

 Int. J. Operational Research, Vol. X, No. Y, xxxx 1

 Copyright © 20XX Inderscience Enterprises Ltd.

Combinatorial artificial bee colony algorithm
hybridised with a new release of iterated local search
for job shop scheduling problem

Amaria Ouis Khedim
Manufacturing Engineering Laboratory of Tlemcen (MELT),
Department of Electrical and Electronic Engineering,
University of Tlemcen,
PB 230, Tlemcen, 13000, Algeria
Email: khedim3@gmail.com
Email: a_ouis@mail.univ-tlemcen.dz

Mehdi Souier*
Manufacturing Engineering Laboratory of Tlemcen (MELT),
University of Tlemcen,
PB 230, Tlemcen, 13000, Algeria
and
High School of Management of Tlemcen,
PB 1085, Tlemcen, 13000, Algeria
Email: souier.mehdi@gmail.com
Email: m_souier@mail.univ-tlemcen.dz
*Corresponding author

Zaki Sari
Manufacturing Engineering Laboratory of Tlemcen (MELT),
University of Tlemcen,
PB 230, Tlemcen, 13000, Algeria
and
Ecole Supérieure en Sciences Appliquées Tlemcen (ESSAT),
PB 165, Tlemcen, 13000, Algeria
Email: zaki_sari@yahoo.com
Email: z_sari@mail.univ-tlemcen.dz

Abstract: Job shop scheduling problem (JSP) is recognised as an attractive
subject in production management and combinatorial optimisation. However, it
is known as one of the most difficult scheduling problems. The present paper
investigates the job shop scheduling problem in order to minimise the
Makespan with a new hybrid combinatorial artificial bee colony algorithm.
Firstly, the proposed combinatorial version integrates a position based
crossover for the updating of solutions and the rank-based selection for
selecting solutions to be updated in the onlooker bees phase. Another purpose
of this study consists to highlight the impact of its sequential hybridisation with
a new release of iterated local search method called ‘simple iterated local
search (SILS)’. The proposed approaches are tested on many benchmark

 2 A. Ouis Khedim et al.

problems taken from the Operations Research Library (OR-Library). The
simulation results show that the hybrid CABC performs the best in most of the
studied cases.

Keywords: job shop scheduling problem; JSP; metaheuristics; artificial bee
colony algorithm; iterated local search.

Reference to this paper should be made as follows: Ouis Khedim, A.,
Souier, M. and Sari, Z. (xxxx) ‘Combinatorial artificial bee colony algorithm
hybridised with a new release of iterated local search for job shop scheduling
problem’, Int. J. Operational Research, Vol. X, No. Y, pp.xxx–xxx.

Biographical notes: Amaria Ouis Khedim is currently an Assistant Professor
at Tlemcen University and member of the Manufacturing Engineering
Laboratory of Tlemcen (MELT), Algeria. She obtained her Engineer degree in
Automatic from University of Tlemcen, Algeria in 1998 and Magister degree in
Signals and Systems from University of Tlemcen Algeria, in 2001. She is
currently working towards her PhD degree at the Manufacturing Engineering
Laboratory of Tlemcen (MELT). Her research interests include planning,
scheduling, metaheuristics algorithms, discrete optimisation methods and
optimisation problems in manufacturing systems.

Mehdi Souier received his Engineering degree in 2007 in Computer Sciences
and Master’s degree in 2009 in Manufacturing Engineering from University of
Tlemcen, Algeria. He obtained his Doctorate degree in Manufacturing
Engineering in 2012 and the University Habilitation in 2015 from Tlemcen
University. He is currently an Associate Professor in Tlemcen High School of
Management and member of the Manufacturing Engineering Laboratory of
Tlemcen (MELT). He advised several masters and one doctorate thesis. He is a
regular reviewer of many international journals and IPC member of many
international conferences. His main research interest concern: planning and
scheduling, heuristic and metaheuristic (simulated annealing, genetic algorithm,
ant colony, …), discrete optimisation methods, optimisation problems in
flexible manufacturing systems and maintenance of industrial systems.

Zaki Sari is currently a Senior Consultant for Industry and a Manufacturing
Engineering Professor at Ecole Superieure en Sciences Appliquées Tlemcen
(ESSAT), Algeria; he is the former Director of Manufacturing Engineering
Laboratory of Tlemcen (MELT), and the former Head of the National
Curriculum of Manufacturing Engineering. He obtained his Engineer degree in
Electrical Engineering from the National Institute of Electrical Engineering,
Boumerdes, Algeria in 1987; Magister degree in Power Engineering from the
National Polytechnic School of Algiers, Algeria in 1990; and Doctorate degree
in Manufacturing Engineering from Tlemcen University in 2003. In 2004, he
became an Associate Professor then a Full Professor in 2009. His teaching
skills include project management, factory physics, CIM, AS/RS. His main
domain of interest concerns the design, modelling, optimisation, simulation and
control of automated storage and retrieval system. He made several
investigations on non-conventional AS/RS systems. He advised several
Magister and Doctorate thesis.

 Combinatorial artificial bee colony algorithm 3

1 Introduction

To survive in a modern and competitive world, which requires lower cost products with
shorter life cycle, companies must respond quickly and accurately to customer inquiries.
In such situation, it is clear that an effective scheduling would have a very important role
in achieving these objectives in various production systems of goods and services such as
cellular manufacturing system (Dehnavi-Arani et al., 2019), flow shop (Kumar et al.,
2019; Ramezanian and Rahmani, 2017; Seidgar et al., 2017), parallel machine (Hung
et al., 2019; Shokoufi et al., 2019), single machine (Rostami et al., 2019; Zoulfaghari and
Nematian, 2019), project shop (Tabrizi et al., 2019), airport gate scheduling (Khatibi
et al., 2019), scheduling of surgeries (Soudi et al., 2019).

Furthermore, different problems arising in industry, computing, business, and even in
the social services can be structured and modelled as a job shop scheduling problem
(JSP) which is considered as one of the most popular scheduling problems.

The classical job shop problem consists of a set of independent jobs to be processed
through several machines (resources). Each job has an ordered set of operations, to be
treated in a predefined order depending on their technological constraints. One of the
main objectives of JSP is to minimise the makespan or completion time (Cmax) for
improving throughputs and the system productivity.

In terms of computational complexity, this problem is known to be NP-hard in the
strong sense (Garey et al., 1976). Due to its wide applicability and inherent difficulty, the
JSP has attracted the attention of many researchers, which has led to the development of
several.

The artificial bee colony (ABC) is a metaheuristic introduced by Karaboga (2005), it
is inspired from the intelligent behaviour of honey bees for seeking quality food source in
nature. The ABC algorithm is a population-based algorithm. Every artificial bee
generates one solution. Population of artificial bees searches for the optimal solution. As
the ABC algorithm is inspired from the foraging process in the natural bee colony, it is
considered that each solution is called a food source, whereas the fitness of the solution
corresponds to the amount of nectar of the associated food source. The computing agents
of this algorithm are given by three kinds of artificial bees, namely: employed bees,
onlooker bees and scout bees. A bee that is currently exploiting a food source (solution)
is called an employed bee. A bee waiting in the hive for making a decision to choose a
food source is named an onlooker. A bee carrying out a random search for new food
source is called a scout.

This metaheuristic has the advantage of regulating the trade-off between exploitation
and exploration. It has also the advantage of employing fewer control parameters in the
continuous space. These advantages make the ABC algorithm very competitive to other
population-based algorithms. Indeed, in the last decade, several works tried to evaluate
the performance of ABC in comparison with others. It has been proven that this
algorithm has better performances in several problems such as waste collection problem
(Wei et al., 2019), numerical optimisation (Bajer and Zorić, 2019), wireless sensors
network (Yue et al., 2019), supply chain network management (Jiang et al., 2019),
multi-robot path planning (Faridi et al., 2018).

Due to the ABC ability to find good solutions in different research areas and
industries, we integrate this approach in our strategy for solving the JSP. In this work, we
firstly adapt the continuous version of the ABC algorithm to the combinatorial problem
of the job shop. The proposed combinatorial artificial bee colony (CABC) algorithm uses

 4 A. Ouis Khedim et al.

a position based crossover for the updating of solutions and the Rank-Based Selection for
selecting solutions to be updated in the onlooker bees phase. After that, this algorithm is
improved using a sequential hybridisation with a new local search method that we called
‘simple iterated local search (SILS)’. SILS iteratively applies local search to refine the
current best solution found by some CABC iterations. In order to preserve the quality of
this solution, SILS aims to exploit the current best solution only in its basin of attraction.
Hence, the resulting solution is injected into the next local search without any prior
modification. This made the proposed SILS a simplified release of the ILS metaheuristic
(Lourenço et al., 2003). The new hybrid algorithm is called: ‘simple iterated local search
combinatorial artificial bee colony (SILS_CABC)’ algorithm.

This paper is organised as follows: Section 2 presents briefly the most relevant
literature. Section 3 is reserved for the job shop scheduling formulation. The fundamental
ABC algorithm is presented in Section 4. In Section 5, the proposed CABC algorithm for
JSP is given in detail. Then, Section 6 describes the hybrid release SILS_CABC. Based
on the benchmark problems, Section 7 presents the experimental results, where the
performances of the proposed algorithms are analysed and compared. Finally,
conclusions and future research directions are provided in Section 8.

2 Literature review

The current marketing context is characterised by various challenges related to customers
needs with high quality, low costs, short lead times... In such conditions, manufacturing
systems require efficient management tools able to deal with different customers’
requests. Among these tools, scheduling systems can play an important role for managing
efficiently different kinds of production systems.

Job shop scheduling is among the famous problems that are investigated by
production managers and optimisation researchers. However, the scheduling problems in
job shop are known as NP-Hard combinatorial optimisation problems.

The existing literature on the job shop manufacturing systems presents many
strategies of scheduling decisions that are classified into two groups: exact methods and
approximate methods (heuristics and metaheuristics...).

Among the main exact methods for solving the JSP, we can find branch and bound
method (Benttaleb et al., 2018; Artigues and Feillet, 2008), the dynamic programming
(Ozolins, 2018) and integer programming (Masmoudi et al., 2019; Roshanaei et al.,
2010). However, exact methods may be inefficient when the problem size grows. For this
reason, many works are focused on approximate methods such as heuristics and
metaheuristics.

The approximate methods cannot guarantee the achievement of the global optimal,
but they can find near-optimal solutions for problems of large sizes in moderate
computing time. Recently, there are considerable researches aiming to develop
scheduling solutions for job shop based on heuristics such as dispatching rules (Zhang
and Roy, 2018), shifting bottleneck procedure (Tan et al., 2016).

Unlike heuristics that are constructive methods designed and applicable to a particular
problem, metaheuristics are stochastic algorithms often inspired by analogies with natural
phenomena, such as: physics (simulated annealing,), biology (Tabu search, evolutionary
algorithms, artificial immune systems,) or ethology (ant colonies, particle swarm
optimisation, bee colony, bat algorithm). They are iterative methods, applicable to a large

 Combinatorial artificial bee colony algorithm 5

variety of optimisation problems in science and engineering such as portfolio rebalancing
(Zandieh and Mohaddesi, 2019), multi-dimensional knapsack problem (Abubaker et al.,
2019), graph sum colouring (Mohammadnejad and Eshghi, 2019), facility layout
(Tayal and Singh, 2019), hydraulic analysis (Moeini, 2018), capacitated clustering
(Khambhampati et al., 2018).

In recent years, metaheuristics have become extremely popular as practical
optimisation methods for solving the JSP. Among these approaches, the genetic
algorithm (GA) and evolutionary algorithms are the most applied to solve JSP by
different researchers such as: Tan et al. (2019), Kundakcı and Kulak (2016), Lei (2012),
Zhang et al., (2011). Other metaheuristics are known as successful techniques in job shop
scheduling domain such as simulated annealing (Tamssaouet et al., 2018; Suresh and
Mohanasundaram, 2006; Aydin and Forgarty, 2004), Tabu search (Tamssaouet et al.,
2018; González et al., 2013; Zhang et al., 2007), particle swarm optimisation (Dao et al.,
2018; Singh and Mahapatra, 2016; Lin et al., 2010; Lian et al., 2006), ant colony
optimisation (Chaouch et al., 2019; Huang and Yu, 2017; Huang et al., 2013), bee colony
algorithm (Sundar et al., 2017; Gao et al., 2016; Zhang et al., 2013). Furthermore, many
investigations based on other artificial intelligence techniques are proposed. Most of them
use multi agent approaches (Nouri et al., 2016; Guizzi et al., 2018), neural network
(Nayak et al., 2019). For more details about the different investigations on job shop
scheduling, the reader can refer to the survey of Çaliş and Bulkan (2015) and Zhang et al.
(2019).

The literature indicates that there is a significant interest in metaheuristics
applications to deal with JSPs. However, it is noticed that the ABC metaheuristic is
poorly invested in solving the important problems of job shop. On the other hand, the
ABC is recognised as among the most successful techniques to solve various optimisation
problems. For this instance, the present paper deals with a combinatorial and a hybrid
ABC versions for different benchmarks of JSP.

3 Job shop scheduling problem

3.1 Problem statement and assumptions:

The classical job shop problem considers a set of n jobs, J = {J1,…, Jn} to be processed
on a set of m machines, M = {M1, …, Mm} (resources). Each job Ji is composed of a set
of mi operations denoted Oi = {Oi1, Oi2,, …, Oimi,}. Each job Ji visits machines in a
specific order. Figure1 illustrates an example of 3-job 5-machine job shop. The jobs
machine sequence of this example are given in Table 1. For example, the job J1 must
follow the sequence:

1 2 3 5 4.m m m m m

For the case of a classical job shop, we retain some standard assumptions that can be
presented as follows:

 all jobs are equally important

 each job is available to be processed at any time

 6 A. Ouis Khedim et al.

 there are precedence relations (conjunctive constraints) between the operations of the
same job

 the routing (processing order) for each job is defined by its operations sequence

 there is no due date for any job

 each machine is continuously available without any breakdown

 no alternative machines

 each machine processes at most one job (one operation) at a time

 each job is processed by only one machine at a time

 no preemption, no recirculation and no cancellation of orders are allowed

 all processing times are known in advance.

Table 1 Jobs machine sequence for a 3-job 5-machine job shop

 Operations

Job 1 2 3 4 5

 Machine sequence

j1 m1 m2 m3 m5 m4

j2 m5 m1 m2 m4 m3

j3 m2 m3 m4 m5 m1

Figure 1 a 3-job5-machine job shop

3.2 The mathematical model

The following notations are used for the formulation of JSP:

Sets and indices:

i indices for jobs, i = 1,…, n

j indices for operations, j = 1,…, mi

k indices for machines, k = 1,…, m

 Combinatorial artificial bee colony algorithm 7

Oij jth operation of the job Ji

J set of n jobs to be scheduled, J = {J1,…, Ji,…,Jn}

M set of m machines M = {M1,…, Mk,…Mm}

Oi ordered set of all operations of job Ji, 1{ , , , }
ii i ij imO O O O

OMk set of all operations executed on machine Mk.

Parameters:

pij processing time of operation Oij

L a large number.

Variables:

1 if is excuted on machine

0 otherwise

ij k
ijk

O M

1 if precede ; , , and

0 otherwise

ij i j ij i j k
iji j

O O for O O OM i i j j

rij release date of operation Oij

sij starting time of operation Oij

Cij completion time of operation Oij, (Cij = sij + pij)

Ci completion time of job ji

Cmax makespan, (Cmax = max {C1, C2,…, Cn}).

Actually, the overall cost of production also depends on the time required for the
manufacturing of various products. Hence, the main objective of the JSP is to reduce the
overall manufacturing time, called ‘makespan’ and denoted Cmax · Cmax is the completion
time of the last job to leave the system.

Therefore, mathematically, the most often studied optimality criterion in the JSP is
the minimisation of Cmax. A minimum makespan usually implies a good utilisation of
machines; because a given number of jobs are to be completed in the shortest possible
time.

To solve the JSP, we have to determine the feasible schedule for the operations of all
jobs by respecting the processing order of each job and the capacity of each machine. The
goal is to find a particular feasible schedule that has the lowest possible Makespan.

Based on Manne formulation (Manne, 1960), we formulate the problem of the job
shop scheduling by the following mixed integer programming model:

 *
max max

feasible schedules 1, ,
Min max i

i n
C C C

 (1)

Equivalent to:

 feasible starting times 1, ,
Min max ; for 1, ,ij ij i

i n
s p j m

 (2)

 8 A. Ouis Khedim et al.

Subject to:

(1) ; for 1, , & 1, , 1i j ij ij ir s p i n j m (3)

1; for 1, ,
ij k

ijk
O OM

k m

 (4)

 1 ; for 1, , & ,i j iji j ij ij ij i j ks L s p k m O O OM (5)

; for 1, , & ,ij iji j i j i j ij i j ks L s p k m O O OM (6)

1

1; for 1, , & 1, ,
m

ijk i
k

i n j m

 (7)

1

1; for 1, , & 1, ,
im

ijk i
j

i n k m

 (8)

1

; for 1, ,
im

ijk i
j

p C i n

 (9)

; for 1, , & 1, ,ij ij is r i n j m (10)

1; for 1, , & ,iji j i j ij ij i j kk m O O OM (11)

0; for 1, , & 1, ,ij is i n j m (12)

, {0,1}; for 1, , & ,ijk iji j ij i j kk m O O OM (13)

The objective function is given by (1). The first set of constraints (3) ensures both
precedence and no-preemption constraints, where the operation Oi(j+1) cannot be released
before the end of operation Oij. The second set of constraints (4) imposes the capacity
constraints where a machine can process only one operation at a time. It can be reinforced
by the disjunctive constraints (5) and (6). These constraints present the relations between
the operations of different jobs to be processed on the same machine. For a machine Mk, a
feasible schedule must either satisfy i j ij ijs s p or ;i j i js p for all , .ij i j kO O OM

Actually, if Oij precedes i jO on machine Mk, then 1iji j and (5) becomes

i j ij ijs s p while (6) becomes redundant because of a large positive value of L. On the

other hand, if i jO precedes Oij, then 0iji j and (6) becomes i j ij i js s p while (5)

becomes redundant. The value of L must be large enough to satisfy i j i j ijL s p s for

all Mk M and , .ij i j kO O M For this requirement,
1 1

in m

iji j
L p

 is sufficient.

Constraint (7) ensures that an operation can be processed by only one machine. The
assumption of the no-recirculation is ensured by constraints (8) and that of
no-cancellation is given by constraint (9). Constraint (10) ensures that each operation can
only be released after its acceptable release date. The last two sets of constraints define
the domain for each variable.

 Combinatorial artificial bee colony algorithm 9

Before trying to develop an algorithm which solves a particular problem, it is
important to have an idea on the problem complexity. For certain restricted cases of the
n-job, m-machine JSP, Garey and Johnson (1979) showed that there are polynomial
algorithms that rapidly find the optimal schedules. However, Lenstra and Rinnooy Kan
(1979) proved that the general JSP is an NP-Hard problem when the number of machines
is greater than three. In this case, finding an optimum schedule could be time consuming
and sometimes it can be impossible to achieve. Therefore, when the JSP problem
becomes strongly NP-hard, it would be necessary to use heuristics or metaheuristics to
solve it. With these methods, the guarantee of finding optimal solutions is sacrificed for
the sake of (hopefully) getting acceptable solutions with a significantly reduced
computational time.

4 ABC algorithm

ABC is one of the recent swarm intelligence optimisation techniques. It is a metaheuristic
inspired from the intelligent behaviour of honey bees for seeking quality food source in
nature. The idea and principle of this algorithm have been introduced for the first time by
Karaboga (2005). However, the details of its different steps were published in Karaboga
and Basturk (2007).

The ABC is a population based metaheuristic. Therefore, a population of artificial
bees searches the optimal solution and every artificial bee generates one solution. As the
ABC algorithm is inspired from the foraging process in the natural bee colony, it is
considered that each solution to the problem to be solved is called a food source, whereas
the fitness of the solution corresponds to the amount of nectar of the associated food
source. The computing agents of this algorithm are given by three kinds of artificial bees,
namely: employed bees, onlooker bees and scout bees.

A bee that is currently exploiting a food source (solution) is called an employed bee,
whereas bee waiting in the hive for making decision to choose a food source is named as
an onlooker. Finally, bee carrying out a random search for a new food source is called a
scout (Teodorović et al., 2015). Both onlookers and scouts are also called unemployed
bees (Karaboga et al., 2014).

Following the foraging mechanism in the natural bee colony, in the ABC algorithm,
scout bees can be visualised as performing exploration, whereas employed and onlooker
bees can be visualised as performing exploitation. Hence, this metaheuristic formulated
by the ABC algorithm has the advantage of regulating the trade-off between exploitation
and exploration. It has also the advantage of employing fewer control parameters in
continuous space. These advantages make the ABC algorithm very competitive to other
population based algorithms (Karaboga and Basturk, 2007, 2008; Karaboga and Akay,
2009).

The main steps of the fundamental ABC algorithm are summarised in Algorithm 1.
The fundamental ABC algorithm starts with an initialisation phase, where the

population is randomly generated, and then, at each iteration: the employed bees phase,
onlooker bees phase and scout bees phase are repeated until a termination condition is
met. The details of these steps can be found in Karaboga and Akay (2009).

The fundamental ABC algorithm, as presented above, was originally designed for
continuous optimisation problems and cannot be used directly for combinatorial cases.

 10 A. Ouis Khedim et al.

Therefore, for solving a combinatorial problem some modifications to the fundamental
ABC algorithm must be done.

Algorithm 1 Fundamental ABC algorithm

1 Initialise

2 REPEAT

3 Employed bees phase: the employed bees try to update their food sources.

4 Onlooker bees phase: the onlooker bees select the more interesting food sources
given in Employed bees phase and furthermore try to update them.

5 Scout bees phase: send scouts to search new food sources that will replace the
abandoned ones.

6 Memorise the best food source found so far.

7 UNTIL (termination criteria is satisfied).

5 The proposed CABC algorithm

Mapped for the resolution of the JSP, the CABC algorithm is proposed in this section as a
combinatorial release of the ABC algorithm. The aim is to find the job operation
scheduling list that minimises the Makespan value.

The pseudo-code of the CABC algorithm proposed for solving the JSP is given in
Algorithm 2 and its general steps are detailed in the following subsections:

5.1 Solution representation

In the CABC algorithm, each solution corresponds to a food source ‘X’ exploited by one
bee. The first step in problem solving is the solution representation according to the
problem environment. Let us consider that our JSP to be solved is an instance of n jobs
and m machines; where each job consists of m ordered operations. The solution
representation adopted in this work is the ‘operation-based representation’ with ‘job
repetition’. Hence, the solution of this JSP is an operation scheduling list, which is
represented in our CABC algorithm as food source ‘X’. This food source ‘X’ is a vector
with (n × m) dimensions where each dimension stands for one operation of a job.
According to the solution representation considered, in the food source ‘X’, each job
appears exactly m times. Figure 2 illustrates an example of a solution representation of
job shop.

Figure 2 Example of food source representation for (3-job3-machine) JSP

In the solution (X) of Figure 2(a), Ji stands for the operation of job i. Since each job has
three operations, it occurs three times in this operation scheduling list. The first J1

 Combinatorial artificial bee colony algorithm 11

corresponds to the first operation of job J1. The first J3 corresponds to the first operation
of job J3. The second J1 corresponds to the second operation of job J1, and so on.

In fact, in the computing algorithm, we use for (X), the form given by Figure 2(b),
where a repetition of jobs numbers is used.

5.2 Initialisation phase

In this phase, we start by setting the initial parameters of the algorithm, such as: the
colony size (CS), the number of employed bees, onlooker bees (number of food sources
SN=CS/2), the parameter Limit and the maximum number of iterations (NI_Max).
Furthermore, the job shop parameters such as the number of jobs, number of machines,
the job processing time on each machine and the job machine sequence will be given.

Next, the initial solutions are randomly generated. Although the solutions are
constructed by generating a random suite of jobs numbers (according to the size of the
JSP), they will be feasible solutions (feasible schedules). Indeed, when the ‘operation-
based representation’ with ‘job repetition’ is used for solution representation, the
precedence constraints in jobs processing are always respected.

The ABC algorithm seeks to find the solution that maximises the fitness. However,
our objective is to solve the JSP with minimisation of the Makespan (Cmax: maximum
completion time). Therefore, the fitness in the CABC will be calculated as follow:

 max

1 1

i

i
i

fit
C F X

 (14)

where fiti is the fitness value of the food source Xi and F(Xi) is the objective function
value of the food source Xi; (noted Cmax(Xi) or Cmaxi).

Algorithm 2 Combinatorial artificial bee colony algorithm

Input: CS, , Limit, NI_Max, JSP parameters.

Output: Global best solution XGbest, C*max

1 SN = CS/2

2 For i =1 to SN

3 Generate randomly the food source Xi

4 Initialise the invalid trials counter triali = 0

5 End For

6 it = 1

7 repeat

8 Employed bees phase

9 Onlooker bees phase

10 Scout bees phase

11 Memorise the best solution found so far.

12 it = it + 1

13 Until it = NI_Max + 1

14 Return XGbest

 12 A. Ouis Khedim et al.

In CABC algorithm, another variable triali is assigned to each food source (Xi). triali is a
counter of unsuccessful trials where the food source (Xi) is not improved. It is an
indicator to find food sources (solutions) to be abandoned in the next iterations after Limit
fruitless trials. First, as initial value, each triali is set to 0, where, i = 1,2,…,SN.

5.3 Employed bees phase

In this phase, the employed bee generates a new food source (Vi), by updating the old
food source already exploited (Xi), with a neighbouring food source (Xk) randomly taken
from other food sources in the population of solutions. The pseudo code of this phase is
given by Algorithm 3.

Vi is the result of a crossover between (Xi) and (Xk). In order to obtain a new valid
solution (Vi), the position base crossover (PBX) mechanism is used (Syswerda, 1991).
The PBX procedure is described in the following steps with an example illustrated in
Figure 3.

Step A Initially the new food source is created by copying in a new vector (solution)
(Vi) all the job operations of the old food source (Xi) except those that will be
randomly selected to be changed. The number of selected operations to be
changed is noted N_ch. For our JSP with n jobs and m machines, the solution is
given by the ‘operation-based representation’ with ‘job repetition’. So, in the
solution (X) each job appears exactly m times. Hence, to avoid redundant
changes, the number of changes N_ch is limited to the number of operations
required for each job. Which means that: N_ch = m (the number of machines).
The N_ch empty positions in (Vi) will be filled from (Xk) as given in the next
step.

Step B The job operations on the neighbouring food source (Xk) will be taken from the
left to the right and placed into empty positions of the operation scheduling list
in the new food source (Vi), from the left to the right also. To ensure that each
job will be included exactly m times in the new food source (Vi), if any job has
already been selected for m times [from either (Xi) or (Xk)], it will be skipped
and the next job will be considered.

Figure 3 Updating solution by PBX crossover

 Combinatorial artificial bee colony algorithm 13

Once the new food source (Vi) is obtained by updating the old food source by the PBX
method, a greedy selection is applied. The old food source (Xi) in the employed bees
memory will be replaced by the new candidate food source (Vi) if this latter has a better
fitness value. In such enhancing update, triali is set to ‘0’. Otherwise, if the employed bee
does not change its food source (Xi), the trial counter triali is increased by 1.

If after several trials, triali exceeds the value defined by ‘Limit’, its related employed
bee will turn into a scout bee and after doing a random search, it will turn back to be an
employed bee again.

Algorithm 3 Employed bees phase procedure

1 For all Employed Bees Xi ; i = 1 to SN

2 Select randomly a neighbour Xk from the colony

3 Produce new solution Vi by updating Xi with Xk using a PBX crossover

4 If Cmax(Vi) < Cmax(Xi) then

5 Xi ← Vi

6 triali = 0

7 XGbest = update (XGbest, Vi)

8 Else

9 triali = triali + 1

10 End if

11 End For

5.4 Onlooker bees phase

This phase starts by evaluating the quality of all employed bees food sources. After that,
SN onlooker bees will be recruited, (SN = number of employed bees). Indeed, SN
onlooker bees will exploit new food sources by selecting and updating the more
interesting employed bees food sources. The pseudo code of this phase is given by
Algorithm 4 where the details are as follows:

5.4.1 Selection

The selection principle used in the CABC is different from that of the ABC. In the
fundamental ABC algorithm, the selection is given by using a ‘roulette wheel selection’
method (Goldberg, 1989). For this method, the food source is selected depending on its
probability value pi calculated by expression (15).

1

i
i SN

kk

fit
p

fit

 (15)

pi is compared with the value of randomly generated between [0,1]. If pi > , the
corresponding (Xi) is selected. However, for the JSP, the fitness fiti expressed as the
reverse of Cmax(Xi), takes relatively very small values. Then, the probability pi will be
small as well. pi could be 1,000 times smaller than . Therefore, in the case of the JSP,
the ‘roulette wheel selection’ may not be a suitable method of selection for the onlooker
bees.

 14 A. Ouis Khedim et al.

In the CABC, we keep the fact that, for better exploitation, the onlooker bees should
select only the more interesting food sources among those proposed by the employed
bees. However, the selection will not be based on the probability but on the Cmax value.
Since our purpose is to minimise Cmax, it is considered that the solution is better when the
corresponding Cmax value is lower. Based on the fact that the possibility of finding better
solutions are high in the neighbourhood of a good solution, most of onlooker bees will
select to move to good solutions with the lowest Cmax.

Our rank-based selection procedure can be described as follows:

 Step 1: As shown in Figure 4, the food sources of the employed bees are ranked in
ascending order of Cmax values.

 Step 2: Only a quota of the first good ranked food sources could eventually be
selected. The estimation of this quota is given by a percentage . For example, for
 = 25%, the higher Cmax of the 25% of good ranked food sources is noted Cmax_.

 Step 3: The onlooker bees can select only the food sources (Xi) having a Cmax(Xi) ≤
Cmax_.

5.4.2 Updating

The updating of the selected food source (Xi) will be done in the same manner as in the
employed bee phase. A greedy selection is also applied between the selected food source
(Xi) and the new generated food source (Vi) in order to keep the best solution. The triali
counters are also updated.

Figure 4 Food sources candidates for selection

In the CABC, the onlooker bees phase provides the intensification of local search on the
relatively promising chosen solutions. This means that only the best food sources
proposed by the employed bees will be candidates for an updating in the onlooker bee
phase. The aim is to further improve the quality of the solution found by the employed
bees.

 Combinatorial artificial bee colony algorithm 15

Algorithm 4 Onlooker bees phase procedure

1 For all Employed Bees Xi; i = 1 to SN

2 Evaluate Cmax (Xi)

3 End For

4 Rank all Cmax(Xi); i = 1 to SN, in ascending order

5 Calculate Cmax_ corresponding to quota of relatively good solutions.

6 t = 0, i = 1

7 While t < SN

8 If Cmax(Xi) < Cmax_ then

9 t = 1 + 1

10 Select randomly a neighbour Xk from the colony

11 Produce new solution Vi by updating Xi with Xk using a PBX crossover

12 If Cmax(Vi) < Cmax(Xi) then

13 Xi ← Vi

14 triali = 0

15 XGbest = update (XGbest, Vi)

16 Else

17 triali = triali + 1

18 End if

19 End if

20 i = i + 1

21 If i = = SN then

22 i = 1

23 End if

24 End while

5.5 Scout bees phase

After carrying out the employed bees and onlooker bees phases, the solutions that have
not been improved after many trials may be trapped in local optima. The scout bees phase
aims to deal with this situation. Indeed, if a food source (solution) cannot be improved for
a predetermined number of trials, denoted Limit, then the employed bee associated with
this food source becomes a scout bee. This scout bee finds randomly a new food source
and becomes an employed bee again.

The parameter Limit plays an important role in CABC by providing a balance
between exploration and exploitation. A small value of Limit parameter favours
exploration over exploitation, whereas the reverse is true for its large value.

In the fundamental ABC, only one scout is used. Whereas in CABC algorithm, the
number of scout bees is not a fixed number. At each iteration, all the employed bees for
which the corresponding food source has not been improved after Limit trials will
become scout bees and their counters of trials are reset to zero. This step is detailed by
Algorithm 5.

 16 A. Ouis Khedim et al.

Algorithm 5 Scout bees phase procedure

1 For all Bees Xi ; i = 1 to SN

2 If triali ≥ Limit then

3 Generate randomly new Xi

4 Evaluate the new solution Xi

5 triali = 0

6 End if

7 End For

6 Hybrid combinatorial artificial bee colony (SILS_CABC) algorithm

The effectiveness of a search process in all population-based nature-inspired algorithms
depends on two components: exploration and exploitation (Črepinšek et al., 2013). For
the CABC algorithm, the exploration is well ensured by the scout bees phase. However, it
is still poor at exploitation which is done by the employed and onlooker bees phases. In
fact, at each iteration, each solution is updated one time at the employed bees phase and if
this solution is good enough it could be selected for another update at the onlooker bees
phase. Nevertheless, this is not enough for a good exploitation.

In order to enhance the exploitation of the CABC algorithm, a sequential
hybridisation with a new procedure of local search is done. We called this proposed
procedure: ‘SILS’. SILS is applied to update the best solution of each iteration after the
employed and onlooker bees phases. If at the iteration ‘t’ the best solution X(t)best was
already found and exploited by SILS in one of the precedent iterations (< t), the
procedure SILS is skipped in this case. This will avoid redundant local searches. The
hybrid release is noted SILS_CABC, and its flowchart is given in Figure 6.

Figure 5 Insert process for Local Search procedure of SILS algorithm

SILS is a simple metaheuristic that iteratively applies local search to refine the current
best solution X(t)best to its local optima X′(t)best. The SILS procedure is given by
Algorithm 6 and it operates as follows. Let consider that X(t)best, the best solution done at
the iteration ‘t’, is the input solution for the SILS procedure. After some iterated
improvement, given by some local search cycles, the output solution will be X′(t)best. So,
X′(t)best = SILS_procedure (X(t)best). Each local search cycle starts with the input (seed)
solution, noted sin . s* notes the output solution, s* = local search(sin). It is the best

 Combinatorial artificial bee colony algorithm 17

solution found by a local search in the neighbourhood of sin. The first cycle starts by
sin = X(t)best. The first solution found s* will be the input solution in the second local
search cycle, and so one for the next cycles, where the sin will be the solution found in the
precedent cycle. These cycles are stopped when the local search cannot improve the
solution sin. Indeed, when in the same cycle s* = sin, we consider that the local minimum
is reached. Therefore, s* is the final solution of SILS procedure, X′(t)best = s*.

Figure 6 Flow chart of the hybrid algorithm SILS_CABC for JSP

 18 A. Ouis Khedim et al.

SILS seams similar to iterated local search (ILS) metaheuristic but it differs from the
latter in some details. In fact, for the ILS four components have to be specified: generate
initial solution, modification, local search, and acceptance criterion (Lourenço et al.,
2003). Whereas, SILS is based only on the Local Search component. For SILS the initial
solution is already done by the solution of CABC algorithm (s0 = X(t)best). In order to
preserve the quality of the solution given by CABC, SILS aims to exploit the current best
solution only in its basin of attraction. Hence, the resulting solution is injected into the
next local search without any prior modification.

Furthermore, as there is no modification for the solution to exploit (sin = s*), the
acceptance criterion test is not needed; because the solution s* obtained by Local Search,
will be surely better than sin or at worst the same. SILS differs also from ILS in the
number of runs. ILS runs for a fixed number of iterations but SILS continues to generate
a chain of candidate solutions until reaching the local minimum (s* = sin).

The SILS algorithm, as presented by Algorithm 6 seems very simplistic; however, in
the case of our study, it proved that it can be very effective and even more efficient than
ILS approach.

Algorithm 6 SILS procedure

1 Input : s0 = X(t)best

2 s* = s0

3 Repeat

4 sin = s*

5 s* = Local Search (sin)

6 Until s* = sin

7 Output : X′(t)best = s*

Algorithm 7 Local Search procedure

1 Input: s = sin

2 s* = s

3 For p1 = 1 to D – 1

4 For p2 = p1 + 1 to D

5 s′ = Insert_process(p2, p1, s)

6 If Cmax(s′) < Cmax(s*) then

7 s* = s′

8 End if

9 End For

10 End For

11 Return s*

Regarding the local search component given by the Algorithm 7 of local search
procedure, we consider the insertion neighbourhood structure. The Insert_process(p2, p1,
s) means removing the job operation in solution s from the position p2 and inserting it in
the position p1. All the job operations from the position p1 to p2 – 1 will undergo a
forward shift to fill the lack at the position p2, as shown in Figure 5. All the neighbours
will be considered. So, each job operation removed from its original position p2, is

 Combinatorial artificial bee colony algorithm 19

inserted into all possible positions p1 from 1 to D – 1, where D denotes the dimension of
the solutions and is expressed by D = n × m (the number of all operations to be executed
in the (n × m) job shop).

For selecting the best neighbour, the best-improvement strategy is considered. Hence,
all the possible neighbours (s′) are exhaustively explored, but only the best solution (s*)
with the lowest Cmax is returned.

7 Experiment results

In order to investigate the efficiency of CABC and SILS_CABC algorithms, numerical
simulations are performed on many instances of JSP benchmarks taken from the
Operations Research Library (OR-Library) (Beasley, 1990). All these considered
benchmarks are strongly NP-hard problems because the size of their Instances ranges
from 6 to 50 jobs and 5 to 20 machines. (The machines number m ≥ 3).

In this section, we have focused only on the instances for which we achieved the best
known solution. The instances under consideration are those of Fisher and Thompson
(1963), referred as Ft06, and a part of those introduced by Lawrence (1984), referred as
La01–La15. In order to have a comparison basis for these benchmarks, the survey of Jain
and Meeran (1999) presents their structures and how the best solutions known previously
were found. It even provides a classification of hard and easy problems.

Based on a sensitivity analysis on several combinations of parameters values, the
algorithm parameters are set as follows:

 Colony Size (CS) = 1000, then the size of the population of solutions is given by
SN = CS/2 = 500 food sources

 25% of ranked solutions are able to be selected for updating, then = 0.25

 for abandonment criteria, Limit = 20 trials

 for termination criteria, NI_Max = 1,000 iterations.

Table 2 reports the experimental results of the combinatorial artificial bee colony
algorithm CABC and its hybrid release SILS_CABC. Both algorithms are run 10 times
on each problem instance. This table shows the problem name (Instance), the problem
size (n × m) with n jobs and m machines (Size), the best known solution (BKS) for the
instance, the best solution found by each algorithm (Best_Cmax), the average calculated on
all Cmax obtained by the 10 runs (Avrg_Cmax), the relative percent deviation of best
solution with respect to the BKS (RPDBest) calculated by equation (16), the relative
percent deviation of average solution with respect to the BKS (RPDAvrg) calculated by
equation (17) and finally the minimal number of iteration to reach optimal solution
(NIROSmin).

 max_
100Best

Best C BKS
RPD

BKS

 (16)

 max_
100Avrg

Avrg C BKS
RPD

BKS

 (17)

 20 A. Ouis Khedim et al.

When RPDBest = 0 for an instance this means that its optimal solution is obtained and
furthermore, if RPDAvrg = 0, then this optimal solution is obtained with 10 replications of
simulation. The dash ‘-’ in the NIROSmin column means that the optimal solution is not
reached for this algorithm.

It can be observed from Table 2, that the SILS_CABC algorithm leads to the BKS for
all instances from La01 to La15. Furthermore, it performs better in all the replications for
the instances Ft06 and La01 as well as La05-La15. We can also conclude that even the
CABC can deal with the NP-hard problem of JSP, because it solves optimally almost all
the considered instances, except La03. Comparing both algorithms, it is clear that the
hybrid release SILS_CABC brings interesting improvements in terms of solution quality
and convergence speed. Indeed, we can notice a significant reduction in the parameter
NIROSmin of SILS_CABC compared with CABC.

In this paper we fixed the population size SN= 500 food sources and the maximum
number of iteration NI_Max = 1,000 iterations. However, in our simulation tests it is
possible to get the BKSs for some instances with parameters values less than those fixed
here. For example for the small instance La05 the SILS_CABC algorithm leads the BKS
at the first iteration, with only SN = 5 and a simulation duration less than 1 second.

Furthermore, following the size criteria, the simulation tests showed that the instances
could be classified into hard and harder problems. Indeed, comparing the sizes of
instance La03 (10x5) and the instance La14 (20x5), La14 is considered larger than La03.
However the simulation shows that it is easier to solve La14 than La03. Solving La14 is
less time consuming and can be done with only a small population size (SN). The same
observations can be done for some instances having the same size. Example: comparing
La05 with La03, or La14 with La15.

In Table 2, the parameter NIROSmin highlights the possibility to classify the test
benchmarks into hard or harder problems. With SILS_CABC algorithm: for La03,
NIROSmin = 780; for La04, NIROSmin = 94 and for La05, NIROSmin = 1. This means that
the BKS could be obtained for La03 after 780 iterations, it can also be found for La04
after 94 iterations. However, it is reached for La05 at the first iteration. Hence, it is
relatively easier to solve La05 than La03. Consequently, La05 can be classified as hard
JSP benchmark and La03 can be viewed as harder one.

Further, to illustrate the convergence characteristics of proposed SILS_CABC, the
Figure 7 shows the Gap of the 5 instances La1-La5 given by equation (18). In the present
study, it is expressed by the relative percent deviation between the solutions obtained at
all iterations generated by the algorithm and the Best Known optimal Solution.

 max
100; 1 _iter

c BKS
GAP iter to NI Max

BKS

 (18)

The Gap depicted in Figure 7 confirms that there are some hard and harder instances to
solve. Indeed, the Gap of La01 and La05 is given by only one point because it happens
that the algorithm converges very rapidly to the optimal solution with only one iteration
and even with population size SN = 5.

Furthermore, concerning the other instances of JSP benchmarks in OR-library that are
not presented in Table 2, simulations are also done, and we found that the RPDBest range
is from [0–5%], hence the proposed algorithms are quite efficient even for large
instances.

 Combinatorial artificial bee colony algorithm 21

Table 2 Comparison between results of CABC and SILS_CABC

B
es

t_
C

m
ax

A
vr

g_
C

m
ax

R
P

D
B

es
t (

%
)

R

P
D

A
vr

g
(%

)

N
IR

O
S m

in

Instance

Size
B

K
S

C
A

B
C

SI

L
S

C
A

B
C

C
A

B
C

SI

L
S

C
A

B
C

C
A

B
C

SI

L
S

C
A

B
C

C
A

B
C

SI

L
S

C
A

B
C

C
A

B
C

SI

L
S

C
A

B
C

F
t0

6
6x

6
55

55

55

55

55

0

0

0
0

1

1

L
a0

1
10

x5

66
6

66
6

66
6

66

6
66

6

0
0

0

0

10

1

L
a0

2
10

x5

65
5

65
5

65
5

66

1.
3

65
7.

3

0
0

0.

96
18

0.

35
11

34
9

15
4

L
a0

3
10

x5

59
7

60
4

59
7

60

9.
4

60
6,

3

1.
17

25

0

2.
07

71

1.
55

78

-

78
0

L
a0

4
10

x5

59
0

59
0

59
0

59

6.
3

59
1.

3

0
0

1.

06
78

0.

22
03

83
9

94

L
a0

5
10

x5

59
3

59
3

59
3

59

3
59

3

0
0

0

0

1
1

L
a0

6
15

x5

92
6

92
6

92
6

92

6
92

6

0
0

0

0

3
1

L
a0

7
15

x5

89
0

89
0

89
0

89

0
89

0

0
0

0

0

75

4

L
a0

8
15

x5

86
3

86
3

86
3

86

3
86

3

0
0

0

0

1
1

L
a0

9
15

x5

95
1

95
1

95
1

95

1
95

1

0
0

0

0

2
1

L
a1

0
15

x5

95
8

95
8

95
8

95

8
95

8

0
0

0

0

1
1

L
a1

1
20

x5

1,
22

2
1,

22
2

1,
22

2

1,
22

2
1,

22
2

0

0

0
0

23

1

L
a1

2
20

x5

1,
03

9
1,

03
9

1,
03

9

1,
03

9
1,

03
9

0

0

0
0

8

1

L
a1

3
20

x5

1,
15

0
1,

15
0

1,
15

0

1,
15

0
1,

15
0

0

0

0
0

13

1

L
a1

4
20

x5

1,
29

2
1,

29
2

1,
29

2

1,
29

2
1,

29
2

0

0

0
0

1

1

L
a1

5
20

x5

1,
20

7
1,

20
7

1,
20

7

1,
21

2.
4

1,
20

7

0
0

0.

44
74

0

70

1
4

 22 A. Ouis Khedim et al.

Figure 7 Convergence characteristics for instances: La01-La05 (see online version for colours)

Moreover, in order to analyse the impact of the improvement obtained by SILS_CABC
compared with CABC in term of Makespan, both algorithms averages values are
subjected to statistical analysis using t.test at a level of significance of 5%. Therefore,
there are two hypothesis: the null hypothesis (H0) which means that the algorithms results
means are equals and the alternative hypothesis (H1) representing the case where

max max_ __ .Avrg C Acvrg CCABC SILS CABC . After running the test, the obtained p-value is

about 0,023. Since it is less than 5% (the significance level), the null hypothesis should
be rejected. Therefore, there are significant differences between the two algorithms
performances. As a result, SILS_CABC improves the Makespan compared with CABC.

8 Conclusions and future works

In this study, we address the JSP with the objective of minimising the Makespan to
further improve throughputs and the system productivity. JSP is known to be NP-hard in
the strong sense. Hence, due to its wide applicability and inherent difficulty, it is
considered as one of the most popular scheduling problems.

To solve JSP, we opted for the Artificial Bee Colony metaheuristic (ABC). The ABC
algorithm has been recently introduced and tested on various optimisation problems.
However, most of them are of a continuous nature. Therefore, our first contribution
consists to adapt the continuous version of the ABC algorithm to the combinatorial
problem of the job shop. The proposed metaheuristic formulated by the Combinatorial
Artificial Bee Colony (CABC) algorithm, is based on the intelligent behaviour of honey
bees for seeking a quality food source in nature. It is articulated in three phases: the
employed bees phase and onlooker bees phases that ensure the exploitation and the scout
bees phase for a good exploration.

 Combinatorial artificial bee colony algorithm 23

At the employed and onlooker bees phases, we update the current solution by
performing a Position Based Crossover with another solution chosen randomly.
Regarding the selecting of solutions to be updated in the onlooker bees phase, we use the
Rank-Based Selection.

At each iteration of CABC algorithm, each solution is firstly updated at the employed
bees phase. In addition, it could be selected for a second update at the onlooker bees
phase if this solution is good enough. Hence, we noticed that the proposed concept with
only two updating processes is poor in exploitation.

Furthermore, in order to enhance the exploitation side of the CABC algorithm, a
sequential hybridisation with a new procedure of local search has been introduced. The
proposed procedure, called: ‘SILS’ is a simple metaheuristic that iteratively applies local
search to refine the current iteration best solution of CABC algorithm, but only in the
case where this solution has not been subjected to the SILS procedure in the previous
iterations.

The numerical simulations confirmed the numerical correctness and the efficiency of
both algorithms CABC and SILS_CABC. Indeed, with these algorithms, the optimal
solution was obtained for many job shop benchmarks problems drawn from the literature.

The experimental results subjected to statistical analysis t.test demonstrated also that
the hybrid release SILS_CABC effectively improved the exploitation of the
combinatorial proposed algorithm. Hence, it performs the best in terms of solution quality
evaluated by the Makespan and in terms of convergence speed.

For a better adaptation of the used bee colony metaheuristic, the proposed algorithms
require further research and improvements to propose other practical solutions.
Therefore, our work can be enriched following several research directions:

1 It could be interesting to propose an optimal parameter setting by a well-known
tuning approach based on other artificial intelligence techniques such as Artificial
neural network.

2 An enhancement can be done in the updating and the selecting steps of the
algorithms in order to solve rapidly the JSP with other complex instances.

3 It would be useful to extend the ideas proposed to different objective functions or
multi-objective JSPs.

4 It is also worthwhile to apply the proposed algorithms to other kind of combinatorial
optimisation problems.

References

Abubaker, A., Baharum, A. and Alrefaei, M. (2019) ‘A pruned Pareto set for multi-objective
optimisation problems via particle swarm and simulated annealing’, International Journal of
Operational Research, Vol. 35, No. 1, pp.67–86.

Artigues, C. and Feillet, D. (2008) ‘A branch and bound method for the job-shop problem with
sequence-dependent setup times’, Annals of Operations Research, Vol. 159, No. 1,
pp.135–159.

Aydin, M.E. and Fogarty, T.C. (2004) ‘A simulated annealing algorithm for multi-agent systems: a
job-shop scheduling application’, Journal of intelligent manufacturing, Vol. 15, No. 6,
pp.805–814.

 24 A. Ouis Khedim et al.

Bajer, D. and Zorić, B. (2019) ‘An effective refined artificial bee colony algorithm for numerical
optimisation’, Information Sciences, Vol. 504, pp.221–275.

Beasley, J.E. (1990) ‘OR-Library: distributing test problems by electronic mail’, Journal of the
Operational Research Society, Vol. 41, No. 11, pp.1069–1072.

Benttaleb, M., Hnaien, F. and Yalaoui, F. (2018) ‘Two-machine job shop problem under
availability constraints on one machine: makespan minimization’, Computers & Industrial
Engineering, Vol. 117, pp.138–151.

Çaliş, B. and Bulkan, S. (2015) ‘A research survey: review of AI solution strategies of job shop
scheduling problem’, Journal of Intelligent Manufacturing, Vol. 26, No. 5, pp.961–973.

Chaouch, I., Driss, O.B. and Ghedira, K. (2019) ‘A novel dynamic assignment rule for the
distributed job shop scheduling problem using a hybrid ant-based algorithm’, Applied
Intelligence, Vol. 49, No. 5, pp.1903–1924.

Črepinšek, M., Liu, S. H. and Mernik, M. (2013) ‘Exploration and exploitation in evolutionary
algorithms: a survey’, ACM Computing Surveys (CSUR), Vol. 45, No. 3, p.35.

Dao, T.K., Pan, T.S. and Pan, J.S. (2018) ‘Parallel bat algorithm for optimizing makespan in job
shop scheduling problems’, Journal of Intelligent Manufacturing, Vol. 29, No. 2, pp.451–462.

Dehnavi-Arani, S., Saidi-Mehrabad, M. and Ghezavati, V. (2019) ‘An integrated model of cell
formation and scheduling problem in a cellular manufacturing system considering automated
guided vehicles’ movements’, International Journal of Operational Research, Vol. 34, No. 4,
pp.542–561.

Faridi, A.Q., Sharma, S., Shukla, A., Tiwari, R. and Dhar, J. (2018) ‘Multi-robot multi-target
dynamic path planning using artificial bee colony and evolutionary programming in unknown
environment’, Intelligent Service Robotics, Vol. 11, No. 2, pp.171–186.

Fisher, H. and Thompson, G.L. (1963) ‘Probabilistic learning combinations of local job-shop
scheduling rules’, in Muth, J.F. and Thompson, G.L. (Eds.): Industrial Scheduling,
Prentice-Hall, Englewood Cliffs, pp.225–251.

Gao, K.Z., Suganthan, P.N., Pan, Q.K., Chua, T.J., Chong, C.S. and Cai, T.X. (2016) ‘An improved
artificial bee colony algorithm for flexible job-shop scheduling problem with fuzzy processing
time’, Expert Systems with Applications, Vol. 65, pp.52–67.

Garey, M.R., Johnson, D.S. and Sethi, R. (1976) ‘The complexity of flowshop and jobshop
scheduling’, Mathematics of Operations Research, Vol. 1, No. 2, pp.117–129.

Garey, M.R. and Johnson, D.S. (1979) A Guide to the Theory of the NP-Completeness, Computers
and Intractability, Freeman, New York.

Goldberg, D. (1989) Genetic Algorithms in Search, Optimization, and Machine Learning, Addison
Wesley, USA.

González, M.A., Vela, C.R., González-Rodríguez, I. and Varela, R. (2013) ‘Lateness minimization
with Tabu search for job shop scheduling problem with sequence dependent setup times’,
Journal of Intelligent Manufacturing, Vol. 24, No. 4, pp.741–754.

Guizzi, G., Revetria, R., Vanacore, G. and Vespoli, S. (2019) ‘On the open job-shop scheduling
problem: a decentralized multi-agent approach for the manufacturing system performance
optimization’, Procedia CIRP, Vol. 79, pp.192–197.

Huang, R.H. and Yu, T.H. (2017) ‘An effective ant colony optimization algorithm for
multi-objective job-shop scheduling with equal-size lot-splitting’, Applied Soft Computing,
Vol. 57, pp.642–656.

Huang, R.H., Yang, C.L. and Cheng, W.C. (2013) ‘Flexible job shop scheduling with due window
a two-pheromone ant colony approach’, International Journal of Production Economics,
Vol. 141, No. 2, pp.685–697.

Hung, H.C., Lin, B.M., Posner, M.E. and Wei, J.M. (2019) ‘Preemptive parallel-machine
scheduling problem of maximizing the number of on-time jobs’, Journal of Scheduling,
Vol. 22, No. 4, pp.413–431.

Jain, A.S. and Meeran, S. (1999) ‘Deterministic job-shop scheduling: past, present and future’.
European Journal of Operational Research, Vol. 113, No. 2, pp.390–434.

 Combinatorial artificial bee colony algorithm 25

Jiang, J., Wu, D., Chen, Y., Yu, D., Wang, L. and Li, K. (2019) ‘Fast artificial bee colony
algorithm with complex network and naive Bayes classifier for supply chain network
management’, Soft Computing, Vol. 23, No. 24, pp.13321–13337.

Karaboga, D. and Akay, B. (2009) ‘A comparative study of artificial bee colony algorithm’,
Applied Mathematics and Computation, Vol. 214, No. 1, pp.108–132.

Karaboga, D. and Basturk, B. (2007) ‘A powerful and efficient algorithm for numerical function
optimization: artificial bee colony (ABC) algorithm’, Journal of Global Optimization, Vol. 39,
No. 3, pp.459–471.

Karaboga, D. and Basturk, B. (2008) ‘On the performance of artificial bee colony (ABC)
algorithm’, Applied Soft Computing, Vol. 8, No. 1, pp.687–697.

Karaboga, D., Gorkemli, B., Ozturk, C. and Karaboga, N. (2014) ‘A comprehensive survey:
artificial bee colony (ABC) algorithm and applications’, Artificial Intelligence Review,
Vol. 42, No. 1, pp.21–57.

Karaboga, D. (2005) An Idea based on Honey Bee Swarm for Numerical Optimization, Technical
report-TR06, Erciyes University, Kayseri, Turkey.

Khambhampati, S., Calyam, P. and Zhang, X. (2018) ‘A tabu search algorithm for a capacitated
clustering problem’, International Journal of Operational Research, Vol. 33, No. 3,
pp.387–412.

Khatibi, S., Bafruei, M.K. and Rahmani, M. (2019) ‘Modelling a bi-objective airport gate
scheduling with controllable processing time using hybrid NSGA-II and VNS algorithm’,
International Journal of Operational Research, Vol. 34, No. 1, pp.1–27.

Kumar, H., Kumar, P. and Sharma, M. (2019) ‘A genetic algorithm for a flow shop scheduling
problem with breakdown interval, transportation time and weights of jobs’, International
Journal of Operational Research, Vol. 35, No. 4, pp.470–483.

Kundakcı, N. and Kulak, O. (2016) ‘Hybrid genetic algorithms for minimizing Makespan in
dynamic job shop scheduling problem’, Computers & Industrial Engineering, Vol. 96,
pp.31–51.

Lawrence, S. (1984) Resource Constrained Project Scheduling: An Experimental Investigation of
Heuristic Scheduling Techniques (Supplement), Graduate School of Industrial Administration,
Carnegie Mellon University, Pittsburgh.

Lei, D. (2012) ‘Co-evolutionary genetic algorithm for fuzzy flexible job shop scheduling’, Applied
Soft Computing, Vol. 12, No. 8, pp.2237–2245.

Lenstra, J.K. and Rinnooy Kan, A.H.G. (1979) ‘Computational complexity of discrete optimization
problems’, Annals of Discrete Mathematics, Vol. 4, pp.121–140.

Lian, Z., Jiao, B. and Gu, X. (2006) ‘A similar particle swarm optimization algorithm for job-shop
scheduling to minimize Makespan’, Applied Mathematics and Computation, Vol. 183, No. 2,
pp.1008–1017.

Lin, T.L., Horng, S.J., Kao, T.W., Chen, Y.H., Run, R.S., Chen, R.J. et al. (2010) ‘An efficient
job-shop scheduling algorithm based on particle swarm optimization’, Expert Systems with
Applications, Vol. 37, No. 3, pp.2629–2636.

Lourenço, H. R., Martin, O. C. and Stützle, T. (2003) ‘Iterated local search’, in Glover, F. and
Kochenberger, G.A. (Eds.): Handbook of Metaheuristics, Springer, Boston, MA, pp.320–353.

Manne, A.S. (1960) ‘On the job-shop scheduling problem’, Operations Research, Vol. 8, No. 2,
pp.219–223.

Masmoudi, O., Delorme, X. and Gianessi, P. (2019) ‘Job-shop scheduling problem with energy
consideration’, International Journal of Production Economics, Vol. 216, pp.12–22.

Moeini, R. (2018) ‘Different hydraulic analysis conditions for sewer network design optimisation
problem using three different evolutionary algorithms’, International Journal of Operational
Research, Vol. 33, No. 4, pp.512–537.

Mohammadnejad, A. and Eshghi, K. (2019) ‘An efficient hybrid meta-heuristic ant system for
minimum sum colouring problem’, International Journal of Operational Research, Vol. 34,
No. 2, pp.269–284.

 26 A. Ouis Khedim et al.

Nayak, A., Lee, S. and Sutherland, J.W. (2019) ‘Dynamic load scheduling for energy efficiency in
a job shop with on-site wind mill for energy generation’, Procedia CIRP, Vol. 80,
pp.197–202.

Nouri, H.E., Driss, O.B. and Ghédira, K. (2016) ‘Hybrid metaheuristics for scheduling of machines
and transport robots in job shop environment’, Applied Intelligence, Vol. 45, No. 3,
pp.808–828.

Ozolins, A. (2018) ‘Bounded dynamic programming algorithm for the job shop problem with
sequence dependent setup times’, Operational Research, https://doi.org/10.1007/s12351-018-
0381-6.

Ramezanian, R. and Rahmani, D. (2017) ‘MILP formulation and genetic algorithm for flow shop
scheduling problem with missing operations’, International Journal of Operational Research,
Vol. 30, No. 3, pp.321–339.

Roshanaei, V., Balagh, A.K.G., Esfahani, M.M.S. and Vahdani, B. (2010) ‘A mixed-integer linear
programming model along with an electromagnetism-like algorithm for scheduling job shop
production system with sequence-dependent set-up times’, The International Journal of
Advanced Manufacturing Technology, Vol. 47, Nos. 5–8, pp.783–793.

Rostami, S., Creemers, S. and Leus, R. (2019) ‘Precedence theorems and dynamic programming
for the single-machine weighted tardiness problem’, European Journal of Operational
Research, Vol. 272, No. 1, pp.43–49.

Seidgar, H., Rad, S.T. and Shafaei, R. (2017) ‘Scheduling of assembly flow shop problem and
machines with random breakdowns’, International Journal of Operational Research, Vol. 29,
No. 2, pp.273–293.

Shokoufi, K., Rezaeian, J., Shirazi, B. and Mahdavi, I. (2019) ‘Preemptive just-in-time scheduling
problem on uniform parallel machines with time-dependent learning effect and release dates’,
International Journal of Operational Research, Vol. 34, No. 3, pp.339–368.

Singh, M.R. and Mahapatra, S.S. (2016) ‘A quantum behaved particle swarm optimization for
flexible job shop scheduling’, Computers & Industrial Engineering, Vol. 93, pp.36–44.

Soudi, A., Heydari, M. and Mazdeh, M.M. (2019) ‘A new approach for integrated surgical
procedure scheduling with arrival uncertainty’, International Journal of Operational
Research, Vol. 34, No. 3, pp.430–449.

Sundar, S., Suganthan, P.N., Jin, C.T., Xiang, C.T. and Soon, C.C. (2017) ‘A hybrid artificial bee
colony algorithm for the job-shop scheduling problem with no-wait constraint’, Soft
Computing, Vol. 21, No. 5, pp.1193–1202.

Suresh, R.K. and Mohanasundaram, K.M. (2006) ‘Pareto archived simulated annealing for job shop
scheduling with multiple objectives’, The International Journal of Advanced Manufacturing
Technology, Vol. 29, Nos. 1–2, pp.184–196.

Syswerda, G. (1991) ‘Scheduling optimization using genetic algorithms’, in Davis, L. (Eds.):
Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, pp.332–349,
Chapter 21.

Tabrizi, B.H., Ghaderi, S.F. and Haji-Yakhchali, S. (2019) ‘Net present value maximisation of
integrated project scheduling and material procurement planning’, International Journal of
Operational Research, Vol. 34, No. 2, pp.285–300.

Tamssaouet, K., Dauzère-Pérès, S. and Yugma, C. (2018) ‘Metaheuristics for the job-shop
scheduling problem with machine availability constraints’, Computers & Industrial
Engineering, Vol. 125, pp.1–8.

Tan, C.J., Neoh, S.C., Lim, C.P., Hanoun, S., Wong, W.P., Loo, C.K. and Nahavandi, S. (2019)
‘Application of an evolutionary algorithm-based ensemble model to job-shop scheduling’,
Journal of Intelligent Manufacturing, Vol. 30, No. 2, pp.879–890.

Tan, Y., Hildebrandt, T. and Scholz-Reiter, B. (2016) ‘Configuration and the advantages of the
shifting bottleneck procedure for optimizing the job shop total weighted tardiness scheduling
problem’, Journal of Scheduling, Vol. 19, No. 4, pp.429–452.

 Combinatorial artificial bee colony algorithm 27

Tayal, A. and Singh, S.P. (2019) ‘Analysis of simulated annealing cooling schemas for design of
optimal flexible layout under uncertain dynamic product demand’, International Journal of
Operational Research, Vol. 34, No. 1, pp.85–103.

Teodorović, D., Šelmić, M. and Davidović, T. (2015) ‘Bee colony optimization part II: the
application survey’, Yugoslav Journal of Operations Research, Vol. 25, No. 2, pp.185–219.

Wei, Q., Guo, Z., Lau, H.C. and He, Z. (2019) ‘An artificial bee colony-based hybrid approach for
waste collection problem with midway disposal pattern’, Applied Soft Computing, Vol. 76,
pp.629–637.

Yue, Y., Cao, L. and Luo, Z. (2019) ‘Hybrid artificial bee colony algorithm for improving the
coverage and connectivity of wireless sensor networks’, Wireless Personal Communications,
Vol. 108, No. 3, pp.1719–1732.

Zandieh, M. and Mohaddesi, S.O. (2019) ‘Portfolio rebalancing under uncertainty using
meta-heuristic algorithm’, International Journal of Operational Research, Vol. 36, No. 1,
pp.12–39.

Zhang, C., Li, P., Guan, Z. and Rao, Y. (2007) ‘A tabu search algorithm with a new neighborhood
structure for the job shop scheduling problem’, Computers & Operations Research, Vol. 34,
No. 11, pp.3229–3242.

Zhang, G., Gao, L. and Shi, Y. (2011) ‘An effective genetic algorithm for the flexible job-shop
scheduling problem’, Expert Systems with Applications, Vol. 38, No. 4, pp.3563–3573.

Zhang, H. and Roy, U. (2018) ‘A semantics-based dispatching rule selection approach for job shop
scheduling’, Journal of Intelligent Manufacturing, pp.1–21.

Zhang, J., Ding, G., Zou, Y., Qin, S. and Fu, J. (2019) ‘Review of job shop scheduling research and
its new perspectives under Industry 4.0’, Journal of Intelligent Manufacturing, Vol. 30, No. 4,
pp.1809–1830.

Zhang, R., Song, S. and Wu, C. (2013) ‘A hybrid artificial bee colony algorithm for the job shop
scheduling problem’, International Journal of Production Economics, Vol. 141, No. 1,
pp.167–178.

Zoulfaghari, H. and Nematian, J. (2019) ‘Minimising total weighted tardiness with considering
compulsory idle times on a single machine’, International Journal of Operational Research,
Vol. 35, No. 3, pp.340–354.

