الجم هورية الجزائرية الديمق راطية الشعبية

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

وزارة التعليم العمالي و البحث العلمي

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

جــــــامعة أبي بكــر بلقــايــد- تلمســـان -

Université Aboubakr Belkaïd – Tlemcen – Faculté de TECHNOLOGIE

Présentée pour l'obtention du grade de DOCTEUR EN SCIENCES

En : Génie Mécanique

Spécialité : Energétique

Par : BENNACER Djamel

Sujet

Etude et Modélisation des Phénomènes d'Interface des Ecoulements Diphasiques dans un Pipeline Multiproduit

Soutenue publiquement, le 14/05/2017, devant le jury composé de :

M SEBBANE Omar
M SAIM Rachid
M ABBOUDI Saïd
M IMINE Omar
M AOUNE ALLAH Mohammed
M KORTI A. Nabil
M SELADJI Chakib

- MCA Professeur Professeur Professeur Professeur MCA
- Univ. Tlemcen Univ. Tlemcen UTBM - France USTO, Oran USTO, Oran Univ. Tlemcen Univ. Tlemcen
- Président Directeur de thèse Co-directeur de thèse Examinateur Examinateur Examinateur Invité

NB : les membres du jury doivent être classés conformément au P.V de l'autorisation de soutenance

A ma mère et mon père, Ma sœur et mes frères, Mes neveux et mes nièces

Remerciements

Je remercie Dieu, le tout puissant de m'avoir accordé la patiente et surtout le courage d'achever ce travail de thèse.

Ce travail n'aurait pu avoir le jour sans le soutien et la participation de plusieurs personnes, dont j'exprime toute ma reconnaissance pour leur contribution.

En premier lieu, je tiens à remercier et exprimer ma profonde reconnaissance à Messieurs, R. SAIM, Professeur à l'Université de Tlemcen et S. ABBOUDI, Professeur à l'université de Technologie de Montbéliard de Belfort – France d'avoir accepté la direction de cette thèse jusqu'à son aboutissement et pour leurs conseils, orientations et surtout leur modestie à mon égard.

Je remercie vivement Messieurs : N. KORTI, Professeur à l'Université de Tlemcen, pour l'honneur qu'il me fait en examinant ma thèse.

Mes plus vifs remerciements également à messieurs, O. IMINE, Professeur à l'Université M. Boudiaf, USTO Oran, M. AOUN ALLAH, Professeur à l'Université M. Boudiaf, USTO Oran et O. SEBBANE, Maitre de Conférence à l'Université de Tlemcen qui m'ont fait l'honneur pour avoir accepté d'être président et membres de jury.

J'exprime toute ma reconnaissance à Monsieur C. SELADJI, Maitre de Conférence à l'Université de Tlemcen, de l'intérêt qu'il a manifesté à l'égard de cette recherche et d'avoir répondre à l'invitation.

J'adresse aussi mes sincères remerciements à Messieurs : S. YOUCEFI, Directeur du District Carburants, A. ZEGGAI, Chef de Centre Carburants, M. A. BENBOUZIANE, Cadre Ingénieur à l'Unité Canalisations Arzew, A. DRAOU, Chef d'unité Canalisations - Arzew, M. BOUDJENANE, Ingénieur Tableautiste chargé du DCS, M. BENDIAB, Chef de Centre GPL, A. BERROUBA TANI, Chef de Service Inspection Canalisations, M. BENOUN, Cadre Technique, N. KEBBAS, Chef de Projets, N. BOULAFA, Chef de Service HSE, F. BENKHENAFOU, Maitre de Conférences de l'Université de Tlemcen et Dr S. SAIDI, Médecin Assistante au niveau du C.H.U Tlemcen pour m'avoir très tôt encouragé pour accomplir cette thèse et pour leur aide et soutien.

Comme je remercie le personnel des laboratoires d'analyses et de qualité des Centres Carburants de Tlemcen et Oran qui ont collaboré dans les différentes manips et opérations d'analyses.

Je souhaite également remercier B. MESRI, Cadre ingénieur attaché à la cellule de transfert de la station de pompage d'Arzew pour son aide et soutien, ainsi que tout le personnel de la salle de contrôle du Terminal Arrivée Remchi.

La liste est trop longue encore de tous ceux et celles non cités qu'ils m'excusent tout en sachant que je garderai pour toujours et pour chacun d'eux mes meilleurs souvenirs.

ملخص :

يعتبر التقدير الدقيق لطول واجهة الخليط ضروري حدا لمعالجة مشاكل النقل عبر القنوات الخاصة بالضخ المتتابع للمواد البترولية. حيث تشير مختلف الدراسات إلى أن العامل الحاسم و الضروري لتقييم حجم الخليط الناتج بين مائعين بتروليين في تماس مباشر وتدفق متتابع، يتمثل في معامل الانتشار الذي يتوجب دراسة دقيقة. و قد أظهرت الدراسات أن معادلة الانتشار تعد الأكثر استخداما لبحث و معالجة ظاهرة الانتشار الحوري. في هذه الأطروحة تمت دراسة ظاهرة الخليط على خط أنابيب بطول168 كم مصمم بثلاثة أقطار مختلفة. العلاقات التجريبية لمعامل الانتشار المستخلصة من الدراسات السابقة لبعض الباحثين و كذا تقنية حجم الخليط المتعلق بالطول المكافئ للقناة (MVEPC) الدراسات السابقة لبعض الباحثين و كذا تقنية حجم الخليط المتعلق بالطول المكافئ للقناة (MVEPC) النظرية مع النتائج التجريبية المسجلة على عدة عمليات الضخ المتعلق بالطول المكافئ للقناة (MVEPC) النظرية مع النتائج التجريبية المسجلة على عدة عمليات الضخ المتابع و النقل عبر القناة (MVEPC) النظرية مع النتائج التجريبية المسجلة على عدة عمليات الضخ المتابع و النقل عبر القناة (MVEPC) النظرية مع النتائج التجريبية المسجلة على عدة عمليات الضخ المتابع و النقل عبر القناة المتعددة المواد المستعملة لتوحيد قطر الأنبوب، تم اختبارها في حساب كمية الخليط حيث قورنت مختلف النتائج البترولية. فقد أظهرت هذه النتائج على أن العلاقات التجريبية المدروسة تباينت بين دقيقة (1.1%)، البترولية مع النتائج التجريبية المسجلة على عدة عمليات الضخ عليتابع و النقل عبر القناة المتعددة المواد تقليلة التقدير (-9.1 خ-20.1%) و مبالغة في التقدير (201 خ 2.540%) مقارنة بالنتائج التجريبية. كما تم ضبط و تعديل كل العلاقات التجريبية المدروسة بتقنيات الارخة على مقور الخليط. و في الأخير تم ضبط و تعديل كل العلاقات التجريبية المدروسة بتقنيات الارداد الخطي المي مالم الم

Résumé

L'estimation avec précision de la longueur de l'interface est essentielle dans les problèmes de transport du multiproduit pétrolier par oléoduc. Les différentes recherches montrent que le paramètre crucial pour la prédiction du volume du mélange généré entre deux produits en contact et en écoulement séquentiel est bien le coefficient de diffusion, dont son choix doit être judicieusement étudié. L'équation de la convection-diffusion était la plus connue et la plus utilisée pour décrire le phénomène de la dispersion axiale. Dans le présent travail le phénomène de l'interface du mélange est étudié sur un dispositif expérimental matérialisé par un pipeline de 168km de long et de diamètres variables. Des corrélations empiriques du coefficient de diffusion sélectionnées de la littérature et l'approche MVEPC utilisée pour uniformiser la géométrie de la conduite, sont testées pour la prédiction des volumes du mélange et comparés aux résultats expérimentaux, enregistrés sur plusieurs séquences de transport du multiproduit. Les résultats obtenus ont montré le degré d'approximation (Erreurs relatives) de chaque corrélation, qualifié entre sous-estimé ($-9.1\% \div -20.31\%$), précis (1,1%) et surestimé $(10.9\% \div 405.2\%)$ par rapport aux volumes enregistrés expérimentalement. Les effets de la composition du mélange et de l'arrêt de pompage sont traités. L'ensemble des corrélations ont subi des ajustements par les techniques de régressions (linéaire, exponentielle, puissance et logarithmique), dont leur comportement après régression linéaire est bien amélioré en délivrant des erreurs relatives comprises entre -0.51% à 0.79%.

Mots-clés :

Longueur de l'interface, transport, multiproduit pétrolier, mélange, écoulement séquentiel, Coefficient de diffusion, Convection-diffusion, dispersion, MVEPC, Régression linéaire

Abstract

The accurate estimation of interface length is essential in the transport problems of multiproduct by pipeline. Various researches shows that the crucial parameter for predicting mixture volume, produced between two products in contact and in sequential flow is indeed the diffusion coefficient, whose choice must be carefully studied. The convection-diffusion equation was the best known and most used to describe the phenomenon of axial dispersion. In the present study phenomenon of the mixture interface is studied on an experimental device, materialized by a pipeline with 168km length and variable diameters. Empirical correlations of the diffusion coefficient are selected from literature and MVEPC approach used to make uniform the pipeline geometry, are tested in calculation of mixture volumes. These latter are compared to the experimental results, that are recorded on several transport sequences of the multiproduct. The obtained results obtained showed the degree of approximation (relative errors) of each correlation, qualified between accurate (1.1%), underestimated $(-9.1\% \div -20.31\%)$ and overestimated $(10.9\% \div 405.2\%)$ with respect to mixture volumes recorded experimentally. The Effect of mixture composition and pumping shutdown is done. All studied correlations have been adjusted by regression techniques (linear, exponential, power and logarithmic), whose behavior after linear regression is improved by delivering relative errors between -0.51% and 0.79%.

Keywords:

Interface length, transport, multiproduct, mixture, sequential flow, diffusion coefficient, Convection-diffusion, dispersion, MVEPC, linear regression.

Table des matières

Chapitre 1. Revue bibliographique

1.1	Introduction	4
1.2	Revue bibliographique	5
1.2	2.1 Mélange axial dans les écoulements laminaires des pipelines [17]	5
1.2	2.2 Mélange axial, cas des écoulements dans les régions turbulentes et de transition du pipe [16]	9
1.2	2.3 Application de l'équation de Convection-Diffusion aux analyses de la zone du mélange dans le transport du Multiproduit dans les pipelines [19]	12
1.2	2.4 Mélange longitudinal des liquides circulant successivement dans les pipelines [15]	14
	1.2.4.1 Introduction	14
	1.2.4.2 Coefficient virtuel de dispersion axiale	14
	1.2.4.3 Calcul du volume du mélange:	16
	1.2.4.4 Quelques théories	16
	1.2.4.5 Résumé de la partie expérimentale du travail de Z. Aunicky [15]	17
1.2	2.5 Autres corrélations empiriques du coefficient de diffusion effectif pour le calcul du volume du mélange	20
1.2	2.6 Autres modèles et techniques pour la prédiction de la longueur de l'interface	21
	1.2.6.1 Modèle d'Austin-Palefray	21
	1.2.6.2 Technique du disque virtuel pour la prédiction du volume du mélange	22
	1.2.6.3 Longueur équivalente de tube pour le calcul du volume du mélange dans un pipeline de diamètre variable	24
1.3	Conclusion	25

Chapitre 2. Dispositif expérimental, relevés des donnés et des résultats du terrain

2.1	Introduction	26
2.2	Notion sur le batching	26
2.3	Présentation d'une séquence type d'un écoulement multiproduit:	26
2.4	Descriptif du procédé de transfert des carburants par le pipeline multiproduit : dispositif d'étude	28
2.4.	1 Enregistrement des données et des résultats expérimentaux	29
2.4.	2 Relevé de données	31
2	2.4.2.1 Les paramètres physicochimiques et d'écoulement	31
2	2.4.2.2 Prise d'échantillons	33
2	2.4.2.3 Les essais au Laboratoire	33
2.4.	3 Enregistrement des résultats du terrain	35
2	2.4.3.1 Quelques définitions	35

	a) Définition des carburants	35
	b) Concentration admissible	36
	c) Concentration de coupure	36
	2.4.3.2 Viscosité cinématique des carburants et des mélanges	37
	2.4.3.3 Résultats expérimentaux :	37
2.5	Conclusion	48

Chapitre 3. Formulations analytiques et approche MVEPC pour le calcul de l'interface du mélange

3.1	Introduction
3.2	Théorie de la formation du mélange – Conditions aux limites 49
3.3	Hypothèse de base de la théorie mathématique50
3.3.	1 Flux de particule : Equation de Fick
3.3.	2 Forme différentielle de l'équation de diffusion51
3.4	Rappels mathématiques
3.4.	1 Transformée de Laplace
3.4.	2 Fonction erreur
3.5	Solution analytique de l'équation de Convection-Diffusion
3.5.	1 Cas de la diffusion
3.5.	2 Cas de la Convection-Diffusion
3.6	Formules de calcul du mélange longitudinal57
3.6.	1 Cas de la diffusion sans contribution du terme de transport57
3.6.	2 Cas de l'Advection-Diffusion (Contribution de la convection ou terme de transport)
3	3.6.2.1 Variation monotone de la vitesse avec le diamètre constant
3	3.6.2.2 Vitesse constante avec variation du diamètre62
3.7	Approche MVEPC (Mixing-Volume-Equivalent-Pipe Concept) pour le calcul du volume du mélange 63
3.8	Conclusion 66

Chapitre 4. Application du modèle analytique pour le calcul de l'interface dans le pipeline multiproduit

4.1	Introduction	. 67
4.2	Sélection des corrélations pour le calcul du volume du mélange	. 67
4.3	Effet de quelques paramètres sur l'évolution de la zone du mélange	. 78
4.3.	1 Effet de la composition du mélange	. 78
4.3.	2 Effet de l'arrêt de pompage	. 85
4.4	Interprétation des résultats	. 88

4.4.1 Degré d'approximation des corrélations étudiées	
4.4.2 Effet de la composition du mélange	
4.4.3 Effet de l'arrêt de pompage	
4.5 Conclusion	

Chapitre 5.Amélioration de liaison entre le volume expérimental et prédit par la
régression des corrélations

5.1	Introduction	90
5.2	Calcul et comparaison des volumes prédits et expérimentaux avant régression	90
5.3	Régression linéaire	97
5.3.3	1 Introduction	97
5.3.2	2 Droite de régression	97
5.3.3	3 Principaux modèles d'ajustement :	98
5.3.4	4 Calcul des coefficients de corrélation	98
5.4	Application du modèle de régression pour l'ajustement des corrélations	99
5.4.	1 Test sur le coefficient de corrélation de Bravais – Pearson	99
5.4.2	2 Signification clinique du coefficient de corrélation de Bravais - Pearson	. 100
5	5.4.2.1 Interprétation par rapport au signe	. 100
5	5.4.2.2 Interprétation par rapport à l'intensité	. 100
5.5	Interprétation des résultats	. 119
5.5.3	1 Degré d'approximation des corrélations sélectionnées pour le calcul du volume du mélange	. 119
5.5.2	2 Degré d'approximation des corrélations après régression	. 119
5.6	Conclusion	. 121

Nomenclature

С	: Concentration ;
C_{min}	: Concentration minimale ;
C_{max}	: Concentration maximale ;
C_0	: Concentration initiale ;
Ē	: Concentration ramenée à une moyenne de temps ;
С′	: Fluctuation de concentration ;
d	: Diamètre de pipe (m) ;
D	: Coefficient de dispersion axiale (m^2/s) ;
D_m	: Coefficient de diffusion moléculaire (m^2/s) ;
D_c	: Coefficient de diffusion dans la zone logarithmique (m^2/s) ;
D_t	: Coefficient de diffusion turbulente (m^2/s) ;
$D_{\rm eff}$: Coefficient de diffusion effectif (m^2/s) ;
f	: Coefficient de friction;
Κ	: Coefficient de dispersion (m^2/s) ;
K^*	: Coefficient de dispersion adimensionnel;
L	: Longueur de pipe (m) ;
L_{eq}	: Longueur équivalente de la conduite (m) ;
L_m	: Longueur du mélange (m) ;
n	: Exposant de la vitesse d'écoulement ou le nombre d'observations;
Ре	: Nombre de Peclet ;
Q_v	: Débit volumique, (m^3/h)
r	: Distance radiale (m) ;
R	: Rayon de pipe (m) ;
R_e	: Nombre de Reynold ;
S	: Section de la conduite (m^2) ;
Sc	: Nombre de Schmidt moléculaire ;
Sc_t	: Nombre de Schmidt turbulent ;
t	: Temps (<i>s</i>) ;
и	: Vitesse moyenne (m/s) ;
u_0	: Vitesse maximale (m/s) ;
u^*	: Vitesse de frottement ;
V_p	: Volume de pipe (m^3) ;

V_m	: Volume théorique du mélange (m^3) ;
V_{mExp}	: Volume expérimental du mélange (m^3) ;
V _{mreg}	: Volume du mélange régressé (m^3) ;
x	: Distance axiale (m) ;
у	: Distance à la paroi interne de pipe (m) ;
Ζ	: Argument de la concentration de coupure ;
%Er	: Erreur relative;
%AEr	: Erreur relative moyenne;
V	: Viscosité cinématique (Cst) ;
<i>v</i> _m	: Viscosité cinématique du mélange (Cst);
v_A	: Viscosité cinématique du produit A (<i>Cst</i>) ;
ν_B	: Viscosité cinématique du produit B (<i>Cst</i>) ;
ν_t	: Viscosité cinématique turbulente (<i>Cst</i>) ;
ρ	: Masse volumique (kg/m^3) ;
$ ho_{min}$: Masse volumique du produit le plus léger (kg/m^3) ;
ρ_{max}	: Masse volumique du produit le plus lourd (kg/m^3) ;
μ	: Viscosité dynamique, $(Kg. s/m^2)$ ou $(Pa. s)$;
τ	: Temps adimensionnel ;
\bar{x}	: Moyenne de <i>x</i>
\overline{y}	: Moyenne de <i>y</i>
$ ho_{xy}$: Corrélation théorique
r_{xy}	: Coefficient de corrélation
σ_x	: Ecart type de <i>x</i>
σ_y	: Ecart type de <i>y</i>
σ_x^2	: Variance de x
σ_y^2	: Variance de <i>y</i>
σ_{xy}	: Covariance (notée aussi $cov(x, y)$)

Liste des figures

Fig. 1. 1 Evolution de la zone du mélange dans un pipeline Multiproduit	4
Fig. 1. 2 Dispersion d'un soluté A dans un écoulement entièrement laminaire d'un solvant B	6
Fig. 1. 3 Comparaison du paramètre de dispersion prédit avec les données expérimentales pour Sc=1.0	11
Fig. 1. 4 Profile de la vitesse dans le régime turbulent	22
Fig. 1. 5 Disque de séparation générée par la turbulence	22
Fig. 1. 6 Volume du mélange (kérosène + Essence) pour un pipeline de 100-miles de long et 30"de diamètre	23
Fig. 1. 7 Longueur équivalente pour un tube à deux segments	24
Fig. 2. 1 Séquence type du transport Multiproduit	27
Fig. 2. 2 Profil en altitude le long du pipeline multiproduit étudié	28
Fig. 2. 3 Dispositif Expérimental : Procédé du pipeline multiproduit	30
Fig. 2. 4 Relevé et lecture des volumes de mélange à l'arrivée (Salle de contrôle)	31
Fig. 2. 5 Calculateur Electronique	32
Fig. 2. 6 Chaine de Comptage constituée de :	32
Fig. 2. 7 Densimètre Electronique	32
Fig. 2. 8 Système de comptage	33
Fig. 2. 9 Prise en ligne d'échantillon du mélange (Interface)	33
Fig. 2. 10 Prise de Masse volumique et de température	34
Fig. 2. 11 Distillateur atmosphérique du laboratoire	
Fig. 2. 12 Ensemble de l'appareil de distillation	
Fig. 2. 13 Codification d'un batch	
Fig. 2 14 Concentrations admissibles et de coupure	36
Fig. 2. 15 Profils de la masse volumique ($Ov=220 \text{ m}^3/h$) - Batch 03D19-16.	
Fig. 2. 16 Profils de la masse volumique et du débit - Batch 07D19-16	39
Fig. 2. 17 Profils de la masse volumique et du débit - Batch 08D19-16	
Fig. 2. 18 Profils de la masse volumique et du débit - Batch 01D20-16	
Fig. 2. 19 Profils de la masse volumique et du débit - Datch 01D20-16.	
Fig. 2. 19 Profils de la masse volumique et du débit - Datch 05D20-10	
Fig. 2. 20 Profils de la masse volumique et du débit - Daten 00D20-10	45 ۸۸
Fig. 2. 21 Profils de la masse volumique et du débit - Datch 09D20-10	44
rig. 2. 22 riojns de la masse volumque et du debit - Datch voD21-10	45
Fia. 3. 1 Evolution de la zone du mélanae le lona du pipe lors de l'écoulement séauentiel du multi-fluide	50
Fig. 3. 2 Elément de volume	
Fig. 3. 3 Présentation du nouveau système de coordonnées	
Fig. 3 4 Disposition de la zone de mélanae	58
Fig. 3. 5 Volume du mélange avec variation de la vitesse	60
Fig. 3.6 Progression du volume du mélange dans des troncons du nineline de différents diamètres	62
Fig. 3. 7 Illustration de la longueur équivalente d'un nineline à trois seaments	
Fig. 4. 1 Volumes du mélange prédits (Eg. 1.29) et mesurés	70
Fia. 4. 2 Volumes du mélanae prédits (Ea. 1.30) et mesurés	71
Fig. 4. 3 Volumes du mélange prédits (Eg. 1.31) et mesurés	72
Fig. 4. 4 Volumes du mélange prédits (Eq. 1.32) et mesurés.	
Fig. 4. 5 Volumes du mélange prédits (Eq. 1.33) et mesurés.	
Fig. 4. 6 Volumes du mélange prédits (Fg. 1 34) et mesurés	
Fig. 4. 7 Volumes du mélange predits (Eq. 155) et mesurés	
Fig. 4. 8 Volumes du mélange prédits (MVEPC) et mesurés	
Fig. 4 9 Effet de la composition du mélange – Volume prédit par Taulor Fa. (1.32)	,, , , , Q1
Fig. 4. 10 Effet de la composition du mélange – Volume prédit par Taylor Eq. (1.32)	נס גע
Fig. 4. 10 Effet de la composition du mélange — Volume prédit par l'Equation (1.54)	20 دە
י יש. א. דד בוופר עב יע כטוויףטאנוטוי עע וויבועוועפ – יטועוויפ וויבעוג אעו דבעעענוטוי (ד.55)	

Fig. 4. 12 Effet de la composition du mélange – Volume prédit par l'approche MVEPC	
Fig. 4. 13 Courbes de concentration pour différents temps d'arrêt	85
Fig. 4. 14 Effet de l'arrêt de pompage sur l'interface du mélange	

Fig. 5. 8 Volume du mélange prédit par l'approche MVEPC comparé au volume expérimental avant régression.....96 Fig. 5. 9 Ajustement de la formule de prédiction du mélange basée sur la corrélation du Smith Eq. (1.29)......103 Fig. 5. 10 Ajustement de la formule de prédiction du mélange basée sur la corrélation du Jablonskij Eq. (1.30) 104 Fig. 5. 11 Ajustement de la formule de prédiction du mélange basée sur la corrélation du Jufin Eq. (1.31)105 Fig. 5. 12 Ajustement de la formule de prédiction du mélange basée sur la corrélation du Taylor Eq. (1.32) 106 Fig. 5. 13 Ajustement de la formule de prédiction du mélange basée sur la corrélation du Sjenitzer Eq. (1.33) 107 Fig. 5. 14 Ajustement de la formule de prédiction du mélange basée sur la corrélation du Jablonskij Eq. (1.34) 108 Fig. 5. 17 Volume du mélange avant et après régression comparé à l'expérimental - Smith Eq. (1.29)......111 Fig. 5. 18 Volume du mélange avant et après régression comparé à l'expérimental - jablonskij Eq. (1.30)......112 Fig. 5. 20 Volume du mélange avant et après régression comparé à l'expérimental - Taylor Eq. (1.32)......114 Fig. 5. 21 Volume du mélange avant et après régression comparé à l'expérimental –Sjenitzer Eq. (1.33)115 Fig. 5. 22 Volume du mélange avant et après régression comparé à l'expérimental - Jablonskij Eq. (1.34)116 Fig. 5. 24 Volume du mélange avant et après régression comparé à l'expérimental – Approche MVEPC 118

Liste des Tableaux

Tablagu 1, 1 Pásumá das contributions ovnárimontalos	7
Tubleau 1. 2 Résumé des contributions experimentales	/ ہ
Tubleau 1. 2 Résume des contributions theoriques	00 1 1
Tableau 1. 3 Resume des contributions experimentales	۲۲۱
Tableau 1. 4 Aperçu des coefficients virtuels de aspersion axiale	15
Tableau 1. 5 Aperçu sur les modeles de calcul du volume du melange	10 مو
Tableau 1. 6 Comparaison des predictions des diverses equations avec les experiences	20
Tableau 1. 7 Comparaison des volumes de melange predits en fonction	21
Tableau 1. 8 Comparaison des volumes des melanges pour aljjerents modeles	23
Tableau 2. 1 Caractéristiques géométriques du pipeline multiproduit	
Tableau 2. 2 Plage des densités des carburants et des mélanges	29
Tableau 2. 3 Données et résultats expérimentaux des volumes du mélange déduits des profils de densités	
Tableau 2. 4 Données expérimentales pour l'étude de l'effet de la composition du mélange (Viscosité du mél	ange)
	46 77
Tableau 2. 6 Données et volumes expérimentaux nour la régression des corrélations	4, 47
Tableau 3. 1 Récapitulatif des solutions pour la prédiction du volume du mélange pour les différentes suppos	sitions
	66
Tableau 4. 1 Résultats des paramètres de calcul du volume du mélange pour des séquences de transport	69
Tableau 4. 2 Coefficient de Diffusion – Cas du pipeline avec variation du diamètre	69
Tableau 4. 3 Volumes du mélange prédits (Eq. 1.29) et mesurés	70
Tableau 4. 4 Volumes du mélange prédits (Eq. 1.30) et mesurés	71
Tableau 4. 5 Volumes du mélange prédits (Eq. 1.31) et mesurés	72
Tableau 4. 6 Volumes du mélange prédits (Eq. 1.32) et mesurés	73
Tableau 4. 7 Volumes du mélange prédits (Eq. 1.33) et mesurés	
Tableau 4. 8 Volumes du mélange prédits (Eq. 1.34) et mesurés	75
Tableau 4. 9 Volumes du mélange prédits (Eq. 1.55) et mesurés	
Tableau 4. 10 Volumes du mélanae prédits (MVEPC) et mesurés	77
Tableau 4. 11 Paramètres de calcul pour l'étude de l'effet de la composition du mélanae	
Tableau 4, 12 Coefficients de diffusion (Pipeline avec variation du diamètre)	
Tableau 4. 13 Effet de la composition du mélanae sur l'interface - Tavlor Fa. (1.32)	
Tableau 4, 14 Effet de la composition du mélange sur l'interface – lablonskii Fa, (1, 34)	
Tableau 4. 15 Effet de la composition du mélange sur l'interface - Fa. (1.55)	
Tableau 4. 16 Effet de la composition du mélange sur l'interface – Approche MVEPC	05 81
Tableau 4. 17 Résultats des paramètres de calcul du volume du mélange pour l'étude de l'effet de l'arrêt de	
nomnage	86
Tableau 4. 18 Volume du mélange prédit et expérimentaux sur des séquences de transport avec arrêt de por	npage
	86
Tableau 4. 19 Volumes du mélange prédits comparés à l'expérimental avec arrêt de pompage	87
Tableau 4. 20 Erreurs relatives des différentes corrélations	
Tableau 4. 21 Comparaison des erreurs relatives dans les conditions normales	89
Tableau 5. 1 Résultats des paramètres de calcul des volumes du mélange (sans régression) sur des séquence	s de
transport	91

Tableau 5. 4 Récapitulation des données et des paramètres pour la régression des corrélations	
Tableau 5. 5 Coefficients de corrélation pour l'équation de Smith, Eq. (1.29)	
Tableau 5. 6 Coefficients de corrélation pour l'équation de Jablonskij, Eq. (1.30)	
Tableau 5. 7 Coefficients de corrélation pour l'Equation de Jufin, Eq. (1.31)	
Tableau 5. 8 Coefficients de corrélation pour l'équation de Taylor, Eq. (1.32)	
Tableau 5. 9 Coefficients de corrélation pour l'Equation de Sjenitzer, Eq. (1.33)	
Tableau 5. 10 Coefficients de corrélation pour l'Equation de Jablonskij, Eq. (1.34)	
Tableau 5. 11 Coefficients de corrélation pour l'Equation de l'équation (1.55)	
Tableau 5. 12 Coefficients de corrélation pour l'Equation de l'approche MVEPC	110
Tableau 5. 13 Volume du mélange comparé au volume expérimental – régression Eq. (1.29)	
Tableau 5. 14 Volume du mélange comparé au volume expérimental – régression Eq. (1.30)	112
Tableau 5. 15 Volume du mélange comparé au volume expérimental – régression Eq. (1.31)	
Tableau 5. 16 Volume du mélange comparé au volume expérimental – régression Eq. (1.32)	
Tableau 5. 17 Volume du mélange comparé au volume expérimental – régression Eq. (1.33)	115
Tableau 5. 18 Volume du mélange comparé au volume expérimental – régression Eq. (1.34)	116
Tableau 5. 19 Volume du mélange comparé au volume expérimental – régression Eq. (1.55)	
Tableau 5. 20 Volume du mélange comparé au volume expérimental – régression MVEPC	
Tableau 5. 21 Erreurs relatives des différentes corrélations avant régression	
Tableau 5. 22 Erreurs relatives avant et après régression des corrélations étudiées	120
Tableau 5. 23 Test de significativité de <i>r_{xy} pour les corrélations régressées étudiée</i>	

Introduction

Parmi les développements les plus rapides associés à l'industrie pétrolière au cours des dernières années, il y a eu le pompage en continu dans le même pipeline, de produits de caractéristiques différentes [1].

De ce fait, le transport par canalisation prend une importance de plus en plus grande à l'échelle nationale et internationale, qui correspond à une augmentation des quantités des produits transportés et des consommations en énergie. Cette situation exige, des entreprises pétrolières, de développer leur logistique et de différer leur modes de transports, afin d'assurer un approvisionnement régulier pour faire face à l'accroissement de la demande sur le marché. C'est dans cette vision que les entreprises pétrolières algériennes ont entrepris un vaste programme d'investissement visant à sécuriser l'approvisionnement du pays en produits pétroliers, à travers un réseau de pipelines étendu.

Considéré comme étant un des maillons clés, ce mode de transport contribue sensiblement à la réduction à la fois des coûts, des délais de livraison, du trafic routier et assure des transports massifs d'hydrocarbures en veillant à la considération de l'environnement avec les conditions de sécurité les plus strictes. S'il n'existait pas, il serait inévitable de faire circuler sur les routes et autoroutes des milliers de camions citernes pour assurer le même transport.

Dans un pipeline, la livraison continue de certains volumes de différents produits pétroliers dans un ordre bien déterminé est connu sous le nom du transport par batch [2], ce mode de transport est aussi connu sous le nom de transport successif ou séquentiel, il est très utilisé dans l'industrie des pipelines. L'un des problèmes posés dans le fonctionnement d'un pipeline multiproduit, excepté les séparations mécaniques utilisées comme les racleurs, est l'estimation du volume de mélange qui se produit à l'interface, ou aux interfaces des liquides pompés. Il s'agit là d'une condition préalable tant pour la conception économique de l'oléoduc que pour les réservoirs associés au stockage, pour faciliter la séparation des stocks contaminés, qui surviennent lors du passage des produits à travers le système.

Afin de garantir la qualité des produits transférés, le volume du mélange devrait être précisément prédit et continuellement suivi de façon à ce que le contaminât (mélange) puisse être séparé sans nuire aux spécifications des produits purs.

L'importance économique attachée à un calcul préalable précis, sera sans doute évidente quand on réalise que les principaux oléoducs d'aujourd'hui ont atteint les 40" de diamètre,

dont chaque pied de longueur d'un tel diamètre contient environ 54 gallons impériaux de produit et dont les coûts du système de pipeline selon la région ou le pays dans lequel est installé, sont susceptibles d'être compris entre £2000 et £3000 par pouce de diamètre et par mile opérations de pipeline [1].

Compte tenu de ces chiffres, on se rendra compte qu'une erreur dans les calculs pourrait aisément entraîner une perte financière importante pour l'opérateur du pipeline, d'une manière ou d'une autre, par exemple un défaut de répondre aux exigences optimales de qualité du produit en coupant l'interface au mauvais point, mène au déclassement de quantités importantes des produits de meilleure qualité, voir même les plus chers [1, 3].

La zone du mélange qui se développe aux limites de l'interface des fluides en contact, augmente davantage quand ces derniers meuvent le long du pipeline. Un tel phénomène est conduit par la dispersion des fluides en contact le long de l'oléoduc, sous l'effet de la diffusion et la convection qui les transporte en aval et les diffuse (La convection est essentiellement dominantes à l'instar de nombreux processus qui se posent dans les problèmes physiques [4]).

Il a été constaté que l'interface du mélange est affectée par divers paramètres qu'il est très intéressant de connaître, tels que le démarrage et l'arrêt du pipeline, les effets thermiques, les propriétés des fluides et la diffusion entre eux [5]. Il est bien évident que l'on a intérêt à réduire l'interface au minimum, sachant que le mélange perd sa qualité et avec l'altération de ses caractéristiques physicochimiques, ce dernier ne sera en aucun cas commercialisable et nécessite un parc de stockage important pour son reclassement ou correction.

Le document est organisé en cinq chapitres,

Le chapitre 01 présente une revue des travaux entrepris par certains investigateurs dans l'étude et l'analyse des phénomènes du mélange. Ces études comprennent des solutions analytiques, expérimentales et numériques pour les coefficients de diffusion et les longueurs de l'interface du mélange. En outre, sont mentionnées des études réalisées par certains auteurs, qui ont comparé leurs résultats prédits aux résultats expérimentaux. En fin du chapitre, la technique de la longueur équivalente appliquée sur un pipeline de diamètres variables, est illustrée pour la prédiction du volume du mélange.

Dans le chapitre 02, le dispositif expérimental matérialisé par un pipeline multiproduit de 168km de long, qui desserve la région Ouest et Sud-ouest de l'Algérie en carburants est exposé. Les essais menés aux laboratoires pour identifier les différents paramètres nécessaires (Viscosités, fractions du mélange, masses volumiques, températures, ...etc.) sont présentés. Les enregistrements expérimentaux et les relevés de données à partir de la chaine de mesure sont expliqués, détaillés et récapitulés dans des tableaux pour qu'ils soient utilisés à des fins de calculs et de comparaison.

Le chapitre 03 détaille le modèle mathématique et les solutions des volumes du mélange, par la résolution analytique de l'équation de diffusion pure et celle de la Convection-Diffusion, avec la prise en compte des paramètres d'écoulement, les paramètres physicochimiques des fluides circulant dans la conduite, ainsi que la géométrie du pipe (longueur et diamètre). A la fin du

2

chapitre, l'approche MVEPC (Mixing-Volume-Equivalent-Pipe Concept) est présentée pour l'introduire au calcul de l'interface, et cela dans le but d'uniformiser la géométrie des pipelines composés de plusieurs tronçons de longueurs et de diamètres variables, en se référant au contexte des conduites équivalentes.

Dans le chapitre 04, des corrélations empiriques des coefficients de diffusion relatives aux produits pétroliers et l'approche MVEPC sont introduites dans l'application du modèle analytique pour la prédiction de l'interface. Les résultats prédits de façon analytique sont comparés aux résultats du terrain enregistrés au niveau du DCS de la salle de contrôle à partir des séquences types de transport du multiproduit pétrolier. Le degré d'approximation est apprécié pour chaque corrélation par le calcul des erreurs relatives.

L'effet de composition du mélange est étudié, par l'introduction de sa viscosité (calculée et mesurée) dans le calcul de la longueur de l'interface. Trois cas distincts sont considérés :

- Mesure expérimentale de la viscosité du mélange par le viscosimètre capillaire,
- Calcul de la viscosité à partir de la composition du mélange dont les fractions sont déterminées expérimentalement par distillation atmosphérique,
- Calcul de la viscosité avec l'hypothèse de la fraction égale (50~50 %) des constituants du mélange.

Outre les contraintes liées à l'exploitation et en raison de l'échec et de l'entretien des équipements, l'arrêt des pipelines multiproduit est inévitable et affecte l'interface du mélange. Cependant, les études sur le mécanisme qui favorise la contamination et leur tendance ne sont toujours pas satisfaisantes en raison de l'incertitude des principaux facteurs qui influent sur l'augmentation du volume contaminé. Ceux-ci ont fait du calcul du volume du mélange, causé par l'arrêt de pompage un problème technologique dans le transport du multiproduit [6]. Il a été un sujet qui mérite une étude continue. De ce fait, la partie finale du chapitre 04 est consacrée à l'appréciation et la comparaison des volumes expérimentaux avec les prédictions dans les conditions d'arrêt de pompage, et cela sur des séquences types.

Dans le chapitre 05, le calcul de l'interface est étendu sur d'autres séquences sur le pipeline multiproduit, dans le but de confirmer le comportement des corrélations sélectionnées. Des techniques d'économétrie sont envisagées pour procéder à l'ajustement de l'ensemble des corrélations étudiées dans le chapitre 04, par les méthodes de régression et cela dans le but d'améliorer l'approximation et la précision de ces dernières et de faire converger les prédictions aux résultats expérimentaux. Les coefficients des fonctions de régression linéaire sont soumis aux tests statistiques pour prononcer davantage leur sens et leur validité.

Ce travail est finalisé par une conclusion dans laquelle figurent les différentes synthèses et remarques.

Chapitre 01

Revue bibliographique

1.1 Introduction

Un des problèmes posés dans le fonctionnement d'un système de pipelines à plusieurs produits (Excepté les séparations mécaniques utilisées comme les racleurs) est l'estimation du mélange qui se produit à l'interface ou aux interfaces des liquides pompés. Il s'agit là d'une condition économique préalable tant pour la conception du gazoduc que pour les réservoirs associés au stockage dans le but de contenir les stocks contaminés qui surviennent lors du passage des produits à travers le système.

Afin de garantir la qualité des produits transportés, le volume du mélange devrait être précisément prédit et continuellement suivi de façon que le contaminât puisse être séparé sans nuire les spécifications et la qualité des produits. La zone du mélange qui se développe aux limites de l'interface des fluides en contact, augmente davantage quand ces derniers meuvent le long du pipeline. L'effet de ce mélange est représenté schématiquement par la Fig. (1.1) [1].

Un tel phénomène est conduit par la dispersion de la matière et est actuellement évalué par un certain nombre de modèles classiques.

Fig. 1. 1 Evolution de la zone du mélange dans un pipeline Multiproduit

Les écoulements dans les pipelines ont été intensivement étudiés pendant les cinquante dernières années, dont quelques modèles ont été évoqués par plusieurs auteurs, à l'instar de(Birge, 1947) [7], (Smith et Schulze, 1948) [8],(Hull et Kent, 1952) [9], (Taylor, 1953-1954) [10, 11], (Levenspiel et Smith, 1957) [12], (Sjenitzer, 1958) [13], (Levenspiel, 1958) [14], (Austin et Palfrey, 1960,1963-64) [1], (Z. Aunicky, 1970) [15], (K. Ekambara et J. B. Johi, 2003-2004) [16, 17]. Une synthèse de ces travaux est présentée ci-dessous.

1.2 Revue bibliographique

1.2.1 Mélange axial dans les écoulements laminaires des pipelines [17]

La dispersion axiale est une mesure du taux auquel un traceur inerte se diffuse axialement le long d'un pipeline. Un soluté injecté dans une conduite en présence d'un écoulement laminaire, pleinement développé, se disperse à la suite de :

- 1. La diffusion moléculaire axiale et radiale ;
- 2. La convection, qui transporte le soluté en aval et le diffuse en raison de la distribution non uniforme de la vitesse ;
- 3. Des effets gravitationnels par les différences de densité entre le fluide et le soluté injecté.

Ces mécanismes résultent en un mélange axial qui peut être caractérisé par le coefficient de dispersion axiale *D*.

(Taylor, 1953) fut le premier à analyser la dispersion d'un fluide injecté dans un tube capillaire circulaire dans lequel circule un deuxième fluide. Il a montré que la dispersion pourrait être caractérisée par un procédé de diffusion avec un coefficient « effectif » de diffusion, nommé coefficient de dispersion, dépendant de l'écoulement et de ses propriétés. Sa valeur s'était avérée être proportionnelle au rapport de la convection axiale à la diffusion moléculaire radiale ; c'est-à-dire, une mesure du taux auquel un matériel diffuse axialement dans le système.

Les mécanismes de dispersion par supposition quant à ce qui arrive au soluté A injecté au moment zéro dans un écoulement laminaire pleinement développé d'un solvant B sont montrés sur la Fig. (1.2). A de très faibles débits et aux courtes durées du temps après injection, la dispersion de A dans B se produit principalement par diffusion moléculaire axiale à cause des hauts gradients de concentration axiaux. La dispersion se produit comme si la phase B était pratiquement stagnante. A cette condition, le procédé de dispersion a été montré dans la Fig. (1.2B) qui montre que la phase A diffuse et occupe axialement un plus grand volume bien que la quantité totale de A reste encore la même. Pendant que la phase A se meut plus loin, une petite déviation du comportement du bouchon en écoulement peut être observée sur la Fig. (1.2C) (profils incurvés de concentration sur la conduite et les bords arrières de la phase A) qui peut être attribué à une contribution mineure de la convection.

La longueur caractéristique de la diffusion $(D_m t)^{1/2}$ est proportionnelle à la racine carrée du temps, et à la longueur caractéristique de la convection Ut qui est linéaire dans le temps. Il s'en

suit que, pour les temps légèrement supérieurs que ceux considérés ci-dessus, la convection axiale entre dans le procédé de dispersion. A vrai dire, aux débits suffisamment élevés, la convection devient un mécanisme dominant et le tronçon de soluté devient tordu en suivant la forme parabolique du champ de vitesse, comme l'illustre la Fig. (1.2D). Donc la convection ou plutôt la variation de vitesse à travers la section transversale résulte en une dispersion axiale de la région occupée par A et par conséquent contribue à l'accroitre.

Dans la Fig. (1.2D), les diffusions axiale et radiale ont été complètement négligées. Leur présence a été séquentiellement considérée, respectivement dans les Figures (1.2E, 1.2F) qui montrent les dispersions axiale et radiale causées par ces diffusions.

A partir de la Fig. (1.2F), on peut observer que la diffusion moléculaire radiale agissant à la tête du front du tronçon, déplace le soluté A du centre de la conduite à haute vitesse vers sa paroi à vitesse réduite, et pour la partie arrière du tronçon, la diffusion moléculaire déplace A du voisinage de la paroi vers le centre de la conduite.

Fig. 1. 2 Dispersion d'un soluté A dans un écoulement entièrement laminaire d'un solvant B

(A) Injection de A dans B; (B) $1 < P_e < \infty$, $\tau < 10^{-5}$; (C) $P_e < 10^3$, $10^{-5} < \tau < 10^{-3}$; (D) $P_e > 10^3$; (E), (F) et (G) : $1 < P_e < \infty$, $\tau > 0.1$.

Au cours du temps, l'action de la diffusion radiale rend la zone du mélange plus uniforme et ralentit ainsi la dispersion axiale qui est due à la convection et à la diffusion axiale comme le

montre la Fig. (1.2G). Ici, les trois modes de transport (convection, diffusion radiale, diffusion axiale) contribuent à la dispersion du solvant A qui se traduit par un écoulement de type bouchon, alors qu'en réalité la vitesse est radialement distribuée. La longueur de cette zone de mélange augmente avec le temps.

Le transport du soluté dans un écoulement laminaire (en raison des causes ci-dessus mentionnées de la convection et de la diffusion radiale et axiale) est décrit par l'équation suivante [17]:

$$\frac{\partial C}{\partial t} + \frac{\partial}{\partial x} (uC) = \frac{1}{r} \frac{\partial}{\partial r} \left(r D_m \frac{\partial C}{\partial r} \right) + \frac{\partial}{\partial x} \left(D_m \frac{\partial C}{\partial x} \right)$$
(1.1)

Où D_m est le coefficient de diffusion moléculaire, u est la vitesse moyenne, et x, r et t sont respectivement la distance axiale, la distance radiale et le temps.

Pour résoudre l'équation (1.1), plusieurs tentatives ont été proposées sous formes numériques et aussi sous formes analytiques en considérant peu de cas spéciaux. Les tableaux (1.1) et (1.2) résument les principales investigations expérimentales et théoriques de quelques auteurs.

Dans les applications pratiques, les écoulements laminaires peuvent se produire à des intervalles, de rayons de pipe R variant de 0.1 à 200mm, de coefficients de diffusion D_m variant de 10^{-4} à $10^{-11}m^2/s$, de nombres de Reynolds Re compris entre 0.1 et 2000 et des longueurs de pipe variant de quelques millimètres à plusieurs mètres. En conséquence, les intervalles du nombre de Peclet ($Pe = u_0 R/D_m$) et le temps adimensionnel ($\tau = D_m t/R^2$) varient respectivement de 1 à 10^{-9} à 10.

Auteur	Diam.	Long.	Fluide	Traceur	Technique	Plages couvertes		Technique Plages couver				
	a (mm)	L (mm)			de mesure	u ₀ (mm/s)	R_e	P _e	τ			
Taylor (1953)	0.5, 1.0	1520	Water	KMnO ₄ solution	Colourimetry	165-1600	1-800	50-100000	0.5-100			
			1, 3-butadiene	1-butyne								
Bournia et al.	21 7	2500	1-butyne	1, 3-butadiene		1 150	5-855	100-10000	0.0.5.0			
(1961)	21.7	2500	1, 3-butadiene	Helium	- Oltra-violet	1-150			0.8-5.0			
			Argon	1, 3-butadiene	-							
Bailey et Gogarty (1962)	1.0	762	Water	KMnO ₄ solution	Spectrophoto- meter	0.75-233	1-300	600-15000	0.1-30			
	ns Genney 6.35 1769 65)		N2	C_2H_4	Thermal		3-100	-				
Frome			N2	C_2H_4	Conductivity							
			Argon (Ar)	H ₂	Detector							
et Kenney		1769	N2	SF_6	10-160	10-160			-			
(1965)				H ₂	SF_6	-						
			Ar	SF_6	- Katharometer	ſ						
			Не	SF_6	-							
Reejhsinghani et al. (1966)	1.5, 5.0	850	Water	Dye solution	Optical detector	-	-	12-50000	0.01-60			

Tableau 1. 1 Résumé des contributions expérimentales

 Tableau 1. 2 Résumé des contributions théoriques

- 1. Terme convectif radial était négligé
- 2. Terme convectif axial était négligé
- 3. Terme de diffusion radiale était négligé
- 4. Terme de diffusion axial était négligé
- 5. Le soluté ne subit aucune réaction chimique
- 6. La différence de densité entre le soluté et le fluide est négligeable
- 7. La distribution initiale du soluté à l'entrée à z = 0 est uniforme au-dessus de la section transversale
- 8. Le coefficient de diffusion moléculaire était assumé indépendant de la concentration

Auteur	Ре	τ	Suppositions
Taylor (1953,1954)	>500	>0.5	1,4,5,6,7,8
Aris (1956)	>100	>0.2	1,5,6,7,8
Bailey et Gogarty (1962)	>600	>0.1	1,4,5,6,7,8
Ananthakrishnan et al. (1965)	1 - 23 000	0.01 - 30	1,5,6,7,8
Lighthill (1966)	>500	>0.1	1,4,5,6,7,8
Gill et Ananthakrishnan (1967)	2 - 1000	>0.05	1,5,6,7,8
Gill et Ananthakrishnan (1970)	>500	>0.001	1,5,6,7,8
Tseng et Besant (1970)	10 - 60 000	0.00745 - 10	1,5,6,7,8
Gill et Ananthakrishnan (1971)	>500	>0.001	1,5,6,8
Yu (1976, 1979, 1981)	>5	>0.01	1,5,6,7,8
Vrentas et Vrentas (1988)	5 - 10 000	5 x10 ⁻⁶ - 1.0	1,5,6,7,8
Shankar et Lenhoff (1989)	∞	>0.002	1,4,5,6,7,8
Phillips et Kaye (1997)	∞	>0.001	1,4,5,6,7,8
Vrentas et Vrentas (2000)	>10	10-2-0.001	1,3,5,6,7,8

(Taylor, 1953-1954) a étudié l'écoulement dans un tube de 0.5mm et 1mm de diamètre et 1520mm de long en utilisant une solution aqueuse de permanganate de potassium comme traceur. Le profil de concentration axiale était estimé par colorimétrie. Il a obtenu des solutions analytiques approximatives pour deux cas :

- 1. Dispersion par mécanisme de convection seulement et ;
- 2. Dispersion due à l'effet combiné de diffusion et de la convection.

Le deuxième cas est plus près de la réalité, cependant, il a considéré seulement la diffusion radiale Avec ces hypothèses, Taylor en 1953 a obtenu l'équation suivante pour le coefficient correspondant à la dispersion axiale:

$$D = u_0^2 R^2 / 48D_m \tag{1.2}$$

Cette relation est valable si la condition suivante est satisfaite (Taylor, 1954) :

$$\frac{4L}{R} \gg \frac{u_0 R}{D_m} \gg 6.9 \tag{1.3}$$

Où, *L* est la longueur du pipe et *R* son rayon.

(Aris, 1956) a utilisé une méthode appelée méthode des moments pour étudier la dispersion axiale du soluté. Il a modifié l'analyse de Taylor pour inclure l'effet de la diffusion axiale. Il a obtenu la solution approximative :

$$D = D_m + \frac{u_0^2 R^2}{48 D_m} \tag{1.4}$$

Et que la condition de validité de (Taylor, 1954) ($u_0 R/D_m \gg 6.9$) n'est pas nécessaire.

(Bailey et Gogarty, 1962) ont présenté une solution numérique de l'équation différentielle de base, en négligeant la diffusion moléculaire axiale. Ils ont couvert le temps adimensionnel τ dans la gamme de 0.1 à 6. De leurs résultats numériques, le coefficient de dispersion effectif fût présenté comme :

$$D = \frac{t^{0.082} u_0^2 R^{1.836}}{48 D_m^{0.918}}$$
(1.5)

L'Equation (1.5) est pratiquement similaire à l'Equation (1.2), bien qu'une légère dépendance du temps soit indiquée.

En plus de l'analyse théorique ci-dessus, les auteurs ont également accompli des expériences. La solution aqueuse de permanganate de potassium a été utilisée comme traceur et un spectrophotomètre était utilisé pour la mesure des profils de concentration. Ils ont mesuré les longueurs de la zone de mélange à des divers instants de l'écoulement à cinq vitesses. En outre, l'effet de la variation de la longueur de tube a été également étudié sur une plage de temps allant de 0.1 à 100. Leurs résultats expérimentaux montrent que, pour une vitesse fixe, le coefficient de dispersion augmente au cours du temps. Selon les solutions de Taylor et Aris, le coefficient de dispersion est constant pour une vitesse fixée et il est indépendant du temps.

D'après les observations expérimentales, une relation entre le coefficient de dispersion et la longueur de la zone de mélange est donnée par la relation suivante :

$$D = \frac{L_m^2}{13.1 t}$$
(1.6)

1.2.2 Mélange axial, cas des écoulements dans les régions turbulentes et de transition du pipe [16]

Le mélange axial se produit en raison du transport à trois niveaux : moléculaire, turbulent et convection. L'effet combiné de la convection et de la diffusion est gouverné par l'équation suivante, (K. Ekambara et J. B. Joshi, 2003-2004):

$$\frac{\partial \bar{C}}{\partial t} + \frac{\partial (\bar{C}\bar{v}_{\chi})}{\partial z} = \frac{1}{r}\frac{\partial}{\partial r}\left(rD_{\rm eff} \ \frac{\partial \bar{C}}{\partial r}\right) + \frac{\partial}{\partial x}\left(D_{\rm eff} \ \frac{\partial \bar{C}}{\partial x}\right)$$
(1.7)

Où, D_{eff} est l'effet combiné des diffusions moléculaire et turbulente.

La concentration instantanée C est écrite comme la somme de la concentration ramenée à une moyenne de temps \overline{C} et une fluctuation de la concentration C'. De même, les composantes de la vitesse peuvent également s'écrire :

$$C = \overline{C} + C'$$

$$v_r = \overline{v_r} + v'_r$$

$$v_x = \overline{v_x} + v'_x$$
(1.8)

La corrélation de la concentration et des fluctuations des vitesses est modélisée par analogie avec la loi de Fick (Bird, Stewert & Lightfoot, 1960).

$$\overline{C'v'_r} = -D_{rr} \left[\frac{\partial \overline{C}}{\partial r} \right] \quad ; \qquad \overline{C'v'_x} = -D_{xx} \left[\frac{\partial \overline{C}}{\partial x} \right] \tag{1.9}$$

Le coefficient de diffusion effectif *D*_{eff} est donné par :

$$D_{\rm eff} = D_m + D_t \tag{1.10}$$

Où, D_m est le coefficient de diffusion moléculaire et D_t est le coefficient de diffusion turbulente. D_m et D_t sont estimés par :

$$D_m = \frac{v}{Sc} \quad ; \quad D_t = \frac{v_t}{Sc_t}, \tag{1.11}$$

Où, *Sc* et *Sc*^{*t*} sont respectivement les nombres de Schmidt moléculaire et turbulent.

Les conditions aux limites et initiales appliquées à l'équation de convection-diffusion (1.7) sont :

$$c(r, z, 0) = C_0;$$

$$\frac{\partial \bar{c}(0, z, t)}{\partial r} = \frac{\partial \bar{c}(R, z, t)}{\partial r} = 0 \quad \text{Pour tous } z \text{ et } t. \qquad (1.12)$$

Le tableau (1.3) récapitule les études appartenant à la dispersion axiale dans les écoulements turbulents dans une conduite.

(Taylor, 1954) a analysé l'écoulement turbulent dans un pipe de 16.31m de long et 9.52mm de diamètre. Il a négligé la contribution de la diffusion moléculaire dans les directions radiales et axiales et a considéré seulement la diffusion turbulente dans la direction radiale. En outre, il a considéré un profil universel de vitesse pour l'analyse du mélange axial. Sous ces conditions, Taylor a résolu l'équation(1.7) et obtenu le résultat suivant [18] :

$$D = 10.1 \, Ru^* \tag{1.13}$$

Où, *D* est le coefficient de dispersion axiale, *R* est le rayon du pipe et $(u^* = \sqrt{\tau_0/\rho})$ est la vitesse de frottement.

En raison des hypothèses faites par Taylor, l'Equation (1.13) est valable seulement quand les sous couches laminaires et la région de transition sont plus petites en épaisseur (Re>20000).

(Tichacek et al. ,1957) ont analysé le problème du mélange axial dans les pipelines. Ils ont modifié le modèle de Taylor en incluant l'effet de la diffusion moléculaire ($D_{\text{eff}} = D_m + D_t$) puis utilisé les profils de vitesse de (Deissler, 1950) et (Reichardt, 1951).

Les auteurs ont montré que la précision sur le paramètre de dispersion (D/du) dépend fortement du profil de vitesse. Ils ont également précisé que les calculs pour les nombres de Reynolds inférieurs à 10000 ont besoin d'attention particulière. En effet la configuration de l'écoulement dans le voisinage de la paroi du pipe devient importante de façon croissante. En particulier, le rôle de la diffusion turbulente radiale devient difficile à évaluer dans la région proche de paroi. En plus, ils ont observé que les valeurs de D/du augmentent rapidement quand l'écoulement s'approche du régime laminaire.

Au vu de ces observations, on peut réaliser l'importance de la région proche de paroi et la quantification précise du profil de vitesse et de la diffusion turbulente. La courbe de D/du en fonction de *Re* pour les modèles de Taylor et de Tichacek et al., est montrée dans la Fig. (1.3). Il faut noter que le modèle de Taylor montre la variation linéaire pour la gamme entière de *Re*. La différence entre les deux modèles est principalement due à la différence dans le profil de vitesse et à la formulation de la diffusion turbulente. La différence peut être remarquée pour s'élargir quand *Re* diminue en-dessous de 10000.

Fig. 1. 3 Comparaison du paramètre de dispersion prédit avec les données expérimentales pour Sc=1.0

▲ Données expérimentales de Keyes (1955);
 ◆ Données expérimentales de Flint et Eisenklam (1969);
 (1) Taylor (1954);
 (2) Tichacek et al. (1957);
 (3) Sittel et al. (1968)
 (4) Flint et Eisenklam (1969).

Pour *Sc*=1000 et *Re*>4x10⁴, (Sittel et al., 1968) ont corrélé leurs résultats expérimentaux par la relation :

$$D = 1.13 \times 10^{-6} Re^{0.875} m^2/s$$

(1.14)

Tableau 1. 3 Résumé des contributions expérimentales

Hypothèses de travail :

- 1. Le terme de dispersion axiale est négligé
- 2. Le terme de dispersion radiale est négligé
- 3. Le terme de convection radiale est négligé
- 4. Le terme de convection axiale est négligé
- 5. Le coefficient de dispersion est pris en compte
- 6. La diffusion moléculaire radiale n'est pas considérée
- 7. La diffusion moléculaire axiale n'est pas considérée

Investigateur	Géométrie du pipe		Système	Technique de mesure	Gamme de <i>Re</i>	Profil de vitesse	Hypothèses
	Ø(m)	L(m)					
Taylor (1954)	0.00952	4.80	NaCl- Water	Conductivity recorder	>4000	Universal	1,3,6,7
Keyes (1955)	0.0155	2.438	Air-CO ₂	Conductivity Cell	>10000	Universal	1,3,5,7
Tichacek, Barkelew, et Baron (1957)	-	-	Gases & Liquids	-	>2500	Reichardt (1951)	1,3,7
Levenspiel et Smith (1957)	0.02855	2.7432	KMnO4- Water	Photoelectric Cell	>4000	Constant value	2,3,4,5,6,7
Sittel, Threadgill et Schnelle (1968)	0.0127 0.0254 0.0508	21.94	NaCl- Water	Conductivity Cell	>40000	Constant value	2,3,6,7
Flint et Eisenklam (1969)	0.0276	23.45	N2-C2H2 N2-Ar N2-He	Detector	>2500	Flint (1956)	1,3,7

1.2.3 Application de l'équation de Convection-Diffusion aux analyses de la zone du mélange dans le transport du Multiproduit dans les pipelines [19]

La contamination générée lors des écoulements séquentiels des multi-fluides pétroliers dans un pipeline sous l'influence de la convection et de la diffusion fût étudiée par (Deng Songsheng et Pu Jianing, 1998). Les équations de diffusion principalement contrôlées par la convection, sont développées sous l'écoulement turbulent dans le pipeline.

Selon l'équation de continuité et la loi de Fick, le modèle mathématique décrivant le procédé de diffusion dans un pipeline s'écrit :

$$\frac{\partial c}{\partial t} + u \frac{\partial C}{\partial x} = \frac{1}{r} \frac{\partial}{\partial r} \left(r D \frac{\partial C}{\partial r} \right) + \frac{\partial}{\partial x} \left(\frac{\partial C}{\partial x} \right)$$
(1.15)

Avec les conditions, initiale et aux limites suivantes :

$$t = 0, \quad x = 0, \quad C = C_0$$

$$t > 0, \quad x = 0, \quad C = 0$$

$$t = 0, \quad x > 0, \quad C = 1$$

$$t \ge 0, \quad x \to +\infty, \quad C = 1$$

$$t \ge 0, \quad \frac{\partial c}{\partial r} \Big|_{r=0} = \frac{\partial c}{\partial r} \Big|_{r=R} = 0$$
(1.16)

Chapitre 01

Où, x et r sont respectivement les coordonnées axiale et radiale, u est la vitesse moyenne, C est la concentration relative en volume de l'un des deux produits en écoulement successif, C_0 est la concentration initiale à x=0 (Généralement prise à 0.5), R est le rayon, D est le coefficient de diffusion.

La couche limite dans les écoulements turbulents des pipes se compose de trois zones: sous couche laminaire ou visqueuse, zone de transition et la zone logarithmique ou d'écoulement turbulent.

Ci-après, les équations de Convection-Diffusion sont écrites pour chaque zone.

a) Sous couche visqueuse : $y \neq 5$

u est exprimé comme suit :

$$u^+ = y^+ \tag{1.17}$$

Où,

$$u^+ = \frac{u}{u^*} \tag{1.18}$$

$$y^{+} = \frac{y \, u^{*}}{v} \tag{1.19}$$

Où, u^* et y sont respectivement, la vitesse de frottement et la distance à la paroi interne du pipe, v est la viscosité cinématique.

Dans la sous couche laminaire, le mécanisme de diffusion dépend de la diffusion moléculaire et le coefficient de diffusion total qui est égal au coefficient de diffusion moléculaire D_{i} , généralement, $D = D_{i}$ =Const. L'équation de Convection-Diffusion pour cette sous couche est donnée par:

$$\frac{\partial c}{\partial t} + u \frac{\partial c}{\partial x} = D_l \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial c}{\partial r} \right) + \left(\frac{\partial^2 c}{\partial x^2} \right) \right)$$
(1.20)

b) Zone de transition : $5 \le y^+ \le 30$

u et v_t sont données par :

$$u = u^* (-3.05 + 0.5 \ln y^+) \tag{1.21}$$

$$v_t = \frac{u^*(R-r)}{5.0} - v \tag{1.22}$$

Où, R est le rayon.

De l'hypothèse [19], $Sc_t = \frac{v_t}{D_t} = 1$ (Où, Sc_t est le nombre de Schmidt turbulent et v_t est la viscosité cinématique turbulente), Le coefficient de diffusion turbulent, D_t est donnée par :

$$D_b = D_t + D_l = \frac{u^*(R-r)}{5.0} - \nu + D_l$$
(1.23)

La combinaison des relations (1.23) et (1.15) conduit à l'équation :

$$\frac{\partial c}{\partial t} + u \frac{\partial c}{\partial x} = D_b \left(\frac{\partial^2 c}{\partial x^2} + \frac{\partial^2 c}{\partial r^2} \right) + \frac{1}{r} \left(\frac{u^* (R - 2r)}{5.0} - \nu + D_l \right) \frac{\partial c}{\partial r}$$
(1.24)

c) Zone d'écoulement turbulent (Zone Logarithmique) : y > 30

u et v_t sont exprimés comme suit :

$$u = u^* (5.5 + 2.5 \ln y^+) \tag{1.25}$$

$$v_t = \frac{u^* r \left(R - r \right)}{2.5 R} - v \tag{1.26}$$

Dans la zone logarithmique, $D_l \ll D_t$, donc le coefficient de diffusion, D_c dans cette région est donné par :

$$D_c = D_t = \frac{u^* r \left(R - r \right)}{2.5 R} \tag{1.27}$$

Des équations (1.15) et (1.27), l'équation de convection-diffusion est réarrangée comme suit:

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} = D_c \left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial r^2} \right) + \frac{u^* (2R - 3r)}{2.5 R} \frac{\partial C}{\partial r}$$
(1.28)

1.2.4 Mélange longitudinal des liquides circulant successivement dans les pipelines [15]

1.2.4.1 Introduction

Lorsque deux liquides miscibles sont en écoulement successif dans une conduite, ils se mélangent dans la région du contact. On ne peut se fier aux théories actuelles pour prédire le volume de mélange ainsi formé.

L'utilisation effective d'une canalisation de longue distance est améliorée par la livraison successive de deux produits ou plus. Le problème qui consiste à calculer l'ampleur de l'effet du mélange aux points de contact des médias miscibles, est alors de grande importance. Fondamentalement, il comporte deux aspects principaux : la détermination de la fonction du coefficient de dispersion axiale D et le calcul de la quantité finale du mélange V_m .

La connaissance dans ce domaine est insuffisante même pour l'évaluation. Des facteurs importants ont été fréquemment négligés et certains paramètres importants ont été classifiés différemment. Les résultats des diverses méthodes de calcul qui ont été proposées dans la littérature divergent (voir tableaux1.4 et 1.5).

1.2.4.2 Coefficient virtuel de dispersion axiale

L'intensité du mélange des liquides miscibles dans la direction longitudinale peut être exprimée par le coefficient de diffusion *D*, qui corrèle les propriétés physiques du milieu et du système

d'écoulement [15]. Ceci a été défini par Taylor comme coefficient turbulent virtuel de dispersion axiale.

Un dispositif commun des auteurs traitant ce problème théoriquement et/ou empiriquement, a été porté sur l'assimilation d'un système d'écoulement dans des longueurs droites (Sans courbures, vannes et d'autres sources de turbulence),c'est-à-dire la supposition d'un mélange homogène avec une longueur suffisante du pipe pour l'interprétation mathématique du problème comme système infiniment long. La température est considérée constante avec les propriétés physiques uniformes ou presque uniformes des liquides aussi bien à des valeurs de densités constantes.

Le coefficient de dispersion D est obtenu par d'autres auteurs (Jablonskij, Jufin, Taylor,...) par calcul à partir des modèles de dispersion. Certains auteurs (Jablonskij et Jufin) ont pris en compte la symétrie du mélange alors que d'autres (Kosenkov et Chizgilov) ont insisté sur l'asymétrie de la courbe. Un suivi des expressions particulières de D en fonction des simples paramètres, inclue dans le tableau (1.4). La valeur de D a été calculée par l'application de la relation $V_m/V_p = 4.Z.Pe^{0.5}$ aux modèles de ces auteurs puisque les relations pour V_m/V_p incluent implicitement la valeur de D [15, 20, 21].

Modèle	Relation	
Smith	$D = v_m \cdot \frac{(268,75 \cdot Re^{0.13} + 0.1375 \cdot Re)^2}{Re} \cdot \left(\frac{L}{d}\right)^{0.24}$	(1.29)
Jablonskij	$D = v_m \cdot \frac{(6,585 + 0.4925 \cdot Re)^2}{Re} \cdot \left(\frac{L}{d}\right)^{0.2} \cdot \left(\frac{\rho_1}{\rho_2}\right)^2$	(1.30)
Jufin	$D = v_m \cdot (1400 + 227 \cdot 10^{-6} \cdot Re^{1.446}) \cdot \left(\frac{L}{d}\right)^{0.2} \cdot \left(\frac{\rho_1}{\rho_2}\right)^{8.4}$	(1.31)
Taylor	$D = v_m \cdot Re^{0.875}$	(1.32)
Sjenitzer	$D = v_m \cdot 1428 \cdot Re^{0.10} \cdot \left(\frac{L}{d}\right)^{0.141}$	(1.33)
Jablonskij	$D = v_m . (3000 + 60.7 . Re^{0.545})$	(1.34)
Fowler	$D = v_m \cdot a_1^2(Re, C) \cdot Re \cdot \left(\frac{L}{d}\right)^2$	(1.35)
Chizgilov	$D = v_m . (3000 + 60.7 . Re^{0.545}) . a_2(Re, C)$	(1.36)
Tichacek	$D = v_m \cdot \frac{2 \cdot Re}{\lambda}$ [Integral function]	(1.37)
Note: $a_1(Re, C)$	r) : Constante expérimentale de Fowler-Browns	
a ₂ (Re, C) : Constante expérimentale de Chizgilov	

Tableau 1. 4 Aperçu des coefficients virtuels de dispersion axiale

1.2.4.3 Calcul du volume du mélange:

En approchant les formules de base pour le calcul du volume du mélange V_m , Taylor et Jufin utilisent différentes méthodes, mais les deux auteurs aboutissent à un résultat similaire : $V_m/V_p = 4.Z.Pe^{0.5}$. Chacune des deux méthodes est basée sur la résolution de l'équation unidimensionnelle de diffusion. La courbe de concentration est considérée symétrique et normale. Chaque hypothèse utilisée dans l'évaluation du coefficient D est transférée dans le calcul du volume du mélange.

Un aperçu sur les modèles ci-dessus est présenté dans le tableau (1.5).

Modèle	Relation	
Jablonskij	$\frac{V_m}{V_p} = 4 \cdot \left(\frac{d}{L}\right)^{0.4} \cdot \left(\frac{6585 + 0.4925 \cdot Re}{Re}\right) \left(\sqrt[8]{\frac{1}{C_1}} - \sqrt[8]{\frac{1}{C_2}}\right) \cdot \left(\frac{\gamma_1}{\gamma_2}\right)$	(1.38)
Birge	$\frac{V_m}{V_p} = 4 \cdot \left(\frac{1}{L}\right)^{0.48 - 0.52} \cdot 0,471$	(1.39)
Fowler	$\frac{V_m}{V_p} = 4 \cdot \left(\frac{d}{L}\right)^{0.4} \cdot a_1(Re, C)$	(1.40)
Smith	$\frac{V_m}{V_p} = 4 \cdot \left(\frac{1}{L}\right)^{0.38} \cdot \left(\frac{268,75 \cdot Re^{0.13} + 0.1375 \cdot Re}{Re}\right)$	(1.41)
Taylor	$\frac{V_m}{V_p} = 4 \cdot \left(\frac{d}{L}\right)^{0.3} \cdot \left(\frac{1}{Re}\right)^{0.0625} \cdot (z)$	(1.42)
Sjenitzer	$\frac{V_m}{V_p} = 4 \cdot \left(\frac{d}{L}\right)^{0.43} \cdot \frac{37.8}{Re^{0.45}} \cdot (z)$	(1.43)
Jufin	$\frac{V_m}{V_p} = 4 \cdot \left(\frac{D}{L}\right)^{0.4} \cdot \frac{1400 + 227 \cdot 10^{-6} \cdot Re^{1.445} \cdot 0.5}{Re} \cdot (z) \cdot \left(\frac{\gamma_1}{\gamma_2}\right)^{4.2}$	(1.44)
Jablonskij	$\frac{V_m}{V_p} = 4 \cdot \left(\frac{d}{L}\right)^{0.5} \cdot \frac{3000 + 60.7 \cdot Re^{0.545} \cdot 0.5}{Re} \cdot (z)$	(1.45)
Chizgilov	$\frac{V_m}{V_p} = 4 \cdot \left(\frac{d}{L}\right)^{0.5} \cdot \frac{1400 + 227 \cdot 10^{-6} \cdot Re^{1.445} \cdot 0.5}{Re}. (z) \cdot (a_2)$	(1.46)
Kosenkov	$\frac{V_m}{V_p} = 51 \cdot \left(0,011 + 0,075 \left[\sqrt[3]{\frac{1}{C_1}} - \sqrt[3]{\frac{1}{C_2}} \right] \right) \cdot \left(\frac{2300}{\text{Re}} \right)^{0.765} + \beta \left(\frac{\gamma_1}{\gamma_2} - 1 \right) \cdot \left(\frac{d}{L} \right)^{0.4}$	(1.47)
Note: $a_1 : \dots$ $a_2 : \dots$ β : \dots	Coefficient selon Fowler-Browns Coefficient selon Chizgilov Coefficient selon Kosenkov	

Tableau 1. 5 Aperçu sur les modèles de calcul du volume du mélange

1.2.4.4 Quelques théories

Le mélange généré sous des conditions d'écoulement spécifiques est caractérisé le plus souvent comme le produit sous les influences simultanées de la convection-diffusion, la variation de la

vitesse dans la section transversale du pipeline, la diffusion turbulente et moléculaire dans les directions radiale et axiale et la déformation dans la région de paroi du pipe.

Les quantités du mélange V_m , L_m sont calculées moyennant l'équation unidimensionnelle de la diffusion. Le résultat mène à la relation suivante qui ne concerne que les conduites droites :

$$\frac{V_m}{V_p} = 4.Z.Pe^{0.5}, \qquad Pe = \frac{D}{u.L}$$
 (1.48)

La forme de la courbe de concentration est caractérisée par l'argument Z.

1.2.4.5 Résumé de la partie expérimentale du travail de Z. Aunicky [15]

Dans ce travail, un pipeline de 25m de long est utilisé comme ligne de test. La dispersion axiale est mesurée en cinq localisations : 3, 6, 12, 18 et 24m à partir de l'alimentation. Pour chaque position, la mesure a été répétée vingt fois pour quatre nombres de Reynolds : 15000, 29000, 46000 et 73000. D'autres mesures ont été réalisées lors des essais effectués sur la partie droite du système :

- (a) Mesure de l'influence de la vitesse et de la longueur d'écoulement ;
- (b) Mesure directe de la quantité du mélange ;
- (c) Mesure de la courbe de concentration le long de l'axe et à la paroi du pipe.

La mesure selon(c) (Courbe de concentration) a été effectuée par le moyen d'un capteur de conductivité (méthode conductimètrique) avec une cellule de conductivité constituée de deux diamètres de 0.5mm de fils de platine. Les fils longs de 3mm étaient disposés à 1mm l'un de l'autre. Une paire d'électrodes a été placée dans l'axe du pipe, l'autre solidement fixée à la paroi de la conduite dans la même section transversale. Pour la conductimètrie, l'eau distillée a servi comme milieu continu et l'équipement d'alimentation était rempli avec une solution de *KCL*. Au total, environ 650 expériences ont été réalisées et les principaux résultats concernent :

- L'évaluation de la forme des courbes de concentration ;
- L'évaluation des variables de dispersion en fonction du nombre de Reynolds et la longueur d'écoulement ;
- Le calcul du volume du mélange

a) Evaluation de la forme des courbes de concentration

Comme résultat expérimental préliminaire, la fonction C = f(t) a été obtenue pour différentes valeurs du nombre de Reynolds et de la longueur d'écoulement.

Les résultats obtenus correspondent également à la relation établie entre la concentration maximale et la longueur de l'écoulement, c'est-à-dire $C_{max} = f(L)$, tel que:

$$\log C_{max} = \frac{0.602}{(10^{-4}Re)^{0.048}} \cdot \log L + 1.60 (10^{-4}Re)^{0.0069} + 1$$
(1.49)

En considérant une forme normale de la courbe de concentration, ($C_{max} = A.L^{-0.5}$) devrait être valable, c'est-à-dire que la valeur maximale de la concentration, à des conditions idéales, devrait être proportionnelle à la longueur de l'écoulement avec un exposant égal à (-0.5). En réalité, les valeurs de l'exposant varient continuellement de (-0.6) à (-0.5), valeur théorique pour des valeurs du nombre de Reynolds allant de 15180 à 5000000 environ.

Dans son expérience, Hull a établi à nouveau la relation : $C_{max} = A L^{-0.54}$.

b) Evaluation des variables de dispersion, $D/\nu\,$ en fonction du nombre de Reynolds et de la longueur d'écoulement

La base de l'équation théorique pour le volume du mélange est la valeur du coefficient de dispersion axial. Les données de la littérature conviennent seulement si ce coefficient est une fonction du nombre de Reynolds. Les différences remarquables constatées concerne la forme de la fonction proposée pour *D* et la nature des modèles de calcul proposés prenant en compte ou non la dépendance du coefficient *D* en fonction de la longueur de l'écoulement.

Les expériences conduites sur le banc d'essai ont permis l'établissement des corrélations suivantes :

$$\log D = \frac{1.6098788}{Re^{0.2987}} \log L + 0.8172 \log Re - 5.7811$$
(1.50)
Pour $L > l_m$, $Re > 10^4$

Le coefficient virtuel de dispersion axiale D exprime l'intensité du mélange axial.

Les expériences ont montré que sur une distance de 21m de la ligne d'essai, la valeur de D augmente de 22.6% pour R_e =15180 en comparaison avec la valeur initiale dans une distance de 3m. Pour R_e =73180, l'augmentation obtenu était de 16.5%. La fonction D=f(L) semble être basée sur le caractère approximatif du modèle de diffusion. Les essais exécutés par la sonde de conductivité ont montré, au voisinage de la paroi du pipe, que la valeur du coefficient D, pour une gamme de nombres de Reynolds utilisée excède la valeur de ce coefficient dans le centre de l'écoulement de 52 à 60%. La région de paroi qui est caractérisée par ces valeurs plus élevées couvre au moins 4% du volume total du pipe. Les différentes valeurs de D dans les zones de parois du pipe et au centre de l'écoulement sont nécessairement exprimés par un mélange axial plus intense dans la direction de la longueur croissante de l'écoulement.

Tout au long d'un écoulement long, le gradient de concentration axiale $\partial C / \partial X$ dans la zone de mélange est considérablement réduit et simultanément le gradient de concentration diminue dans la direction radiale. Le temps requis pour la fusion entre le centre de l'écoulement et les couches limites devient de plus en plus long. Il doit être supposé que l'influence des couches limites sur la vitesse de l'extension du gradient de concentration est moins intense dans un écoulement sur des longueurs importantes des pipes que dans le cas des longueurs courtes. La somme de ces effets est exprimée par l'Equation (1.50).

Les relations du coefficient de dispersion D peuvent être utilisées pour d'autres fluides que l'eau qui a servi pour l'expérience. Avec cette méthode la relation suivante a été obtenue.

$$\log \frac{D}{\nu_m} = \frac{2.0945}{Re^{0.2987}} \left[\left(0.768622 \log \frac{L}{d} \right) - 1 \right] + 0.8172 \log Re + 0.1042$$
(1.51)

L'équation (1.51) est comparée avec des relations publiées par d'autres auteurs et des données expérimentales disponibles. Ainsi, pour des distances courtes ($L \approx 10$ m) la relation (1.51) est de très près similaire à celle proposée par Taylor et pour des longueurs élevées (L ≈ 1000 km), la relation obtenue est voisine de celle proposée par Jablonskij-Asaturjan.

c) Calcul du volume du mélange

La formule de calcul de la longueur du mélange L_m et/ou volume du mélange V_m c'est à dire $(V_m/V_p = 4.Z.\sqrt{D/u.L}, L_m/L_p = 4.Z.\sqrt{D/u.L})$ assume la pleine validité du modèle de diffusion avec une distribution normale de la concentration dans lazone du mélange.

Des relations valables pour le coefficient de dispersion ont été présentées plus haut. Afin d'établir toute la validité de l'équation théorique, la longueur du mélange a été mesurée directement. Ces valeurs expérimentales pour la longueur du mélange L_m étaient comparées aux données obtenues au moyen de l'équation ci-dessus pour L_m où la valeur D était substituée par la valeur calculée au moyen de l'équation (1.29).

La comparaison des deux parties de l'équation a permis d'examiner si le modèle de diffusion habituellement appliqué est valide pour un système de transport donné.

D'un point de vue expérimentale, il a été observée très peu d'influence de l'ordre de positionnement (dessus-dessous) des deux liquides, c'est-à-dire A/B ou B/A.

De même, l'influence de la longueur de l'écoulement est également négligeable à condition que ce facteur soit inclus dans les équations (1.29) et (1.30), c'est-à-dire f(Re, L).

D'autre part, il l'a été prouvé par les expériences que la différence entre les données calculées et expérimentales est due en grande partie à la valeur du nombre de Reynolds et de la limite de la concentration.

Il en découle des résultats expérimentaux que l'équation destinée pour le calcul du volume du mélange: $V_m/V_p = 4.Z.\sqrt{D/u.L}$ devrait être étendue par l'introduction d'une fonction de correction f_1 qui dépend du nombre de Reynolds et de la limite de concentration sélectionnée $\omega(c)$.

$$f_1 = \delta(Re).\,\omega(C) \tag{1.52}$$

C représente la concentration dans son domaine de variation.

La forme résultante du volume de mélange est donc :

$$\frac{V_m}{V_p} = 4.Z. \frac{1.246}{Re^{0.0166}} \cdot \left(1 - 0.0234 \log \frac{C_{min}}{C_{max}} \cdot 100\right) \cdot \sqrt{D/u.L}$$
(1.53)

Où, D est déterminé à partir de l'Equation (1.38).

L'équation (1.53) est valide pour une plage de concentration de 1 à 10% (C_{max}=100%).

Afin de comparer les résultats obtenus avec les méthodes de calcul précédemment publiées, les équations des différents auteurs étaient appliquées aux paramètres de l'écoulement suivant :

L=24.21m, $R_e=46470$, d=50.0mm, Gamme de concentration : 1–99%.

Les résultats sont illustrés dans le Tableau (1.6) :

Modèle	Interface (<i>m</i>)	<i>Er</i> (%)
Birge	10.120	172,41%
Chizgilov	4.989	34,29%
Jablonskij	4.061	9,31%
Jablonskij – Asaturjan	3.838	3,31%
Jufin	3.834	3,20%
Kosenkov	4.093	10,17%
Smith	4.637	24,82%
Sjenitzer	3.347	-9,91%
Taylor	3.737	0,59%
Tichacek	3.382	-8,96%
Equations (1.49) et (1.52)	3.711	-0,11%
Equations (1.49) et (1.47)	3.523	-5,17%
Résultat expérimental	3.715	0,00%

Tableau 1. 6 Comparaison des prédictions des diverses équations avec les expériences

1.2.5 Autres corrélations empiriques du coefficient de diffusion effectif pour le calcul du volume du mélange

(Alexander, 2007) a appliqué des corrélations empiriques relatives aux produits pétroliers, dans le but de comparer ses résultats portés toujours sur le calcul du volume de mélange généré lors d'une séquence type de transport de carburants par le pipeline Sébastopol – Medellín, dont les résultats du terrain ont été fourni par ECOPETROL qui a enregistré un volume de 65 barils [22].

Le tableau (1.7) montre les résultats prédits en utilisant quelques corrélations du coefficient effectif de diffusion.

Corrélation		Volum	Er (%)	
		Expérimental	Prédit	
$D = v_m \cdot R_e^{0.875}$	(1.32)		63.711	-1.98%
$D = 18,7. v_m . R_e$	(1.54)		70.660	8.71%
$D = 17, 4 \cdot v_m \cdot R_e^{(2/3)}$	(1.55)	65 barils	81.483	25.36%
$D = 9. v_m \cdot d / R_e^{0.16}$	(1.56)		152.701	134.92%
$D = 2,157.10^{-4} \cdot Re^{0.764}$	(1.57)		62.636	-3.64%

Tableau 1.7 Comparaison des volumes de mélange prédits en fonction
de différentes corrélations au résultat de terrain

1.2.6 Autres modèles et techniques pour la prédiction de la longueur de l'interface

1.2.6.1 Modèle d'Austin-Palefray

(Austin, 1963) a développé de nouvelles formules pour prédire la longueur d'une interface qui se produit lors de l'écoulement consécutif des fluides à travers un seul pipeline. Ces dernières formules résultent d'une analyse effectuée de données obtenues à partir de tuyaux de diamètre variant de 1/8" à 40" et de longueur variant de quelques pieds à des centaines de kilomètres [1]. Il a considéré plusieurs facteurs concernant leur effet possible sur la longueur de l'interface formée par deux produits circulant successivement dans un pipeline, à savoir :

- La distance parcourue par l'interface.
- La vitesse moyenne de l'écoulement dans le pipeline.
- Le diamètre intérieur du tuyau.
- Le nombre de Reynolds.
- La viscosité cinématique du mélange (composition 50 50%).
- La différence de densité des produits en contact.
- Le coefficient de frottement du tuyau.
- La rugosité relative dans le tuyau.
- La courbure du tuyau.
- L'intensité de la turbulence dans l'écoulement.
- Le coefficient de diffusion moléculaire.

Austin-Palfrey ont recueilli et analysé un grand nombre d'expériences et de données du terrain à partir des pipelines mutiproduit [23, 24], ils ont abouti aux formules suivantes :

Pour
$$R_e > 10000 \ e^{2.72 d^{0.5}}, \ C = 11.75 \ d^{0.5} L^{0.5} R_e^{-0.1}$$
 (1.58)

Pour
$$R_e < 10000 \ e^{2.72 d^{0.5}}, \ C = 18384 \ d^{0.5} L^{0.5} R_e^{-0.9} e^{2.18 d^{0.5}}$$
 (1.59)
dont les conditions d'application sont :

(1) La viscosité du mélange est calculée par l'équation empirique (1.60) [23-25] et elle est utilisée dans le calcul du nombre de Reynolds.

$$log log(v_m x 10^6 + 0.89) = \frac{1}{2} log log(v_A x 10^6 + 0.89) + \frac{1}{2} log log(v_B x 10^6 + 0.89)$$
(1.60)

- (2) L'impact de la séquence de batchs ou de lots n'est pas considéré.
- (3) L'interface de mélange est située dans la zone comprise dans la plage de concentration de $99\% \sim 1\%$.

Austin-Palfrey ont résumé les modèles de calcul de la longueur d'interface, établis par quelques investigateurs d'avant, qui sont récapitulées dans l'Annexe I [1].

1.2.6.2 Technique du disque virtuel pour la prédiction du volume du mélange

(Udoetok, 2009) propose un nouveau modèle pour prédire le volume de mélange entre les lots de produits. Le modèle fût développé en supposant l'interface comme un disque concentrique, semblable à l'action d'un piston de séparation (Fig.1.5). Le modèle utilise le nombre de Reynolds, la rugosité et la longueur du tuyau pour prédire avec précision le volume mélangé sur une gamme plus large que celle couvrant les modèles existants.

Fig. 1. 4 Profile de la vitesse dans le régime turbulent

Fig. 1. 5 Disque de séparation générée par la turbulence

Le modèle prédit est exprimé comme suit :

$$V_m = \left(1 - \left(1 - \left(\frac{2n^2}{(n+1)(2n+1)}\right)^n e^n\right)^2\right) V_p$$
(1.61)

Où, *e* est une constante, la seule inconnue à définir par l'expérience. Dans ce modèle, le volume mélange est fonction du nombre de Reynolds, de la rugosité et de la longueur du tuyau. Le nombre de Reynolds est évalué en utilisant les propriétés du mélange à une composition de $50 \sim 50\%$.

Les modèles utilisés dans la comparaison ont inclus les travaux de Smith et Schulze, Birge, Taylor, Sjenitzer, Hull &Kent, Jablonski, Austin & Palfrey et Levenspiel (Annexe II).

Fig. 1. 6 Volume du mélange (kérosène + Essence) pour un pipeline de 100-miles de long et 30"de diamètre

Géo du	métrie pipe	Volume du mélange (m ³)										
L (Mile)	d (Pouce)	Smith & Schulze	Barge	Taylor	Sjenitzer	Hull & Kent	Jablonski	Austin &Palfrey	Udoetok			
Re = 2691025												
50	24	177.49	126.70	169.12	46.39	149.10	320.39	172.81	72.02			
100	24	272.79	182.82	239.17	68.87	210.86	485.62	244.38	144.05			
200	24	419.24	263.80	338.23	102.23	298.20	736.06	345.61	288.10			
400	24	644.32	380.64	478.33	151.77	421.72	1115.66	488.77	576.20			
				Re =	4036538							
500	16	328.37	190.37	189.21	53.61	155.79	481.22	190.42	338.87			
500	20	513.46	297.45	335.18	101.95	286.55	822.78	340.16	508.75			
				Re =	= 1614615							
500	40	2061.02	1189.81	1980.03	750.49	1903.85	4360.58	2062.35	2062.53			

Tableau 1.8 Comparaison des volumes des mélanges pour différents modèles

1.2.6.3 Longueur équivalente de tube pour le calcul du volume du mélange dans un pipeline de diamètre variable

Il existe plusieurs cas où un pipeline peut être divisé en tronçons ou segments de différentes longueurs où le diamètre et le débit sont constants. La méthode de la longueur équivalente du tube est utilisée dans ce type de configuration [23]. Cette technique consiste tout d'abord, à transformer la longueur de l'interface du mélange de l'ancien pipeline divisé en segments dont la longueur de tube est équivalente.

(Jing Gong, 2010) et (Liang Yungtu, 2011) ont mené leurs études sur un pipeline de longueur de 1691km constitué de 15 stations de pompage où le diamètre du pipeline varie le long de la ligne pour maintenir le débit de fonctionnement [23, 26]. Chacun des auteurs a combiné le modèle classique d'Austin-Palfrey avec les données du terrain en développant des formules capables de prédire la longueur de l'interface dans chaque terminal.

La formule d'Austin-Palfrey ne peut être appliquée que sur une conduite horizontale ayant un diamètre constant sur toute la longueur. Il est donc nécessaire de réduire la géométrie variable à une conduite de diamètre constant avec une longueur équivalente comme l'illustre la Fig. (1.7).

Fig. 1. 7 Longueur équivalente pour un tube à deux segments

1.3 Conclusion

Les études menées ont montré l'importance cruciale du coefficient de diffusion dans le mécanisme des mélanges, dont la majorité des résultats précédents ont été présentés en fonction de ce dernier pour explorer le mécanisme de la convection diffusion, ainsi que l'estimation de la longueur de l'interface (mélange) des écoulements des fluides dans les pipelines et les tubes capillaires.

Ce dernier coefficient a été déterminé et retouché par plusieurs auteurs précédemment cités, se basant sur des expériences et des solutions analytiques, voir même numériques.

Contrairement aux résultats expérimentaux de (Bailey et Gogarty, 1962) montrant que, pour une vitesse constante, le coefficient de dispersion augmente avec le temps, les solutions de Taylor et Aris révèlent que ce dernier coefficient reste constant et indépendant du temps à une vitesse fixe.

Plusieurs corrélations empiriques sont proposées pour servir au calcul des volumes du mélange. Le modèle de convection-diffusion avec le paramètre fictif, connu sous le nom de coefficient de dispersion axiale, est la méthode couramment utilisée par plusieurs investigateurs pour évaluer le mélange longitudinal.

Différents auteurs ont comparé la prédiction faite par les diverses corrélations avec les résultats expérimentaux. La synthèse des résultats obtenus (voir tableau (1.7)) a montré différents degrés d'approximation quantifiés par des erreurs relatives, variant de -1.98 à 134.92%. En outre, (Udoetok, 2009) a comparé son modèle basé sur la technique du disque virtuel avec les modèles de Smith et Schulze, Birge, Taylor, Sjenitzer, Hull & Kent, Jablonski, Austin & Palfrey et Levenspiel (Tableau 1.8), où l'ensemble des modèles commencent à se rapprocher pour des nombres de Reynolds supérieurs à 10^5 .

L'approche de la longueur équivalente de tube a été optée par (Jing Gong, 2010) et (Liang Yungtu, 2011) qui l'ont combinée avec le modèle classique d'Austin-Palfrey pour le calcul du volume du mélange, puisque la formule d'Austin demeure restreinte et ne peut être appliquée que sur des conduites horizontales ayant un diamètre constant sur toute la longueur.

Chapitre 02

Dispositif expérimental, relevés des données et des résultats du terrain

2.1 Introduction

En raison de l'importance des pipelines dans l'industrie pétrolière, il est nécessaire de mieux comprendre la relation entre la théorie et les résultats du terrain afin de mieux maitriser le phénomène du mélange. Le problème de l'estimation de l'interface du mélange est courant dans les canalisations multiproduit (MP), où le batching implique l'expédition en continu de différents produits par un seul pipeline sans aucune séparation physique entre ces produits [1, 27].

2.2 Notion sur le batching

Le batching désigne le processus du transport successif des lots de produits pétroliers à travers un seul pipeline. De grandes quantités de différents types et catégories de produits pétroliers raffinés sont transportées de la raffinerie vers les centres de stockage. Ces pipelines sont communément appelés «pipelines multiproduit». La rapidité des transports et l'économie d'exploitation font que le batching et les pipelines multiproduit sont extrêmement populaires dans l'industrie du transport pétrolier, et presque tous les pipelines actuels opèrent aujourd'hui de cette manière [28].

2.3 Présentation d'une séquence type d'un écoulement multiproduit:

Considérons l'exemple de la Fig. (2.1) de deux produits A et B pompés séquentiellement à travers une conduite. Au début le produit A occupe tout le volume de la canalisation, et une interface se forme entre les deux produits dès que le deuxième produit B entre dans la ligne. Initialement, l'interface croît à un rythme régulier car les deux produits purs sont en contact direct l'un avec l'autre. Cependant, une fois que l'interface croît significativement, les produits purs ne sont plus en contact les uns avec les autres mais sont plutôt en contact par l'intermédiaire d'un bouchon constitué de mélange de A et de B.

Fig. 2. 1 Séquence type du transport Multiproduit

2.4 Descriptif du procédé de transfert des carburants par le pipeline multiproduit : dispositif d'étude

Le pipeline multiproduit servant comme dispositif expérimental est l'un de ceux utilisés en Algérie. Il compte plus de 168km de long, et il est composé de trois tronçons de différent longueurs : 27, 56 et 85km et diamètres : 12", 10" et 8" (voir Fig. 2.2). Ce dernier transporte les carburants, majoritairement le gasoil et les essences (Super et Sans Plomb) et desserve la région Ouest et Sudouest de l'Algérie. Les débits le long du pipeline sont supposés constants pendant le fonctionnement du pipeline et sont commandés automatiquement par les vannes de régulation (Fig. 2.3) [29].

Fig. 2. 2 Profil en altitude le long du pipeline multiproduit étudié

Les caractéristiques géométriques du pipeline sont récapitulées dans le tableau (2.1).

0.2603

0.2032

Tronçon II

Tronçon III

Tronçon	Ø (m)	S (m²)	<i>L</i> (m)	V (m ³)	
Tronçon I	0.3048	0.073	84880	6190.20	

0.053

0.033

56353

26902

2997.33

898.78

Tableau 2.1 Caractéristiques géométriques du pipeline multiproduit

2.4.1 Enregistrement des données et des résultats expérimentaux

Les carburants étudiés sont caractérisés par leurs densités, qui sont comprises dans les gammes définies par le standard algérien, comme le montre le tableau (2.2).

Produit	Masse volun	nique (Kg/m³)
	Min	Max
Gasoil « GO »	810	860
Essence Super « SCA »	730	760
Essence Normale « CA »	710	765
Essence sans plomb « SP »	725	775
Mélange : GO - SCA	770	810
Mélange : GO - CA	765	810
Mélange : GO - SP	775	810

Tableau 2. 2 Plage des densités des carburants et des mélanges

Le dispositif expérimental, présenté sur la Fig. (2.3), constitue un procédé réel qui comprend une chaîne industrielle composée de [29]:

- Un parc de stockage des produits pétroliers raffinés (carburants) au niveau de la raffinerie.
- Deux stations de pompage; une intermédiaire pour la reprise de pompage et un «Terminal Arrivée» au bout final de la canalisation reliant les différentes installations.
- Un centre de stockage conçu pour la réception des produits en provenance de la raffinerie à travers le pipeline multiproduit.

Les produits sont pulsés en lots (batchs), l'un après l'autre de la raffinerie et sont introduits dans le pipeline et pompés successivement à travers la station de pompage SP1.

Lors de l'introduction d'un produit, on établit un contact vertical entre le produit et celui qui le précède. Avec l'évolution de l'écoulement dans le temps, la zone de mélange se développe et progresse jusqu'à l'extrémité finale du pipeline multiproduit (Terminal Arrivée).

Fig. 2. 3 Dispositif Expérimental : Procédé du pipeline multiproduit

Le nombre d'interfaces dépend essentiellement du nombre de produits purs introduits dans le pipeline. Chaque contact carburant-carburant est la zone de formation du mélange.

Au niveau du Terminal, est installée la chaine de comptage constituée d'un système de comptage (Compteurs à turbines) avec un densimètre électronique en ligne, permettant le basculement automatique « Switch over » (système asservi) du produit en fonction de sa nature, par mesure directe de sa densité et son envoi au réservoir de stockage approprié.

Les plages de densités susmentionnées dans le tableau (2.4), caractérisant chaque carburant, sont préalablement introduites dans le DCS (Distributed Control System) installé dans la salle de contrôle.

Les produits purs sont déroutés vers les réservoirs de stockage du centre de réception et les mélanges sont envoyés vers d'autres réservoirs conçues spécialement pour le contaminât.

Une fois le mélange réceptionné dans le réservoir approprié, le volume est obtenu par la lecture des niveaux (hauteur initiale et finale du réservoir) sur un indicateur de mesure certifié (Réglette), et/ ou affiché et enregistré par le système de supervision (Fig. 2.4).

Les plages de densités : $70 \div 810 \text{kg/m}^3$, $765 \div 810 \text{kg/m}^3$ et $775 \div 810 \text{kg/m}^3$ constituent la zone du mélange.

Fig. 2. 4 Relevé et lecture des volumes de mélange à l'arrivée (Salle de contrôle)

2.4.2 Relevé de données

2.4.2.1 Les paramètres physicochimiques et d'écoulement

Le relevé des paramètres de l'écoulement est effectué depuis la salle de contrôle sur des séquences le long du pipeline MP à partir d'un calculateur électronique (Fig. (2.5)), lié à une chaine de mesure (Fig. (2.6)) dotée de densimètre électronique (Fig. (2.7)), débitmètre à turbine et des transmetteurs de pression et de température.

Les paramètres concernés :

- Les masses volumiques et les températures des fluides *A*, *B* et celles du mélange généré (Interface)
- Les débits volumiques d'écoulement.

Fig. 2. 5 Calculateur Electronique (Lecture directe des paramètres d'écoulement P, T, Qv, ρ...)

Fig. 2. 6 Chaine de Comptage constituée de :

- Calculateur Electronique FH6200
- Densimètre électronique (Masse volumique)
- Mesureurs 1 & 2 (Débitmètres à turbines)
- Capteur de pression « P »
- Capteur de Température « T »

Fig. 2. 7 Densimètre Electronique

Dispositif expérimental, relevés des données et résultats du terrain

Fig. 2. 8 Système de comptage

2.4.2.2 Prise d'échantillons

Les échantillons sont prélevés en ligne (Fig. 2.9). Chaque prise comprend trois échantillons, dont deux concernent les produits purs (*A* et *B*) et un échantillon du mélange.

Fig. 2. 9 Prise en ligne d'échantillon du mélange (Interface)

2.4.2.3 Les essais au Laboratoire

Les essais au laboratoire comportent essentiellement :

 A l'aide d'un aréomètre (Fig. 2.10), la prise de température des échantillons prélevés et la mesure des masses volumiques pour les produits purs et du mélange qui devront être comparées avec les données du calculateur électronique remontés du densimètre en ligne.

Dispositif expérimental, relevés des données et résultats du terrain

Fig. 2. 10 Prise de Masse volumique et de température d'un échantillon du mélange par l'aréomètre

- La distillation atmosphérique de l'échantillon du mélange (Fig. 2.11) pour déterminer la composition (fractions).

Fig. 2. 11 Distillateur atmosphérique du laboratoire

- La viscosité des produits purs et celle du mélange sont mesurées à l'aide d'un viscosimètre à capillaire.

a) Mesure de la viscosité :

La viscosité des fluides est déterminée, selon la norme Internationale ASTM D445/ISO 3104, à l'aide d'un viscosimètre en mesurant le temps d'écoulement d'un volume du fluide sous l'action de son propre poids à travers un viscosimètre capillaire en verre calibré. La viscosité cinématique est le produit du temps d'écoulement mesuré par la constante d'étalonnage du viscosimètre.

L'appareillage est constitué de :

- Viscosimètre à capillaire,
- Support de viscosimètre,
- Bain thermostaté,
- Dispositif de mesure de la température,
- Chronomètre de précision.

b) Détermination des fractions du mélange par distillation atmosphérique

Le dispositif utilisé est un distillateur Fig. (2.12) qui sert à déterminer les caractéristiques de la distillation à la pression atmosphérique selon la norme ASTM D86.

L'échantillon est classé dans un groupe bien défini, sur la base de son origine et de ses caractéristiques de volatilité présumées. Pour chaque groupe de produits, les conditions d'essai sont différentes pour ce qui concerne la disposition de l'appareillage, la température du condenseur et les variables opératoires. Une prise d'essai de 100ml est distillée dans les conditions prescrites pour le groupe de produits auquel appartient l'échantillon. Des observations systématiques des indications thermométriques et des volumes de condensat récupérés sont ensuite effectuées.

Fig. 2. 12 Ensemble de l'appareil de distillation (a) avec chauffage à gaz (b) avec chauffage électrique

2.4.3 Enregistrement des résultats du terrain

Dans les expériences menées sur les séquences de transport du multiproduit pétrolier dans la canalisation MP, deux configurations du mélange sont considérées ;

- 1. Contact GO SCA ou SCA GO
- 2. Contact GO SP

Chaque batch est codifié comme suit :

Fig. 2. 13 Codification d'un batch

2.4.3.1 Quelques définitions

a) Définition des carburants

Les carburants liquides sont des coupes issues de la distillation atmosphérique du pétrole. Ils contiennent des hydrocarbures et des alcanes (C_nH_{2n+2}).

b) Concentration admissible

La concentration admissible se traduit par la quantité d'un carburant A qui peut être ajouté dans un autre carburant B, sans putréfier sa qualité et ses propriétés physicochimiques. Cette dernière est déterminée à l'aide des essais de laboratoire en stipulant comme condition de base la concentration des qualités des deux produits.

c) Concentration de coupure

Les concentrations de coupure subdivisent le volume de mélange en trois parties (Fig. (2.14)), dont deux fractions (Tête et queue du mélange) caractérisées par les concentrations C_{B1} et C_{B2} (C_{A1} et C_{A2}), telles que les quantités appropriées peuvent être rajoutées respectivement aux carburants A et B. Le volume intermédiaire (Interface ou mélange) appelé contaminât est classé à part, car son injection avec des petites quantités dans l'un des deux carburants peut affecter aussitôt sa qualité. Ces dernières serviront à la détermination des arguments des concentrations de coupure (Z_1, Z_2).

Fig. 2. 14 Concentrations admissibles et de coupure

Les concentrations de coupure pour chaque configuration du mélange sont déterminées à partir des masses volumiques limites de chaque carburant (tableau 2.2). Cette définition nous mènera à déterminer les concentrations de chaque constituant du mélange dans les points limites qui présentent les concentrations de coupure.

A partir de la formule $\sum m_i = m$ (i = A, B)[30], on aboutit aux équations (2.1) et (2.2) des concentrations de coupure suivantes [31]:

$$C_{B1} = \frac{\rho_{m1} - \rho_A}{\rho_B - \rho_A} \quad et \quad C_{A1} = 1 - C_{B1}$$
(2.1)

$$C_{B2} = \frac{\rho_{m2} - \rho_A}{\rho_B - \rho_A} \quad et \quad C_{A2} = 1 - C_{B2} \tag{2.2}$$

Puisque $C_A+C_B=1$, alors C_{A1} et C_{A2} seront exprimées comme suit :

$$C_{A1} = 1 - C_{B1} = \frac{\rho_B - \rho_{m1}}{\rho_B - \rho_A}$$
(2.3)

$$C_{A2} = 1 - C_{B2} = \frac{\rho_B - \rho_{m2}}{\rho_B - \rho_A}$$
(2.4)

Les limites des densités : $70 \div 810 \text{kg/m}^3$, $765 \div 810 \text{kg/m}^3$ et $775 \div 810 \text{kg/m}^3$ constituent les masses volumiques de coupure.

2.4.3.2 Viscosité cinématique des carburants et des mélanges

La viscosité cinématique d'un carburant, qui est égale au rapport de sa viscosité dynamique par sa masse volumique, peut être mesurée soit expérimentalement au niveau du laboratoire à l'aide d'un viscosimètre à une température d'essai, mais toutefois, sa conversion à la température de transport (Ecoulement) nécessite des corrélations empiriques (Table ASTMD34-D93) [30]; ou bien calculées à partir des viscosités dynamiques tirées de l'abaque de Crane [32].

$$v = \frac{\mu}{\rho} \tag{2.5}$$

Avec,

v : Viscosité cinématique, (m².s⁻¹)

 μ : Viscosité dynamique, (Pa.s)

ho : Masse volumique, (Kg/m³)

La viscosité du mélange binaire des carburants A et B est exprimée par la formule (2.6) présentée par Gambill [33-39].

$$v_m^{1/3} = C_A v_A^{1/3} + C_B v_B^{1/3}$$
(2.6)

Par hypothèse au niveau du mélange, $C_A = C_B = 0.5$, alors l'équation (2.6) devient,

$$v_m^{1/3} = 0.5 \left(v_A^{1/3} + v_B^{1/3} \right) \tag{2.7}$$

2.4.3.3 Résultats expérimentaux :

Le tableau (2.3) récapitule les résultats des mélanges obtenus à partir des profils de masses volumiques en fonction du temps qui sont présentés sur les figures (2.15-22).

Chaque figure comporte trois courbes en fonction du temps :

- 1^{ère} courbe : On relève le temps relatif à la première masse volumique de coupure qui correspond au début de passage de l'interface de la zone étudiée (voir figure 2.14)
- 2^{ème} courbe : On relève le temps relatif à la deuxième masse volumique de coupure qui correspond à la fin de passage de l'interface.
- 3^{ème} courbe : Courbe de débit, pour laquelle on relève un débit moyen dans l'intervalle des concentrations de coupure (temps de réception du mélange).

L'intervalle de temps compris entre la première et la deuxième coupure représente le temps de passage du mélange. La multiplication par le débit donne la quantité du mélange réellement réceptionnée.

NB/ Pour la Fig. (2.15), la courbe du débit n'est pas présentée et on s'est contentée par une valeur instantanée relevée directement du DCS.

Rappelons que le volume de mélange est donné par l'équation :

$$V_{mExp} = (t_2 - t_1) . Q_v$$
(2.8)

Avec,

t₁, t₂ : Temps relatifs aux masses volumiques de coupure

 Q_v : Débit volumique, (m³/h)

Les tableaux (2.4) et (2.5) regroupent les données et les résultats pour étudier respectivement les effets de la composition du mélange et l'arrêt de pompage. Le tableau (2.6) récapitule les données et les résultats pour établir la relation fonctionnelle entre les résultats expérimentaux et analytiques prédits à partir des différentes corrélations de la littérature.

Fig. 2. 15 Profils de la masse volumique ($Qv=220 \text{ m}^3/h$) - Batch 03D19-16

h

	1:1 💮					
832 0 1 823 0 4 825 0 4 825 0 4 827 0 4 813 0 4 809 0 4 805 0 4 805 0 4 805 0 4 777 0 4 779 0 4 770	000 01200.000	0.18:00.000 0.24:00.000	0.30.00.000	0.36.00.000	0.42.00.000 0.48.00.000	0.54:00.000 1:00:00.00
Courbe au premier plan TA_PRINC_D8_17	1_MASSE_VOL_RéF					
Courbe DT(REF)	Archiv	Liaison de variable ve_de_Valeurs_de_Process\TA_PRINC_DI	B_171_MASSE_VOL_RéF		Valeur 769.598999	Date/Heure 13.07.16 0:23:15.204
822 0 4 823 0 4 825 0 4 825 0 4 825 0 4 805 0 4 805 0 4 805 0 4 805 0 4 805 0 4 805 0 4 777 0 4 773 0 4 778						
Courbe au premier plan TA_PRINC_DB_17	000 0:12:00.000 11_MASSE_VOL_RéF	0:18:00.000 0:24:00.000	0:30:00.000	0:36:00.000	0.42.00.000 0.48.00.000	0.54:00.000 1:00:00.00
Courbe	000 0.12.00.000	0.18.00.000 0.24.00.000 Liaiton de variable	0.30.000	0:36:00.000	0.42.00.000 0.48.00.000 Valeur	0.54.00.000 1:00.00.00 Date/Heure
Courbe au premier plan r A_manc_bo_in	000 0.12.00.000 *1_MASSE_VOL_RéF Archin	018:00.000 0.24:00.000 Liation de variable ve_de_Valeurs_de_Process\TA_PRINC_DI	0.30:00.000	0.36.00.000	0.42.00.000 0.48.00.000 Valeur 805.899109	0.54.00.000 1.00.00.00 Date/Heure 13.07.16 0.28.10.204
Coube Coube DT(REF) 0 199.0 199.0 199.0 199.0 199.0 199.0 199.0 199.0 199.0 199.0 199.0 199.0 190.0 180.0 180.0 150.0 180.0 120.0 110.0 100.0 90.0 60.0 50.0 40.0 30.0 20.0 10.0 100.0 10.0 0.0	000 0.12:00.000 1:JASSE_VOL_R&F D 11	018:00.000 0.24:00.000	0.30.00.000	0.36 00.000	0.42:00:000 0.48:00:000	0.54.00.000 1.00.00.00
Coube Coube DT(REF) 139.0 139.0 130.0 180.0 180.0 170.0 160.0 180.0 130.0 180.0 130.0 180.0 100.0 180.0 130.0 180.0 100.0 180.0 100.0 180.0 130.0 110.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	000 0.1200.000 1 JASSE VOL R&F 2 14 •	018:00:000 0.24:00:000	0.30.00.000	0.36.00.000	0.42.00.000 0.48.00.000	0.54.00.000 1.00.00.00 Dete/Heure 13.07.16 0.2810.204
Coube DT(REF) 2 199.0 199.0 199.0 199.0 190.0 180.0 180.0 150.0 140.0 180.0 150.0 180.0 120.0 100.0 30.0 20.0 30.0 20.0 0.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	000 0.12:00.000 1:JASSE_VOL_R&F D 11	018:00.000 0.24:00.000	0.30.00.000	0.36.00.000	0.42.00.000 0.48.00.000	0.54.00.000 1.00.00.00 Date/Heure 13.07.16.0.28.10.204 0.54.00.000 1.00.00.000 0.54.00.000 1.00.00.000

Fig. 2. 16 Profils de la masse volumique et du débit - Batch 07D19-16

	4 44 NN NI 1950 O	4 A	
8 🖭 I 836.0 9			
833.0 -			
829.0 - 825.0 -			
821.0 -			
817.0 - 813.0 -		λ	
809.0			
805.0 · 801.0 ·			
797.0 -			
793.0 -			
785.0 -			
781.0			
773.0			
769.0 -			
765.0 -			
757.0 -			
753.0			
14.07.16 10:3	80:00.000 10:36:00	.000 10.42.00.000 10.46.00.000 10.54.00.000 11:00.000 11:06.00.000 11:12.00.000	11:18:00.000 11:24:00.000 11:30:00.0
Courbe au pre	mier plan TA_PRINC_DB_17	L_MASSE_VOL_RéF	
	Courbe DT(REF)	Liaison de variable V. Archive_de_Valeurs_de_Process\TA_PRINC_DB_171_MASSE_VDL_RéF 809	aleur Date/Heure 999146 14.07.16.11:08:52.704
P			
? 🖬 H	4 44 }>) [종 ₽	11 (B)	
836.0 1			
833.0 - 829.0 -			
825.0			
821.0 -			
813.0			
809.0 · 805.0 ·			
801.0			
797.0			
789.0			
785.0			
781.0		λ	
773.0		N	
765.0		Λ	
761.0 -			
753.0			
749.0 ³ 14.07 16:10:3	0.00.000 10.36.00	000 10:42:00:000 10:48:00:000 10:54:00:000 11:00:00:000 11:06:00:000 11:12:00:000	11:18:00.000 11:24:00.000 11:30:00 (
Courbe au prei	mier plan TA_PRINC_DB_17:	MASSE_VOL_RéF	
	Courbe	Liaison de variable Va	aleur Date/Heure
	DT(REF)	Archive_de_Valeurs_de_Process\TA_PRINC_DB_171_MASSE_VOL_RéF 769.	398999 14.07.16 11:13:08.704
? 🗐	H + H H 🎘 F	- 11 @	
226.0 *	1		
209.0 -		V	
198.0 -			
187.0 - 176 0 -			
165.0			
154.0 -			
143.0 · 132.0 ·			
121.0			
110.0 -			
99.0 - 88.0 -			
77.0			
66.0			
55.0 - 44.0 -			
33.0 -			
22.0			
0.0+			
14.07.16 10:3	30:00.000 10:36:00	.000 10.42:00.000 10.48:00.000 10.54:00.000 11:00:00.000 11:06:00.000 11:12:00.000	11:18:00.000 11:24:00.000 11:30:00.000
Courbe au pre	mier plan FT4003		
	Courbe ET4003	Liaison de variable Val	eur Date/Heure
	FIC4005	Archive_de_Valeus_de_Process\FIC_4005_0UT 0.000	14.07.16 10:55:50.704
	F1U4000	Archive_de_valeurs_de_Process\r16_4005_001 U.U.U. Archive_de_Valeurs_de_Process\r16_PBINC_DB_170_Débit_instantané 221.56	14.07.16 10:55:50.704

Fig. 2. 17 Profils de la masse volumique et du débit - Batch 08D19-16

Fig. 2. 18 Profils de la masse volumique et du débit - Batch 01D20-16

Fig. 2. 19 Profils de la masse volumique et du débit - Batch 03D20-16

Fig. 2. 20 Profils de la masse volumique et du débit - Batch 08D20-16

Dispositif expérimental, relevés des données et résultats du terrain

8	⊃ 1:1 @		
835.0 1			
829.0			
819.0 -			
814.0 -			
809.0 -			
799.0 -			
794.0 -			
784.0 -			
779.0 -			
774.0	l l l l l l l l l l l l l l l l l l l		
764.0 -	/		
759.0 -	/		
754.0 1			
744.0			
22.07.16 6:30:00.000 6:39:00	1000 6:48:00.000 6:57:00.000 7:06:00.000 7:15:00.000 7:24:0	JULUUU 7:33:UULUUU 7:42:UULUUU	7:51:00.000 8:00:00.000
Courbe au preinier plan TA_PRINC_06_1	11_HM29E_A0F_K6L		
Courbe	Liaison de variable	Valeur	Date/Heure
DT(REF)	Archive_de_Valeurs_de_Process\TA_PRINC_DB_171_MASSE_VOL_RéF	769.499023	22.07.16 7:08:16.204
2 E 4 4 M M ME.			
835.0 Ĵ			
829.0			
824.0 -			
819.0 -			
809.0 -			
804.0 -	/		
794.0			
789.0 -			
784.0			
774.0 -			
769.0 -			
764.0 - 759.0 -			
754.0	/		
749.0			
22.07.16 6:30:00.000 6:39:00	.000 6:48:00.000 6:57:00.000 7:06:00.000 7:15:00.000 7:24:0	0.000 7:33:00.000 7:42:00.000	7:51:00.000 8:00:00.000
Courbe au premier plan TA_PRINC_DB_1	71_MASSE_VOL_RéF		.::
Courbe	Liaison de variable	Valeur	Date/Heure
DT(REF)	Archive_de_Valeurs_de_Process\TA_PRINC_DB_171_MASSE_VOL_RéF	810.199097	22.07.16 7:12:51.704
<u>? ■ H 41 P N ≫</u> .	0.111 (00)		
203.0	Α.		
190.0			
170.0			
160.0 - 150.0 -			
140.0			
120.0			
110.0 100.0			
90.0			
70.0			
60.0 50.0			
40.0			
20.0			
10.0			
22.07.16 6:30:00.000 6:39:00	000 6:48:00.000 6:57:00.000 7:06:00.000 7:15:00.000 7:24:0	0.000 7:33:00.000 7:42:00.000	7:51:00.000 8:00:00.000
Courbe au premier plan FT4003			
Courbe au premier plan FT4003	Liaison de variable	Valeur	Date/Heure
Courbe au premier plan FT4003 Courbe FT4003 FT64005 FT64005 FT64005	Liaison de variable Archive, de, Valeura, de, Procens/FT4003 Archive, de, Valeura, de, Procens/FC4005,001 Archive, de Valeura, de, Procens/FC4005,001	Valeur 197,399620 0.000000 0.000000	Date/Heure 22.07.16.7.09.17.704 22.07.16.7.09.17.704 22.07.16.7.09.17.704

Fig. 2. 21 Profils de lamasse volumique et du débit - Batch 09D20-16

-

826.0 1	• m •			
820.0 -		\sim		
816.0 -				
812.0 -		N		
808.0 1		Ν		
800.0 -				
796.0 -				
792.0 - 788.0 -				
784.0 -				
780.0 -				
772.0				
768.0 -				
764.0 -				
756.0				
752.0 -			<u> </u>	
740.0				
01.08.16 4:15:00.000 4:24:00	1.000 4:33:00.000 4:42:00.000	4:51:00.000 5:00:00.000 5:09:00.000	5:18:00.000 5:27:00.000	5:36:00.000 5:45:00.000
Courbe au premier plan TA_PRINC_DB_1	71_MASSE_VOL_RéF			.:
DT(REF)	Archive_de_Valeurs_de_Pro	Liaison de variable ocess\TA_PRINC_DB_171_MASSE_V0L_RéF	Valeur 809.799133	Date/Heure 01.08.16 4:53:42.204
	0.44			
8 🖾 T 🕈 PP PI 🖉 /	M 101 (192			
020.0		~		
820.0 -		\sim		
812.0		λ		
808.0 1				
800.0				
796.0				
792.0 1 788.0 1				
784.0 -				
780.0		λ		
772.0				
768.0		χ		
768.0 - 764.0 - 760.0 -				
768.0 - 764.0 - 760.0 - 756.0 -				
768.0 - 764.0 - 766.0 - 756.0 - 752.0 - 748.0 -				
768.0 - 764.0 - 760.0 - 756.0 - 755.0 - 748.0 - 744.0 -				
768.0 764.0 760.0 755.0 755.0 748.0 744.0 01.08.16 4.15.00.000 4.24.0	0.000 4.33.00.000 4.42.00.000	4.51.00.000 5.00.00 5.09.00.000	5.18.00.000 5.27.00.000	5.36.00.000 5.45.00.000
768.0 764.0 756.0 755.0 752.0 748.0 744.0 744.0 744.0 Courbe au premier plan TA_PRINC_DB_	0.000 4-33.00.000 4-42.00.000 171_MASSE_VOL_R&F	4.51.00.000 5.00.00 5.09.00.000	5.18.00.000 5.27.00.000	5.36.00.000 5.45.00.000
768.0 764.0 766.0 755.0 752.0 748.0 744.0 Courbe au premier plan TA_PRINC_DB_	0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_R6F	4.51.00.000 5.00.000 5.09.00.000	5.18.00.000 5:27.00.000 Valeur	5.36.00.000 5.45.00.000
768.0 764.0 766.0 755.0 755.0 752.0 748.0 744.0 744.0 744.0 701.08.16 4.15.00.000 4.24.00 Courbe au premier plan TA_PRINC_DB_	0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_R6F Archive_de_Valeurs_de_Pri	4 51.00.000 5.00.000 5.09.00.000	5:18:00:000 5:27:00:000 Valeur 769:399048	5.36.00.000 5.45.00.000
768.0 764.0 766.0 755.0 755.0 748.0 744.0 01.08 16 415 00.000 4.24.00 Courbe au premier plan TA_PRINC_DB_	0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_R&F Archive_de_Valeurs_de_Pri	451.00.000 5.09.00.000 5.09.00.000	5.18.00.000 5.27.00.000 Valeur 763.399048	5.36.00.000 5.45.00.000
768.0 764.0 766.0 755.0 752.0 748.0 744.0 01.0816 4.1550.0000 4.24.0 Courbe au premier plan TA_PRINC_DB_ Courbe DTIREF	0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_RAF Archive_de_Valeurs_de_Pri P 111 @	4.51.00.000 5.09.00.000 5.09.00.000 Liaiton de variable occess/TA_PRINC_DB_171_MASSE_VOL_R#F	5.18.00.000 5.27.00.000 Valeur 763.399049	5:36:00.000 5:45:00.000
768.0 764.0 760.0 755.0 752.0 740.0 01.08.16 415.00.000 4.24.01 Courbe au premier plan TA_PRINC_DB_ Courbe DT(REF)	2.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_RAF Archive_de_Valeurs_de_Pri P 111	4.51:00.000 5:09:00.000 Liaiton de variable access/TA_PRINC_DB_171_MASSE_VOL_R/F	5.18.00.000 5.27.00.000 Valeur 763.399048	5:36:00.000 5:45:00.000
768.0 764.0 766.0 755.0 752.0 744.0 01.08.16 4.15.00.000 4.24.0 Courbe au premier plan TA_PRINC_DB_ Courbe DT(REF)	0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_RAF Archive_de_Valeurs_de_Pri	4.51:00.000 5:09:00.000 5:09:00.000 Liaicon de variable occess/TA_PRINC_DB_171_MASSE_VOL_R/F	5.18.00.000 5.27.00.000 Valeur 763.399049	5:36:00.000 5:45:00.000
768.0 764.0 766.0 755.0 752.0 740.0 01.08.16 415.00.000 4.24.01 Courbe au premier plan TA_PRINC_DB_ Courbe DT(REF)	0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_RAF Archive_de_Valeurs_de_Pri P 111 @	4.51:00.000 5:09:00.000 5:09:00.000 Liaiton de variable access/TA_PRINC_DB_171_MASSE_VOL_R/F	5.18.00.000 5.27.00.000 Valeur 763.399049	5:36:00.000 5:45:00.000
768.0 764.0 766.0 755.0 752.0 740.0 740.0 01.08.16 415.00.000 4.24.01 Courbe au premier plan TA_PRINC_DB_ Courbe DT(REF) 220.01 220.01 200.01 190.01 190.01 170.01	2.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_R&F Archive_de_Valeurs_de_Pri P 11	4:51:00:000 5:00:000 5:09:00:000 Lisiton de veriable scess/TA_PRINC_DB_171_MASSE_VDL_R/F	5.18.00.000 5.27.00.000 Valeur 768.399048	5:36:00.000 5:45:00.000 ./f Date/Heure 01:08:16:4:58:50.204
768.0 764.0 766.0 755.0 752.0 744.0 01.08.16 415.00.000 4.24.00 Courbe su premier plan TA_PRINC_DB_ Courbe DT(FREF) 220.0 210.0 200.0 190.0 190.0 170.0 160.0	2.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_R&F Archive_de_Valeurs_de_Pri P 11	4 51 00 000 5 09 00 000 5 09 00 000 Liston de veriable scess/TA_PRINC_DB_171_MASSE_VDL_R/F	5.18.00.000 5.27.00.000 Valeur 763.399048	5:36:00.000 5:45:00.000 ./f Date/Heure 01:08:16:4:58:50.204
768.0 764.0 756.0 752.0 744.0	2000 4.33.00.000 4.42.00.000 171_MASSE_VOL_R&F Archive_de_Valeurs_de_Pr P 14	4/51/00.000 5/09/00/000 5/09/00/000	5.18.00.000 5.27.00.000 Valeur 768.399049	5:36:00.000 5:45:00.000
768.0 764.0 766.0 756.0 752.0 740.0	0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_R&F Archive_de_Valeurs_de_Pri P 1.1 €	4/51/00.000 5/09/00/00 5/09/00/000 Lisiton de variable corest/TA_PRINC_DB_171_MASSE_VDL_R/F	5.18.00.000 5.27.00.000 Valeur 768.399049	5.38.00.000 5.45.00.000 .ri Date/Heure 01.08.16.4.58.50.204
768.0 764.0 765.0 752.0 752.0 748.0 01.08.16 4.15.00.000 4.24.00 Courbe DT(REF) 200.0 200.0 190.0 190.0 170.0 160.0 130.0 120.0 100.0 120.0 100.0 120.0 100.0	0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_R&F Archive_de_Valeurs_de_Pr P 111	451.00.000 5.09.00.000 5.09.00.000	5.18.00.000 5.27.00.000 Valeur 768.339049	5.36.00.000 5.45.00.000
768.0 764.0 766.0 755.0 752.0 748.0 744.0 01.08.16 4.15.00.000 4.24.00 Courbe DT(REF) 200.0 200.0 200.0 190.0 180.0 170.0 160.0 130.0 120.0 110.0 100.0 100.0	0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_R&F Archive_de_Valeurs_de_Pr P 11	451.00.000 5.09.00.000 5.09.00.000	5.18.00.000 5.27.00.000 Valeur 768.339049	5.36.00.000 5.45.00.000
768.0 764.0 766.0 755.0 752.0 748.0 744.0 01.08.16 4.15.00.000 4.24.00 Courbe DT(REF) 200.0 200.0 200.0 190.0 190.0 100.0 110.0 100.0 90.0 90.0 90.0 90.0	0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_RAF Archive_de_Valeurs_de_Pr P 141 €	451.00.000 5.09.00.000 5.09.00.000	5.18.00.000 5.27.00.000 Valeur 768.399048	5.36.00.000 5.45.00.000
768.0 764.0 766.0 755.0 752.0 748.0 01.08.16 4.15.00.000 4.24.00 Courbe au premier plan TA_PRINC_DB_ Courbe DT(REF) 200.0 210.0 200.0 180.0 170.0 180.0 170.0 180.0 170.0 180.0 170.0 180.0 170.0 180.0 170.0 180.0 170.0 180.0 170.0 180.0 170.0 180.0 170.0 180.0 120.0 110.0 90.0 90.0 90.0 60.0	0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_RAF Archive_de_Valeurs_de_Pr P 141 €	451.00.000 5.09.00.000 5.09.00.000	5.18.00.000 5.27.00.000 Valeur 768.399048	5.36.00.000 5.45.00.000
768.0 764.0 766.0 755.0 752.0 748.0 01.08.16 4.15.00.000 4.24.00 Courbe au premier plan TA_PRINC_DB_ Courbe DT(REF) 200.0 210.0 200.0 180.0 170.0 180.0 170.0 180.0 170.0 180.0 170.0 180.0 170.0 180.0 170.0 180.0 170.0 180.0 170.0 180.0 170.0 180.0 170.0 180.0 190.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_RAF Archive_de_Valeurs_de_Pri P 111 €	451.00.000 5.00.000 5.09.00.000	5.18.00.000 5.27.00.000 Valeur 763.399049	5.36.00.000 5.45.00.000
768.0 764.0 766.0 755.0 752.0 748.0 01.08.16 4.15.00.000 4.24.00 Courbe au premier plan TA_PRINC_DB_ Courbe DT(REF) 2000 2100 2000 1800 1700 1800 1700 1800 1700 1800 1700 1800 1700 1800 1700 1800 1700 1800 1700 1800 1700 1800 1700 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 <td>0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_RAF Archive_de_Valeurs_de_Pri P 111</td> <td>451.00.000 5.09.00.00 5.09.00.000</td> <td>5.18.00.000 5.27.00.000 Valeur 763.399049</td> <td>5.36.00.000 5.45.00.000</td>	0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_RAF Archive_de_Valeurs_de_Pri P 111	451.00.000 5.09.00.00 5.09.00.000	5.18.00.000 5.27.00.000 Valeur 763.399049	5.36.00.000 5.45.00.000
768.0 764.0 765.0 755.0 752.0 748.0 01.08.16 4.15.00.000 4.24.00 Courbe au premier plan TA_PRINC_DB_1 DI(REF) 200.0 200.0 190.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 100.0	0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_RAF Archive_de_Valeurs_de_Pr P 111 €	451.00.000 5.09.00.000 5.09.00.000	5.18.00.000 5.27.00.000 Valeur 768.399048	5.36.00.000 5.45.00.000
768.0 764.0 765.0 752.0 752.0 752.0 752.0 752.0 752.0 752.0 752.0 752.0 752.0 752.0 752.0 752.0 752.0 752.0 752.0 744.0 Courbe au premier plan TA_PRINC_DB_ Courbe DT(REF) 200.0 200.0 200.0 100.0	0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_RAF Archive_de_Valeurs_de_Pr P 141 €	451.00.000 5.09.00.000 5.09.00.000	5.18.00.000 5.27.00.000 Valeur 763.399049	5.36.00.000 5.45.00.000
7680 7640 7640 7640 7550 7520 7520 7520 7440 01.08.16 2000 DT(REF) Courbe DT(REF) 2000 1000 000 000 000 000 000 000 000 000 000 000 000 000 000 <t< td=""><td>0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_RAF Archive_de_Valeurs_de_Pri P 14 ● 14 ● 14 0.000 4.33.00.000 4.42.00.000</td><td>451.00.000 5.00.000 5.09.00.000</td><td>518:00.000 5:27:00.000 Valeur 763:399049</td><td>5.36.00.000 5.45.00.000</td></t<>	0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_RAF Archive_de_Valeurs_de_Pri P 14 ● 14 ● 14 0.000 4.33.00.000 4.42.00.000	451.00.000 5.00.000 5.09.00.000	518:00.000 5:27:00.000 Valeur 763:399049	5.36.00.000 5.45.00.000
768.0 764.0 765.0 755.0 752.0 752.0 744.0 01.08.16 415.00.000 424.00 Courbe au premier plan TA_PRINC_DB_1 Courbe DT(REF) 200.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0	0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_RAF Archive_de_Valeurs_de_Pri P 14 0.000 4.33.00.000 4.42.00.000	451.00.000 5.00.000 5.09.00.000	518:00.000 5:27:00.000 Valeur 763:399049	5.36.00.000 5.45.00.000
768.0 764.0 765.0 755.0 752.0 744.0 01.08.16 415.00.000 424.00 Courbe au premier plan TA_PRINC_DB_0 200.0 210.0 200.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 190.0 100.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0	0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_RAF Archive_de_Valeurs_de_Pri P 14 € 1000 4.33.00.000 4.42.00.000	451.00.000 5.00.000 5.09.00.000	518:00.000 5:27:00.000	5.36.00.000 5.45.00.000
768.0 764.0 765.0 755.0 752.0 760.0 200.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_RAF Archive_de_Valeurs_de_Print P 11 0	451.00.000 5.00.000 5.09.00.000	5.18.00.000 5.27.00.000 Valeur 763.399049 5.18.00.000 5.27.00.000 5.18.00.000 5.27.00.000	5.36.00.000 5.45.00.000
768.0 764.0 765.0 755.0 752.0 760.0 200.0 2100.0 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	0.000 4.33.00.000 4.42.00.000 171_MASSE_VOL_RAF	451.00.000 5.00.000 5.09.00.000 Liaton de valiable ocest/TA_PRINC_DB_171_MASSE_VOL_RAF 4.51.00.000 5.00.00 5.09.00.000 4.51.00.000 5.00.00 5.09.00.000 Liaton de valiable Liaton de valiable Valeura, de Procest/VT.003 Inters, de Pr	5:18:00.000 5:27:00.000 Valeur 768:399048 768:399048	5.36.00.000 5.45.00.000

Fig. 2. 22 Profils de la masse volumique et du débit - Batch 08D21-16

Batch N°		Q v (m ³ /h)	T	Produit 1		Produit 2		Masses volumiques de coupure (Kg/m ³)		Temps		Durée	V _{mFrn}
	Interface		(°C)	ρ ₁ (Kg/m ³)	ν ₁ (Cst)	ρ ₂ (Kg/m ³)	ν ₂ (Cst)	Début	Fin	Début ¹ t ₁	Fin ² t ₂	(Seconde)	(m ³)
03D19-16	GO-SCA	220,000	23,8	750,00	0,713	834,10	3,302	769,699	809,699	7:46:55	7:51:31	276	16,867
07D19-16	GO-SCA	194,820	24,1	749,20	0,706	835,30	3,714	769,599	809,999	0:23:15	0:28:10	295	15,964
08D19-16	SCA-GO	221,580	24,2	835,30	3,748	749,00	0,705	809,999	769,599	11:08:52	11:13:08	256	15,757
01D20-16	GO-SCA	203,126	24,2	749,00	0,705	835,30	3,748	769,899	809,999	2:16:39	2:21:44	305	17,209
03D20-16	GO-SCA	199,238	24,3	747,20	0,689	826,30	3,765	769,799	809,699	23:19:40	23:24:50	310	17,157
08D20-16	SCA-GO	233,186	24,9	837,70	4,078	745,10	0,670	809,199	769,399	16:33:16	16:37:06	230	14,898
09D20-16	GO-SCA	188,739	24,7	745,10	0,670	834,85	3,864	769,499	810,199	7:08:16	7:12:51	275	14,418
08D21-16	SCA-GO	215,959	25,2	825,50	3,626	744,20	0,662	809,799	769,399	4:53:42	4:58:50	308	18,476

Tableau 2. 3 Données et résultats expérimentaux des volumes du mélange déduits des profils de densités

Tableau 2. 4 Données expérimentales pour l'étude de l'effet de la composition du mélange (Viscosité du mélange)

		Qv	Т	Produ	uit 1	Produ	iit 2	Compo du méla	v_m (Cst)	
Batch N [*]	Interface	(m³/h)	(°C)	ρ ₁ (Kg/m ³)	ν ₁ (Cst)	ρ ₂ (Kg/m ³)	ν ₂ (Cst)	Fraction lourde	Fraction légère	Mesurée
17D24-13	SCA-GO	216,4	25,11	843,50	3,574	753,50	0,648	41%	59%	0,985
19D24-13	SCA-GO	210,5	25,35	844,70	4,264	745,10	0,589	50%	50%	
21D24-13	GO-SCA	203,5	25,50	741,10	0,672	843,20	3,990	53%	47%	1,167
23D24-13	SCA-GO	202,2	25,46	842,30	4,190	741,10	0,672	46%	54%	1,100
27D24-13	SCA-GO	206,7	25,53	826,20	3,560	741,40	0,650	53%	47%	1,210
07D8-14	GO-SCA	199,2	16,38	734,60	0,660	821,80	3,680	59%	41%	1,770
03D9-14	GO-SCA	197,0	16,80	733,30	0,553	835,80	3,180	51%	49%	1,230
10D9-14	SCA-GO	198,4	16,67	822,50	3,030	733,50	0,566	52%	48%	1,036
04D10-14	GO-SCA	203,6	16,83	733,40	0,565	826,60	3,340	39%	61%	
03D11-14	SCA-GO	202,9	17,50	821,20	3,820	748,50	0,690	51%	49%	1,116
01D12-14	SCA-GO	200,7	18,09	835,40	3,620	746,10	0,730	53%	47%	1,110
03D12-14	SCA-GO	198,2	18,23	823,80	3,810	740,00	0,639	51%	49%	1,270

Batch N° Interfa	Intorfaco	Qv	Т	Produit 1		Produit 2		Masses volumiques de coupure (Kg/m ³)		Temps		Durée <mark>2-1</mark>	V _{mExp}
	internace	(m ³ /h)	(°C)	ρ ₁ (Kg/m ³)	ν ₁ (Cst)	ρ ₂ (Kg/m ³)	ν ₂ (Cst)	Début	Fin	Début ¹	Fin ²	(Seconde)	(m ³)
17D24-13	SCA-GO	216,4	25,11	843,50	3,574	753,50	0,648	810	770				34,90
10D9-14	SCA-GO	198,4	16,67	822,50	3,030	733,50	0,566	810	770				34,218
05D20-16	GO-SP	210,000	24,4	753,00	0,740	831,19	3,842	774,999	809,999	5:20:32	5:32:10	698	40,717
06D20-16	SCA-GO	214,579	24,5	832,70	4,086	745,10	0,670	809,999	770,299	7:11:03	7:20:35	572	34,094
02D21-16	SCA-GO	206,223	24,9	831,10	3,837	742,10	0,643	809,499	769,899	12:44:54	12:55:58	664	38,037

Tableau 2. 5 Données et volumes expérimentaux du mélange pour l'étude de l'Effet de l'arrêt de pompage

Tableau 2. 6 Données et volumes expérimentaux pour la régression des corrélations

Ratch Nº	Intorfaco	Qv	Т	Produ	it 1	Produ	it 2	Masses vo de coupui	V _{mExp}	
Datcii N	Interface	(m ³ /h)	(°C)	ρ ₁ (Kg/m ³)	ν ₁ (Cst)	ρ ₂ (Kg/m ³)	ν ₂ (Cst)	Début	Fin	(m ³)
08D13-16	GO-SP	209,0	19,95	748,00	0,696	830,50	3,908	775	810	13,537
01D14-16	GO-SCA	210,0	17,79	754,70	0,755	846,40	4,306	770	810	15,897
09D14-16	GO-SCA	210,0	20,50	739,10	0,616	847,10	4,324	770	810	12,000
02D15-16	GO-SCA	225,0	20,20	739,10	0,616	845,30	4,279	770	810	12,531
05D15-16	SCA-GO	220,0	20,50	845,40	4,282	739,20	0,617	810	770	12,841
10D15-16	GO-SCA	205,0	20,80	739,90	0,623	837,80	4,092	770	810	13,806
11D15-16	SCA-GO	207,0	21,18	837,80	4,092	740,20	0,626	810	770	14,000
07D19-16	GO-SCA	205,0	24,10	749,20	0,706	835,30	3,714	770	810	15,685
08D19-16	SCA-GO	221,0	24,20	835,30	3,748	749,00	0,705	810	770	16,000
01D20-16	GO-SCA	205,0	24,19	749,00	0,705	835,30	3,748	770	810	16,112
03D20-16	GO-SCA	200,0	24,30	747,20	0,689	826,30	3,765	770	810	17,000
08D20-16	SCA-GO	218,0	24,93	837,70	4,112	745,10	0,670	810	770	14,000
08D21-16	SCA-GO	213,0	25,20	825,50	3,626	744,20	0,662	810	770	17,000
03D11-14	SCA-GO	202,9	17,50	821,20	3,820	748,50	0,690	810	770	19,859

2.5 Conclusion

Le présent chapitre a rassemblé les résultats expérimentaux des volumes du mélange sur des séquences de transfert dans le pipeline multiproduit servant comme dispositif expérimental. Ainsi les données nécessaires pour l'application de la formulation analytique et de l'approche MVEPC sont utilisées pour la prédiction du volume du mélange, tels que :

- Le débit, la température d'écoulement et la masse volumique de chaque produit sont lus directement auprès du calculateur électronique FH6200.
- La composition du mélange est identifiée expérimentalement au niveau des laboratoires d'analyse par distillation atmosphérique de l'échantillon du mélange prélevé en ligne.
- Les courbes de densités sont enregistrées en temps réel, lors de changement des produits en ligne au niveau du DCS de la salle de contrôle, dont le mélange est déduit directement des courbes se servant de la courbe du débit.
- Le volume du mélange peut être lu directement sur DCS, comme par l'exploitation des niveaux des bacs de contaminât avant (hauteur initiale) et après réception (hauteur finale) du mélange.

Chapitre 03

Formulations analytiques et approche MVEPC pour le calcul de l'interface du mélange

3.1 Introduction

La contamination à l'interface des batchs de produits pétroliers raffinés transportés par des pipelines multiproduit est un problème bien connu de longue date dans l'industrie pétrolière. La détermination de l'ampleur du mélange dépend de divers facteurs, y compris les propriétés des fluides, les conditions de fonctionnement et les régimes d'écoulement [28]. Le modèle de convection-diffusion avec le paramètre fictif, connu sous le nom du coefficient de dispersion axiale est la méthode couramment utilisée par plusieurs investigateurs [35, 36, 38-45] pour évaluer le mélange longitudinal.

3.2 Théorie de la formation du mélange – Conditions aux limites

Le système d'analyse comprend deux fluides miscibles de composition chimique différente, notée A et B de concentrations respectives C_A et C_B , se déplaçant successivement dans un pipeline.

A l'instant t_0 on considère que le fluide B occupe tout le volume de la conduite et les deux fluides sont en contact selon un plan perpendiculaire à l'axe de la canalisation (x=0, Fig. (3.1)). Au cours de l'écoulement séquentiel des deux fluides et à l'instant t_1 , se produit un mélange dans la zone de contact de ces derniers, et la concentration du fluide B varie de C_B=1 au début de la zone du mélange à C_B=0 à la fin de cette zone (x=x₁, Fig. (3.1)) et inversement, celle du fluide A varie de C_A=0 à C_A=1.

La longueur de l'interface générée entre le fluide A et B évolue d'avantage avec le temps (x=x₂, Fig. (3.1)). Cependant, la diffusion contribue à la séparation des produits dans la zone de contaminât. Cette zone est séparée par les sections dont les concentrations sont égales (C_A=C_B=0).

La contamination ou le mélange est généralement caractérisé par la courbe de variation de la concentration du mélange [46].

Fig. 3. 1 Evolution de la zone du mélange le long du pipe lors de l'écoulement séquentiel du multi-fluide

La théorie est donc basée sur le fait que le mélange est conditionné par le transfert de masse dans la zone de contact des deux fluides, qui tend à être déterminée par le mécanisme de convection et le mécanisme de diffusion moléculaire à proximité des parois.

Compte tenu des débits élevés habituellement réalisées dans un pipeline, on peut supposer que la contribution de la diffusion moléculaire est négligeable [22].

L'interface (mélange) peut être identifiée par la résolution de l'équation de diffusion édictée par Fick ou par celle de convection-diffusion en cas de la contribution de la vitesse.

Le développement analytique des équations de diffusion et d'advection-diffusion stipule implicitement l'hypothèse que les fluides sont incompressibles et newtoniens, sans tenir compte des dilatations thermiques qui peuvent surgir lors de l'écoulement des fluides le long du pipeline. Avec les hypothèses envisagées, on conserve la même structure de l'équation de diffusion, exprimée en fonction de la concentration du fluide en déplacement.

3.3 Hypothèse de base de la théorie mathématique

3.3.1 Flux de particule : Equation de Fick

La diffusion est le processus par lequel la matière est transportée d'une part d'un système à l'autre en raison des mouvements moléculaires aléatoires. Le transfert de chaleur par conduction est également dû aux mouvements moléculaires aléatoires, et il y a une analogie évidente entre les deux processus. Ceci a été identifié par Fick (1855), qui a mis la diffusion sur une base quantitative en adoptant une analogie de l'équation mathématique de la conduction de chaleur dérivée quelques années plus tôt par Fourier (1822).

Plaçons-nous dans un système unidirectionnel et considérons le flux de particules d'une certaine espèce. Les particules peuvent être des molécules, des atomes, …etc. Soit C(x,t) leur concentration, exprimée en nombre de particules ou de moles par unité de volume.

En présence d'un gradient de concentration dC/dx, on admet qu'il s'établit un flux de particules dans le sens descendant du gradient, et que ce flux est proportionnel au gradient correspondant [47] :

Chapitre 03

Formulation analytique et approche MVEPC pour el calcul de l'interface du mélange

$$J = -D\frac{\partial C}{\partial x} \tag{3.1}$$

Dest appelé coefficient de diffusion ou diffusivité.

Le flux est exprimé en nombre de particules ou de moles traversant une unité de surface par unité de temps (en toute rigueur, *J* défini une densité de flux, mais on a coutume de l'appeler flux). Il s'ensuit que *D* a pour dimension L^2T^{-1} . Il est généralement exprimé en cm²s⁻¹ ou m²s⁻¹. Cette loi dite loi de Fick, est formellement identique à la loi de Fourier pour l'écoulement de la chaleur :

$$Q = -\lambda \frac{\partial T}{\partial x}$$
(3.2)

 $Où\lambda$ est la conductivité thermique.

Il est à souligner que la loi de Fick sus citée est généralement décrite seulement pour un milieu isotrope, dont les propriétés de structure et de diffusion à proximité de n'importe quel point sont identiques relativement à toutes les directions.

En fait, l'écoulement de particules dans une direction donnée peut avoir deux origines : l'une est bien le gradient de concentration ; mais l'autre est l'action d'une force de transport, sous l'effet de laquelle les particules se déplacent avec une certaine vitesse moyenne uC, d'où l'expression générale [47] :

$$J = -D\frac{\partial C}{\partial x} + uC \tag{3.3}$$

Le premier terme du second membre est qualifié de flux diffusionnel proprement dit et le second de terme de transport (la terminologie n'est pas fixée ; les termes transport, migration, entrainement, ou même « drift » sont utilisés indifféremment).

En régime non permanant, c'est-à-dire lorsque le flux en chaque point varie avec le temps, il faut compléter l'équation de Fick par une équation de bilan. Pour des espèces conservatives, c'est l'équation de continuité [47].

$$\frac{dJ}{dx} = -\frac{dC}{dt} \tag{3.4}$$

3.3.2 Forme différentielle de l'équation de diffusion

L'équation fondamentale de la diffusion dans un milieu isotrope est dérivée de l'équation (3.1). Considérons un élément de volume sous forme de parallélépipède rectangulaire dont les côtés sont parallèles aux axes de coordonnées et de longueurs 2 dx, 2 dy, 2 dz. Soit P(x, y, z) le centre de l'élément, où C est la concentration de la substance diffus. Soient *ABCD* et *A'B'C'D'* les faces perpendiculaires à l'axe des x comme le montre la Fig. (3.2), à travers laquelle les flux de particules dirigés de gauche à droite valent :

Fig. 3. 2 Elément de volume

Pour le flux de particules entrant à travers la face *ABCD* dans le plan des *x*, on a :

$$4 \, dy \, dz \left(J_x - \frac{\partial J_x}{\partial x} \, dx \right)$$

De même, pour le Flux de particules sortant à travers la face A'B'C'D',

$$4 \, dy \, dz \left(J_x + \frac{\partial J_x}{\partial x} \, dx \right)$$

Par conséquent, le flux de matière accumulée dans cet élément à partir de ces deux faces est ainsi égal à :

$$-8 dx dy dz \frac{\partial J_x}{\partial x}$$

De même pour les autres faces, nous obtenons :

$$-8 \, dx \, dy \, dz \, \frac{\partial J_y}{\partial y}$$
 et $-8 \, dx \, dy \, dz \, \frac{\partial J_z}{\partial z}$

La quantité de matière accumulée pendant le temps *dt* dans cet élément de volume vaut ainsi :

$$8 \, dx \, dy \, dz \, \frac{\partial C}{\partial t}$$

Et par conséquent nous avons immédiatement,

$$\frac{\partial C}{\partial t} + \frac{\partial J_x}{\partial x} + \frac{\partial J_y}{\partial y} + \frac{\partial J_z}{\partial z} = 0$$
(3.5)

Si le coefficient de diffusion est constant, J_x , J_y et J_z sont donnés par l'équation (3.1). L'équation (3.5) devient alors :

$$\frac{\partial C}{\partial t} = D\left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2} + \frac{\partial^2 C}{\partial z^2}\right)$$
(3.6)

Qui se réduit à l'équation suivante si la diffusion est unidirectionnelle,

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$
(3.7)

Les équations (3.1) et (3.7) sont habituellement référées sous les lois de diffusion de Fick de premier et de deuxième ordre, puisqu'elles ont été formulées la première fois par (Fick, 1855) par analogie directe avec les équations de la conduction de chaleur.

Dans plusieurs systèmes, par exemple l'inter-diffusion des métaux, le coefficient de diffusion D peut dépendre de la concentration C et dans ce cas l'équation (3.4) devient :

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left(D \frac{\partial C}{\partial y} \right) + \frac{\partial}{\partial z} \left(D \frac{\partial C}{\partial z} \right)$$
(3.8)

Où, *D* peut être une fonction de *x*, *y*, *z* pour un milieu non homogène et de *C*.

Dans le cas où D dépend du temps indépendamment des autres variables, c'est-à-dire :

$$D = f(t)$$

On introduit une nouvelle échelle du temps *T* telle que,

$$dT = f(t) dt$$

Et l'équation de diffusion (3.8) devient :

$$\frac{\partial C}{\partial T} = \frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2} + \frac{\partial^2 C}{\partial z^2}$$
(3.9)

qui est la même que l'équation (3.6) avec un coefficient de diffusion constant égal à l'unité. En coordonnées cylindriques *r*, θ et *z*, l'équation (3.5) s'écrit :

$$\frac{\partial C}{\partial t} = \frac{1}{r} \left\{ \frac{\partial}{\partial r} \left(rD \frac{\partial C}{\partial r} \right) + \frac{\partial}{\partial \theta} \left(\frac{D}{r} \frac{\partial C}{\partial \theta} \right) + \frac{\partial}{\partial z} \left(rD \frac{\partial C}{\partial z} \right) \right\}$$
(3.10)

3.4 Rappels mathématiques

3.4.1 Transformée de Laplace

La transformée de Laplace est un outil mathématique qui est utilisée pour la recherche de solutions de divers problèmes dans la physique mathématique. L'application de la transformée de Laplace, par rapport à la variable t, à l'équation de diffusion conduit à une équation différentielle ordinaire (ou aux dérivées partielles) dont la solution est fonction des variables de l'espace x, y et z et du paramètre de Laplace p.

Supposons f(t), une fonction connue de t pour $t \ge 0$, alors sa transformée de Laplace $\overline{f}(p)$ est définie par :

$$\bar{f}(p) = \int_0^\infty f(t)e^{-pt} dt$$
 (3.11)

Où p est un nombre positif suffisamment grand pour que l'intégrale (3.11) converge ou un nombre complexe dont la partie réelle est suffisamment grande.

La transformée de Laplace des fonctions sont aisément construits en effectuant l'intégration selon l'équation (3.11), cas des exemples suivants:

$$f(t) = 1, \quad \bar{f}(p) = \int_0^\infty e^{-pt} dt = \frac{1}{p}$$

$$f(t) = e^{at}, \quad \bar{f}(p) = \int_0^\infty e^{at} e^{-pt} dt = \int_0^\infty e^{-(p-a)t} dt = \frac{1}{p-a}$$

$$f(t) = \sin \omega t, \quad \bar{f}(p) = \int_0^\infty e^{-pt} \sin \omega t \, dt = \frac{\omega}{p^2 + \omega^2}$$

Une table courte de transformée en l'occurrence fréquemment utilisée dans les problèmes de diffusion (Annexe III) est reproduite du livre de Carslaw et de Jaeger [47].

3.4.2 Fonction erreur

Une fonction mathématique standard, dont les tables étendues sont disponibles, est la fonction erreur, habituellement écrite comme erf(z), [47-49].

$$\operatorname{erf}(z) = \frac{2}{\pi^{1/2}} \int_0^z exp(-\eta^2) \, d\eta$$

Cette fonction a les propriétés:

$$erf(-z) = -erf(z), \quad erf(0) = 0, \quad erf(\infty) = 1$$

Et par conséquent, depuis

$$\frac{2}{\sqrt{\pi}} \int_{z}^{\infty} \exp(-\eta^{2}) \, d\eta = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} \exp(-\eta^{2}) \, d\eta - \frac{2}{\sqrt{\pi}} \int_{0}^{z} \exp(-\eta^{2}) \, d\eta = 1 - \operatorname{erf}(z) = \operatorname{erfc}(z)$$

Où, erfc(z) désigne le complément de la fonction erreur.

Et comme sera démontré dans ce chapitre, la solution du problème de diffusion est habituellement écrite sous la forme [47].

$$C(x,t) = C_0 \operatorname{erfc}\left(\frac{x}{2\sqrt{D.t}}\right)$$
(3.12)

3.5 Solution analytique de l'équation de Convection-Diffusion

3.5.1 Cas de la diffusion

Considérons le problème de diffusion sans terme convectif (ou de transport) définie par l'équation (3.6) du présent chapitre :

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

Chapitre 03 Formulation analytique et approche MVEPC pour el calcul de l'interface du mélange

qui satisfait la condition de frontière :

$$C = 0 x = 0, t > 0$$
 (3.13)

et la condition initiale :

$$C = C_0 x > 0, t = 0$$
 (3.14)

La multiplication des deux membres de l'équation (3.7) par e^{-pt} et son intégration sur l'intervalle du temps $[0, +\infty[$ s'écrit :

$$\int_{0}^{\infty} e^{-pt} \frac{\partial^2 C}{\partial x^2} dt - \frac{1}{D} \int_{0}^{\infty} e^{-pt} \frac{\partial C}{\partial t} dt = 0$$
(3.15)

En permutant les opérateurs dérivée et intégrale, on obtient :

$$\int_0^\infty e^{-pt} \frac{\partial^2 C}{\partial x^2} dt = \frac{\partial^2}{\partial x^2} \int_0^\infty C \ e^{-pt} \ dt = \frac{\partial^2 \bar{C}}{\partial x^2}$$
(3.16)

Et en intégrant par partie, on obtient :

$$\int_0^\infty e^{-pt} \frac{\partial C}{\partial t} dt = \left[C \ e^{-pt}\right]_0^\infty + p \int_0^\infty C \ e^{-pt} \ dt = p\bar{C}$$
(3.17)

Et par suite, l'équation différentielle (3.7) se réduit à :

$$D\frac{\partial^2 \bar{C}}{\partial x^2} = p\bar{C}$$
(3.18)

En traitant la condition initiale (3.14), de la même manière nous obtenons :

$$\bar{C} = \int_0^\infty C_0 \, e^{-pt} \, dt = \frac{C_0}{p}, \qquad x = 0 \tag{3.19}$$

La solution de l'équation (3.18) munie de la condition (3.19) s'écrit :

$$\bar{C} = \frac{C_0}{p} e^{-qx} \tag{3.20}$$

Où, $q^2 = p/D$

Dont la transformée inverse, voir Annexe III, est donnée par :

$$C(x,t) = C_0 \operatorname{erfc} \frac{x}{2\sqrt{D.t}}$$
(3.21)

Ou bien :

$$C(x,t) = C_0 \left(1 - erf \frac{x}{2\sqrt{D.t}} \right)$$
(3.22)

3.5.2 Cas de la Convection-Diffusion

Considérerons le problème unidimensionnel de la diffusion en présence du terme d'advection dans la direction x>0:

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} = D \frac{\partial^2 C}{\partial x^2}$$
(3.23)

Avec la condition aux limites :

$$C = 0$$
 $x = 0,$ $t > 0$ (3.24)

et la condition initiale :

$$C = C_0 x > 0, t = 0$$
 (3.25)

Pour résoudre cette équation, nous avons utilisé le changement de variable X=x-ut (appelé variable convective ou lagrangienne) qui présente l'avantage de transformer le problème de diffusion-convection en un problème de diffusion pur vu par observateur se déplaçant avec la même vitesse que le fluide.

Fig. 3. 3 Présentation du nouveau système de coordonnées

En posant donc : X=x-ut, C(x, t) devient C(X, t)

On aura alors :

$$\frac{\partial C}{\partial x} = \frac{\partial C}{\partial X}\frac{\partial X}{\partial x} + \frac{\partial \tau}{\partial x}\frac{\partial C}{\partial t} = \frac{\partial C}{\partial X}$$
(3.26)

Et par suite :

$$\frac{\partial^2 C}{\partial x^2} = \frac{\partial^2 C}{\partial X^2} \tag{3.27}$$

De même, la dérivée du terme temporel peut être exprimée comme suit :

$$\frac{\partial C}{\partial t} = \frac{\partial C}{\partial X}\frac{\partial X}{\partial t} + \frac{\partial \tau}{\partial t}\frac{\partial C}{\partial t} = -u\frac{\partial C}{\partial X} + \frac{\partial C}{\partial t}$$
(3.28)

Chapitre 03 Formulation analytique et approche MVEPC pour el calcul de l'interface du mélange

La substitution des expressions ci-dessus à l'équation de convection-diffusion (3.23) mène à l'expression suivante:

$$-u\frac{\partial C}{\partial X} + \frac{\partial C}{\partial t} + u\frac{\partial C}{\partial X} = D\frac{\partial^2 C}{\partial X^2}$$
(3.29)

qui conduit à une forme finale,

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial X^2} \tag{3.30}$$

On obtient donc une équation de diffusion par rapport aux variables X et t dont la solution est identique à celle décrite ci-dessus.

$$C(X,t) = C_0 \left(1 - erf \frac{X}{2\sqrt{D.t}} \right)$$
(3.31)

$$C(x,t) = C_0 \left(1 - erf \frac{x - ut}{2\sqrt{D.t}} \right)$$
(3.32)

3.6 Formules de calcul du mélange longitudinal

3.6.1 Cas de la diffusion sans contribution du terme de transport

Comme il a été démontré préalablement, la solution de l'équation de diffusion est donnée par (3.22) :

$$C = C_0 \left(1 - erf \frac{x}{2\sqrt{D.t}} \right)$$

Soient C_A et C_B les concentrations respectives de deux fluides A et B;

$$C_A + C_B = 1$$

$$C_B = C_0 \left(1 - erf \frac{x}{2\sqrt{D.t}} \right)$$
(3.33)

En posant [50],

$$Z = \frac{x}{2\sqrt{D.t}} \tag{3.34}$$

L'équation (3.33) devient,

$$C_B = C_0 \left(1 - erf(Z) \right) \tag{3.35}$$

Le volume du mélange V_m qui passe par la section transversale de la conduite entre deux instant t_1 et t_2 est donnée par [22] :

$$V_m = Q(t_2 - t_1) (3.36)$$
Q représente le débit volumique.

La distance *x* comprise entre le système mobile des coordonnées et le bout final de la conduite (Fig. (3.4)), est donnée par :

x = L - ut

Avec :

L : longueur totale de la canalisation ;

u: Vitesse moyenne du fluide.

Fig. 3. 4 Disposition de la zone de mélange

Désignons par t_0 le temps nécessaire durant lequel le mélange balayera toute la longueur du pipeline ;

$$L = ut_0$$
$$x = ut_0 - ut = ut_0 \left(1 - \frac{t}{t_0}\right)$$

Soit :

$$x = ut_0(1 - \tau) \tag{3.37}$$

Avec $au=t/t_0$ un temps adimensionnel ;

La substitution de la valeur de *x* dans celle de Z donne,

$$Z = \frac{ut_0(1-\tau)}{2\sqrt{D.t}} = \frac{ut_0(1-\tau)}{2\sqrt{D.\tau.t_0}}$$
$$Z = \frac{(1-\tau)}{2\sqrt{\tau}} \sqrt{\frac{u^2 t_0}{D}}$$
$$Z = \frac{(1-\tau)}{2\sqrt{\tau}} P_e^{0.5}$$
(3.38)

Où, Pe = uL/D représente le nombre de Peclet ;

Chapitre 03 Formulation analytique et approche MVEPC pour el calcul de l'interface du mélange

A la section de sortie de la conduite, on a t tend vers t_0 et par suite τ tend vers 1, on peut alors écrire :

$$\frac{(1-\tau)}{\sqrt{\tau}} \approx (1-\tau);$$

Et l'équation (3.38) devient,

$$Z = \frac{1}{2}(1-\tau)P_e^{0.5}$$
(3.39)

D'où,

$$\tau = 1 - \frac{2Z}{P_e^{0.5}} \tag{3.40}$$

Des transformations sur l'équation (3.36) du volume du mélange, donnent :

$$\frac{V_m}{V_P} = \frac{Q}{Qt_0}(t_2 - t_1)$$

$$\frac{V_m}{V_P} = \tau_2 - \tau_1$$
(3.41)

En substituant l'équation (3.40) dans (3.41), on aura l'équation (3.42) similaire que (1.48):

$$\frac{V_m}{V_P} = 2 P_e^{-0.5} (Z_1 - Z_2)$$
(3.42)

Avec,

Pe : Nombre du Peclet ;

 Z_{1}, Z_{2} : Abscisses des concentrations de coupure ;

 V_p : Volume du pipeline, (m³).

Les variables Z_1 et Z_2 représentent les abscisses des concentrations de coupure qui sont déterminées à partir de la formule (3.35). En cas de limites symétriques, Z_1 =- Z_2 et la relation (3.42) devient [21],

$$\frac{V_m}{V_P} = 4 \cdot Z \cdot P_e^{-0.5} \tag{3.43}$$

3.6.2 Cas de l'Advection-Diffusion (Contribution de la convection ou terme de transport)

Comme il a été illustré auparavant, la variation de la concentration du fluide B le long du pipeline dans le cas de la contribution du terme de transport, est bien :

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} = D \frac{\partial^2 C}{\partial x^2}$$

Chapitre 03

Formulation analytique et approche MVEPC pour el calcul de l'interface du mélange

Avec le changement de variable X=x-ut, nous avons vu que la solution est donnée par :

$$C(X,t) = C_0 \left(1 - erf \frac{X}{2\sqrt{D(t).t}} \right)$$

Soient C_A et C_B les concentrations respectives des produits A et B, telles que :

$$C_A + C_B = 1$$

$$C_B = C_0 \left(1 - erf \frac{X}{2\sqrt{D_B(t).t}} \right)$$
(3.44)

$$Z = \frac{X}{2\sqrt{D_B(t).t}} \tag{3.45}$$

L'équation (3.44) devient,

$$C_B = C_0 (1 - erf Z) \tag{3.46}$$

La vitesse de l'écoulement des fluides peut variée si le diamètre de la canalisation varie ou s'il y a régulation du débit ...etc.

3.6.2.1 Variation monotone de la vitesse avec le diamètre constant

Le volume du mélange V_m qui passe par la section transversale de la conduite de diamètre constant entre les instants t_1 et t_2 avec une variation monotone de la vitesse est donné par :

$$V_m = \int_0^{t_2} Q(t) dt - \int_0^{t_1} Q(t) dt = \left(\int_0^{t_2} u(t) dt - \int_0^{t_1} u(t) dt\right) \mathbf{x} S$$
(3.47)

$$V_m = \int_0^{t_2} Q(t) dt - \int_0^{t_1} Q(t) dt = S \int_{t_1}^{t_2} u(t) dt$$
(3.48)

Où, S est la section de la conduite ;

Fig. 3. 5 Volume du mélange avec variation de la vitesse

Chapitre 03

Formulation analytique et approche MVEPC pour el calcul de l'interface du mélange

Soit X la distance entre le système mobile des coordonnées jusqu'au bout final de la conduite, alors :

$$X = L - \int_0^t u(t) dt$$
 avec $L = \int_0^{t_0} u(t) dt$

D'où,

$$X = \int_0^{t_0} u(t) \, dt - \int_0^t u(t) \, dt$$

Avec t_0 est le temps nécessaire pour que le mélange balaye toute la longueur du pipe.

Posant,
$$\mu = \frac{\int_{0}^{t} u(t) dt}{\int_{0}^{t_{0}} u(t) dt}$$

 $X = (1 - \mu) \int_{0}^{t_{0}} u(t) dt = (1 - \mu) L$
(3.49)

En substituant la valeur de X dans l'équation (3.45) de Z, on aura :

$$Z = \frac{(1-\mu)L}{2\sqrt{D(t).t}} = \frac{1}{2} \sqrt{\frac{L^2}{D(t).t}} \cdot (1-\mu)$$
$$\mu = 1 - \frac{2Z}{\left(\frac{L^2}{D(t).t}\right)^{0.5}}$$
$$\frac{V_m}{V_P} = \frac{\left(\int_0^{t_2} u(t) dt - \int_0^{t_1} u(t) dt\right) \cdot S}{L \cdot S} = \mu_2 - \mu_1$$
$$\frac{V_m}{V_P} = 1 - \frac{2Z_2}{\left(\frac{L^2}{D(t).t}\right)^{0.5}} - 1 + \frac{2Z_1}{\left(\frac{L^2}{D(t).t}\right)^{0.5}}$$

D'où l'équation (3.42),

$$V_m = 2. V_P. (Z_1 - Z_2). P_e^{-0.5}$$

Avec,

$$P_e = \frac{L^2}{D(t).t}$$

Les paramètres Z_1 et Z_2 sont déterminés à partir de l'équation (3.46) et en cas de limites symétriques, on aura Z_1 =- Z_2 et la relation (3.42) devient :

$$\frac{V_m}{V_P} = 4 \cdot Z \cdot P_e^{-0.5}$$

3.6.2.2 Vitesse constante avec variation du diamètre

Ce cas nous intéresse davantage pour des raisons pratiques dont le but est de comparer les théories précitées avec un procédé industriel opérationnel que sera décrit par la suite.

Nous proposons ce cas particulier, dont les deux fluides circulent le long d'un pipeline composé de plusieurs tronçons de diamètres différents (Fig. (3.6)).

Fig. 3. 6 Progression du volume du mélange dans des tronçons du pipeline de différents diamètres

On sait bien que,

$$C_B = C_0 \left(1 - erf \frac{X}{2\sqrt{D(t).t}} \right)$$

$$X = x - x_n$$
(3.50)

Avec,

Soit,

$$x_n = \int_0^{t_1} u_1(t) \, dt + \int_{t_1}^{t_2} u_2(t) \, dt + \dots + \int_{t_n}^t u_3(t) \, dt \tag{3.51}$$

 t_i (i=1,2,...,n) représentent les temps parcourus par la zone du mélange jusqu'à la limite du tronçon de diamètres respectifs d_i (i=1,2,...n).

Pour le cas extrême(x=L), c'est-à-dire le bout final de la canalisation, sachant que :

$$L = \int_0^{t_1} u_1(t) dt + \int_{t_1}^{t_2} u_2(t) dt + \dots + \int_{t_n}^{t_0} u_3(t) dt$$
(3.52)

Et en substituant (3.51) et (3.52) dans (3.50):

$$X = \int_{t_n}^{t_0} u_n(t) \, dt - \int_{t_n}^t u_n(t) \, dt$$

Si on considère que les fluides circulent avec des vitesses moyennes dans chaque tronçon du pipe, nous pouvons écrire :

$$X = u_n(t_0 - t_n) - u_n(t - t_n) = u_n(t_0 - t)$$

Chapitre 03 Formulation analytique et approche MVEPC pour el calcul de l'interface du mélange

$$X = u_n t_0 (1 - \tau)$$
 Avec $\tau = \frac{t}{t_0}$

Où, u_n représente la vitesse dans le dernier tronçon du pipe.

En outre, selon la littérature, le coefficient de diffusion *D*est fonction de la géométrie du pipe et du nombre de Reynolds, ce qui amène à écrire :

$$D(t) = \int_0^{t_1} D_1(t) dt + \int_{t_1}^{t_2} D_2(t) dt + \dots + \int_{t_n}^t D_n(t) dt$$
(3.53)

Si on se base sur l'hypothèse d'une vitesse moyenne constante le long d'un tronçon, l'équation (3.53) s'écrit :

$$D = D_1 + D_2 + \dots + D_3 \tag{3.54}$$

D'une façon similaire au raisonnement précédent dans le cas de diffusion, on aboutira à la formule (3.43) du volume du mélange suivante :

$$\frac{V_m}{V_P} = 2 P_e^{-0.5} (Z_1 - Z_2)$$

En cas des limites symétriques on aura $Z_1 = -Z_2$ et la relation devient :

$$\frac{V_m}{V_P} = 4 \cdot Z \cdot P_e^{-0.5}$$

Avec,

$$P_e = \frac{u_n L}{D} \tag{3.55}$$

3.7 Approche MVEPC (Mixing-Volume-Equivalent-Pipe Concept) pour le calcul du volume du mélange

Au lieu de changer le diamètre et le débit de chaque segment du pipeline, la méthode de la longueur équivalente du tube (Equivalent-Tube-Length-Method) appelée aussi approche MVEPC (Mixing-Volume-Equivalent-Pipe Concept) [26, 39], peut être utilisée. Le principe est que deux pipelines différents qui transfèrent la même paire de produits sont équivalents dans le contexte des transferts de batchs, si et seulement si les volumes du mélange observés au bout final du pipeline sont les mêmes, lorsqu'ils sont calculés avec les mêmes concentrations admissibles.

Si d_1, L_1, K_1^* et d_2, L_2, K_3^* représentent respectivement le diamètre du tuyau, la longueur du tuyau et le coefficient de dispersion virtuel adimensionnel associé aux pipelines 1 et 2, sur la base de la définition et de l'équation (3.54) qui doit être satisfaite [39] :

$$K_1^* \cdot L_1 \cdot d_1^5 = K_2^* \cdot L_1^{eq} \cdot d_2^5$$
(3.56)

afin que les pipelines soient équivalents au sens des transferts de batchs.

Il est intéressant de mentionner que l'Equation (3.56) établit une relation impliquant non seulement des paramètres géométriques, mais également des propriétés cinématiques et physiques, dans la mesure où le coefficient de dispersion adimensionnel dépend de la vitesse moyenne et des viscosités cinématiques des produits transportés [39].

La figure (3.7) illustre la longueur équivalente (L_{eq}) d'un pipeline à trois segments (Fig. (3.7a)), déduite à partir des longueurs équivalentes intermédiaires des segments, 1 et 2 de longueurs équivalentes respectives, L_1^{eq} et L_2^{eq} (Fig. (3.7b)) et le segment 3 de longueur équivalente L_3^{eq} (Fig. (3.7c)).

Fig. 3. 7 Illustration de la longueur équivalente d'un pipeline à trois segments

En partant du principe de l'équation (3.56), la longueur équivalente de la conduite est déterminée à partir des longueurs équivalentes tirées par segment :

Pour le 1^{er} Segment :

 $K_1^* \cdot L_1 \cdot d_1^5 = K_2^* \cdot L_1^{eq} \cdot d_2^5$ (3.57)

$$L_1^{eq} = \frac{K_1^*}{K_2^*} \cdot \frac{d_1^5}{d_2^5} \cdot L_1$$
(3.58)

En rajoutant L_1^{eq} au deuxième segment, on aura :

 $L_2^{eq} = L_1^{eq} + L_2 (3.59)$

La longueur équivalente pour le troisième segment :

 $K_2^* \cdot L_2^{eq} \cdot d_2^5 = K_3^* \cdot L_3^{eq} \cdot d_3^5$ (3.60)

$$L_3^{eq} = \frac{K_2^*}{K_3^*} \cdot \frac{d_2^5}{d_3^5} \cdot L_2^{eq}$$
(3.61)

Chapitre 03 Formulation analytique et approche MVEPC pour el calcul de l'interface du mélange

La longueur équivalente du pipeline est exprimée finalement par l'équation (3.62):

$$L_{eq} = L_3^{eq} + L_3 \tag{3.62}$$

Le coefficient de dispersion K peut être obtenu par le calcul du coefficient de dispersion adimensionnel K^* [14, 39, 51] qui est à son tour exprimé par le coefficient de friction f.

$$K^* = \frac{K}{d.u}$$
 (3.63)

$$K^* = 3,575 \ f^{0,5} \tag{3.64}$$

Où, *f* est calculé à partir de l'équation de Haaland [27]:

$$f = \left[1.8 \log_{10}\left(\left(\frac{\varepsilon/d}{3.7}\right)^{1.11} + \frac{6.9}{Re}\right)\right]^{-2}$$
(3.65)

Le coefficient de dispersion peut être identifié graphiquement par la Fig. (1.3).

Comme :

$$\frac{V_m}{V_P} = 2 P_e^{-0.5} (Z_1 - Z_2)$$
 et $Pe = \frac{uL}{K}$

Avec *K* le coefficient de dispersion, le volume de mélange est exprimé comme suit :

$$\frac{V_m}{V_P} = 2 K^{*0.5} \cdot \left(\frac{d}{L_{eq}}\right)^{0.5} \cdot (Z_1 - Z_2)$$
(3.66)

3.8 Conclusion

Les solutions des équations de la diffusion pure et de la convection-diffusion ont été recherchées analytiquement. Les solutions obtenues ont permis d'aboutir à une formulation de calcul du volume du mélange généré entre deux fluides en contact et en écoulement séquentiel. Les relations calculées sont fonction du volume de la conduite, du nombre de Peclet, caractérisant l'importance de la diffusion, et de l'argument des concentrations de coupure, pour lesquelles les fluides ne sont plus altérés et gardent leurs caractéristiques physicochimiques acceptables.

Il a été observé que les solutions de l'équation de convection-diffusion pour les cas traités, sont identiques à celle de l'équation (1.48) décrite dans la littérature.

Des considérations sont prises en compte, telles que la variation ou la constance de la vitesse de l'écoulement des fluides ou encore le changement du diamètre le long du pipeline.

Pour uniformiser la géométrie du pipeline de diamètres variables, l'approche MVEPC a été présentée. Cette méthode stipule que deux pipelines différents qui transfèrent deux produits sont équivalents dans le sens de transport du multiproduit, si et seulement si les volumes du mélange observés à la limite finale du pipeline sont identiques, lorsqu'ils sont calculés avec les mêmes concentrations de coupure.

La considération de Taylor et Aris portant sur la constance du coefficient de diffusion et son indépendance du temps à vitesse d'écoulement constante, est adoptée.

Les solutions obtenues pour la prédiction du volume du mélange pour les différents cas de figure analysés sont résumées dans le Tableau (3.1).

Cas	Supposition	Solution	Peclet
$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$	Diffusion pure (Géométrie uniforme)	$\frac{V_m}{V_p} = 2 P_e^{-0.5} (Z_1 - Z_2)$	$Pe = \frac{u.L}{D}$
	Variation monotone de la vitesse avec diamètre constant	Avec x	$P_e = \frac{L^2}{D(t).t}$
$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial r} = D \frac{\partial^2 C}{\partial r^2}$	Vitesse constante avec variation du diamètre	$Z = \frac{1}{2\sqrt{D.t}}$	$Pe = \frac{u_n L}{D}$
	Approche MVEPC	$\frac{V_m}{V_P} = 2 K^{*0,5} \cdot \left(\frac{d}{L_{eq}}\right)^{0,5} \cdot (Z_1 - Z_2)$ Avec	$Pe = rac{u.L_{eq}}{K}$ Avec
		$K^* = 3,575 f^{0,5}$	$K = K^* \cdot d \cdot u$

Tableau 3. 1 Récapitulatif des solutions pour la prédiction du volume du mélange pour les différentes suppositions

Chapitre 04

Application du modèle analytique pour le calcul de l'interface dans le pipeline multiproduit

4.1 Introduction

Le présent chapitre est consacré à l'application du modèle analytique et l'approche MVEPC illustrés précédemment, sur différents cas de contact carburant – carburant déjà présenté dans le chapitre de l'étude expérimentale.

Le modèle mathématique est appliqué sur le pipeline multiproduit qui desserve les régions Ouest et Sud-ouest de l'Algérie en carburants.

Les volumes des mélanges longitudinaux prédits sont comparés avec les volumes expérimentaux, relevés à partir de la salle de contrôle du Terminal Arrivée du pipeline MP.

4.2 Sélection des corrélations pour le calcul du volume du mélange

De la littérature, huit corrélations empiriques du coefficient de diffusion relatives aux produits pétroliers ont été sélectionnées pour le calcul des volumes du mélange à partir des équations (3.42) et (3.66) relatives à l'approche MVEPC :

$$\frac{V_m}{V_P} = 2 P_e^{-0.5} (Z_1 - Z_2)$$

$$et \quad \frac{V_m}{V_P} = 2 K^{*0.5} \cdot \left(\frac{d}{L_{eq}}\right)^{0.5} \cdot (Z_1 - Z_2)$$

Les corrélations retenues sont :

Smith (Eq. 1.29)
$$: D = v_m \cdot \frac{(268,75 \cdot Re^{0.13} + 0.1375 \cdot Re)^2}{Re} \cdot \left(\frac{L}{d}\right)^{0.24}$$

 $Jablonskij (Eq. 1.30) : D = v_m \cdot \frac{(6,585 + 0.4925 \cdot Re)^2}{Re} \cdot \left(\frac{L}{d}\right)^{0.2} \cdot \left(\frac{\rho_1}{\rho_2}\right)^2$ $Jufin (Eq. 1.31) : D = v_m \cdot (1400 + 227 \cdot 10^{-6} \cdot Re^{1.446}) \cdot \left(\frac{L}{d}\right)^{0.2} \cdot \left(\frac{\rho_1}{\rho_2}\right)^{8.4}$ $Taylor (Eq. 1.32) : D = v_m \cdot Re^{0.875}$ $Sjenitzer(Eq. 1.33) : D = v_m \cdot 1428 \cdot Re^{0.10} \cdot \left(\frac{L}{d}\right)^{0.141}$ $Jablonskij (Eq. 1.34) : D = v_m \cdot (3000 + 60, 7 \cdot Re^{0.545})$ $(Eq. 1.55) : D = 17, 4 \cdot v_m \cdot Re^{2/3}$ $(Eq. 3.63) : K^* = \frac{K}{d.u} \quad avec \quad K^* = 3,575 \quad f^{0.5}$

Les résultats du volume du mélange sont ainsi présentés pour l'approche MVEPC en se basant sur l'équation (3.66) relative à la formule du mélange tenant compte la longueur équivalente et l'équation (3.63) relative au coefficient de dispersion adimensionnel obtenu à partir de la relation (3.64).

Les différents paramètres de calcul sont récapitulés dans les tableaux (4.1) et (4.2), et les volumes du mélange calculés et mesurés sont présentés, pour chaque corrélation, dans les tableaux (4.3-10) puis illustrés sur les figures (4.1-8).

Les erreurs relatives sont exprimées selon l'expression (4.1) [28, 52] pour faire ressortir les corrélations de bonnes approximations.

$$\% Er = \frac{V_m calculé - V_m mesuré}{V_m mesuré}$$
(4.1)

Batch	Lata-fa a a	ν_m	mMVEPC			Re			Concentrations de coupure			
N°	Interface	(Cst)	L _{eq} (m)	<i>K</i> *	Segment 1	Segment 2	Segment 3=MVEPC	erf(z1)	erf(z2)	z1	-z2	
03D19-16	GO-SCA	1,69	778326,28	0,5697	137956,38	160838,35	209938,55	0,532	-0,420	0,5132	0,3913	
07D19-16	GO-SCA	1,814	778704,11	0,5701	131216,37	153648,67	193866,94	0,526	-0,412	0,5063	0,3831	
08D19-16	SCA-GO	1,823	140713,73	0,5695	140713,73	164769,67	207898,90	0,523	-0,414	0,5028	0,3851	
01D20-16	GO-SCA	1,823	778748,49	0,5701	130526,31	152840,64	192847,40	0,516	-0,414	0,4949	0,3851	
03D20-16	GO-SCA	1,813	778911,82	0,5702	128039,41	149929,60	189173,11	0,429	-0,580	0,4006	0,5702	
08D20-16	SCA-GO	1,890	778533,92	0,5699	133922,03	156816,88	197864,44	0,475	-0,384	0,4495	0,3546	
09D20-16	GO-SCA	1,825	779607,62	0,5709	118300,35	138524,58	174784,04	0,456	-0,451	0,4291	0,4237	
08D21-16	SCA-GO	1,745	778075,63	0,5695	141710,24	165936,54	209371,21	0,380	0,614	0,3560	0,6130	

Tableau 4. 1 Résultats des paramètres de calcul du volume du mélange pour des séquences de transport

Tableau 4. 2 Coefficient de Diffusion – Cas du pipeline avec variation du diamètre

Batch	_	Coefficient de Diffusion (m²/s)							
N°	Interface –	Smith Eq. (1.29)	Jablonskij Eq. (1.30)	Jufin Eq. (1.31)	Taylor Eq. (1.32)	Sjenitzer Eq. (1.33)	Jablonskij Eq. (1.34)	Eq. (1.55)	
03D19-16	GO-SCA	0,3604	6,2817	1,5137	0,2045	0,1358	0,2422	0,2844	
07D19-16	GO-SCA	0,3255	5,6812	1,3096	0,1855	0,1430	0,2356	0,2685	
08D19-16	SCA-GO	0,3654	6,4759	1,5343	0,2077	0,1455	0,2522	0,2930	
01D20-16	GO-SCA	0,3381	5,9367	1,3790	0,1925	0,1442	0,2413	0,2765	
03D20-16	GO-SCA	0,3321	5,4251	1,2564	0,1892	0,1433	0,2383	0,2725	
08D20-16	SCA-GO	0,3840	7,2943	1,7345	0,2182	0,1510	0,2635	0,3068	
09D20-16	GO-SCA	0,3167	5,7375	1,3125	0,1806	0,1433	0,2326	0,2634	
08D21-16	SCA-GO	0,3511	5,9505	1,4113	0,1996	0,1393	0,2419	0,2813	

		011	V	Equation	(1.29)
Batch N°	Interface	Q ν (m ³ /h)	(m ³)	V _m (m ³)	%Er
03D19-16	GO-SCA	220,000	16,867	19,75	17,1%
07D19-16	GO-SCA	194,820	15,964	19,62	22,9%
08D19-16	SCA-GO	221,580	15,757	19,45	23,4%
01D20-16	GO-SCA	203,126	17,209	19,37	12,6%
03D20-16	GO-SCA	199,238	17,157	21,38	24,6%
08D20-16	SCA-GO	233,186	14,898	17,60	18,1%
09D20-16	GO-SCA	188,739	14,418	18,85	30,7%
08D21-16	SCA-GO	215,959	18,476	21,23	14,9%
				%AEr	20,5%

Tableau 4. 3 Volumes du mélange prédits (Eq. 1.29) et mesurés

Fig. 4. 1 Volumes du mélange prédits (Eq. 1.29) et mesurés

La corrélation de Smith présentée par l'équation (1.29) a révélé des erreurs relatives comprises entre 12.6 à 30.7%. Elle surévalue le volume du mélange avec une erreur relative moyenne de 20.5%. Les écarts entre les volumes expérimentaux et ceux calculés sont relativement constants, dont les allures des courbes sont pratiquement semblables.

		012	VmFam	Equation	ı (1.30)
Batch N°	Interface	Q <i>V</i> (m³/h)	(m ³)	<i>V_m</i> (m ³)	%Er
03D19-16	GO-SCA	220,000	16,867	82,46	388,9%
07D19-16	GO-SCA	194,820	15,964	81,94	413,3%
08D19-16	SCA-GO	221,580	15,757	81,90	419,8%
01D20-16	GO-SCA	203,126	17,209	81,17	371,7%
03D20-16	GO-SCA	199,238	17,157	86,43	403,8%
08D20-16	SCA-GO	233,186	14,898	76,73	415,0%
09D20-16	GO-SCA	188,739	14,418	80,22	456,4%
08D21-16	SCA-GO	215,959	18,476	87,38	372,9%
				%AEr	405,2%

Tableau 4. 4 Volumes du mélange prédits (Eq. 1.30) et mesurés

Fig. 4. 2 Volumes du mélange prédits (Eq. 1.30) et mesurés

La corrélation de Jablonskij présentée par l'équation (1.30) a montré des erreurs relatives comprises entre 371.7 à 456.4%. Elle a surestimé considérablement le volume du mélange avec une erreur relative moyenne de 405.2%. Toutefois, les écarts entre les volumes expérimentaux et calculés sont relativement constants et les allures des courbes sont pratiquement semblables.

		Ov	V	Equation	n (1.31)
Batch N°	Interface	Q ν (m³/h)	(m ³)	<i>V_m</i> (m ³)	%Er
03D19-16	GO-SCA	220,000	16,867	40,48	140,0%
07D19-16	GO-SCA	194,820	15,964	39,34	146,4%
08D19-16	SCA-GO	221,580	15,757	39,86	153,0%
01D20-16	GO-SCA	203,126	17,209	39,12	127,3%
03D20-16	GO-SCA	199,238	17,157	41,59	142,4%
08D20-16	SCA-GO	233,186	14,898	37,42	151,2%
09D20-16	GO-SCA	188,739	14,418	38,37	166,1%
08D21-16	SCA-GO	215,959	18,476	42,56	130,3%
				%AEr	144,6%

Tableau 4. 5 Volumes du mélange prédits (Eq. 1.31) et mesurés

Fig. 4. 3 Volumes du mélange prédits (Eq. 1.31) et mesurés

La corrélation de Jufin présentée par l'équation (1.31) a présenté des erreurs relatives comprises entre 127.3 à 166.1%. Elle a surévalué d'une façon remarquable le volume du mélange avec une erreur relative moyenne de 144.6%. Néanmoins, les écarts entre les volumes expérimentaux et calculés sont relativement constants et les allures des courbes sont pratiquement semblables.

		012	V	Equation	ı (1.32)
Batch N°	Interface	Q ν (m ³ /h)	(m ³)	<i>V_m</i> (m ³)	%Er
03D19-16	GO-SCA	220,000	16,867	14,88	-11,8%
07D19-16	GO-SCA	194,820	15,964	14,81	-7,2%
08D19-16	SCA-GO	221,580	15,757	14,67	-6,9%
01D20-16	GO-SCA	203,126	17,209	14,62	-15,0%
03D20-16	GO-SCA	199,238	17,157	16,14	-5,9%
08D20-16	SCA-GO	233,186	14,898	13,27	-10,9%
09D20-16	GO-SCA	188,739	14,418	14,23	-1,3%
08D21-16	SCA-GO	215,959	18,476	16,00	-13,4%
				%AEr	-9,1%

Tableau 4. 6 Volumes du mélange prédits (Eq. 1.32) et mesurés

Fig. 4. 4 Volumes du mélange prédits (Eq. 1.32) et mesurés

La corrélation de Taylor présentée par l'équation (1.32) a révélé des erreurs relatives comprises entre -15.3 à -1.3%. Elle a sous-estimé le volume du mélange avec une erreur relative moyenne de -9.1%. Les allures des courbes sont plus au moins semblables.

		012	V	Equatior	n (1.33)
Batch N°	Interface	Qv (m ³ /h)	(m ³)	V _m (m ³)	%Er
03D19-16	GO-SCA	220,000	16,867	12,13	-28,1%
07D19-16	GO-SCA	194,820	15,964	13,00	-18,6%
08D19-16	SCA-GO	221,580	15,757	12,28	-22,1%
01D20-16	GO-SCA	203,126	17,209	12,65	-26,5%
03D20-16	GO-SCA	199,238	17,157	14,04	-18,2%
08D20-16	SCA-GO	233,186	14,898	11,04	-25,9%
09D20-16	GO-SCA	188,739	14,418	12,68	-12,1%
08D21-16	SCA-GO	215,959	18,476	13,37	-27,6%
				%AEr	-22,4%

Tableau 4.7 Volumes du mélange prédits (Eq. 1.33) et mesurés

Fig. 4. 5 Volumes du mélange prédits (Eq. 1.33) et mesurés

La corrélation de Sjenitzer présentée par l'équation (1.33) a illustré des erreurs relatives comprises entre -28.1 à -12.1%. Elle a abaissé le volume du mélange avec une erreur relative moyenne de -22.4%. Les allures des courbes sont presque semblables.

		012	V	Equation	(1.34)
Batch N°	Interface	Q v (m ³ /h)	(m ³)	<i>V_m</i> (m ³)	%Er
03D19-16	GO-SCA	220,000	16,867	16,19	-4,0%
07D19-16	GO-SCA	194,820	15,964	16,69	4,5%
08D19-16	SCA-GO	221,580	15,757	16,16	2,6%
01D20-16	GO-SCA	203,126	17,209	16,36	-4,9%
03D20-16	GO-SCA	199,238	17,157	18,11	5,6%
08D20-16	SCA-GO	233,186	14,898	14,58	-2,1%
09D20-16	GO-SCA	188,739	14,418	16,15	12,0%
08D21-16	SCA-GO	215,959	18,476	17,62	-4,6%
				%AEr	1,1%

Tableau 4.8 Volumes du mélange prédits (Eq. 1.34) et mesurés

Fig. 4. 6 Volumes du mélange prédits (Eq. 1.34) et mesurés

La corrélation de Jablonskij présentée par l'équation (1.34) a révélé des erreurs relatives comprises entre -4.9 à 12.0%. Elle a présenté une bonne approximation de calcul du volume du mélange avec une erreur relative moyenne de 1.1%.

		012	V	Equation	(1.55)
Batch N°	Interface	Q ν (m³/h)	(m ³)	<i>V_m</i> (m ³)	%Er
03D19-16	GO-SCA	220,000	16,867	17,55	4,1%
07D19-16	GO-SCA	194,820	15,964	17,81	11,6%
08D19-16	SCA-GO	221,580	15,757	17,42	10,6%
01D20-16	GO-SCA	203,126	17,209	17,52	1,8%
03D20-16	GO-SCA	199,238	17,157	19,37	12,9%
08D20-16	SCA-GO	233,186	14,898	15,74	5,7%
09D20-16	GO-SCA	188,739	14,418	17,19	19,2%
08D21-16	SCA-GO	215,959	18,476	19,00	2,8%
				%AEr	8,6%

Tableau 4. 9 Volumes du mélange prédits (Eq. 1.55) et mesurés

Fig. 4. 7 Volumes du mélange prédits (Eq. 1.55) et mesurés

La corrélation présentée par l'équation (1.55) a donné des erreurs relatives comprises entre 1.8 à 19.2%. Elle a présenté une approximation de calcul du volume du mélange acceptable avec une erreur relative moyenne de 8.6%.

		012	Vmrm	MVE	EPC
Batch N°	Interface	Q <i>v</i> (m ³ /h)	(m ³)	<i>V_m</i> (m ³)	%Er
03D19-16	GO-SCA	220,000	16,867	18,26	8,3%
07D19-16	GO-SCA	194,820	15,964	18,00	12,8%
08D19-16	SCA-GO	221,580	15,757	17,94	13,9%
01D20-16	GO-SCA	203,126	17,209	17,80	3,4%
03D20-16	GO-SCA	199,238	17,157	19,75	15,1%
08D20-16	SCA-GO	233,186	14,898	16,24	9,0%
09D20-16	GO-SCA	188,739	14,418	17,26	19,7%
08D21-16	SCA-GO	215,959	18,476	19,58	6,0%
				%AEr	11,0%

Tableau 4. 10 Volumes du mélange prédits (MVEPC) et mesurés

Fig. 4. 8 Volumes du mélange prédits (MVEPC) et mesurés

La corrélation issue de l'approche MVEPC a révélé des erreurs relatives comprises entre 3.4 à 19.7%. Elle a présenté une approximation de calcul du volume du mélange acceptable avec une erreur relative moyenne de 11.0%. Cette corrélation qui a simplifié la géométrie de conduite à diamètre variable et le calcul du mélange demeure plus au moins acceptable, vue l'erreur moyenne. Les allures des courbes sont plus au moins semblables.

4.3 Effet de quelques paramètres sur l'évolution de la zone du mélange

4.3.1 Effet de la composition du mélange

L'influence de la composition du mélange est étudiée uniquement sur les corrélations qui ont données des résultats en bon accord avec l'expérience, à savoir :

- L'équation (1.32) basée sur le modèle de Taylor (%AEr=9,1%).
- L'équation (1.34) basée sur le modèle de Jablonskij (%AEr=1,1%).
- L'équation basée sur la corrélation (1.55) (%AEr=1,1%).
- L'équation basée sur l'approche MVEPC (%AEr=11%).

Trois cas sont étudiés :

- 1. Mesure expérimentale de la viscosité du mélange de chaque échantillon prélevé en ligne (Fig. (2.9)).
- 2. Distillation de chaque échantillon du mélange pour déterminer sa composition (%*A* et %B dans le mélange).

Calcul de la viscosité du mélange à partir de l'équation (2.7) tenant compte des fractions enregistrées,

Hypothèse d'égalité des fractions des constituants A et B dans le mélange.
 La viscosité du mélange est ainsi calculée par l'équation (2.7).

Les paramètres de calcul utilisés dans la prédiction des volumes du mélange et les résultats des mélanges issus des différentes corrélations sont récapitulés dans les tableaux (4.11-16).

L'effet de la viscosité du mélange est illustré sur les figures (4.9-12).

Potob		MVEPC			Re		Concentrations de coupure				
Batch N°	Interface	ν _m (Cst)	L _{eq} (m)	K *	Segment 1	Segment 2	Segment 3 = MVEPC	erf(z1)	erf(z2)	z1	-z2
17D24-13	SCA-GO	1,471	776694,83	0,5683	170731,95	199919,70	252249,63	0,633	-0,256	0,6691	0,2309
19D24-13	SCA-GO	1,860	778695,37	0,5700	131353,05	153808,72	194068,88	0,500	-0,303	0,4994	0,2753
21D24-13	GO-SCA	1,964	779457,12	0,5708	120297,52	140863,17	177734,77	0,434	0,500	0,4058	0,3209
23D24-13	SCA-GO	1,792	778715,46	0,5701	131014,76	153412,59	193569,06	0,429	-0,362	0,4216	0,3327
27D24-13	SCA-GO	1,800	778569,94	0,5699	133328,62	156122,02	196987,70	0,325	-0,618	0,3199	0,6182
07D8-14	GO-SCA	2,038	779990,07	0,5713	113470,73	132869,30	167648,47	0,188	-0,729	0,1682	0,7784
03D9-14	GO-SCA	1,529	777657,54	0,5691	149530,58	175093,81	220925,45	0,284	-0,497	0,2573	0,4736
10D9-14	SCA-GO	1,519	777552,40	0,5690	151639,78	177563,60	224041,71	0,180	-0,719	0,1609	0,7623
04D10-14	GO-SCA	1,285	776198,53	0,5678	183903,91	215343,50	271710,68	0,215	-0,644	0,1929	0,6527
03D11-14	SCA-GO	1,862	775349,16	0,5671	126511,60	148139,60	186915,84	0,409	-0,692	0,3800	0,7208
01D12-14	SCA-GO	1,893	779251,42	0,5706	123103,18	144148,48	181880,03	0,465	-0,431	0,4387	0,4027
03D12-14	SCA-GO	1,810	778969,44	0,5703	127155,83	148893,96	187867,66	0,284	-0,671	0,2573	0,6902

Tableau 4. 11 Paramètres de calcul pour l'étude de l'effet de la composition du mélange

Batch		Coefficie	n (m²/s)	
N°	Interface -	Taylor	Jablonskij	
		Eq. (1.32)	Eq. (1.34)	Eq. (1.55)
17D24-13	SCA-GO	0,1981	0,2244	0,2686
19D24-13	SCA-GO	0,1991	0,2482	0,2851
21D24-13	GO-SCA	0,1946	0,2505	0,2838
23D24-13	SCA-GO	0,1913	0,2387	0,2741
27D24-13	SCA-GO	0,1952	0,2419	0,2786
07D8-14	GO-SCA	0,1919	0,2524	0,2833
03D9-14	GO-SCA	0,1834	0,2179	0,2555
10D9-14	SCA-GO	0,1843	0,2180	0,2561
04D10-14	GO-SCA	0,1847	0,2036	0,2465
03D11-14	SCA-GO	0,1928	0,2437	0,2783
01D12-14	SCA-GO	0,1914	0,2443	0,2778
03D12-14	SCA-GO	0,1883	0,2374	0,2714

Tableau 4. 12 Coefficients de diffusion (Pipeline avec variation du diamètre)pour l'étude de l'effet de la composition du mélange

		0	V _m (m ³)	- Taylor Eq.	(1.32)
Batch N°	ch N° Interface	Qv	Pour ν_m ca	Pour	
		(m³/h)	Composition Expér.	% égal (50/50)	ν_m mesurée
17D24-13	SCA-GO	216,4	14,69	14,83	14,33
19D24-13	SCA-GO	210,5		12,86	
21D24-13	GO-SCA	203,5	12,13	12,09	11,74
23D24-13	SCA-GO	202,2	12,52	12,58	12,14
27D24-13	SCA-GO	206,7	15,55	15,50	15,17
07D8-14	GO-SCA	199,2	15,85	15,71	15,71
03D9-14	GO-SCA	197,0	12,03	12,02	11,87
10D9-14	SCA-GO	198,4	15,18	15,15	14,82
04D10-14	GO-SCA	203,6	13,74	13,91	
03D11-14	SCA-GO	202,9	18,31	18,29	17,73
01D12-14	SCA-GO	200,7	14,02	13,98	13,56
03D12-14	SCA-GO	198,2	15,75	15,74	15,41

Tableau 4. 13 Effet de la composition du mélange sur l'interface - Taylor Eq. (1.32)

Fig. 4. 9 Effet de la composition du mélange – Volume prédit par Taylor Eq. (1.32)

		0	$V_m(m^3)$ –J	ablonskij Ec	J. (1.34)
Batch N°	tch N° Interface	Qv	Pour ν_m ca	Pour	
		(m³/h)	Composition Expér.	% égal (50/50)	ν _m mesurée
17D24-13	SCA-GO	216,4	15,64	16,23	14,19
19D24-13	SCA-GO	210,5		14,35	
21D24-13	GO-SCA	203,5	13,76	13,58	12,11
23D24-13	SCA-GO	202,2	13,98	14,23	12,41
27D24-13	SCA-GO	206,7	17,31	17,11	15,72
07D8-14	GO-SCA	199,2	18,18	17,53	17,56
03D9-14	GO-SCA	197,0	13,12	13,06	12,44
10D9-14	SCA-GO	198,4	16,51	16,38	15,04
04D10-14	GO-SCA	203,6	14,43	15,14	
03D11-14	SCA-GO	202,9	20,58	20,50	18,17
01D12-14	SCA-GO	200,7	15,84	15,60	13,90
03D12-14	SCA-GO	198,2	17,69	17,62	16,23

Tableau 4. 14 Effet de la composition du mélange sur l'interface – Jablonskij Eq. (1.34)

Fig. 4. 10 Effet de la composition du mélange – Volume prédit par Jablonskij Eq. (1.34)

		0	$V_m(m^3)$)- Equation (n (1.55)		
Batch N°	Interface	Qv	Pour ν_m ca	Dour			
		(m³/h)	Composition Expér.	% égal (50/50)	ν _m mesurée		
17D24-13	SCA-GO	216,4	17,11	17,55	16,00		
19D24-13	SCA-GO	210,5		15,38			
21D24-13	GO-SCA	203,5	14,64	14,52	13,43		
23D24-13	SCA-GO	202,2	14,98	15,16	13,81		
27D24-13	SCA-GO	206,7	18,58	18,43	17,39		
07D8-14	GO-SCA	199,2	19,26	18,79	18,81		
03D9-14	GO-SCA	197,0	14,20	14,16	13,70		
10D9-14	SCA-GO	198,4	17,90	17,80	16,79		
04D10-14	GO-SCA	203,6	15,87	16,40			
03D11-14	SCA-GO	202,9	21,99	21,93	20,20		
01D12-14	SCA-GO	200,7	16,89	16,76	15,45		
03D12-14	SCA-GO	198,2	18,92	18,86	17,83		

Tableau 4. 15 Effet de la composition du mélange sur l'interface - Eq. (1.55)

Fig. 4. 11 Effet de la composition du mélange – Volume prédit par l'Equation (1.55)

		0	$\boldsymbol{V}_{\boldsymbol{m}}(\mathrm{m}^3)$	- Approche N	MVEPC
Batch N°	Interface	Qv	Pour ν_m ca	Pour	
		(m³/n)	Composition Expér.	% égal (50/50)	ν_m mesurée
17D24-13	SCA-GO	216,4	17,52	17,55	17,46
19D24-13	SCA-GO	210,5		15,21	
21D24-13	GO-SCA	203,5	14,71	14,70	14,63
23D24-13	SCA-GO	202,2	14,83	14,84	14,76
27D24-13	SCA-GO	206,7	18,49	18,48	18,42
07D8-14	GO-SCA	199,2	19,18	19,14	19,14
03D9-14	GO-SCA	197,0	14,76	14,75	14,72
10D9-14	SCA-GO	198,4	18,64	18,63	18,57
04D10-14	GO-SCA	203,6	17,04	17,07	
03D11-14	SCA-GO	202,9	22,27	22,26	22,15
01D12-14	SCA-GO	200,7	16,30	16,29	16,21
03D12-14	SCA-GO	198,2	19,17	19,16	19,09

Tableau 4. 16 Effet de la composition du mélange sur l'interface – Approche MVEPC

Fig. 4. 12 Effet de la composition du mélange – Volume prédit par l'approche MVEPC

4.3.2 Effet de l'arrêt de pompage

L'arrêt de pompage dans le transport du multiproduit pétrolier a été évoqué par quelques investigateurs.

(Yin-ping Zhai, Shu-li Wang et Yong-jia Han, 2009) ont étudié numériquement l'effet du champ gravitationnel et le transfert de masse sur l'interface lors des arrêts. L'étude est menée sur une conduite de 20m de long pour un contact Gasoil-Essence. Le logiciel commercial PHOENICS3.6 a été utilisé comme plateforme de simulation, dont les résultats ont montré que l'arrêt de pompage influence la courbe de concentration en fonction du temps d'arrêt et amplifie le volume du mélange(Fig. 4.13) [53].

Fig. 4. 13 Courbes de concentration pour différents temps d'arrêt

(Renan Martins Baptista, Felipe Bastos de Freitas Rachid et José Henrique Carneiro de Araujo,2001) ont proposé un modèle, dont les résultats obtenus montrent que le volume de mélange peut augmenter jusqu'à 9% par rapport à celui observé dans un transfert continu si la ligne est arrêtée plus de trois fois pendant le transfert [54].

(Gong Jing, Zheng Chengzhen et Qinqin, 2008) ont fourni un système de calcul et d'analyse du volume contaminé causé par l'arrêt de pompage, en développant un modèle dont leurs résultats de simulation ont été comparés à ceux du pipeline multiproduit Lan-Cheng-Yu (LCYPP) [6].

(Mu Ximao, Guo Yueping et al., 2001) ont présenté une méthode de calcul de l'interface sur l'oléoduc Songying-Huangdao sous la condition d'arrêt temporaire du pipeline, dans le but d'opérer les changements opérationnels pour réduire au minimum le volume contaminé [55].

L'arrêt de pompage fait donc partie des sujets qui méritent d'être étudier. La corrélation de Jablonskij présentée par l'équation (1.34), l'équation (1.55) et l'approche MVEPC sont sélectionnées pour déceler le comportement du mélange sur des séquences de transport du multiproduit sous des conditions d'arrêt de pompage.

Les tableaux (4.17-19) et la Fig. (4.14) récapitulent les différents paramètres de calcul et les volumes du mélange prédits comparés aux volumes expérimentaux.

Batch	Interfoco	ν_m	MVEI	PC		Re		Concentrations de coupure			
N°	Interface	(Cst)	$L_{eq}(m)$	K *	Segment 1	Segment 2	Segment 3=MVEPC	erf(z1)	erf(z2)	z1	-z2
17D24-13	SCA-GO	1,471	776694,83	0,5683	170731,95	199919,70	252249,63	0,633	-0,256	0,6691	0,2309
10D9-14	SCA-GO	1,519	777552,40	0,5690	151639,78	177563,60	224041,71	0,180	-0,719	0,1609	0,7623
05D20-16	GO-SP	1,89	778827,35	0,5702	129315,32	151422,62	191058,21	0,448	-0,430	0,4206	0,4017
06D20-16	SCA-GO	1,89	779065,26	0,5704	125776,46	147278,78	185829,70	0,425	-0,482	0,3965	0,4571
02D21-16	SCA-GO	1,79	778133,14	0,5695	140690,19	164742,10	207864,13	0,375	-0,515	0,3456	0,4938

 Tableau 4. 17 Résultats des paramètres de calcul du volume du mélange pour l'étude de l'effet de l'arrêt de pompage

Tableau 4. 18 Volume du mélange prédit et expérimentaux sur des séquences de transport avec arrêt de pompage

Batch				Coefficie	ent de Diffusion	(m^2/s)		
N°	• Interface Smith Eq. (1.29)		Jablonskij Eq. (1.30)	Jufin Eq. (1.31)	Taylor Eq. (1.32)	Sjenitzer Eq. (1.33)	Jablonskij Eq. (1.34)	Eq. (1.55)
17D24-13	SCA-GO	0,3506	6,5283	1,6258	0,1981	0,1197	0,2244	0,2686
10D9-14	SCA-GO	0,3249	6,0710	1,4643	0,1843	0,1221	0,2180	0,2561
05D20-16	GO-SP	0,3495	5,6308	1,3079	0,1990	0,1491	0,2495	0,2859
06D20-16	SCA-GO	0,3564	6,3831	1,4884	0,2029	0,1500	0,2527	0,2904
02D21-16	SCA-GO	0,3420	6,2443	1,4611	0,1946	0,1421	0,2410	0,2777

Patch Nº	Intorfaco	V _{mExp}	Ta Eq. (ylor (1.32)	Jabl Eq. (onskij (1.34)	Eq.	(1.55)	MV	VEPC	
Daten N	match N Interface (m ³)		(m ³)	V _m (m ³)	%Er	V _m (m ³)	%Er	V _m (m ³)	%Er	V _m (m ³)	%Er
17D24-13	SCA-GO	34,90	14,33	-58,9%	14,19	-59,3%	16,00	-54,2%	17,46	-50,0%	
10D9-14	SCA-GO	34,218	15,15	-55,7%	16,38	-52,1%	17,80	-48,0%	18,63	-45,6%	
05D20-16	GO-SP	40,717	13,66	-66,5%	15,29	-62,4%	16,37	-59,8%	16,63	-59,2%	
06D20-16	SCA-GO	34,094	14,16	-58,5%	15,80	-53,7%	16,94	-50,3%	17,26	-49,4%	
02D21-16	SCA-GO	38,037	11,46	-69,9%	12,75	-66,5%	13,68	-64,0%	16,97	-55,4%	
			%AEr	-61,9%	%AEr	-58,8%	%AEr	-55,3%	%AEr	-51,9%	

Tableau 4. 19 Volumes du mélange prédits comparés à l'expérimental avec arrêt de pompage

Fig. 4. 14 Effet de l'arrêt de pompage sur l'interface du mélange

4.4 Interprétation des résultats

4.4.1 Degré d'approximation des corrélations étudiées

Le tableau (4.20) décrit, à partir des tableaux (4, 3-10), la moyenne des erreurs relatives des corrélations testées sur des séquences de transfert du multiproduit pétrolier.

Tableau 4. 20 Erreurs relatives des différentes corrélations

de prédiction du volume du mélange							
%AEr							
20.5%							
405.2%							
144.6%							
-9.1%							
-20.31%							
1.1%							
10.9%							
11%							

On voit clairement que la meilleure approximation est obtenue avec la relation de Jablonskij (équation (1.34)) avec une erreur relative moyenne de 1.1%. En revanche, l'approche MVEPC présente une approximation plus au moins acceptable mais demeure moins précise par rapport à celle de Jablonskij (1.34), qui est plus adaptée aux géométries variables.

Donc, pour une géométrie variable du pipeline, il est vivement recommandé d'utiliser la corrélation de Jablonskij. Néanmoins, il est toujours possible d'utiliser l'équation (1.55) et l'approche MVEPC en admettant une surestimation du volume d'environ 11%.

4.4.2 Effet de la composition du mélange

Dans les conditions d'exploitation du pipeline multiproduit, les figures (4,9-12) montrent clairement que la composition du mélange n'influence pratiquement pas sur le calcul du volume du mélange. On peut donc se baser sur une composition identique (c.-à-d. 50% ~ 50%) du mélange pour le calcul des volumes de mélange.

En outre, toutes les hypothèses stipulant la condition initiale $C_0=0.5$ dans la résolution des équations de convection-diffusion restent valides.

4.4.3 Effet de l'arrêt de pompage

L'effet de l'arrêt de pompage est testé sur cinq séquences de transport du multiproduit pétrolier avec des temps d'arrêt différents d'une séquence à autre, et cela selon les exigences d'exploitation qui ont conditionné ces arrêts.

Pour des raisons de comparaison des erreurs relatives moyennes délivrées par les différentes corrélations, le tableau (4.21) résume ces erreurs dans les conditions normales de fonctionnement et d'arrêts de pompage, dont les résultats (Fig. 4.13) révèlent clairement une divergence importante des volumes prédits et expérimentaux. Ceci peut être expliqué par l'amorçage du mécanisme de diffusion pure décrit par l'équation (3.7). En plus et vu le profil altimétrique de la canalisation MP (voir Fig. (2.2)), la position de l'interface lors de l'arrêt de pompage peut être localisée sur des tronçons inclinés (pentes) du pipeline, ce qui permet d'accélérer la diffusion en favorisant plus de mélange sous l'effet de la gravitation et de la différence des densités.

Corrélation	%	AEr	Taux d'influence
	Conditions normales	Arrêt de pompage	
Taylor - Eq. (1.32)	-9.1%	-61,9%	-52.8%
Jablonskij - Eq. (1.34)	1.1%	-58,8%	-57.7%
Eq. (1.55)	10.9%	-55,3%	-44.4%
MVEPC	11%	-51,9%	-40.9%

Tableau 4. 21 Comparaison des erreurs relatives dans les conditions normaleset dans celles de l'arrêt de pompage

4.5 Conclusion

Les résultats obtenus montrent clairement, que la corrélation empirique (1.34) de Jablonskij présente la bonne approximation de calcul des volumes du mélange comparés aux volumes expérimentaux, avec une erreur relative de 1.1%. Le reste des corrélations ont présentées des erreurs relatives comprises entre -20.31% à 405.2%.

Néanmoins, l'analyse des résultats théoriques et expérimentaux révèle des tendances de courbes similaires (Courbes de mêmes allures), ce qui incite à faire appel à des notions de l'économétrie, pour tenter l'ajustement de ces corrélations par les techniques de régression et récupérer le maximum d'elles, pour qu'elles soient servies dans le calcul précis des volumes du mélange.

Chapitre 05

Amélioration de liaison entre le volume expérimental et prédit par la régression des corrélations

5.1 Introduction

Dans le but d'éviter toute coïncidence et passer aux ajustements des corrélations par les techniques de régression, d'autres expériences sont menées pour étendre d'avantage la comparaison de la prédiction des corrélations dans le calcul du mélange avec les résultats du terrain et explorer par la suite le comportement de ces corrélations (L'allure des courbes des volumes calculés et expérimentaux).

5.2 Calcul et comparaison des volumes prédits et expérimentaux avant régression

A l'instar des courbes des volumes prédits comparés aux volumes expérimentaux du chapitre précédent, il faut noter que les courbes de l'ensemble des corrélations présentent la même allure que celle obtenue à partir des mesures expérimentales. Chaque corrélation est caractérisée par son degré d'approximation que nous avons exprimé par une erreur relative (%).

Dans ce chapitre, nous proposons une amélioration de ces corrélations afin d'obtenir une meilleure prédiction du volume de mélange.

Pour cela, on utilise une régression linéaire entre les volumes du mélange prédits pour chaque corrélation et les volumes expérimentaux pour quatorze séquences de transfert du multiproduit pétrolier dans la canalisation MP.

Les paramètres de calcul du volume du mélange sur des séquences de transport dans le pipeline multiproduit ainsi que le volume du mélange prédit par chaque corrélation sont présentés respectivement dans les tableaux (5.1), (5.2) et (5.3).

Les volumes de mélange issus des différentes corrélations avant régression comparés aux volumes expérimentaux sont montrés dans les figures (5,1-8).

			MVEF	PC		Re			Conc	centration	ns de couj	pure
Batch N°	Interface	ν _m (Cst)	<i>L_{eq}</i> (m)	<i>K</i> *	Segment 1	Segment 2	Segment 3 = MVEPC	D (m ² /s)	erf(z1)	erf(z2)	z1	-z2
08D13-16	GO-SP	1,86	778771,16	0,5701	130176,07	152430,53	192329,94		0,345	-0,503	0,3160	0,4803
01D14-16	GO-SCA	2,04	779525,92	0,5708	119377,48	139785,85	176375,45		0,666	-0,206	0,6831	0,1846
09D14-16	GO-SCA	1,91	779923,36	0,5703	127866,88	149726,56	188918,19		0,428	-0,313	0,3996	0,2849
02D15-16	GO-SCA	1,89	778291,62	0,5697	137944,41	161526,91	203807,35		0,418	-0,335	0,3892	0,3062
05D15-16	SCA-GO	1,90	778483,53	0,5699	134741,79	157776,78	199057,60		0,420	-0,333	0,3913	0,3042
10D15-16	GO-SCA	1,85	778854,36	0,5702	128905,03	150942,19	190452,03		0,385	-0,432	0,3556	0,4038
11D15-16	SCA-GO	1,85	778786,18	0,5701	129945,05	152160,01	191988,61		0,389	-0,430	0,3597	0,4017
07D19-16	GO-SCA	1,81	778704,11	0,5701	131216,37	153648,67	193866,94		0,517	-0,412	0,4960	0,3831
08D19-16	SCA-GO	1,82	778131,81	0,5695	140713,73	164769,67	207898,90		0,513	-0,414	0,4915	0,3851
01D20-16	GO-SCA	1,82	778748,49	0,5701	130526,31	152840,64	192847,40		0,513	-0,414	0,4915	0,3851
03D20-16	GO-SCA	1,81	778911,82	0,5702	128039,41	149929,60	189173,11		0,424	-0,588	0,3954	0,5801
08D20-16	SCA-GO	1,89	778533,92	0,5699	133922,03	156816,88	197864,44		0,462	-0,402	0,4355	0,3728
08D21-16	SCA-GO	1,74	778075,63	0,5695	141710,24	165936,54	209371,21		0,365	-0,619	0,3357	0,6195
03D11-14	SCA-GO	1,862	775349,16	0,5671	126511,60	148139,60	186915,84		0,409	-0,692	0,3800	0,7208

ableau 5.1 Résultats des paramètres de calcul des volume	es du mélange (sans régression) sur des séquences de transport
--	--

Batch N°	Interface [–]	Coefficient de diffusion (m ² /s)								
		Smith Eq. (1.29)	Jablonskij Eq. (1.30)	Jufin Eq. (1.31)	Taylor Eq. (1.32)	Sjenitzer Eq. (1.33)	Jablonskij Eq. (1.34)	Eq. (1.55)		
08D13-16	GO-SP	0,3476	5,8854	1,3690	0,1979	0,1475	0,2475	0,2839		
01D14-16	GO-SCA	0,3526	6,4343	1,4704	0,2010	0,1603	0,2595	0,2936		
09D14-16	GO-SCA	0,3499	7,7217	1,7892	0,1993	0,1507	0,2509	0,2870		
02D15-16	GO-SCA	0,3719	8,1266	1,9152	0,2115	0,1508	0,2590	0,2998		
05D15-16	SCA-GO	0,3645	7,9449	1,8623	0,2074	0,1506	0,2561	0,2954		
10D15-16	GO-SCA	0,3413	6,8081	1,5803	0,1944	0,1460	0,2439	0,2794		
11D15-16	SCA-GO	0,3443	6,8512	1,5930	0,1961	0,1464	0,2453	0,2814		
07D19-16	GO-SCA	0,3406	5,9780	1,3930	0,1939	0,1437	0,2418	0,2777		
08D19-16	SCA-GO	0,3646	6,4590	1,5293	0,2073	0,1455	0,2519	0,2925		
01D20-16	GO-SCA	0,3408	5,9914	1,3945	0,1941	0,1444	0,2424	0,2782		
03D20-16	GO-SCA	0,3332	5,4458	1,2623	0,1898	0,1433	0,2388	0,2732		
08D20-16	SCA-GO	0,3615	6,8193	1,5962	0,2057	0,1500	0,2546	0,2934		
08D21-16	SCA-GO	0,3511	5,9505	1,4113	0,1996	0,1393	0,2419	0,2813		
03D11-14	SCA-GO	0,3385	5,1688	1,1950	0,1928	0,1470	0,2437	0,2783		

Tableau 5. 2 Coefficients de diffusion – cas du pipeline avec variation du diamètre

Batch N°	Interface	<i>V_{mExp}</i> (m ³)	$V_m(m^3)$							
			Smith Eq. (1.29)	Jablonskij Eq. (1.30)	Jufin Eq. (1.31)	Taylor Eq. (1.32)	Sjenitzer Eq. (1.33)	Jablonskij Eq. (1.34)	Eq. (1.55)	MVEPC
08D13-16	GO-SP	13,537	17,52	72,10	34,77	13,22	11,42	14,78	15,83	16,10
01D14-16	GO-SCA	15,897	19,18	81,95	39,17	14,48	12,93	16,46	17,51	17,56
09D14-16	GO-SCA	12,000	15,08	70,82	34,09	11,38	9,89	12,76	13,65	13,85
02D15-16	GO-SCA	12,531	15,25	71,30	34,61	11,50	9,71	12,73	13,70	14,05
05D15-16	SCA-GO	12,841	15,27	71,31	34,52	11,52	9,82	12,80	13,75	14,05
10D15-16	GO-SCA	13,806	16,72	74,67	35,97	12,62	10,93	14,13	15,13	15,37
11D15-16	SCA-GO	14,000	16,75	74,74	36,04	12,64	10,92	14,14	15,15	15,40
07D19-16	GO-SCA	15,685	19,33	80,99	39,10	14,59	12,56	16,29	17,46	17,78
08D19-16	SCA-GO	16,000	19,21	80,85	39,34	14,48	12,13	15,97	17,21	17,71
01D20-16	GO-SCA	16,112	19,28	80,86	39,01	14,55	12,55	16,26	17,42	17,73
03D20-16	GO-SCA	17,000	21,48	86,85	41,81	16,21	14,09	18,19	19,45	19,73
08D20-16	SCA-GO	14,000	17,76	77,13	37,20	13,40	11,44	14,90	16,00	16,34
08D21-16	SCA-GO	17,000	20,92	86,14	41,95	15,78	13,18	17,37	18,73	19,30
03D11-14	SCA-GO	19,859	23,71	94,79	48,85	17,73	15,98	18,17	20,20	22,15

Tableau 5. 3 Volumes du mélange prédits (sans régression) et expérimentaux sur des séquences de transport

Fig. 5. 1 Volume du mélange prédit par l'Eq. (1.29) comparé au volume expérimental avant régression

Fig. 5. 2 Volume du mélange prédit par l'Eq. (1.30) comparé au volume expérimental avant régression

Fig. 5. 4 Volume du mélange prédit par l'Eq. (1.32) comparé au volume expérimental avant régression

Fig. 5. 5 Volume du mélange prédit par l'Eq. (1.33) comparé au volume expérimental avant régression

Fig. 5. 6 Volume du mélange prédit par l'Eq. (1.34) comparé au volume expérimental avant régression

Fig. 5. 7 Volume du mélange prédit par l'Eq. (1.55) comparé au volume expérimental avant régression

Fig. 5. 8 Volume du mélange prédit par l'approche MVEPC comparé au volume expérimental avant régression

5.3 Régression linéaire

5.3.1 Introduction

Il est fréquent de se questionner sur la relation qui peut exister entre deux ou plusieurs grandeurs et plus particulièrement dans les problèmes d'estimation. Etudier la corrélation entre deux ou plusieurs variables, c'est étudier l'intensité de la liaison qui peut exister entre ces variables. La liaison recherchée est une relation dont la représentation graphique est une droite.

Lorsqu'on recueille des données expérimentales mettant en relation deux variables, il est souvent intéressant de trouver le modèle mathématique sous-jacent. Le premier outil dont nous disposons est L'outil graphique « diagramme de dispersion ou graphique nuage de points » qui est le plus adapté pour débuter l'étude de la corrélation [56].

En effet, il est souvent possible de déceler à première vue le type de fonction qui met en relation les variables. Dans le cas où les points forment une droite, il est facile de trouver l'équation modélisant les données.

Une mesure de cette corrélation est obtenue par le calcul du coefficient de corrélation linéaire de Bravais-Pearson.

5.3.2 Droite de régression

Etablir une régression linéaire entre deux ou plusieurs séries statistiques, consiste à rechercher l'existence d'une relation linéaire vérifiée, même approximativement entre ces séries. La relation entre deux variables est simple, alors que la régression multiple met en relation plus deux variables [57].

On cherche à ajuster une droite d'équation y=ax+b au nuage de points en minimisant les distances entre ces points Mi(xi,yi) et ceux de la droite ax+b correspondants.

La droite de régression de y en x (Annexe IV) a pour équation :

$$D_{y/x} : y = ax + b \tag{5.1}$$

Les coefficients a et b sont calculée à partir des équations (5. 2) et (5.3) [57, 58]. On expliquera plus loin (Annexe IV) l'obtention du coefficient directeur a de la droite de régression obtenue par la méthode des moindres carrées et bien sûre l'obtention du coefficient b l'ordonnée à l'origine.

$$\boldsymbol{a} = \frac{cov(x,y)}{\sigma_x^2} \quad \boldsymbol{ou} \quad \boldsymbol{a} = \frac{\sigma_{xy}}{\sigma_x^2} \tag{5.2}$$

$$\boldsymbol{b} = \bar{\boldsymbol{y}} - \boldsymbol{a}\bar{\boldsymbol{x}} \tag{5.3}$$

Les moyennes \bar{x} et \bar{y} sont exprimées par :

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{5.4}$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \tag{5.5}$$

Les variances σ_x^2 et σ_y^2 sont exprimées par :

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 \tag{5.6}$$

$$\sigma_y^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^2 \tag{5.7}$$

La covariance σ_{xy} est exprimée par :

$$\sigma_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \bar{x}\bar{y}$$
(5.8)

5.3.3 Principaux modèles d'ajustement :

Dans les cas où le modèle mathématique est autre que linéaire et afin d'utiliser les outils de la droite de régression et le coefficient de corrélation; il faudra linéariser les données et par le fait même le modèle mathématique.

Un modèle non linéaire peut être linéarisé en remplaçant les valeurs des variables indépendantes x et/ou y par leur logarithme. Idéalement, il est préférable de reconnaître d'abord le modèle qui semble s'ajuster le mieux au nuage de points puis vérifier ensuite si ce modèle est le bon.

Les principaux modèles pouvant être linéarisés sont :

- Le modèle exponentiel $: y = b. e^{ax}$
- Le modèle puissance $: y = b. x^a$
- Le modèle logarithmique $:y = a \ln(x) + b$

La linéarisation de ces modèles conduit à :

- Pour le modèle exponentiel : Y = a x + B ($Y = \ln(y)$, $B = \ln(b)$)
- Pour le modèle puissance : Y = a X + B $(Y = \ln(y), X = \ln(x), B = \ln(b))$
- Pour le modèle logarithmique :y = a X + b ($X = \ln(x)$)

Le calcul des coefficients a et b (ou B) de la droite de régression s'effectuera de la même façon que dans le cas purement linéaire.

5.3.4 Calcul des coefficients de corrélation

Le coefficient de corrélation linéaire de Bravais – Pearson, noté r_{xy} , est un coefficient paramétrique qui donne la mesure du degré de liaison entre deux variables x et y normalement distribuées. Il est défini par le rapport entre leur covariance et le produit non nul de leur écart type :

$$r_{xy} = \frac{cov(x,y)}{\sigma_x \sigma_y} = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_i (x_i - \bar{x})^2 \sum_i (y_i - \bar{y})^2}}$$
(5.9)

Les écarts types de x (σ_x) et de y (σ_y)sont exprimés respectivement par :

$$\sigma_x = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2} = \sqrt{\sigma_x^2}$$
(5.10)

$$\sigma_{y} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} = \sqrt{\sigma_{y}^{2}}$$
(5.11)

5.4 Application du modèle de régression pour l'ajustement des corrélations

Dans le problème de régression, nous disposons d'un certain nombre de points analytiques et expérimentaux (xi, yi), $1 \le i \le n$, où xi et yi sont les valeurs prises par les grandeurs x (Volume du mélange prédit) et y (Volume du mélange expérimental) et on essaye de déterminer une relation fonctionnelle entre ces deux grandeurs x et y. Cette relation, s'écrira y = f(x,a,b) et le problème sera d'ajuster au mieux les paramètres a et b pour que la courbe représentative de f passe au plus près des points (xi, yi). Il s'agit d'un problème d'ajustement.

Donc, pour les résultats expérimentaux de chaque corrélation, il y a lieu de suivre les étapes suivantes :

- 1. Tracer les nuages de points et estimer les coefficients de corrélation linéaire, exponentiel, puissance et logarithmique
- 2. Ajuster le modèle linéaire de la forme y=ax+b: Etablir la droite de régression correspondant à ce problème.
- 3. Ajuster les autres modèles (Exponentiel, Puissance et Logarithmique).
- 4. Faire un test de validité avec un risque de α =5%.

5.4.1 Test sur le coefficient de corrélation de Bravais – Pearson

Après calcul et avant toute interprétation, le r_{xy} doit être soumis à un test de qui permet de vérifier si la corrélation calculée existe et vérifie ainsi la validité des coefficients du modèle. Les hypothèses du test sont :

 $\begin{cases} H0: \rho_{xy} = 0 & (hypothèse d'absence de corrélation) \\ H1: \rho_{xy} \neq 0 & (hypothèse d'absence de décorrélation) \end{cases}$

 ρ_{xy} est la corrélation théorique estimée par la corrélation empirique r_{xy} estimée à partir des informations fournies par l'échantillon, [56, 59].

Sous l'hypothèse H0, on démontre que la statistique du test suit une distribution de T Student au seuil $\alpha(5\%)$ et à (n - 2) degrés de liberté (ddl).

Le test ou la règle de décision [56, 60] est de la forme :

Rejet H0 si
$$t_c > t_{table}$$

 t_{table} : Valeur lue dans la table de Student

 t_c : Statistique de test ou t_{calcul} é

$$t_{calcul \ \acute{e}} = \frac{|r_{xy}|}{\sqrt{\frac{1 - r_{xy}^2}{n - 2}}}$$
(5.12)

5.4.2 Signification clinique du coefficient de corrélation de Bravais - Pearson

La signification clinique ou l'interprétation du coefficient r_{xy} n'est valable que si, après test, on rejette l'hypothèse de l'absence de corrélation.

Le travail d'interprétation d'un coefficient de corrélation linéaire se fait toujours en deux temps : une interprétation par rapport au signe/sens de la liaison et une interprétation par rapport au degré de dépendance.

5.4.2.1 Interprétation par rapport au signe

• Si $r_{xy} > 0$:

x et y sont positivement corrélées et la relation linéaire entre x et y est positive.

• Si $r_{xy} < 0$:

x et y sont négativement corrélées et la relation linéaire entre x et y est négative.

• Si $r_{xy} = 0$:

x et y sont non corrélées (pas de liaison linéaire, mais possibilité d'une liaison d'un autre type).

5.4.2.2 Interprétation par rapport à l'intensité

Si $r_{xy} = \pm 1$

Le lien linéaire entre x et y *est parfait*. Dans ce cas, l'une des variables est fonction affine de l'autre, les n points (xi, yi) sont alignés.

- Si $0.80 < r_{xy} < 1$ Le lien linéaire est *très fort*.
- Si 0.65 $< r_{xy} < 0.80$ Le lien linéaire est *fort (élevé)*.
- Si $0.50 < r_{xy} < 0.65$ Le lien linéaire *est modéré*.

- Si 0.25 $< r_{xy} < 0.50$ Le lien linéaire *est faible*.
- Si $0.025 < r_{xy} < 0.25$ Le lien linéaire est *très faible*.
- Si $r_{xy} \approx 0$ Alors il y a *absence de lien* entre x et y.

Les coefficients de corrélation sont calculés pour les différents ajustements. Le tableau (5.4) récapitule toutes les données nécessaires pour l'estimation du coefficient de régression linéaire et aussi pour la linéarisation des autres schémas pour estimer davantage le coefficient approprié à chaque ajustement.

Les tableaux (5.6) au (5.12) résume les résultats de calcul des coefficients de corrélation ainsi que les coefficients (a, b) pour les sept corrélations présélectionnées au chapitre (03), et dont les résultats des volumes du mélanges avant régression sont présentés.

Les droites et courbes de régression pour les sept corrélations sont présentées sur les figures (5.9-16).

Les volumes du mélange sont calculés après régression puis soumis au test statistique et sont comparés avec les volumes expérimentaux, voir tableaux (5.13-20).

Outre la régression linéaire, les volumes du mélange pour les autres ajustements sont illustrés sur les figures (5.17-24).

Batch	n	xi	yi	Xi=ln (xi)	Yi=ln (yi)	xi²	xiyi	xi <mark>Y</mark> i	Xi ²	XiYi	<mark>Xi</mark> yi
08D13-16	1	34,77	13,537	3,54875495	2,60542668	1208,953	470,681	90,591	12,594	9,246	48,039
01D14-16	2	39,17	15,897	3,66791115	2,76613041	1534,289	622,685	108,349	13,454	10,146	58,309
09D14-16	3	34,09	12,000	3,52900409	2,48490665	1162,128	409,080	84,710	12,454	8,769	42,348
02D15-16	4	34,61	12,531	3,54414266	2,52820557	1197,852	433,698	87,501	12,561	8,960	44,412
05D15-16	5	34,52	12,841	3,54153887	2,55264318	1191,630	443,271	88,117	12,542	9,040	45,477
10D15-16	6	35,97	13,806	3,58268526	2,62510328	1293,841	496,602	94,425	12,836	9,405	49,463
11D15-16	7	36,04	14,000	3,58462943	2,63905733	1298,882	504,560	95,112	12,850	9,460	50,185
07D19-16	8	39,10	15,685	3,66612247	2,75270484	1528,810	613,284	107,631	13,440	10,092	57,503
08D19-16	9	39,34	16,000	3,67224181	2,77258872	1547,636	629,440	109,074	13,485	10,182	58,756
01D20-16	10	39,01	16,112	3,66381802	2,77956434	1521,780	628,529	108,431	13,424	10,184	59,031
03D20-16	11	41,81	17,000	3,73313555	2,83321334	1748,076	710,770	118,457	13,936	10,577	63,463
08D20-16	12	37,20	14,000	3,61630876	2,63905733	1383,840	520,800	98,173	13,078	9,544	50,628
08D21-16	13	41,95	17,000	3,73647843	2,83321334	1759,803	713,150	118,853	13,961	10,586	63,520
03D11-14	14	45,58	19,859	3,81946902	2,9886573	2077,536	905,173	136,223	14,588	11,415	75,851
Σ	14	533,160	210,268	50,906	37,800	20455,056	8101,724	1445,647	185,203	137,606	766,985

Tableau 5. 4 Récapitulation des données et des paramètres pour la régression des corrélations

Ajustement	Fonction	r _{xy}	Coefficients	
		-	а	b
Linéaire	R(xi;yi)	0,98508125	0,8048	0,1865
Schéma Exponentiel	R(xi;lnyi) ou R(xi;Yi)	0,9809104	0,0523	5,6793
Schéma Puissance	R(lnxi;lnyi) ou R(<mark>Xi</mark> ;Yi)	0,98308105	0,9860	0,8487
Schéma Logarithmique	R(lnxi;yi) ou R(<mark>X</mark> i;yi)	0,98130292	15,0922	-28,8193

Tableau 5. 5 Coefficients de corrélation pour l'équation de Smith, Eq. (1.29)

Fig. 5. 9 Ajustement de la formule de prédiction du mélange basée sur la corrélation du Smith Eq. (1.29)

Ajustement	Fonction	r _{xy}	Coefficients	
		-	а	b
Linéaire	R(xi; <mark>yi</mark>)	0,98640788	0,2997	-8,6262
Schéma Exponentiel	R(xi; <mark>lny</mark> i) ou R(xi;Yi)	0,97926367	0,0194	3,2194
Schéma Puissance	R(lnxi;lnyi) ou R(<mark>Xi</mark> ;Yi)	0,98273416	1,5718	0,0156
Schéma Logarithmique	R(lnxi;yi) ou R(<mark>X</mark> i;yi)	0,98639009	24,1911	-90,5617

Tableau 5. 6 Coefficients de corrélation pour l'équation de Jablonskij, Eq. (1.30)

Fig. 5. 10 Ajustement de la formule de prédiction du mélange basée sur la corrélation du Jablonskij Eq. (1.30)

Ajustement	Fonction	r _{xy}	Coefficients	
		-	а	b
Linéaire	R(xi; <mark>yi</mark>)	0,98585903	0,6241	-8,7493
Schéma Exponentiel	R(xi; <mark>lny</mark> i) ou R(xi;Yi)	0,97923873	0,0404	3,1912
Schéma Puissance	R(lnxi;lnyi) ou R(<mark>Xi</mark> ;Yi)	0,98247077	1,5791	0,0477
Schéma Logarithmique	R(lnxi;yi) ou R(<mark>X</mark> i;yi)	0,98571894	24,2946	-73,3200

Tableau 5. 7 Coefficients de corrélation pour l'Equation de Jufin, Eq. (1.31)

Fig. 5. 11 Ajustement de la formule de prédiction du mélange basée sur la corrélation du Jufin Eq. (1.31)

Ajustement	Fonction	r _{xy}	Coefficients	
		-	а	b
Linéaire	R(xi; <mark>yi</mark>)	0,98502056	1,0660	0,1954
Schéma Exponentiel	R(xi; <mark>lny</mark> i) ou R(xi;Yi)	0,98083427	0,0692	5,6827
Schéma Puissance	R(lnxi;lnyi) ou R(<mark>Xi</mark> ;Yi)	0,98301169	0,9854	1,1221
Schéma Logarithmique	R(lnxi;yi) ou R(<mark>X</mark> i;yi)	0,98124034	150836	-24,5458

Tableau 5. 8 Coefficients de corrélation pour l'équation de Taylor, Eq. (1.32)

Fig. 5. 12 Ajustement de la formule de prédiction du mélange basée sur la corrélation du Taylor Eq. (1.32)

Ajustement	Fonction	r _{xy}	Coefficients	
			а	b
Linéaire	R(xi;yi)	0,97639704	1,1929	0,743
Schéma Exponentiel	R(xi;lnyi) ou R(xi;Yi)	0,97082839	0,0773	5,8965
Schéma Puissance	R(lnxi;lnyi) ou R(<mark>Xi</mark> ;Yi)	0,97396265	0,9520	1,4136
Schéma Logarithmique	R(lnxi;yi) ou R(<mark>X</mark> i;yi)	0,97328355	14,5883	-21,0502

Tableau 5. 9 Coefficients de corrélation pour l'Equation de Sjenitzer, Eq. (1.33)

Fig. 5. 13 Ajustement de la formule de prédiction du mélange basée sur la corrélation du Sjenitzer Eq. (1.33)

Ajustement	Fonction	r _{xy}	Coefficients	
		-	а	b
Linéaire	R(xi;yi)	0,98285932	0,9409	0,4111
Schéma Exponentiel	R(xi;lnyi) ou R(xi;Yi)	0,97802509	0,0611	5,7665
Schéma Puissance	R(lnxi;lnyi) ou R(<mark>Xi</mark> ;Yi)	0,98062843	0,9724	1,0434
Schéma Logarithmique	R(lnxi;yi) ou R(<mark>Xi</mark> ;yi)	0,97934819	14,8913	-25,6793

Tableau 5. 10 Coefficients de corrélation pour l'Equation de Jablonskij, Eq. (1.34)

Fig. 5. 14 Ajustement de la formule de prédiction du mélange basée sur la corrélation du Jablonskij Eq. (1.34)

Ajustement	Fonction	r _{xy}	Coefficients	
			а	b
Linéaire	R(xi;yi)	0,98432298	0,8851	0,2900
Schéma Exponentiel	R(xi; <mark>lny</mark> i) ou R(xi;Yi)	0,97979849	0,0575	5,7196
Schéma Puissance	R(<mark>lnxi;lnyi</mark>) ou R(<mark>Xi</mark> ;Yi)	0,98219178	0,9798	0,9552
Schéma Logarithmique	R(lnxi;yi) ou R(<mark>Xi</mark> ;yi)	0,98066573	15,0006	-27,0208

Tableau 5. 11 Coefficients de corrélation pour l'Equation de l'équation (1.55)

Fig. 5. 15 Ajustement de la formule de prédiction du mélange basée sur la corrélation (1.55)

Ajustement	Fonction	r _{xy}	Coefficients	
			а	b
Linéaire	R(xi; <mark>yi</mark>)	0,98479102	0,8843	0,0420
Schéma Exponentiel	R(xi; <mark>lny</mark> i) ou R(xi;Yi)	0,98153305	0,0575	5,6212
Schéma Puissance	R(lnxi;lnyi) ou R(<mark>Xi</mark> ;Yi)	0,98300183	0,9935	0,9029
Schéma Logarithmique	R(lnxi;yi) ou R(<mark>X</mark> i;yi)	0,98047292	15,1956	-27,8387

Tableau 5. 12 Coefficients de corrélation pour l'Equation de l'approche MVEPC

Fig. 5. 16 Ajustement de la formule de prédiction du mélange basée l'approche MVEPC

		V		Smith	Eq. (1.29)	
Batch N°	Interface	(m ³)	V _m	0/ Ет	Régression Linéaire	
			(m ³)	% E T	$V_{mreg}(m^3)$	%Er _{reg}
08D13-16	GO-SP	13,537	17,52	29,4%	14,29	5,5%
01D14-16	GO-SCA	15,897	19,18	20,7%	15,62	-1,7%
09D14-16	GO-SCA	12,000	15,08	25,7%	12,32	2,7%
02D15-16	GO-SCA	12,531	15,25	21,7%	12,46	-0,6%
05D15-16	SCA-GO	12,841	15,27	18,9%	12,47	-2,9%
10D15-16	GO-SCA	13,806	16,72	21,1%	13,64	-1,2%
11D15-16	SCA-GO	14,000	16,75	19,6%	13,67	-2,4%
07D19-16	GO-SCA	15,685	19,33	23,2%	15,74	0,4%
08D19-16	SCA-GO	16,000	19,21	20,1%	15,65	-2,2%
01D20-16	GO-SCA	16,112	19,28	19,7%	15,70	-2,5%
03D20-16	GO-SCA	17,000	21,48	26,4%	17,47	2,8%
08D20-16	SCA-GO	14,000	17,76	26,9%	14,48	3,4%
08D21-16	SCA-GO	17,000	20,92	23,1%	17,02	0,1%
03D11-14	SCA-GO	19,859	23,71	19,4%	19,27	-3,0%
			%AEr	22,55%	%AEr _{reg}	-0,11%

Tableau 5. 13 Volume du mélange comparé au volume expérimental – régression Eq. (1.29)

Fig. 5. 17 Volume du mélange avant et après régression comparé à l'expérimental - Smith Eq. (1.29)

		V	Jablonskij Eq. (1.30)					
Batch N°	Interface	(m ³)	V_m	0/ E m	Régression Linéaire			
			(m ³)	%Er -	V_{mreg} (m ³)	%Er _{reg}		
08D13-16	GO-SP	13,537	72,10	432,6%	12,98	-4,1%		
01D14-16	GO-SCA	15,897	81,95	415,5%	15,93	0,2%		
09D14-16	GO-SCA	12,000	70,82	490,2%	12,60	5,0%		
02D15-16	GO-SCA	12,531	71,30	469,0%	12,74	1,7%		
05D15-16	SCA-GO	12,841	71,31	455,3%	12,75	-0,7%		
10D15-16	GO-SCA	13,806	74,67	440,9%	13,75	-0,4%		
11D15-16	SCA-GO	14,000	74,74	433,9%	13,77	-1,6%		
07D19-16	GO-SCA	15,685	80,99	416,4%	15,65	-0,2%		
08D19-16	SCA-GO	16,000	80,85	405,3%	15,60	-2,5%		
01D20-16	GO-SCA	16,112	80,86	401,9%	15,61	-3,1%		
03D20-16	GO-SCA	17,000	86,85	410,9%	17,40	2,4%		
08D20-16	SCA-GO	14,000	77,13	450,9%	14,49	3,5%		
08D21-16	SCA-GO	17,000	86,14	406,7%	17,19	1,1%		
03D11-14	SCA-GO	19,859	94,79	377,3%	19,78	-0,4%		
			%AEr	429,05%	%AEr _{reg}	0,06%		

Tableau 5. 14 Volume du mélange comparé au volume expérimental – régression Eq. (1.30)

Fig. 5. 18 Volume du mélange avant et après régression comparé à l'expérimental - jablonskij Eq. (1.30)

		V		Jufin E	q. (1.31)	
Batch N°	Interface	(m ³)	V_m	0/ F	Régression Linéaire	
			(m ³)	%Er	V_{mreg} (m ³)	%Er _{reg}
08D13-16	GO-SP	13,537	34,77	156,9%	12,95	-4,3%
01D14-16	GO-SCA	15,897	39,17	146,4%	15,70	-1,3%
09D14-16	GO-SCA	12,000	34,09	184,1%	12,53	4,4%
02D15-16	GO-SCA	12,531	34,61	176,2%	12,85	2,6%
05D15-16	SCA-GO	12,841	34,52	168,8%	12,79	-0,4%
10D15-16	GO-SCA	13,806	35,97	160,5%	13,70	-0,8%
11D15-16	SCA-GO	14,000	36,04	157,4%	13,74	-1,8%
07D19-16	GO-SCA	15,685	39,10	149,3%	15,65	-0,2%
08D19-16	SCA-GO	16,000	39,34	145,9%	15,80	-1,2%
01D20-16	GO-SCA	16,112	39,01	142,1%	15,60	-3,2%
03D20-16	GO-SCA	17,000	41,81	145,9%	17,34	2,0%
08D20-16	SCA-GO	14,000	37,20	165,7%	14,47	3,3%
08D21-16	SCA-GO	17,000	41,95	146,8%	17,43	2,5%
03D11-14	SCA-GO	19,859	48,85	146,0%	21,74	9,5%
			%AEr	156,57%	%AEr _{reg}	0,79%

Tableau 5. 15 Volume du mélange comparé au volume expérimental – régression Eq. (1.31)

Fig. 5. 19 Volume du mélange avant et après régression comparé à l'expérimental –Jufin Eq. (1.31)

	Interface	V _{mExp} (m ³)	Taylor Eq. (1.32)				
Batch N°			V _m	%Er -	Régression	Régression Linéaire	
			(m ³)		$V_{mreg}(m^3)$	%Er _{reg}	
08D13-16	GO-SP	13,537	13,22	-2,3%	14,29	5,5%	
01D14-16	GO-SCA	15,897	14,48	-8,9%	15,63	-1,7%	
09D14-16	GO-SCA	12,000	11,38	-5,2%	12,33	2,7%	
02D15-16	GO-SCA	12,531	11,50	-8,2%	12,45	-0,6%	
05D15-16	SCA-GO	12,841	11,52	-10,3%	12,48	-2,8%	
10D15-16	GO-SCA	13,806	12,62	-8,6%	13,65	-1,1%	
11D15-16	SCA-GO	14,000	12,64	-9,7%	13,67	-2,4%	
07D19-16	GO-SCA	15,685	14,59	-7,0%	15,75	0,4%	
08D19-16	SCA-GO	16,000	14,48	-9,5%	15,63	-2,3%	
01D20-16	GO-SCA	16,112	14,55	-9,7%	15,71	-2,5%	
03D20-16	GO-SCA	17,000	16,21	-4,6%	17,48	2,8%	
08D20-16	SCA-GO	14,000	13,40	-4,3%	14,48	3,4%	
08D21-16	SCA-GO	17,000	15,78	-7,2%	17,02	0,1%	
03D11-14	SCA-GO	19,859	17,73	-10,7%	19,10	-3,8%	
			%AEr	-7,59%	%AEr _{reg}	-0,16%	

Tableau 5. 16 Volume du mélange comparé au volume expérimental – régression Eq. (1.32)

Fig. 5. 20 Volume du mélange avant et après régression comparé à l'expérimental - Taylor Eq. (1.32)

	Interface	<i>V_{mExp}</i> (m ³)	Sjenitzer Eq. (1.33)				
Batch N°			V _m	%Er -	Régression	Linéaire	
			(m ³)		V_{mreg} (m ³)	%Er _{reg}	
08D13-16	GO-SP	13,537	11,42	-15,6%	14,37	6,1%	
01D14-16	GO-SCA	15,897	12,93	-18,7%	16,17	1,7%	
09D14-16	GO-SCA	12,000	9,89	-17,6%	12,54	4,5%	
02D15-16	GO-SCA	12,531	9,71	-22,5%	12,33	-1,6%	
05D15-16	SCA-GO	12,841	9,82	-23,5%	12,46	-3,0%	
10D15-16	GO-SCA	13,806	10,93	-20,8%	13,78	-0,2%	
11D15-16	SCA-GO	14,000	10,92	-22,0%	13,77	-1,6%	
07D19-16	GO-SCA	15,685	12,56	-19,9%	15,73	0,3%	
08D19-16	SCA-GO	16,000	12,13	-24,2%	15,21	-4,9%	
01D20-16	GO-SCA	16,112	12,55	-22,1%	15,71	-2,5%	
03D20-16	GO-SCA	17,000	14,09	-17,1%	17,55	3,2%	
08D20-16	SCA-GO	14,000	11,44	-18,3%	14,39	2,8%	
08D21-16	SCA-GO	17,000	13,18	-22,5%	16,47	-3,1%	
03D11-14	SCA-GO	19,859	15,98	-19,5%	19,81	-0,3%	
			%AEr	-20,31%	%AEr _{reg}	0,10%	

Tableau 5. 17 Volume du mélange comparé au volume expérimental – régression Eq. (1.33)

Fig. 5. 21 Volume du mélange avant et après régression comparé à l'expérimental –Sjenitzer Eq. (1.33)

	Interface	V_{mExp} (m ³)	Jablonskij Eq. (1.34)				
Batch N°			V _m	%Er -	Régression	Régression Linéaire	
			(m ³)		$V_{mreg}(m^3)$	%Er _{reg}	
08D13-16	GO-SP	13,537	14,78	9,2%	14,32	5,8%	
01D14-16	GO-SCA	15,897	16,46	3,5%	15,90	0,0%	
09D14-16	GO-SCA	12,000	12,76	6,3%	12,42	3,5%	
02D15-16	GO-SCA	12,531	12,73	1,6%	12,39	-1,1%	
05D15-16	SCA-GO	12,841	12,80	-0,3%	12,45	-3,0%	
10D15-16	GO-SCA	13,806	14,13	2,3%	13,71	-0,7%	
11D15-16	SCA-GO	14,000	14,14	1,0%	13,72	-2,0%	
07D19-16	GO-SCA	15,685	16,29	3,9%	15,74	0,3%	
08D19-16	SCA-GO	16,000	15,97	-0,2%	15,44	-3,5%	
01D20-16	GO-SCA	16,112	16,26	0,9%	15,71	-2,5%	
03D20-16	GO-SCA	17,000	18,19	7,0%	17,53	3,1%	
08D20-16	SCA-GO	14,000	14,90	6,4%	14,43	3,1%	
08D21-16	SCA-GO	17,000	17,37	2,2%	16,75	-1,4%	
03D11-14	SCA-GO	19,859	20,58	3,6%	19,77	-0,4%	
			%AEr	3,39%	%AEr _{reg}	0,07%	

Tableau 5. 18 Volume du mélange comparé au volume expérimental – régression Eq. (1.34)

Fig. 5. 22 Volume du mélange avant et après régression comparé à l'expérimental - Jablonskij Eq. (1.34)

	Interface	V _{mExp} . (m ³)	Equation (1.55)				
Batch N°			V _m	%Er -	Régression	Régression Linéaire	
			(m ³)		$V_{mreg}(m^3)$	%Er _{reg}	
08D13-16	GO-SP	13,537	15,83	16,9%	14,30	5,6%	
01D14-16	GO-SCA	15,897	17,51	10,1%	15,79	-0,7%	
09D14-16	GO-SCA	12,000	13,65	13,8%	12,37	3,1%	
02D15-16	GO-SCA	12,531	13,70	9,3%	12,42	-0,9%	
05D15-16	SCA-GO	12,841	13,75	7,1%	12,46	-3,0%	
10D15-16	GO-SCA	13,806	15,13	9,6%	13,68	-0,9%	
11D15-16	SCA-GO	14,000	15,15	8,2%	13,70	-2,1%	
07D19-16	GO-SCA	15,685	17,46	11,3%	15,74	0,4%	
08D19-16	SCA-GO	16,000	17,21	7,6%	15,52	-3,0%	
01D20-16	GO-SCA	16,112	17,42	8,1%	15,71	-2,5%	
03D20-16	GO-SCA	17,000	19,45	14,4%	17,51	3,0%	
08D20-16	SCA-GO	14,000	16,00	14,3%	14,45	3,2%	
08D21-16	SCA-GO	17,000	18,73	10,2%	16,87	-0,8%	
03D11-14	SCA-GO	19,859	20,20	1,7%	18,17	-8,5%	
			%AEr	10,19%	%AEr _{reg}	-0,51	

Tableau 5. 19 Volume du mélange o	comparé au volume	expérimental – I	régression Eq.	(1.55)
-----------------------------------	-------------------	------------------	----------------	--------

Fig. 5. 23 Volume du mélange avant et après régression comparé à l'expérimental - Equation (1.55)

	Interface	<i>V_{mExp}</i> . (m ³)	MVEPC				
Batch N°			V _m	%Er -	Régression	Régression Linéaire	
			(m ³)		$V_{mreg}(m^3)$	%Er _{reg}	
08D13-16	GO-SP	13,537	16,10	18,9%	14,28	5,5%	
01D14-16	GO-SCA	15,897	17,56	10,5%	15,57	-2,1%	
09D14-16	GO-SCA	12,000	13,85	15,4%	12,29	2,4%	
02D15-16	GO-SCA	12,531	14,05	12,1%	12,47	-0,5%	
05D15-16	SCA-GO	12,841	14,05	9,4%	12,47	-2,9%	
10D15-16	GO-SCA	13,806	15,37	11,3%	13,63	-1,2%	
11D15-16	SCA-GO	14,000	15,40	10,0%	13,66	-2,4%	
07D19-16	GO-SCA	15,685	17,78	13,4%	15,76	0,5%	
08D19-16	SCA-GO	16,000	17,71	10,7%	15,70	-1,9%	
01D20-16	GO-SCA	16,112	17,73	10,0%	15,72	-2,4%	
03D20-16	GO-SCA	17,000	19,73	16,1%	17,49	2,9%	
08D20-16	SCA-GO	14,000	16,34	16,7%	14,49	3,5%	
08D21-16	SCA-GO	17,000	19,30	13,5%	17,11	0,6%	
03D11-14	SCA-GO	19,859	22,15	11,5%	19,63	-1,2%	
			%AEr	12,8%	%AEr _{reg}	0.06%	

Tableau 5. 20 Volume du mélange comparé au volume expérimental – régression MVEPC

Fig. 5. 24 Volume du mélange avant et après régression comparé à l'expérimental – Approche MVEPC

5.5 Interprétation des résultats

5.5.1 Degré d'approximation des corrélations sélectionnées pour le calcul du volume du mélange

Avant d'appliquer les techniques de régression pour l'ajustement des corrélations étudiées, d'autres séquences de transport du multiproduit ont été exécutées pour la bonne lecture du comportement des corrélations, dans la prédiction des volumes du mélange comparés aux volumes expérimentaux.

Le tableau (5,21) récapitule, à partir des tableaux (5, 13-20), la moyenne des erreurs relatives de chaque corrélation testée sur des séquences de transfert du multiproduit pétrolier.

Corrélation	%AEr
Smith - Eq. (1.29)	22,55%
Jablonskij - Eq. (1.30)	429,05%
Jufin - Eq. (1.31)	156,57%
Taylor - Eq. (1.32)	-7,59%
Sjenitzer - Eq. (1.33)	-20,31%
Jablonskij - Eq. (1.34)	3,39%
Eq. (1.55)	10,19%
MVEPC	12,8%

Tableau 5. 21 Erreurs relatives des différentes corrélations avant régression

A l'instar du chapitre précédent, L'équation (1.34) de Jablonskij reste le bon choix pour le calcul du volume du mélange. Les Figures (5, 1-8) et (4, 1-8) montrent que l'allure des courbes de prédiction des volumes du mélange pour l'ensemble des corrélations étudiées ressemble à celle des volumes expérimentaux, ce qui inspire l'idée de les ajuster par les techniques de régression.

5.5.2 Degré d'approximation des corrélations après régression

Les tableaux (5, 5-12) regroupent les coefficients de corrélation linéaire de Bravais-Pearson et les coefficients des fonctions de régression, qui sont nécessaires pour l'ajustement des corrélations étudiées.

Les figures (5, 9-16) présentent les nuages de points des volumes prédits en fonction des volumes expérimentaux $(V_m = f(V_{m_{Exp}}))$ de l'ensemble des corrélations, avec l'illustration des courbes de tendance selon les différents ajustements (Linéaire, Exponentiel, puissance et logarithmique).

Le tableau (5.22) récapitule les erreurs relatives des corrélations avant et après régressions linéaires. Les résultats obtenues révèlent la parfaite approximation et la précision de toutes les corrélations après régression. La prédiction du volume du mélange présente des erreurs relatives comprises entre -0.51% et 0.79%.

Corrélation	%AEr				
	Avant régression	Après Régression			
Smith - Eq. (1.29)	22,55%	0.11%			
Jablonskij - Eq. (1.30)	429,05%	0,06%			
Jufin - Eq. (1.31)	156,57%	0,79%			
Taylor - Eq. (1.32)	-7,59%	-0.16			
Sjenitzer - Eq. (1.33)	-20,31%	0,1%			
Jablonskij - Eq. (1.34)	3,39%	0.07%			
Eq. (1.55)	10,19%	-0.51%			
MVEPC	12,8%	0,06%			

Tableau 5. 22 Erreurs relatives avant et après régression des corrélations étudiées

Les valeurs des coefficients de corrélation calculés et reportés dans les tableaux (5, 5-12), dont leurs valeurs sont voisines de 1, signifiant la forte intensité de corrélation, étaient insuffisantes pour juger les modèles de régression sans passer par le test statique (Test de Student) afin d'éviter toute circonstances de causalité ou de coïncidence.

Le test statistique est effectué pour un degré de risque de 5%.

Le seuil de rejet de H0, où la valeur critique pour α =0.05 et ddl = n - 2 = 12, est donnée dans la table de Student de l'Annexe V par $t_{table} = 2,179$.

Corrélation	n	r_{xy}	t _c	t _t	Résultat du test
Smith (1.29)		0,985081254	19,829		H0 est rejetée
Jablonskij (1.30)		0,986407881	20,795		H0 est rejetée
Jufin (1.31)		0,985859029	20,379		H0 est rejetée
Taylor (1.32)	14	0,985020561	19,788	2 1 7 0	H0 est rejetée
Sjenitzer (1.33)	14	0,976397037	15,660	2,179	H0 est rejetée
Jablonskij (1.34)		0,982859317	18,468		H0 est rejetée
Equation (1.55)		0,984322978	19,333		H0 est rejetée
MVEPC		0,984791019	19,635		H0 est rejetée

Tableau 5. 23 Test de significativité de r_{xy} pour les corrélations régressées étudiée

D'après le tableau (5.23), $t_c > t_{table} = 2,719$ pour toutes les corrélations, donc : H0 est rejetée : $\rho_{xy} \neq 0$ et le coefficient de corrélation linéaire de Bravais-Pearson r_{xy} est significatif et a bien un sens, II y a donc une **association très forte** entre les volumes théorique et expérimental.

5.6 Conclusion

A l'instar des expériences précédentes, la corrélation empirique (1.34) de Jablonskij garde toujours la bonne approximation de calcul des volumes du mélange comparés aux volumes expérimentaux, avec une erreur relative de 3.39% avant sa régression et de 0.07% après régression.

Le reste des corrélations ont présentées à leur tour des erreurs relatives comprises entre -20.31% à 429.05% avant leur régression et de -0.51% à 0.79% après régression.

Les tests statistiques qui ont expliqué la forte association entre les volumes prédits par l'ensemble des corrélations et les volumes expérimentaux, ont fait des techniques de régression un outil promoteur pour l'ajustement des modèles, avec la forte amélioration de la précision de calcul.

De ce fait, toutes les corrélations étudiées peuvent être optées dans la gamme des débits (Nombres de Reynolds) étudiée pour le calcul et avec précision du volume du mélange. En outre, le recours à l'approche MVEPC pour uniformiser la géométrie devient très pratique et souhaitable pour les éventuelles simplifications dans le calcul.

Conclusion et perspectives

Conclusion

La longueur de l'interface dépend essentiellement de la valeur du coefficient de diffusion, dont plusieurs modèles basés sur l'équation de la convection-diffusion ont été proposés dans l'état de l'art, pour son évaluation et l'estimation par la suite des volumes de mélange dans le transport séquentiel du multiproduit pétroliers dans les pipelines.

Les équations données pour évaluer le mélange longitudinal dépendent de certains paramètres tels que la distance parcourue dans le pipeline, le diamètre de la conduite, le nombre de Reynolds, la vitesse moyenne du fluide, la viscosité cinématique, la fraction massique et la densité des produits transportés. La prédiction faite par les diverses équations avec les résultats expérimentaux a révélé des erreurs relatives comprises entre -1.98 à 134.92%. D'autres modèles sont proposées pour prédire la longueur de l'interface du mélange, à l'instar du modèle basé sur la technique du disque virtuel et l'approche de la longueur équivalente de tube.

Une étude expérimentale est menée sur un pipeline de 168km de long, et constitué de trois segments de différents diamètres. Les données du terrain et les résultats du mélange ont été recueillis à partir d'un système de contrôle et de supervision et par le moyen d'un calculateur électronique lié à la chaine de mesure, installés au niveau de la salle de contrôle.

L'équation de la diffusion pure ainsi que celle de la diffusion avec la contribution du terme de transport sont solutionnées analytiquement. En outre, le concept de la longueur équivalente (MVEPC) a été présenté comme un moyen alternatif pour calculer les volumes du mélange dans un pipeline de diamètre variable.

Huit corrélations empiriques du coefficient de diffusion, relatives aux produits pétroliers ont été choisies de la littérature et ont été introduites dans le calcul de l'interface et cela sur des séquences types du pipeline multiproduit servant comme dispositif expérimental. En outre, il a été montré que, à partir de l'approche MVEPC, les longueurs d'interfaces sont aussi calculées en utilisant l'expression classique et bien connue du volume de mélange, pour des débits et des coefficients de dispersion constants. Les résultats prédits par cette approche ont été ainsi comparés aux résultats expérimentaux et ont montré que le modèle proposé par Jablonskij (Eq. (1.34)) est le plus précis (%Er=1.1%) parmi tous les modèles sélectionnés. En revanche, l'approche MVEPC a surestimé le volume du mélange de 11%.

L'effet de la composition du mélange sur le calcul de l'interface a été étudié et les résultats obtenus n'ont révélé pratiquement aucune influence.

Il a été constaté que la zone du mélange est affectée par divers paramètres, tels que le démarrage et l'arrêt du pipeline. Les résultats obtenus sur des séquences de transport avec des conditions d'arrêts de pompage, ont montré des divergences importantes des volumes expérimentaux par rapport à ceux prédits par les corrélations d'approximation acceptable voir même précises, ce qui permet de conclure que le temps d'arrêt amplifie davantage le volume du mélange.

Dans le but d'améliorer l'approximation de calcul des corrélations étudiées, présentant certaines divergences, des modèles simples ont été proposés, visant à chercher des relations fonctionnelles entre les résultats expérimentaux et calculés. Chaque modèle s'appuie sur les techniques de régression selon les différents schémas analysés (linéaire, exponentiel, puissance et logarithmique).Le très bon accord observé entre l'expérimental et les résultats prédits par les corrélations étudiées qui ont subi des ajustements, permet d'utiliser les techniques de régression comme un outil prometteur pour prédire rapidement et avec précision les volumes du mélange dans les transferts de batchs par pipeline. Les erreurs relatives pour l'ensemble des corrélations ajustées ont été comprises entre -0.51 et 0.79%.

Les formules et les graphiques présentés dans cette étude permettront, et on l'espère, de prédire avec précision et rapidité la quantité du mélange qui surgit entre les produits en écoulement séquentiel dans un pipeline. Néanmoins, il existe certaines caractéristiques relatives au processus de mélange turbulent qui, doivent être complètement étudiées et expliquées. Comme il est toujours souhaitable de suivre les recherches et de mener des simulations numériques pour étudier les profils de concentration qui caractérisent la zone du mélange et leurs facteurs d'influence.

Perspectives

La forte augmentation du nombre de produits dans les pipelines actuellement en construction ou projetés dans de nombreuses régions du monde rend hautement souhaitable que les réponses aux différentes requêtes soulevées dans ce document soient publiées dès que possible.

Des études plus approfondies devraient être faites pour améliorer les conditions supposées pour s'adapter au maximum à la situation réelle. Et surtout, les expériences devraient viser à déterminer les facteurs qui influencent l'intensité du mélange; en particulier l'influence du régime d'écoulement, les différences de propriétés physiques entre les produits pétroliers adjacents, la concentration et son gradient, la topographie du pipeline, l'accélération de la gravitation, l'arrêt de pompage et la présence de coudes et d'autres singularités dans une canalisation. Une analyse doit être effectuée en proposant des modèles et des méthodologies pour incorporer ces effets sur l'évolution de l'interface.

La recherche doit être étendue davantage pour identifier des techniques permettant de réduire la dispersion axiale dans les pipelines. Cette action profitera également aux compagnies pétrolières, car chaque mettre cube de produit qui peut être sauvé équivaut à des revenus élevés.

Il est aussi recommandé de faire introduire les concepts de la théorie de la couche limite dans le but de :

- Saisir l'importance de la région proche de la paroi dans le transport multiproduit et comprendre les effets de la turbulence communément observés dans cette région sur la dispersion axiale dans les liquides.
- Développer une méthodologie pour combiner les équations de convection-diffusion avec la théorie de la couche limite, pour estimer les contributions de la sous-couche visqueuse et de la sous couche turbulente au taux d'évolution de l'interface et fournir par la suite un modèle amélioré pour les prédictions du mélange.

Comme il est conseillé de développer des modèles numériques basés sur la théorie du mélange qui conserve le caractère des modèles de la littérature, capable d'estimer l'interface avec cohérence, ce qui peut faciliter la compréhension des paramètres affectant sa croissance et même l'optimisation des opérations de pipeline multiproduit afin de la réduire.

En plus de résoudre les problèmes susmentionnés, les résultats permettront également d'optimiser les capacités et la planification des pipelines; contribuant à améliorer leur infrastructure globale, ce qui peut générer des retombées économiques indirectes considérables, en fournissant aux produits transportées un meilleur contrôle de la qualité et en permettant une planification plus efficace des opérations de pipeline en ce qui concerne la mise en œuvre des arrêts de pompage.

Bibliographie

- 1. J.E.Austin and J.R. Palfrey. *Mixing of Miscible but Dissimilar liquids in Serial Flow in a Pipeline* in *Proceeding of Institution of Mechanical Engineers* 1964.
- 2. Pan, Z., B. Chen, and L. Shang, *Numerical Simulation of V-cone Flow Meter in Product Oil Pipeline of Batch Transportation.* Petroleum Science and Technology, 2010. **28**: p. 925–933.
- 3. Tepedino, A.F., et al. *Pipeline batch cut optimization by taking into account the quality of the products at the tanks*. in *7th International Pipeline Conference, IPC2008-64516*. September 29 October 3, 2008. Calgary, Alberta, Canada.
- 4. Douglas, J.J.J. and T.F. Russell, *Numerical Methods for Convection-Dominated Diffusion Problems Based on Combining the Method of Characteristics with Finite Element or Finite Difference Procedures.* Society for Industrial and Applied Mathematics, 1982. **19**(5): p. 871-885.
- 5. Garcia-Hernandez, A., *Modeling and Simulation Case Study of a Batching Operation of Crude Oils in a Pipeline System*, in *Pipeline Simulation Interest Group Annual Meeting*24 May 27 May 2011: Napa Valley, California.
- 6. Jing, G., Z. Chengzhen, and Q. qin. *Comparative Analyses on Calculation of Contaminated Volume of Multi-Product Pipeline Caused by Stoppage* in 7th International Pipeline Conference, *IPC2008-64163* 2008. Calgary, Alberta, Canada.
- 7. Birge, E.A., *Contamination control in products pipelines* Oil Gas 1947 **48**.
- 8. Smith, S.S. and R.K. Schulzer, *Interfacial mixing characteristics of products in product pipelines*. Petrol. Engr 1948. **94**.
- 9. Hull, D.E. and J.W. Kent, *Radioactive tracers to mark interfaces and measure intermixing in pipelines* Industr. Engng Chern., 1952 **44** (11): p. 2745.
- Taylor, G., Dispersion of soluble matter in Solvent Flowing slowly through a tube. Proceeding of Royal Society of London. Series A, Mathematical and physical Sciences, 1953. 279(1137): p. 186– 203.
- 11. Taylor, G.I., *The dispersion of matter in turbulent flow through a pipe* Proceeding of Royal Society, 1954. **A223**: p. 446–468.
- Levenspiel, O. and W.K. Smith, Notes on the Diffusion-Type Model for the Longitudinal Mixing of Fluids in Flow Longitudinal Mixing of Fluids in Flow Chemical Engineering Science, 1957. 6: p. 227-233.
- 13. Sjenitzer, F., *How much do products mix in a pipeline?* . Petrol. Engr, 1958 **30**
- 14. Levenspeil, O., *Longitudinal mixing of fluids flowing in circular pipes*. Indusrial and Engineering Chemistry 1958. **50**(3): p. 343-346.
- 15. AUNICKY, Z., *The Longitudinal Mixing of Liquids Flowing Successively in Pipelines.* The Canadian Journal of Chemical Engineering, 1970. **48**: p. 12-16.
- 16. Ekambara, K. and J.B. Joshi, *Axial mixing in pipe flows: Turbulent and transition regions.* Chemical Engineering Science, 2003. **58**: p. 2715 – 2724.
- 17. Ekambara, K. and J.B. Joshi, *Axial mixing in laminar pipe flows*. Chemical Engineering Science, 2004. **59**: p. 3929 3944.

- 18. JR., C.N.S., W.D. Threadgill, and K.B.S. JR., *Longitudinal dispersion for turbulent flow in pipe*. Ind. Eng. Chem. Fundamentals, 1968. **7**(1): p. 39-43.
- 19. Songsheng, D. and P. Jianing, *Application of convection-diffusion equation to the analyses of contamination between batches in multi-products pipeline transport* Applied Mathematics and Mechanics (English Edition), 1998. **19**(8): p. 757-764.
- 20. Yu, Z., Q. Shujuan, and e. al., *The Mixed Oil Cutting of Product Oil Batch Transportation (In Chinese).* Oil & Gas Storage and Transportation, 2006. **25**(09): p. 25-27.
- 21. Fujun, D.F. and H.X.e. al., *Calculation and Analysis on Contaminated Volume of Southwestern Products Oil Pipeline (In Chinese).* Oil & Gas Storage and Transportation, 2009. **28**(02): p. 40-42.
- 22. Demoya, A.C., H.Q. Cruz, and P.N.B. Hernandez, *Modelling of the Pollutant Fronts generated by Pipeline Fuel Transportation.* Dyna, Ano, 2007. **74**(152): p. 89-96.
- 23. Gong, J., et al. *The calculation method of mixing volume in a products pipeline* in *8th International Pipeline Conference, IPC2010-31462.* September 27-October 1, 2010. Calgary, Alberta, Canada.
- 24. Lingjian, Y., S. Longshe, and S. Wen, *Contamination Issue of Benzene and Hexamethylene In Batch Transportation (In Chinese).* Oil& Gas Storage and Transportation, 2010. **29**(08): p. 603-604, 612.
- 25. Guangshi, S., S. Yu, and al., *Calculations of the Batch Cycles-Batch Volume and Tank Capacity for the Products Pipeline (In Chinese)* Oil& Gas Storage and Transportation, 2000. **19**(02): p. 16-19.
- 26. Liang, Y. and G. Xiaolei, *New approach predicts volume mixing in long, multiproduct pipeline.* Oil & Gas 2011. **109**(18): p. 126-130.
- 27. Udoetok, E.S. and A.N. Nguyen, *A disc pig model for estimating the mixing volumes between product batches in multiproduct.* 2009. **8**(3): p. 195-204.
- Patrachari, A.R. and A.H. Johannes, A conceptual framework to model interfacial contamination in multiproduct petroleum pipelines. International Journal of Heat and Mass Transfer, 2012. 55: p. 4613–4620.
- 29. Bennacer, D., et al., Interface calculation method improves multiproduct transport Oil & Gas, 2016. **114**(12): p. 74-80.
- 30. Drews, A.W., *Manual on Hydrocarbon Analysis*, 1998, 6th Edition, American Society for Testing and Materials: West Conshohocken.
- 31. Weiping, M., et al., Analysis on difference between Chinese and Russian oil and gas pipeline operation standards (In Chinese). Oil & Gas Storage and Transportation 2013(Issue 04): p. 411-415.
- 32. Crane, C., *Flow of Fluids through Valves, Fittings and Pipe*, 1982, Technical Paper No. 410M.
- 33. Gambill, W.R., *How to estimate mixtures viscosities* Chemical Engineering, 1959. **66**: p. 152-152.
- 34. Rachid, F.B.d.F. and R.M. Baptista. *The influence of pipeline diameter variation on the mixing volume in batch transfers*. in *4th International Pipeline Conference, IPC2002-27168*. September 29-October 3, 2002. Calgary, Alberta, Canada.
- 35. Alvarez, J.C.D., et al., *Statistical analysis in the predicting of mixing volume generated by batching transport of hydrocarbons through pipelines.* Revista ION, Bucaramanga (Colombia), 2011. **24**(1): p. 23-33.
- 36. Rachid, F.B.F., J.H.C.d. Araujo, and R.M. Baptista, *Predicting Mixing Volumes in Serial Transport in Pipelines.* Transactions of the ASME, 2002. **124**: p. 528-534.
- 37. Oliveira, J.L., *Modeling the dispersion phenomenon in batch transfer operations by the theory of structured mixture.* Brazilian Journal of Petroleum and Gas, 2010. **4**(4): p. 129-138.

- 38. Gomes, A.A., F.B.d.F. Rachid, and J.H.C.d. Araujo. *Modeling of Contamination in Pipeline Batch Transfers* in *9th Brazilian Congress of Thermal Engineering and Sciences ENCIT, CIT02-0582* 2002. Caxambu - MG, Brazil.
- 39. Melo, S.R.d. and F.B.F. Rachid. *Computing Transmix in Complex Batch Transfers via the Mixing-Volume-Equivalent-Pipe Concept* in *8th International Pipeline Conference, IPC2010-31607.* September 27-October 1, 2010. Calgary, Alberta, Canada.
- 40. Zhao, L., J. Derksen, and R. Gupta, *Simulations of Axial Mixing of Liquids in a Long Horizontal Pipe for Industrial Applications*. Energy Fuels, 2010. **24**: p. 5844–5850.
- 41. Gong, J., Z. Kang, and D. Yan. *Research on contamination caused by the topographical difference in batch transportation*. in *International Pipeline Conference, IPC2004-659*. October 4-8, 2004. Calgary, Alberta, Canada.
- 42. Brannan, J., et al. *Density Driven Turbulent Mixing at Batch Interfaces . University of Victoria*. in *Third PIMS Industrial Problem Solving Workshop, PIMS IPSW3*. 2000.
- 43. James, H., et al., Longitudinal Dispersion Coefficients Within Turbulent and Transitional Pipe Flow, in Experimental and Computational Solutions of Hydraulic Problems, P. Rowiński, Editor 2013, Springer Berlin Heidelberg Berlin, New York. p. 133-145.
- Xuan, H. and C. Shiyi, Application of One-dimensional Model of Contaminated Concentration in Pipeline Batch Transportation (In Chinese). Oil& Gas Storage and Transportation 2010. 29(12): p. 913-915.
- 45. Qiang, L., W. Shuli, and al., *Study on the Numerical Simulation of the Contamination of Batching Transportation of Products Oil with Turbulent Theory (In Chinese).* Oil& Gas Storage and Transportation, 2006. **25**(11): p. 22-26.
- 46. Zheng, C. and C.D. Benett, *Applied Contaminant Transport Modeling, Theory and practice*, 1995, Van Nostrand Reinhold.
- 47. Crank, J., *The Mathematics of diffusion*, 1975, Second Edition, Clarendon Press Oxford.
- 48. Bianchi, A.-M., Y. Fautrelle, and J. Etay, *Transferts thermiques*, 2004, Agence Universitaire de la Francophonie, PPUR presses polytechniques et Universitaires Romandes. p. 550.
- 49. Jean-François, A., et al., *Mise en forme des polymères (4e éd.) : Approche thermomécanique de la plasturgie*, C. Poiteaux, Editor 5 mars 2014 Lavoisier, Paris. p. 844.
- 50. Feng, C., Z. Guozhong, and al., A way to calculate the volume of the mixed section in batch transportation while velocity changes (In Chinese). Oil & Gas Storage and Transportation, 2002.
 21(09): p. 23-25.
- 51. Flint, L.F. and P. Eisenklam, *Dispersion of matter in transitional flow through straight tubes*. Proc. Roy. Soc. Lond., 1970. **A. 315**: p. 519-533.
- 52. Ramanujan, A., *Deterministic models to explain the phenomenon of interfacial mixing in refined products pipelines*, December, 2012: Oklahoma State University, Stillwater, Oklahoma.
- 53. Zhai, Y.-p., S.-I. Wang, and Y.-j. Han. *Study on Numerical Simulation of Contaminated Volume for Shutdown Batching Pipeline*. in *ICPTT 2009*. 2009.
- 54. Bapista, R.M., F.B.d.F. Rachid, and J.H.C.d. Araujo. *Mixing Volume Evaluation under Pumping Shut-Down Conditions*. in *33rd Pipeline Simulation Interest Group Conference*, . 2001. Salt Lake City, Utah PSIG Pipeline Simulation Interest Group – Thirty Third Annual Meeting.
- 55. Ximao, M., G. Yueping, and al., *Calculation on Contaminated Volume for Shutdown Oil Pipeline* (*In Chinese*).Oil & Gas Storage and Transportation, 2001. **20**(09): p. 30-31.
- 56. Tombola, M.C., *Econométrie 1 Rappels et recueil d'exercices [résolus]*, 2012, Copyright © cdktombola-Laréq

- 57. Casin, P., *Econométrie Méthodes et Applications avec Eviews*, E. Technip, Editor 2009: Paris. p. 224.
- 58. Shizhang, J. and P. Jianing, *Calculation and Error Analysis of Contaminated Viscosity in the Batch Transportation (In Chinese).* Oil & Gas Storage and Transportation, 2003. **22**(02): p. 16-19.
- 59. Dougherty, C., *Introduction to Econometrics*, 3 mars 2011 Fourth edition, Oxford University Press. p. 573.
- 60. Delsart, V., A. Rys, and N. Vaneecloo, *Méthodes statistiques de l'économétrie et de gestion Tome 3 - Économétrie théorie et application sous SAS®*, 1 sept. 2009, Presses Universitaires de Septentrion p. 414.

Annexe I

Corrélations sur les longueurs d'interface

S.S. Smith and R. K. Schulze

La longueur d'interface s'écrit :

$$L_m = \left(\frac{1075}{R_e^{0.87}} + 0.55\right) L^{0.62} \tag{1.A1}$$

L et L_m sont exprimées en pieds.

Pour un nombre de Reynolds constant, l'équation (1.A1) se réduit à :

$$L_m = K. L^{0.62} (2.A1)$$

E. A. Birge

Les équations (3.A1) et (4.A1) expriment les longueurs de l'interface respectivement pour les contacts Essence – kérosène et Essence – Essence.

$$L_m = 1.93 L^{0.529} \tag{3.A1}$$

$$L_m = 1.84 \, L^{0.482} \tag{4.A1}$$

L et L_m sont exprimées en pieds.

Ces équations sont indépendantes du diamètre et du nombre de Reynolds.

I. Kh. Khizgilov

Le volume de l'interface de mélange s'écrit :

$$\frac{V_m}{V_p} = 4a \ k \left(\frac{d}{L} \times \frac{3000 + 60.7R^{0.545}}{R_e}\right)^{0.5}$$
(5.*A*1)

 V_m : Volume de l'interface,

 V_p : Volume du pipe,

k : Fonction de l'instantanée,

a : Facteur de correction pour la sous couche laminaire.
Pour $R_e > 100000$, l'équation est approchée par :

$$L_m = 32a \ k \ d^{0.5} L_e^{0.5} R_e^{-0.228} \tag{6.A1}$$

Sir Geoffrey Taylor

$$L_m^2 = 437 R L\left(\frac{u^*}{u}\right)$$
(7.*A*1)

 u^* : Vitesse de friction,

u : Vitesse moyenne,

R : Rayon du pipe.

Comme :

$$\frac{u^*}{u} = \left(\frac{\gamma}{8}\right)^{0.5} \tag{8.A1}$$

La variable γ est exprimée comme suit:

$$\gamma = 0.316 \, R_e^{-0.25} \tag{9.A1}$$

Dans la région de Blasius, on a :

$$L_m^2 = 218.5 \, d \, L \ge 0.199 \, R_e^{-0.125} = 43.5 \, d \, L \, R_e^{-0.125}$$
(10. A1)

D'où,

$$L_m = 6.6 \ d^{0.5} L^{0.5} R_e^{-0.062} \tag{11.A1}$$

F. C. Fowler et C. G. Brown

$$\log_{10} \frac{V_m}{V_p} = P - 0.4 \log_{10} \frac{L}{d}$$
(12. A1)

P est fonction du nombre de Reynolds et de la plage de composition instantanée.

Et comme:

$$\frac{V_m}{V_p} = \frac{L_m}{L} \tag{13.A1}$$

L'équation se réduit à :

$$L_m = 10^P L^{0.6} d^{0.4} \tag{14.A1}$$

F. Sjenitzer

$$L_m = 32\ 100\left(\frac{L}{R}\right)^{0.07} (R.L)^{0.5} f^{1.8}$$
(15.A1)

f est le coefficient de friction dans la région de Blasius.

$$f = \frac{\gamma}{4} = 0.079 R_e^{-0.25} \tag{16.A1}$$

Donc,

$$L_m = 32\ 100\left(\frac{2L}{d}\right)^{0.07} \left(\frac{d.L}{2}\right)^{0.5} \left(\frac{0.079}{R_e^{0.25}}\right)^{1.8} \tag{17.A1}$$

D'où,

$$L_m = 246 \ d^{0.43} L^{0.57} R_e^{-0.45} \tag{18.A1}$$

D. E. Hull et J. W. Kent

La longueur de l'interface est supposée proportionnelle à $L_m^{0.5}$, bien que leurs expériences ont montré une proportionnalité à $L_m^{0.58}$.

$$L_m = 4 \ a \ k \ \frac{d^{0.5}}{L^{0.5}} \left(\frac{3000 + 60.7 R_e^{0.545}}{R_e}\right)^{0.5} \tag{19.A1}$$

Avec a=1.3 et k=1.64 pour une interface 99-1 %.

Pour R_e =5000 et R_e =100000 l'équation se réduit respectivement à :

$$L_m = 11.63 \ d^{0.5} L^{0.5} \tag{20.A1}$$

et,

$$L_m = 5.06 \ d^{0.5} L^{0.5} \tag{21.A1}$$

Ce que donne respectivement, pour un pipe de diamètre 12" :

$$L_m = 11.63 \, L^{0.5} \tag{22.A1}$$

et,

$$L_m = 5.06 \, L^{0.5} \tag{23.A1}$$

Pour le même diamètre du pipe (12"), la formule de Khizgilov peut être simplifiée comme suit :

$$L_m = 29.0 L^{0.5}$$
 à $R_e = 5000$ (24. A1)

et,

$$L_m = 3.71 L^{0.5}$$
 à $R_e = 100\ 000$ (25.*A*1)

Avec les formules de Taylor, où d et L sont à la puissance 0.5, les longueurs d'interface correspondantes sont données par :

$$L_m = 3.88 L^{0.5}$$
 à $R_e = 5000$ (26.A1)

et,

$$L_m = 3.21 L^{0.5}$$
 à $R_e = 100\ 000$ (27.*A*1)

Annexe II

Corrélations sur les volumes du mélange

Smith & Schulze

$$V_m(m^3) = 4 \cdot V_p \cdot \left(\frac{1}{L}\right)^{0.38} \cdot \left(\frac{268.75 R_e^{0.13} + 0.1375 R_e}{R_e}\right)$$
(1.A2)

Birge

<u>Contact Essence – Essence :</u>

$$V_m(m^3) = \frac{\pi d^2}{4} \ 0.588264 \ x \ (3.28083 \ L)^{0.482}$$
(2.A2)

<u> Contact Essence – kérosène :</u>

$$V_m(m^3) = \frac{\pi d^2}{4} \ 0.588264 \ \text{x}(3.28083 \ L)^{0.5292} \tag{3.A2}$$

Taylor

$$V_m(m^3) = \frac{\pi d^2}{4} 2.01168 \ x \ (3.28083 \ d)^{0.5} (3.28083 \ L)^{0.5} R_e^{-0.0625}$$
(4.42)

<u>Sjenitzer</u>

$$V_m(m^3) = \frac{\pi d^2}{4} 74.9808 \ x \ (3.28083 \ d)^{0.43} (3.28083 \ L)^{0.57} R_e^{-0.45}$$
(5.A2)

Hull & Kent

$$V_m(m^3) = \frac{\pi d^2}{4} \ 0.6498336 \ x \ (3.28083 \ d)^{0.5} (3.28083 \ L)^{0.5} \left(\frac{3000 + 60.7 \ R_e^{0.545}}{R_e}\right)^{0.5} \ (6.A2)$$

<u>Jablonski</u>

$$V_m(m^3) = 4 \ V_p \cdot \left(\frac{d}{L}\right)^{0.4} \left(\frac{6585 + 0.4925 \ R_e}{R_e}\right) \ge 0.77 \ \frac{Max(\rho_A, \rho_B)}{Min(\rho_A, \rho_B)}$$
(7.A2)

Austin & Palfrey

- $R_e > 10000^{(1.52(3.28083d)^{0.5})}$

$$V_m(m^3) = \frac{\pi d^2}{4} \ 3.5814 \ x \ (3.28083 \ d)^{0.5} (3.28083 \ L)^{0.5} R_e^{-0.1} \tag{8.A2}$$

- $R_e < 10000^{(1.52(3.28083d)^{0.5})}$

$$V_m(m^3) = \frac{\pi d^2}{4} 5614.416 \ x \ (3.28083 \ d)^{0.5} (3.28083 \ L)^{0.5} R_e^{-0.9} e^{\left(1.21(3.28083 \ d)^{0.5}\right)} \tag{9.A2}$$

Annexe III

Table de transformée de Laplace

$\bar{v}(p) = \int_0^\infty e^{-pt} v(t) dt$ We write $a = \sqrt{(p/p)}$. Doword here always positive minute in the									
	$\frac{\overline{v(p)}}{\overline{v(p)}}$	v(t)							
1.	$\frac{1}{p}$	1							
2.	$\frac{1}{p^{\nu+1}}, \nu > -1$	$\frac{t^{\nu}}{\Gamma(\nu+1)}$							
3.	$\frac{1}{p+\alpha}$	e ^{-at}							
4.	$\frac{\omega}{p^2+\omega^2}$	$\sin \omega t$							
5.	$\frac{p}{p^2+\omega^2}$	cos wt							
6.	e ^{-qx}	$\frac{x}{2\sqrt{(\pi Dt^3)}}e^{-x^2/4Dt}$							
7.	$\frac{e^{-qx}}{q}$	$\left(\frac{D}{\pi t}\right)^{\frac{1}{2}} e^{-x^2/4Dt}$							
8.	$\frac{e^{-qx}}{p}$	$\operatorname{erfc} \frac{x}{2\sqrt{Dt}}$							
9.	$\frac{e^{-qx}}{pq}$	$2\left(\frac{Dt}{\pi}\right)^{\frac{1}{2}} e^{-x^2/4Dt} - x \operatorname{erfc} \frac{x}{2\sqrt{Dt}}$							
10.	$\frac{e^{-yx}}{p^2}$	$\left(t+\frac{x^2}{2D}\right)\operatorname{erfc} \frac{x}{2\sqrt{Dt}}-x\left(\frac{t}{\pi D}\right)^{\frac{1}{2}} \mathrm{e}^{-x^2/4Dt}$							
11.	$\frac{e^{-qx}}{p^{1+\frac{1}{2}n}}, n = 0, 1, 2, \dots$	$(4t)^{\frac{1}{2}n}$ i ⁿ erfc $\frac{x}{2\sqrt{Dt}}$							
12.	$\frac{e^{-qx}}{q+h}$	$\left(\frac{D}{\pi t}\right)^{\frac{1}{2}} e^{-x^2/4Dt} - hD e^{hx + Dth^2}$							
		$\times \operatorname{erfc}\left\{\frac{x}{2\sqrt{Dt}}+h\sqrt{Dt}\right\}$							
13.	$\frac{e^{-qx}}{q(q+h)}$	$D e^{hx + Dth^2} \operatorname{erfc} \left\{ \frac{x}{2\sqrt{Dt}} + h\sqrt{Dt} \right\}$							

Annexe IV

Les moindres carrées pour la détermination des coefficients de la droite de régression

Cette annexe va traiter de l'établissement de l'équation de la droite de régression de y en x obtenue par la méthode des moindres carrées. On va expliquer l'obtention des coefficients a et b de cette droite.

- Rappel sur les calculs concernant le signe \sum :

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$$
 1.44

$$\sum_{i=1}^{n} (x_i + y_i) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i$$
2.A4

$$\sum_{i=1}^{n} (ax_i + b) = a \sum_{i=1}^{n} x_i + n.b$$
3.A4

Une série statistique à deux variables c'est l'ensemble des couples $\{(x_i, y_i)\}$ ou se donne une population, où cette population va effectivement définir deux ensembles de données de taille n (l'effectif total) : $\{x_1, x_2, ..., x_n\}$; $\{y_1, y_2, ..., y_n\}$.

Ces valeurs ont été relevées ou mesurées sur une population. Alors la méthode de traitement du problème de la régression linéaire consiste à recherche une relation entre y et x de la forme : y = f(x).

Lorsque cette relation est de type affine y = ax + b on parlera de Régression linéaire.

Bien entendu, les couples (x_i, y_i) ne vérifient pas systématiquement la relation y = ax + b (on verra comment ça se traduit) vu qu'll va exister des erreurs d'un point de vu graphique.

- y : Variable dépendante ou variable expliquée
- x : Variable explicative.

L'ensemble des couples (x_i, y_i) font l'objet d'une représentation graphique sous forme de nuage de point (voir fig. A3.1).

Soit $M_i(x_i, y_i)$. P_i est un point de la droite qu'on appelle droite de régression de y en x.

On remarque que le nuage de point s'écarte plus au moins de la droite, nous avons une forme de dispersion de ces points autour de la droite $D_{y/x}$. Ce nuage de point est caractérisé d'abord par le point moyen G (appelé aussi centre de gravité de nuage de point) qui va se trouver sur cette droite et a pour coordonnées (\bar{x}, \bar{y}) .

Fig. A4. 1 Représentation de la droite de régression avec le nuage de points et les résidus

Alors l'objectif : c'est de déterminer ou de rechercher une seule droite ou plutôt la droite qui ajuste au mieux ce nuage de point. On remarque des écarts P_iM_i , appelés résidus, dénotés ϵ_i (Fig. A3.1).

Puisque le problème qui nous ait soumis est un problème d'optimisation, donc le but c'est de déterminer la droite $D_{y/x}$ obtenue par la méthode des moindres carrées pour laquelle : $\sum (P_i M_i)^2$ soit minimale.

$$\sum (P_i M_i)^2 = \sum \varepsilon_i^2$$
4.44

On remarque bien que M_i a pour ordonnée y_i et a la même abscisse que P_i . P_i a pour ordonnée $ax_i + b$, et dont l'écart entre P_i et M_i est tout égal à : $y_i - (ax_i + b)$.

Comme il faut calculer $\sum (P_i M_i)^2$, on doit élever $y_i - (ax_i + b)$ au carrée.

$$E = \sum_{i=1}^{n} (y_i - (ax_i + b))^2 = \sum_{i=1}^{n} \varepsilon_i^2$$
 5.44

Et donc l'objectif est de déterminer a et b de telle sorte que la somme E soit minimale.

On a :

$$D_{y/x} \quad y = ax + b \tag{6A.4}$$

La droite passera $D_{y/x}$ obligatoirement par le point $G(\bar{x}, \bar{y})$, et comme le point $G \in D_{y/x}$ donc ses coordonnées vérifient l'équation de la droite.

$$\bar{y} = a\bar{x} + b \tag{7.A4}$$

$$(6.A4 - 7.A4) \Rightarrow y - \bar{y} = a(x - \bar{x})$$

$$8.A4$$

Nous rappelons que le coefficient a de l'équation (5.2) que l'on cherche :

$$a = \frac{\sigma_{xy}}{{\sigma_x}^2}$$

On essaye d'établir ce résultat à partir de minimisation de $\sum (P_i M_i)^2$.

Les dérivées partielles de E :

$$\frac{\partial E}{\partial b} = -2 \sum (y_i - (ax_i + b))$$
9.44

$$\frac{\partial E}{\partial b} = -2 \sum (y_i - (ax_i + b)) \cdot x_i$$
 10.44

Minimiser E, donc poser :

$$\frac{\partial E}{\partial b} = 0$$
 et $\frac{\partial E}{\partial a} = 0$ 11.44

On va aussi établir que la droite $D_{y/x}$ y = ax + b passe par le point moyen $G(\bar{x}, \bar{y})$.

$$\frac{\partial E}{\partial b} = 0 \quad \Leftrightarrow \quad -2\sum (y_i - (ax_i + b)) = 0$$
 12.44

Après division des deux membres par 2 et développement :

$$\sum y_i = a \cdot \sum x_i + nb$$
 13.44

On divise les deux membres par n (l'effectif total) :

$$\frac{\sum y_i}{n} = a \cdot \frac{\sum x_i}{n} + b$$
14. A4

On sait que :

$$\frac{\sum y_i}{n} = \bar{y}$$
 et $\frac{\sum x_i}{n} = \bar{x}$

On obtient donc :

$$\bar{y} = a \cdot \bar{x} + b \tag{15.A4}$$

Ce résultat traduit que le point $G(\bar{x}, \bar{y})$ appartient bien à la droite $D_{y/x}$. D'où l'équation (5.3) :

$$b = \overline{y} - a\overline{x}$$

Maintenant on va recalculer

$$\frac{\partial E}{\partial a} = 0 \quad \Leftrightarrow \quad -2 \sum (y_i - (ax_i + b)) x_i = 0$$
 16.44

Après division des deux membres par 2 et développement :

$$\sum x_i y_i = a. \sum x_i^2 + \bar{y} \sum x_i - a\bar{x} \sum x_i$$
17. A4

On divise les deux membres par n :

$$\frac{\sum x_i y_i}{n} = a \cdot \frac{\sum x_i^2}{n} + \bar{y} \cdot \frac{\sum x_i}{n} - a \bar{x} \cdot \frac{\sum x_i}{n}$$
18. A4

$$a.\left(\frac{\sum x_i^2}{n} - \bar{x}^2\right) = \frac{\sum x_i y_i}{n} - \bar{x}\bar{y}$$
19.44

$$a \cdot \sigma_x^2 = \sigma_{xy}$$
 20.44

On en déduit que (Equation (5.2)) :

$$a = \frac{\sigma_{xy}}{{\sigma_x}^2}$$

En résumé :

On a établi que la droite $D_{y/x}$ obtenue par la méthode des moindres carrées passe par le point $G(\bar{x}, \bar{y})$, elle a pour équation :

$$\overline{y} - y = a(x - \overline{x})$$
 avec $a = \frac{\sigma_{xy}}{\sigma_x^2}$

Annexe V

Table de distribution de la loi T de Student

Pr ddl	0.90	0.80	0.70	0.60	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.001
1	0.158	0.325	0.510	0.727	1.000	1.376	1.963	3.078	6.314	12.706	31.821	63.657	636.619
2	0.142	0.289	0.445	0.617	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	31.598
3	0.137	0.277	0.424	0.584	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	12.929
4	0.134	0.271	0.414	0.569	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	8.610
5	0.132	0.267	0.408	0.559	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	6.869
6	0.131	0.265	0.404	0.553	0.718	0.906	1.134	1.440	1.943	2.447	3-143	3.707	5-959
7	0.130	0.263	0.402	0.549	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3-499	5.408
8	0.130	0.262	0.399	0.546	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3-355	5.041
9	0.129	0.261	0.398	0.543	0.703	0.883	1.100	1.383	1.833	2.263	2.821	3.250	4.781
10	0.129	0.260	0.397	0.542	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.587
11	0.129	0.260	0.396	0.540	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.437
12	0.128	0.259	0.395	0.539	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	4.318
13	0.128	0.259	0.394	0.538	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	4.221
14	0.128	0.258	0.393	o 537	0.692	o.868	1.076	1.345	1.761	2.145	2.624	2.977	4.140
15	0.128	0.258	0.393	0.536	0.691	o.866	1.074	1.341	1.753	2.131	2.602	2.947	4.073
16	0.128	0.258	0.392	0.535	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	4.015
17	0.128	0.257	0.392	0.534	0.689	0.863	1.069	1-333	1.740	2.110	2.567	2.898	3.965
18	0.127	0.257	0.392	0.534	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.922
19	0.127	0.257	0.391	0.533	o 688	0.961	1.066	1.328	1.729	2.093	2.539	2.861	3.883
20	0.127	0.257	0.391	0.533	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.850
21	0.127	0.257	0.391	0.532	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.819
22	0.127	0.256	0.390	0.532	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.792
23	0.127	0.256	0.390	0.532	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.767
24	0.127	0.256	0.390	0.531	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.745
25	0.127	0.256	0.390	0.531	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.725
26	0.127	0.256	0.390	0.531	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.707
27	0.137	0.256	0.389	0.531	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.690
28	0.127	0.256	0.389	0.530	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.674
29	0.127	0.256	0.389	0 530	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.649
30	0.127	0.256	0.389	0.530	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.656
40	0.126	0.255	0.388	0.529	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3-551
80	0.126	0.254	0.387	0.527	0.679	0.848	1.046	1.296	1.671	2.000	2.390	2.660	3.460
120	0.126	0.254	0.386	0.526	0.677	0.845	1.041	1.289	1.658	1.980	2.358	2.617	3.373
00	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.291

Table de distribution de la loi T de Student