REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

> Université Aboubakr Belkaïd – Tlemcen – Faculté de TECHNOLOGIE

MEMOIRE

Présenté pour l'obtention du diplôme de MASTER

En : Hydraulique

Spécialité : Ouvrages Hydraulique

Par : Mr. BARKA Azzedine

Sujet

Modélisation des écoulements à surface libre en présence d'un obstacle trapézoïdale dans le fond du canal

Soutenu publiquement, le /08/2020, devant le jury composé de :

ADJIM Mohamm **ed BENTALHA Chakib TERKI Hassaine Taha El amine

Univ. Tlemcen Président Univ. Tlemcen Univ. Tlemcen

Encadreur Examinateur

Année universitaire : 2019/2020

Remerciements

On remercie Dieu le tout puissant de nous avoir donné la santé et la volonté d'entamer et de

terminer ce mémoire.

Je tiens à remercier vivement mon directeur de mémoire, Monsieur BENTALHA Chakib,

pour avoir dirigé ce travail et pour ses enseignements très enrichissants.

J'exprime ma reconnaissance à tous les membres de jury ADJIM Mohammed et TERKI Hassaine

Ta ha El amine, d'avoir accepté de lire ce travail et d'apporter les critiques nécessaires à la mise

en forme finale de cet ouvrage.

Mes remerciements s'adressent aussi à tous mes enseignants de département d'hydraulique.

Mes remerciements vont aussi à tous mes amis et mes collègues.

Je remercie tous ceux qui ont aidés de près ou de loin, à la réalisation de ce travail.

Dédicace

C'est grâce à ALLAH seul que j'ai pu achever ce travail, je le dédie a :

Ma chère mère Fatma et mon cher père Abderrahmane qui m'ont toujours encouragé et

soutenue durant toute ma vie.

Ma sœur Wissame, mon petite frère Issam et tous mes cousins.

Mes grands-mères et mes grands-pères et toute la famille BARKA et MATALLAH.

Tous mes amis.

Tous ceux que j'ai connus de près ou de loin.

Azzedine BARKA

Table des matières

Résumé	i
Abstract	ii
الملخص	iii
Liste des figures	iv
Liste des tableaux	vii
Liste des symboles	viii
Introduction générale	1
Chapitre 1 : Etude bibliographique sur les écoulemen	ts à surface libre
Introduction	
1.1.Définition d'un écoulement à surface libre	
1.2. Généralité sur les canaux	
1.2.1. Les type de canaux	
1.2.1.1. Les canaux naturels	
1.1.1.2. Les canaux artificiels	
1.2.2. Géométrie des canaux	
1.2.3. Les écoulements dans les canaux	5
a) Variabilité dans le temps	
b) Variabilité dans l'espace	
1.2.4. Les paramètres hydrauliques	7
a) Le débit	7
b) La vitesse moyenne	7
c) La charge d'hydraulique	7
d) La charge spécifique	7
1.2.5. La couche limite dans un canal rectangulaire	
1.2.6. La courbe de remous	
1.2.7. Le régime d'écoulement	
1.3. Les déversoirs	9
1.3.1. Les type des déversoirs	
1. En fonction du profil	
1.1. Déversoir en mince paroi	

1.1.1. Déversoir mince à section rectangulaire	10
1.1.2. Déversoir mince à section triangulaire	11
1.1.3. Déversoir mince à section trapézoïdale	11
1.2. Déversoir épais	12
1.2.1. Déversoir à seuil épais à profil triangulaire type Crump	13
1.2.2. Déversoir rectangulaire à seuil épais	13
1.2.3. Déversoirs à seuil épais Forme trapézoïdale	14
2. En fonction du type d'écoulement	15
2.1. Déversoir dénoyé	15
2.2. Déversoir noyé	15
2.3. Déversoir adhérent	16
1.3.2. L'objectif du déversoir	16
Conclusion	16

Chapitre 2 : Modélisation numérique des écoulements à surface libre

2.1. Introduction	17
2.2. Définition de modélisation numérique	17
2.3. Présentation de code de calcul ANSYS Fluent	17
2.3.1. Construction de la géométrie	
2.3.2. Le maillage	19
2.3.3. Les conditions aux limites d'une géométrie	19
2.3.4. Le solveur Fluent	
2.4.1. Fluide incompressible	
2.4.2. L'écoulement à la présence d'un obstacle	
2.4.3. Modèles de turbulence	
2.4.4. Les équations de NAVIER-STOKS	
a) L'équation de continuité	
b) Conservation de la quantité de mouvement	
2.4.5. Le nombre de Reynolds	
2.4.6. Décomposition de Reynolds (RANS)	
2.5. Méthodes de quantification de la turbulence	

2.5.1. Le modèle K- ε	
2.5.2. Le modèle K- ω	
2.5.3. Modèle des contraintes de Reynolds RSM	
2.5.4 Modélisation de la surface libre	
2.5.5. Le modèle VOF	
2.5.6. Mixture model	
2.5.7. Le modèle Eulérien	
2.6. Méthode des Volumes Finis (MVF)	
2.7. Conditions aux limites et initiales	30
2.7.1. Conditions initial	
2.7.2. Condition aux limites	30
2.8. Convergence des calculs	
2.8.1. Critère sur l'erreur de masse	
2.8.2. Critère visuel au niveau du Linegraph	
2.9. Le couplage pression vitesse	
2.2. Conclusion	

Chapitre 3 : Simulation numérique de l'écoulement et les résultats

3.1. Introduction	
3.2. Présentation du banc d'essai	
3.3. Les conditions expérimentales	
3.4 La modélisation numérique	
3.4.1 Création de la géométrie	
3.4.2. Maillage et conditions aux limites	
3.5. Modélisation sur Fluent	
3.5.1. Résultats	
3.5.2. Déversoir 0.5H/1V et L=10cm	
3.5.3. Déversoir 3H/1V et L=10cm	
3.5.4. Déversoir 0.5H/1V et L=15cm	
3.5.5. Déversoir 3H/1V et L=15cm	
3.6. Interprétation	77

Conclusions générales	84
Références bibliographiques	85

Résumé

Ce travail s'inscrit dans le cadre des études des écoulements à surface libre, qui sont des phénomènes d'une extrême difficulté si on veut l'étudier dans toute sa globalité. Notre mission consistait à faire une simulation numérique de l'écoulement diphasique dans un canal rectangulaire on présence d'un déversoir trapézoïdale sur le fond pour la compréhension de l'effet de l'angle d'approche sur l'efficacité de décharge de déversoir a crête large .Ce travail a été réalisé avec le solveur ANSYS-Fluent qui résoudre les Équations de Navier Stocks, Les résultats numérique sont obtenus par deux modèles, le modèle multiphasique (VOF) (Volume Of Fluid) et le modèle (k – ε) la turbulence. Afin de comparer les résultats numériques avec les résultats expérimentaux.

Mots clés : écoulements à surface libre, l'écoulement diphasique, canal rectangulaire, déversoir trapézoïdale, ANSYS-Fluent, les Équations Navier Stocks, le modèle ($k - \varepsilon$), le modèle(VOF).

Abstract

In this work, we studied the variation of the water line of a free surface flow, which are phenomena of extreme difficulty if we want to study it in its entirety.

Our mission consisted in making a numerical simulation of the two-phase flow in a rectangular channel in the presence of a trapezoidal spillway on the bottom to understand the effect of the approach angle on the discharge efficiency of the broad wide ridge.

This work was carried out with the ANSYS-Fluent which solves the Navier Stocks Equations, Numerical results are obtained by two models, the multiphasic model (VOF) (Volume of Fluid) and the closure model (k - ε). In order to compare the numerical results with the experimental results.

Keywords: free surface flow, two-phase flow, rectangular channel, trapezoidal spillway, ANSYS-Fluent, Navier Stocks Equations, model volume of Fluid, model (k - ε).

الملخص

هذا العمل جزء من در اسات التدفقات السطحية الحرة، وهي ظاهرة صعبة للغاية إذا أردنا در استها بالكامل. نتمثل مهمتنا في إجراء محاكاة عددية للتدفق ثنائي الطور في قناة مستطيلة في وجود حاجز شبه منحرف في الجزء السفلي لفهم تأثير زاوية Navier عديم التدفق. تم تنفيذ هذا العمل باستخدام برنامج ANSYS-Fluent الذي يحل معادلات Navier معادلات Stocks ويتم الحصول على النتائج العددية من خلال نموذجين، النموذج متعدد الأطوار (vof) ونموذج الاغلاق (٤-٤) من أجل مقارنة النتائج العددية بالتحريبية.

الكلمات المفتاحية: التدفقات السطحية الحرة، التدفق ثنائي الطور، حاجز شبه منحرف، برنامج ANSYS-Fluent، النموذج متعدد الأطوار (vof)، ونموذج الاغلاق (k-٤) .

Liste des figures

Figure 1.1 : Types de canaux	4
Figure 1.2 : Eléments géométriques de la section	4
Figure 1.3 : Type d'écoulement	5
Figure 1.4 : Etablissement de type d'écoulement	6
Figure 1.5 : Représentation de la ligne d'énergie, la ligne de surface	8
Figure 1.6 : Déversoir triangulaire	9
Figure 1.7 : Principe du déversoir mince rectangulaire	. 11
Figure 1.8 : Déversoir triangulaire à paroi mince	. 11
Figure 1.9 : Déversoir mince à section trapézoïdale	. 12
Figure 1.10 : Déversoir à seuil épais à profil triangulaire de type Crump. Représentation	
schématique de l'écoulement	. 13
Figure 1.11 : Déversoir rectangulaire à paroi épaisse	. 14
Figure 1.12. Déversoir à seuil épais Forme trapézoïdale	. 14
Figure 1.13 : le fonctionnement de déversoir dénoyé	. 15
Figure 1.14 : coupe longitudinale d'un déversoir à crête épaisse en écoulement noyé	. 15
Figure 2.1 : L'interface de WorkBench	. 18
Figure 2.2 : La géométrie d'un tube	. 19
Figure 2.3 : représentation des types de maillage	. 19
Figure 2.4 : interface des conditions aux limites de notre géométrie	20
Figure 2.5 : Interface de solveur fluent	20
Figure 2.6 : Fluent calcul des résidus	21
Figure 2.7 : L'influence d'obstacle sur l'écoulement	22
Figure 2.8 : La classification de l'écoulent à ciel ouvert selon le nombre de Reynolds	25
Figure 2.9 : diagramme Evolution de la vitesse fluctuante en fonction du temps	26
Figure 2.9 : Schéma de la méthode VOF	28
Figure 2.10 : Conditions aux limites imposées.	30
Figure 2.11 : Schéma itératif de Fluent, avec l'algorithme SIMPLE	32
Figure 3.1 : vue 3D de déversoir	33
Figure 3.2 : représentation de banc d'essais Le canal hydrodynamique	. 34
Figure 3.3 : La géométrie du canal sous ANSYS	35
Figure 3.4 : représentation de maillage	35
Figure 3.5 : conditions aux limites	36

Figure 3.6 : interface de conditions de calcul	37
Figure 3.7 : Fluent calcul des résidus.	37
Figure 3.8 : profil de la ligne d'eau pour Q=3700 cm ³ /s ; $0.5H/1V$ et L=10cm	38
Figure 3.9 : Le champ de vitesse Q=3700 cm ³ /s ; $0.5H/1V$ et L=10cm	39
Figure 3.10 : Le champ de pression Q=3700 cm ³ /s ; $0.5H/1V$ et L=10cm	40
Figure 3.11 : profil de la ligne d'eau pour Q=2007 cm ³ /s ; $0.5H/1V$ et L=10cm	41
Figure 3.12 : Le champ de vitesse Q=2007 cm ³ /s ; $0.5H/1V$ et L=10cm	42
Figure 3.13 : Le champ de pression Q=2007 cm ³ /s ; $0.5H/1V$ et L=10cm	43
Figure 3.14 : profil de la ligne d'eau pour Q=1258 cm ³ /s ; $0.5H/1V$ et L=10cm	44
Figure 3.15 : Le champ de vitesse Q=1258 cm ³ /s ; $0.5H/1V$ et L=10cm	45
Figure 3.16 : Le champ de pression $Q=1258 \text{ cm}^3/\text{s}$; 0.5H/1V et L=10cm	46
Figure 3.17 : variation des profils d'eau numérique cas de déversoir 0.5H/1V et L=10cm	47
Figure 3.18 : variation des profils d'eau expérimentale cas de déversoir 0.5H/1V, L=10cm.	47
Figure 3.19 : profil de la ligne d'eau pour Q= $3177 \text{ cm}^3/\text{s}$; $3H/1V$ et L= 10 cm	48
Figure 3.20 : Le champ de vitesse Q=3177 cm ³ /s ; $3H/1V$ et L=10cm	49
Figure 3.21 : Le champ de pression $Q=3177 \text{ cm}^3/\text{s}$; $3H/1V$ et $L=10\text{cm}$	50
Figure 3.22 : Le profil d'eau Q=2007 cm ³ /s ; $3H/1V$ et L=10cm	51
Figure 3.23 : Le champ de vitesse Q=2007 cm ³ /s ; $3H/1V$ et L=10cm	52
Figure 3.24 : Le champ de pression $Q=2007 \text{ cm}^3/\text{s}$; $3H/1V$ et $L=10\text{cm}$	53
Figure 3.25 : Le profil d'eau Q=1258 cm ³ /s ; $3H/1V$ et L=10cm	54
Figure 3.26 : Le champ de vitesse $Q=1258 \text{ cm}^3/\text{s}$; $3\text{H}/1\text{V}$ et L=10cm	55
Figure 3.27 : Le champ de pression $Q=1258 \text{ cm}^3/\text{s}$; $3H/1V$ et $L=10\text{cm}$	56
Figure 3.28 : variation des profils d'eau numérique le cas de déversoir 3H/1V et L=10cm	57
Figure 3.29 : variation des profils d'eau expérimentale cas de déversoir 3H/1V, L=10cm	57
Figure 3.30 : profil de la ligne d'eau pour Q= $3177 \text{ cm}^3/\text{s}$; 0.5H/1V et L= 15 cm	58
Figure 3.31 : champs de vitesse pour Q=3177 cm ³ /s ; 0.5H/1V et L=15cm	59
Figure 3.32 : champs de pression pour Q=3177 cm ³ /s ; $0.5H/1V$ et L=15cm	60
Figure 3.33 : profil de la ligne d'eau pour Q=2007 cm ³ /s ; $0.5H/1V$ et L=15cm	61
Figure 3.34 : champs de vitesse pour Q=2007 cm ³ /s ; 0.5H/1V et L=15cm	62
Figure 3.35 : champs de pression pour Q=2007 cm ³ /s ; 0.5H/1V et L=15cm	63
Figure 3.36 : profil d'eau pour Q=1258 cm ³ /s ; 0.5H/1V et L=15cm	64
Figure 3.37 : champs de vitesse pour Q=1258 cm ³ /s ; $0.5H/1V$ et L=15cm	65
Figure 3.38 : champs de pression pour Q=1258 cm ³ /s ; $0.5H/1V$ et L=15cm	66
Figure 3.39 : variation des profils d'eau numérique cas de déversoir 0.5H/1V et L=15cm	67

Figure 3.40 : variation des profils d'eau expérimentale cas de déversoir 0.5H/1V, L=15cm 67
Figure 3.41 : Le profil d'eau Q=3700 cm ³ /s ; 3H/1V et L=15cm
Figure 3.42 : Le champ de vitesse Q=3700 cm ³ /s ; 3H/1V et L=15cm
Figure 3.43 : Le champ de pression $Q=3700 \text{ cm}^3/\text{s}$; $3H/1V$ et $L=15$ cm
Figure 3.44 : Le profil d'eau Q=2007 cm ³ /s ; 3H/1V et L=15cm
Figure 3.45 : Le champ de vitesse Q=2007 cm ³ /s ; $3H/1V$ et L=15cm
Figure 3.46 : Le champ de pression Q=2007 cm ³ /s ; $3H/1V$ et L=15cm
Figure 3.47 : Le profil d'eau Q=1258 cm ³ /s ; 3H/1V et L=15cm74
Figure 3.48 : Le champ de vitesse Q=1258 cm ³ /s ; 3H/1V et L=15cm75
Figure 3.49 : Le champ de pression $Q=1258 \text{ cm}^3/\text{s}$; $3H/1V$ et $L=15$ cm
Figure 3.50 : variation des profils d'eau numérique le cas de déversoir 3H/1V et L=15cm 77
Figure 3.51 : variation des profils d'eau expérimentale cas de déversoir 3H/1Vet L=15cm 77

LISTE DES TABLEAUX

Tableau 3.1 : la variation du tirant d'eau le long du canal obtenu par mesures et par	
simulation pour Q= (3700-2007-1258) cm ³ /s ; 0.5H/1V et L=10cm	47
Tableau 3.2 : la variation du tirant d'eau le long du canal obtenu par mesures et par	
simulation pour Q= (3700-2007-1258) cm ³ /s ; $3H/1V$ et L=10cm	57
Tableau 3.3 : la variation du tirant d'eau le long du canal obtenu par mesures et par	
simulation pour Q= (3700-2007-1258) cm ³ /s ; 0.5 H/1V et L=15cm	67
Tableau 3.4 : la variation du tirant d'eau le long du canal obtenu par mesures et par	
simulation pour Q= (3700-2007-1258) cm ³ /s ; 3H/1V et L=15cm	77

LISTE DES SYMBOLES

- $S_m: Section \ mouillée$
- P_m : Périmètre mouillé
- B : Largeur au miroir
- D_h : Profondeur d'écoulement
- H_n : Hauteur normale
- H : Tirant d'eau
- I : Pente
- R_h: Rayon hydraulique
- U : La vitesse d'écoulement
- Q : Le débit
- He : La charge Hydraulique
- P: La pression
- ρ : La masse volumique de l'eau
- G : La gravité
- $Z_f\colon$ la hauteur par rapport à une référence
- Es : La charge spécifique
- J : La pente de la ligne d'eau
- Fr : Nombre de Froude
- H_c : La hauteur critique
- H_d : La charge au-dessus du déversoir
- μ : Coefficient de correction de débit
- C, Ct, Cr : Coefficient de débit
- $\boldsymbol{\theta}$: L'angle d'ouverture de l'ancrage degré

- L : Longueur de l'échancrure
- F: La force
- α : L'accélération
- R_e : Le nombre de Reynolds
- K : L'énergie cinétique de turbulence
- ε : Le taux de dissipation de l'énergie cinétique
- ω : Le taux de dissipation spécifique

Introduction générale

La compréhension et la prévision du comportement de l'écoulement à surface libre est un intérêt stratégique. Ce dernier est un phénomène d'une extrême difficulté si on veut l'étudier dans toute sa globalité, car la présence d'une surface libre entraîne les variations des sections liquides suivant la longueur du courant même en cas d'obstacles insignifiants. Cette variation exige l'étude des processus de formation des ondes stationnaires. Les courants à surface libre peuvent être permanents, non permanents, uniformes ou non uniformes.

La modélisation d'écoulement nécessite un découpage du domaine global de calcul en deux sous domaines non miscibles séparés par une interface bien définie qui présente la surface libre. Au cours des dernières décennies, une attention croissante a été posée au développement des méthodes de calcul des écoulements à surface libre, impliqués dans divers domaines de l'ingénierie.

Dans ce mémoire, Nous avons modélisé une expérience fait dans le laboratoire de département d'ingénierie de l'Université Dokuz Eylul, İzmir, TURKEY, pour but de tester l'efficacité de l'angle d'approche et la langueur de crête de déversoir trapézoïdal sur l'écoulement dans un canal rectangulaire.

Pour cela on utilise le code de calcul ANSYS Fluent R15. Nous avons opté pour la méthode VOF (volume of fluid) pour tracer le comportement de la surface libre. Aussi bien nous avons choisi RANS (Reynolds Averaged Navier-Stokes) pour la modélisation et le modèle de turbulence standard \mathbf{k} - $\boldsymbol{\epsilon}$. A la fin, nous avons comparé les résultats numériques avec les mesures expérimentaux.

Ce manuscrit est organisé en 3 chapitres. Le premier chapitre est consacré à des généralités sur les écoulements à surface libre et quelques notions hydrauliques. Aussi bien les types et les régimes d'écoulement.

Ensuite, nous avons cerné les différents types de déversoir sans oublier l'obstacle utilisé dans notre expérience. Dans le deuxième chapitre, nous avons présenté le code de calcul ANSYS Fluent R15. Ensuite, nous avons cerné les équations de Navier-Stokes, ainsi les modèles de discrétisation et les algorithmes de calcul du couplage pression-vitesse. Dans le troisième chapitre, nous avons présenté le canal utilisé dans notre expérience. Ensuite, nous avons comparé et commenté les résultats expérimentaux et numériques pour la pente horizontale. Le mémoire se termine par des conclusions générales et des propositions intéressantes pour les travaux futurs.

1. Etude bibliographique sur les écoulements à surface libre

Introduction

Le présent chapitre propose une synthèse des principales sur les écoulements à surface libre et ces caractéristiques.

Ce dernier présente des difficultés à étudier et comprend surtout dans les canaux naturels, pour cette raison qu'on a fait l'étude sur des canaux artificielle là où les paramètres de l'écoulement peuvent les déterminer facilement.

Dans ce chapitre, nous commençons par des généralités sur les écoulements à surface libre et ces caractéristiques ; Ensuite, nous avons définis les déversoirs tels que ses types et ses objectifs. Nous avons présenté le déversoir qui a servi à l'étude.

1.1. Définition d'un écoulement à surface libre [1]

Ecoulement à surface libre est caractérisé par l'existence d'une surface libre en contact direct avec l'air ambiante, donc la surface de l'écoulement à une pression égale à la pression atmosphérique. L'écoulement dans les conduites fermées à la pression atmosphérique, ou lorsque le niveau d'eau est égale au diamètre de la conduite et aussi un écoulement à surface libre. Dans ce cas la force prédominante est celle de la gravité, le mouvement est dû principalement à la pente du canal.

1.2.Généralité sur les canaux [2]

On appelle canal un système de transport dans lequel l'eau s'écoule et dont la surface libre est soumise à la pression atmosphérique.

1.2.1. Les types de canaux

1.2.1.1. Les canaux naturels

Ce sont les cours d'eau qui existent naturellement sur (ou sous) terre ; tels que les torrents, rivières, fleuves. Les propriétés géométriques et hydrauliques des canaux naturels sont généralement assez irrégulières comme indique la (figure1.1).

L'application de la théorie hydraulique ne donne que des résultats approximatifs obtenus à partir d'hypothèses qui s'imposent.

1.1.1.2 . Les canaux artificiels

Ce sont des cours d'eau réalisés par l'homme sur (ou sous) terre tels que : les canaux découverts construits au ras du sol (canaux de navigation, d'adduction et d'évacuation, d'irrigation et de drainage) ou les canaux couverts dans lesquels les liquides ne remplissent pas toute la section (tunnels hydrauliques, aqueducs, drains, égouts) (figure1.1).

Figure 1.1 : Types de canaux [2].

1.2.2. Géométrie des canaux

• La section transversale d'un canal est une section plane normale à la direction de l'écoulement. Pour un canal uniforme cette section est perpendiculaire à la génératrice.

• La section ou surface mouillée, A, est la portion de la section transversale occupée par le liquide. Les éléments géométriques d'une section mouillée, A, sont suivants la (figure1.2) :

Figure 1.2 : Eléments géométriques de la section [2].

Le périmètre mouillé, P, du canal, formé par la longueur de la ligne de contact entre la surface mouillée et le lit y compris les berges, mais ne comprenant pas la surface libre

Le rayon hydraulique, R_h, donné par le quotient de la surface mouillée, A, et du périmètre mouillé, P : $R_h = \frac{A}{P}$ 1.1

Le diamètre hydraulique : $D_h = 4R_h = \frac{4A}{P}$ 1.2

Largeur au miroir B : largeur de la section d'écoulement au niveau de la surface libre La profondeur d'eau est la hauteur d'eau mesurée à partir du point le plus bas de la section perpendiculaire à l'écoulement (figure1.2).

1.2.3. Les écoulements dans les canaux [3]

Les écoulements dans les canaux naturels et artificiels sont des écoulements à surface libre. Cet écoulement présente par définition la particularité de comporter une surface libre en contact avec l'air, généralement soumise à la pression atmosphérique.

L'écoulement à surface libre est dû à la pente du fond du canal et non, comme les conduites (en charge) à la différence de charge entre deux sections.

On peut définir les écoulements suivants la variabilité des caractéristiques hydrauliques tels que le tirant d'eau et la vitesse en fonction du temps et de l'espace.

a) Variabilité dans le temps

Le mouvement est permanent (ou stationnaire) si les vitesses U et la profondeur h restent invariables dans le temps en grandeur et en direction (figure1.3). Le mouvement est non permanent dans le cas contraire :

Q = V.S

La vitesse moyenne V de l'écoulement est liée au débit Q par la relation :

Ecoulement non-permanent

1.3

figure1.3 : type d'écoulement [4].

t + dt

Au sens strict, l'écoulement dans les canaux est rarement permanent. Néanmoins les variations temporelles sont, dans certains cas, suffisamment lentes pour que l'écoulement puisse être considéré comme une succession de régime permanent. On peut alors définir ainsi le régime quasi-permanent.

b) Variabilité dans l'espace [3]

Le mouvement est uniforme si les paramètres caractérisant l'écoulement restent invariables dans les diverses sections du canal. La ligne de la pente du fond est donc parallèle à la ligne de la surface libre.

Le mouvement est non-uniforme ou varié si les paramètres caractérisant l'écoulement changent d'une section à l'autre. La pente de la surface libre diffère de celle du fond (Figure 1.4).

Un écoulement non-uniforme peut être accéléré ou décéléré suivant que la vitesse croît ou décroît dans le sens du mouvement (Figure 1.4).

Figure 1.4 : Etablissement de type d'écoulement [4].

- Lorsque le mouvement est graduellement varié, la profondeur ainsi que les autres paramètres varient lentement d'une section à l'autre.
- Lorsque le mouvement est rapidement varié, les paramètres caractérisant l'écoulement changent brusquement sur une courte distance.

1.2.4. Les paramètres hydrauliques [5]

- a) Le débit : Le débit est définit comme étant le volume d'un fluide transporté à travers une section perpendiculaire à l'écoulement pendant une unité de temps. Il s'exprime en m3/s.
- b) La vitesse moyenne : Elle représente la moyenne des vitesses perpendiculairement sur une section d'écoulement. Il se définie par la division du débit sur la section. Il s'exprime en m/s.

$$\mathbf{v} = \frac{\mathbf{Q}}{\mathbf{s}} \tag{1.4}$$

c) La charge d'hydraulique : La charge hydraulique en un point exprimé par la hauteur, la hauteur de la vitesse et l'énergie potentielle de pression. Elle est donnée par la formule de BERNOULLI.

$$\mathbf{H} = \mathbf{z} + \frac{\mathbf{U}^2}{2\mathbf{g}} + \frac{\mathbf{P}}{\rho \mathbf{g}}$$
 1.5

- H : La charge hydraulique (m)
- Z : la hauteur par rapport à une référence (m)
- U : la vitesse de l'écoulement (m/s)
- g : la gravité (m/s²)
- ρ : La masse volumique (kg/m³)
- P : la pression du fluide (Pa)
- d) La charge spécifique : C'est une charge moyenne mesurée par rapport au fond du canal.C'est la différence entre la ligne de charge est le radier du canal (Figure 1.5).

$$E_s = H_s = H - Z_f = \frac{U^2}{2g} + y$$
 1.6

1.2.5. La couche limite dans un canal rectangulaire [6]

Dans un écoulement, ce terme désigne la zone proche d'une paroi où la vitesse est très faible. En effet, la vitesse à la paroi est nulle à cause de la viscosité du fluide et au milieu du canal elle est maximale en général. Cette vitesse ne va pas passer de zéro à son maximum instantanément mais de manière continue en formant un profil de vitesse.

1.2.6. La courbe de remous [7]

C'est une manière de de simulation des trajets des écoulements graduellement varié qui change ses paramètres comme la profondeur , section et le périmètre dans l'espace et dans le temps, On voit ce type d'écoulement près d'un déversoir ou un obstacle, changement de la pente ou bien présence d'une vanne. La courbe de la ligne d'eau s'appelle la courbe de remous qui est définis par la différence entre la hauteur d'eau et la hauteur normale d'un écoulement uniforme du débit considéré.

1.2.7. Le régime d'écoulement [7]

On définit le régime par le calcul de nombre de Froude qui est un nombre adimensionnel et présent le rapport des forces de vitesse avec les forces de pesanteur.

Il existe trois régimes d'écoulement à surface libre, on peut les classer selon la valeur de nombre de Froude :

$$\mathbf{Fr} = \sqrt{\frac{\mathbf{Q}^2\mathbf{B}}{\mathbf{g}\mathbf{S}_{\mathrm{m}}^3}} \qquad \qquad \mathbf{1.7}$$

Q : Le débit transporté (m^3/s)

B : La largeur en miroir (m)

 S_m : La section traversée (m²)

g : La gravité (m/s²)

1. Pour Fr = 1 le régime est critique : dans cette cas, l'énergie spécifique minimale et le débit d'écoulement maximale.

- 2. Pour Fr < 1 le régime est fluvial ; $h_n > h_c$
- 3. Pour Fr > 1 le régime est torrentiel ; $h_n < h_c \label{eq:hamiltonian}$

1.3.Les déversoirs

:

C'est un ouvrage hydraulique pour but de dériver ou évacuer le débit transité dans la retenue. Aussi est un dispositif de mesure des débits.

Le déversoir peut être de forme rectangulaire, triangulaire, trapézoïdale ou circulaire et peut comporter une contraction latérale.

Les seuils sont dits épais (ou à crête large) si la hauteur d'eau, au-dessus du seuil à l'amont, est inférieure à 1.5 ou 2 fois l'épaisseur du seuil.

Figure 1.6 : Déversoir triangulaire [8].

1.3.1. Les types des déversoirs : La mesure du débit aux stations de jaugeage dans les canaux ouverts tels que les rivières est vaste et importante.

Les déversoirs à crête sont couramment utilisés pour mesurer le débit dans les canaux ouverts.

Les déversoirs à crête sont principalement des blocs horizontaux plats, mais ceux-ci ont progressivement soulevé des faces amont.

L'application de l'équation de Bernoulli entre une section à l'amont où la vitesse est négligeable et la deuxième situé à l'arête amont du déversoir, en négligeant la perte de charge, en écrivant

$$v = \sqrt{2gH_d}$$
 1.8

Ensuit le débit à travers la section :

$$Q = \frac{2}{3}\mu B H_d \sqrt{2gH_d}$$
 1.9

Q : Le débit calculé

 μ : Le coefficient de correction

B : La largeur en miroir

H_d: La hauteur d'eau

g : la gravité

Les types de déversoir sont estimés en fonction les caractéristiques suivantes :

1. En fonction du profil

1.1.Déversoir en mince paroi [9]

Généralement c'est un ouvrage pour mesuré le débit écoulé, est caractérisé par sa géométrie simple, c'est une paroi verticale mince perpendiculaire à l'écoulement, peut présenter une échancrure de formes divers. Le régime au-dessus du déversoir en générale est critique. La hauteur à l'aval doit être largement inférieure à la crête pour assurer que la pression au-dessus de la lame d'eau est égale à la pression atmosphérique et la nappe d'eau ne soit pas noyée.

1.1.1 Déversoir mince à section rectangulaire

C'est un dispositif rectiligne dont l'épaisseur de la crête est inférieure à la moitié de la charge au-dessus du seuil (figure1.7). Il mesure les débits uniformes ou dépasse 14 l/s. L'équation d'un déversoir rectangulaire est :

$$\mathbf{Q} = \mathbf{C}_{\mathbf{d}} \mathbf{b} \sqrt{2\mathbf{g}} \mathbf{H}_{\mathbf{d}}^{3/2}$$
 1.10

Cd : coefficient du débit du déversoir standard qui dépend de la charge H_d

Figure 1.7 : Principe du déversoir mince rectangulaire [10].

1.1.2 Déversoir mince à section triangulaire [11]

Le déversoir triangulaire à paroi mince est constitué d'une plaque verticale découpée selon le schéma de la (figure1.8). Une échancrure est opérée suivant un angle d'ouverture θ . Le dispositif est généralement placé dans un canal rectangulaire de largeur constante B.

Figure 1.8 : Déversoir triangulaire à paroi mince [11].

$$\mathbf{Q} = \frac{8}{15} C_t \sqrt{2g} \tan\left(\frac{\theta}{2}\right) \, \mathbf{h}^{5/2} \tag{1.11}$$

 $C_t: \text{coefficient de débit dépend de l'angle} \ \theta. \qquad C_t \approx 0{,}31$

1.1.3 Déversoir mince à section trapézoïdale

La forme trapézoïdale c'est un ensemble de déversoir rectangulaire et un déversoir triangulaire sur les bords (figure1.9). Il s'utilise pour les débits dépasse 35 L /s.

Figure 1.9 : Déversoir mince à section trapézoïdale [9].

Selon Cipoletti (1963) et après simplification de la formule du débit de la forme rectangulaire. Il a donné une valeur constante de coefficient de débit $C_d \approx 0,633$. Donc la formule s'écrit :

$$Q = C B H_b^{3/2}$$

Avec $C = \frac{2}{3} \sqrt{2g} \ 0.633 = 1.86$
 $Q = 1.86 B H_b^{3/2}$ 1.12

Cette formule est utilisée pour les conditions suivantes :

- 0,08 m <H_b< 0,60 m
- Hb < B/3
- Hb < p/3

1.2. Déversoir épais

Un déversoir est dit à seuil épais lorsque la surélévation de la crête s'étale sur une assez grande distance l pour obtenir une surface libre horizontale est parallèle au seuil. Pratiquement, on suppose que le déversoir est à seuil épais si l > 3h.

Pour avoir une distribution hydrostatique des pressions et une perte d'énergie faible il faut que la valeur de h/B soit comprise entre $0.08 \le h/B \le 0.50$.

Leur géométrie est identique à celle de mince paroi sauf que ces derniers ont une épaisseur plus ou moins grande pour que le seuil soit performance Un seuil épais est considéré non noyé lorsque le niveau aval est à un niveau inférieur à 0.8 h mesuré au-dessus du seuil.

1.2.1. Déversoir à seuil épais à profil triangulaire type Crump [11]

La forme de ce déversoir est également caractérisée par un profil en long triangulaire mais les pentes amont et aval du seuil ont des valeurs différentes de celles du seuil à profil triangulaire appelés seuils Crump du nom de celui qui les a décrit le premier (Crump, 1952), créent une contraction verticale progressive qu'un déversoir (Figure 1.10), en formant un seuil dit « seuil épais »

Figure 1.10 : Déversoir à seuil épais à profil triangulaire de type Crump. Représentation schématique de l'écoulement [11].

Le débit passant par le déversoir se calcule par la relation suivante :

$$\mathbf{Q} = \mathbf{\mu} \mathbf{B} \sqrt{2\mathbf{g} \mathbf{h}^{3/2}}$$

 μ : est le coefficient de débit Les valeurs de ce coefficient sont en fonction de h et les pentes Im et Ij des parements amont et aval du seuil figure (1.10).

B : est la largeur du canal

h : correspond à l'épaisseur de la lame d'eau

1.2.2. Déversoir rectangulaire à seuil épais

Ce type de déversoir se présente comme un canal de faible longueur et de section rectangulaire avec une pente longitudinale nulle (Figure 1.11). Après la mise en place du seuil, l'écoulement est fluvial à l'amont. Dans le cas où l'écoulement serait dénoyé, il s'établit un écoulement critique de profondeur hc sur le seuil au voisinage de l'arête aval.

Figure 1.11 : Déversoir rectangulaire à paroi épaisse[12].

L'équation de débit est la même que déversoir mince :

$$Q = CbH_b^{3/2}\sqrt{2g} 1.13$$

Sauf que le coefficient C Il dépend de la longueur du déversoir, sa forme et sa rugosité ainsi son épaisseur. Il s'écrit comme suit :

C = 0,424 A. Le paramètre A varié en fonction des rapports h/e et h/p.

1.2.3. Déversoirs à seuil épais Forme trapézoïdale

Figure 1.12 : Déversoir à seuil épais Forme trapézoïdale [13].

$$Q = C_b b \sqrt{2gH_0^3}$$
 1.14

$$H_0 = h_0 + \frac{Q^2}{2gb^2(h_0 + w)^2}$$
 1.15

Cd : le coefficient de débit défini par Fritz et Hager comme suit :

$$C_d = 0.43 + 0.06 \sin(\pi(\varepsilon - 0.55))$$
 1.16

Avec $\epsilon = H_0/(H_0 + L_w)$ avec $0 < \epsilon < 1$

2. En fonction du type d'écoulement

2.1. Déversoir dénoyé [7]

Quand l'écoulement a l'aval de déversoir ne influe pas sur l'écoulement l'amont (figure1.14) donc l'écoulement au niveau de la crête est critique et le ressaut hydraulique ce crée loin de déversoir.

figure1.13 : le fonctionnement de déversoir dénoyé [14].

2.2. Déversoir noyé

Les conditions de l'écoulement en aval influence l'écoulement à l'amont. La nappe d'eau se baisse juste à l'aval du déversoir (Figure 1.15), ça provoque l'augmentation de la vitesse. L'écoulement ne passe pas par le régime critique, il continue en régime fluvial. Dans ce cas, le déversoir entièrement immergé. Il est inutile pour la mesure du débit.

Figure 1.14 : coupe longitudinale d'un déversoir à crête épaisse en écoulement noyé [15].

2.3.Déversoir adhérent [7]

L'écoulement ni noyé ni dénoyé dans ce cas on risque d'avoir une zone de dépression audessus de la pression atmosphérique qui provoque la création de la cavitation.

1.3.2. L'objectif du déversoir

Un déversoir est donc un ouvrage de contrôle permettant une régulation hydraulique des apports dans les canaux. Il dérive une partie des effluents lorsque le débit à l'amont dépasse une certaine valeur que l'on appelle « débit de référence ».

Permettre un débit de fuite, détournant la rivière pour assurer la faune et la flore surtout à Laval des barrages.

Conclusion

Le chapitre présente une étude bibliographique sur les écoulements a surface libre et leurs caractéristiques et les paramètres qui conditionnent ces écoulements Ensuite, nous avons cité les types et les formes des déversoirs, aussi l'objectif de déversoir.

1. Modélisation numérique des écoulements à surface libre

2.1. Introduction

Dans ce chapitre, nous apprendrons à connaître le logiciel ANSYS Fluent qu'on aura utilisé dans notre modélisation numérique. Le logiciel est basé sur trois grandes parties Design Modeler pour la schématisation de la géométrie, le deuxième est pour faire le maillage, et le troisième le solveur Fluent qui fait la simulation et aussi nous avons présenté les équations de NAVIER STOKES qui régissent le phénomène de turbulence.

2.2. Définition de modélisation numérique [16]

La «modélisation » est la représentation d'un système par un modèle. C'est aussi la construction du modèle. La «simulation » pour but de faire vivre un système. C'est une méthode qui consiste à utiliser un modèle comme substitut de la réalité (Ouillon, 1993). Un modèle mathématique ou numérique désigne un algorithme, et on peut parler de logiciel ou programme lorsqu'il s'agit d'un modèle de simulation. Ainsi, le terme modèle est souvent complété par un mot particulier. Par exemple, un modèle de déversoir peut signifier la schématisation d'un déversoir réel.

2.3. Présentation de code de calcul ANSYS Fluent [17]

Il existe un certain nombre de codes industriels, aux meilleurs performants, permettant la prédiction d'écoulements de fluides (FLUENT, CFX, PHOENICS, FEMLAB, CFD-ACE, FLOTRAN, CFDS-FLOW3D ...). Pour réaliser nos simulations, nous avons choisi le code de calcul ANSYS-Fluent, que nous présentons dans cette partie

ANSYS Fluent est le logiciel de dynamique des fluides (CFD) le plus puissant du marché pour aller plus vite et plus loin dans l'optimisation de la performance. ANSYS Fluent offre des fonctionnalités éprouvées de modélisation physique d'écoulement fluide, de turbulence, de transfert de chaleur et de réaction chimique, et fournit des résultats rapides et précis pour une très large gamme d'applications CFD et multi physiques. ANSYS permet de prédire avec confiance le succès des produits dans le monde réel. Les entreprises utilisent ANSYS pour créer des prototypes virtuels complets de produits et de systèmes complexes de mécanique, d'électronique, de composants électroniques et de logiciel mettant en jeu tous les phénomènes physiques qui existent dans la réalité. Fluent est un solveur très utilisé dans l'industrie à travers le monde. Il est souvent considéré comme une référence dans le domaine de la modélisation fluide. Le paramétrage du modèle se fait par une interface graphique, il dispose d'une interface de scripts pour automatiser les processus de calcul. L'un des intérêts de ce logiciel de simulation généraliste, est qu'il dispose d'un nombre relativement important de modèles, pouvant faire face à divers aspects de la mécanique des fluides, Fluent contient également un outil de visualisation des résultats qui permet d'afficher les champs de pression, vitesse et autres autour de la paroi. La résolution numérique par Fluent d'une manière générale, suit les étapes suivantes (figure2.1) :

- 1) Création de la géométrie sous ANSYS-Design modeler
- 2) Choix de maillage sous ANSYS-Meching
- 3) Définition des conditions aux limites sous Fluent
- 4) Calcul avec FLUENT pour les différents cas retenus
- 5) Analyse des résultats obtenus

Figure 2.1 : L'interface de WorkBench.

2.3.1. Construction de la géométrie

La finalité de la construction de la géométrie est de définir les domaines de calcul qui seront des faces dans un problème 2D et des volumes dans un problème 3D (figure2.2).

Figure 2.2 : La géométrie d'un tube.

2.3.2 Le maillage

Pour des maillages structurés, on peut faire la liaison entre la géométrie et le maillage(figure2.3) , Aussi, avant de réaliser le maillage, il faut spécifier par écrit d'une part la géométrie adoptée pour définir la zone à mailler, d'autre part les numéros des mailles correspondant aux points caractéristiques de la géométrie. Un nœud pourra alors être repéré par ces coordonnées physiques x et y.

Maillage quadrilatère méthodes

Maillage triangulaire

Un maillage avec les deux

Figure 2.3 : représentation des types de maillage.

2.3.3 Les conditions aux limites d'une géométrie

L'utilisateur doit être définir les limites de la géométrie. Inlet est l'entrée du fluide, Outlet est la sortie, ainsi en définissant, les parois de l'objet (figure2.4).

Figure 2.4 : interface des conditions aux limites de notre géométrie.

2.3.4. Le solveur Fluent [16]

Le code de calcul Fluent est commercialisé par le groupe FLUENT. Ce groupe est actuellement l'un des pôles de compétence en mécanique des fluides numérique les plus importants. Il développe et commercialise une solution complète sous forme de logiciels de **CFD** (Computational Fluid Dynamics) généralistes qui simulent tous les écoulements fluides, compressibles ou incompressibles, impliquant des phénomènes physiques complexes tels que la turbulence, le transfert thermique, les réactions chimiques, les écoulements multiphasiques pour toute l'industrie. Les produits et services proposés par le groupe FLUENT aident les ingénieurs à développer leurs produits, à optimiser leur conception et à réduire leurs risques.

Figure2.5 : Interface de solveur fluent
ANSYS Fluent utilise la méthode des volumes finis pour la discrétisation de la géométrie en petit volumes élémentaires (quadrilatère, triangulaire, ou les deux). L'ensemble d'équation de Navier Stokes se transforme en systèmes algébrique que le code de calcul applique pour chacune cellule. Cette étape est importante pour faire la simulation.

Figure 2.6 : Fluent calcul des résidus.

Fluent cherche les résidus du calcul correspond au l'instabilité de l'addition des cellules pour juger la convergence des calculs (figure2.3). Une fois le résultat est diverge la simulation s'arrêt. Généralement, un bon code dans lequel tu as un système stationnaire, tu peux atteindre des résidus de l'ordre de 10⁻¹⁴, suivant les conditions initial découlement utilisé dans la simulation.

2.4.1. Fluide incompressible [18]

Considérons des écoulements de fluides incompressibles. Un écoulement incompressible est un écoulement dans lequel la densité de chaque particule matérielle reste la même pendant le mouvement $\rho = \rho 0$, hypothèse qui est valable pour la quasi-totalité des liquides (comme l'eau) et pour les gaz vérifiant la relation M_c<<1(Mc étant le nombre de Mach = U/c et c la vitesse du son). Ainsi, tant que la vitesse de l'air n'atteint pas 100m/s, la masse volumique de l'air peut être considérée comme indépendante de la pression.

2.4.2. L'écoulement à la présence d'un obstacle [19]

En présence de l'obstacle, les filets parallèles de l'écoulement amont subissent une contraction importante et on observe un courant ascendant

Pour une vitesse moyenne de 1,2 cm/s (figure2.4), un rouleau bien marqué s'établit sur la face amont de l'obstacle. Ce rouleau s'enroule partiellement sous l'abri formé par l'obstacle.

Figure 2.7 : L'influence d'obstacle sur l'écoulement [19].

A la partie supérieure e de l'obstacle, le gradient des vitesses est élevé. Dans le rouleau aval, l'écoulement est tridimensionnel mais stable.

2.4.3. Modèles de turbulence [20]

Les écoulements turbulents présentent des fluctuations en temps et en espace. C'est un processus complexe, principalement parce qu'il est en trois dimensions, instationnaire et il se produit à plusieurs échelles. La turbulence peut avoir un effet significatif sur les caractéristiques de l'écoulement. La turbulence se produit lorsque les forces d'inertie dans le fluide deviennent significatives par rapport aux forces visqueuses, et se caractérise par un nombre de Reynolds élevé. En principe, les équations de Navier-Stokes peuvent décrire à la fois les écoulements laminaires et turbulents, sans besoin d'informations supplémentaires. Les modèles de turbulence ont été développés spécifiquement pour représenter les effets de la turbulence sans avoir recours à une taille de maillage prohibitive ment fine ou à la simulation numérique directe.

2.4.4. Les équations de NAVIER-STOKS [21]

En mécanique des fluides, les équations de Navier-Stokes sont des équations aux dérivées partielles non-linéaires qui décrivent le mouvement des fluides dans l'approximation des milieux continus. Elles gouvernent par exemple les mouvements de l'air de l'atmosphère, les courants océaniques, l'écoulement de l'eau dans un tuyau, et de nombreux autres phénomènes

d'écoulement de fluides. Elles sont nommées d'après deux physiciens du XIXe siècle, Claude Navier et George Stokes. Notons qu'il est possible de démontrer les équations de Navier-Stokes à partir de l'équation de Boltzmann.

a) L'équation de continuité

Exprime la conservation de la masse liquide et de l'énergie d'une section à l'autre. Leur équation s'écrit sous la forme :

$$\frac{\partial \rho}{\rho t} + di v(\rho \vec{u}) = 0$$

2.1

Pour un fluide permanent et compressible l'équation devient : $div(\rho \vec{u})=0$

b) Conservation de la quantité de mouvement

- Les forces de gravité (poids propre de l'eau) doivent-elles être prises en compte.
- la résistance de frottement : L'écoulement rencontre une certaine résistance due au frottement le long des parois.

Le théorème de Newton nous apprend que la résultante des forces conduit à une accélération de la masse d'eau :

$$\sum \vec{F} = m. \vec{a}$$
 2.2

 \vec{F} : désigne les forces extérieures exercées sur l'objet.

- m : masse de liquide.
- \vec{a} : correspond à l'accélération.

Après l'évaluation de l'équation, on obtient le système suivant :

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) = \rho g_x - \frac{\partial P}{\partial x} + \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right)$$

$$\rho\left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z}\right) = \rho g_y - \frac{\partial P}{\partial y} + \mu\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right)$$

$$2.3$$

$$\rho\left(\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z}\right) = \rho g_z - \frac{\partial P}{\partial z} + \mu\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}\right)$$

Navier-Stockes (1820-1845) écrivait le système pour un fluide visqueux sous forme :

$$\begin{cases} \Delta u = \mathbf{0} \\ \rho \left[\frac{\partial u}{\partial t} + (\vec{u} \nabla) \vec{u} \right] = \mu \Delta \vec{u} - \nabla p + \rho g \end{cases}$$
 2.4

 $\boldsymbol{\rho}$: La masse volumique du fluide

 $\frac{\partial u}{\partial t}$: Le changement de la vitesse dans le temps

 $(\vec{u}\nabla)\vec{u}$: La vitesse et la direction de déplacement du fluide

 $\mu \Delta \vec{u}$: La viscosité du fluide

 ∇p : Le gradient de la pression interne

ρg: La force de volume

2.4.5. Le nombre de Reynolds

Dans les années 1830, la différence entre les régimes à faible vitesse et à grande vitesse devient évidente. Osborne Reynolds (1842-1912) décrit la transition d'un régime à l'autre et la caractérise par un nombre qui aujourd'hui porte son nom « Re » :

$$Re = \frac{\text{la force d'inertie}}{\text{la force de viscosité}} = \frac{\rho v D}{\mu}$$
 2.5

ρ: La masse volumique du liquide.

v: La vitesse moyenne de l'écoulement.

D: Le diamètre qui caractéristique de l'écoulement.

μ: La viscosité dynamique du liquide.

Le régime d'écoulement est classifié selon les valeurs obtenues de nombre de Reynolds :[5]

Re<2000 : Le régime est LAMINAIRE : Les filets d'eau sont parallèles. Ils glissent entre eux (figure2.5).

2000<Re<4000 : Le régime est intermédiaire (figure2.5).

Re>4000 : Le régime est TURBULENT : Les particules du fluide se mélangent. Il y a échange d'énergie entre les filles liquide (figure2.5).

Figure 2.8 : La classification de l'écoulent à ciel ouvert selon le nombre de Reynolds [22].

2.4.6. Décomposition de Reynolds (RANS) [23]

Reynolds introduit une décomposition devenue classique entre la vitesse moyenne notée (\overline{u}), et la fluctuation de vitesse noté (\acute{u}) (figure2.6), soit pour les composantes de la vitesse et de pression selon la direction x :

$$U = \overline{u} + \acute{u}$$

$$P = \overline{P} + \acute{P}$$
2.6

 \overline{u} : La vitesse moyenne

- \acute{u} : La vitesse fluctuante
- \overline{P} : La pression moyenne
- *Ý*: La pression fluctuante

2.5. Méthodes de quantification de la turbulence

Le traitement numérique de turbulence est basé sur deux méthodes : La simulation numérique directe et la modélisation de la turbulence. Le système d'équation de Navier Stokes a de nombre d'inconnues supérieur au nombre d'équations. Il est nécessite d'introduire des modèles pour avoir résoudre ce système. Il existe plusieurs modèles chacun ses caractéristiques pour des cas précis.

2.5.1. Le modèle K- ϵ [25]

Le modèle **K-** ε est le plus simple des modèles complets dits à deux équations. Ce modèle suppose que le régime de turbulence est pleinement établi dans tout le domaine et que les effets de la viscosité moléculaire sont négligeables par rapport à ceux de la viscosité turbulente.

L'expression de la viscosité turbulente donnée par la relation suivante :

$$\nu_{\rm t} = \rho C_{\mu} \frac{\kappa^2}{\epsilon}$$
 2.7

K : est l'énergie turbulente cinétique, et ε sa dissipation.

 C_{μ} : Constante de la turbulence ; $C_{\mu} = 0.09$

Les équations de transport des spectres K et ε s'écrit :

$$\rho u \frac{\partial K}{\partial x} + v \rho \frac{\partial K}{\partial y} + \rho \frac{\partial K}{\partial t} = \frac{\partial}{\partial x} \left[\left(\frac{v_t}{\sigma_K} + v \right) \frac{\partial K}{\partial x} \right] + \frac{\partial}{\partial y} \left[\left(\frac{v_t}{\sigma_K} + v \right) \frac{\partial K}{\partial y} \right] + v_t G - \rho \varepsilon$$

$$\rho u \frac{\partial \varepsilon}{\partial x} + v \rho \frac{\partial \varepsilon}{\partial y} + \rho \frac{\partial \varepsilon}{\partial t} = \frac{\partial}{\partial x} \left[\left(\frac{v_t}{\sigma_\varepsilon} + v \right) \frac{\partial \varepsilon}{\partial x} \right] + \frac{\partial}{\partial y} \left[\left(\frac{v_t}{\sigma_\varepsilon} + v \right) \frac{\partial \varepsilon}{\partial y} \right] + C_1 v_t \frac{\varepsilon}{K} G - C_2 \rho \frac{\varepsilon^2}{K}$$
Ou
$$G = 2 \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 \right] + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)^2$$

Avec:
$$C_1 = 1.44$$
 $\sigma_K = 1.0$ $C_2 = 1.92$ $\sigma_{\varepsilon} = 1.3$

Selon la valeur des constantes empiriques C₁, C₂, $\sigma_K et \sigma_{\varepsilon}$ les résultats du calcul peuvent différer. Cela constitue une faiblesse de ce modèle, bien que les auteurs admettent le plus souvent les mêmes valeurs.

Le modèle K- ϵ est très largement utilisé en ingénierie. Il est en effet robuste, économique en temps de calcul et suffisamment précis et validé pour une large gamme d'écoulements turbulents. Cependant, il donne de mauvais résultats pour une catégorie importante de situations comme les écoulements non confinés, les écoulements tourbillonnaires et les écoulements en rotation

2.5.2. Le modèle K- ω [23]

Le modèle est utilisé généralement pour les écoulements qui ont un grand nombre de Reynolds ; surtout pour les écoulements tourbillonnaires.

Ce modèle présenté par Wilcox estime la viscosité turbulente par la relation suivante :

$$\nu_t = \rho \frac{\kappa}{\omega}$$

Avec : $\omega = \frac{\varepsilon}{c_{\mu}\kappa}$

2.9

L'équation du transport de l'énergie cinétique turbulente sera :

$$\rho u \frac{\partial \omega}{\partial x} + v \rho \frac{\partial \omega}{\partial y} + \rho \frac{\partial \omega}{\partial t} = \frac{\partial}{\partial x} \left[\left(\frac{v_t}{\sigma_\omega} + v \right) \frac{\partial \omega}{\partial x} \right] + \frac{\partial}{\partial y} \left[\left(\frac{v_t}{\sigma_\omega} + v \right) \frac{\partial \omega}{\partial y} \right] + \gamma_1 \frac{\omega}{K} G - \beta_1 \omega^2$$
Avec : $\sigma_{\omega} = 1.0$ $\gamma_1 = 1.3$ $\beta_1 = 0.075$

2.5.3. Modèle des contraintes de Reynolds RSM [26]

Le modèle des contraintes de Reynolds (RSM) est un modèle de fermeture du second ordre. Dans certains cas (couches limites courbes, écoulements tourbillonnaires, écoulements en rotation), l'approximation basée sur l'hypothèse de Boussinesq pour représenter les tensions de Reynolds n'est plus applicable.

2.5.4 Modélisation de la surface libre

Logiciel Fluent R15 est reposé sur trois méthodes pour tracer la configuration de la surface libre d'un écoulement : VOF (Volume Of Fluid), Mixture model, le model d'Euler. Le dernier modèle est utilisé beaucoup plus pour la détermination du trajet et la distribution des particules solides. Le modèle VOF est le plus utilisé (dans notre cas c'est le plus adoptif). Il utilise pour la simulation de la surface libre. Le modèle des mélanges est valable pour des écoulements où les phases s'interprètent entre eux.

2.5.5. Le modèle VOF [27]

Les méthodes de Volume Of Fluid, spécialement conçues pour la simulation d'écoulements diphasiques, sont basées sur le principe de conservation de la masse. La distribution de fraction volumique de liquide (ou de gaz) est répartie dans le domaine de calcul sur un maillage fixe (figure2.7), puis elle est transportée par le champ de vitesse. Les caractéristiques de l'interface sont ensuite déduites du champ de fraction volumique. Les méthodes VOF sont robustes lors des changements topologiques, qui s'effectuent de façon implicite. La conservation du volume est garantie lorsque l'on transporte la fraction volumique.

Figure 2.9 : Schéma de la méthode VOF [27].

Les limites de ce model :

- Ce modèle est applicable pour les fluides visqueux.
- Toutes les cellules doivent être remplir (de l'eau ou de l'air).
- Un des deux phases doit être compressible.
- Ce modèle ne peut pas simuler des fluides mélangés.

2.5.6. Mixture model [28]

Le modèle de mélange est un modèle multiphasique simplifié permettant de simuler des écoulements où les phases fluides peuvent se déplacer à des vitesses différentes. Contrairement au modèle VOF, cette approche de mélange traite les différentes phases comme des phases continues occupant tout l'espace et pouvant s'interpénétrer. Le modèle de mélange résout les équations de bilan de matière, de quantité de mouvement et d'énergie pour le mélange ainsi qu'une équation de transport pour la fraction volumique de chaque phase présente.

2.5.7. Le modèle Eulérien [28]

Le modèle eulérien est un modèle multiphasique plus complexe permettant de résoudre les équations de continuité et de quantité de mouvement pour chaque phase. Le couplage est réalisé par le biais de termes d'échange de quantité de mouvement entre les phases dépendant de la nature des phases mises en jeu (écoulement granulaire fluide-solide ou non granulaire de type fluide-fluide). Avec le modèle eulérien, le nombre de phases secondaires est uniquement limité par les capacités de l'outil de calculs. Ce modèle est très bien adapté à l'étude des lits fluidisés et à la modélisation des écoulements à bulles ou à gouttes.

2.6. Méthode des Volumes Finis (MVF) [29]

La méthode des volumes finis est une version spéciale de la méthode des résidus pondérés où la fonction de projection égale à l'unité. . Cette méthode consiste à subdiviser le domaine d'étude en volumes élémentaires de telle manière que chaque volume entoure un nœud principal P. Chaque volume est délimité par : deux interfaces dans le cas monodimensionnel noté (e, w), L'équation différentielle est intégrée dans chaque volume élémentaire finis. Pour calculer l'intégrale dans ce volume élémentaire l'inconnue est représentée à l'aide d'une fonction d'approximation (linéaire, parabolique, exponentielle, de puissance etc.) entre deux nœuds

consécutifs. Ensuite, la forme intégrale est discrétisée dans le domaine d'étude. Le résultat de discrétisation donne une équation algébrique qui est constituée par les valeurs nodales.

2.7. Conditions aux limites et initiales

2.7.1. Conditions initial [30]

Les conditions initiales représentent l'état du modèle à l'instant t=0 où commence le calcul. Il s'agit d'un paramètre important dans toute modélisation. En effet, les résultats désirés sont étroitement liés aux conditions imposées au début de calcul. L'aspect de ces conditions varie selon la méthode de calcul choisi. Au démarrage de la simulation, il faut préciser le modèle numérique pour la représentation de l'état de l'écoulement. Il faut donner des valeurs initiales de la vitesse de l'eau et de l'air ainsi pour la fraction volumique et la pression.

2.7.2. Condition aux limites [31]

La prise en compte des limites est un aspect très important lors de l'utilisation des techniques numériques dans le but d'obtenir de bons résultats. Les équations hyperboliques sont particulièrement très sensibles, car chaque erreur qui s'introduit au niveau des frontières se propage à travers la grille de calcul, ce qui mène dans la plupart des cas à de fortes instabilités. Les conditions introduites (figure2.8):

- Pressure inlet : C'est la pression d'entré du fluide, au début du canal.
- Velocity inlet : C'est la vitesse initiale des fluides, au début du canal, peut présenter sous forme de débit et de la section mouillée.
- Pressure outlet : C'est la pression au niveau des sorties.
- Type wall : ou bien la rugosité de la paroi qui représente l'effet de paroi sur l'écoulement. Elle est introduite sous forme de hauteur.

Figure 2.10 : Conditions aux limites imposées.

2.8. Convergence des calculs [32]

On est basé sur deux critères pour définir la convergence du calcul :

2.8.1. Critère sur l'erreur de masse : Le déséquilibre en masse entre le flux entrant et le flux sortant est dû à l'accumulation des erreurs numériques de calcul.

2.8.2. Critère visuel au niveau du Linegraph : on peut suivre graphiquement l'évolution du résidu de la masse après chaque itération. Lorsque cette valeur se stabilise, on déduit que le code de calcul ne peut pas donner de résultat plus précis pour la géométrie donnée.

2.9. Le couplage pression vitesse [33]

L'utilisation d'un algorithme pour corriger la pression et la vitesse afin que ces grandeurs vérifient l'équation de continuité est nécessaire, Cet algorithme stipule l'existence d'une relation entre les vitesses corrigées et les pressions corrigées.

Nous utilisons l'algorithme SIMPLE. Est le plus universel dans la résolution de ces problèmes. Il a été découvert par PATANKAR et SPALDING (1972).

Il calcule les pressions et les vitesses itérativement jusqu'où la différence de pression s'annule.

2.2. Conclusion

Le chapitre présente une étude bibliographique sur les écoulements a surface libre et leurs caractéristiques et les paramètres qui conditionnent ces écoulements Ensuite, nous avons cité les types et les formes des déversoirs, aussi l'objectif de déversoir.

3. Simulation numérique de l'écoulement et les résultats

3.1. Introduction :

Dans ce chapitre nous avons testé les performances de logiciel ANSYS fluent R15 sur une expérience qui a été faite au Laboratoire d'Hydraulique du Civil Département d'ingénierie de l'Université Dokuz Eylul ; İzmir, TURKEY. Par deux ingénieur « Ayşegül ÖZGENÇ AKSOY ; Mustafa DOĞAN » pour avoir l'effet de l'angle d'approche sur l'efficacité de décharge des déversoirs à crête large.

Dans cette étude nous avons fait la comparaison entre les mesures expérimentales et les résultats numérique en 2D. D'abord nous avons présenté le banc d'essai et ces équipements. Ensuite nous citons les étapes pour faire la simulation et nous présentons les résultats obtenue par le modèle de turbulence standard **K**- ε on a choisi pour modéliser l'écoulement au-dessus du déversoir trapézoïdal épais et en comparant avec les mesures expérimentales obtenue dans le laboratoire.

3.2. Présentation du banc d'essai [13]

Dans cette étude on doit avoir l'effet des pentes en amont et en aval du sur le déversement du déversoir à crête large était enquêté expérimentalement (figure3.1).

Quatre pentes différentes (0,5H : 1V, 1H : 1V, 2H : 1V, 3H : 1V) et deux différentes longueurs des déversoirs ont été testées au cours des expériences. Les pentes amont et aval étaient les mêmes pour chaque expérience.

La pompe est de type centrifuge, peut débiter jusqu'à 30 l/s.

La hauteur du déversoir était de 7,5 cm. Les expériences ont été menées dans un canal de 8 m de long, 15 cm de large et 40 cm de haut qui a été construit dans le laboratoire d'hydraulique de Département d'ingénierie civil de l'Université Dokuz Eylul. Les parois latérales du canal ont été construites à partir de matériau plexy-glasse (figure3.2).

Figure 3.1 : vue 3D de déversoir

Les valeurs de décharge ont été arrangées avec une valve sphérique et le débit était mesuré au moyen d'un 90° calibré.

La profondeur d'écoulement a été surveillée par les capteurs de niveau à ultrasons (ULS) avec une précision de $\pm 0,1$ mm.

1. réservoir principal	2. Déversoir à encoche	3.pompe 4. Vanne de régulation de débit
5. tuyau de transmission	6.résevoir de remplissage	7.le canal 8.parois latéral en plexy-glasse
9. porte de control	10.seuil	11.fond en plexy-glasse
12. Obstructeur	13.capteur mobile	14.carte principale ULS

15. ordinateur portable

Figure 3.2 : représentation de banc d'essais Le canal hydrodynamique [13].

3.3. Les conditions expérimentales

Tous les expériences ce fait sur un canal horizontale c'est ta dire la pente du canal est nulle Nous avons utilisé une série de trois défirent débit pour chaque forme d'obstacle :

- Les débits sont (3177-2007-1258) cm³/s
- L'obstacle est d'une forme trapézoïdale en plexy-glasse les pentes amont et aval sont identique et ces valeurs comme suit (0,5H : 1V, 1H : 1V, 2H : 1V, 3H : 1V)
- On utilise deux longueur de crête pour le déversoir : le premier cas un obstacle de 10 cm et le deuxième cas de 15 cm.

• Le déversoir est installé sur une distance de 3,9 m

3.4 La modélisation numérique

3.4.1 Création de la géométrie

La géométrie est un rectangle avec un trapèze comme elle présente la (figure 3.3) :

Figure 3.3 : La géométrie du canal sous ANSYS

3.4.2. Maillage et conditions aux limites

Dans cette étape, il y a deux choses à faire. La première est de mailler la géométrie. On a choisi la méthode quadrilatérale. Le nombre des éléments est de 7966 et 8387 nœuds. C'est un maillage structuré (figure3.4) Couple à transmettre.

Deuxièmement, on va définir les conditions aux limites de la géométrie tel que l'entrée, la sortie et la paroi, comme il est mentionné dans la (figure 3.5). A la fin, il faut générer le maillage pour Fluent puisse être lire la géométrie ainsi les conditions aux limites.

Figure 3.5: conditions aux limites.

3.5. Modélisation sur Fluent

Après le lancement de calcul, Fluent va lire automatiquement la géométrie et leur maillage ensuite l'affectation de chaque condition avec sa propriété (inlet => vilocity inlet). Ensuite on va rentrer les conditions initiales : la vitesse de l'eau, La hauteur d'eau à l'entrée et à la sortie du canal, La vitesse de l'air qui égale à 0 et la rugosité du canal dans notre cas plexy-glasse égale à 10^{-4} m.

Dans notre modélisation, nous avons choisis le modèle **K-** ɛ.et celui de solver time « transient ». Pour avoir simulé la configuration de la ligne d'eau, la méthode VOF est le plus adapté. Pour la discrétisation nous sélectionnons l'algorithme PISO. Puis, on initialise la simulation après le choix d'un pas du temps petit pour avoir une convergence des calculs (figure3.6).

Run Calculation	
Check Case	Preview Mesh Motion
Time Stepping Method	Time Step Size (s)
Fixed 👻	0.05
Settings	Number of Time Steps
Options	
Extrapolate Variables Data Sampling for Time s Sampling Interval	Statistics Sampling Options)
Max Iterations/Time Step	Reporting Interval
Profile Update Interval	
Data File Quantities	Acoustic Signals
Calculate	

Figure 3.6 : interface de conditions de calcul

Fluent commence à itérer lorsque nous cliquons sur la commande «Run Calculate» et en même temps il vérifie l'état de convergence. Pour un écoulement diphasique la convergence des résidus ne soit pas dépasser 10⁻⁴ (figure 3.7).

Figure 3.7 : Fluent calcul des résidus.

3.5.1. Résultats

3.5.2. déversoir 0.5H/1V et L=10cm

2.1.Cas Nº1 : I= 0, Q=3700 cm³/s

• Profile d'eau

Figure 3.8 : profil de la ligne d'eau pour Q=3700 cm³/s ; 0.5H/1V et L=10cm

• Profil de vitesse :

1.01e+00	ANEVE
9.56e-01	ANSIS
9 DBp-D1	R15.0
9.550.01	
0.056-01	
0.038-01	
7.55e-U1	
7.04e-01	
6.54e-01	
6.04e-01	
5.53e-01	
5.03e-01	
4.53e-01	
4 03e-01	
3 520-01	
2.020.01	
3.026-01	
2.528-01	
2.U1e-U1	
1.51e-01	
1.01e-01	
5.03e-02	
0.00e+00	
	Aldo to Fidelit 13.0 (20, 00, pbills, 40, see, transieny
1.01e+00	ANSVS
9.56e-01	R15.0
9.06e-01	
8.556-01	
7 550 01	
7.048-01	
6.54e-01	
6.04e-01	
5.53e-01	
5.03e-01	
4.53e-01	
4.03e-01	
3.520-01	
3.028-01	
2.01e-01	
2.010.01	
1.51e-01	
1.51e-01 1.01e-01	
1.51e-01 1.01e-01 5.03e-02	
1.51e-01 1.01e-01 5.03e-02 0.00e+00	
1.51e-01 1.01e-01 5.03e-02 0.00e+00	
1.51e-01 1.01e-01 5.03e-02 0.00e+00 Contours of Velocity Magnitude (mixture) (m/s) (Time=2.0000e+01)	Αυα 10. 2020

Figure 3.9 : Le champ de vitesse $Q=3700 \text{ cm}^3/\text{s}$; 0.5H/1V et L=10cm

• Profil de pression :

1150+02	
1.136.00	ANSYS
1.090-03	R15.0
1.030103	
9.740+02	
9.146+02	
8.54e+02	
7.94e+02	
7.34e+02	
6.74e+02	
6.15e+02	
5.55e+02	
4.95e+02	
4.35e+02	
3.75e+02	
3.15e+02	
2.56e+02	
1.96e+02	
1368+02	
7.62e+01	
1640+01	
-4 34e+01	
Contours of Total Pressure (mixture) (pascal) (Time=2.0000e+01)	Aug 10, 2020 ANSYS Eluent 15.0 (2d. dp. phps. vof. ske. transient)
	24401011dent 15:5 (24, 46, 5616, 76, 56, 846)
1.15e+03	ANSVS
1.09e+03	R15.0
1.03e+03	
9.746+02	
9.14e+02	
8.54e+02	
7.946+02	
6.740+02	
6.150-02	
6.556+02	
4.956+02	
4.35e+02	
3.75e+02	
3.15e+02	
2.56e+02	
1.96e+02	
1.36e+02	
7.62e+01	
1.64e+01	
-4.34e+01	
Contours of Total Pressure (mixture) (pascal) (Time=2.0000e+01)	A
control of rotal ricecare (installe) (pareas) (inter ricecore of)	Aug 10, 2020

Figure 3.10 : Le champ de pression $Q=3700 \text{ cm}^3/\text{s}$; 0.5H/1V et L=10cm

- 2.2.Cas N°2 : I= 0, Q=2007 cm³/s Profile d'eau

1.00e+00	ANSYS
9.50e-01	R15.0
9.00e-01	
8.00+01	
7.50e-01	
7.00e-01	
6.50e-01	
6.00e-01	
5.50e-01	
5.00e-01	
4,50e-01	
4.00001	
3.00e-01	
2.50e-01	
2.00e-01	
1.50e-01	
1.00e-01	
5.00e-02	
0.00e+00	
Contours of Volume fraction (water) (Time=2.0000e+01)	Aug 10, 2020
	ANSYS Fluent 15.0 (2d, dp, pbns, vot, ske, transient)
1 00o+00	
1.008+00	ANSYS
9.50e-01	R15.0
9.00e-01	
8.50e-01	
8,000-01	
7.500-01	
7.00e-01	
6.50e-01	
6.00e-01	
5 500 01	
5.500-01	
5.008-01	
4,50e-01	
4.00e-01	
3 50e-01	
3.000-01	
2.50e-01	
2.00e-01	
1.50e-01	
1.00e-01	
5.00-00	
5.00e-02	
0.00e+00	
Contours of Volume fraction (water) (Time=2.0000e+01)	Aug 10, 2020
	ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)

Figure 3.11 : profil de la ligne d'eau pour $Q=2007 \text{ cm}^3/\text{s}$; 0.5H/1V et L=10cm

• Profil de vitesse

9.53e-01	
	ANCVC
9.06e-01	ANSTS
8.58e-01	RISU
8.10e-01	
7.63e-01	
7.15e-01	
6.67e-01	
6.20e-01	
5.72e-01	
5.24e-01	
4.77e-01	
4.29e-01	
3.81e-01	
3.34e-01	
2.86e-01	
2.38e-01	
1.91e-01	
1.%de-U1 0.52x.02	
9.536-02	
4.776-02	
0.00100	
Contours of Velocity Magnitude (mixture) (m/s) (Time=2.0000e+01)	Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)
9.53e-01	ANEVE
9.06e-01	ANSIS
8.58e-01	N15.0
8.10e-01	
7.63e-01	
7.15e-01	
6.67e-01	
6.20e-01	
6.20e-01 5.72e-01	
6.20e-01 5.72e-01 5.24e-01	
6.20e-01 5.72e-01 5.24e-01 4.77e-01	
6.20e-01 5.72e-01 5.24e-01 4.77e-01 4.20e-01	
6.20e-01 6.72e-01 6.24e-01 4.77e-01 4.29e-01 3.81e-01	
6.20e-01 6.72e-01 6.24e-01 4.77e-01 4.29e-01 3.81e-01 3.81e-01	
6.20e-01 6.72e-01 6.24e-01 4.77e-01 4.29e-01 3.81e-01 3.34e-01 2.96e-01	
620e-01 5.72e-01 524e-01 4.77e-01 4.29e-01 3.81e-01 3.34e-01 2.86e-01 2.80e-01	
620e-01 5.72e-01 524e-01 4.77e-01 4.29e-01 3.81e-01 3.34e-01 2.86e-01 2.38e-01 1.04e-01	
620e-01 6.72e-01 624e-01 4.77e-01 4.29e-01 3.81e-01 2.86e-01 2.38e-01 1.91e-01	
6.20e-01 6.72e-01 6.24e-01 4.77e-01 4.29e-01 3.81e-01 2.86e-01 2.86e-01 2.38e-01 1.91e-01 1.43e-01 0.450-01	
6 20e-01 6 72e-01 6 24e-01 4 29e-01 3 31e-01 2 38e-01 2 38e-01 2 38e-01 1 91e-01 1 43e-01 9 63e-02 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
6 20e-01 6 72e-01 6 24e-01 4 77e-01 4 29e-01 3 81e-01 2 86e-01 2 38e-01 1 91e-01 1 43s-01 9 63e-02 4 77e-02 4 77e-02	
6 20e-01 6 72e-01 6 224e-01 4 77e-01 4 29e-01 3 81e-01 3 81e-01 2 86e-01 2 38e-01 1 91e-01 1 43e-01 9 63e-02 4 77e-02 0.00e+00	
6 20e-01 6 72e-01 6 224e-01 4 77e-01 4 29e-01 3 81e-01 2 38e-01 2 38e-01 2 38e-01 1 91e-01 1 43e-01 9 63e-02 4 77e-02 0 .00e+00	
6 20e-01 6 72e-01 6 24e-01 4 77e-01 4 29e-01 3 81e-01 2 38e-01 2 38e-01 2 38e-01 1 91e-01 1 43e-01 9 63e-02 4 77e-02 0.00e+00 Contours of Velocity Magnitude (mixture) (m/s) (Time=2.0000e+01)	Aur 10, 2020
6 20e-01 6.72e-01 5 24e-01 4.77e-01 4.29e-01 3.34e-01 2.86e-01 2.38e-01 1.91e-01 1.43e-01 9.53e-02 4.77e-02 0.00e+00 Contours of Velocity Magnitude (mixture) (m/s) (Time=2.0000e+01)	Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)

Figure 3.12 : Le champ de vitesse $Q=2007 \text{ cm}^3/\text{s}$; 0.5H/1V et L=10cm

• Profil de pression :

1.040+02	
0.030+03	ANSYS
9.20+02	R15.0
8.75e+02	
8 20e+02	
7.66e+02	
7.12e+02	
6.57e+02	
6.03e+02	
5.49e+02	
4.94e+02	
4.40e+02	
3.86e+02	
3.31e+02	
2.77e+02	
2.23e+02	
1.68e+02	
1.14e+02	
5.95e+01	
5.10e+00	
-4.93e+01	
Contours of Total Pressure (mixture) (nascal) (Time=2.0000e+01)	Aug 10, 2020
	ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)
1.040+02	
0.00-00	ANSYS
9.83e+02	R15.0
9.29e+02	
8.75e+02	
8.20e+02	
7.66e+02	
7.12e+02	
6.57e+02	
6.03e+02	
5 49e+02	
4 94e+02	
4.400+02	
4.400+02	
3.860+02	
3.31e+02	
2.77e+02	
2.23e+02	
1.68e+02	
1.14e+02	
5.95e+01	
5.10e+00	
-4.93e+01	
Contours of Total Pressure (mixture) (pascal) (Time=2.0000e+01)	Aug 10, 2020
	ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)

Figure 3.13 : Le champ de pression $Q=2007 \text{ cm}^3/\text{s}$; 0.5H/1V et L=10cm

- 2.3.Cas Nº3 : I= 0, Q=1258 cm³/s Profile d'eau

1.00e+00	ANSYS
9.50e-01	R15.0
9.00e-01	
8.50e-01	
8.00e-01	
7.50e-01	
7.00e-01	
6.50e-01	
6.00e-01	
5.50e-01	
5.00e-01	
4.50e-01	
4 00e-01	
3.50e-01	
3 00e-01	
2 50e-01	
2 00e-01	
1.500-01	
1 00e-01	
5.000-02	
0.000+00	
Contours of Volume fraction (water) (Time=2.0000e+01)	Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)
1.00e+00	ΔΝςγς
9.50e-01	R15.0
9.00e-01	
8.50e-01	
8.00e-01	
7.50e-01	
7.008-01	
6.50e-01	
6.00e-01	
5.000-01	
4.500.01	
4.00e-01	
3.60e-01	
3.00e-01	
2.50e-01	
2 00e-01	
1.50e-01	
1.00e-01	
5.00e-02	
0.00e+00	
Contours of Volume fraction (water) (Time=2.0000e+01)	Aug 10, 2020 ANSYS Fluent 15.0 (2d. dp. pbps. vof. ske. transient)

Figure 3.14 : profil de la ligne d'eau pour Q=1258 cm³/s ; 0.5H/1V et L=10cm

Profil de vitesse •

M UZ BEUU	
0.020.04	ANSYS
8.628-01	R15.0
8.176-01	
7.71e-01	
7.26e-01	
6.80e-01	
6.35e-01	
5.90e-01	
5.44e-01	
4.99e-01	
4.54e-01	
4.08e-01	
3.63e-01	
3.18e-01	
2.72e-01	
2.27e-01	
1.81e-01	
1.36e-01	
9.07e-02	
4.54e-02	
0.00e+00	
	8 622-01 8 17e-01 7.7te-01 7.26e-01 6 30e-01 6 35e-01 5 90e-01 5 90e-01 4 498-01 4 08e-01 3 63e-01 3 63e-01 3 18e-01 2.72e-01 2.72e-01 1.81e-01 1.81e-01 1.81e-01 1.81e-01 9.07e-02 4.54e-02 0.00e+00

ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)

Figure 3.15 : Le champ de vitesse $Q=1258 \text{ cm}^3/\text{s}$; 0.5H/1V et L=10cm

• Profile de pression

ANSYS	9.68e+02
R15.0	9.17e+02
	8.66e+02
	8.15e+02
	7.64e+02
	7.13e+02
	6.62e+02
	6.11e+02
	5.61e+02
	5.10e+02
	4.59e+02
	4.08e+02
	3.57e+02
	3.06e+02
	2.55e+02
	2.04e+02
	1 53e+02
	1.02e+02
	514e+01
	4 796-01
	-5.040+01
	1. Th
Aug 10, 2020 ANSYS Fluent 15 0 (2d. dp. pbns. vof. skei transjent)	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01)
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01)
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01)
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01) 9.68e+02 9.17e+02
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS R15.0	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01) 9.68e+02 9.17e+02 8.66e+02
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS R15.0	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01) 9.68e+02 9.17e+02 8.66e+02 8.15e+02
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS R15.0	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01) 9.68e+02 9.17e+02 8.66e+02 8.15e+02 7.64e+02
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS R15.0	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01) 9.68e+02 9.17e+02 8.66e+02 8.15e+02 7.64e+02 7.13e+02
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS R15.0	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01) 9.68e+02 9.17e+02 8.66e+02 8.16e+02 7.64e+02 7.13e+02 6.62e+02
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS R15.0	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01) 9.68e+02 9.17e+02 8.66e+02 8.15e+02 7.64e+02 7.13e+02 6.62e+02 6.62e+02 6.11e+02
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS R15.0	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01) 9.68e+02 9.17e+02 8.66e+02 8.15e+02 7.64e+02 7.13e+02 6.62e+02 6.62e+02 6.11e+02 5.61e+02
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS R15.0	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01) 9.68e+02 9.17e+02 8.66e+02 8.15e+02 7.64e+02 7.13e+02 6.62e+02 6.11e+02 6.61e+02 5.61e+02
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS R15.0	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01) 9.68e+02 9.17e+02 8.66e+02 8.15e+02 7.64e+02 7.13e+02 6.82e+02 6.11e+02 5.61e+02 5.10e+02 4.59e+02
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS R15.0	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01) 9.68e+02 9.17e+02 8.66e+02 8.15e+02 7.64e+02 7.13e+02 6.62e+02 6.11e+02 5.61e+02 5.61e+02 4.59e+02 4.09e+02
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS R15.0	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01) 9.68e+02 9.17e+02 8.66e+02 8.15e+02 7.64e+02 7.13e+02 6.62e+02 8.11e+02 5.61e+02 5.10e+02 4.59e+02 4.09e+02 3.57e+02
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS R15.0	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01) 9.68e+02 9.17e+02 8.66e+02 8.15e+02 7.13e+02 7.13e+02 6.82e+02 6.11e+02 5.61e+02 5.61e+02 5.01e+02 3.57e+02 3.06e+02
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) R15.0	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01) 9.68e+02 9.17e+02 8.66e+02 8.15e+02 7.64e+02 7.13e+02 6.62e+02 6.11e+02 5.61e+02 5.61e+02 5.61e+02 3.06e+02 2.55e+02 2.55e+02 2.55e+02
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01) 9.68e+02 9.17e+02 8.66e+02 8.15e+02 7.64e+02 7.13e+02 6.62e+02 6.11e+02 5.61e+02 5.61e+02 5.61e+02 5.61e+02 5.61e+02 2.55e+02 2.05e+02 2.05e+02 2.05e+02 2.04e+02 2.05e+02 2.04e+02 2.05e+02 2.04e+02 2
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01) 9.68e+02 9.17e+02 8.66e+02 8.15e+02 7.64e+02 7.13e+02 6.02e+02 6.11e+02 5.61e+02 5.61e+02 5.10e+02 3.57e+02 3.57e+02 3.57e+02 2.55e+02 2.55e+02 2.04e+02 1.53e+02 0.0000000000000000000000000000000000
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01) 9.88e+02 9.17e+02 8.66e+02 8.15e+02 7.13e+02 7.13e+02 6.12e+02 6.11e+02 5.81e+02 5.81e+02 5.81e+02 5.81e+02 5.81e+02 5.90e+02 3.97e+02 3.97e+02 3.97e+02 3.97e+02 3.97e+02 3.97e+02 1.53e+02 2.04e+02 1.53e+02 1.02e+02 5.44e+04 5.4
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS R15.0	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01) 9.88e+02 9.17e+02 8.66e+02 8.16e+02 7.13e+02 7.13e+02 6.02e+02 6.11e+02 6.01e+02 5.0e+02 5.0e+02 5.0e+02 2.55e+02 2.55e+02 2.55e+02 1.53e+02 1.53e+02 1.52e+02 5.14e+01 5.14e+
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transien) ANSYS R15.0	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01) 9.68e+02 9.17e+02 8.66e+02 8.15e+02 7.64e+02 7.13e+02 0.11e+02 5.61e+02 5.10e+02 3.57e+02 3.06e+02 2.55e+02 2.55e+02 1.53e+02 1.53e+02 1.52e+02 5.14e+01 4.79e-01 5.04e+01
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transien) ANSYS R15.0	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01) 9.68e+02 9.17e+02 8.66e+02 8.15e+02 7.13e+02 7.13e+02 6.61e+02 6.61e+02 5.10e+02 3.67e+02 3.67e+02 3.06e+02 2.55e+02 2.04e+02 1.53e+02 1.02e+02 5.14e+01 4.79e-01 -5.04e+01
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS R15.0	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01)
Aug 10, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS R15.0	ontours of Total Pressure (mixture) (pascal) (Time=2.0000e+01)

• Evolution des hauteurs le long du canal :

Tableau 3.1 : la variation du tirant d'eau le long du canal obtenu par mesures et parsimulation pour Q= (3700-2007-1258) cm³/s ; 0.5H/1V et L=10cm

x(cm)	h1(cm)	h2(cm)	h3(cm)
380,00	11,78	10,62	9,36
385,00	10,83	10,10	8,84
390,00	10,55	9,49	8,32
395,00	10,50	9,05	8,07
400,00	10,00	9,00	7,80
405,00	9,85	8,60	7,62
412,00	4,80	4,20	4,10
412,50	4,08	3,50	3,31
415,00	5,50	3,60	3,40
420,00	6,00	3,78	4,01
425,00	6,03	4,22	4,00
426.00	6.05	4.19	4.01

Figure 3.17 : variation des profils d'eau numérique le cas de déversoir 0.5H/1V et L=10cm

Figure 3.18 : variation des profils d'eau expérimentale le cas de déversoir 0.5H/1V et L=10cm

3.5.3. déversoir 3H/1V et L=10cm

3.1. Cas Nº1: I= 0, Q=3700 cm³/s

• Profile d'eau

• Profile de vitesse

Figure 3.20 : Le champ de vitesse $Q=3177 \text{ cm}^3/\text{s}$; 3H/1V et L=10cm

• Profile de pression

1 176-03	
1.11e+03	ANSYS
1.05e+03	R15.0
9.92+02	
0.346+02	
8 75eu02	
9 170-002	
7.590.002	
7.000.02	
8.426.02	
0.422402 6.92a.02	
5.552402	
4.870.002	
4.07-02	
4.056+02	
3.00402	
2.326402	
1.75+02	
1.75eHDZ	
1.17eH02	
5.83eHD1	
ST. ISE DZ	
1.17e+03 1.11e+03 1.05e+03 9.32e+02 9.34e+02 8.76e+02 8.76e+02 8.17e+02 7.58e+02	ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient) ANSYS R15.0
7 000402	
6.42e+02	
5.83e+02	
5.25e+02	
4.87e+02	
4,08e+02	
3.60e+02	
2.92e+02	
2.33e+02	
1.75e+02	
1.17e+02	
5.83e+01	
-4.19e-02	
Oracleum of Tabl Deserver (without) (second) (Times 2,00001,04)	

Figure 3.21 : Le champ de pression Q=3177 cm³/s ; 3H/1V et L=10cm

- 3.2. Cas N°2: I= 0, Q=2007 cm³/s
- Profile d'eau

Figure 3.22 : Le profil d'eau Q=2007 cm³/s ; 3H/1V et L=10cm

• Profile de vitesse

Figure 3.23 : Le champ de vitesse $Q=2007 \text{ cm}^3/\text{s}$; 3H/1V et L=10cm

• Profile de pression

The state of the s	
0.03x173	ANSYS
330714	
SAGETLE STREETLE	
osteriu:	
0.78412	
128442	
1.31eHI2	
6.78+402	
6.26+HZ	
5.76+12	
\$224402	
4.70±402	
4.18+02	
3.65e+02	
3.13e+02	
251e+02	
209+402	
1.57e+02	
104+02	
522+01	
-378-02	
·	
1Die+03	ANSYS
1.Die+03 9.308+02 9.000-00	ANSYS R15.0
1.04+03 9.50+02 9.30+02	ANSYS R15.0
1.Die+03 930e+02 930e+02 8.Sire+02 8.Sire+02	ANSYS R15.0
1.Dk+03 932+02 933+02 8.5%+02 8.5%+02 8.5%+02 7.7%+02	ANSYS R15.0
1 De+03 9 30+02 9 39+02 9 39+02 8 376+02 8 376+02 7 356+02 7 356+02 7 356+02	ANSYS R15.0
1.04+03 9.30+02 9.39+02 8.376+02 7.356+02 7.356+02 7.356+02 7.356+02	ANSYS R15.0
1.04+03 9.30+02 9.38+02 8.58+02 7.53+02 7.53+02 7.53+02 6.78+02 6.78+02	ANSYS R15.0
1.04+03 9.52+02 9.39+02 8.57+02 8.57+02 7.58+02 7.58+02 7.58+02 6.58+02 6.58+02 6.58+02 574+02	ANSYS R15.0
1.04+03 9.35+02 9.35+02 8.35+02 7.35+02 7.35+02 6.35+02 6.37+02 6.37+02 6.37+02 6.37+02 6.37+02 6.37+02 6.37+02	ANSYS R15.0
1.04+03 930+02 9.3%+02 8.3%+02 8.3%+02 7.3%+02 7.3%+02 6.7%+02 6.7%+02 6.7%+02 5.7%+02 6.3%+0200000000000000000000000000000000000	ANSYS R15.0
1.04+03 9.32+02 9.33+02 8.37+02 8.37+02 7.33+02 7.33+02 6.38+0	ANSYS R15.0
1.04+03 9.32+02 9.32+02 8.36+02 8.36+02 7.35+02 7.35+02 6.36+026+02 6.36+026+02 6.36+02 6.36+02 6.36+02 6.36+02 6.36+02 6.36+02 6.36+02 6.36+0	ANSYS R15.0
1.04+03 9.35+02 9.35+02 8.35+02 7.35+02 7.35+02 6.35+02 6.35+02 5.74+02 6.37+02 6.3	ANSYS R15.0
1 Die 403 9 30x 402 9 35x 402 8 376 402 8 376 402 7 35 402 7 35 402 6 376 402 7 376 400 7 376 400 7	ANSYS R15.0
104+03 930+02 939+02 837+02 837+02 738+02 738+02 738+02 637+02	ANSYS R15.0
104+03 9 20x+02 9 30x+02 8 37x+02 8 37x+02 1 7 3x+02 1 7 3x+	ANSYS R15.0
1.04+03 9.35+02 9.35+02 8.35+02 7.35+02 7.35+02 7.35+02 6.3	ANSYS R15.0
104+03 930+02 938+02 938+02 838+02 738+02 738+02 738+02 738+02 638+02 638+02 538+00	ANSYS R15.0
104+03 9 30+02 9 39+02 9 39+02 9 38+02 8 38+02 7 38+02 7 38+02 7 38+02 7 38+02 7 38+02 7 38+02 5 38	ANSYS R15.0
1 Die 403 9 30k +02 9 3% +02 8 3% +02 8 3% +02 1 7 5% +02 1 7 5% +02 1 7 5% +02 5 78 +02	ANSYS R15.0
104+43 9 32+42 9 32+42 9 32+42 8 37+42 7 35+42 7 35+42 6 37+42 6 37+42 6 37+42 6 37+42 9 32+42 1 31+42 9 32+42 1 31+42 9 35+42 9 35+425+42 9 35+42 9 35+425+425+425+4	ANSYS R15.0
104+433 932+422 933+422 933+422 933+422 8376+422 9376+422 9376+422 9376+422 9376+422 9376+422 9376+422 9376+422 9376+422 9376+422 9376+422 9376+422 9376+422 9376+422 9376+422 9376+422 9376+422 9376+422 9376+422 9376+422 <td< td=""><td>ANSYS R15.0 Aug 13, 2020</td></td<>	ANSYS R15.0 Aug 13, 2020

Figure 3.24 : Le champ de pression $Q=2007 \text{ cm}^3/\text{s}$; 3H/1V et L=10cm

3.3. Cas Nº3: I= 0, Q=1258 cm³/s

• Profile d'eau

Figure 3.25 : Le profil d'eau Q=1258 cm³/s ; 3H/1V et L=10cm

• Profile de vitesse

Figure 3.26 : Le champ de vitesse Q=1258 cm³/s ; 3H/1V et L=10cm

• Profil de pression

1.58e+02 1.05e+02 5.28e+01 -3.84e-02

Contours of Total Pressure (mixture) (pascal) (Time=2.0000e+01)

Aug 13, 2020

ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)
• Evolution des hauteurs le long du canal :

Tableau 3.2 : la variation du tirant d'eau le long du canal obtenu par mesures et parsimulation pour Q= (3700-2007-1258) cm³/s ; 3H/1V et L=10cm

x(cm)	h4(cm)	h5(cm)	h6(cm)
380,00	11,84	10,64	10,01
385,00	11,39	10,31	9,86
390,00	11,23	10,22	9,89
395,00	11,19	10,11	9,80
400,00	11,07	9,58	9,45
405,00	11,00	9,52	9,31
412,00	4,57	4,30	3,98
412,50	6,54	6,20	5,60
415,00	7,08	6,00	5,50
420,00	7,14	5,83	6,12
425,00	7,14	6,40	6,30
426.00	7.14	6.80	6.40

Figure 3.28 : variation des profils d'eau numérique le cas de déversoir 3H/1V et L=10cm

3.5.4. Déversoir 0.5H/1V et L=15cm

4.1.Cas Nº1 : I= 0, Q=3700 cm³/s

Profile d'eau •

Contours of Volume fraction (water) (Time=4.0000e+01)

Aug 15, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)

Aug 15, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)

Figure 3.30 : profil de la ligne d'eau pour Q=3177 cm³/s ; 0.5H/1V et L=15cm

• Profile de vitesse

1.40e+00 1.33e+00 1.26e+00 1.19e+00 1.12e+00 1.05e+00 9.81e-01 9.11e-01		ANSYS R15.0
8.41e-01		
7.71e-U1		
7.U1e-U1		
6.31e-U1		
5.b1e-U1		
4.90e-01		
4.200-01		
3.508-01		
2.606-01		
2.100-01		
7.01-02		
0.000000		
Contours of Velocity Magnitude (mixture) (m/s) (1	Time=4.0000e+01)	Aug 15, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)
1.40e+00		ANCVC
1.33e+00		ANSIS
1.26e+00		113.0
1.19e+00		
1.12e+00		
1.05e+00		
9.81e-01		
9.11e-01		
7.71e.01		
7.01e-01		
6.31e-01		
5.61e-01		
4.90e-01		
4.20e-01		
3.50e-01		
2.80e-01		
2.100-01		
7.01e.02		
0.00e+00		
0.000100		
Contours of Velocity Magnitude (mixture) (m/s) (1	Time=4.0000e+01)	Aug 15, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)

Figure 3.31 : champs de vitesse pour Q=3177 cm³/s ; 0.5H/1V et L=15cm

Profile de pression •

1.35e+03	ANEVE
1.28e+03	ANSIS
1.21e+03	KIJ.U
1.14e+03	
1.08e+03	
1.01e+03	
9.43e+02	
8.75e+02	
8.08e+02	
7.41e+02	
6.73e+02	
6.06e+02	
5.39e+02	
4.71e+02	
4.04e+02	
3.37e+02	
2.69e+02	
2.02e+02	
1.35e+02	
6.72e+01	
-1.60e-01	

Contours of Static Pressure (mixture) (pascal) (Time=4.0000e+01)

Aug 15, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)

1.35e+03	
1 28e+03	ANSYS
1.210+03	R15.0
1.210.03	
1.14emu3	
1.080+03	
1.01e+03	
9.43e+02	
8.75e+02	
8.08e+02	
7.41e+02	
6.73e+02	
6.06e+02	
5.39e+02	
4.71e+02	
4.04e+02	
3.37e+02	
2.69e+02	
2.02e+02	
1.35e+02	
6.72e+01	
-1.60e-01	
Contours of Static Pressure (mixture) (pascal) (Time=4.0000	e+01) Aug 15, 2020

Aug 15, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)

• Profile d'eau

Figure 3.33 : profil de la ligne d'eau pour Q=2007 cm³/s ; 0.5H/1V et L=15cm

• Profile de vitesse

1.33e+00	ANCVC
1.26e+00	ANSIS
1.19e+00	K15.0
1.13e+00	
1.06e+00	
9.96e-01	
9.29e-01	
8.63e-01	
7.96e-01	
7.30e-01	
6.64e-01	
5.97e-01	
5.31e-01	
4.65e-01	
3.98e-01	
3.32e-01	
2.65e-01	
1.99e-01	
1.33e-01	
6.64e-02	
0.00e+00	
40 Mart 10 At 10 AT 17 AT 18 AT 1	

Contours of \lor elocity Magnitude (mixture) (m/s) (Time=5.0000e+01)

Aug 15, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)

Figure 3.34 : champs de vitesse pour Q=2007 cm³/s ; 0.5H/1V et L=15cm

• Profile de pression

-	1.18e+03			ANCVC
	1.12e+03			ANSIS P15.0
	1.06e+03			114.010
	1.00e+03			
	9.45e+02			
	8.86e+02			
	8.27e+02			
	7.68e+02			
	7.09e+02			
	6.50e+02			
	5.91e+02			
	5.32e+02			
	4.73e+02			
	4.14e+02			
	3.54e+02			
	2.95e+02			
	2.36e+02			
	1.77e+02			
	1.18e+02			
	5.89e+01			
	-1.48e-01			

Contours of Static Pressure (mixture) (pascal) (Time=5.0000e+01)

Aug 15, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)

1.18e+03 1.12e+03 1.06e+03 1.00e+03	ANSYS R15.0
9.45e+02	
8.85e+02	
8.27e+02	
7.88e+02	
7.09e+02	
6.50e+02	
5.91e+02	
4.73e+02	
4.14e+02	
3.54e+02	
2.95e+02	
2.36e+02	
1.77e+02	
1.18e+02	
5.89e+01	
-1.48e-01	
Contours of Static Pressure (mixture) (pascal) (1im	Aug 15, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)

Figure 3.35 : champs de pression pour Q=2007 cm³/s ; 0.5H/1V et L=15cm

- 4.3.Cas Nº3 : I= 0, Q=1258 cm³/s Profile d'eau

4.00.00	
1.00e+00	ANSYS
9.506-01	R15.0
9.000-01	
0.500-01	
7.50-01	
7.508-01	
7.000-01	
6.5UE-U1	
5.00e-01	
5.5Ue-U1	
5.UUe-U1	
4.5Ue-U1	
4.UUe-U1	
3.5Ue-U1	
3.UUe-U1	
2.5Ue-U1	
2.00e-01	
1.5Ue-U1	
1.00e-01	
5.00e-02	
0.00e+00	
1 00++00	ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)
9.50±.03	ANSYS
9 00e-01	R15.0
8 50e-01	
8.00e-01	
7.50e-01	
7.00e-01	
6.504-01	
6.00e-01	
5.50a-01	
5.00a-01	
4.50a-01	
4.00e-01	
3.50e-01	
3:00e-01	
2.50e-01	
2.00e-01	
1.50e-01	
1.00e-01	
5.00e-02	
0.00e+00	
Contours of Volume fraction (water) (Time=6.0000e+01)	Aug 15, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)

Figure 3.36 : profil d'eau pour Q=1258 cm³/s ; 0.5H/1V et L=15cm

• Profile de vitesse

1.28e+00	ANEVC
1.22e+00	ANSIS
1.15e+00	K12.0
1.09e+00	
1.02e+00	
9.60e-01	
8.96e-01	
8.32e-01	
7.68e-01	
7.04e-01	
6.40e-01	
5.76e-01	
5.12e-01	
4.48e-01	
3.84e-01	
3.20e-01	
2.56e-01	
1.92e-01	
1.28e-01	
6.40e-02	
0.00e+00	
Contours of Velocity Magnitude (mixture) (m/s) (Time=6.0000e+01)	Aug 15, 2020
	ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)
4.00,00	
1.200700	ANSYS
1.150-00	R15.0
1.130-00	
1.020-00	
9,60,01	
8 96-01	
8 37-01	
7.68e.01	
7.04e-01	

	1.046-01			
	6.40e-01			
	5.76e-01			
	5.12e-01			
	4.48e-01			
	3.84e-01			
	3.20e-01			
	2.56e-01			
	1.92e-01			
	1.28e-01			
	6.40e-02			
	0.00e+00			
Conto	urs of Velocity Magnitude (mixture) (m/s)	(Time=6.0000e+01)	ANOVO Elucet 15.0 /Od	Aug 15, 2020
			ANSTS FILLERI, 15.0 (20,	up, pons, voi, ske, transient)

Figure 3.37 : champs de vitesse pour Q=1258 cm³/s ; 0.5H/1V et L=15cm

• Profile de pression

	1.08e+03 1.03e+03 9.72e+02	ANSYS R15.0
	9.18e+U2 8.64e+02	
	8.10e+02	
	7.5be+U2	
	7.028+02	
	6.400+02	
	5.948+02 5.40×407	
	5.408+02 4.86+02	
	4.32e+f12	
	3.78e+02	
	3.24e+02	
	2.70e+02	
	2.16e+02	
	1.62e+02	
	1.08e+02	
	5.39e+01	
_	-1.27e-01	
Contour	s of Static Pressure (mixture) (pascal) (Time=6.0000e+01)	Aug 15, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)
		a 16 ki 16
	1.08e+03	ANSYS
	1.08e+03 1.03e+03	ANSYS R15.0
	1.08e+03 1.03e+03 9.72e+02	ANSYS R15.0
	1.08e+03 1.03e+03 9.72e+02 9.18e+02 8.64e+02	ANSYS R15.0
	1.08e+03 1.03e+03 9.72e+02 9.18e+02 8.64e+02 8.10e+102	ANSYS R15.0
	1.08e+03 1.03e+03 9.72e+02 9.18e+02 8.64e+02 8.10e+02 7.56e+02	ANSYS R15.0
	1.08e+03 1.03e+03 9.72e+02 9.18e+02 8.64e+02 8.10e+02 7.56e+02 7.02e+02	ANSYS R15.0
	1.08e+03 1.03e+03 9.72e+02 9.18e+02 8.64e+02 8.10e+02 7.56e+02 7.02e+02 6.48e+02	ANSYS R15.0
	1.08e+03 1.03e+03 9.72e+02 9.18e+02 8.64e+02 8.10e+02 7.56e+02 7.02e+02 6.48e+02 6.48e+02 5.94e+02	ANSYS R15.0
	1.08e+03 1.03e+03 9.72e+02 9.18e+02 8.64e+02 8.10e+02 7.56e+02 7.02e+02 6.48e+02 6.48e+02 5.94e+02 5.40e+02	ANSYS R15.0
	1.08e+03 1.03e+03 9.72e+02 9.18e+02 8.64e+02 8.10e+02 7.56e+02 7.02e+02 6.48e+02 5.94e+02 5.94e+02 5.40e+02 4.86e+02	ANSYS R15.0
	1.08e+03 1.03e+03 9.72e+02 9.18e+02 8.64e+02 8.10e+02 7.56e+02 7.02e+02 6.48e+02 6.48e+02 6.48e+02 6.48e+02 6.40e+02 4.86e+02 4.86e+02	ANSYS R15.0
	1.08e+03 1.03e+03 9.72e+02 9.18e+02 8.64e+02 8.10e+02 7.56e+02 7.02e+02 6.48e+02 6.48e+02 5.94e+02 5.94e+02 4.88e+02 4.88e+02 4.88e+02 4.32e+02 3.78e+02	ANSYS R15.0
	1.08e+03 1.03e+03 9.72e+02 9.18e+02 8.64e+02 8.10e+02 7.56e+02 7.02e+02 6.48e+02 6.48e+02 5.94e+02 5.40e+02 4.86e+02 4.86e+02 3.78e+02 3.78e+02 3.78e+02	ANSYS R15.0
	1.08e+03 1.03e+03 9.72e+02 9.18e+02 8.64e+02 8.10e+02 7.56e+02 7.02e+02 6.48e+02 5.94e+02 5.94e+02 5.94e+02 4.86e+02 4.86e+02 4.86e+02 3.76e+02 3.76e+02 3.76e+02 3.76e+02 3.24e+02 3.76e+02	ANSYS R15.0
	1.08e+03 1.03e+03 9.72e+02 9.18e+02 8.64e+02 8.64e+02 8.10e+02 7.55e+02 7.02e+02 6.48e+02 6.48e+02 6.48e+02 6.49e+02 5.40e+02 4.86e+02 4.86e+02 4.86e+02 4.32e+02 3.78e+	ANSYS R15.0
	1.08e+03 1.03e+03 9.72e+02 9.18e+02 8.64e+02 8.64e+02 7.55e+02 7.02e+02 6.48e+02 6.48e+02 6.44e+02 6.44e+02 4.86e+02 4.86e+02 4.82e+02 3.78e+02 3.78e+02 2.70e+02 2.70e+02 2.16e+02 1.62e+02	ANSYS R15.0
	1.08e+03 1.03e+03 9.72e+02 9.18e+02 8.64e+02 8.10e+02 7.56e+02 7.02e+02 6.48e+02 5.94e+02 5.94e+02 5.40e+02 4.88e+02 4.88e+02 3.78e+02 3.78e+02 3.24e+02 2.70e+02 2.16e+02 1.62e+02 1.62e+02 1.62e+01 1.68e+01	ANSYS R15.0
	1.08e+03 1.03e+03 9.72e+02 9.18e+02 8.64e+02 8.10e+02 7.56e+02 7.02e+02 6.48e+02 5.94e+02 5.40e+02 4.86e+02 4.86e+02 4.86e+02 3.24e+02 2.70e+02 2.70e+02 2.16e+02 1.62e+	ANSYS R15.0
	1.08e+03 1.03e+03 9.72e+02 9.18e+02 8.64e+02 8.64e+02 7.56e+02 7.02e+02 6.48e+02 5.94e+02 5.40e+02 4.86e+02 4.86e+02 4.32e+02 3.78e+02 3.78e+02 2.70e+02 2.70e+02 2.16e+02 1.62e+02 1.62e+02 1.08e+02 5.39e+01 -1.27e-01	ANSYS R15.0

Figure 3.38 : champs de pression pour Q=1258 cm³/s ; 0.5H/1V et L=15cm

• Evolution des hauteurs le long du canal :

Tableau 3.3 : la variation du tirant d'eau le long du canal obtenu par mesures et parsimulation pour Q= (3700-2007-1258) cm³/s ; 0.5H/1V et L=15cm

x(cm)	h7(cm)	h8(cm)	h9(cm)
370,00	13,74	12,30	10,08
380,00	13,27	12,02	10,12
385,00	13,17	12,00	10,13
389,00	13,05	11,90	10,00
392,50	12,80	11,89	10,20
400,00	11,59	10,61	10,01
405,00	11,00	10,00	9,50
410,00	7,80	8,00	7,80
415,00	4,50	4,30	4,50
425,00	5,90	4,01	3,80
430,00	6,40	4,50	4,42
440,00	6,50	5,80	4,50
450,00	6,30	5,90	4,52

Figure 3.39 : variation des profils d'eau numérique le cas de déversoir 0.5H/1V et L=15cm

3.5.5. Déversoir 3H/1V et L=15cm

5.1. Cas Nº1: I= 0, Q=3700 cm³/s

• Profile d'eau

Figure 3.41 : Le profil d'eau Q=3700 cm³/s ; 3H/1V et L=15cm

• Profil de vitesse

1.35e+00	ANSVS
1.28e+00	ANDID
1.21e+00	N15.0
1.14e+00	
1.08e+00	
1.01e+00	
9.42e-01	
8.74e-01	
8.07e-01	
7.40e-01	
6.73e-01	
6.05e-01	
5.38e-01	
4.71e-01	
4.04e-01	
3.36e-01	
2.69e-D1	
2.02e-01	
1.35e-01	
6.73e-02	
0.00e+00	
	ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)
1.35e+00	ANSYS
1.28e+00	R15.0
1.21e+00	
1.14e+00	
1.08e+00	
1.01e+00	
9.42e-01	
8.74e-01	
8.0/e-01	
2.40-04	
7.40e-01	
7.40e-01 8.73e-01 8.57a-01	
7.40e-01 8.73e-01 8.05e-01 8.05e-01	
7.40e-01 6.73e-01 6.05e-01 6.38e-01	
7.40e-01 6.73e-01 6.05e-01 <u>6.38e-01</u> 4.71e-01 4.71e-01	
7.40e-01 8.73e-01 8.05e-01 6.38e-01 4.71e-01 4.04e-01 3.36e-01	
7.40e-01 6.73e-01 6.05e-01 6.33e-01 4.71e-01 4.71e-01 4.71e-01 3.36e-01 2.98e-01 2.98e-01 2.98e-01	
7.40e-01 8.73e-01 6.05e-01 5.33e-01 4.71e-01 4.04e-01 3.36e-01 2.09e-01 2.09e-01 2.09e-01	
7.40e-01 8.73e-01 6.05e-01 5.33e-01 4.71e-01 4.04e-01 3.36e-01 2.02e-01 1.25e-01 1.35e-01	
7.40e-01 8.73e-01 6.05e-01 5.38e-01 4.71e-01 4.04e-01 3.36e-01 2.89e-01 2.02e-01 1.35e-01 6.73e-02	
7.40e-01 8.73e-01 6.05e-01 5.39e-01 4.71e-01 4.04e-01 3.36e-01 2.69e-01 2.02e-01 1.35e-01 6.73e-02 0.00e+00	
7.40e-01 6.73e-01 8.05e-01 6.38e-01 4.71e-01 4.04e-01 3.36e-01 2.09e-01 2.02e-01 1.35e-01 6.73e-02 0.00e+00	
7.40e-01 6.73e-01 9.05e-01 5.38e-01 4.71e-01 4.04e-01 3.36e-01 2.09e-01 2.02e-01 1.35e-01 6.73e-02 0.00e+00	
7.40e-01 6.73e-01 6.05e-01 5.38e-01 4.71e-01 4.04e-01 3.36e-01 2.69e-01 2.02e-01 1.35e-01 0.73e-02 0.00e+00	Aug 14, 2020

Figure 3.42 : Le champ de vitesse $Q=3700 \text{ cm}^3/\text{s}$; 3H/1V et L=15cm

• Profile de pression

1.17e+03	ANEVE
1.11e+03	ANDID
1.05e+03	
9.91e+02	
9.33e+02	
8.74e+02	
8.16e+02	
7.58e+02	
6.99e+02	
6.41e+0	
5.83e+0	
5.25e+0 <mark>2</mark>	
4.66e+02	
4.08e+02	
3.50e+02	
2.91e+02	
2.33e+02	
1.75e+02	
1.17e+02	
5.82e+01	
-6,40e-02	
	ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)
1.17e+03	ANEVE
1.17e+03 1.11e+03	ANSYS
1.17e+03 1.11e+03 1.05e+03	ANSYS R15.0
1.17e+03 1.11e+03 1.05e+03 9.91e+02	ANSYS R15.0
1.17e+03 1.11e+03 1.05e+03 9.91e+02 9.33e+02	ANSYS R15.0
1.17e+03 1.11e+03 1.05e+03 9.91e+02 9.33e+02 8.74e+02 8.74e+02	ANSYS R15.0
1.17e+03 1.11e+03 1.05e+03 9.91e+02 9.33e+02 9.33e+02 8.74e+02 8.16e+02	ANSYS R15.0
1.17e+03 1.11e+03 1.05e+03 9.91e+02 9.33e+02 9.33e+02 8.16e+02 7.59e+02	ANSYS R15.0
1.17±+03 1.11±+03 1.05±+03 9.91±+02 9.33±+02 8.74±+02 8.74±+02 8.16±+02 7.58±+02 0.99±+02	ANSYS R15.0
1.17e+03 1.11e+03 1.05e+03 9.91e+02 9.33e+02 9.33e+02 9.33e+02 9.374e+02 8.16e+02 7.58e+02 0.99e+02 0.41e+02	ANSYS R15.0
1.17e+03 1.11e+03 1.05e+03 9.91e+02 9.33e+02 8.16e+02 7.38e+02 8.16e+02 6.99e+02 6.99e+02 6.99e+02 6.99e+02 6.93e+02	ANSYS _{R15.0}
1.17e+03 1.11e+03 1.05e+03 9.91e+02 9.33e+02 9.32e+02 8.16e+02 7.98e+02 0.99e+02 0.94e+	ANSYS R15.0
1.17e+03 1.11e+03 1.05e+03 9.91e+02 9.33e+02 9.37e+02 9.16e+02 7.58e+02 6.41e+02 6.41e+02 6.32e+	ANSYS R15.0
1.17e+03 1.11e+03 1.05e+03 9.91e+02 9.33e+02 9.33e+02 9.37e+02 9.16e+02 7.58e+02 0.99e+02 0.41e+02 5.83e+02 5.25e+02 4.06e+02 4.06e+02	ANSYS R15.0
1.17e+03 1.11e+03 1.11e+03 1.05e+03 9.31e+02 9.33e+02 9.37e+02 9.37e+02 9.37e+02 9.36e+02 0.41e+02 0.41e+02 0.41e+02 0.41e+02 0.41e+02 0.41e+02 0.53e+02 0.56e+	ANSYS R15.0
1.17e+03 1.11e+03 1.05e+03 9.91e+02 9.33e+02 8.74e+02 8.74e+02 8.76e+02 7.59e+02 6.99e+02 6.99e+02 6.99e+02 6.99e+02 6.83e+02 5.26e+02 4.06e+02 4.06e+02 3.50e+02 2.31e+02	ANSYS BIS.0
1.17e+03 1.11e+03 1.05e+03 9.91e+02 9.33e+02 8.74e+	ANSYS R15.0
1.17e+03 1.11e+03 1.05e+03 9.91e+02 9.32e+02 9.32e+02 9.32e+02 9.32e+02 9.32e+02 9.32e+02 9.32e+02 9.32e+02 9.32e+02 9.32e+02 9.32e+02 9.32e+02 9.48e+	ANSYS R15.0
1.17e+03 1.11e+03 1.05e+03 9.91e+02 9.32e+02 9.32e+02 9.32e+02 9.32e+02 9.99e+02 9.99e+02 9.99e+02 9.99e+02 9.99e+02 9.52e+	ANSYS R15.0
1.17e+03 1.11e+03 1.11e+03 1.05e+03 9.31e+02 9.33e+02 9.37e+02 9.37e+02 9.36e+02 7.56e+02 6.41e+02 5.32e+02 6.41e+02 5.32e+02 4.06e+02 4.06e+02 4.08e+02 3.50e+02 2.31e+02 2.31e+02 1.75e+02 1.17e+02 5.82e+01	RNSYS R15.0
1.17e+03 1.11e+03 1.11e+03 1.05e+03 9.31e+02 9.33e+02 8.7e+02 8.7e+02 8.16e+02 7.58e+02 6.41e+02 5.35e+02 4.66e+02 4.66e+02 4.66e+02 2.33e+02 2.33e+02 1.75e+02	ANSYS R15.0
1.17e+03 1.11e+03 1.05e+03 9.91e+02 9.32e+02 8.74e+02 8.74e+02 8.10e+02 7.96e+02 0.99e+02 0.91e+02 5.83e+02 5.83e+02 5.25e+02 4.06e+02 2.35e+02 2.35e+02 1.75e+	ANSYS R15.0
1.17e+03 1.11e+03 1.05e+03 9.31e+02 1.11e+02 3.50e+02 1.17e+02 3.52e+01 -0.40e+02	Aug 14, 2020

Figure 3.43 : Le champ de pression $Q=3700 \text{ cm}^3/\text{s}$; 3H/1V et L=15cm

• Profile d'eau

Figure 3.44 : Le profil d'eau Q=2007 cm³/s ; 3H/1V et L=15cm

• Profile de vitesse

1.00000	ANSY
1.29e+00	R15
1.23e+00	
1.16e+00	
1.000100	
1.028+00	
9.53e-01	
8.85e-01	
8.17e-01	
7.49e-01	
6.81e.01	
6.010-01	
6.13e-UI	
5.45e-01	
4.76e-01	
4.08e-01	
3.40e-01	
2.72e.01	
2.12007	
2.046-01	
1.36e-01	
6.81e-02	
0.00e+00	
uurs of∨elocity Magnitude (mixture) (m/s) (Time=1.2000e+02)	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans
nurs of ∨elocity Magnitude (mixture) (m/s) (Time=1.2000e+02)	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans
nurs of Velocity Magnitude (mixture) (m/s) (Time=1.2000e+02)	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans
nurs of Velocity Magnitude (mixture) (m/s) (Time=1.2000e+02) 1.36e+00 1.29e+00	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans
nurs of Velocity Magnitude (mixture) (m/s) (Time=1.2000e+02) 1.36e+00 1.29e+00 1.23e+00	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans ANSY R1
nurs of Velocity Magnitude (mixture) (m/s) (Tim <i>e</i> =1.2000e+02) 1.36e+00 1.29e+00 1.23e+00 1.16e+00	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans ANSY R1
uurs of Velocity Magnitude (mixture) (m/s) (Time=1.2000e+02) 1.36e+00 1.29e+00 1.23e+00 1.16e+00 1.09e+00	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans ANSY
uurs of Velocity Magnitude (mixture) (m/s) (Time=1.2000e+02) 1.36e+00 1.29e+00 1.29e+00 1.16e+00 1.09e+00 1.09e+00 1.02e+00	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans ANSY R1
uurs of Velocity Magnitude (mixture) (m/s) (Time=1.2000e+02) 1.36e+00 1.29e+00 1.23e+00 1.16e+00 1.09e+00 1.02e+00 9.63e-01	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans ANSY R1
uurs of Velocity Magnitude (mixture) (m/s) (Tim <i>e</i> =1.2000e+02) 1.36e+00 1.29e+00 1.23e+00 1.16e+00 1.09e+00 1.02e+00 9.53e-01	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans ANSY R1
purs of Velocity Magnitude (mixture) (m/s) (Time=1.2000e+02) 1.36e+00 1.29e+00 1.23e+00 1.16e+00 1.09e+00 1.09e+00 9.53e-01 8.17+01 8.17+01 7.400	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans ANSY R1
purs of Velocity Magnitude (mixture) (m/s) (Time=1.2000e+02) 1.36e+00 1.29e+00 1.23e+00 1.16e+00 1.09e+00 1.09e+00 1.02e+00 9.53e-01 8 17+01 8 17+01 7 49=01	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans ANSY R1
purs of Velocity Magnitude (mixture) (m/s) (Time=1.2000e+02) 1.36e+00 1.29e+00 1.23e+00 1.16e+00 1.09e+00 1.09e+00 9.53e-01 8.05e-01 8.17-01 7.49e-01 8.17-01 7.49e-01 8.17-01 7.49e-01	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans ANSY R1
purs of Velocity Magnitude (mixture) (m/s) (Time=1.2000e+02) 1.36e+00 1.29e+00 1.23e+00 1.16e+00 1.09e+00 1.02e+00 9.53e-01 8.17e-01 7.49e-01 6.13e-01 5.45e-01 5.45e-01	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans
uurs of Velocity Magnitude (mixture) (m/s) (Time=1.2000e+02) 1.36e+00 1.29e+00 1.29e+00 1.09e+00 1.09e+00 1.02e+00 9.53e-01 8 17-01 7 49e-01 6 13e-01 5 45e-01	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans
uurs of Velocity Magnitude (mixture) (m/s) (Time=1.2000e+02) 1.36e+00 1.29e+00 1.29e+00 1.29e+00 1.09e+00 1.02e+00 9.53e-01 8.05e-01 8.05e-01 8.01e-01 6.13e-01 4.76e-01 4.08e-01	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans
uurs of Velocity Magnitude (mixture) (m/s) (Time=1.2000e+02) 1.36e+00 1.29e+00 1.29e+00 1.09e+00 1.02e+00 9.53e-01 8.06e-01 8.17e-01 7.48e-01 4.08e-01 4.08e-01 3.40e-01	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans
nurs of Velocity Magnitude (mixture) (m/s) (Time=1.2000e+02) 1.36e+00 1.29e+00 1.29e+00 1.09e+00 1.02e+00 9.53e-01 0.00e+01 8.17e-01 8.17e-01 8.17e-01 6.13e-01 4.76e-01 4.08e-01 3.40e-01 3.40e-01 3.72e-01	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans
nurs of Velocity Magnitude (mixture) (m/s) (Tim <i>e</i> =1.2000e+02) 1.36e+00 1.29e+00 1.29e+00 1.02e+00 9.53e-01 8.07e+01 8.17e-01 4.76e-01 4.76e-01 4.08e-01 3.40e-01 2.72e-01 2.04e-01	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans
nurs of Velocity Magnitude (mixture) (m/s) (Time=1.2000e+02) 1.36e+00 1.29e+00 1.23e+00 1.02e+00 1.02e+00 9.53e-01 8.17e-01 8.17e-01 8.17e-01 6.13e-01 5.45e-01 4.76e-01 4.76e-01 4.08e-01 3.40e-01 2.72e-01 2.04e-01 1.36e-01 1.36e-01	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans ANSY R1
burs of Velocity Magnitude (mixture) (m/s) (Time=1.2000e+02) 1.36e+00 1.29e+00 1.23e+00 1.02e+00 1.02e+00 9.53e-01 8.05e-01 8.0	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans ANSY R1
nurs of Velocity Magnitude (mixture) (m/s) (Time=1.2000e+02) 1.36e+00 1.29e+00 1.29e+00 1.29e+00 1.09e+00 1.02e+00 9.53e-01 8.17e-01 7.49e-01 8.17e-01 4.06e-01 8.18e-01 4.76e-01 4.06e-01 3.40e-01 2.72e-01 2.04e-01 1.36e-01 6.81e-02 0.00e+00	Aug 14, ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans
uurs of Velocity Magnitude (mixture) (m/s) (Time=1.2000e+02) 1.36e+00 1.29e+00 1.23e+00 1.09e+00 1.09e+00 1.02e+00 9.53e-01 8.06e-01 8.06e-01 8.06e-01 8.01 6.13e-01 5.45e-01 4.06e-01 3.40e-01 2.72e-01 2.04e-01 1.36e-01 6.81e-02 0.00e+00	Aug 14, 1 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans ANSYS A
nurs of Velocity Magnitude (mixture) (m/s) (Time=1.2000e+02) 1.36e+00 1.29e+00 1.29e+00 1.09e+00 1.02e+00 9.53e-01 8.06e-01 8.07e-01 4.76e-01 4.76e-01 4.76e-01 4.76e-01 2.72e-01 2.04e-01 1.36e-01 2.72e-01 2.04e-01 1.36e-01 0.00e+00	Aug 14, . ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, trans ANSYS ANSYS R1

Figure 3.45 : Le champ de vitesse $Q=2007 \text{ cm}^3/\text{s}$; 3H/1V et L=15cm

• profile de pression

-	1.05e+03	ANSVS
	1.00e+03	ANJIJ R15.0
	9.48e+02	
	8.96e+02	
	8.43e+02	
	7.90e+02	
	7.38e+02	
	6.85e+02	
	6.32e+02	
	5.79e+02	
	5.27e+02	
	4.74e+02	
	4.21e+02	
	3.69e+02	
	3.16e+02	
	2.63e+02	
	2.11e+02	
	1.58e+02	
	1.05e+02	
	5.26e+01	
	-8.15e-02	
Contour	a of Tatal Bracoura (mixtura) (naccal) (Timo=1 2000a+02)	Aug 14, 2020
Contours	s of fotal Flessure (mixture) (pascal) (1008–1.20008+02)	Aug 14, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)

1.05e+03		ANSVS
1.00e+03		R150
9.48e+02		
8.96e+02		
8.43e+02		
7.90e+02		
7.38e+02		
6.85e+02		
6.32e+02		
5.79e+02		
5.27e+02		
4.74e+02		
4.21e+02		
3.69e+02		
3.16e+02		
2.63e+02		
2.11e+02		
1.58e+02		
1.05e+02		
5.26e+01		
-8.15e-02		
Contours of Total Pressur	e (mixture) (pascal) (Time=1.2000e+02)	Aug 14, 2020 ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)

Figure 3.46 : Le champ de pression Q=2007 cm³/s ; 3H/1V et L=15cm

```
5.3.Cas N°3 : I= 0, Q=1258 cm<sup>3</sup>/s
```

• Profile d'eau

Figure 3.47 : Le profil d'eau Q=1258 cm³/s ; 3H/1V et L=15cm

• Profile de vitesse

Figure 3.48 : Le champ de vitesse $Q=1258 \text{ cm}^3/\text{s}$; 3H/1V et L=15cm

• Profile de pression

1.04e+03	ANEVE
9.91e+02	ANSYS
9.38e+02	R15.U
8.86e+02	
8.34e+02	
7.82e+02	
7.30e+02	
6.78e+02	
6.26e+02	
5.73e+02	
5.21e+02	
4.69e+02	
4.17e+02	
3.65e+02	
3.13e+02	
2.61e+02	
2 08e+02	
1.56e+02	
1 04e+02	
5.20e+01	
-1.47e-01	
Contours of Static Pressure (mixture) (pascal) (Time=1.3000e+02)	Aug 14, 2020
· · · · · · · · · · · · · · · · · · ·	ANSYS Fluent 15.0 (2d, dp, pbns, vof, ske, transient)
1.04e+03	ANSYS
9.91e+02	R15.0
9.38e+02	
8.86e+02	
8.34e+02	
7.82e+02	
7.30e+02	
6.78e+02	
6.26e+02	
5.73e+02	
5.21e+02	
4.69e+02	
4.17e+02	
3.65e+02	
3.13e+02	
2.61e+02	
2.08e+02	
1.56e+02	
1.04e+02	
5.20e+01	
-1.47e-01	
Contours of Static Pressure (mixture) (pascal) (Time=1.3000e+02)	Aug 14, 2020

Figure 3.49 : Le champ de pression $Q=1258 \text{ cm}^3/\text{s}$; 3H/1V et L=15cm

• Evolution des hauteurs le long du canal :

Tableau 3.4 : la variation du tirant d'eau le long du canal obtenu par mesures et parsimulation pour Q= (3700-2007-1258) cm³/s ; 3H/1V et L=15cm

x(cm)	h10 (cm)	h11 (cm)	h12 (cm)
370,00	12,72	11,66	10,63
380,00	12,65	11,23	10,10
385,00	12,55	11,08	10,05
390,00	12,16	11,06	10,00
395,00	11,80	11,00	10,01
400,00	10,80	10,01	9,10
405,00	9,98	9,01	8,60
415,00	6,10	5,83	5,82
425,00	2,60	2,30	1,90
432,00	5,82	4,98	4,75
436,00	6,10	5,35	5,02
438,00	6,21	5,32	5 , 03
440,00	6,20	5,31	5,00

Figure 3.50 : variation des profils d'eau numérique le cas de déversoir 3H/1V et L=15cm

Figure 3.51 : variation des profils d'eau expérimentale le cas de déversoir 3H/1V et L=15cm

3.6. Interprétation

6.1. Cas Nº1 : I= 0, Q= (3700-2007-1258) cm³/s ,déversoir 0.5H/1V ,L=10cm

• La ligne d'eau

Les figures **3.8**, **3.11 et 3.14** représente le profil de la ligne d'eau obtenu en numériquement et par le modèle de turbulence \mathbf{k} - $\boldsymbol{\epsilon}$ pour une pente nulle et débit varie de 3177-2007 et 1258 cm³/s avec un déversoir trapézoïdal de pente 0.5H/1V et une crête de 10 cm. On remarque que la ligne de la surface libre obtenue numériquement s'apparente à la ligne d'eau obtenu expérimentalement en amont et aval du déversoir.

On constate que le ressaut hydraulique est formé juste à l'arrêté aval de déversoir . On remarque pour un débit maximum de 3700cm³/s le profil d'eau est important sur la partie amont jusqu'à l'arrêté aval du déversoir le profil devient plus moins important, par contre pour un débit minimum 1258cm³/s le profil d'eau est plus moins important on amont de déversoir et faible en aval de déversoir, le modèle standard **k**- ε est bien adapté avec cette expérience.

• Profile de vitesse

Les figures **3.9**, **3.12 et 3.15** représentent le champ de vitesse obtenu numériquement et par le modèle de turbulence \mathbf{k} - $\boldsymbol{\epsilon}$ pour une pente nulle et débit varie de 3177-2007 et 1258 cm³/s avec un déversoir trapézoïdal de pente 0.5H/1V et une crête de 10 cm. On remarque que la vitesse avant le déversoir est uniforme et très faible et autours de la vitesse d'entré. Elle est à ses valeurs maximales à l'arrêté aval du déversoir. Cette augmentation est due à la chute de l'écoulement au niveau de déversoir .Par ailleurs, les valeurs de la vitesse se baissent en aval de l'obstacle. Après l'écoulement tente de revenir uniforme.

• Profile de pression

Les figures **3.10, 3.13 et 3.16** représentent le champ de pression total simulé par Ansys Fluent en utilisant le modèle de turbulence **k**- ϵ pour une pente nulle et débit varie de 3177-2007 et 1258 cm³/s avec un déversoir trapézoïdale de pente 0.5H/1V et une crête de 10 cm. On voit qu'avant le déversoir la pression totale à une valeur maximale au fond du canal, ceci est évident car elle augmente dans le sens vertical vers le bas (la loi hydrostatique **Pt=P**₀+ ρ **gh**).

On observe que la zone de dépression diminue en augmentant la valeur de débit, Or, on sait que le tirant d'eau est proportionnel au débit.

On voit aussi la présence d'une pression négative à l'arrêté aval du déversoir, c'est à dire la pression relative est inférieure à la pression atmosphérique, en fait, la pression négative est

risquée de déstabiliser le déversoir si elle dépasse la pression de vapeur de saturation de l'eau. Ce phénomène est connu sous le nom cavitation.

• Evolution des hauteurs le long du canal

Les données des hauteurs obtenues numériquement pour Q= (3700-2007-1258) cm³/s, pente 0.5H/1V et L=10cm de Tableau **3.1** sont représentées dans le graphe (**Figure 3.17**). La figure 3.17 montre une bonne concordance entre les résultats expérimentales et numérique. On observe que le tirant d'eau au voisin de l'arrêté amont de déversoir diminue progressivement, en fait l'écoulement est graduellement varié de 12 à 10,5 cm pour le profil d'eau 1 (même remarque pour les deux autres profils) au niveau de la crête la hauteur d'eau est constant à 9 cm pour le profil 2 jusqu'à arriver à l'arrêté aval de déversoir la hauteur d'eau diminue rapidement à cause de la chute brusque sur l'obstacle de 10 à 4 cm après ce passage le tirant d'eau reviens à une hauteur stable de 6 cm pour le profil d'eau 1 (même remarque pour les deux autres profils) dans ce passage l'écoulement récupère son régime uniforme.

Donc les résultats sont plus proches à la réalité alors le modèle donne des bonne résultats.

6.2.Cas N°2 : I= 0, Q= (3700-2007-1258) cm³/s, déversoir 3H/1V,L=10cm

• La ligne d'eau

Les figures **3.19**, **3.22 et 3.25** représente le profil de la ligne d'eau obtenu en modélisation et par le modèle de turbulence k- ε pour une pente nulle et débit varie de 3177-2007 et 1258 cm³/s avec un déversoir trapézoïdal de pente 3H/1V et une crête de 10 cm.

On remarque que la ligne de la surface libre obtenue numériquement s'apparente à la ligne d'eau obtenue expérimentalement en amont et aval du déversoir. On observe dans ce cas que nous avons obtenu un profil d'eau important l'amont et moins importante en aval de déversoir

Aussi la formation de ressaut hydraulique est loin de déversoir par rapport au cas précédent et plus le débit sera maximum le ressaut sera loin de l'obstacle. Donc l'angle d'approche a un effet important sur le passage d'un régime à un autre.

• Profil de vitesse

Les figures **3.20**, **3.23 et 3.26** représentent le champ de vitesse obtenu par simulation et par le modèle de turbulence k- ε pour une pente nulle et débit varie de 3177-2007 et 1258 cm³/s avec un déversoir trapézoïdal de pente 3H/1V et une crête de 10 cm. On remarque que la vitesse avant le déversoir est uniforme et très faible et autours de la vitesse d'entré. Elle est à ses valeurs maximales à l'arrêté aval du déversoir. Avec cette pente de déversoir 3H/1V la vitesse plus

important (1.34 m/s) à celle de premier cas (1.01 m/s) donc la pente a un effet important sur la décharge de déversoir.

L'augmentation de vitesse en arrêté aval est due à la chute de l'écoulement au niveau de déversoir, Après la vitesse soit uniforme.

• Profile de pression

Les figures **3.21, 3.24 et 3.27** représentent le champ de pression total obtenu par simulation et par le modèle de turbulence k- ε pour une pente nulle et débit varie de 3177-2007 et 1258 cm³/s avec un déversoir trapézoïdal de pente 3H/1V et une crête de 10 cm. On voit qu'avant le déversoir la pression total a une valeur maximale au fond du canal.

On observe que la zone de dépression diminue dans ce cas on valeur et en position.

• Evolution des hauteurs le long du canal

Les données de hauteurs obtenues numériquement pour Q= (3700-2007-1258) cm³/s, pente 3H/1V et L=10cm de (Tableau **3.2**) sont représentées dans le graphe (**Figure 3.28**) on observe que le tirant d'eau aux voisin de l'arrêté amont de déversoir diminue progressivement et même sur la crête de déversoir jusqu'à arriver à la chute progressive et attendre le minimum de hauteur au niveau de l'arrêté aval de déversoir après cette transition le tirant d'eau sera stabilisé sur une hauteur de 7,08cm pour le profil d'eau 4 cela veut dire que l'écoulement est uniforme. La même remarque pour les autres profils d'eau de la figure (3.27).

6.3.Cas N°3 : I= 0, Q= (3700-2007-1258) cm³/s, déversoir 0.5H/1V,L=15cm

• La ligne d'eau

Les figures **3.30**, **3.33 et 3.36** représente le profil de la ligne d'eau obtenu en modélisation et par le modèle de turbulence k- ε pour une pente nulle et débit varie de 3177-2007 et 1258 cm³/s avec un déversoir trapézoïdal de pente 0.5H/1V et une crête large de 15 cm.

On remarque que la ligne de la surface libre obtenue numériquement s'apparente à la ligne d'eau obtenu expérimentalement en amont et aval du déversoir. On constat que la nouvelle forme de déversoir a influer sur le profil d'eau de telle sort que nous avons obtenu un saut hydraulique juste à l'aval de déversoir suit d'une formation de ressaut hydraulique. Le profil d'eau réagit avec l'augmentation de débit (un débit maximum 3700 cm³/s a un profil plus important).

Sur la partie aval de déversoir on remarque que le déversoir est noyé sous l'effet d'augmentation de tirant d'eau aval donc les conditions d'écoulement en aval affecte l'écoulement en amont.

• Profil de vitesse

Les figures **3.31, 3.34 et 3.37** représentent le champ de vitesse obtenu par simulation et par le modèle de turbulence k- ε pour une pente nulle et débit varie de 3177-2007 et 1258 cm³/s avec un déversoir trapézoïdal de pente 0,5H/1V et une crête de 15 cm. On remarque que la vitesse avant le déversoir est uniforme et très faible et autours de la vitesse d'entré. Elle est à ses valeurs maximales à l'arrêté aval du déversoir. Mais elle moins important à celle de déversoir de 10 cm alors que l'écoulement a perdu une partie d'énergie cinétique au niveau de crête large (L=15 cm).

Juste à l'arrêté aval de déversoir on constate que la vitesse est à l'ordre de 0 m/s alors le déversement dans cette zone ce fait en chute libre quelque part.

En allons vers l'aval la vitesse sera stable jusqu'à le régime sera uniforme.

• Profile de pression

Les figures **3.32, 3.35 et 3.38** représentent le champ de pression statique obtenu en modélisation et par le modèle de turbulence k- ε pour une pente nulle et débit varie de 3177-2007 et 1258 cm³/s avec un déversoir trapézoïdal de pente 0.5H/1V et une crête de 15 cm.

On voit qu'avant le déversoir la pression statique a une valeur maximale au fond du canal et a tout sa longueur et elle important en valeur (1350 pascal pour le cas de longue crête de figure **3.32** et 1150 pascal pour le cas de court crête de figure **3.10**) alors plus que la longueur de crête sera importante la pression amont sera maximal.

Au niveau de la crête la pression sera très faible jusqu'à arriver à l'arrêté aval de déversoir la pression sera négative cela veut dire le risque de provoque le phénomène de cavitation.

Après la chute d'eau la pression récupère ces valeurs moyennes qui sont très faible de [337-471] Pa alors l'obstacle a briser la charge hydraulique ces observation sont pour la **figure 3.32**et les même pour les autres **figures 3.35 et 3.38**

• Evolution des hauteurs le long du canal

Les données de hauteurs obtenues numériquement pour Q= (3700-2007-1258) cm³/s, pente 0,5H/1V et L=15cm de Tableau **3.3** sont représentées dans le graphe (**Figure 3.39**)

On observe que le tirant d'eau aux voisin de l'arrêté amont de déversoir diminue progressivement et même sur la crête de déversoir jusqu'à arriver à la chute brusque en arrêté aval jusqu'à arriver à une profondeur minimal de 4cm sous l'effet de saut hydraulique (profil d'eau 9) même remarque pour les autres profile de (**figure 3.39**) après le régime devient uniforme et la hauteur d'eau se stabilise.

On remarque que la simulation est très proche aux résultats d'expérience obtenue dans la (figure 3.40)

6.4.Cas Nº4 : I= 0, Q= (3700-2007-1258) cm³/s, déversoir 3H/1V,L=15cm

• La ligne d'eau

Les figures **3.41, 3.44 et 3.47** représente le profil de la ligne d'eau obtenu en modélisation et par le modèle de turbulence k- ε pour une pente nulle et débit varie de 3177-2007 et 1258 cm³/s avec un déversoir trapézoïdal de pente 3H/1V et une crête large de 15 cm.

On remarque que le profil d'eau a diminuer dans ce cas par rapport le cas N°2 (on compare la figure **3.41** avec **3.19**) alors l'augmentation de la longueur de crête à une influence sur le niveau de la surface libre.

Plus on va vers l'aval de déversoir on remarque que le profil sera moins important avec la disparition de ressaut hydraulique surtout dans la **figure3.44 et 3.47** ca indique que l'écoulement continue avec le même régime uniforme.

• Profil de vitesse

Les figures **3.42**, **3.45 et 3.48** représentent le champ de vitesse obtenu en modélisation et par le modèle de turbulence k- ϵ pour une pente nulle et débit varie de 3177-2007 et 1258 cm³/s avec un déversoir trapézoïdal de pente 3H/1V et une crête de 15 cm.

On remarque que la vitesse avant le déversoir est uniforme et très faible et aux tours de la vitesse d'entré, juste à l'arrêté amont de déversoir la vitesse devient plus moins importante et même sur la crête plus en avance vers l'aval de déversoir la vitesse devient très importante et maximal (1.35 m/s **figure 3.42**). La vitesse sera moyenne plus en avance vers la fin du canal, La même remarque sur les autres figures **3.45** et **3.48**

• Profile de pression

Les figures **3. 43, 3. 46 et 3. 49** représentent le champ de pression total obtenu en modélisation et par le modèle de turbulence k- ε pour une pente nulle et débit varie de 3177-2007 et 1258 cm³/s avec un déversoir trapézoïdal de pente 3H/1V et une crête de 15 cm.

On voit qu'avant le déversoir la pression total a une valeur maximale au fond du canal en amont de déversoir, aussi les valeurs de ce cas il rassemble en valeur au cas N°2 (1170 Pa) figure **3.43** et **3.21** la déférence ce fait au niveau de distribution de pression.

On remarque que plus le débit est faible les pressions devient aussi faible.

On avale les pressions sont faible dans tout la longueur du canal jusqu'à la sortie.

• Evolution des hauteurs le long du canal

Les données de hauteurs obtenues numériquement pour $Q = (3700-2007-1258) \text{ cm}^3/\text{s}$, pente 3H/1V et L=15cm de Tableau **3.4** sont représentées dans le graphe (**Figure 3.50**). On observe que le tirant d'eau aux voisin de l'arrêté amont de déversoir diminue progressivement jusqu'à arriver à l'arrêté aval l'écoulement chute progressivement, écoulement graduellement varié de 10,01 cm à une hauteur très faible de 2,30 cm

En fin le tirant d'eau se stabilise et le régime devient uniforme sur une hauteur de 5,35 cm.

Ces observations pour le profil d'eau 11 et les même pour les autres profile de la figure 3.50

Conclusion

Dans ce chapitre, nous avons montré les résultats numériques de différents cas (pour quelque forme de déversoir trapézoïdal et deux longueurs de crêt) modélisé par ANSYS Fluent R15 et nous avons comparé avec les résultats expérimentaux.

Conclusion générale

L'objectif de ce travail est de comparer des mesures expérimentales de l'écoulement à surface libre à la présence d'un obstacle trapézoïdal placé au fond d'un canal rectangulaire sur un plan horizontale avec des simulations numériques en variant le débit et la pente de l'obstacle et sa longueur de crête.

L'approche expérimental se faite au laboratoire de département d'ingénierie de l'Université D'Okuza Ellul, İzmir, TURKEY par Ellul ÖZGENÇ AKSOY et Mustafa DOĞAN. Le banc d'essai est un canal hydrodynamique.

L'approche numérique se refaite pour résoudre les équations de Navier-Stokes en 2D en se basant sur le logiciel ANSYS Fluent R15, en utilisant la méthode VOF qui peut modéliser les écoulements diphasiques, l'algorithme PISO, et le modèles de fermeture \mathbf{k} - $\boldsymbol{\epsilon}$.

Nous avons comparé et évalué les paramètres hydrauliques pour chaque cas.

D'après ces résultats, nous avons conclu que la simulation numérique minimise le cout et le temps et donne la main à l'ingénieure pour prendre les décisions, mais ça ne suffit pas car la qualité du maillage et le type d'écoulement influence ses résultats.

Les résultats du modèle \mathbf{k} - $\boldsymbol{\epsilon}$ sont très satisfaisants et le logiciel donne une bonne performance. Les valeurs obtenues par simulation sont très proche à celle de l'expérience.

Donc le but de cette modélisation c'est la préservation et le provisionnement des aménagements hydraulique mais elle est toujours complétée par des essais expérimentaux.

Références bibliographiques

- [1] Chapitre III- Ecoulement uniforme à surface libre ; Hydraulique Générale ; Ammari A.
- [2] Walter H Graf ; M S Altinakar ;" Hydraulique fluviale écoulement et phénomènes de transport dans les canaux à géométrie simple"; Lausanne, Presses polytechniques et universitaires romandes, ©2000.
- [3] CARLIER M. : Hydraulique générale et appliquée ; Editions Eyrolles (1972).
- [4] <u>https://image.slidesharecdn.com/hydrauliqueasurfacelibresupportpresentielv1-</u> 150325202510-conversion-gate01/95/hydraulique-surface-libre-9-<u>638.jpg?cb=1460899131</u>
- [5] Cours mécanique des fluides ; licence 2 ; département hydraulique université Tlemcen 2017/2018
- [6] LYAMNA H., 2008, Etude De L'écoulement Laminaire Dans Un Mini canal Par La Méthode Des Volumes Finis, Mémoire de Magister, Université de Batna, Page 23
- [7] Aménagements hydrauliques ; master 1 ; département hydraulique université Tlemcen 2018/2019
- [8] <u>https://www.fao.org/tempref/FI/CDrom/FAO_Training/FAO_Training/General/x6705f/6</u> <u>1.GIF</u>
- [9] École polytechnique fédérale de Lausanne ; Laboratoire de Constructions Hydrauliques
- [10] https://www.iso.org/obp/graphics/std//iso_std_iso_772_ed-5_v1_fr/fig_9.png
- [11] B. Achour, T. Bouziane, K. Nebbar ; Débitmètre triangulaire a parois épais dans un canal rectangulaire ; Larhyss Journal, ISSN 1112-3680, n° 02, Juin 2003, pp. 7-43 © 2003 Laboratoire de Recherche en Hydraulique Souterraine et de Surface.
- [12] https://www.fao.org/3/w2570f/w2570f4l.gif
- [13] Ayşegül ÖZGENÇ AKSOY, Mustafa DOĞAN; 'EXPERIMENTAL INVESTIGATION OF THE APPROACH ANGLE EFFECTS ON THE DISCHARGE EFFICIENCY FOR BROAD CRESTED WEIRS' Anadolu University Journal of Science and Technology A- Applied Sciences and Engineering. 16 May 2016
- [14] <u>https://hmf.enseeiht.fr/travaux/bei/beiere/sites/default/files/users/aduturc/passage%20critique1.png</u>
- [15] J. VAZQUEZ, J. WERTEL & M. DUFRESNE Ecole Nationale du Génie de l'Eau et de l'Environnement de Strasbourg ; Modélisation hydraulique 2D Ecoulement dénoyé autour d'un seuil épais ; page3, figure2.

- [16] LIPEME KOUYI G ; 16 décembre 2004, Expérimentations et modélisations tridimensionnelles de l'hydrodynamique et de la séparation particulaire dans les déversoirs d'orage, Thèse de Doctorat, l'Université Louis Pasteur – Strasbourg I.
- [17] M.Benbarek : modélisation et simulation des écoulements à surface libre en présence de singularité du fond, 03 décembre 2015.
- [18] RIDER W. et KOTHE B., 1998, Reconstructing Volume Tracking, page 112– 152.VAZQUEZ J. Hydraulique a surface libre, publication, 2006, Systèmes Hydrauliques Urbains – ENGEES, Ecole nationale du génie de l'eau et de l'environnement de STRASBOURG, Page 10-11.
- [19] D. TRIVELLATO et H. DÉCAMPS INFLUENCE DE QUELQUES OBSTACLES SIMPLES SUR L'ÉCOULEMENT DANS UN « RUISSEAU » EXPÉRIMENTAL, journal ANNALES DE LIMNOLOGIE, t. 4, fase. 3, 1968 : p. 357-386)
- [20] TAZOUTA Abdelhakim & BOUGHRARA Abdelhakim, Simulation numérique de l'écoulement Cavitant dans le Tube de Venturi, page48
- [21] A. Bonnet, J. Luneau, Théories de la Dynamique des Fluides, Éditions Cépaduès, septembre 89, 544 p
- [22] <u>https://dumas-maupassant.pagesperso-orange.fr/Site-</u> Ponts%20Suspendus/Contraintes/ecoulement.gif
- [23] M.M. Nasr-Azadani, E. Meiburg, «TURBINS: An immersed boundary, Navier– Stokes code for the simulation of gravity and turbidity currents interacting with complex topographies », Computers & Fluids (2010), 24November2010.
- [24] <u>https://www.researchgate.net/profile/Brian_Landers/publication/305151034/figure/fig42</u> /AS:382640201977869@1468239941540/Diagram-of-the-Reynolds-Decomposition.png
- [25] PIERRE-LOUIS VIOLLET, JEAN-PAUL CHABARD « Mécanique des fluides appliquée » 2 e édition, l'ecole nationale des Ponts et Chaussees, 28 rue des de Saints-Peres 75007 Paris.
- [26] Julian HUNT et al« Turbulence Et Déterminisme » Presses Universitaires de Grenoble 1998
- [27] Nikolay I.Kolev «Multiphase Flow Dynamics 2, Thermal and Mechanical Interactions»2 nd edition, Springer-Verlag Berlin Heidelberg 2002, 2005Printed in Germany
- [28] GUECHI R., DESEVAUX P., BAUCOUR P., 29 août au 2 septembre 2011, Etude numérique du refroidissement d'une surface métallique par pulvérisation (spray cooling), Besançon, Congrès Français de Mécanique, N°20, Page 2

- [29] Université Biskra, chapitre 3 : Méthode des Volumes Finis.
- [30] BELLAHCEN S. Etude numérique et expérimentale du champ de vitesse en canaux composés, STRASBOURG, Thèse de Doctorat, Université de STRASBOURG, 2016, page 82
- [31] IKNIL T., BERREKSI A., BENMAMAR S. et KETTAB A. « Modélisation et simulation par la méthode des volumes finis des écoulements torrentiels (supercritiques) à surface libre dans des canaux à géométrie variable », Revu N° 19, 2008, Page 43.
- [32] NEHARI ABDERRAHMANE « Etude des écoulements à a surface libre en présence des obstacles dans le fond », page77.
- [33] Walid JAAFAR, « Etude des champs de vitesse dans les effluant des réseaux d'assainissement », Ecole doctorale mathématique, science de l'information et de l'ingénieur 21 novembre 2006 page171.