac{b}{t_w}} = 13.5 \sqrt{\frac{180}{8.6}} = 61.76mm$$

L'axe neutre se trouve au-dessous de la dernière rangée de boulons ce qui fait que tous les boulons travaillent à la traction.

 $\implies \Sigma d_i^2 = 1.24 m^2$

- $-d_1 = 700 mm$
- $-d_2 = 600 mm$
- $-d_3 = 500 mm$
- $-d_4 = 300 mm$
- $-d_5 = 200 mm$
- $-d_6 = 100 mm$

L'effort de traction est donné par :

$$N_1 = \frac{M_{sd} \times d_i}{\sum d_i^2} = \frac{151.35 \times 0.70}{1.24} = 41.11kN$$

7.3.4 Détermination du diamètre requis pour les boulons

L'effort de précontrainte autorisé dans les boulons

 $F_{v} = 0.5 \times f_{ub} \times A_{s}$ FORMULE 6. 5 – CCM97

$$N_1 = n. F_v \Longrightarrow A_s \ge \frac{N_{sd}}{0.5 \times f_{ub} \times n} = \frac{13240}{0.5 \times 800 \times 2} = 165.5 mm^2$$

Donc on adopte des boulons M18 de classe 8.8 :

Boulon	d (mm)	d₀(mm)	A(mm²)	A _s (mm ²)	F _{ub} (MPa)	d _m (mm)
M18	18	20	254	192	800	29.1

Tableau 7.2 : Caractéristiques géométrique des boulons

7.3.5 Vérification à la résistance de l'assemblage

Moment résistant effectif de l'assemblage est donné par :

$$F_p = 0.7 \times f_{ub} \times A_s = 107.52 \ kN$$
$$n. F_n. \Sigma d_i^2 = 2 \times 107.52 \times 1.24$$

$$M_{rd} = \frac{n \cdot F_p \cdot \Delta a_i}{d_i} = \frac{2 \times 107.52 \times 1.24}{0.7} = 380.92 > M_{sd} = 151.35 kN \cdot m$$

Condition vérifiée

7.3.6 Vérification des boulons à l'interaction cisaillement-traction

La résistance au glissement par boulons doit satisfaire la condition suivante :

$$F_{v,sd} \le F_{s,rd} = \frac{K_s.m.\mu}{\gamma_{M2}} (F_{p,cd} - 0.8N_{sd})$$
 FORMULE 6.7 - CCM97

Avec :

 $K_s = 1$ trous normaux

 $\mu = 0.3$ classe de surface D.

m= 1.0 plan de glissement

$$F_{s,rd} = 0.24 (107.52 - 0.8 \times 13.24) = 23.26kN$$
$$F_{v,sd} = \frac{2.73}{12} = 0.23 < Fs, rd = 23.26kN$$

Condition vérifiée

7.3.7 Vérification au poinçonnement de la semelle du poteau

$$F_{t,sd} \le B_{p,rd} = \frac{0.6\pi \times d_m \times t_p \times f_u}{\gamma_{M2}}$$
 FORMULE 6.2 - CCM97

Avec :

t_p : épaisseur de la pièce poinçonnée = 20mm

$$B_{p,rd} = \frac{0.6 \times 3.14 \times 29.1 \times 20 \times 360}{1.25} = 315.78kN$$
$$F_{t,sd} = \frac{Fp}{2} = 53.76 < 315.78kN$$

Condition vérifiée

7.3.8 Vérification de la pression diamétrale :

$$F_{v,sd} \le F_{b,rd} = \frac{K_s \times \alpha_b \times d \times t \times f_u}{\gamma_{M2}}$$
 TABLEAU 6. 5. 3 - CCM97

Avec K_s = 2.5

$$\alpha_b = \min\left(\frac{e_1}{3d_0}; \left(\frac{p_1}{3d_0} - 0.25\right); \frac{f_{ub}}{f_u}; 1\right) = 1$$

t= 40mm : épaisseur de deux platines

$$\frac{F_{v,sd}}{12} = 0.23kN < F_{b,rd} = \frac{1 \times 2.5 \times 18 \times 40 \times 360}{1.25} = 518.4 \ kN$$

Condition vérifiée

7.4 Assemblage des palés de stabilité (2L 120x120 x12)

Les boulons sont sollicités en cisaillement seulement. Les diagonales les plus sollicitées sont celles qui reprennent un effort de traction maximum.

Figure 7.5 : Assemblage des diagonales doubles cornières avec gousset

L'effort sollicitant de l'assemblage est N_{sd} =131 kN

L'effort de cisaillement repris par un boulon est :

Tableau 6.5.3-CCM97

$$F_{v,sd} = \frac{N_{sd}}{nbr \ de \ boulon} = \frac{131}{3} = 43.66 \le F_{vrd}$$

$$F_{v,rd} = \frac{0.6 \times A_s \times m \times f_{ub}}{\gamma_{M2}} \Longrightarrow A_s \ge \frac{\gamma_{M2} \times Fvrd}{0.6 \times f_{ub} \times m} = \frac{1.25 \times 43666}{0.6 \times 800 \times 2} = 56.85 mm^2$$

m = 2 : nombre des plan de cisaillement

Donc, on adopte des boulons M16 de classe 8.8

Bien que nos boulons sont largement surdimensionner ,on va les garder par commodité pour de que presque tout nos assemblages soient fait a l'aide de boulons M16 8.8 et ainsi reduire les erreurs et les diffecultés a l'achat et a l'execution.

Boulon	d(mm)	d₀(mm)	A(mm²)	A(mm ²) A _s (mm ²)		d _m (mm)	
M16	16	18	201	157	800	24.58	

Tableau 7.3 : Caractéristiques géométrique des boulons

- Disposition constructive

L'assemblage est réalisé par 3 boulons de classe 8.8

Les dimensions des goussets

Gousset central : 450 mm x 450 mm ; t = 8 mm Gousset de rive : 350 mm x 350 mm ; t = 8 mm

Distance entre axe des boulons

 $\begin{array}{ll} 1.2d_{0} = 21.6 \ mm \leq e_{1} \leq 12t &= 96 \ mm \Longrightarrow e_{1} = 50 \ mm \\ 1.5d_{0} = 27 \ mm \leq e_{1} \leq 12t &= 96 \ mm \Longrightarrow e_{1} = 50 \ mm \\ 2.2d_{0} = 39.6 \ mm \leq p_{1} \leq 14t &= 112 \ mm \Longrightarrow p_{1} = 80 \ mm \end{array}$

Choix de cordon de soudure

 $T_{min} = t_{gousset} = 8mm$

Suivant l'abaque de prédimensionnement, la gorge : a= 5 mm

7.4.1 Vérification de la soudure gousset-semelle du poteau à la traction

$$N_{max} \le F_{w,rd} = \frac{a.\sum l.f_u}{B_w.\gamma_{mw}\sqrt{(3-\sin\alpha^2)}}$$

La longueur totale des cordons de soudure $\sum l =$ 700mm

 α = 30>>> sin30° = 0.5

$$F_{w,rd} = \frac{5 \times 700 \times 360}{1 \times \sqrt{3 - 0.5^2}} = 850.17kN > N_{max} = 131kN$$

Condition vérifiée

Tableau 6.5.1-CCM97

7.4.2 Vérification au cisaillement des boulons

$$F_{v,sd} \le F_{v,rd} = \frac{\alpha_v \times \beta_{LF} \times A_s \times f_{ub} \times m}{\gamma_{M2}}$$
 TABLEAU 6.5.3 - CCM97

Avec : β_{LF} = 1 assemblages courants

$$\alpha_v = 0.6$$

m = 2 nbr des plans de cisaillement

$$F_{v,rd} = \frac{0.6 \times 157 \times 800 \times 2}{1.25} = 120.57kN$$
$$F_{v,sd} = \frac{Nsd}{3} = \frac{312.4}{3} = 104.13 \le Fvrd = 120.57kN$$

Condition vérifiée

7.4.3 Vérification de la pression diamétrale

$$F_{v,sd} \le F_{b,rd} = \frac{K_s \times \alpha_b \times d \times t \times f_u}{\gamma_{M2}}$$
 TABLEAU 6.5.3 - CCM97

Avec :

K_s = 2.5

$$\alpha_b = \min\left(\frac{e_1}{3d_0}; \left(\frac{p_1}{3d_0} - 0.25\right); \frac{f_{ub}}{f_u}; 1\right) = 0.92$$

t= 32 mm (12+12+8) somme des épaisseurs

$$F_{b,rd} = \frac{092 \times 2.5 \times 16 \times 32 \times 360}{1.25} = 339.14 kN > Fvsd = 43.66 kN$$

Condition vérifiée

7.4.4 Vérification à la résistance du bloc

En considèrent que le chargement est centré sur la cassure :

$$N_{max} \le V_{eff,rd} = \frac{A_{nt} \cdot f_y}{\gamma_{M2}} + \frac{A_{nv} \cdot f_y}{\sqrt{3} \cdot \gamma_{M2}}$$
 EC3 partie1 - 8§3.10.2

Avec :

 A_{net} : Section nette tendue.

$$A_{net} = \left(\frac{l}{2} - \frac{d_0}{2}\right)t = (60 - 9)12 = 612mm^2$$

 A_{nv} :Section nette cisaillée

$$A_{nv} = (e_1 + 2p_1 - 2.5d_0)t = (50 + 140 - 45)12 = 1740mm^2$$
$$\implies V_{eff,rd} = \frac{612 \times 235}{1.25} + \frac{1740 \times 235}{\sqrt{3} \times 1.25} = 303.918kN > \frac{Nsd}{2} = 65.5kN$$
Condition vérifiée

Aucun risque de rupture par cisaillement dans cet assemblage.

7.5 Assemblage Panne-Traverse (Echantignole)

L'assemblage panne traverse est réaliser à l'aide d'échantignole, boulonner avec des boulons ordinaires afin d'avoir l'articulation souhaitée.

Figure 7.6: Assemblage panne-échantignole/ échantignole-traverse

L'assemblage est sollicité par une réaction max de R_z =36kN

(voir chapitre 3)

$$F_{v,sd} = \frac{R_{v,z}}{n_{boulons}} = \frac{36}{2} = 18 \ kN$$
$$F_{v,rd} = \frac{0.6 \times A_s \times f_{ub}}{\gamma_{Mb}} \Longrightarrow A_s \ge \frac{\gamma_{Mb} \times F_{v,rd}}{0.6 \times f_{ub}} = \frac{1.1 \times 18000}{0.6 \times 800} = 41.25 mm^2$$

On adopte des boulons M10 de classe 8.8 avec A_s =58 mm²

7.5.1 Résistance des boulons au cisaillement

Tableau 6.5.3-CCM97

$$F_{v,rd} = \frac{0.6 \times A_s \times f_{ub}}{\gamma_{Mb}} = \frac{0.6 \times 58 \times 800}{1.1} = 25.3kN > F_{v,sd} = 18kN$$

7.5.2 Résistance des boulons à l'effort combinée traction-cisaillement

$$F_{t,rd} = \frac{0.9 \times A_s \times f_{ub}}{\gamma_{Mb}} = \frac{0.9 \times 58 \times 800}{1.1} = 37.9kN$$

$$F_{v,rd} = \frac{0.6 \times A_s \times f_{ub}}{\gamma_{Mb}} = 25.3kN$$
$$\frac{F_{v,rd}}{F_{v,rd}} + \frac{F_{t,sd}}{1.4.F_{t,rd}} = 0.52 < 1 \quad Condition \ verifiée$$

Assemblage vérifiée

Chapitre-8

Vérification des ancrages et calcul de fondations

8.1 Vérification d'ancrage des pieds de poteaux HEA320

8.1.1. Introduction

Les portiques de notre structure possèdent des pieds de poteaux encastrés, ce type de liaison est nécessaire dans le cas d'un pont roulant.

Pour ce qui concerne la norme Algérienne (CCM97), elle évoque dans son paragraphe 6.9.3, les principes de calcul des pieds de poteaux articulés. Ce règlement nous oriente vers d'autres règles et conditions qu'elles soient en accord avec les mêmes principes qui conduisent au même niveau de sécurité.

Pour cela nous allons utiliser l'Eurocode 3 partie 1-8 calcul des assemblages.

Dans ce cas, le poteau est sollicité en pied par un effort axial et un moment de flexion, ce qui est équivalent à un effort vertical excentré.

Figure 8.1: Assemblage au pied de poteau rigide

8.1.2 Dimensionnement de la plaque d'assise :

Le dimensionnement de la plaque d'assise se fait sous l'action des charges suivantes tirées à partir de la modélisation sur le logiciel ROBOT AUTODESK :

 $N_{sd}\mbox{=}148.96~kN$ (charge axial de compression)

V_{sd} = 97.73 kN (effort tranchant)

Msd=62.07 kN.m (moment de flexion)

8.1.3 Resistance du béton à la compression :

F_{ck}=30 MPa

 $f_{cd} = \frac{0.85 \times F_{ck}}{1.25} = 20.4 \text{ MPa}$

8.1.4 Resistance de calcul à l'écrasement du matériau de scellement :

$$F_{jd} = \alpha . \beta_j . f_{cd}$$

La valeur du coefficient du matériau de scellement est : β_j =2/3

Les dimensions de la fondation étant encore inconnues, on prend : α = 1.5

$$F_{jd} = \alpha.\beta_j.f_{cd} = 1,5 \times \frac{2}{3} \times 17 = 20.4 MPa$$

8.1.5 Calcul de l'aire de la plaque :

$$A_{C0} \ge \frac{N_{sd}}{f_{cd}} = \frac{148960}{20.4}$$
$$A_{C0} \ge 7266.34mm^2$$

- Les dimensions de la platine

 $b_p \ge b+2t_f = 190+2 \times 15,5 = 221 \text{ mm}$

 $h_p \ge h+2t_f = 310+2 \times 15,5 = 341 \text{ mm}$

On prend :

b_p =600 , h_p=620

Ce qui donne : $A_{co} = 600 \times 620 = 372000 \text{ mm}^2 > 7266.34 \text{ mm}^2$

Calcul de la largeur d'appui additionnelle C

En posant : t= 30mm comme épaisseur de la platine on trouve :

$$C = t \left(\frac{f_{yp}}{3f_{jd} \cdot \gamma_{M0}}\right)^{0.5} = 30 \left(\frac{235}{3 \times 20.4 \times 1.1}\right)^{0.5} = 56.05 \ mm$$
$$C = 56.05 \ < \frac{(h - 2t_f)}{2} = 139.5 \ mm$$

Il n'y a pas de recouvrement des ails en compression pour les tronçons des deux semelles.

8.1.6 Cordon de soudure

On choisit le cordon de soudure platine-poteau à l'aide de l'abaque de prédimensionnement de la gorge (a) Annexe H

HEA 320 : t_f =15,5 mm ; t_w = 9 mm

a_{min}= 2,8 mm<t_w<a_{max} =6,5 mm

 $a_{min}\text{=}~3,8~mm \leq t_f \leq a_{max} \text{=}~10,5~mm$

On choisit un cordon de soudure de 6 mm

8.1.7 Calcul de la résistance à la flexion en présence de l'effort axial

La résistance à la flexion dépend de l'excentricité :

$$e = \frac{M_{sd}}{N_{sd}} = 0.41 \ m > Z_T = 0.195 \ m$$

Moment de flexion dominant

La résistance atteinte dans l'une de ces parties

Tronçon en T tendu critique

Tronçon en T comprimé critique

Figure 8.2 : Illustration moment + effort normal

- Resistance en compression d'un tronçon en T de semelle

$$F_{c,rd} = f_{jd} \times b_{eff} \times l_{eff}$$
 EC3 – 1.8 – tableau6.4

Figure 8.3 : Illustration de la partie comprimée du pied de poteau

Où :

$$L_{eff} = \min(b_p; b_{fc} + 2c) = \min(600; 300 + 2 \times 46.71) = 393,42 \, mm$$
$$b_{eff} = \min\left(c, \frac{h_c}{2} - t_{fc}\right) + t_{fc} + \min\left(c; \frac{h_p - h_c}{2}\right)$$
$$b_{eff} = \min\left(46.71; \frac{310}{2} - 15,5\right) + 15,5 + \min\left(46.71; \frac{620 - 310}{2}\right) = 108.92 \, mm$$
$$\implies F_{c,rd} = 20.4 \times 108.92 \times 393.42 = 874.166 \, kN$$

- Resistance au cisaillement de l'assemblage

$$F_{v,rd} = F_{f,rd} + n_b \cdot F_{vb,rd}$$

Resistance par frottement en présence d'un effort axial de compression :

$$F_{f,rd} = 0,2N_{sd} = 12.14 \ kN$$

Pour 8 tiges M30 de classe 8.8, le choix est justifié avec le logiciel ROBOT

Boulon	d (mm)	d₀ (mm)	A (mm²)	A _s (mm ²)	F _{ub} (MPa)
M30	30	33	707	561	800

Tableau 8.1 : Caractéristique de boulon M30

- Resistance au cisaillement d'un boulon d'ancrage :

$$F_{vb,rd} = \frac{\alpha_{cb} \cdot f_{ub} \cdot A_s}{\gamma_{M2}}$$

Avec : $\alpha_{cb} = 0,44 - 0,0003 f_{yb} = 0,248$

 n_b = 8 (8 tiges d'ancrage)

$$F_{vb,rd} = \frac{0,248 \times 800 \times 561}{1,25} = 89,04 \ kN$$
$$\implies F_{v,rd} = 12.14 + 8 \times 89,04 \ kN = 724.46 \ kN$$

- Resistance au cisaillement de la soudure :

$$V_{sd} \le F_{w,rd} = \frac{a \times \sum l \times f_u}{\sqrt{3} \times \beta_w \times \gamma_{mw}}$$

Avec : β_w =0,8 , γ_{mw} = 1.25 , a = 6 mm

La longueur totale des cordons de soudure dans le sens de cisaillement

 $\Sigma l = 470 mm$

 $F_{w,rd} = \frac{6 \times 470 \times 360}{\sqrt{3}} = 586,12 \ kN$

 $V_{sd} = 97.73 \ kN < \min(F_{v,rd}, F_{w,rd}) = 586,12 \ kN$

Condition vérifiée

- Longueur participante du tronçon en T équivalent tendu

Calcul de longueur efficace du tronçon en T : EC3-1.8 -tableau 6.6

Figure 8.4 : Dispositions constructives

W= 150 mm; e = 55 mm, $e_x = 40 mm$; $m_x = 40 mm$

> Mécanisme circulaire

$$l_{eff,cp} = min \begin{cases} 2\pi m_x = 251.32 \ mm \\ \pi m_x + W = 275.66 \ mm \\ \pi m_x + 2e = 235.66 \ mm \end{cases} \Longrightarrow l_{eff,cp} = 235,66 \ mm$$

Mécanisme non circulaire

$$l_{eff,nc} = min \begin{cases} 4m_x + 1,25e_x = 210 \ mm \\ 2m_x + 0,625e_x + \frac{W}{2} = 180 \ mm \\ 2m_x + 0,625e_x + e = 160 \ mm \\ \frac{b_p}{2} = 150 \ mm \end{cases} \Rightarrow l_{eff,nc} = 150 \ mm$$

8.1.8 Vérification de la résistance de tiges d'ancrage

$$F_{t,anc,rd} = \min[F_{t,bond,rd}; F_{t,rd}]$$

Resistance du boulon d'ancrage à la traction :

$$F_{t,rd} = 0.9 \times \frac{A_s \times f_{ub}}{\gamma_{mb}} = 0.9 \times \frac{561 \times 800}{1.25} = 323.14 \ kN$$

- Calcul de la contrainte d'adhérence

On a : d =30mm ≤ 32 mm

$$F_{bd} = \frac{0.36\sqrt{f_{ck}}}{\gamma_c} = \frac{0.36 \times 5.47}{1.5} = 1.313 \text{ MPa}$$

Résistance de calcul par adhérence entre le béton et le boulon d'ancrage

$$F_{t,bond,rd} = \frac{\pi. d. l_b. f_{bd}}{\alpha}$$

Avec :

$$l_1 = 20d = 600 mm$$

 $r = 3d = 90 mm$
 $l_2 = 20d = 600 mm$

d: diamètre de la tige d = 30

 l_b :L'encrage dans le béton $l_b = (l_1 + 6.4r + 3.5l_2) = 3276 \text{ mm}$

 f_{ck} : Résistance du béton $f_{ck} = 30 MPa$

 α : Facteur tenant en compte la forme de la tige : $\alpha = 0.7$

$$F_{t,bond,rd} = \frac{\pi \times 30 \times 1,2 \times 3276}{0,7} = 529,29 \ kN$$
$$F_{t,anc,rd} = min[529,29; 323,14] = 323,14 \ kN$$

8.1.9 Résistance de la partie tendue de l'assemblage

Vérification de la présence d'effet de levier :

L_b : longueur d'allongement du boulon d'ancrage

 $L_b = 8d + e_m + t_p + t_{wa} + 0.5k$

Avec :

twa : épaisseur de la rondelle = 5 mm

k : épaisseur de l'écrou k = 0,8 d

e_m : épaisseur de mortier de calage : e_m= 30 mm

Figure 8.5 : Longueur d'allongement des boulons d'ancrages

Lb* : longueur limite d'allongement des boulons d'ancrages

$$L_b^* = \frac{8.8 m_x^3 A_s}{l_{eff.1} t_p^3} = \frac{8.8 \times 40^3 \times 561}{150 \times 25^3} = 134.80 \ mm \ < L_b = 312 \ mm$$

L'effet de levier ne peut pas être développé et les modes de ruines 1-2, 3 et 4 peuvent être considérés.

8.1.10 Resistance à la flexion de la plaque d'assise (par unité de longueur)

$$m_{pl,rd} = \frac{t_p^2 \cdot f_{yp}}{4\gamma_{M0}} = \frac{25^2 \times 235}{4 \times 1,1} = 33,38kN$$

Resistance à la flexion de la plaque d'assise

Mode 1: $M_{pl,1,rd} = m_{pl,rd} \times l_{eff,1} = 33.38 \times 0.15 = 5.007 kN.m$

$$l_{eff,1} = \min(l_{eff,cp}; l_{eff,nc}) = 150 mm$$

- Calcul de la résistance de l'assemblage à la traction

La résistance finale de l'assemblage d'un tronçon en T équivalent tendu est prise égale à la valeur de la résistance la plus petite des modes de ruine.

$$F_{t,rd} = \min(F_{t,1-2,rd}; F_{t,3,rd}; F_{t,4,rd})$$
 EC3-1.8-tableau6.2

Mode 1-2 :

$$F_{t,1-2,rd} = \frac{2M_{pl,1,rd}}{m_x} = \frac{2 \times 5}{0,04} = 250 \ kN$$

Mode 3 :

$$F_{t,3,rd} = 2F_{t,rd,anchor} = 2 \times 323,14 = 646,280 \, kN$$

Mode 4 :

$$F_{t,4,rd} = \frac{b_{eff,t} \cdot t_w \cdot f_y}{\gamma_{M0}} = \frac{150 \times 9 \times 235}{1,1} = 288.409 kN$$

D'où :

$$F_{t,rd} = \min(F_{t,1-2,rd}; F_{t,3,rd}; F_{t,4,rd}) = 250 \ kN$$

8.1.11 Vérification de la résistance en flexion

Moment de flexion dominant

$$M_{sd} \le M_{rd} = \min\left(\frac{-F_{c,rd} \times Z}{\frac{Z_T}{e_N} - 1}; \frac{F_{T,rd} \times Z}{\frac{Z_C}{e_N} + 1}\right)$$
 EC3 - 1.8 TABLEAU 6.7
$$Z = Z_T + Z_C = 195 + 155 = 350mm$$
$$\Rightarrow M_{rd} = 56.46 \ kN. \ m < 62.07 \ kN. \ m$$

Condition non vérifiée, il faut rajouter des raidisseurs bidirectionnels.

8.2 Etude des fondations

8.2.1 Introduction

Quel que soit l'ouvrage, il prend toujours appuis sur un sol d'assise. Les éléments qui jouent le rôle d'interface entre l'ouvrage et le sol s'appellent les fondations.

Le dimensionnement de ces fondations est conditionné par le site d'implantation.

- Le site (S3)
- La contrainte admissible du sol : σ_{sol} = 1.8 bar 180kN/m²
- La profondeur d'ancrage :D= 1.8m

8.2.2 Détermination des sollicitations

Pour la détermination des sollicitations on considère les deux états limites pour le calcul des réactions d'appuis des poteaux.

ELU: $M_U = 62.07kN.m$; $N_U = 97.73kN$ ELS: $M_S = 41.36kN.m$; $N_S = 79.60kN$

8.2.3 Dimensionnement de la semelle :

Les dimensions de la semelle sont choisies de sorte qu'elles soient homothétiques avec celles du pied de poteau avec un débordement de 20 cm.

$$a = a_p + c = 0,62 + 0,2 = 0,82 m$$

$$b = b_p + c = 0,60 + 0,2 = 0,8 m$$
 Avec : a_p et b_p : dimensions de la platine

$$\frac{A}{B} = \frac{a}{b} = 1.025 \Longrightarrow A = 1.025B$$

A et B dimensions de la semelle

- Calcul de l'excentricité

$$e = \frac{M_s}{N_s} = 0.52m$$

Figure 8.6 : Les dimensions de la semelle sous poteau

Pour les semelles de dimensions B × L la valeur des contraintes extrêmes est donnée par :

$$\sigma_{max} = \frac{N}{AB} \left(1 + \frac{6e}{B} \right) \le \sigma_{sol}$$

Apres simplification

$$3.68B^2 - B - 3.12 \ge 0 \implies B \ge 0.765m$$

On prend B =1 m et A = 2.5 m

- Hauteur utile de la semelle est donné par la condition :

$$d = \max\left(\frac{B-b}{4}; \frac{A-a}{4}\right) = \max(0.05; 0.295)$$

On prend : d= 45 cm

ht = d+ 5cm = 50cm : hauteur totale de la semelle

8.2.4 Vérification des contraintes

On a :

$$e = 0.52 > \frac{A}{6} = 0.41$$

L'effort N est à l'extérieur du noyau central.

$$\frac{3\sigma_{max}.\,\sigma_{min}}{4} < \sigma_{sol}$$

Avec :

$$\sigma_{min} = \frac{N}{AB} \left(1 - \frac{6e}{A} \right) = \frac{148.96}{2} \left(1 - \frac{0.41}{2} \right) = 62.19 kN/m^2$$

$$\sigma_{min} = \frac{N}{AB} \left(1 + \frac{6e}{A} \right) = \frac{148.96}{2} \left(1 + \frac{0.41}{2} \right) = 86.77 kN/m^2$$

$$\frac{3\sigma_{max} \cdot \sigma_{min}}{4} = 68.35 \ kN/m^2 < \sigma_{sol} = 180 \ kN/m^2$$

Condition vérifiée

8.2.5 Vérification de la stabilité au renversement

La stabilité au renversement des fondations doit se faire pour les semelles sous la combinaison : G+Q+E (RPA99 v 2003. Art.10.1.5)

$$e = \frac{M}{N} = 0.52 \ m \ < \frac{A}{4} = 0.62 \ m$$

Condition vérifiée

8.2.6 Détermination des armatures de la semelle

Le ferraillage se calcul par la méthode des consoles :

$$e > \frac{a}{6} \quad ; \quad e > \frac{A}{24}$$

ELS : Ferraillage dans la direction A

$$A_a = \frac{M_1}{z.\,\bar{\sigma}_{st}}$$

$$M_{1} = \left(\frac{A}{2} - 0.35a\right)^{2} \left(1 + \frac{e}{A} + \frac{1.4 \times e \times a}{A^{2}}\right) \frac{N_{s}}{2A}$$

 $M_1 = 27.88 k N.m$

Avec : Z = 0.9d =40cm $\bar{\sigma}_{st} = \min\left(\frac{2}{3}f_e; 110\sqrt{\eta f_{t28}}\right) = 201.63$ MPa

$$f_{t28} = 0.06 f_{c28} + 0.6 = 2.4 MPa$$

 $\eta = 1.6 H.A$

Donc :

$$A_a = \frac{27.88 \times 10^6}{400 \times 201.63} = 3.45 \ cm^2$$

Ferraillage dans la direction B

Le ferraillage dans la direction B sera calculé par la méthode de bielle en remplaçant N par N'.

$$A_b = \frac{N'(B-b)}{8d.\,\bar{\sigma}_{st}}$$

Avec :

$$N' = N_s \left(1 + \frac{3e}{A} \right) = 79.6 \left(1 + \frac{3 \times 0.52}{2.5} \right) = 29.93kN$$
$$\bar{\sigma}_{st} = \min\left(\frac{2}{3}f_e; 110\sqrt{\eta f_{t28}}\right) = 201.63MPa$$
$$f_{t28} = 0.06f_{c28} + 0.6 = 2.4kN$$
$$\eta = 1.6 \ H. A$$

Donc :

$$A_{h} = 0.7 cm^{2}$$

ELU :

Ferraillage dans la direction A

$$A_a = \frac{M_1}{z.\sigma_{st}}$$
$$M_1 = \left(\frac{A}{2} - 0.35a\right)^2 \left(1 + \frac{e}{A} + \frac{1.4 \times e \times a}{A^2}\right) \frac{N_u}{2A}$$

$$M_1 = 34.9kN.m$$

Avec : z =0.9d = 40 cm

$$\sigma_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 347.8MPa$$

Donc :

$$A_a = \frac{34.9 \times 10^6}{400 \times 347.8} = 2.5 cm^2$$

Ferraillage dans la direction B :

$$A_a = \frac{N_u(B-b)}{8d.\,\sigma_{st}}$$

Avec :

$$N' = N_u \left(1 + \frac{3e}{A} \right) = 238.33kN$$

 $A_b = 1.62 cm^2$

Donc :

La condition de non-fragilité Sens A

$$A_{min} = 0,23 \times \frac{f_{t28}}{f_e} \times A \times h_t = 17.25 cm^2$$

Sens B

$$A_{min} = 0.23 \times \frac{f_{t28}}{f_e} \times B \times h_t = 6.9 cm^2$$

Calcul de l'espacement

$$S_t \ge max (6\emptyset + 6cm; 15cm) \le 30cm$$

 $S_t \ge max (6 \times 1.4 + 6 cm; 15 cm)$

Enrobage :3cm

Sens	A_s (cm ²)	A_{min} (cm ²)	Nb de	A (cm ²)	St (cm)
			barres		
А	3.45	17.25	10T16	20.1	25
В	0.7	6.9	7T16	14.07	25

Tableau 8.2 : Ferraillage choisis pour la semelle au-dessous de poteau

Figure 8.7 : Ferraillage des semelles

8.2.7 Calcul des longrines

Les longrines sont des liaisons situées à l'intérieur du périmètre de la structure, elles jouent le rôle de chainage dans les deux directions et elles sont calculées sous l'effort axial de traction comme défini dans le RPA99.

Prédimensionnement

Les dimensions minimales de la section transversale des longrines sont : (25 x 30 cm²) Pour Site de catégorieS2 et S3 [RPA99 v 2003. Art.10.1.1.b]

Ferraillages longitudinaux

Les longrines doivent être dimensionner pour résister à une force de traction égal à :

$$N_t = \left(\frac{N}{\alpha}\right) \ge 20 \ kN$$
 [RPA99 v 2003. Art. 10. 1. 1. b]

Avec :

N : effort normal encaissé par le poteau le plus sollicité $N_u = 148.96$ kN; α : coefficient en fonction de la zone sismique et de la catégorie $\alpha = 12$

ELU

$$N_t = \frac{148.96}{12} = 12.41kN$$

ELS

$$N_t = \frac{79.6}{12} = 6.63kN$$

Calcul des armatures

$$A_{st} = \frac{N_t}{\sigma_{st}}$$

ELS

$$A_{st} = \frac{6.63}{348} = 0.19cm^2$$

ELU

$$A_{st} = \frac{12.41}{348} = 0.35 cm^2$$

Le ferraillage minimal doit être de 0.6% de la section

$$A_{min} = 0,6\%(b \times h) = 3.9cm^2$$

Soit : 6HA12 >>> A_s =6.79 cm²
8.2.8 Vérification de la condition de non-fragilité

$$A_{st} \le 0.23 \times b \times h \times \frac{f_{t28}}{f_e}$$
$$A_{st} = 0.905 \le A_s = 6.79 cm^2$$

Condition vérifiée

8.2.9 Ferraillage transversal

$$\phi_{min} \le min\left(\frac{h}{35};\phi_{lmin};\frac{b}{10}\right) = 0.8 \ cm$$

On prend : $\phi_t = 8$ mm

8.2.10 Calcul d'espacement des cadres

 $S_t < \min(20cm; 15\phi_t) = 12cm$

On prend : S_t=10cm

Figure 8.8 : le ratio réalisé par cet assemblage de pied de poteau selon ROBOT

Conclusion générale

En réalisant ce projet de fin de cycle, nous avons pu en apprendre davantage sur le prédimensionnement, la vérification et l'assemblage de chaque élément composant l'ossature d'un hangar ou d'une halle métallique.

Nous avons réellement saisi l'importance et l'avantage que présente l'utilisation d'outils numériques pour la modélisation de notre structure et la simulation des différents efforts et charges appliquées sur elle.

Ce fut aussi l'occasion de consulter les différentes réglementations qui régissent le domaine de la charpente métallique en particulier et celui du génie civil en général comme le CCM 97, le RNV2013, le RPA 99v2003 et le CBA 93.

Nous avons aussi réalisé l'importance des stabilités et contreventements pour ce qu'elle apporte à la structure comme stabilité et gains de matière dans les éléments principaux.

Enfin le point le plus important de tous, on a pu compléter le grand manque d'informations qu'on avait avant ce projet et on a pu lever le voile sur pas mal d'incertitudes concernant le dimensionnement et la mise en œuvre des différents assemblages de la structure.

Mais sans se leurrer nous restons conscients de notre énorme manque d'informations et de pratiques en la matière, nous espérons que le futur nous donnera l'occasion d'en apprendre d'avantage sur le domaine de la charpente à travers le travail ou la recherche inchaalah. ANNEXE - 1

ce (ital Spa llot D, N°6 ZHUN Garidi II -Kouba – Alger Tél: + (213) 21 56 38 10 à 80 Fax : + (213) 21 56 38 20

FICHE TECHNIOUE

PANNEAU SANDWICH TOITURE (TL75)

Description

1. Principe

Le panneau sandwich d'enveloppe de bâtiment, est un produit composite, fabriqué industriellement en continu, comportant un parement extérieur métallique, une âme isolante et un parement intérieur métallique solidarisés par adhérence à l'âme isolante. Ces composants travaillent ensemble et ne constituent ainsi qu'un seul élément autoportant présentant différents niveaux de résistance mécanique, de réaction et de résistance au feu, d'isolation thermique et acoustique, d'étanchéité à l'air, à l'eau et à la vapeur d'eau et d'esthétique architecturale.

2. Matériaux

2.1 Tôle d'acier

Parements interne et externe en tôle d'acier d'épaisseur nominale minimum 0,4 mm, galvanisé à chaud en continu selon les normes NF EN 10326 ; NF EN 10142 et NF EN 10143 :

Nuance d'acier : DX51D ou S280GD Epaisseur de la couche de Zn : 150 g/m2 pour les deux faces

Nature et épaisseur du revêtement organique :

-Recto : 25 m nominal polyester selon EN 10169 (dont primaire 5 μ m).

-Verso : 7 m nominal polyester selon EN 10109 (dont primare 5 μm).

Les parois ont pour épaisseur

Toiture TL 75 : - 0,55 mm à l'intérieur, - 0,75 mm à l'extérieur -0,4 mm à l'intérieur -0,6 mm à l'extérieur

2.2 Mousse isolante

L'isolant est constitué de mousse rigide de polyuréthane expansée, obtenue par injection en continu d'un mélange de polyol, isocyanate, catalyseur et agent d'expansion de type Pentane, dont les caractéristiques sont indiquées ci-après :

Tableau 1 - Caractéristiques de la formulation

Caractéristiques	Spécifications
Masse volumique selon NF EN1602	40 kg/m3 ± 2 kg/m3
Traction perpendiculaire (adhérence sur parement) selon NF EN 1607	80 kPa
Compression sous 10 % d'écrasement selon NF EN 826	100 kPa
Flexion quatre points selon Pr EN 14509	100 kPa
Stabilité dimensionnelle (48 h à 70 °C)	2 %
Stabilité dimensionnelle (48 h à -20 °C)	1 %

3. Caractéristiques dimensionnelles

Tableau 2 : Dimensions et tolérances

l services and remain restar i super-

Dimensions (mm)	a philament in an and a free a	Tolérances (mm)
Largeur hors tout	1000 à 2000	7,5
Largeur utile du panneau	Toiture :1035	± 2
Longueur du panneau	<1000 1000 à 2000 2001 à 4000 4000	5 7,5 10 15
Epaisseurs nominales	53	±2
Défaut d'équerrage	ALL STREET	6,21
Défaut de planéité (en fonction de la longueur mesurée L)	L = 200 mm L = 400 mm L > 700 mm	 Défaut de planéité 0,6 mm Défaut de planéité 1,0 mm Défaut de planéité 1,5 mm

Poids spécifique (kg/m²) : 14.2

4. Autres informations techniques

TL75:26dB

Pour le noyau de mousse qui est recouvert des 2 cotés de peaux étanches à la diffusion,

le coefficient de conduction thermique (λ) = 0.026 w/m.k

Panneau	TL75
Coefficient de transmission thermique (w/m ² .K)	0.40

4.2 Isolation phonique :

the second baselines for a

PANNEAU TL 75 / Largeur = 1035 mm épaisseur tole supérieure = 0.75 mm ; épaiseur tole inférieure = 0.55 mm

TYPE / BATICOMPOS

Nuance d'acier : contrainte caractéristique Rp 0.2 = 3200 daN/cm2 PORTEES MAXIMALES (en mètres) EN FONCTION DES CHARGES (en daN/m2)

FLECHE ADMISSIBLE = L/300

POUTRES A 01 TRAVEES

n mi ričerte ska	-	 L		

charges daN/m2 Type	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300
TL 75	6.54	5.19	4.53	4.12	3.82	3.60	3.42	3.27	3.14	3.04	2.94	2.86	2.78	2.71	2.65

n ethiote estimation real never see light ter statute.

POUTRES A 02 TRAVEES

charges daN/m2 Type	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300
TL 75	8.75	6.95	6.07	5.52	5.12	4.82	4.58	4.38	4.21	4.07	3.94	3.83	3.73	3.63	3.55

POUTRES A 03 TRAVEES

charges daN/m2 Type	20	40	60	80	100	120	140	160	180	200	220	240	260	280	300
TL 75	8.08	6.41	5.60	5.09	4.73	4.45	4.23	4.04	3.89	3.75	3.64	3.53	3.44	3.36	3.28

ANNEXE - 3

LA POSE DES PANNEAUX SANDWICHS

Découpe des panneaux:

Pour le découpage des panneaux, il est recommandé d'utiliser une sole sauteuse électrique à lame d'acier. Afin d'obtenir un bon résultat, il est nécessaire de découper le long d'un guide. Les limailles sont à éliminer immédiatement.

Fixation des panneaux;

Les panneaux doivent être fixés au sommet de chaque nervure sur les pannes d'extrémité.

sur les pannes intermédiaires la fixation se fera une nervure sur deux de façon décalée sur chaque panne intermédiaire. Lors de la pose, les panneaux doivent être bien serrés sur la partie longitudinale afin que le joint d'étanchéité à l'air remplisse son effet. Il est recommandé d'utiliser un joint d'étanchéité à l'air avec une face adhésive sur les faces d'appuis du panneau situées sur les pannes d'extrémité, les chéneaux, les goutières, les recouvrements transversaux, etc.

COEFFICIENT D'ISOLATION THERMIQUE

K.	Epaisseur nominale du panneau mm								
	30	35	40	50	60				
W/m ² K	0,55	0,49	0,44	0,36	0,31				
Kcal/m²h °C	0,48	0,43	0,38	0,32	0,27				

Arval

Panneaux sandwiches de bardage Ondatherm 1040 B

TABLEAU D'UTILISATION

Charges maximales admissibles en daN/m² en fonction des portées d'utilisation (pour épaisseurs de parements 0,50 - 0,50 mm)

2 APPUIS						000				3 AP	PUIS			Sector 1		
19日日日								PORTÉE								I SUGTRING
	120	100	80	60	50	40	30	(m)	30	40	50	60	80	100	120	
PRESSION	2160	1213	NG	1.08	141	119	101	nns' li	149	0.561	168	.005	1083	10418	0008	PRESSION
DEPRESSION				156	142	128	96	3,00	109	132	148					DEPRESSION
PRESSION	0.60	Sug	1.1.1.2.4	142	123	103	84	N 1 2 1 4 1	130	150	160	10.54(9)	161.13	Ster.	0.84	PRESSION
DEPRESSION			151	139	124	109	84	3,20	97	119	133	148				DEPRESSION
PRESSION	5.6KG	1000	145	127	109	90	71		115	132	153	160	27,810	14		PRESSION
DEPRESSION	158	158	133	124	109	94	74	3,40	86	107	120	132	127			DEPRESSION
PRESSION	148	148	131	.114	97	79	60		102	117	137	157	160			PRESSION
DEPRESSION	135	135	120	111	96	81	66	3,60	78	97	108	119	121	123	123	DEPRESSION
PRESSION	134	134	119	103	87	70	52	115.07	91	104	123	142	160	160	160	PRESSION
DEPRESSION	131	131	109	99	85	71	59	3,80	72	88	98	108	115	122	122	DEPRESSION
PRESSION	120	120	107	93	78	63	45		81	93	111	129	160	160	160	PRESSION
DEPRESSION	117	117	97	90	76	63	54	4,00	66	79	89	99	110	120	120	DEPRESSION
PRESSION	108	108	97	85	71	56			73	83	100	118	157	160	160	PRESSION
DEPRESSION	105	105	88	81	69	56	5.2.4	4,20	61	72	81	90	105	119	119	DEPRESSION
PRESSION	98	98	88	78	64	51			67	75	91	108	144	160	160	PRESSION
DEPRESSION	94	94	79	74	62	50	ut.	4,40	55	65	74	83	100	117	117	DEPRESSION
PRESSION	89	89	80	71	59	46	2		61	68	84	99	126	153	153	PRESSION
DEPRESSION	85	85	72	68	56	45	168	4,60	48	60	68	77	96	115	115	DEPRESSION
PRESSION	81	81	74	66	54	15000	1015	THON'S	56	62	77	92	111	131	131	PRESSION
DEPRESSION	78	78	66	62	51	449	198	4,80	42	55	63	71	85	100	100	DEPRESSION
PRESSION	74	74	68	61	50				51	57	71	85	99	112	112	PRESSION
DEPRESSION	71	71	60	57	47	9831	P. 1183	5,00	37	50	58	65	76	86	86	DEPRESSION
PRESSION	69	69	62	56	46				47	52	66	80	88	97	97	PRESSION
DEPRESSION	65	65	55	53	43			5,20	32	46	53	60	68	75	75	DEPRESSION
PRESSION	63	63	58	52	1.16	DUTCH.	1.2. 1	9.00	10.000	48	61	75	81	88	88	PRESSION
DEPRESSION	60	60	51	49				5,40		43	49	56	62	68	68	DEPRESSION
PRESSION	- 59	59	54	49	BOI)	Star	M G	1,859	BUI A	31134 (31134	57	70	76	82	82	PRESSION
DEPRESSION	55	55	47	46	NOF	1101	22.1	5,60			46	52	57	63	63	DEPRESSION
PRESSION	54	54	50	46	1	8				1	53	66	71	77	77	PRESSION
DEPRESSION	51	51	44	43				5,80			43	49	53	58	58	DEPRESSION
PRESSION	51	51	47	LINE DA	1.110	125 E	112000	1 00	-	13.34	50	62	67	72	72	PRESSION
DEPRESSION	47	47	41			- Lorly	-	6,00			40	45	50	54	54	DEPRESSION

(les panneaux sont fixés à chaque sommet de nervure et sur tous les appuis)

FILM DE PROTECTION

Un film polyéthylène adhésif de protection est appliqué en usine sur les parements prélaqués extérieur et intérieur des panneaux. Celui-ci devra être enlevé au fur et à mesure de la pose et au plus tard 3 mois après la mise à disposition en usine de la marchandise.

PERCAGES ET DECOUPES

Dans la mesure du possible, éviter toute découpe sur site.

Afin de limiter les risques de désolidarisation mousse-métal lors d'une opération de découpe, il est conseillé de poser le panneau sur des appuis de telle sorte que les parements extérieur et intérieur soient maintenus de part et d'autre de la découpe (matériel conseillé : scie sauteuse). Lors d'une opération de découpe, protéger la zone environnante afin d'éviter de détériorer le revêtement des panneaux. Après toute opération de découpe ou perçage, il conviendra de balayer immédiatement les panneaux afin d'éliminer toutes limailles ou copeaux.

CALEPINAGE

Avant toute commande, veuillez apporter une attention particulière au calepinage qui sera garant d'une mise en œuvre correcte et rapide. Un bon de commande se trouve à la fin de cette documentation afin de vous assister dans cette démarche. ANNEXE - 4

		ZONE									
Groupe	1	lla	llb	Ш							
1 A	0,15	0,25	0,30	0,40							
1 B	0,12	0,20	0,25	0,30							
2	0,10	0,15	0,20	0,25							
3	0.07	0.10	0.14	0.18							

Tableau 4.1. : coefficient d'accélération de zone A.

Tableau 4.7 : Valeurs de T₁ et T₂

Site	\mathbf{S}_1	\mathbf{S}_2	S ₃	S_4
T _{1(sec)}	0,15	0,15	0,15	0,15
T _{2(sec)}	0,30	0,40	0,50	0,70

Tableau 4.2 : Valeurs de ξ (%)

	Port	iques	Voiles ou murs
Remplissage	Béton armé	Acier	Béton armé/maçonnerie
Léger	6	4	10
Dense	7	5	

Cat	Description du système de contreventement (voir chapitre III § 3.4)	Valeur de R
A	Béton armé	
1a	Portiques autostables sans remplissages en maçonnerie rigide	5
1b	Portiques autostables avec remplissages en maçonnerie rigide	3,5
2	Voiles porteurs	3,5
3	Noyau	3,5
4a	Mixte portiques/voiles avec interaction	5
4 b	Portiques contreventés par des voiles	-4
5	Console verticale à masses réparties	2
6	Pendule inverse	2
B	Acier	
7	Portiques autostables ductiles	6
8	Portiques autostables ordinaires	4
9 a	Ossature contreventée par palées triangulées en X	-4
9b	Ossature contreventée par palées triangulées en V	3
10a	Mixte portiques/palées triangulées en X	5
10b	Mixte portiques/palées triangulées en V	4
11	Portiques en console verticale	2

Tableau 4.4.: valeurs des pénalités P_q

	Pa					
Critère q »	Observé	N/observé				
1. Conditions minimales sur les files de contreventement	0	0,05				
2. Redondance en plan	0	0,05				
3. Régularité en plan	0	0,05				
4. Régularité en élévation	0	0,05				
5. Contrôle de la qualité des matériaux	0	0,05				
6. Contrôle de la qualité de l'exécution	0	0,10				
ANNEXE – 5

Designation	3.18	MIO	3412	1114	Mlo	M18	3420	b122	MC4	215.4	2130
d (ma)	8	10	12	14	16	18	28	22	24	27	- 10
d, (1999)	9	11	13	15	18	20	22	- 24	26	30	33
A (mm ²)	50,3	78,5	113	154	201	254	314	330	452	573	707
A: (mm ¹)	36.6	58	84,3	115	157	192	245	303	353	459	26L
P. (mm)	16	20	24	27	30	34	36	40	44	50	52
Fa. (1918)	12	63	3	3	3	3/4	4	4	4	45	5
d terms	14	183	20.5	23,7	24,58	29,1	32,4	34,5	38,8	44,2	49,6
6	1214	1517	18/22	31.04	2427	2201	30/33	\$365	36.41	41.96	-46.00
A (600)	1211-1			0	10	12	13	34	15	17	19
WT (NOR)	6	1	0	71.04	3407	71.01	32.02	1335	36141	4,46	4633
P_{χ} (num)	1284	15(17)	(102)	20.0%	2.401		10.10	1000	21,307	24393	25,60
h _E (nos) ⁽²⁾	1/7	99	10,8/11	12,6/13	14,815	10,2014	19110		40	48	58
P.M. (mm)	21	27	31	51	-51	51	38	38	28	10	-
ole uruelle	2	3	4	5	6	7	ß	20,34	514	-	10000