

جامعة أبو بكر بالقايد _ تلمسان _

Université Abou Bakr Belkaïd de Tlemcen.

Faculté de Technologie

Département de Génie Biomédical

MEMOIRE DE PROJET DE FIN D'ETUDES

pour l'obtention du Diplôme de

MASTER en GENIE BIOMEDICAL

Spécialité : Instrumentation Biomédicale

Présenté par : ATTIA Ibtissem et AMMARI Aicha

CALIBRAGE D'UN BRAS DE ROBOT POUR DES APPLICATIONS MEDICALES

Soutenu le 01 décembre 2019 devant le Jury

Mr MALTI abed MCA Université de Tlemcen Encadreur.

Mr DEBBAL sidi Mohammed Professeur Université de Tlemcen Président.

Mr SOULIMANE sofiane MCA Université de Tlemcen Examinateur.

Année universitaire 2018-2019.

Table des matières

1	Le	calibrage des robots	13
	1.1	La définition du calibrage	13
	1.2	Le but du calibrage	14
	1.3	Les types du calibrage	14
		1.3.1 Calibrage sans capteur externe	14
		1.3.2 Calibrage avec capteur externe	14
	1.4	Le principe du calibrage	15
	1.5	L'état de l'art du calibrage	16
		1.5.1 Le calibrage basé sur un modèle	18
		1.5.2 La modélisation géométrique	19
	1.6	Le choix d'une méthode de calibrage	21
2	Mo	délisation géométrique du robot	2 5
	2.1	Introduction	25
		2.1.1 Définitions :	25
	2.2	Outils de modélisation géométrique :	25
		2.2.1 Matrices de changement de base :	25
		2.2.2 Coordonnées d'un même point dans deux repères :	26
		2.2.3 Matrice de transformation homogène :	28
		2.2.4 Modèle géométrique direct :	
		2.2.5 Paramétrage de Denavit-Hartenberg :	29
3	Cal	librage par la méthode Least Square Estimation	35
	3.1	Introduction	
	3.2	Définitions	
		3.2.1 La matrice Jacobienne	
		3.2.2 Le calcul Jacobien en robotique	
	3.3	La méthode LSE	
		3.3.1 Calcul du modèle géométrique direct (nominal)	
		3.3.2 Calcul du modèle perturbé :	
		3.3.3 Calcul de la matrice jacobienne J:	
		3.3.4 Calcul de l'inverse de J :	42
4	Cal	librage par la méthode du filtre de Kalman étendu	5 5
	4.1	Définition	
	4.2	Principe de la méthode	
	4.3	Des exemples de calcul	
		4.3.1 Première expérience avec le robot Staubli classique	58

		4.3.2 Deuxième expérience avec le robot réel	60
5	Inst	tallation d'un moyen de perception sur le robot	67
	5.1	Introduction	67
		5.1.1 Calcul du modèle géométrique direct (nominal)	
		5.1.2 Calcul du modèle perturbé :	
		5.1.3 Calcul de la matrice jacobienne J:	
	5.2	Les configurations de la position zéro	
	5.3	Le processus du calcul :	
		5.3.1 L'étape 01 :	
		5.3.2 L'étape 02:	
		5.3.3 Les résultats d'estimation	
6	Inct	tallation d'une sonde écho-graphique sur le robot	81
U	6.1	Introduction	
	0.1	6.1.1 Calcul du modèle géométrique direct (nominal)	
		6.1.2 Calcul du modèle perturbé :	
		•	
	6.2		
	6.2	Présentation des figures	
	6.4	Les résultats d'estimation:	
	0.4		
	c r	6.4.1 Les résultats d'estimation avec LSE :	
	6.5	Les matrices jacobiennes et les vecteurs Y du chapitre 03	
		6.5.1 La première expérience avec le robot classique	
	0.0	6.5.2 La deuxième expérience avec le robot réel	
	6.6	Les matrices jacobiennes et les vecteurs Y du chapitre 04	
		6.6.1 La première expérience avec le robot classique	
		6.6.2 La deuxième expérience avec le robot réel	108
	6.7	Les matrices jacobiennes et les vecteurs Y correspondants aux résultats d'estimation du chapitre	
		05:	109
	6.8	Les matrices jacobiennes et les vecteurs Y correspondants aux résultats d'estimation du chapitre	
		$06 \cdot$	11/

Liste des figures

1.1 1.2	Répartition de l'utilisation des robots industriels par application en 2008	17
1.4	Federation of Robotics)	18
1.3	Les caractéristiques des différentes méthodes de modélisation géométrique des robots	20
1.4	Le développement des méthodes de modélisation géométrique des robots	21
2.1	Représentation de matrice de passage Le passage de R_0 à R_1 sera noté ainsi	26
2.2	Le passage du repère d'origine R_0 au repère R_1 suivant une rotation sur l'axe X avec une angle θ	27
2.3	coordonnées d'un point dans deux repères	27
2.4	représentation d'un SMA	29
2.5	Paramétrage Denavit et Hartenberg	30
2.6	placement des repères	31
2.7	Les configurations 1 et 2	32
2.8	Les configurations 3 et 4	32
2.9	Les configurations 5 et 6	33
3.1	Placement des repères du robot Staubli	38
3.2	Placement des repères du robot réel	47
3.3	Les configurations 1 et 2	49
3.4	Les configurations 3 et 4	50
3.5	Les configurations 5 et 6	50
3.6	La configuration 7	51
4.1	Organigramme de la calibration avec de la méthode EKF	57
4.2	Déviations des paramètre D-H identifiées du robot Staubli classique avec l'algorithme EKF	60
4.3	Déviations des paramètre D-H identifiées avec l'algorithme EKF de l'essai 1	62
4.4	Déviations des paramètre D-H identifiées avec l'algorithme EKF de l'essai 2	63
4.5	Déviations des paramètre D-H identifiées avec l'algorithme EKF de l'essai 3	65
4.6	Les écarts de position du robot réel après le calibrage avec les deux algorithmes LSE et EKF	66
5.1	Installation d'une caméra sur l'effecteur final du notre robot réel $\dots \dots \dots \dots \dots$	68
5.2	La position zéro de notre robot réel	76
5.3	Déviations des 27 paramètre D-H identifiées avec l'algorithme EKF	79
5.4	Les écarts de position du robot réel après le calibrage avec les deux algorithmes LSE et EKF $$. $$	80
6.1	Installation d'une sonde écho-graphique sur l'effecteur final du notre robot réel	82
6.2	Les configurations 1 et 2	89
6.3	Les configurations 3 et 4	90

4 LISTE DES FIGURES

6.4	Les configurations 5 et 6	91
6.5	Les configurations 7 et 8	92
6.6	Déviations des 28 paramètre D-H identifiées avec l'algorithme EKF	94
6.7	Les écarts de position du robot réel après le calibrage avec les deux algorithmes LSE et EKF	95

Liste des tableaux

1.1	Les systèmes de mesure	15
2.1 2.2	les paramètres géométriques du robot Stäubli RX-90	
$3.1 \\ 3.2$	Les paramètres nominaux de D-H du robot Stäubli RX-90	
3.3	les sept configurations choisies pour la modélisation géométrique du robot Stäubli modifié	
3.4	La différence entre les trois essais du robot réel calibré par LSE	
4.1	Description de le premier essai du EKF pour le robot classique	58
4.2	Le X_k à estimer par EKF pour le premier essai	58
4.3	Les six configurations pour estimer le ΔX du robot Staubli classique par EKF	
4.4	La différence entre les trois essais du EKF pour le robot réel	60
4.5	Le X_k à estimer par EKF pour le premier essai	61
4.6	Les sept configurations pour estimer le ΔX du premier essai par EKF $\dots \dots \dots \dots$	61
4.7	Les sept configurations pour estimer le ΔX par EKF $\dots \dots \dots \dots \dots \dots \dots$	62
4.8	Le X_k à estimer par EKF pour le troisième essai \ldots	64
4.9	Les sept configurations pour estimer le ΔX par EKF $\dots \dots \dots \dots \dots \dots \dots$	64
4.10	Les écarts de positionnement de l'effecteur final du robot	66
5.1	les paramètres de D-H de notre robot réel avec le moyen de perception	68
5.2	Les configurations de la position zéro	75
5.3	Les écarts de positionnement de l'effecteur final du robot	80
6.1	les paramètres de D-H de notre robot réel avec la sonde écho-graphique	81
6.2	Les écarts de positionnement de l'effecteur final du robot	95

6 LISTE DES TABLEAUX

Remerciement

En préambule à ce mémoire nous remercions **Dieu** le tout puissant et miséricordieux, qui nous a donné le courage et la patience d'accomplir ce modeste travail.

En second lieu, nous tenons à remercier notre encadreur **Mr: Malti Abed**, pour ses précieux conseils et son orientation durant toute la période du travail.

Nous tenons à saisir cette occasion et adresser nos profonds remerciements et nos profondes reconnaissances à nos familles et notamment nos parents pour leur soutien.

Nous adressons aussi nos sincères remerciements à tous nos proches et amis pour leurs encouragements le long de cette durée, spécialement et sincèrement Monsieur: **Z.Ahmed**

Enfin, nous tenons également à remercier toutes les personnes qui ont participé de près ou de loin à la réalisation de ce projet de fin d'étude

Merci à tous et à toutes.

8 LISTE DES TABLEAUX

ملخص

تلعب دقة تحديد موقع الروبوتات دورًا مهمًا للغاية في التطبيقات الصناعية المنقدمة ، وكذلك في التطبيقات الطبية وخاصة الجراحية ، لذلك من الضروري معايرة هذه الروبوتات لتحسين دقة تحديد المواقع. العمل ، سنقدم طريقة جديدة لمعايرة الروبوتات استنادًا إلى خوارزمية تقدير المربعات الصغرى وخوارزمية مرشح كالمان. تم إنشاء النموذج الهندسي والنموذج الخاطئ للروبوت ، ثم يتم تحديد المعلمات الهندسية للروبوت أولاً من خلال خوارزمية المربعات الصغرى التي يمكن أن خطي النظم غير الخطية ، لكنها محدودة للغاية في الضوضاء ، ولكن القياس خوارزمية كالمان يمكن أن تؤثر على هندسة الروبوتات غير الخطية للغاية مع الضوضاء غير غوسية.

Résumé

La précision de positionnement des robots jouent un rôle très important dans les applications industrielles avancées, également dans les applications médicales, plus précisément chirurgicales. Il est nécessaire de calibrer ces robots afin d'améliorer la précision de positionnement. Dans ce travail, nous présentons une nouvelle méthode de calibrage des robots basée sur l'algorithme d'estimation de moindre carré (LSE), ainsi que l'algorithme du filtre de Kalman étendu . Ces algorithmes peuvent efficacement améliorer la précision de positionnement des robots. Le modèle géométriques et le modèle géométriques erroné du robot sont établis, puis les paramètres géométriques du robot sont identifiés premièrement par l'algorithme LSE, qui peut linéariser des systèmes non linéaires mais, il est très limité devant les bruits, de mesure cependant l'algorithme EKF peut affecter la géométrique des robots hautement non linéaire avec des bruits non gaussien

Abstract

The positioning accuracy of robots play a very important role in advanced industrial applications, also in medical and especially surgical applications, so it is necessary to calibrate these robots to improve this positioning accuracy. In this work we will present a a new method of calibrating robots based on the Least Squares Estimation Algorithm (LSE), and the extended Kalman filter algorithm that can effectively improve the positioning accuracy of robots. The geometric model and the erroneous geometric model of the robot are established, then the geometric parameters of the robot are identified firstly by the LSE algorithm, which can linearize nonlinear systems but, it is very limited in front of noise, measuring however the EKF algorithm can affect the geometry of robots highly nonlinear with non Gaussian noises.

10 LISTE DES TABLEAUX

Introduction:

Dans le domaine de robotique,Les paramètres réels et nominaux des robots sont différents les uns des autres en raison de plusieurs facteurs tels que la tolérance d'assemblage et la déformation structurelle. Cette différence entraîne une réduction de précision de positionnement du robot. Cependant, les robots exigent une grande précision de positionnement dans les procédés d'usinage, les procédés de contrôle ultra-sonores (exemple de notre domaine médicale est la sonde écho-graphique), ou encore de perçage et les tâches d'assemblage. Par conséquent, pour cette exigence, il est nécessaire de calibrer les paramètres des robots.

Dans notre cas, afin de calibrer un robot Staubli à six degré de liberté c'est à dire arriver à améliorer au maximum son précision, nous étudierons une méthodes de calibrage basée sur deux algorithmes. Le premier est l'algorithme de moindre carré (LSE) et le deuxième est le Filtre de Kalman Etendu (EKF)

Ce rapport est structuré de six chapitres, on a commencé par des notions générales sur le calibrage dans le chapitre 1 et son état de l'art. Les outils de modélisation géométrique des robots sont expliqués dans le chapitre 2

Dans le chapitre 3, on a défini le premier algorithme du calibrage LSE et présenter ses résultats d'estimation pour les 19 paramètres D-H du notre robot réel.

Ensuite, on a défini le deuxième algorithme du calibrage EKF dans le chapitre 4 avec ses résultats d'estimation pour les mêmes 19 paramètres D-H estimé dans le chapitre 3.

Après cela, dans la partie une du chapitre 5 on a installé un moyen de perception (une caméra) sur l'effecteur final de notre robot réel pour détecter les positions d'un motif fixé sur la même table où on a fixé notre robot réel pour des configurations différentes. Dans la deuxième partie on a présenté les résultats d'estimation des 27 paramètres D-H par les deux algorithmes LSE et EKF.

Enfin, dans le dernier chapitre, on parle sur le montage où on a fixé une caméra sur un tripode et on a installé une sonde écho-graphique sur l'effecteur final de notre robot. On a fixé par la suite un motif sur la sonde et on a varié les configurations du robot pour le but de détecter le motif par la caméra. Les résultats d'estimation des 28 paramètres D-H sont présentés par les deux algorithmes LSE et EKF.

12 LISTE DES TABLEAUX

Chapitre 1

Le calibrage des robots

Dans ce chapitre on va présenter une notion très importante dans le domaine de la robotique qui est le calibrage géométrique des robots suivant ce plan :

- La définition du calibrage
- Le but du calibrage
- Le principe du calibrage
- Les types de calibrage
- L'état de l'art

1.1 La définition du calibrage

Par rapport à ce qu'existe dans cet article [9] le calibrage est définie comme étant un processus ou une technique qui permet d'améliorer les performances et la précision du robot en modifiant le logiciel de positionnement du robot plutôt que de changer ou de modifier la conception ou la structure mécanique du robot. Cela implique d'identifier une relation fonctionnelle plus précise entre les lectures du transducteur commun et la position réelle de l'effecteur final dans l'espace de travail, et d'utiliser ces modifications identifiées pour ajuster en permanence (entre chaque étalonnage consécutif) le logiciel de positionnement du robot. Le calibrage est un événement discret et, en tant que tel, diffère du contrôle adaptatif (des robots) dans lequel l'identification du modèle est effectuée en continu. la définition précédente du calibrage suppose qu'une relation entre l'effecteur terminal et les lectures du transducteur commun est connue, mais que cette relation n'est pas nécessairement précise en raison de modifications du matériel du robot ou d'incertitudes dans les paramètres de la relation nominale

D'une façon claire et simple, on peut dire que le calibrage : c'est d'identifier les paramètres géométriques du modèle (identifier les longueurs et les angles qui caractérisent les dimensions des corps constituant le robot et leurs situations)

1.2 Le but du calibrage

Les principales applications nécessitant une haute précision du bras robotisé sont les procédés d'usinage, les procédés de contrôle ultrasonores, ou encore de perçage et d'assemblage. Les chargements auxquels le robot est soumis sont variables (de 1 à 2 kg pour les outillages de contrôle et plus de 10 kg pour les outillages de fraisage augmentés des efforts de coupe). Nous cherchons donc, d'une part, à nous assurer que le robot porteur de ces procédés est assez précis et, d'autre part, à évaluer l'écart entre le trajectoire désiré et le trajectoire réel de l'effecteur du robot [2]

1.3 Les types du calibrage

On distingue deux types de calibrage [2] qui sont les suivants :

1.3.1 Calibrage sans capteur externe

Il s'agit d'une méthode du calibrage dite autonome car il n'est pas nécessaire de s'accommoder d'un capteur externe. Elle repose sur une contrainte d'au moins un degré de liberté de l'effecteur par une liaison physique avec l'environnement. Toutes les méthodes de ce type donnent une seule information qui est le vecteur des variables articulaires relevé dans différentes configurations.

1.3.2 Calibrage avec capteur externe

Les méthodes de calibrage avec un capteur externe sont basées sur plusieurs principe de mesure, on peut citer les suivants :

- Le calibrage basé sur la mesure de la position et l'orientation de l'effecteur par rapport à un repère fixe de référence
- Le calibrage basé sur la mesure de la situation relative de l'effecteur entre deux configurations q_a et q_b du robot
- Le calibrage basé sur la mesure de la distance D_r parcourue par l'organe terminal entre deux configurations q_a et q_b

Le principal inconvénient de toutes ces méthodes de calibrage est de trouver un capteur externe qui satisfait les critères mentionnés précédemment

Et parce que notre étude est consacrée à choisir et expliquer une méthode de calibrage avec capteur externe, en concentrant sur les capteurs et leurs caractéristiques. Parmi les systèmes de mesure utilisés dans la littérature pour le calibrage, nous citons les suivants :

- Deux théodolites
- Balayage laser

- Caméra
- Laser
- Capteur acoustique, etc

le tableau ci-dessous montre une comparaison entre ces systèmes de mesure:

le système de	Théodolite	Le Laser	Système de vi-	Le Ballbar
mesure		Tracker	sion	
composants	une base, une	rétro	une ou plusieurs	compose de
	alidade et une	réfléchissante,	caméras	deux billes
	télescope	un faisceau		d'acier qui sont
		laser et un		séparés l'une
		interféromètre		de l'autre par
				un montage
				télescopique
le grandeur	déterminer la	mesure une dis-	estimer la posi-	mesure l'écart
mesuré	localisation	tance et deux	tion et orienta-	par rapport à un
	spatiale de	angles	tion d'un objet	rayon prédéfini
l'effecteur			connu par rap-	au moyen d'un
	robot		port à un repère	capteur
			lié à la ou les	
			caméras	
la précision	Relativement	une précision de	précisions de	précisions de
précis		$^{+}_{-}$ 0.01mm	mesure obtenues	pose de l'ordre
		0.01111111	sont de l'ordre	${\rm de}~0.08~{\rm mm}$
			$50\mu \mathrm{\ m}$	

Table 1.1: Les systèmes de mesure

1.4 Le principe du calibrage

Dans le but de classer les majorités des méthodes de calibrage des robots, selon cet article [9] on a choisi de définir trois niveaux de calibrage :

- a. Niveau 1 : on l'appelle jiniveau commun; car, il détermine la relation correcte entre le signal produit par le capteur de déplacement du joint et le déplacement réel du joint. Cela implique généralement un calibrage de la géométrique du entraı̂nement et les mécanismes de capteur communs.
- b. Niveau 2 : ce niveau de calibrage correspond au calibrage complet du modèle géométrique, il a pour but de déterminer la géométrie de base du robot ainsi que les relations correctes en angle.
- c. Niveau 3 : est défini comme un calibrage non géométrique. Les erreurs non géométriques

dans le positionnement de l'effecteur terminal d'un robot sont dues à des effets tels que la compliance articulaire, le frottement et le jeu. De même, si le robot est sous contrôle dynamique (plutôt que géométrique), la correction des modifications du modèle dynamique du robot constitue un étalonnage de niveau 3.

En général, le processus du calibrage à n'importe quel niveau se fait en quatre étapes :

Choisir la forme d'une relation fonctionnelle appropriée en utilisant le paramétrage de Denavit et Hartenberg. Nous nous référerons à cette étape l'étape de modélisation

La deuxième étape consisterait à collecter auprès du robot des données reliant l'entrée du modèle à la sortie. Cette étape sera appelée étape de mesure car elle consiste à un processus de collecte de données physique c.à.d en mesurant avec un capteur externe la position de l'effecteur terminal du robot à condition la résolutionoutil de mesure soit supérieur à la résolutionposition du robot

La troisième étape serait le processus mathématique consistant à utiliser les données collectées pour identifier les coefficients dans le modèle. Nous appellerons cette étape l'étape d'identification Notez qu'une partie importante de cette étape consiste à déterminer l'erreur attendue dans les coefficients identifiés en raison du bruit dans le processus de mesure

La dernière étape serait la mise en œuvre du nouveau modèle dans le logiciel de contrôle de position du robot. Cela sera appelé l'étape de correction

Nous aborderons chacun des trois niveaux d'étalonnage individuellement. À chaque niveau, les quatre étapes du processus d'étalonnage seront décrites et les recherches en cours dans le domaine sont mises en évidence.

1.5 L'état de l'art du calibrage

[1]

Le premier robot industriel nommé Unimate a été développé, en 1959, par George Devol et Joseph Engelberger. Unimate est un manipulateur sériel à six axes actionnés à l'aide de vérins hydrauliques. Il a été utilisé dans l'industrie pour la première fois en 1961 par General Motors pour déplacer des pièces métalliques ayant une très haute température. Depuis, l'utilisation des robots en industrie s'est élargie pour inclure une très grande variété d'applications comme l'assemblage, le soudage et la peinture

La figure 1.2 sous forme s'un tableau donne un aperçu sur l'historique des robots industriels avec les applications pour lesquelles ils ont été conçus. En effet, les robots sont capables d'effectuer des tâches répétitives ou dangereuses à des vitesses élevées, permettant ainsi à l'opérateur humain d'éviter les travaux pénibles et à risque. De plus, d'après une étude menée par Graetz et Michaels sur 17 pays entre 1993 et 2007, l'utilisation des robots en industrie a augmenté le taux annuel de la productivité du travail et le produit intérieur brut

La figure 1.1 montre les pourcentages d'utilisation des robots industriels par application en 2008 dans le monde. L'usinage robotisé est le moins utilisé en industrie, même s'il représente

une alternative à l'utilisation des machines-outils, surtout dans certains cas comme l'usinage de grandes pièces et de formes complexes. Ce frein à l'utilisation des robots dans des opérations d'usinage peut s'expliquer par les difficultés de prise en main par les opérateurs et leur manque de connaissance sur la capacité que peuvent offrir ces robots. Néanmoins, d'autres raisons liées aux performances des robots (précision statique, précision dynamique, rigidité . . .) constituent une barrière à l'utilisation des robots pour l'usinage, surtout dans le cas d'opération à fort enlèvement de matière

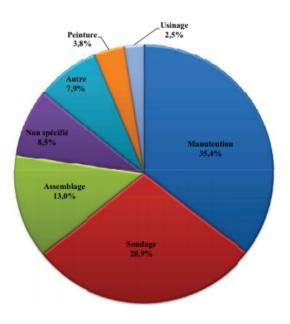


Figure 1.1: Répartition de l'utilisation des robots industriels par application en 2008

Année	Robot	Contribution
1959	Unimate	Devol et Engelberger développent le premier robot industriel
1961	Unimate	GM : Première installation dans une usine
1962	Versatran AMF	Premier robot de type cylindrique
1969	Unimate	GM installe le robot de soudage par points dans l'usine
1969	Trallfa	Norwegian labor shortage : premier robot de peinture
1973	Famulus	KUKA : premier robot électromécanique à 6 axes entraînés
1973	Hitachi	Premier robot automatique de boulonnage
1974	Т3	Le premier robot industriel mini-contrôlé arrive sur le marché
1974	Hi-T-Hand	Kawasaki : le premier robot de soudage à l'arc
1974	IRB-6	ASEA : le premier robot tout-électrique
1975	SIGMA	Olivetti : l'un des premiers utilisés aux assemblages
1978	PUMA	Unimation : robot travaille en coopération avec des opérateurs
1978	SCARA	Univ. de Yamanashi : Hiroshi Makino développe le robot SCARA
1978	RE15	Reis : premier robot à 6 axes avec son propre système de
1970	RE15	contrôle
1979	Nachi	Premier robot piloté par moteurs électriques
1981	Gantry	PAR Système introduit son premier robot portique
1984	Adeptone	Adept : premier robot SCARA à entraînement direct
1992	Delta	Demaurex : premier robot pour application d'emballage
1998	FlexPicker	ABB : robot rapide de cueillette (picking)
1999	RV6L-CO2	Reis : robot guidé par faisceau laser
2004	NX100	Motoman : commande synchronisée de quatre robots
2006	WiTP	Comau : commande par interface sans fils
2006	Kuka LWR	Kuka robot léger à 7 axes
2010	LVC	Fanuc : le premier "Learning Control Robot"

Figure 1.2: Historique de la robotique industrielle établi à partir du rapport annuel de l'IFR (International Federation of Robotics)

Donc, pour arriver à augmenter les performances des robots surtout du coté précision et arriver à casser la barrière d'utiliser des robots pour l'usinage dans l'industrie ou bien pour le contrôle dans le domaine médical, on a concentré sur la notion calibrage ou étalonnage de la géométrique des robots

1.5.1 Le calibrage basé sur un modèle

La calibration des robots se repose essentiellement sur l'établissement du modèle d'erreur et sa solution

Ce processus peut être divisé en quatre étapes :

la modélisation, la mesure de la pose de l'effecteur final, l'identification des paramètres géométriques et compensation des erreurs

1.5.2 La modélisation géométrique

Le modèle géométrique pour l'étalonnage du robot doit répondre aux trois exigences de base :

- La complétude du modèle: le modèle géométrique doit avoir des paramètres suffisants pour décrire l'écart entre la valeur réelle et la valeur nominale du modèle géométrique
- La minimalité des paramètres implique que le modèle géométrique doit inclure un nombre minimal de paramètres
- La continuité du modèle signifie que des modifications arbitraires de la pose de l'effecteur final peuvent entraı̂ner des modifications correspondantes des paramètres géométriques.

Diverses méthodes de modélisation géométrique des robots ont été proposées, notamment la méthode DH (Denavit-Hartenberg), la méthode du modèle S, la méthode du modèle CPC (complète et paramétrée en continu), la méthode du modèle de référence zéro et la méthode de la formule POE (produit des exponentielles)

La méthode de D-H

C'est une méthode normalisée de modélisation géométrique des robots. Du fait que son système de coordonnées et ses paramètres sont définis de manière stricte, les modèles géométriques établis par cette méthode sont cohérents. Cependant, la méthode DH ne comporte que quatre paramètres de liaison, à savoir pas assez pour obtenir un modèle complet pour le calibrage. En ce qui concerne le problème d'incomplétude du modèle D-H, les caractéristiques d'incomplétude sont éliminées en introduisant une sorte de transformation du système de coordonnées, et une méthode D-H améliorée est proposée, qui décrit la déviation entre deux axes de joints parallèles adjacents avec une transformation de rotation supplémentaire

La méthode du modèle S

Le modèle S a été créé par Stone. Le modèle S est plus flexible dans le processus d'établissement de systèmes de coordonnées que la méthode DH. Toutefois, le modèle S utilise six paramètres de liaison (en ajoutant deux paramètres au modèle DH) pour construire un modèle géométrique complet, mais non continu. Cependant, en raison de l'introduction des paramètres supplémentaires, l'ensemble des paramètres géométriques ne peut pas être identifié avec précision.

La méthode du modèle CPC

Le modèle CPC ajoute deux paramètres sur la base du modèle DH, compensant ainsi les caractéristiques d'incomplétude et de non continuité du modèle DH.Mais, Il a un problème singulier lors de la construction du modèle d'erreur

Afin d'éliminer le problème singulier, le modèle CPC est simplifié et un modèle CPC modifié est proposé, à savoir le modèle MCPC. Le modèle MCPC conserve les caractéristiques de complétude et de continuité du modèle CPC et il utilise six paramètres pour décrire la transformation entre le système de coordonnées de l'effecteur final et le système de coordonnées de l'outil

Le modèle de système de référence zéro

Un système de coordonnées de référence fixe appelé système de référence zéro est établi dans l'espace de travail. Ensuite, le système de coordonnées de l'outil est attaché à l'effecteur terminal du robot, de sorte que la configuration de référence zéro du robot soit déterminée.

Pour définir la configuration de zéro, le modèle de système de référence zéro peut être plus souple par rapport au modèle DH. Cependant, le modèle d'erreur établi à partir du modèle de système de référence zéro contient des paramètres redondants et l'application du ce modèle dans le calibrage est limitée.

La méthode de la formule de POE

La méthode POE prend en compte des nombreux facteurs affectant l'erreur de pose de l'effecteur final et le modèle construit par elle peut représenter l'erreur de manière exhaustive. La méthode de la formule POE est non seulement capable de calibrer les paramètres de liaison, mais également de calibrer l'erreur zéro des articulations, ce qui est propice à l'amélioration de la précision de la pose de l'effecteur final.

D'autre part, la méthode de la formule POE locale qui décrit le modèle géométrique basé sur le système de coordonnées local est proposée

Les différentes méthodes de modélisation sont résumées dans le tableau présenté par la figure 1.4 selon les principes de complétude (exhaustivité), de continuité de minimalité des paramètres (paramètres non redondants) et la faisabilité du calibrage (respecter les trois principes simultanément).

Modeling method	Completeness	Continuity	Redundant parameters	Calibration feasibility
DH parameters	NO	NO	YES	NO
	NO	NO	TLS	NO
Improved DH	YES	YES	YES	YES
parameters				
S model	YES	NO	NO	NO
CPC model	YES	YES	YES	YES
MCPC model	YES	YES	YES	YES
Zero reference	YES	YES	NO	NO
system model	. 25	125	1.0	.,0
POE formula	YES	YES	YES	YES

Figure 1.3: Les caractéristiques des différentes méthodes de modélisation géométrique des robots

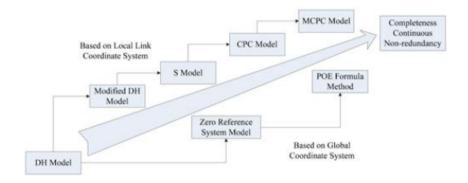


Figure 1.4: Le développement des méthodes de modélisation géométrique des robots

1.6 Le choix d'une méthode de calibrage

le choix d'une méthode de calibrage se base sur des critères menés de [2] tels que:

- Le nombre de paramètres identifiables par cette méthode
- La convergence des paramètres identifiés vers les paramètres réels (la précision)
- La rapidité de convergence (le nombre d'itérations pour atteindre la convergence)
- La robustesse vis-à-vis du bruit
- Le conditionnement
- le cout, etc

De nombreux chercheurs se sont consacrés à trouver des moyens et des méthodes de calibrage robotique, dans notre recherche on a trouver quelques méthodes [4] [10] et on a concentrée sue les méthodes de calibrage actuelles (depuis 2012) et qu'ils ont des meilleurs résultats concerne ce qu'on veut "améliorer de plus la précision de positionnement des robots" et de les rassemblent dans un tableau pour que l'information soit claire et facile à trouvé dans ce mémoire

Donc différentes méthodes du calibrage des paramètres géométrique sont comparées

Méthode	Date de publication	Auteur	Matériel utilisé (capteur)	Principe	Précision	Inconvé nients	- Avantages
méthode des Ul- trasons [5]	En 2017	Par Mar- wan et al	un émetteur à ultrasons fixé à l'effecteur terminal du robot, trois récepteurs à ultrasons doivent être fixés sur les bords de la base de travail, un système d'acquisition des données, le filtre de Kalman (KF) (pour estimer la position P de l'effecteur final).	mesure la distance à partir du temps de vol de l'onde ultrasonore TOF (Time of Flight)	précise dans une distance de 1 à 250cm		augmenter la vitesse de traite- ment, réduire la puissance de calcul, n'est pas besoin des étapes com- plexes, pas coûteux
méthode du Laser tracker [8]	En 2012	Par Erick Nieves, Ning Xi, Biqiang Du et Yunyi Jia.	une unité laser reliée au point central de l'outil du robot (TCP) un nouveau dispositif portable composé de deux détecteurs sen- sibles à la position fixe (PSD),une inter- face basée sur PC.	complétée par la localisation du pointeur laser à quatre posi- tions différentes (mesurer les coordonnées 3D d'un point)	Précision de + - 0.01mm	coûteux	rapide, simple à utilisé, plus précis, réponse rapide
méthode de ANN "Artificial Neural Net- works" (réseau de neu- rones artificiels) [7]	En 2019	par Hoai- Nhan Nguyen Phu- Nguyen Le et Hee- Jun Kang	un réseau ANN comportant trois couches (la couche d'entrée, la couche cachée et la couche de sortie), un dispositif de détection ponctuelle en 3D(Laser Tracker), un réflecteur laser fixé à un emplacement particulier de l'effecteur terminal du robot	mesure les coordonnées 3D des points finaux et enreg- istrées dans un ordinateur			

Méthode	Date	Auteur	Matériel utilisé (cap-	Principe	Précision	Inconvé	Avantages
	de		teur)			nients	
	publi-						
	cation						
méthode	En	par	l'algorithme du filtre	Les paramètres	EKF et PF		Des ex-
du fil-	2018	Zhi-	de Kalman étendu	géométriques	sont des al-		cellents
tre de		hong	(EKF) et l'algorithme	du robot sont	gorithmes		résultats
Kalman		Jiang,	de filtre à particules	étalonnés par	plus ef-		
étendu		Weigang	(PF). Le laser tracker	l'EKF .Ensuite,	ficaces,		
(EKF) et		Zhou,	pour comparer les	l'algorithme	meilleur		
l'algorithm	e	Hui	résultats	PF est utilisé	précision		
de filtre à		Li,		pour traiter le			
particules		Yang		système non			
(PF) [3]		Mo,		linéaire en ten-			
		Wenche	ng	ant compte de			
		Ni et		l'effet du bruit			
		Qiang		non gaussien			
		Huang		Enfin, les			
				améliorations de			
				la précision de			
				positionnement			
				du robot sont			
				analysées après			
				l'étalonnage			

Chapitre 2

Modélisation géométrique du robot

2.1 Introduction

Dans ce chapitre on va citer quelques notions de base de robotique qui peuvent nous aider dans notre but qui est de modéliser le robot staubli. Notre référence principale pour ce chapitre est l'ouvrage: Robotique Aspects fondamentaux modélisation mécanique CAO robotique Commande [6]

2.1.1 Définitions :

Un repère : est définit par une base de vecteurs et un point appelé origine, cette base peut être notée (\vec{i}, \vec{j}) en bidimensionnel et, $(\vec{i}, \vec{j}, \vec{k})$ en tridimensionnel, il permet de positionner graphiquement un point ou un objet par rapport à l'origine.

Un système mécanique articulé SMA : est un ensemble de solides qui sont reliées entre eux par des liaisons (rotation, translation, ou les deux) qui ont un d.d.l (degré de liberté) définit comme étant le nombre de mouvement indépendants possible d'un solide par rapport au solide qui lui est attaché

Une variable articulaire : c'est un paramètre qui consiste à identifier la forme du SMA et définir les liaisons (articulations) entre les solides qui composent cette structure.

La modélisation géométrique du système mécanique articulé (SMA) consiste à établir la relation entre les variables articulaires q du système et les coordonnées de ce système x sous des formes variées h(x,q)=0, x=f(q), q=g(x), pour cela il faut utiliser des outils qui viennent juste après

2.2 Outils de modélisation géométrique :

2.2.1 Matrices de changement de base :

Définitions:

Soit, deux repères orthonormés directs R_0 et R_1 de vecteurs unitaires respectifs x, y, z et s, n, a, avec l'origine qui peut être commune (voir figure 1). On peut définir la matrice de passage

de R_0 à R_1 comme suit :

$$A = \begin{bmatrix} s_x & n_x & a_x \\ s_y & n_y & a_y \\ s_z & n_z & a_z \end{bmatrix}$$

Les colonnes de cette matrice de passage sont les composants des vecteurs (s,n,a) de R_1 exprimés dans R_0 .

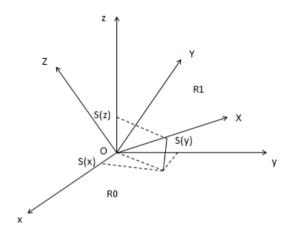


Figure 2.1: Représentation de matrice de passage Le passage de R_0 à R_1 sera noté ainsi

$$R_0 \xrightarrow{A} R_1$$

Exemple 1:

La matrice de passage du repère d'origine R_0 au repère R_1 suivant une rotation sur l'axe X avec une angle θ est la suivante :

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$$
 comme la figure 1.2 illustre :

2.2.2 Coordonnées d'un même point dans deux repères :

La figure 3 illustre les repères R_i et R_j d'origine O_i et O_j et un point P. Soit $x^i = (x^i_1, x^i_2, x^i_3)^T$ la matrice unicolonne qui représente les coordonnées du point P dans R_i , et $x^j = (x^j_1, x^j_2, x^j_3)^T$ la matrice unicolonne qui représente les coordonnées du point P dans R_j . Soit aussi $L^{ij} = (L^{ij}_1, L^{ij}_2, L^{ij}_3)^T$ la matrice unicolonne qui représente les coordonnées de O_j dans R_i

En utilisant la notion "matrice de passage "qui est identifiée dans la paragraphe(1.1) et la relation vectorielle $O_iP=O_iP+O_iO_j$ on peut écrire :

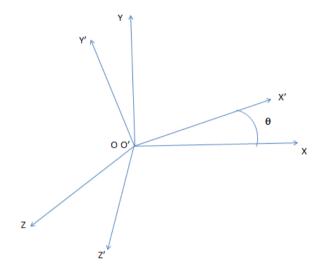


Figure 2.2: Le passage du repère d'origine R_0 au repère R_1 suivant une rotation sur l'axe X avec une angle θ

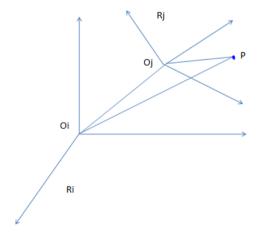


Figure 2.3: coordonnées d'un point dans deux repères

$$\mathbf{x}^i = A^{ij}\mathbf{x}^j + L^{ij} \tag{2.1}$$

c.à.d que les coordonnées d'un point dans un repère sont égale au produit de matrice unicolonne des coordonnées du point et la matrice du passage de R_i à R_j , en ajoutant la matrices unicolonne des coordonnées d'origine O_j dans R_i

2.2.3 Matrice de transformation homogène :

Définition:

Le repère R_i subit une transformation quelconque, peut être une translation ou une rotation, cette transformation définit le repère R_j dans R_i (ou également amène le repère R_i dans R_j). Elle est définit par une matrice de transformation homogène 4×4 , T^{ij} exprimée par :

$$\begin{bmatrix} A^{ij} & L^{ij} \\ 0 & 1 \end{bmatrix} \tag{2.2}$$

Avec:

 A^{ij} représente la matrice de rotation ou d'orientation du repère R_i par rapport au repère R_j L^{ij} représente la translation du repère R_i par rapport au repère R_j Introduisant la matrice de transformation homogène T^{ji} et les coordonnées homogène du point P $(P_x, P_y, P_z, 1)$, il est possible d'obtenir une relation plus compacte de (1):

$$X^i = T^{ij} + X^j (2.3)$$

Propriétés:

. Le déterminant de T^{ij} est égal à 1

. L'inverse de la matrice T^{ij} est T^{ji} définie par :

$$X^j = T^{ji} + X^i$$

Donc, la matrice de passage homogène contient à la fois la rotation et la translation entre le deux repères.

2.2.4 Modèle géométrique direct :

Pour concevoir ou commander un SMA, il faut calculer certains modèles mathématiques tel que le Modèle Géométrique Direct (MGD), ce dernier exprime la situation de l'organe terminal en fonction des variables articulaires du mécanisme, il est définit par la relation suivante : x=f(q).

Comme la figure 4 représente, un SMA est composé de n solides S_i , i=0 à n reliés entre eux par n liaisons généralement liaisons pivot (de rotation) ou liaisons prismatique (de translation) pour chaque solide S_i on attache un repère dont l'origine O_i se trouve sur l'axe de liaison, en intervenant le paramètre q_i de la liaison S_i/S_{i-1} dans la matrice de transformation homogène $T^{i-1,i}$ définie par la relation (2):

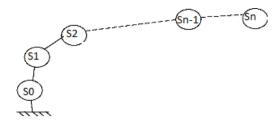


Figure 2.4: représentation d'un SMA

Soit dans la matrice de passage $A^{i-1,i}$ s'il s'agit d'une liaison pivot. Soit dans le vecteur $L^{i-1,i}$ s'il s'agit d'une liaison prismatique. La modélisation des robots exige une méthode adéquate pour décrire leur morphologie. En proposant plusieurs méthodes et notations mais la plus répandue est celle de Denavit-Hartenberg.

2.2.5 Paramétrage de Denavit-Hartenberg:

Ce paramétrage introduit par Denavit-Hartenberg (DH) dans les années 50 pour l'étude systématique des chaînes géométriques. Il est considéré comme une méthodologie à suivre pour décrire des SMA à structures ouvertes simples basée sur le principe suivant:

Fixer des repères à chaque solide du robot.

Calculer les matrices homogènes entre chaque solide. Calculer la matrice de transformation homogène entre base et organe terminal.

Convention et définitions:

Une structure ouverte simple est composée de n+1 solides et de n articulations, le solide S_0 désigne la base du SMA, et S_n le solide ou le corps qui porte l'organe terminal, l'articulation i connecte le solide S_i au solide S_{i-1} , (figure 4).

Le repère R_i , fixé au solide S_i , est défini de sorte que : L'axe z_i est porté par l'axe de la liaison.

L'axe x_i est porté par la perpendiculaire commune aux axes z_i et z_{i+1} .

L'axe y_i est le produit vectoriel de z_i et x_i

Le passage du repère R_{i-1} au repère R_i s'exprime en fonction des quatre paramètres géométriques suivants (figure 5) :

 α_i : angle entre les axes z_{i-1} et z_i correspondant à une rotation autour de x_{i-1} . d_i : distance entre z_{i-1} et z_i le long de x_{i-1} .

 θ_i : angle entre les axes x_{i-1} et x_i correspondant à une rotation autour de z_i . r_i : distance entre x_{i-1} et x_i le long de z_i .

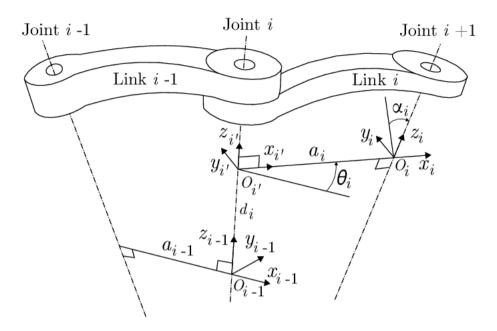


Figure 2.5: Paramétrage Denavit et Hartenberg

Pour résumer ces définitions on applique la succession des 4 transformations sur R_{i-1} pour obtenir R_i

 R_i c'est $R(X, \alpha_i) \times T(X, d_i) \times R(Z, \theta_i) \times T(Z, r_i)$ appliquées sur R_{i-1} Le paramètre articulaire q_i sera : θ_i si liaison de rotation r_i si liaison de translation En introduisant la variable booléenne δ_i définie par : $\delta_i = 0$ si liaison de rotation $\delta_i = 1$ si liaison de translation Alors on peut écrire :

$$q_i = \bar{\delta}_i \theta_i + \delta_i r_i \tag{2.4}$$

Exemple:

On va prendre l'exemple du robot Stäubli RX-90, et décrire leur géométrie en appliquant le paramétrage DH comme suit :

- On attache à chaque solide S_i un repère, on place d'abord les axes z_i sur les axes articulaires, puis les axes x_i selon les règles énoncées précédemment, comme la figure 6 indique
- Puis on détermine les paramètres géométriques du robot comme les indique le tableau 1.1

i(articulation)	δ_i	$\alpha_i(\circ)$	$a_i(cm)$	$\theta_i(\circ)$	d_i (cm)
1	0	0	0	θ_1	0
2	0	90	0	θ_2	0
3	0	0	D3	θ_3	0
4	0	-90	0	θ_4	RL4
5	0	90	0	θ_5	0
6	0	-90	0	θ_6	0

Table 2.1: les paramètres géométriques du robot Stäubli RX-90

configuration 1	correspond aux $\theta_1 = 0$, $\theta_2 = 0$, $\theta_3 = \frac{\pi}{2}$, $\theta_4 = 0$, $\theta_5 = \frac{\pi}{6}$, $\theta_6 = 0$
configuration 2	correspond aux $\theta_1 = 0$, $\theta_2 = \frac{\pi}{3}$, $\theta_3 = \frac{\pi}{6}$, $\theta_4 = 0$, $\theta_5 = \frac{\pi}{4}$, $\theta_6 = 0$
configuration 3	correspond aux $\theta_1 = 0$, $\theta_2 = \frac{\pi}{3}$, $\theta_3 = 0$, $\theta_4 = 0$, $\theta_5 = \frac{\pi}{4}$, $\theta_6 = 0$
configuration 4	correspond aux $\theta_1 = 0$, $\theta_2 = 0$, $\theta_3 = \frac{\pi}{6}$, $\theta_4 = 0$, $\theta_5 = \frac{\pi}{4}$, $\theta_6 = 0$
configuration 5	correspond aux $\theta_1 = 0$, $\theta_2 = \frac{\pi}{6}$, $\theta_3 = \frac{\pi}{4}$, $\theta_4 = 0$, $\theta_5 = \frac{\pi}{4}$, $\theta_6 = 0$
configuration 6	correspond aux $\theta_1 = 0$, $\theta_2 = \frac{\pi}{6}$, $\theta_3 = \frac{\pi}{2}$, $\theta_4 = 0$, $\theta_5 = \frac{\pi}{6}$, $\theta_6 = 0$

Table 2.2: les différentes θ pour chaque configuration

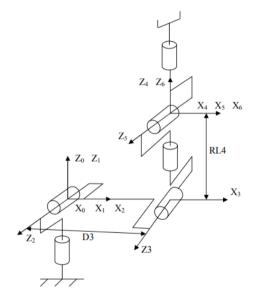


Figure 2.6: placement des repères

Alors c'est les résultats de la modélisation du robot sur le langage matlab :

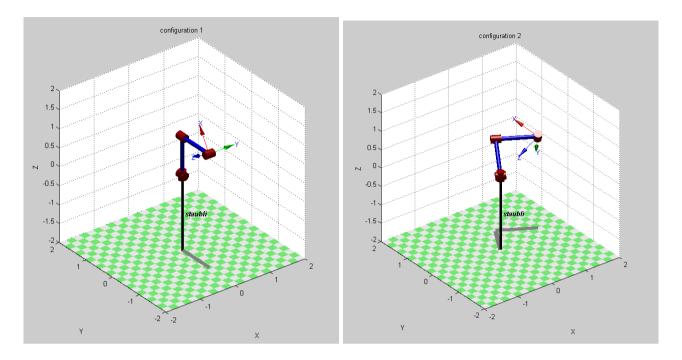


Figure 2.7: Les configurations 1 et 2

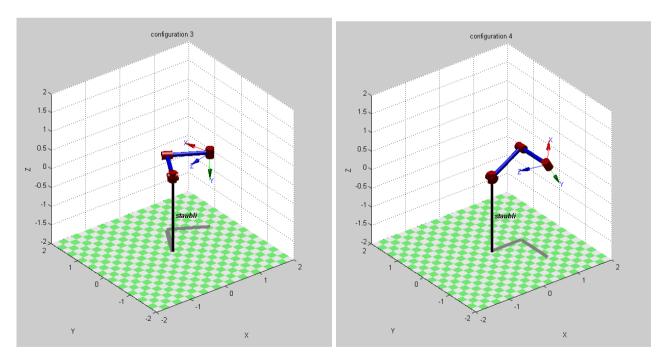


Figure 2.8: Les configurations 3 et 4

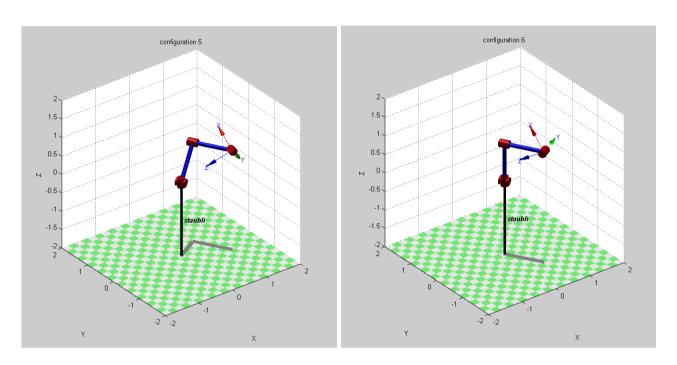


Figure 2.9: Les configurations 5 et 6

Chapitre 3

Calibrage par la méthode Least Square Estimation

3.1 Introduction

Actuellement avec la progression de la technologie, les taches manuelles ont presque disparues où la robotisation et l'automatisation seront le moyen pour accomplir toutes les taches dans tout les domaines

Le positionnement précis d'un robot joue un rôle très important dans les applications industrielles avancées, et surtout dans les applications médicales. Ce chapitre va présenté la méthode de calibration géométrique basée sur l'algorithme Least Square Estimation (LSE)

3.2 Définitions

3.2.1 La matrice Jacobienne

En calcul vectoriel, la matrice Jacobienne d'une fonction avec valeurs vectorielles à plusieurs variables est la matrice de toutes ses dérivées partielles du premier ordre.

la matrice et son déterminant sont appelés à la fois jacobiens dans la littérature.

Aussi, la matrice Jacobienne d'une fonction à valeurs scalaires avec plusieurs variables est la transposée de son gradient et le gradient d'une fonction à valeurs scalaires d'une variable est sa dérivée.

À chaque point où une fonction est différentiable, sa matrice Jacobienne peut également être considérée comme décrivant la quantité "d'étirement", de "rotation" ou de "transformation" que la fonction impose localement près de ce point

Par exemple, si f(x, y) est une fonction utilisée pour transformer en douceur une image, la matrice Jacobienne Jf(x, y) décrit comment l'image située au voisinage de (x, y) est transformée

Exemple

La matrice jacobienne de la fonction $F: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ avec les composants :

$$y_1 = x_1$$

$$y_2 = 5x_3$$

$$y_3 = 4x_2^2 - 2x_3$$

$$y_4 = x_3 sinx_1$$

$$J(x_1, x_2, x_3) = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \frac{\partial y_1}{\partial x_3} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \frac{\partial y_2}{\partial x_3} \\ \frac{\partial y_3}{\partial x_1} & \frac{\partial y_3}{\partial x_2} & \frac{\partial y_3}{\partial x_3} \\ \frac{\partial y_4}{\partial x_1} & \frac{\partial y_4}{\partial x_2} & \frac{\partial y_4}{\partial x_3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 5 \\ 0 & 8x_2 & -2 \\ x_3 cos x_1 & 0 & sin x_1 \end{bmatrix}$$

3.2.2 Le calcul Jacobien en robotique

En robotique la matrice Jacobienne est décrite par l'équation suivante :

$$\epsilon = J \dot{q} \tag{3.1}$$

avec:

•
$$\epsilon$$
: représente la vitesse de l'effecteur final $\epsilon = \begin{bmatrix} \dot{X} \\ \dot{Y} \\ \dot{Z} \\ W_x \\ W_y \\ W_z \end{bmatrix} \Rightarrow \begin{bmatrix} \dot{X} \\ \dot{Y} \\ \dot{Z} \end{bmatrix}$ vitesse linéaire, $\begin{bmatrix} W_x \\ W_y \\ W_z \end{bmatrix}$

vitesse angulaire

- \dot{q} : la vitesse de l'articulation, c'est une matrice de dimension $n \times 1$
- J : représente la matrice jacobienne avec une dimension $6 \times n$
- n : est le nombre d'articulation présentées dans le robot

Le calcul de J:

pour simplifier le calcul on note :

i : articulation qui représente une colonne dans la matrice jacobienne $R^0{}_{i-1}$ présente la matrice de rotation de l'articulation i par rapport à l'origine de base

M : est le produit vectoriel de
$$R^0_{i-1}$$
 par K , avec $K = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
$$N = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

 $P=M\times (O_E^0-O_{i-1}^0)$ avec $(O_E^0$ représente les coordonnées de l'effecteur final dans l'origine de base et O_{i-1}^0 représente les coordonnées de l'articulation correspondante dans l'origine de base)

le jacobien	translation	rotation
J_v	M	Р
J_w	N	M

3.3 La méthode LSE

LSE: Least Square Estimation ou l'estimation par l'algorithme du moindre carré est une méthode de calibrage rapide qui peut résoudre des équations non linéaires mais, elle est très sensible au bruit, ce qui va limiter son efficacité avec les système bruités Cette méthode est basée sur le calcul du modèle géométrique direct du robot, le modèle d'erreurs (perturbé) et la matrice jacobienne

3.3.1 Calcul du modèle géométrique direct (nominal)

La première expérience avec le robot Stäubli RX-90 :

i(articulations)	∂_i	$\alpha_i(\deg)$	$a_i(\mathrm{cm})$	$\theta_i(\deg)$	d_i (cm)
1	0	0	0	θ_1	0
2	0	90	0	θ_2	0
3	0	0	D3	θ_3	0
4	0	-90	0	θ_4	RL4
5	0	90	0	θ_5	0
6	0	-90	0	θ_6	0

Table 3.1: Les paramètres nominaux de D-H du robot Stäubli RX-90

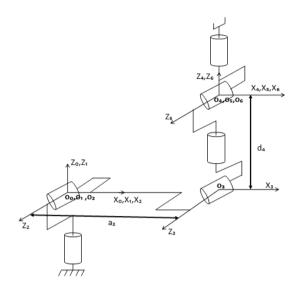


Figure 3.1: Placement des repères du robot Staubli

On calcule le MDG de notre robot Staubli en utilisant le paramétrage D-H présenté dans le tableau 1.1 (comme il est défini dans la partie 1.2.4 dans le chapitre 2) qui donne la matrice de transformation du lien i-1 au lien i comme suit :

$$A_{i} = \begin{bmatrix} \cos\theta_{i} & -\sin\theta_{i} & 0 & a_{i} \\ \cos\alpha_{i}\sin\theta_{i} & \cos\alpha_{i}\cos\theta_{i} & -\sin\alpha_{i} & -d_{i}\sin\alpha_{i} \\ \sin\alpha_{i}\sin\theta_{i} & \sin\alpha_{i}\cos\theta_{i} & \cos\alpha_{i} & d_{i}\cos\alpha_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3.2)

Pour obtenir la matrice de transformation T de la base jusqu'au l'effecteur final qui représente le modèle géométrique directe du robot en multipliant les 6 matrices (A_1, A_2, A_3,A_6)

$$T = A_1 A_2 A_3 A_4 A_5 A_6 (3.3)$$

3.3.2 Calcul du modèle perturbé :

Des erreurs de positionnement sont causés par des défauts de la modélisation géométrique. Les écarts de paramètres D-H de chaque articulation (lien), en tenant compte ces écarts, la matrice de transformation T peut être exprimée avec :

$$T + \Delta T = (A_1 + \Delta A_1)(A_2 + \Delta A_2)(A_3 + \Delta A_3)(A_4 + \Delta A_4)(A_5 + \Delta A_5)(A_6 + \Delta A_6)$$
 (3.4)

L'équation 3.4 représente le modèle perturbé Et alors pour calculer les ΔA_i , on utilise l'équation suivante :

$$\Delta A_i = \frac{\partial A_i}{\partial \alpha_i} \Delta \alpha_i + \frac{\partial A_i}{\partial a_i} \Delta a_i + \frac{\partial A_i}{\partial \theta_i} \Delta \theta_i + \frac{\partial A_i}{\partial d_i} \Delta d_i$$
(3.5)

On calcule d'abord les $\frac{\partial A_i}{\partial a_i}$, $\frac{\partial A_i}{\partial \theta_i}$ et $\frac{\partial A_i}{\partial d_i}$: Ici on va utiliser la partie (1.2.1 la matrice Jacobienne) pour calculer les dérivées de A_i par rapport à a_i , θ_i et d_i c'est tout , et pas considérer les perturbations en α_i :

$$\frac{\partial A_i}{\partial a_i} = \begin{bmatrix}
\frac{\partial A_{11}}{\partial a_i} & \frac{\partial A_{12}}{\partial a_i} & \frac{\partial A_{13}}{\partial a_i} & \frac{\partial A_{14}}{\partial a_i} \\
\frac{\partial A_{21}}{\partial a_i} & \frac{\partial A_{22}}{\partial a_i} & \frac{\partial A_{23}}{\partial a_i} & \frac{\partial A_{24}}{\partial a_i} \\
\frac{\partial A_{31}}{\partial a_i} & \frac{\partial A_{32}}{\partial a_i} & \frac{\partial A_{33}}{\partial a_i} & \frac{\partial A_{34}}{\partial a_i} \\
\frac{\partial A_{41}}{\partial a_i} & \frac{\partial A_{42}}{\partial a_i} & \frac{\partial A_{43}}{\partial a_i} & \frac{\partial A_{44}}{\partial a_i}
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}$$
(3.6)

$$\frac{\partial A_{i}}{\partial \theta_{i}} = \begin{bmatrix}
\frac{\partial A_{11}}{\partial \theta_{i}} & \frac{\partial A_{12}}{\partial \theta_{i}} & \frac{\partial A_{13}}{\partial \theta_{i}} & \frac{\partial A_{14}}{\partial \theta_{i}} \\
\frac{\partial A_{21}}{\partial \theta_{i}} & \frac{\partial A_{22}}{\partial \theta_{i}} & \frac{\partial A_{23}}{\partial \theta_{i}} & \frac{\partial A_{24}}{\partial \theta_{i}} \\
\frac{\partial A_{31}}{\partial \theta_{i}} & \frac{\partial A_{32}}{\partial \theta_{i}} & \frac{\partial A_{33}}{\partial \theta_{i}} & \frac{\partial A_{34}}{\partial \theta_{i}} \\
\frac{\partial A_{41}}{\partial \theta_{i}} & \frac{\partial A_{42}}{\partial \theta_{i}} & \frac{\partial A_{43}}{\partial \theta_{i}} & \frac{\partial A_{44}}{\partial \theta_{i}}
\end{bmatrix} = \begin{bmatrix}
-\sin\theta_{i} & -\cos\theta_{i} & 0 & 0 \\
\cos\alpha_{i}\cos\theta_{i} & -\cos\alpha_{i}\sin\theta_{i} & 0 & 0 \\
\sin\alpha_{i}\cos\theta_{i} & -\sin\alpha_{i}\sin\theta_{i} & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} \tag{3.7}$$

$$\frac{\partial A_i}{\partial d_i} = \begin{bmatrix}
\frac{\partial A_{11}}{\partial d_i} & \frac{\partial A_{12}}{\partial d_i} & \frac{\partial A_{13}}{\partial d_i} & \frac{\partial A_{14}}{\partial d_i} \\
\frac{\partial A_{21}}{\partial d_i} & \frac{\partial A_{22}}{\partial d_i} & \frac{\partial A_{23}}{\partial d_i} & \frac{\partial A_{24}}{\partial d_i} \\
\frac{\partial A_{31}}{\partial d_i} & \frac{\partial A_{32}}{\partial d_i} & \frac{\partial A_{33}}{\partial d_i} & \frac{\partial A_{34}}{\partial d_i} \\
\frac{\partial A_{41}}{\partial d_i} & \frac{\partial A_{42}}{\partial d_i} & \frac{\partial A_{43}}{\partial d_i} & \frac{\partial A_{44}}{\partial d_i}
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\sin\alpha_i \\
0 & 0 & 0 & \cos\alpha_i \\
0 & 0 & 0 & 0
\end{bmatrix}$$
(3.8)

Alors:

$$\Delta A_{i} = \begin{bmatrix} -\sin\theta_{i}\Delta\theta_{i} & -\cos\theta_{i}\Delta\theta_{i} & 0 & \Delta a_{i} \\ \cos\alpha_{i}\cos\theta_{i}\Delta\theta_{i} & -\cos\alpha_{i}\sin\theta_{i}\Delta\theta_{i} & 0 & -\sin\alpha_{i}\Delta d_{i} \\ \sin\alpha_{i}\cos\theta_{i}\Delta\theta_{i} & -\sin\alpha_{i}\sin\theta_{i}\Delta\theta_{i} & 0 & \cos\alpha_{i}\Delta d_{i} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
(3.9)

3.3.3 Calcul de la matrice jacobienne J:

Après le développement de (1.4), on ré-ordonne le résultat tel que :

$$T + \Delta T = A_1 A_2 A_3 A_4 A_5 A_6 + E_1 + E_2 + E_3 + E_4 + E_5 + E_6 \tag{3.10}$$

Les E_i représentent les erreurs ou les déviations des paramètres de D-H Après le développement de l'équation (1.4) on trouve que le 1^{er} terme d'erreur E_1 est le plus considérable par rapport les autres termes, on peut dire que ΔT approximativement égale à E_1 en ignorant les autres termes

Concernant l'expression de E_1 en choisissent du développement de $T + \Delta T$ les termes qui contient une seule ΔA_i pour que :

$$E_1 >>> E_2, E_3, E_4, E_5, E_6$$

Alors:

$$E_1 = \Delta A_1 A_2 A_3 A_4 A_5 A_6 + A_1 \Delta A_2 A_3 A_4 A_5 A_6 + A_1 A_2 \Delta A_3 A_4 A_5 A_6$$

$$+ A_1 A_2 A_3 \Delta A_4 A_5 A_6 + A_1 A_2 A_3 A_4 \Delta A_5 A_6 + A_1 A_2 A_3 A_4 A_5 \Delta A_6$$
(3.11)

Alors, on écrit:

$$E_1 = \sum_{i=1}^{6} (A_1 A_2 \dots A_{i-1} \Delta A_i A_{i+1} \dots A_5 A_6)$$
(3.12)

L'expression de E_1 contient six termes, et pour simplifier les calculs et arriver à séparer ce qu'on veux pour la suite, on écrit chaque terme de E_1 de cette façon :

$$E_{11} = \frac{\partial A_1}{\partial a_1} \Delta a_1 A_6^2 + \frac{\partial A_1}{\partial \theta_1} \Delta \theta_1 A_6^2 + \frac{\partial A_1}{\partial d_1} \Delta d_1 A_6^2$$
(3.13)

$$E_{12} = A_1 \frac{\partial A_2}{\partial a_2} \Delta a_2 A_6^3 + A_1 \frac{\partial A_2}{\partial \theta_2} \Delta \theta_2 A_6^3 + A_1 \frac{\partial A_2}{\partial d_2} \Delta d_2 A_6^3$$
 (3.14)

$$E_{11} = A_{2}^{1} \frac{\partial A_{3}}{\partial a_{3}} \Delta a_{3} A_{6}^{4} + A_{2}^{1} \frac{\partial A_{3}}{\partial \theta_{3}} \Delta \theta_{3} A_{6}^{4} + A_{2}^{1} \frac{\partial A_{3}}{\partial d_{3}} \Delta d_{3} A_{6}^{4}$$
(3.15)

$$E_{14} = A^{1}_{3} \frac{\partial A_{4}}{\partial a_{4}} \Delta a_{4} A^{5}_{6} + A^{1}_{3} \frac{\partial A_{4}}{\partial \theta_{4}} \Delta \theta_{4} A^{5}_{6} + A^{1}_{3} \frac{\partial A_{4}}{\partial d_{4}} \Delta d_{4} A^{5}_{6}$$
(3.16)

$$E_{15} = A^{1}_{4} \frac{\partial A_{5}}{\partial a_{5}} \Delta a_{5} A_{6} + A^{1}_{4} \frac{\partial A_{5}}{\partial \theta_{5}} \Delta \theta_{5} A_{6} + A^{1}_{4} \frac{\partial A_{5}}{\partial d_{5}} \Delta d_{5} A_{6}$$
(3.17)

$$E_{16} = A_{5}^{1} \frac{\partial A_{6}}{\partial a_{6}} \Delta a_{6} + A_{5}^{1} \frac{\partial A_{6}}{\partial \theta_{6}} \Delta \theta_{6} + A_{5}^{1} \frac{\partial A_{6}}{\partial d_{6}} \Delta d_{6}$$

$$(3.18)$$

D'après l'algorithme de moindres carré [3]:

Ici on ne considère que les trois premières lignes de la dernière colonne de la matrice ΔT qui peut être notées Y, avec Y a les dimensions 3×1 , et représente le vecteur des erreurs de position de l'effecteur final en x, y et z. La relation linéaire entre le vecteur des erreurs de position de l'effecteur final et les déviations des paramètres D-H de chaque articulation est obtenue par

$$Y = JX \tag{3.19}$$

Avec:

J : présente la matrice jacobienne du modèle nominale de notre robot, de taille 18×18 (dans ce cas on va prendre juste la partie linéaire J_v)

X : est le vecteur de taille 18×1 qui présente les déviations des paramètres D-H de chaque articulation , comme suit :

$$X = [\Delta a^T \Delta \theta^T \Delta d^T]^T \tag{3.20}$$

Après les étapes de calcul qu'on a déjà expliqué, maintenant on va calculer la matrice jacobien J

Tout d'abord on va calculer les six termes de E_1 , chaque terme à part, on peut écrit :

$$E_1 = E_{11} + E_{12} + E_{13} + E_{14} + E_{15} + E_{16}$$
(3.21)

$$E_{11} = \Delta A_1 A_2 A_3 A_4 A_5 A_6 \tag{3.22}$$

donc (11) sera :

$$E_{11} = \left(\frac{\partial A_1}{\partial a_1} \Delta a_1 + \frac{\partial A_1}{\partial t h_1} \Delta \theta_i + \frac{\partial A_1}{\partial d_1} \Delta d_1\right) (A^2_6)$$
(3.23)

En continuant les calculs :

$$E_{11} = \frac{\partial A_1}{\partial a_1} (A^2_6) \Delta a_1 + \frac{\partial A_1}{\partial t h_1} (A^2_6) \Delta \theta_i + \frac{\partial A_1}{\partial d_1} (A^2_6) \Delta d_1$$
(3.24)

On prend les trois lignes de la quatrième colonne de chaque terme de E_{11} qu'ils vont présentées les colonnes d'une matrice de 3×3 multiplier par un vecteur 3×1 qui contient les différentes $\Delta a_1, \Delta t h_1$ et Δd_1 comme ceci :

$$E_{11} = \begin{bmatrix} J_1^{11} & J_1^{12} & J_1^{13} \\ J_1^{21} & J_1^{22} & J_1^{23} \\ J_1^{31} & J_1^{32} & J_1^{33} \end{bmatrix} \begin{bmatrix} \Delta a_1 \\ \Delta \theta_1 \\ \Delta d_1 \end{bmatrix}$$

On continue à calculer les autres E_i de la même façon :

$$E_{12} = \begin{bmatrix} J_2^{11} & J_2^{12} & J_2^{13} \\ J_2^{21} & J_2^{22} & J_2^{23} \\ J_2^{21} & J_2^{22} & J_2^{23} \end{bmatrix} \begin{bmatrix} \Delta a_2 \\ \Delta \theta_2 \\ \Delta d_2 \end{bmatrix}$$

$$E_{13} = \begin{bmatrix} J_3^{11} & J_3^{12} & J_3^{13} \\ J_3^{21} & J_3^{22} & J_2^{23} \\ J_3^{31} & J_3^{32} & J_3^{33} \end{bmatrix} \begin{bmatrix} \Delta a_3 \\ \Delta \theta_3 \\ \Delta \theta_3 \end{bmatrix}$$

$$E_{14} = \begin{bmatrix} J_1^{11} & J_1^{12} & J_1^{13} \\ J_2^{11} & J_2^{12} & J_2^{13} \\ J_3^{41} & J_3^{42} & J_4^{23} \\ J_3^{41} & J_3^{42} & J_3^{43} \end{bmatrix} \begin{bmatrix} \Delta a_4 \\ \Delta \theta_4 \\ \Delta \theta_4 \end{bmatrix}$$

$$E_{15} = \begin{bmatrix} J_5^{11} & J_5^{12} & J_5^{13} \\ J_5^{21} & J_5^{22} & J_5^{23} \\ J_5^{31} & J_5^{32} & J_5^{33} \end{bmatrix} \begin{bmatrix} \Delta a_5 \\ \Delta \theta_5 \\ \Delta \theta_5 \end{bmatrix}$$

$$E_{16} = \begin{bmatrix} J_6^{11} & J_6^{12} & J_6^{13} \\ J_6^{21} & J_6^{22} & J_6^{23} \\ J_6^{31} & J_6^{32} & J_6^{33} \end{bmatrix} \begin{bmatrix} \Delta a_6 \\ \Delta \theta_6 \\ \Delta d_6 \end{bmatrix}$$
its a Lawi set montion page and part

Alors, pour calculer la matrice J qui est mentionnée au part avant dans l'équation (9), et arriver à calculer X, on choisit les termes de cette matrice J d'une façon qu'on obtient la forme de l'équation (9) c.à.d on va sommer les termes de E_1 (qui représente JX) de tel façon à déduire le produit JX, avec J 3×18 et X 18×1 , on peut écrit J :

$$J(:,1:9) = \begin{bmatrix} J_1^{11} & J_2^{11} & J_3^{11} & J_4^{11} & J_5^{11} & J_6^{11} & J_1^{12} & J_2^{12} & J_3^{12} \\ J_1^{21} & J_2^{21} & J_3^{21} & J_4^{21} & J_5^{21} & J_6^{21} & J_1^{22} & J_2^{22} \\ J_1^{31} & J_2^{31} & J_3^{31} & J_4^{31} & J_5^{31} & J_6^{31} & J_1^{32} & J_2^{32} & J_3^{32} \end{bmatrix}$$

$$J(:,10:18) = \begin{bmatrix} J_4^{12} & J_5^{12} & J_6^{12} & J_1^{13} & J_2^{13} & J_3^{13} & J_4^{13} & J_5^{13} & J_6^{13} \\ J_4^{22} & J_5^{22} & J_6^{22} & J_1^{23} & J_2^{23} & J_3^{23} & J_4^{23} & J_5^{23} & J_6^{23} \\ J_4^{32} & J_5^{32} & J_6^{32} & J_1^{33} & J_2^{33} & J_3^{33} & J_4^{33} & J_5^{33} & J_6^{33} \end{bmatrix}$$

Avec:

$$X = \left[\begin{array}{ccc} X_1 & X_2 & X_3 \end{array} \right] \tag{3.25}$$

$$X_{1} = \begin{bmatrix} \Delta a_{1} & \Delta a_{2} & \Delta a_{3} & \Delta a_{4} & \Delta a_{5} & \Delta a_{6} \end{bmatrix}$$

$$X_{2} = \begin{bmatrix} \Delta \theta_{1} & \Delta \theta_{2} & \Delta \theta_{3} & \Delta \theta_{4} & \Delta \theta_{5} & \Delta \theta_{6} \end{bmatrix}$$

$$X_{3} = \begin{bmatrix} \Delta d_{1} & \Delta d_{2} & \Delta d_{3} & \Delta d_{4} & \Delta d_{5} & \Delta d_{6} \end{bmatrix}$$

Alors, pour atteindre notre but et arriver à calibrer notre robot c.à.d déterminer X : Les déviations des paramètres D-H de chaque articulation et suivant la relation linéaire Y = JX qui est montrée par la méthode qu'on a choisit (LSE), il faut certaines étapes :

- Calcul de la matrice J du modèle nominale dans le cas générale
- Avec six configurations(à chaque fois on varie les θ_i), on calcule le Y est le J, donc le résultat de chaque configuration est un vecteur Y de 3×1 et une matrice J de 3×18
- \bullet Ensuite, on ordonne les résultats de J et de Y l'un au dessous des autres afin d'obtenir une J 18 \times 18 at un Y 18 \times 1
- Puis, on calcule l'inverse de J
- On tire aussi un vecteur Y' 18 × 1 du modèle perturbé (erroné)
- Enfin $X = i^{-1}(Y' Y)$

3.3.4 Calcul de l'inverse de J:

Pour que J aura un inverse, il faut que le déterminant de J soit différent de zéro mais, dans notre cas le det(J) = 0, donc on va travailler avec le pseudo-inverse de J et on va expliquer pourquoi le det(J) = 0

Premièrement, et d'après la recherche qu'on a fait, y a plusieurs raisons pour que le déterminant d'une matrice soit nulle, et eux :

- L'une des colonnes de la matrice est nulle
- L'un des lignes de la matrice est nul

Dans notre cas d'étude (robot Staubli) le det(J) = 0 en raison des trois colonnes 10 11 et 12 dans la matrice J qui sont nulles. Car les termes de la matrice J sont longs, on les

représentent comme suit :
$$J_i^i$$
 où i: ligne et j : colonne

Les six Δa_i représentées par les premiers 3×6 de la matrice J 3×18 comme suit :

```
J_1^1 = 1
J_2^1 = \cos\theta_1 1
J_3^1 = \cos\theta_1 \cos\theta_2
J_4^1 = \cos\theta_1 \cos\theta_2 \cos\theta_3 - \cos\theta_1 \sin\theta_2 \sin\theta_3
J_5^1 = -\sin\theta_1 \sin\theta_4 - \cos\theta_4 (\cos\theta_1 \sin\theta_2 \sin\theta_3 - \cos\theta_1 \cos\theta_2 \cos\theta_3)
J_6^1 = -\cos\theta_5 (\sin\theta_1 \sin\theta_4 + \theta_4 (\cos\theta_1 \sin\theta_2 \sin\theta_3 - \cos\theta_1 \cos\theta_2 \cos\theta_3) - \sin\theta_5 (\cos\theta_1 \cos\theta_2 \sin\theta_3 + \cos\theta_1 \cos\theta_2 \cos\theta_3) - \sin\theta_5 (\cos\theta_1 \cos\theta_2 \sin\theta_3 + \cos\theta_1 \cos\theta_2 \cos\theta_3)
J_1^2 = 0
J_2^2 = \sin\theta_1
J_2^2 = \sin\theta_1
J_3^2 = \cos\theta_2 \sin\theta_1
J_4^2 = \cos\theta_2 \cos\theta_3 \sin\theta_1 - \sin\theta_1 \sin\theta_2 \sin\theta_3
J_5^2 = \cos\theta_1 \sin\theta_4 - \cos\theta_4 (\sin\theta_1 \sin\theta_2 \sin\theta_3 - \cos\theta_2 \cos\theta_3 \sin\theta_1)
J_6^2 = \cos\theta_5 (\cos\theta_1 \sin\theta_4 - \cos\theta_4 (\sin\theta_1 \sin\theta_2 \sin\theta_3 - \cos\theta_2 \cos\theta_3 \sin\theta_1)) - \sin\theta_5 (\cos\theta_2 \sin\theta_1 \sin\theta_3 + \cos\theta_3 \sin\theta_2)
J_1^3 = 0
J_2^3 = 0
J_3^3 = \sin\theta_2
J_3^3 = \sin\theta_2
J_3^4 = \cos\theta_2 \sin\theta_3 + \cos\theta_3 \sin\theta_2
J_5^3 = \cos\theta_4 (\cos\theta_2 \sin\theta_3 + \cos\theta_3 \sin\theta_2)
J_6^3 = \sin\theta_5 (\cos\theta_2 \cos\theta_3 - \sin\theta_2 \sin\theta_3) + \cos\theta_4 \cos\theta_5 (\cos\theta_2 \sin\theta_3 + \cos\theta_3 \sin\theta_2)
Les \Delta\theta_i représentées par les 3 \times 6 du milieu de la matrice J 3 \times 18 comme suit :
```

 $J(1,7:12) = \begin{bmatrix} sin\theta_1(cos\theta_2sin\theta_3 - cos\theta_2 + cos\theta_3sin\theta_2) & cos\theta_1sin\theta_2(sin\theta_3 - 1) - cos\theta_1cos\theta_2cos\theta_3 & cos\theta_1sin\theta_3 & cos\theta_1cos\theta_3 & cos\theta_1cos\theta_2cos\theta_3 & cos\theta_1cos\theta_3$

$$J(2,7:12) = \begin{bmatrix} -\cos\theta_1(\cos\theta_2sin\theta_3 - \cos\theta_2 + \cos\theta_3sin\theta_2) \\ sin\theta_1sin\theta_2(sin\theta_13 - 1) - \cos\theta_2cos\theta_3sin\theta_1 \\ sin\theta_1sin\theta_2sin\theta_3 - \cos\theta_2cos\theta_3sin\theta_1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$J(3,7:12) = \begin{bmatrix} 0\\ -\cos\theta_3 \sin\theta_2 - \cos\theta_2 (\sin\theta_3 - 1)\\ -\cos\theta_2 \sin\theta_3 - \cos\theta_3 \sin\theta_2\\ 0\\ 0\\ 0 \end{bmatrix}$$

Les Δd_i représentées par les derniers 3×6 de la matrice J 3×18 comme suit :

$$J_{13}^{1} = 0$$

$$J_{14}^{1} = \sin\theta_{1}$$

$$J_{15}^{1} = \sin\theta_{1}$$

$$J_{15}^{1} = \sin\theta_{1}$$

$$J_{16}^{1} = -\cos\theta_{1}\cos\theta_{2}\sin\theta_{3} - \cos\theta_{1}\cos\theta_{3}\sin\theta_{2}$$

$$J_{17}^{1} = \cos\theta_{4}\sin\theta_{1} - \sin\theta_{4}(\cos\theta_{1}\sin\theta_{2}\sin\theta_{3} - \cos\theta_{1}\cos\theta_{2}\cos\theta_{3})$$

$$\begin{split} J_{18}^{1} &= sin\theta_{5}(sin\theta_{1}sin\theta_{4} + cos\theta_{4}(cos\theta_{1}sin\theta_{2}sin\theta_{3} - cos\theta_{1}cos\theta_{2}cos\theta_{3})) - cos\theta_{5}(cos\theta_{1}cos\theta_{2}sin\theta_{3} + cos\theta_{1}cos\theta_{3}sin\theta_{2}) \\ & J_{13}^{2} = 0 \\ J_{14}^{2} &= -cos\theta_{1} \\ J_{15}^{2} &= -cos\theta_{1} \\ J_{15}^{2} &= -cos\theta_{1} \\ J_{17}^{2} &= -cos\theta_{2}sin\theta_{1}sin\theta_{3} - cos\theta_{3}sin\theta_{1}sin\theta_{2} \\ J_{17}^{2} &= -cos\theta_{1}cos\theta_{4} - sin\theta_{4}(sin\theta_{1}sin\theta_{2}sin\theta_{3} - cos\theta_{2}cos\theta_{3}sin\theta_{1}) \\ J_{18}^{2} &= -sin\theta_{5}(cos\theta_{1}sin\theta_{4} - cos\theta_{4}(sin\theta_{1}sin\theta_{2}sin\theta_{3} - cos\theta_{2}cos\theta_{3}sin\theta_{1})) - \\ & cos\theta_{5}(cos\theta_{2}sin\theta_{1}sin\theta_{3} + cos\theta_{3}sin\theta_{1}sin\theta_{2}) \\ J_{13}^{3} &= 1 \\ J_{14}^{3} &= 0 \\ J_{15}^{3} &= 0 \\ J_{15}^{3} &= cos\theta_{2}cos\theta_{3} - sin\theta_{2}sin\theta_{3} \\ J_{17}^{3} &= sin\theta_{4}(cos\theta_{2}sin\theta_{3} + cos\theta_{3}sin\theta_{2}) \\ J_{18}^{3} &= cos\theta_{5}(cos\theta_{2}cos\theta_{3} - sin\theta_{2}sin\theta_{3}) - cos\theta_{4}sin\theta_{5}(cos\theta_{2}sin\theta_{3} + cos\theta_{3}sin\theta_{2}) \\ \end{split}$$

Deuxièmement, d'une part les deux dernières colonnes de la matrice de la dérivée de la matrice de transformation A_i par rapport au θ_i sont nulles, en plus elle contient deux lignes nuls, ce qui va éliminer plusieurs termes dans la matrice J, d'autre part les paramètres a_4 , a_5 , a_6 dans le paramétrage D-H de notre robot sont nulles, ils vont éliminer certains termes lors du calcul des matrices de transformations A_4, A_5 et A_6 c'est pour cela les trois colonnes 10 11 et 12 dans la matrice J seront nulles, donc le det(J) = 0

Le travail avec le pseudo-inverse dans le cas du robot Staubli classique va causer un petit décalage dans l'estimation des déviations qui correspondent aux certains paramètres nulles comme le Δa_4 car le $a_4=0$

Pour confirmer tout ce qu'on a trouvé, on va estimer les déviations X dans de cas d'un $a_4=0$ et $a_4=0.2$

remarque: pour les X_k à estimer par le EKF sont différents des X à estimer par LSE

Essai 1: estimation avec $a_4 = 0$:

On a donné le vecteur X comme suit :

Δ_{ai}	0.05	0.05	0.05	0.05	0.05	0.05
$\Delta_{\theta i}$	0	0	0	0	0	0
Δ_{di}	0.1	0.1	0.1	0.1	0.1	0.1

En absence de bruit de mesure, il suffit de prendre autant d'équations que d'inconnus pour résoudre l'équation (1.19) en effet on a choisit six configurations. Où on essaye d'éviter d'avoir $\det(J)=0$ il se trouve a_6 ne fait pas varier Y causant $\det(J)=0$ quelque soit la configuration, ceci nous permet de conclue que a_6 ne peut être estimé selon la modélisation actuelle, c'est pour cela on a choisir six configurations qui sont mentionnées dans le tableau suivant

	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6
configuration 01	0	0	0	0	0	0
configuration 02	$\frac{\pi}{2}$	0	0	0	0	0
configuration 03	0	$\frac{\pi}{2}$	0	0	0	0
configuration 04	0	0	$\frac{\pi}{2}$	0	0	0
configuration 05	0	0	0	$\frac{\pi}{2}$	0	0
configuration 06	0	0	0	0	$\frac{\pi}{2}$	0

avec ces six configurations on calcule:

- La matrice jacobienne J, est une matrice de 18×18 (voir l'annexe 6.27)
- Puis on calcule le vecteur Y 18×1 (voir l'annexe 6.28)
- Ensuite Le vecteur $Y^{'}$ 18 × 1 qui représente la position perturbée de l'effecteur final dans les six configurations choisies (voir l'annexe 6.29)

Le résultat de cette estimation sera :

Δ_{ai}	0.05	0.05	0.05	0.025	0.05	0.05
$\Delta_{\theta i}$	0	0	-0.01	-0	-0	0
Δ_{di}	0.1	0.1	0.1	0.1	0.1	0.1

Estimation avec $a_4 = 0.2$:

Le vecteur X est le même que de l'estimation précédente et avec les mêmes six configurations on a calculé :

- \bullet La matrice jacobienne J pour les même six configurations de l'estimation précédente, est une matrice de 18×18 (voir l'annexe 6.30)
- \bullet Puis on calcule le vecteur Y 18 × 1 (voir l'annexe 6.31)
- \bullet Ensuite Le vecteur $Y^{'}$ 18 \times 1 qui représente la position perturbée de l'effecteur final dans les six configurations choisies (voir l'annexe 6.32)

Le résultat de l'estimation est :

Δ_{ai}	0.05	0.05	0.05	0.035	0.05	0.05
$\Delta_{\theta i}$	0	0	-0.01	-0	-0	0
Δ_{di}	0.1	0.1	0.1	0.1	0.1	0.1

Alors pour montrer la différence entres les deux essais de la première expérience qui correspond au robot Staubli classique, on va calculer ϵ qui est la norme de la différence entre le vecteur X réel (à estimer) et le résultat d'estimation avec l'algorithme LSE comme suit :

$$\epsilon_a = norme(\Delta_a reel - \Delta_a LSE)$$

$$\epsilon_{\theta} = norme(\Delta_{\theta} reel - \Delta_{\theta} LSE)$$

$$\epsilon_d = norme(\Delta_d reel - \Delta_d LSE)$$

Le tableau suivant résume les résultats :

	ϵ_a	$\epsilon_{ heta}$	ϵ_d
Estimation 01	0.025	0.01	0
Estimation 02	0.015	0.01	0

Interprétation des résultats:

Pour cette expérience qui concerne le robot classique, on a fait deux essais, la seule différence entre ces deux derniers c'est la valeur de a_4 . Après la comparaison entre les résultats de ces deux essais, on remarquons que le résultats de le premier essai sont mieux que celles du deuxième essai

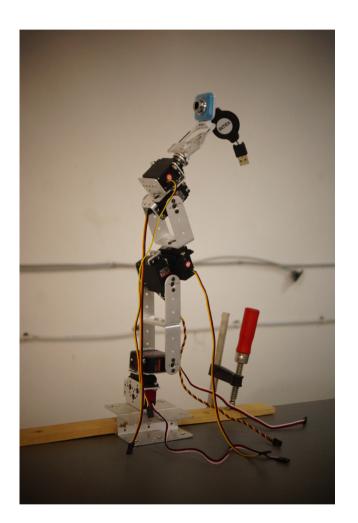
La deuxième expérience avec le robot réel :

Comme deuxième expérience on va travaillé avec notre robot réel (Staubli modifié), qui sera définit par les paramètres de D-H dans le tableau 1.2 suivant :

$l_i(cm)$	$\alpha_i \text{ (deg)}$	$a_i \text{ (cm)}$	$\theta_i \text{ (deg)}$	d_i (cm)
	0	0	θ_1	5
	-90	1.4	θ_2	3.6
	0	10.5	θ_3	0
	90	2.9	θ_4	4.7
5.1	-90	0	θ_5	2.7
	90	2.5	θ_6	5.2

Table 3.2: les paramètres de D-H de notre robot réel

C'est un robot avec six articulations, chaque articulation est présentée physiquement par un cerveau moteur, les six cerveaux moteurs sont alimentés par une petite alimentation composée d'une carte électronique et une batterie portable, ce robot est commandé par un programme spécifique pour nous pouvons changer à chaque fois les configurations auxquelles nous travaillons dans notre programme matlab afin, de calibrer le positionnement de l'effecteur final de notre robot et arriver à améliorer son précision



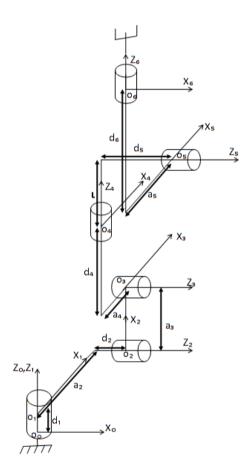


Figure 3.2: Placement des repères du robot réel

Remarque

On a fait la modélisation géométrique du robot suivant la règle du changement de repère et le paramétrage D-H qui définit la transformation d'un lien i-1 au lien i par rapport les quatre paramètres suivants : α_i , θ_i , a_i et d_i comme il est mentionné dans le chapitre 1. Dans notre robot réel pour que le passage du repère R_4 au repère R_5 soit exacte et suivant les règles qu'on a choisi, il faut ajouter une translation suivant l'axe Z_4 présentée par le paramètre l qui est le 19^{eme} paramètre à estimer mais, la matrice de transformation A_5 sera une autre afin de considérer en calcul le nouveau paramètre l, donc elle sera comme suit :

$$L = \begin{bmatrix} \cos\theta_i & -\sin\theta_i & 0 & a \\ \cos\alpha_i \sin\theta_i & \cos\alpha_i \cos\theta_i & -\sin\alpha_i & -d\sin\alpha_i \\ \sin\alpha_i \sin\theta_i & \sin\alpha_i \cos\theta_i & \cos\alpha_i & l + d\cos\alpha_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Cette L est définie réellement par :

$$L = T_l(0, 0, l)A_5$$

avec $T_l(0,0,1)$ signifie une translation par l suivant l'axe Z

$$E_{15} = A_4^1 \frac{\partial L}{\partial l} \Delta l A_6 + A_4^1 \frac{\partial L}{\partial a_5} \Delta a_5 A_6 + A_4^1 \frac{\partial L}{\partial \theta_5} \Delta \theta_5 A_6 + A_4^1 \frac{\partial L}{\partial d_5} \Delta d_5 A_6$$
(3.26)

et E_{15} sera une matrice de taille 3×4 :

$$E_{15} = \begin{bmatrix} J_5^{11} & J_5^{12} & J_5^{13} & J_5^{14} \\ J_5^{21} & J_5^{22} & J_5^{23} & J_5^{24} \\ J_5^{31} & J_5^{32} & J_5^{33} & J_5^{34} \end{bmatrix} \begin{bmatrix} \Delta l \\ \Delta a_5 \\ \Delta \theta_5 \\ \Delta d_5 \end{bmatrix}$$

Donc on aura une nouvelle matrice J de 3×19 qui est la suivante :

$$J(:,1:9) = \begin{bmatrix} J_5^{11} & J_1^{11} & J_2^{11} & J_3^{11} & J_4^{11} & J_5^{12} & J_6^{11} & J_1^{12} & J_2^{12} \\ J_5^{21} & J_1^{21} & J_2^{21} & J_3^{21} & J_4^{21} & J_5^{22} & J_6^{21} & J_1^{22} & J_2^{22} \\ J_5^{31} & J_1^{31} & J_2^{31} & J_3^{31} & J_3^{31} & J_3^{31} & J_5^{32} & J_6^{31} & J_1^{32} & J_2^{32} \end{bmatrix}$$

$$J(:,10:19) = \begin{bmatrix} J_3^{12} & J_4^{12} & J_5^{13} & J_6^{12} & J_1^{13} & J_2^{13} & J_3^{13} & J_4^{13} & J_5^{14} & J_6^{13} \\ J_3^{22} & J_4^{22} & J_5^{23} & J_6^{12} & J_1^{23} & J_2^{23} & J_3^{23} & J_4^{23} & J_5^{24} & J_6^{23} \\ J_3^{32} & J_4^{32} & J_5^{33} & J_6^{12} & J_1^{33} & J_2^{33} & J_3^{33} & J_3^{34} & J_5^{34} & J_6^{33} \end{bmatrix}$$

Pour faire une modélisation géométrique du notre robot réel, on a choisie sept configurations qui sont décrites dans le tableau suivant :

	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6
configuration 01	0	0	$\frac{\pi}{2}$	0	$\frac{\pi}{3}$	0
configuration 02	$\frac{\pi}{2}$	$\frac{\pi}{2}$	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{\pi}{4}$	0
configuration 03	$\frac{\pi}{6}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{6}$	$\frac{\pi}{6}$	0
configuration 04	$\frac{\pi}{4}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{2\pi}{3}$	0
configuration 05	$\frac{\pi}{3}$	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	$\frac{\pi}{3}$	$\frac{3\pi}{4}$	0
configuration 06	π	π	$\frac{5\pi}{6}$	π	$\frac{5\pi}{6}$	0
configuration 07	$\frac{-\pi}{6}$	$\frac{-\pi}{6}$	$\frac{-\pi}{3}$	$\frac{-\pi}{6}$	$\frac{-\pi}{3}$	0

Table 3.3: les sept configurations choisies pour la modélisation géométrique du robot Stäubli modifié

Les résultats de la modélisation sont illustrés par les figures suivantes:

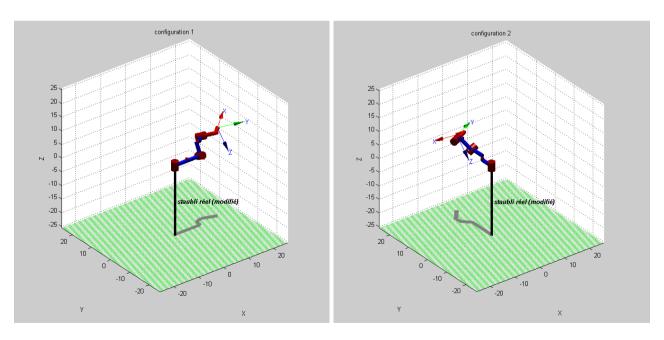


Figure 3.3: Les configurations 1 et 2

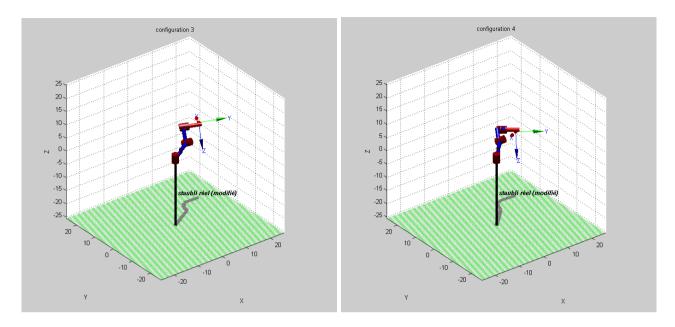


Figure 3.4: Les configurations 3 et 4

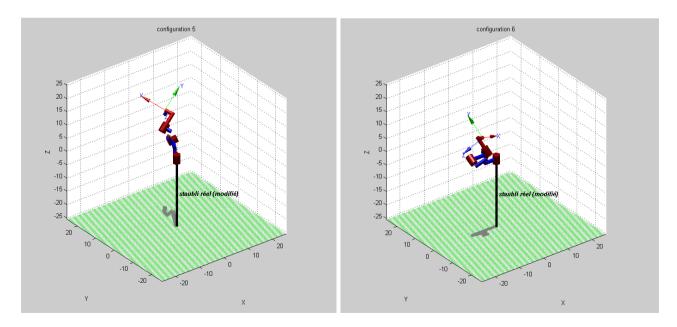


Figure 3.5: Les configurations 5 et 6

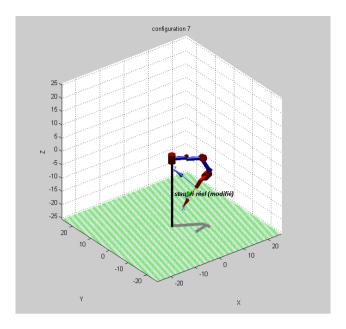


Figure 3.6: La configuration 7

Dans cette deuxième expérience qui concerne le robot réel, on a fait trois essais différents.La différence entre ces trois essais est expliquée dans le tableau suivant:

	essai 1	essai 2	essai 3
Les	les mêmes configu-	sept configurations	les mêmes sept
con-	rations de l'essai 1	différentes de l'essai	configurations de
figura-	du robot classique	1	l'essai 2
tions	plus une septième		
	configuration		
Le	celui qui est men-	le même X de	celui qui est men-
vecteur	tionné dans le	l'essai 1	tionné dans le
X à	tableau3.3.4,		tableau3.3.4, il est
es-			différent de ceux
timer			des essais 1 et 2

Table 3.4: La différence entre les trois essais du robot réel calibré par LSE

Essaie 01 $\label{eq:essaie} \mbox{Le vecteur X à estimer est le suivant :}$

Δl	0.03							
Δ_{ai}	0.02	0.03	0.04	0.06	0.08	0.1		
$\Delta_{\theta i}$	0.01	0.02	0.03	0.04	0.05	0.06		
Δ_{di}	0.05	0.07	0.08	0.09	0.1	0.2		

avec les mêmes six configurations du robot Stäubli classique, plus cette configuration :

$$\theta_1 = \frac{\pi}{4}, \ \theta_2 = 0, \ \theta_3 = 0, \ \theta_4 = 0, \ \theta_5 = 0, \ \theta_6 = 0$$
 on calcule :

- La matrice jacobienne J, est une matrice de 21×19 (voir l'annexe 6.33)
- Puis on calcule le vecteur Y 21×1 (voir l'annexe 6.34)
- Ensuite Le vecteur Y' 21 × 1 qui présente la position perturbée de l'effecteur final dans les sept configurations choisies (voir l'annexe 6.35)

Et voila le résultat d'estimation de la première essai, le vecteur X des déviations D-H:

Δl	0.0615							
Δ_{ai}	0.0144	0.0262	0.0376	-0.0129	0.0847	-54.68		
$\Delta_{\theta i}$	0.0094	0.0200	0.0352	0.0358	10.5805	0		
Δ_{di}	0.0485	0.0843	0.0843	0.0615	0.1223	26.5027		

Essai 02Le vecteur X à estimer est le suivant :

Δl		0.03								
Δ_{ai}	0.02	0.02 0.03 0.04 0.06 0.08 0.1								
$\Delta_{\theta i}$	0.01	0.02	0.03	0.04	0.05	0.06				
Δ_{di}	0.05	0.07	0.08	0.09	0.1	0.2				

	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6
configuration 01	0	0	$\frac{\pi}{2}$	0	$\frac{\pi}{3}$	0
configuration 02	$\frac{\pi}{2}$	$\frac{\pi}{2}$	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{\pi}{4}$	0
configuration 03	$\frac{\pi}{6}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{6}$	$\frac{\pi}{6}$	0
configuration 04	$\frac{\pi}{4}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{2\pi}{3}$	0
configuration 05	$\frac{\pi}{3}$	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	$\frac{\pi}{3}$	$\frac{3\pi}{4}$	0
configuration 06	π	π	$\frac{5\pi}{6}$	π	$\frac{5\pi}{6}$	0
configuration 07	$\frac{-\pi}{6}$	$\frac{-\pi}{6}$	$\frac{-\pi}{3}$	$\frac{-\pi}{6}$	$\frac{-\pi}{3}$	0

avec ces sept configurations on calcule:

- La matrice jacobienne J, est une matrice de 21×19 (voir l'annexe 6.36)
- Puis on calcule le vecteur Y 21×1 (voir l'annexe 6.37)
- Ensuite Le vecteur $Y^{'}$ 21 × 1 qui présente la position perturbée de l'effecteur final dans les sept configurations choisies (voir l'annexe 6.38)

Et voila le résultat d'estimation de la deuxième essai, le vecteur X des déviations D-H :

Δl	0.0558								
Δ_{ai}	0.0129	0.0335	0.0290	0.0443	0.0927	-5.8785			
$\Delta_{\theta i}$	0.0105	0.0188	0.0318	0.0451	1.1998	0			
Δ_{di}	0.0372	0.0726	0.0726	0.0558	0.0731	3.0454			

Essai 03

Le vecteur X à estimer est le suivant :

Δl		0.03								
Δ_{ai}	0.02	0.02	0.02	0.02	0.02	0.02				
$\Delta_{\theta i}$	0.01	0.01	0.01	0.01	0.01	0.01				
Δ_{di}	0.04	0.04	0.04	0.04	0.04	0.04				

avec les mêmes sept configurations de l'essaie 2 on calcule :

- La matrice jacobienne J, est une matrice de 21×19 (la même J de l'essai 02)(voir l'annexe 6.36)
- Puis on calcule le vecteur Y 21 \times 1 (le même Y de l'essai 02) (voir l'annexe 6.37)
- \bullet Ensuite Le vecteur $Y^{'}$ 21 \times 1 qui représente la position perturbée de l'effecteur final dans les sept configurations choisies (voir l'annexe 6.39)

Et voila le résultat de la troisième essai le vecteur X des déviations D-H :

Δl	0.0342								
Δ_{ai}	0.0192	0.0192 0.0205 0.0177 0.0171 0.0203 -6.455							
$\Delta_{\theta i}$	0.01	0.01	0.01	0.01	1.255	0			
Δ_{di}	0.0386	0.0396	0.0396	0.0342	0.0367	3.1501			

On conclue le chapitre par une comparaison entre les trois essais du robot réel qu'on a réalisé Le vecteur X dans le cas du robot classique est définit dans l'équation (1.25), mais dans le cas de notre robot réel (modifié) il sera:

$$X = \begin{bmatrix} X_1 & X_2 & X_3 & X_4 \end{bmatrix}$$

$$\text{avec:}$$

$$X_1 = \begin{bmatrix} \Delta l \end{bmatrix}$$

$$X_2 = \begin{bmatrix} \Delta a_1 & \Delta a_2 & \Delta a_3 & \Delta a_4 & \Delta a_5 & \Delta a_6 \end{bmatrix}$$

$$X_3 = \begin{bmatrix} \Delta \theta_1 & \Delta \theta_2 & \Delta \theta_3 & \Delta \theta_4 & \Delta \theta_5 & \Delta \theta_6 \end{bmatrix}$$

$$X_4 = \begin{bmatrix} \Delta d_1 & \Delta d_2 & \Delta d_3 & \Delta d_4 & \Delta d_5 & \Delta d_6 \end{bmatrix}$$

$$(3.27)$$

Pour montrer la différence entres les trois essais, on va calculer ϵ qui est la norme de la différence entre le vecteur X initial (à estimer) et le résultat d'estimation comme suit :

$$\epsilon_l = norme(\Delta_l reel - \Delta_l LSE)$$
 $\epsilon_a = norme(\Delta_a reel - \Delta_a LSE)$
 $\epsilon_{\theta} = norme(\Delta_{\theta} reel - \Delta_{\theta} LSE)$

$$\epsilon_d = norme(\Delta_d reel - \Delta_d LSE)$$

Le tableau suivant résume les résultats :

	ϵ_l	ϵ_a	$\epsilon_{ heta}$	ϵ_d
Essaie 01	0.0315	54.7800	10.5307	26.3027
Essaie 02	0.0258	5.9785	1.1514	2.8458
Essaie 03	0.0042	6.4755	1.2450	3.1101

Interprétation des résultats:

Pour cette expérience qui concerne notre robot réel après trois essais qu'on a fait, on peut dire que :

- Le changement des configurations a une influence sur les résultats dans les deux sens
- ullet Aussi le choix du vecteur X_k à estimer influence d'une manière directe sur le résultat d'estimation

Chapitre 4

Calibrage par la méthode du filtre de Kalman étendu

4.1 Définition

L'algorithme EKF(Extended Kalman Filter) utilise le premier ordre des développements de Taylor pour linéariser les systèmes non linéaires, puis utilise le Filtre de Kalman pour gérer les systèmes linéarisés avec bruit gaussien. Dans notre cas, il est définit par cette équation :

$$Y_k = J_k X_k + \epsilon_k \tag{4.1}$$

 Y_k est la position de l'effecteur final du robot, peut être mesurer à travers un tracker extérieur. La matrice jacobienne J_k est appliquée pour estimer les déviations X_k précises des paramètres D-H. ϵ_k erreur de mesures et de modélisation. Dans l'algorithme EKF, le X représente les déviations (écarts) des paramètres géométriques du robot, qui sont les mêmes comme celle du chapitre 1.

4.2 Principe de la méthode

D'une manière globale l'EKF se compose de deux étapes essentiels [3] :

• L'étape de prédiction :

$$X_{k|k-1} = X_{k-1|k-1} (4.2)$$

$$P_{k|k-1} = P_{k-1|k-1} + Q_{k-1} (4.3)$$

avec:

 $-P_{k-1|k-1}$: est la matrice de covariance qui représente l'erreur de prédiction initial

$$P_{k-1|k-1} = 10^{-4}I (4.4)$$

 $-Q_{k-1}$: est la matrice de covariance du bruit du système

$$Q = 10^{-4}I\tag{4.5}$$

Et I c'est une matrice identité de (19×19)

• L'étape de correction : cette étape commence par le calcul du gain de Kalman K:

$$K_k = P_{k|k-1} J_k^T (J_k P_{k|k-1} J_k^T + R_k)^{-1}$$
(4.6)

avec:

 $-R_k$: est la matrice de covariance du bruit de mesure

$$R_k = 10^{-4}I (4.7)$$

Et I c'est une matrice identité de (21×21)

Après on calcule l'estimation corrigé X_k des déviation des paramètres de D-H:

$$X_{k|k} = X_{k|k-1} + K_k(Y_k - J_k X_{k|k-1})$$
(4.8)

La nouvelle matrice de covariance est calculer par:

$$P_{k|k} = (I - K_k J_k) P_{k|k-1} \tag{4.9}$$

Alors, on peut dire que les paramètres géométriques réels X_R du robot sont calculés en sommant les valeurs des paramètres géométriques nominaux X_N du robot et l'identification des écarts de paramètres X_k , on écrit :

$$X_R = X_N + X_k \tag{4.10}$$

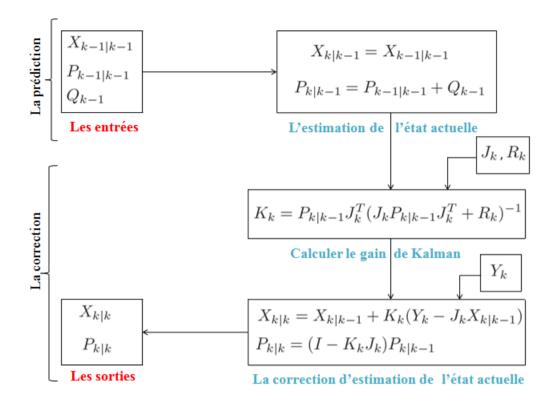


Figure 4.1: Organigramme de la calibration avec de la méthode EKF

Alors, pour arriver à estimer les déviations X_k avec le EKF :

- Tout d'abord on initialise les termes suivants :
 - Le vecteur des déviations des paramètres de D-H X_k de (19×1)
 - La matrice jacobienne J_K de (21×19)
 - Le vecteur Y de la position de l'effecteur final du robot calculé avec le modèle nominal (mentionné dans la section 1.3.1 du chapitre 3)
 - Le vecteur de position de l'effecteur final Y' (19 × 1) calculé avec le modèle perturbé (mentionné dans la section 1.3.2 du chapitre 3) pour valider notre programme en premier lieu et qui sera mesuré avec le capteur externe en application réelle comme on a déjà mentionné dans la définition
 - Alors le Y_k sera comme suit :

$$Y_k = Y' - Y \tag{4.11}$$

- Ensuite, on va utiliser une boucle sur le langage matlab, dans cette dernière on utilise les équations 4.2, 4.3, 4.6, 4.8 et 4.9 afin de calculer le valeur de X_k de chaque itération
- En intégrant aussi dans la boucle les équations qui donnent la matrice J et le vecteur Y (citer dans la section 1.3.3 du chapitre), à chaque itération on calcule X_k qui est notre but

principal mais chaque X_k trouvé on le rajoutera dans les calculs de J et Y.On fait la mise à jour de J et Y avec le X_k calculé à chaque itération, aussi l'équation 4.2 sera actualisée à chaque itération.

Dans l'équation (1.5), le terme $K_k(Y_k - J_k X_{k-1})$ qui va être aussi vérifier dans dans les dernières itérations, pour une meilleure estimation avec le méthode EKF on s'errete quand ce terme $Y_k - J_k X_k$ tend vers 10^{-4} .

• Puis on v trace a progression des 19 paramètres D-H identifiés suivant 100 itérations pour valider la fiabilité de notre méthode.

4.3 Des exemples de calcul

Remarque

dans ce chapitre on a appliqué l'algorithme EKF sur les mêmes essais (données) du chapitre 3 avec les mêmes détails soit pour le robot staubli classique, soit pour notre robot réel

4.3.1 Première expérience avec le robot Staubli classique

Comme une première expérience en ce qui concerne le EKF, on a réalisé un seul essai, cet essai est décrit au tableau suivant:

	essai 1
Les configurations	les mêmes configurations de l'essai 1 du
	robot classique du LSE
X_k à estimer	est mentionné dans le tableau4.2

Table 4.1: Description de le premier essai du EKF pour le robot classique

remarque: pour les X_k à estimer par le EKF sont différents des X à estimer par LSE

Essai 01

Dans cet essai on a appliqué l'algorithme EKF sur le robot classique : Le vecteur X_k à estimer est le suivant :

Δ_{ai}	0.08	0.08	0.08	0.08	0.08	0.08
$\Delta_{\theta i}$	0.01	0.01	0.01	0.01	0.01	0.01
Δ_{di}	0.05	0.05	0.05	0.05	0.05	0.05

Table 4.2: Le X_k à estimer par EKF pour le premier essai

Avec les six configurations mentionnées dans le tableau suivant:

	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6
configuration 01	0	0	0	0	0	0
configuration 02	$\frac{\pi}{2}$	0	0	0	0	0
configuration 03	0	$\frac{\pi}{2}$	0	0	0	0
configuration 04	0	0	$\frac{\pi}{2}$	0	0	0
configuration 05	0	0	0	$\frac{\pi}{2}$	0	0
configuration 06	0	0	0	0	$\frac{\pi}{2}$	0

Table 4.3: Les six configurations pour estimer le ΔX du robot Staubli classique par EKF

On calcule:

- La matrice jacobienne J_k de taille 18×18 (voir l'annexe 6.27)
- Puis on calcule le vecteur Y de taille 18×1 (voir l'annexe 6.28)
- ullet Le Y' qui représente la position perturbée de l'effecteur final dans les six configurations choisies
- A partir des deux vecteurs Y et Y', on calcule le vecteur Y_k :

$$Y_k = Y' - Y \tag{4.12}$$

La boucle entre en mise à jour pour 100 fois (itérations) jusqu'au $Y_k=J_kX_k$ Et voila les résultats du premier essai :

 \bullet Le vecteur des 18 déviations des paramètres D-H X_k après 100 itération est :

Δ_{ai}	0.0518	0.0362	0.0400	0.0576	-0.0117	0.0501
$\Delta_{\theta i}$	0.0091	0.0051	0.0185	-0.0572	0.0811	0
Δ_{di}	0.0174	0.0392	0.0392	0.0295	-0.0218	0.0290

• La norme de l'erreur d'estimation après 100 itérations :

$$norm(Y_k - J_k X_k) = 0.0698$$

• Enfin, la progression des 18 paramètres D-H identifiés du premier essai sont représentés dans la figure suivante :

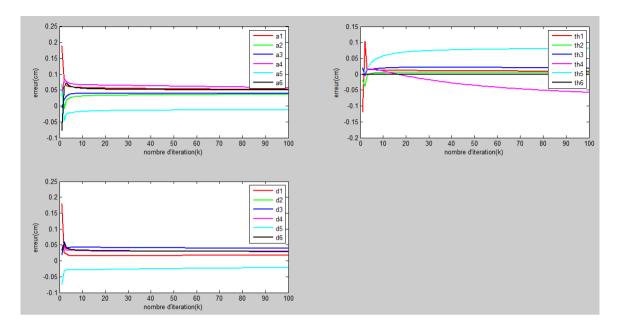


Figure 4.2: Déviations des paramètre D-H identifiées du robot Staubli classique avec l'algorithme EKF

4.3.2 Deuxième expérience avec le robot réel

Dans cette deuxième expérience qui concerne le robot réel, on a fait trois essais différents.La différence entre les trois essais est mentionnées au tableau suivant:

	essai 1	essai 2	essai 3
Les	les mêmes configu-	sept configurations	les mêmes sept
con-	rations de l'essai 1	différentes de l'essai	configurations de
figura-	du robot classique	1 du EKF mais	l'essai 2
tions	du LSE plus une	sont les mêmes que	
	septième configura-	l'essai 2 du LSE	
	tion	dans le cas du robot	
		réel	
X_k	est mentionné dans	le même X_k de	est mentionné dans
à es-	le tableau4.5,	l'essai 1 du EKF	le tableau4.8, il est
timer			différent du celle
			des essais 1 et 2 du
			EKF

Table 4.4: La différence entre les trois essais du EKF pour le robot réel

remarque: pour les X_k à estimer par le EKF sont différents des X à estimer par LSE

Essai 01

On va prendre le vecteur X_k à estimer comme suit :

Δl		0.1								
Δ_{ai}	0.02	0.03	0.04	0.05	0.06	0.07				
$\Delta_{\theta i}$	0.01	0.01	0.01	0.01	0.01	0.01				
Δ_{di}	0.07	0.06	0.05	0.04	0.03	0.02				

Table 4.5: Le X_k à estimer par EKF pour le premier essai

	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6
configuration 01	0	0	0	0	0	0
configuration 02	$\frac{\pi}{2}$	0	0	0	0	0
configuration 03	0	$\frac{\pi}{2}$	0	0	0	0
configuration 04	0	0	$\frac{\pi}{2}$	0	0	0
configuration 05	0	0	0	$\frac{\pi}{2}$	0	0
configuration 06	0	0	0	0	$\frac{\pi}{2}$	0
configuration 07	$\frac{\pi}{4}$	0	0	0	0	0

Table 4.6: Les sept configurations pour estimer le ΔX du premier essai par EKF

Avec les sept configurations mentionnées dans le tableau précédant on calcule :

- La matrice jacobienne J_k de (21×19) (voir l'annexe 6.33)
- Puis on calcule le vecteur Y 21×1 (voir l'annexe 6.34)
- Ensuite Le vecteur Y' 21 × 1 qui représente la position perturbée de l'effecteur final dans les sept configurations choisies (voir l'annexe ??)
- à partir des vecteurs Y et Y', on calcule le vecteur Y_k :

$$Y_k = Y' - Y \tag{4.13}$$

La boucle entre en mise à jour pour 100 fois (itérations) jusqu'au Y_k soit presque égale à $J_k X_k$ Et voila les résultats d'estimation du premier essai :

ullet Le vecteur des 19 déviations des paramètres D-H X_k après 100 itération est:

Δl	0.1621							
Δ_{ai}	0.0971	0.1326	-0.0293	-2.9817	0.6244	-3.5909		
$\Delta_{\theta i}$	0.0042	0.0142	0.2050	-0.0292	0.9244	0		
Δ_{di}	-0.006	0.0447	0.0447	0.1621	0.1245	-2.0460		

• La norme de l'erreur d'estimation après 100 itérations :

$$norm(Y_k - J_k X_k) = 0.0022$$

• Enfin, la progression des 19 paramètres D-H identifiés du premier essai sont représentés dans la figure suivante :

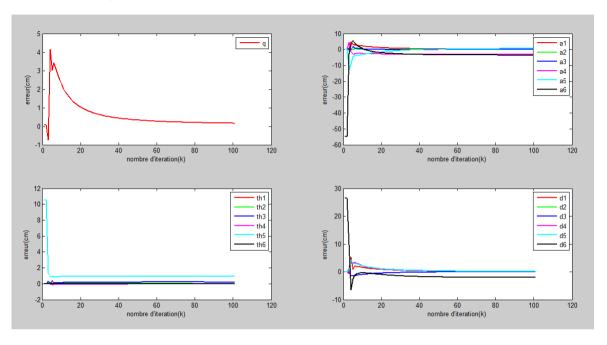


Figure 4.3: Déviations des paramètre D-H identifiées avec l'algorithme EKF de l'essai 1

	Δl	0.1						
	Δ_{ai}	0.02	0.03	0.04	0.05	0.06	0.07	
	$\Delta_{\theta i}$	0.01	0.01	0.01	0.01	0.01	0.01	
Ì	Δ_{di}	0.07	0.06	0.05	0.04	0.03	0.02	

	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6
configuration 01	0	0	$\frac{\pi}{2}$	0	$\frac{\pi}{3}$	0
configuration 02	$\frac{\pi}{2}$	$\frac{\pi}{2}$	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{\pi}{4}$	0
configuration 03	$\frac{\frac{\pi}{2}}{\frac{\pi}{6}}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{6}$	$\frac{\pi}{6}$	0
configuration 04	$\frac{\pi}{4}$	$\frac{\frac{\pi}{2}}{\frac{\pi}{4}}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{2\pi}{3}$	0
configuration 05	$\frac{\pi}{4}$ $\frac{\pi}{3}$	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	$\frac{\pi}{3}$	$\frac{3\pi}{4}$	0
configuration 06	π	π	$\frac{5\pi}{6}$	π	$\frac{5\pi}{6}$	0
configuration 07	$\frac{\pi}{5}$	$\frac{\pi}{5}$	$\frac{\pi}{4}$	$\frac{\pi}{5}$	$\frac{\pi}{4}$	0

Table 4.7: Les sept configurations pour estimer le ΔX par EKF

Avec les sept configurations mentionnées dans le tableau précédent on calcule :

- La matrice jacobienne J_k de (21×19) (voir l'annexe 6.36)
- \bullet Puis on calcule le vecteur Y 21 × 1 (voir l'annexe 6.37)
- Ensuite Le vecteur Y' 21 × 1 qui représente la position perturbée de l'effecteur final dans les sept configurations choisies (voir l'annexe 6.42)
- à partir des vecteurs Y et Y', on calcule le vecteur Y_k :

$$Y_k = Y' - Y \tag{4.14}$$

La boucle entre en mise à jour pour 100 fois (itérations) jusqu'au Y_k soit presque égale à $J_k X_k$ Et voila les résultats d'estimation du deuxième essai :

• Le vecteur des 19 déviations des paramètres D-H X_k après 100 itération est:

	Δl	0.0336							
	Δ_{ai}	0.0174	-0.0301	0.0274	0.0906	0.0211	1.0556		
	$\Delta_{\theta i}$	0.0030	0.002	0.0035	0.0015	-0.2416	0		
Ì	Δ_{di}	0.0192	0.0393	0.0393	0.0336	0.0586	-0.9511		

• La norme de l'erreur d'estimation après 100 itérations :

$$norm(Y_k - J_k X_k) = 0.0351$$

• Enfin, la progression des 19 paramètres D-H identifiés du deuxième essai sont représentés dans la figure suivante :

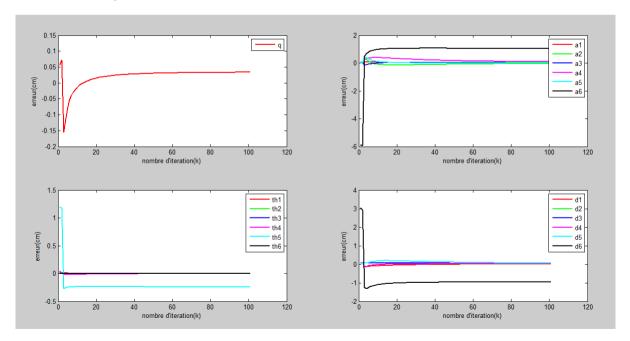


Figure 4.4: Déviations des paramètre D-H identifiées avec l'algorithme EKF de l'essai 2

Essai 03

On va prendre le vecteur X_k à estimer comme suit :

Δl	0.05						
Δ_{ai}	0.3	0.3	0.3	0.3	0.3	0.3	
$\Delta_{\theta i}$	0.02	0.02	0.02	0.02	0.02	0.02	
Δ_{di}	0.08	0.08	0.08	0.08	0.08	0.08	

Table 4.8: Le X_k à estimer par EKF pour le troisième essai

	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6
configuration 01	0	0	$\frac{\pi}{2}$	0	$\frac{\pi}{3}$	0
configuration 02	$\frac{\pi}{2}$	$\frac{\pi}{2}$	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{\pi}{4}$	0
configuration 03	$\frac{\pi}{6}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{6}$	$\frac{\pi}{6}$	0
configuration 04	$\frac{\pi}{4}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{2\pi}{3}$	0
configuration 05	$\frac{\pi}{3}$	$\frac{\pi}{3}$	$\frac{2\pi}{3}$	$\frac{\pi}{3}$	$\frac{3\pi}{4}$	0
configuration 06	π	π	$\frac{5\pi}{6}$	π	$\frac{5\pi}{6}$	0
configuration 07	$\frac{\pi}{5}$	$\frac{\pi}{5}$	$\frac{\pi}{4}$	$\frac{\pi}{5}$	$\frac{\pi}{4}$	0

Table 4.9: Les sept configurations pour estimer $le\Delta X$ par EKF

Avec les sept configurations mentionnées dans le tableau précédant on calcule :

- La matrice jacobienne J_k de (21×19) (voir l'annexe 6.39)
- Puis on calcule le vecteur Y 21 × 1 (voir l'annexe ??)
- Ensuite Le vecteur Y' 21 × 1 qui représente la position perturbée de l'effecteur final dans les sept configurations choisies (voir l'annexe 6.43)
- à partir des vecteurs Y et Y', on calcule le vecteur Y_k :

$$Y_k = Y' - Y \tag{4.15}$$

La boucle entre en mise à jour pour 100 fois (itérations) jusqu'au Y_k soit presque égale à $J_k X_k$ Et voila les résultats d'estimation du troisième essai :

• Le vecteur des 19 déviations des paramètres D-H X_k après 100 itération est:

	Δl		0.0274						
ĺ	Δ_{ai}	0.1592	0.0715	0.1660	0.2561	0.1392	1.2299		
ĺ	$\Delta_{\theta i}$	0.0066	0.0051	0.0078	0.0057	-0.2554	0		
ĺ	Δ_{di}	0.0147	0.0596	0.0596	0.0274	0.1107	-1.0699		

• La norme de l'erreur d'estimation après 100 itérations :

$$norm(Y_k - J_k X_k) = 0.0609$$

• Enfin, la progression des 19 paramètres D-H identifiés du troisième essai sont représentés dans la figure suivante :

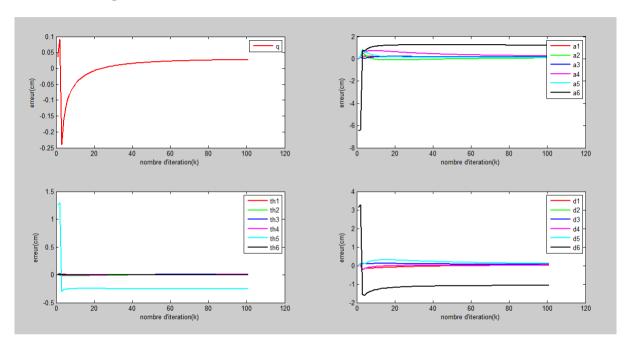


Figure 4.5: Déviations des paramètre D-H identifiées avec l'algorithme EKF de l'essai 3

Pour montrer la différence entres les trois essais, on va calculer ϵ qui est la norme de la différence entre le vecteur X initial (à estimer) et le résultat d'estimation comme suit :

$$\epsilon_{l} = norme(\Delta_{l}reel - \Delta_{l}EKF)$$

$$\epsilon_{a} = norme(\Delta_{a}reel - \Delta_{a}EKF)$$

$$\epsilon_{\theta} = norme(\Delta_{\theta}reel - \Delta_{\theta}EKF)$$

$$\epsilon_{d} = norme(\Delta_{d}reel - \Delta_{d}EKF)$$

Le tableau suivant résume les résultats :

	ϵ_l	ϵ_a	$\epsilon_{ heta}$	ϵ_d
Essaie 01	0.0633	4.7902	0.9361	2.0728
Essaie 02	0.0665	0.9893	0.2522	0.9733
Essaie 03	0.0227	0.9915	0.2775	1.1540

Conclusion comparative

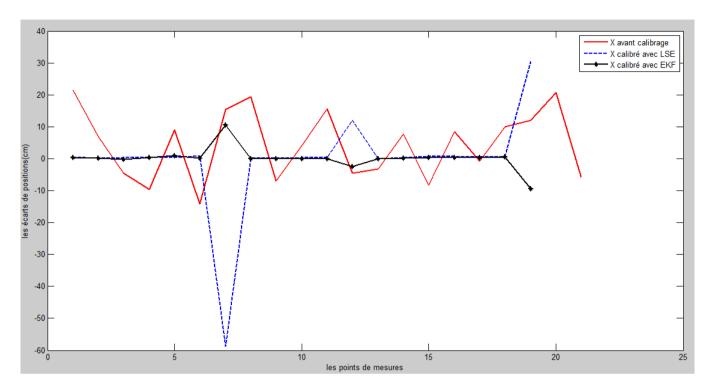


Figure 4.6: Les écarts de position du robot réel après le calibrage avec les deux algorithmes LSE et EKF

	la moyenne en (cm)
avant le calibrage	4.4379
après le calibrage avec LSE	-0.4987
après le calibrage avec EKF	0.1173

Table 4.10: Les écarts de positionnement de l'effecteur final du robot

On peut prouver l'efficacité du l'algorithme EKF par le décroissement des écarts de position de l'effecteur final du robot de la valeur 4,4379 à 0.1173 cm après calibration.

Chapitre 5

Installation d'un moyen de perception sur le robot

5.1 Introduction

Dans ce chapitre on va installer un moyen de perception (une camera) sur notre robot réel, c'est pour cela on ajoutera une septième transformation A_7 .

Après l'installation de la camera sur le robot , on a fixé un motif sur la même table ou on a fixé notre robot , ce motif est fixé de façon qu'il est détecté par la caméra a chaque fois on change les configurations. c'est pour cela on a ajouté une huitième transformation (A_0) du motif au la base du notre robot, la figure suivante représente l'installation de la caméra sur l'effecteur du notre robot réel

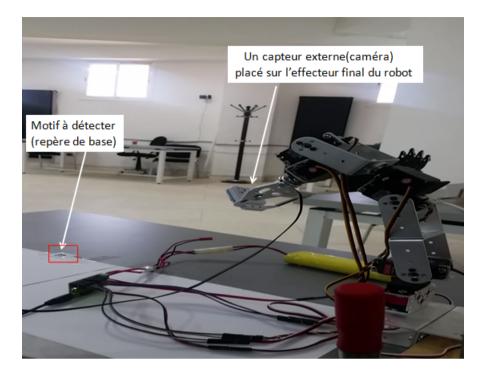


Figure 5.1: Installation d'une caméra sur l'effecteur final du notre robot réel

Alors, le robot sera défini avec le tableau du paramétrage D-H suivant :

$l_i(cm)$	$\alpha_i \text{ (deg)}$	$a_i \text{ (cm)}$	$\theta_i \text{ (deg)}$	d_i (cm)
	0	39.7	θ_0	0
	0	0	θ_1	8
1.2	-90	1.2	θ_2	3.5
	0	10.5	θ_3	0
	90	2.9	θ_4	4.7
5.1	-90	0	θ_5	2.7
	90	2.5	θ_6	5.2
2.3	0	2.7	θ_7	7.2

Table 5.1: les paramètres de D-H de notre robot réel avec le moyen de perception

On a déjà estimé 19 paramètres du notre robot réel avec l'algorithme LSE et EKF sans considérer les $\Delta \alpha_i$, maintenant avec l'ajout de la septième et la huitième transformations, il y aura 27 paramètres à estimer

Avec la même procédure qu'on a expliquée au part avant dans les chapitres 3 et 4 concernant les étapes des deux méthodes de calibrage, dans ce chapitre on va directement appliquée les étapes des deux algorithmes LSE et EKF sur le nouveau robot Donc on va expliquer comment va ajouter cette transformation au calcul et arriver à calibrer le nouveau robot

Alors , la septième transformation qui sera être ajouter se compose d'une translation suivant

5.1. INTRODUCTION 69

l'axe Y_6 présentée par le paramètre l_3 et une rotation sur l'axe Z_7 présentée par ces trois paramètres a_7 , θ_7 et d_7 et la huitième transformations se compose d'une rotation sur l'axe Z_1 présentée par ces trois paramètres a_0 , θ_0 et d_0 alors, le vecteur X qui présente les déviations des paramètres D-H sera comme suit :

$$X = \begin{bmatrix} X_1 & X_2 & X_3 & X_4 \end{bmatrix}$$

$$X_1 = \begin{bmatrix} l_1 & l_2 & l_3 \end{bmatrix}$$

$$X_2 = \begin{bmatrix} \Delta a_0 & \Delta a_1 & \Delta a_2 & \Delta a_3 & \Delta a_4 & \Delta a_5 & \Delta a_6 & \Delta a_7 \end{bmatrix}$$

$$X_3 = \begin{bmatrix} \Delta \theta_0 & \Delta \theta_1 & \Delta \theta_2 & \Delta \theta_3 & \Delta \theta_4 & \Delta \theta_5 & \Delta \theta_6 & \Delta \theta_7 \end{bmatrix}$$

$$X_4 = \begin{bmatrix} \Delta d_0 & \Delta d_1 & \Delta d_2 & \Delta d_3 & \Delta d_4 & \Delta d_5 & \Delta d_6 & \Delta d_7 \end{bmatrix}$$

5.1.1 Calcul du modèle géométrique direct (nominal)

On calcule le MDG de notre robot réel en utilisant le paramétrage D-H présenté dans le tableau 5.1 (comme il est défini dans la partie 1.2.4 dans le chapitre 2) qui donne la matrice de transformation du lien i-1 au lien i, cette matrice définit juste les transformations 0,1,3,4 et 6 comme suit :

$$A_{i} = \begin{bmatrix} \cos\theta_{i} & -\sin\theta_{i} & 0 & a_{i} \\ \cos\alpha_{i}\sin\theta_{i} & \cos\alpha_{i}\cos\theta_{i} & -\sin\alpha_{i} & -d_{i}\sin\alpha_{i} \\ \sin\alpha_{i}\sin\theta_{i} & \sin\alpha_{i}\cos\theta_{i} & \cos\alpha_{i} & d_{i}\cos\alpha_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(5.2)$$

Les transformations 2 et 5 seront définit par la matrice suivante :

$$L_{i} = \begin{bmatrix} cos\theta_{i} & -sin\theta_{i} & 0 & a \\ cos\alpha_{i}sin\theta_{i} & cos\alpha_{i}cos\theta_{i} & -sin\alpha_{i} & -dsin\alpha_{i} \\ sin\alpha_{i}sin\theta_{i} & sin\alpha_{i}cos\theta_{i} & cos\alpha_{i} & l + dcos\alpha_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(5.3)$$

Et la transformation 7 sera définit par la matrice suivante :

$$M_{i} = \begin{bmatrix} cos\theta_{i} & -sin\theta_{i} & 0 & a \\ cos\alpha_{i}sin\theta_{i} & cos\alpha_{i}cos\theta_{i} & -sin\alpha_{i} & l - dsin\alpha_{i} \\ sin\alpha_{i}sin\theta_{i} & sin\alpha_{i}cos\theta_{i} & cos\alpha_{i} & dcos\alpha_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(5.4)

Pour obtenir la matrice de transformation T de la base jusqu'au l'effecteur final qui représente le modèle géométrique directe du robot en multipliant les 8 matrices

$$(A_0, A_1, L_1, A_3, A_4, L_2, A_6, M)$$

$$T = A_0 A_1 L_1 A_3 A_4 L_2 A_6 M (5.5)$$

5.1.2Calcul du modèle perturbé:

Des erreurs de positionnement sont causés par des défauts de la modélisation géométrique. Les écarts de paramètres D-H de chaque articulation (lien), en tenant compte ces écarts, la matrice de transformation T peut être exprimée avec :

$$T + \Delta T = (A_0 + \Delta A_0)(A_1 + \Delta A_1)(L_1 + \Delta L_1)(A_3 + \Delta A_3)(A_4 + \Delta A_4)(L_2 + \Delta L_2)(A_6 + \Delta A_6)(M + \Delta M)$$
(5.6)

L'équation 5.6 représente le modèle perturbé

Et alors pour calculer les ΔA_i , les ΔL_i et les ΔM_i , on utilise les équations suivantes :

$$\Delta A_i = \frac{\partial A_i}{\partial \alpha_i} \Delta \alpha_i + \frac{\partial A_i}{\partial a_i} \Delta a_i + \frac{\partial A_i}{\partial \theta_i} \Delta \theta_i + \frac{\partial A_i}{\partial d_i} \Delta d_i$$
 (5.7)

$$\Delta L_i = \frac{\partial L_i}{\partial l_i} \Delta l_i + \frac{\partial L_i}{\partial \alpha_i} \Delta \alpha_i + \frac{\partial L_i}{\partial a_i} \Delta a_i + \frac{\partial L_i}{\partial \theta_i} \Delta \theta_i + \frac{\partial L_i}{\partial d_i} \Delta d_i$$
 (5.8)

$$\Delta M_i = \frac{\partial M_i}{\partial l_i} \Delta l_i + \frac{\partial M_i}{\partial \alpha_i} \Delta \alpha_i + \frac{\partial M_i}{\partial a_i} \Delta a_i + \frac{\partial M_i}{\partial \theta_i} \Delta \theta_i + \frac{\partial M_i}{\partial d_i} \Delta d_i$$
 (5.9)

On calcule d'abord les $\frac{\partial A_i}{\partial a_i}$, $\frac{\partial A_i}{\partial \theta_i}$ et $\frac{\partial A_i}{\partial d_i}$: Ici on va utiliser la partie (1.2.1 la matrice Jacobienne) pour calculer les dérivées de A_i par rapport à a_i , θ_i et d_i c'est tout, et pas considérer les perturbations en α_i :

$$\frac{\partial A_i}{\partial \theta_i} = \begin{bmatrix} \frac{\partial A_{11}}{\partial \theta_i} & \frac{\partial A_{12}}{\partial \theta_i} & \frac{\partial A_{13}}{\partial \theta_i} & \frac{\partial A_{14}}{\partial \theta_i} \\ \frac{\partial A_{21}}{\partial \theta_i} & \frac{\partial A_{22}}{\partial \theta_i} & \frac{\partial A_{23}}{\partial \theta_i} & \frac{\partial A_{24}}{\partial \theta_i} \\ \frac{\partial A_{31}}{\partial \theta_i} & \frac{\partial A_{32}}{\partial \theta_i} & \frac{\partial A_{33}}{\partial \theta_i} & \frac{\partial A_{34}}{\partial \theta_i} \\ \frac{\partial A_{41}}{\partial \theta_i} & \frac{\partial A_{42}}{\partial \theta_i} & \frac{\partial A_{43}}{\partial \theta_i} & \frac{\partial A_{44}}{\partial \theta_i} \end{bmatrix} = \begin{bmatrix} -sin\theta_i & -cos\theta_i & 0 & 0 \\ cos\alpha_icos\theta_i & -cos\alpha_isin\theta_i & 0 & 0 \\ sin\alpha_icos\theta_i & -sin\alpha_isin\theta_i & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

5.1. INTRODUCTION 71

$$\frac{\partial A_{i}}{\partial d_{i}} = \begin{bmatrix} \frac{\partial A_{11}}{\partial d_{i}} & \frac{\partial A_{12}}{\partial d_{i}} & \frac{\partial A_{13}}{\partial d_{i}} & \frac{\partial A_{14}}{\partial d_{i}} \\ \frac{\partial A_{21}}{\partial d_{i}} & \frac{\partial A_{22}}{\partial d_{i}} & \frac{\partial A_{23}}{\partial d_{i}} & \frac{\partial A_{24}}{\partial d_{i}} \\ \frac{\partial A_{31}}{\partial d_{i}} & \frac{\partial A_{32}}{\partial d_{i}} & \frac{\partial A_{33}}{\partial d_{i}} & \frac{\partial A_{34}}{\partial d_{i}} \\ \frac{\partial A_{41}}{\partial d_{i}} & \frac{\partial A_{42}}{\partial d_{i}} & \frac{\partial A_{43}}{\partial d_{i}} & \frac{\partial A_{44}}{\partial d_{i}} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -sin\alpha_{i} \\ 0 & 0 & 0 & cos\alpha_{i} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Alors:

$$\Delta A_{i} = \begin{bmatrix} -\sin\theta_{i}\Delta\theta_{i} & -\cos\theta_{i}\Delta\theta_{i} & 0 & \Delta a_{i} \\ \cos\alpha_{i}\cos\theta_{i}\Delta\theta_{i} & -\cos\alpha_{i}\sin\theta_{i}\Delta\theta_{i} & 0 & -\sin\alpha_{i}\Delta d_{i} \\ \sin\alpha_{i}\cos\theta_{i}\Delta\theta_{i} & -\sin\alpha_{i}\sin\theta_{i}\Delta\theta_{i} & 0 & \cos\alpha_{i}\Delta d_{i} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
(5.10)

Puis on calcule $\frac{\partial L_i}{\partial l_i}$, $\frac{\partial L_i}{\partial q_i}$, $\frac{\partial L_i}{\partial \theta_i}$ et $\frac{\partial L_i}{\partial d_i}$ de la même manière que la partie de A_i

$$\frac{\partial L_i}{\partial \theta_i} = \begin{bmatrix} \frac{\partial L_{11}}{\partial \theta_i} & \frac{\partial L_{12}}{\partial \theta_i} & \frac{\partial L_{13}}{\partial \theta_i} & \frac{\partial L_{14}}{\partial \theta_i} \\ \frac{\partial L_{21}}{\partial \theta_i} & \frac{\partial L_{22}}{\partial \theta_i} & \frac{\partial L_{23}}{\partial \theta_i} & \frac{\partial L_{24}}{\partial \theta_i} \\ \frac{\partial L_{31}}{\partial \theta_i} & \frac{\partial L_{32}}{\partial \theta_i} & \frac{\partial L_{33}}{\partial \theta_i} & \frac{\partial L_{34}}{\partial \theta_i} \\ \frac{\partial L_{41}}{\partial \theta_i} & \frac{\partial L_{42}}{\partial \theta_i} & \frac{\partial L_{43}}{\partial \theta_i} & \frac{\partial L_{44}}{\partial \theta_i} \end{bmatrix} = \begin{bmatrix} -sin\theta_i & -cos\theta_i & 0 & 0 \\ cos\alpha_icos\theta_i & -cos\alpha_isin\theta_i & 0 & 0 \\ sin\alpha_icos\theta_i & -sin\alpha_isin\theta_i & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\frac{\partial L_{i}}{\partial d_{i}} = \begin{bmatrix} \frac{\partial L_{11}}{\partial d_{i}} & \frac{\partial L_{12}}{\partial d_{i}} & \frac{\partial L_{13}}{\partial d_{i}} & \frac{\partial L_{14}}{\partial d_{i}} \\ \frac{\partial L_{21}}{\partial d_{i}} & \frac{\partial L_{22}}{\partial d_{i}} & \frac{\partial L_{23}}{\partial d_{i}} & \frac{\partial L_{24}}{\partial d_{i}} \\ \frac{\partial L_{31}}{\partial d_{i}} & \frac{\partial L_{32}}{\partial d_{i}} & \frac{\partial L_{33}}{\partial d_{i}} & \frac{\partial L_{34}}{\partial d_{i}} \\ \frac{\partial L_{41}}{\partial d_{i}} & \frac{\partial L_{42}}{\partial d_{i}} & \frac{\partial L_{43}}{\partial d_{i}} & \frac{\partial L_{44}}{\partial d_{i}} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -sin\alpha_{i} \\ 0 & 0 & 0 & cos\alpha_{i} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Alors:

$$\Delta L_{i} = \begin{bmatrix} -\sin\theta_{i}\Delta\theta_{i} & -\cos\theta_{i}\Delta\theta_{i} & 0 & \Delta a_{i} \\ \cos\alpha_{i}\cos\theta_{i}\Delta\theta_{i} & -\cos\alpha_{i}\sin\theta_{i}\Delta\theta_{i} & 0 & -\sin\alpha_{i}\Delta d_{i} \\ \sin\alpha_{i}\cos\theta_{i}\Delta\theta_{i} & -\sin\alpha_{i}\sin\theta_{i}\Delta\theta_{i} & 0 & \cos\alpha_{i}\Delta d_{i} + \Delta l_{i} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$(5.11)$$

Ensuite on calcule $\frac{\partial M_i}{\partial l_i}$, $\frac{\partial M_i}{\partial a_i}$, $\frac{\partial M_i}{\partial \theta_i}$ et $\frac{\partial M_i}{\partial d_i}$ de la même manière que la partie de A_i

$$\frac{\partial M_{i}}{\partial l_{i}} = \begin{bmatrix} \frac{\partial M_{11}}{\partial l_{i}} & \frac{\partial M_{12}}{\partial l_{i}} & \frac{\partial M_{13}}{\partial l_{i}} & \frac{\partial M_{14}}{\partial l_{i}} \\ \frac{\partial M_{21}}{\partial l_{i}} & \frac{\partial M_{22}}{\partial l_{i}} & \frac{\partial M_{23}}{\partial l_{i}} & \frac{\partial M_{24}}{\partial l_{i}} \\ \frac{\partial M_{31}}{\partial l_{i}} & \frac{\partial M_{32}}{\partial l_{i}} & \frac{\partial M_{33}}{\partial l_{i}} & \frac{\partial M_{34}}{\partial l_{i}} \\ \frac{\partial M_{41}}{\partial l_{i}} & \frac{\partial M_{42}}{\partial l_{i}} & \frac{\partial M_{43}}{\partial l_{i}} & \frac{\partial M_{44}}{\partial l_{i}} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\frac{\partial M_i}{\partial \theta_i} = \begin{bmatrix} \frac{\partial M_{11}}{\partial \theta_i} & \frac{\partial M_{12}}{\partial \theta_i} & \frac{\partial M_{13}}{\partial \theta_i} & \frac{\partial M_{14}}{\partial \theta_i} \\ \frac{\partial M_{21}}{\partial \theta_i} & \frac{\partial M_{22}}{\partial \theta_i} & \frac{\partial M_{23}}{\partial \theta_i} & \frac{\partial M_{24}}{\partial \theta_i} \\ \frac{\partial M_{31}}{\partial \theta_i} & \frac{\partial M_{32}}{\partial \theta_i} & \frac{\partial M_{33}}{\partial \theta_i} & \frac{\partial M_{34}}{\partial \theta_i} \\ \frac{\partial M_{41}}{\partial \theta_i} & \frac{\partial M_{42}}{\partial \theta_i} & \frac{\partial M_{43}}{\partial \theta_i} & \frac{\partial M_{44}}{\partial \theta_i} \end{bmatrix} = \begin{bmatrix} -sin\theta_i & -cos\theta_i & 0 & 0 \\ cos\alpha_icos\theta_i & -cos\alpha_isin\theta_i & 0 & 0 \\ sin\alpha_icos\theta_i & -sin\alpha_isin\theta_i & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\frac{\partial M_i}{\partial d_i} = \begin{bmatrix} \frac{\partial M_{11}}{\partial d_i} & \frac{\partial M_{12}}{\partial d_i} & \frac{\partial M_{13}}{\partial d_i} & \frac{\partial M_{14}}{\partial d_i} \\ \frac{\partial M_{21}}{\partial d_i} & \frac{\partial M_{22}}{\partial d_i} & \frac{\partial M_{23}}{\partial d_i} & \frac{\partial M_{24}}{\partial d_i} \\ \frac{\partial M_{31}}{\partial d_i} & \frac{\partial M_{32}}{\partial d_i} & \frac{\partial M_{33}}{\partial d_i} & \frac{\partial M_{34}}{\partial d_i} \\ \frac{\partial M_{41}}{\partial d_i} & \frac{\partial M_{42}}{\partial d_i} & \frac{\partial M_{43}}{\partial d_i} & \frac{\partial M_{44}}{\partial d_i} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -sin\alpha_i \\ 0 & 0 & 0 & cos\alpha_i \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Alors:

$$\Delta M_{i} = \begin{bmatrix} -\sin\theta_{i}\Delta\theta_{i} & -\cos\theta_{i}\Delta\theta_{i} & 0 & \Delta a_{i} \\ \cos\alpha_{i}\cos\theta_{i}\Delta\theta_{i} & -\cos\alpha_{i}\sin\theta_{i}\Delta\theta_{i} & 0 & -\sin\alpha_{i}\Delta d_{i} + \Delta l_{i} \\ \sin\alpha_{i}\cos\theta_{i}\Delta\theta_{i} & -\sin\alpha_{i}\sin\theta_{i}\Delta\theta_{i} & 0 & \cos\alpha_{i}\Delta d_{i} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
(5.12)

5.1.3 Calcul de la matrice jacobienne J :

Après le développement de (1.4), on ré-ordonne le résultat tel que :

$$T + \Delta T = A_0 A_1 L_1 A_3 A_4 L_2 A_6 M + E_0 + E_1 + E_2 + E_3 + E_4 + E_5 + E_6 + E_7$$
 (5.13)

5.1. INTRODUCTION 73

Les E_i représentent les erreurs ou les déviations des paramètres de D-H Après le développement de l'équation 5.6 on trouve que le 1^{er} terme d'erreur E_0 est le plus considérable par rapport les autres termes, on peut dire que ΔT approximativement égale à E_0 en ignorant les autres termes

Concernant l'expression de E_0 en choisissent du développement de $T + \Delta T$ les termes qui contient une seule ΔA_i pour que :

$$E_0 >>> E_1, E_2, E_3, E_4, E_5, E_6, E_7$$

Alors:

$$E_0 = \Delta A_0 A_1 A_2 A_3 A_4 A_5 A_6 A_7 + A_0 \Delta A_1 A_2 A_3 A_4 A_5 A_6 A_7 + (5.14)$$

$$E_0 = \sum_{i=0}^{7} (A_0 A_1 \dots A_{i-1} \Delta A_i A_{i+1} \dots A_5 A_6 A_7)$$
(5.15)

L'expression de E_0 contient huit termes, et pour simplifier les calculs et arriver à séparer ce qu'on veux pour la suite, on écrit chaque terme de E_0 de cette façon :

$$E_{00} = \frac{\partial A_0}{\partial a_0} \Delta a_0 A^{1}_7 + \frac{\partial A_0}{\partial \theta_0} \Delta \theta_0 A^{1}_7 + \frac{\partial A_0}{\partial d_0} \Delta d_0 A^{1}_7$$

$$(5.16)$$

$$E_{01} = A_0 \frac{\partial A_1}{\partial a_1} \Delta a_1 A_7^2 + A_0 \frac{\partial A_1}{\partial \theta_1} \Delta \theta_1 A_7^2 + A_0 \frac{\partial A_1}{\partial d_1} \Delta d_1 A_7^2$$

$$(5.17)$$

$$E_{02} = A^{0}{}_{1}\frac{\partial L_{1}}{\partial l_{1}}\Delta l_{1}A^{3}{}_{7} + A^{0}{}_{1}\frac{\partial L_{1}}{\partial a_{2}}\Delta a_{2}A^{3}{}_{7} + A^{0}{}_{1}\frac{\partial L_{1}}{\partial \theta_{2}}\Delta \theta_{2}A^{3}{}_{7} + A^{0}{}_{1}\frac{\partial L_{1}}{\partial d_{2}}\Delta d_{2}A^{3}{}_{7}$$
 (5.18)

$$E_{03} = A_{2}^{0} \frac{\partial A_{3}}{\partial a_{3}} \Delta a_{3} A_{7}^{4} + A_{2}^{0} \frac{\partial A_{3}}{\partial \theta_{3}} \Delta \theta_{3} A_{7}^{4} + A_{2}^{0} \frac{\partial A_{3}}{\partial d_{3}} \Delta d_{3} A_{7}^{4}$$
(5.19)

$$E_{04} = A^{0}{}_{3} \frac{\partial A_{4}}{\partial a_{4}} \Delta a_{4} A^{5}{}_{7} + A^{0}{}_{3} \frac{\partial A_{4}}{\partial \theta_{4}} \Delta \theta_{4} A^{5}{}_{7} + A^{0}{}_{3} \frac{\partial A_{4}}{\partial d_{4}} \Delta d_{4} A^{5}{}_{7}$$

$$(5.20)$$

$$E_{05} = A_{4}^{0} \frac{\partial L_{2}}{\partial l_{2}} \Delta l_{2} A_{7}^{6} + A_{4}^{0} \frac{\partial L_{2}}{\partial a_{5}} \Delta a_{5} A_{7}^{6} + A_{4}^{0} \frac{\partial L_{2}}{\partial \theta_{5}} \Delta \theta_{5} A_{7}^{6} + A_{4}^{0} \frac{\partial L_{2}}{\partial d_{5}} \Delta d_{5} A_{7}^{6}$$
(5.21)

$$E_{06} = A^{0}{}_{5} \frac{\partial A_{6}}{\partial a_{6}} \Delta a_{6} A_{7} + A^{0}{}_{5} \frac{\partial A_{6}}{\partial \theta_{6}} \Delta \theta_{6} A_{7} + A^{0}{}_{5} \frac{\partial A_{6}}{\partial d_{6}} \Delta d_{6} A_{7}$$
(5.22)

$$E_{07} = A^{0}{}_{6} \frac{\partial M}{\partial l_{3}} \Delta l_{3} + A^{0}{}_{6} \frac{\partial M}{\partial a_{7}} \Delta a_{7} + A^{0}{}_{6} \frac{\partial M}{\partial \theta_{7}} \Delta \theta_{7} + A^{0}{}_{6} \frac{\partial M}{\partial d_{7}} \Delta d_{7}$$

$$(5.23)$$

D'après l'algorithme de moindres carré [3]:

Ici on ne considère que les trois premières lignes de la dernière colonne de la matrice ΔT qui peut être notées Y, avec Y a les dimensions 3×1 , et représente le vecteur des erreurs de position de l'effecteur final en x, y et z. La relation linéaire entre le vecteur des erreurs de position de l'effecteur final et les déviations des paramètres D-H de chaque articulation est obtenue par

$$Y = JX (5.24)$$

Avec:

J : présente la matrice jacobienne du modèle nominale de notre robot, de taille 30×27 (dans ce cas on va prendre juste la partie linéaire J_v)

X : est le vecteur de taille 27×1 qui présente les déviations des paramètres D-H de chaque articulation , comme suit :

$$X = [\Delta l^T \Delta a^T \Delta \theta^T \Delta d^T]^T \tag{5.25}$$

Après les étapes de calcul qu'on a déjà expliqué, maintenant on va calculer la matrice jacobien J

Tout d'abord on va calculer les huit termes de E_0 , chaque terme à part, on peut écrit :

$$E_0 = E_{00} + E_{01} + E_{02} + E_{03} + E_{04} + E_{05} + E_{06} + E_{07}$$
(5.26)

$$E_{00} = \Delta A_0 A_1 A_2 A_3 A_4 A_5 A_6 A_7 \tag{5.27}$$

donc (11) sera:

$$E_{00} = \left(\frac{\partial A_0}{\partial a_0} \Delta a_0 + \frac{\partial A_0}{\partial \theta_0} \Delta \theta_0 + \frac{\partial A_0}{\partial d_0} \Delta d_0\right) (A_7)$$
(5.28)

En continuant les calculs :

$$E_{00} = \frac{\partial A_0}{\partial a_0} (A_7) \Delta a_0 + \frac{\partial A_0}{\partial \theta_0} (A_7) \Delta \theta_0 + \frac{\partial A_0}{\partial d_0} (A_7) \Delta d_0$$
 (5.29)

On prend les trois lignes de la quatrième colonne de chaque terme de E_0 qu'ils vont présentées les colonnes d'une matrice de 3×3 multiplier par un vecteur 3×1 qui contient les différentes

 $\Delta a_0, \Delta t h_0 \text{ et } \Delta d_0 \text{ comme ceci :}$ $E_{00} = \begin{bmatrix}
J_0^{11} & J_0^{12} & J_0^{13} \\
J_0^{21} & J_0^{22} & J_0^{23} \\
J_0^{31} & J_0^{32} & J_0^{33}
\end{bmatrix} \begin{bmatrix} \Delta a_0 \\ \Delta \theta_0 \\ \Delta d_0 \end{bmatrix}$

On continue à calculer les autres E_i de la même façon :

$$E_{01} = \begin{bmatrix} J_1^{11} & J_1^{12} & J_1^{13} \\ J_1^{21} & J_1^{22} & J_1^{23} \\ J_1^{31} & J_1^{32} & J_1^{33} \end{bmatrix} \begin{bmatrix} \Delta a_1 \\ \Delta \theta_1 \\ \Delta d_1 \end{bmatrix}$$

$$E_{02} = \begin{bmatrix} J_2^{11} & J_2^{12} & J_2^{13} & J_2^{14} \\ J_2^{21} & J_2^{22} & J_2^{23} & J_2^{24} \\ J_2^{31} & J_2^{32} & J_2^{33} & J_2^{34} \end{bmatrix} \begin{bmatrix} \Delta l_1 \\ \Delta a_2 \\ \Delta \theta_2 \\ \Delta d_2 \end{bmatrix}$$

$$E_{03} = \begin{bmatrix} J_{3}^{11} & J_{3}^{12} & J_{3}^{13} \\ J_{3}^{21} & J_{3}^{22} & J_{3}^{23} \\ J_{3}^{31} & J_{3}^{32} & J_{3}^{33} \end{bmatrix} \begin{bmatrix} \Delta a_{3} \\ \Delta \theta_{3} \\ \Delta \theta_{3} \\ \Delta \theta_{3} \end{bmatrix}$$

$$E_{04} = \begin{bmatrix} J_{4}^{11} & J_{4}^{12} & J_{4}^{13} \\ J_{4}^{21} & J_{4}^{22} & J_{4}^{23} \\ J_{4}^{31} & J_{3}^{32} & J_{3}^{33} \end{bmatrix} \begin{bmatrix} \Delta a_{4} \\ \Delta \theta_{4} \\ \Delta \theta_{4} \end{bmatrix}$$

$$E_{05} = \begin{bmatrix} J_{5}^{11} & J_{5}^{12} & J_{5}^{13} & J_{5}^{14} \\ J_{5}^{21} & J_{5}^{22} & J_{5}^{23} & J_{5}^{24} \\ J_{5}^{31} & J_{5}^{32} & J_{5}^{33} & J_{5}^{34} \end{bmatrix} \begin{bmatrix} \Delta l_{2} \\ \Delta a_{5} \\ \Delta \theta_{5} \\ \Delta d_{5} \end{bmatrix}$$

$$E_{06} = \begin{bmatrix} J_{6}^{11} & J_{6}^{12} & J_{6}^{13} \\ J_{6}^{21} & J_{6}^{22} & J_{6}^{23} \\ J_{6}^{31} & J_{6}^{32} & J_{6}^{33} \end{bmatrix} \begin{bmatrix} \Delta a_{6} \\ \Delta \theta_{6} \\ \Delta d_{6} \end{bmatrix}$$

$$E_{07} = \begin{bmatrix} J_{7}^{11} & J_{7}^{12} & J_{7}^{13} & J_{7}^{14} \\ J_{7}^{21} & J_{7}^{22} & J_{7}^{23} & J_{7}^{24} \\ J_{7}^{31} & J_{7}^{32} & J_{7}^{33} & J_{7}^{34} \end{bmatrix} \begin{bmatrix} \Delta l_{3} \\ \Delta a_{7} \\ \Delta \theta_{7} \\ \Delta d_{7} \end{bmatrix}$$

Alors, pour calculer la matrice J qui est mentionnée au part avant dans l'équation 5.1.3, et arriver à calculer X, on choisit les termes de cette matrice J d'une façon qu'on obtient la forme de l'équation 5.1.3 c.à.d on va sommer les termes de E_0 (qui représente JX) de tel façon à déduire le produit JX, avec J 3 × 27 et X 27 × 1, on peut écrit J:

$$J(:,1:13) = \begin{bmatrix} J_2^{11} & J_5^{11} & J_7^{11} & J_0^{11} & J_1^{11} & J_2^{12} & J_3^{11} & J_4^{11} & J_5^{12} & J_6^{11} & J_7^{12} & J_0^{12} & J_1^{12} \\ J_2^{21} & J_5^{21} & J_7^{21} & J_0^{21} & J_1^{21} & J_2^{22} & J_3^{21} & J_4^{21} & J_5^{22} & J_6^{21} & J_7^{22} & J_0^{22} & J_1^{22} \\ J_2^{31} & J_5^{31} & J_7^{31} & J_0^{31} & J_1^{31} & J_2^{32} & J_3^{31} & J_4^{31} & J_5^{32} & J_6^{31} & J_7^{32} & J_0^{32} & J_1^{32} \end{bmatrix}$$

$$J(:,14:27) = \begin{bmatrix} J_2^{13} & J_1^{12} & J_1^{12} & J_1^{13} & J_1^{12} & J_1^{13} & J_1^{13} & J_1^{13} & J_1^{14} &$$

5.2 Les configurations de la position zéro

Avant de lancer notre mesure on a choisie les configurations qui représente la position zéro de notre robot réel, ces configurations sont décrites dans le tableau suivant :

	position zéro	θ_0	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6	θ_7
Г	L'angle	0	$\frac{19\pi}{36}$	$\frac{5\pi}{12}$	$\frac{87\pi}{180}$	$\frac{78\pi}{180}$	$\frac{13\pi}{36}$	$\frac{17\pi}{36}$	0

Table 5.2: Les configurations de la position zéro

Cette position zéro de notre robot réel est illustré dans la figure suivante :

Figure 5.2: La position zéro de notre robot réel

5.3 Le processus du calcul :

Afin de calculer le vecteur X de (27×1) des déviations des paramètres D-H par les deux méthodes LSE et EKF, il est obligatoire de suivre les étapes suivantes:

5.3.1 L'étape 01 :

Après les mesures ,on a choisie un ensemble de configurations de façon que le motif fixé sur la table est détecté par la caméra à chaque configuration. Avec ces configurations choisies, on calcul:

- \bullet La matrice jacobienne J
- \bullet Puis on calcule le vecteur Y

5.3.2 L'étape 02 :

Après les mesures, on a pris deux vecteurs, le premier c'est le P_c^m , il indique la position du motif dans le repère de la caméra et le deuxième c'est le R_m^c , il indique la rotation de la caméra dans le repère du motif. On utilise le P_m^c et le R_m^c pour calculer le vecteur Y' de (30×1) qui présente la position perturbée de l'effecteur final dans le repère du motif Pour calculer le vecteur Y' nous suivons ces étapes:

• On prend le vecteur R_m^c de (3×1) de chaque configuration et on le convertir a une matrice de rotation R de (3×3) , cette matrice R de (3×3) est définie par la forme suivante:

$$R = \begin{bmatrix} c + xxmc & xymc - zs & xzmc + ys \\ xymc + zs & c + yymc & yzmc - xs \\ xzmc - ys & yzmc + xs & c + zzmc \end{bmatrix}$$

$$(5.30)$$

Avec:

$$\alpha = norme(R_m^c)$$

$$R_m^c = \frac{R_m^c}{\alpha}$$

$$s = sin\alpha$$

$$c = cos\alpha$$

$$x = R_m^c(1, :)$$

$$y = R_m^c(2,:)$$

$$z = R_m^c(3,:)$$

$$mc = 1 - c;$$

• Après on calcule le transposée R' de cette matrice R et on le multiplié par (-1) pour nous donne la matrice W de (3×3) , avec

$$W = -R'$$

• On multipliant la matrice W de (3×3) par le vecteur P_m^c de (3×1) pour obtenir le vecteur Y'.

$$Y' = WP_m^c$$

5.3.3 Les résultats d'estimation

L'étape 01 : Après les mesures ,on a choisie dix configurations de façon que le motif fixé sur la table est détecté par la caméra a chaque configuration ,ces configurations sont mentionnées dans le tableau suivant :

	θ_0	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6	θ_7
configuration 01	0	$\frac{15\pi}{36}$	$\frac{7\pi}{12}$	$\frac{4\pi}{9}$	$\frac{11\pi}{18}$	$\frac{5\pi}{9}$	$\frac{\pi}{3}$	0
configuration 02	0	$\frac{\pi}{3}$	$\frac{4\pi}{9}$	$\frac{11\pi}{18}$	$\frac{4\pi}{9}$	$\frac{11\pi}{18}$	$\frac{14\pi}{36}$	0
configuration 03	0	$\frac{5\pi}{18}$	$\frac{\pi}{2}$	$\frac{18}{\frac{5\pi}{9}}$	$\frac{7\pi}{18}$	$\frac{18}{\frac{5\pi}{9}}$ $\frac{19\pi}{}$	$\frac{19\pi}{36}$ 5π	0
configuration 04	0	$\frac{5\pi}{18}$	$\frac{\pi}{2}$	$\frac{11\pi}{18}$	$\frac{13\pi}{36}$	$\frac{19\pi}{36}$ 17π	9	0
configuration 05	0	$\frac{11\pi}{36}$	$\frac{\pi}{2}$	$\frac{11\pi}{18}$	$\frac{13\pi}{36}$ 7π	$\frac{17\pi}{36}$	$\frac{5\pi}{9}$	0
configuration 06	0	$\frac{\frac{11\pi}{36}}{11\pi}$	$\frac{17\pi}{36}$ 17π	$\frac{11\pi}{18}$	18	$\frac{\overline{36}}{\overline{5\pi}}$ 23π	$\frac{17\pi}{36}$	0
configuration 07	0	$\frac{11\pi}{36}$ 13π	36	$ \begin{array}{r} \hline 18 \\ \hline 5\pi \\ \hline 9 \\ $	$\frac{7\pi}{18}$	$\frac{23\pi}{36}$ 23π	$\frac{17\pi}{36}$	0
configuration 8	0	$\frac{13\pi}{36}$ 13π	$\frac{17\pi}{36}$	$\frac{7\pi}{12}$	$\frac{\pi}{2}$	$\frac{23\pi}{36}$	$\frac{19\pi}{36}$	0
configuration 9	0	$\frac{13\pi}{36}$	$\frac{19\pi}{36}$	$\frac{\pi}{2}$	$\frac{\pi}{2}$	$\frac{36}{\frac{7\pi}{12}}$	$\frac{19\pi}{36}$	0
configuration 10	0	$\frac{7\pi}{18}$	$\frac{5\pi}{9}$	$\frac{17\pi}{36}$	$\frac{5\pi}{9}$	$\frac{5\pi}{9}$	$\frac{19\pi}{36}$	0

Avec ces dix configurations, on calcul:

- La matrice jacobienne J, est une matrice de (30×27) (voir l'annexe $\ref{eq:constraint}$)
- \bullet Puis on calcule le vecteur Y de (30×1) (voir l'annexe $\ref{eq:constraint}$

L'étape 02 : On calcul le vecteur Y' de (30×1) de la même façon discutée dans la partie (5.3.2) . On obtient le vecteur Y' de (30×1) qui est le suivant:

 $Y^{'}(11:20,1) = \begin{bmatrix} \ 3.197 & 28.651 & 40.783 & 1.071 & 31.04 & 41.309 & 2.088 & 36.6914 & 50.179 & 0.3729 \ \end{bmatrix}$

Les résultats d'estimation avec LSE:

Après le calcul de la matrice J de (30×27) , le vecteur Y de (30×1) et le vecteur Y' de (30×1) avec les dix configurations choisies, on estime le vecteur X de (27×1) des déviations des paramètres D-H par LSE, on obtient le résultat suivant :

$\Delta l 10^3 \times$		0.0177			0.0017	-5.8111		
$\Delta_{ai}10^3 \times$	0.0174	0.0174	-0.1052	0.0457	0.0344	-0.0018	0.0208	4.9323
$\Delta_{\theta i} 10^3 \times$	0.1450	-0.1465	0.0014	-0.0016	0.0023	-0.0024	2.1491	0.0091
$\Delta_{di}10^3 \times$	0.0177	0.0086	0.0013	0.0084	-0.0067	-0.0094	-0.0098	-0.0147

Les résultats d'estimation avec EKF:

Le vecteur X à estimer par EKF est le résultat du vecteur X du LSE Avec la même matrice J de (30×27) et les mêmes deux vecteurs Y (de 30×1) et Y' (de 30×1) du LSE , on estime le vecteur X de (27×1) des déviations des paramètres D-H par EKF après 100 itérations ,on obtient les résultats suivants :

• Le vecteur des 27 déviations des paramètres D-H X_k après 100 itération est:

$\Delta l 10^3 \times$		-0.0244			-0.0057		-0.0057		
$\Delta_{ai}10^3 \times$	-0.3946	0.4872	-0.3082	0.1216	-0.0174	0.0353	-0.0740	-0.0072	
$\Delta_{\theta i} 10^3 \times$	-0.0001	0.0003	-0.0003	0.0003	-0.0002	0.0003	-0.0001	0.0095	
$\Delta_{di}10^3 \times$	-0.0244	-0.0339	-0.0153	-0.0078	-0.0145	0.0451	0.0250	0.0199	

• La norme de l'erreur d'estimation après 100 itérations :

$$norm(Y_k - J_k X_k) = 0$$

• Enfin, la progression des 27 paramètres D-H est représenté dans la figure suivante :

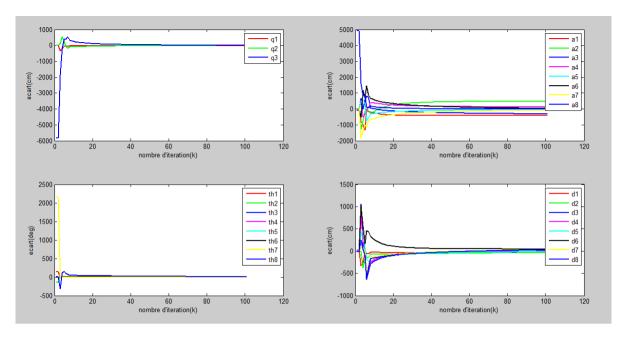


Figure 5.3: Déviations des 27 paramètre D-H identifiées avec l'algorithme EKF

Interprétation des résultats

Pour cette expérience qui concerne l'installation d'un caméra sur notre robot réel, on a fait deux essais différents, après la comparaison entre les résultats des deux méthodes pour les deux essais, on remarquons que :

- Les résultats d'estimation du deuxième essai sont mieux par rapport aux résultats d'estimation du deuxième malgré que la seule différence entre ces deux essais sont les configurations choisies
- Les résultats d'estimation du EKF sont les plus près des valeurs logiques que celles du LSE

Conclusion comparative entre calibrage avec LSE et EKF

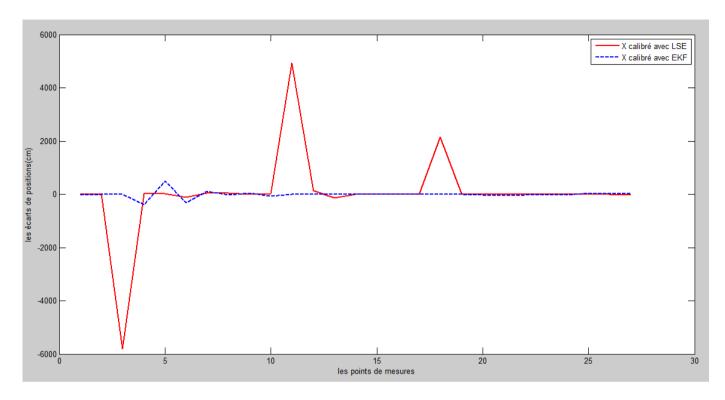


Figure 5.4: Les écarts de position du robot réel après le calibrage avec les deux algorithmes LSE et EKF

	la moyenne en (cm)
après le calibrage avec LSE	48.9296
après le calibrage avec EKF	-7.0111

Table 5.3: Les écarts de positionnement de l'effecteur final du robot

Chapitre 6

Installation d'une sonde écho-graphique sur le robot

6.1 Introduction

Dans ce chapitre on va fixé la camera sur un tripode qui situe a une distance de 75.8cm du robot et on va installé une sonde écho-graphique sur notre robot réel ,en fixant sur cette sonde écho-graphique un motif de façon qu'il est détecté par la caméra à chaque fois on change les configurations. Alors , le robot sera défini avec le tableau du paramétrage de D-H suivant :

$l_i(\text{cm})$	$\alpha_i \text{ (deg)}$	$a_i \text{ (cm)}$	$\theta_i \text{ (deg)}$	d_i (cm)
73.5	90	0	θ_0	33.1
	0	0	θ_1	8
1.2	-90	1.2	θ_2	3.5
	0	10.5	θ_3	0
	90	2.9	θ_4	4.7
5.1	-90	0	θ_5	2.7
	90	2.5	θ_6	5.2
3	90	0	θ_7	12

Table 6.1: les paramètres de D-H de notre robot réel avec la sonde écho-graphique

Figure 6.1: Installation d'une sonde écho-graphique sur l'effecteur final du notre robot réel

On a déjà estimé 27 paramètres du notre robot réel avec l'algorithme LSE et EKF sans considérer les $\Delta \alpha_i$, maintenant avec l'ajout de la sonde écho-graphique, il y aura 28 paramètres à estimer

Avec la même procédure qu'on a expliquée au part avant dans les chapitres 3 et 4 concernant les étapes des deux méthodes de calibrage, dans ce chapitre on va directement appliquée les étapes des deux algorithmes LSE et EKF sur le nouveau robot Donc on va expliquer l'ajout du 28ème paramètre au calcul et arriver à calibrer le nouveau robot

Alors, dans ce chapitre la transformation A_0 se compose d'une translation et une rotation suivant l'axe Z_0 du caméra présentée par le paramètre l_1 et ces trois paramètres a_0 , θ_0 et d_0 alors, le vecteur X qui présente les déviations des paramètres D-H sera comme suit :

$$X = \begin{bmatrix} X_1 & X_2 & X_3 & X_4 \end{bmatrix} \tag{6.1}$$

$$X_1 = \left[\begin{array}{cccc} l_1 & l_2 & l_3 & l_4 \end{array} \right]$$

$$X_2 = \begin{bmatrix} \Delta a_0 & \Delta a_1 & \Delta a_2 & \Delta a_3 & \Delta a_4 & \Delta a_5 & \Delta a_6 & \Delta a_7 \end{bmatrix}$$

6.1. INTRODUCTION 83

$$X_3 = \begin{bmatrix} \Delta \theta_0 & \Delta \theta_1 & \Delta \theta_2 & \Delta \theta_3 & \Delta \theta_4 & \Delta \theta_5 & \Delta \theta_6 & \Delta \theta_7 \end{bmatrix}$$

$$X_4 = \begin{bmatrix} \Delta d_0 & \Delta d_1 & \Delta d_2 & \Delta d_3 & \Delta d_4 & \Delta d_5 & \Delta d_6 & \Delta d_7 \end{bmatrix}$$

6.1.1 Calcul du modèle géométrique direct (nominal)

On calcule le MDG de notre robot réel en utilisant le paramétrage D-H présenté dans le tableau 6.1 (comme il est défini dans la partie 1.2.4 dans le chapitre 2) qui donne la matrice de transformation du lien i-1 au lien i, cette matrice définit juste les transformations 1,3,4 et 6 comme suit :

$$A_{i} = \begin{bmatrix} \cos\theta_{i} & -\sin\theta_{i} & 0 & a_{i} \\ \cos\alpha_{i}\sin\theta_{i} & \cos\alpha_{i}\cos\theta_{i} & -\sin\alpha_{i} & -d_{i}\sin\alpha_{i} \\ \sin\alpha_{i}\sin\theta_{i} & \sin\alpha_{i}\cos\theta_{i} & \cos\alpha_{i} & d_{i}\cos\alpha_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(6.2)

Les transformations 0,2,5 et 7 seront définit par la matrice suivante :

$$L_{i} = \begin{bmatrix} \cos\theta_{i} & -\sin\theta_{i} & 0 & a \\ \cos\alpha_{i}\sin\theta_{i} & \cos\alpha_{i}\cos\theta_{i} & -\sin\alpha_{i} & -d\sin\alpha_{i} \\ \sin\alpha_{i}\sin\theta_{i} & \sin\alpha_{i}\cos\theta_{i} & \cos\alpha_{i} & l + d\cos\alpha_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(6.3)

Pour obtenir la matrice de transformation T de la base jusqu'au l'effecteur final qui représente le modèle géométrique directe du robot en multipliant les 8 matrices

$$(L_1, A_1, L_2, A_3, A_4, L_3, A_6, L_4)$$

$$T = L_1 A_1 L_2 A_3 A_4 L_3 A_6 L_4 (6.4)$$

6.1.2 Calcul du modèle perturbé :

Des erreurs de positionnement sont causés par des défauts de la modélisation géométrique. Les écarts de paramètres D-H de chaque articulation (lien),en tenant compte ces écarts, la matrice de transformation T peut être exprimée avec :

$$T + \Delta T = (L_1 + \Delta L_1)(A_1 + \Delta A_1)(L_2 + \Delta L_2)(A_3 + \Delta A_3)(A_4 + \Delta A_4)(L_3 + \Delta L_3)(A_6 + \Delta A_6)(L_4 + \Delta L_4)$$
(6.5)

L'équation 4.2 représente le modèle perturbé Et alors pour calculer les ΔA_i et les ΔL_i , on utilise les équations suivantes :

$$\Delta A_i = \frac{\partial A_i}{\partial \alpha_i} \Delta \alpha_i + \frac{\partial A_i}{\partial a_i} \Delta a_i + \frac{\partial A_i}{\partial \theta_i} \Delta \theta_i + \frac{\partial A_i}{\partial d_i} \Delta d_i$$
 (6.6)

$$\Delta L_i = \frac{\partial L_i}{\partial l_i} \Delta l_i + \frac{\partial L_i}{\partial \alpha_i} \Delta \alpha_i + \frac{\partial L_i}{\partial a_i} \Delta a_i + \frac{\partial L_i}{\partial \theta_i} \Delta \theta_i + \frac{\partial L_i}{\partial d_i} \Delta d_i$$
 (6.7)

On calcule d'abord les $\frac{\partial A_i}{\partial a_i}$, $\frac{\partial A_i}{\partial \theta_i}$ et $\frac{\partial A_i}{\partial d_i}$:

Ici on va utiliser la partie (1.2.1 la matrice Jacobienne) pour calculer les dérivées de A_i par rapport à a_i , θ_i et d_i c'est tout, et pas considérer les perturbations en α_i :

$$\frac{\partial A_i}{\partial \theta_i} = \begin{bmatrix} \frac{\partial A_{11}}{\partial \theta_i} & \frac{\partial A_{12}}{\partial \theta_i} & \frac{\partial A_{13}}{\partial \theta_i} & \frac{\partial A_{14}}{\partial \theta_i} \\ \frac{\partial A_{21}}{\partial \theta_i} & \frac{\partial A_{22}}{\partial \theta_i} & \frac{\partial A_{23}}{\partial \theta_i} & \frac{\partial A_{24}}{\partial \theta_i} \\ \frac{\partial A_{31}}{\partial \theta_i} & \frac{\partial A_{32}}{\partial \theta_i} & \frac{\partial A_{33}}{\partial \theta_i} & \frac{\partial A_{34}}{\partial \theta_i} \\ \frac{\partial A_{41}}{\partial \theta_i} & \frac{\partial A_{42}}{\partial \theta_i} & \frac{\partial A_{43}}{\partial \theta_i} & \frac{\partial A_{44}}{\partial \theta_i} \\ \end{bmatrix} = \begin{bmatrix} -sin\theta_i & -cos\theta_i & 0 & 0 \\ cos\alpha_icos\theta_i & -cos\alpha_isin\theta_i & 0 & 0 \\ sin\alpha_icos\theta_i & -sin\alpha_isin\theta_i & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\frac{\partial A_i}{\partial d_i} = \begin{bmatrix} \frac{\partial A_{11}}{\partial d_i} & \frac{\partial A_{12}}{\partial d_i} & \frac{\partial A_{13}}{\partial d_i} & \frac{\partial A_{14}}{\partial d_i} \\ \frac{\partial A_{21}}{\partial d_i} & \frac{\partial A_{22}}{\partial d_i} & \frac{\partial A_{23}}{\partial d_i} & \frac{\partial A_{24}}{\partial d_i} \\ \frac{\partial A_{31}}{\partial d_i} & \frac{\partial A_{32}}{\partial d_i} & \frac{\partial A_{33}}{\partial d_i} & \frac{\partial A_{34}}{\partial d_i} \\ \frac{\partial A_{41}}{\partial d_i} & \frac{\partial A_{42}}{\partial d_i} & \frac{\partial A_{43}}{\partial d_i} & \frac{\partial A_{44}}{\partial d_i} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -sin\alpha_i \\ 0 & 0 & 0 & cos\alpha_i \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Alors:

$$\Delta A_{i} = \begin{bmatrix} -\sin\theta_{i}\Delta\theta_{i} & -\cos\theta_{i}\Delta\theta_{i} & 0 & \Delta a_{i} \\ \cos\alpha_{i}\cos\theta_{i}\Delta\theta_{i} & -\cos\alpha_{i}\sin\theta_{i}\Delta\theta_{i} & 0 & -\sin\alpha_{i}\Delta d_{i} \\ \sin\alpha_{i}\cos\theta_{i}\Delta\theta_{i} & -\sin\alpha_{i}\sin\theta_{i}\Delta\theta_{i} & 0 & \cos\alpha_{i}\Delta d_{i} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$(6.8)$$

Puis on calcule $\frac{\partial L_i}{\partial l_i}$, $\frac{\partial L_i}{\partial a_i}$, $\frac{\partial L_i}{\partial \theta_i}$ et $\frac{\partial L_i}{\partial d_i}$ de la même manière que la partie de A_i

6.1. INTRODUCTION 85

$$\frac{\partial L_i}{\partial \theta_i} = \begin{bmatrix} \frac{\partial L_{11}}{\partial \theta_i} & \frac{\partial L_{12}}{\partial \theta_i} & \frac{\partial L_{13}}{\partial \theta_i} & \frac{\partial L_{14}}{\partial \theta_i} \\ \frac{\partial L_{21}}{\partial \theta_i} & \frac{\partial L_{22}}{\partial \theta_i} & \frac{\partial L_{23}}{\partial \theta_i} & \frac{\partial L_{24}}{\partial \theta_i} \\ \frac{\partial L_{31}}{\partial \theta_i} & \frac{\partial L_{32}}{\partial \theta_i} & \frac{\partial L_{33}}{\partial \theta_i} & \frac{\partial L_{34}}{\partial \theta_i} \\ \frac{\partial L_{41}}{\partial \theta_i} & \frac{\partial L_{42}}{\partial \theta_i} & \frac{\partial L_{43}}{\partial \theta_i} & \frac{\partial L_{44}}{\partial \theta_i} \end{bmatrix} = \begin{bmatrix} -sin\theta_i & -cos\theta_i & 0 & 0 \\ cos\alpha_icos\theta_i & -cos\alpha_isin\theta_i & 0 & 0 \\ sin\alpha_icos\theta_i & -sin\alpha_isin\theta_i & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\frac{\partial L_i}{\partial d_i} = \begin{bmatrix} \frac{\partial L_{11}}{\partial d_i} & \frac{\partial L_{12}}{\partial d_i} & \frac{\partial L_{13}}{\partial d_i} & \frac{\partial L_{14}}{\partial d_i} \\ \frac{\partial L_{21}}{\partial d_i} & \frac{\partial L_{22}}{\partial d_i} & \frac{\partial L_{23}}{\partial d_i} & \frac{\partial L_{24}}{\partial d_i} \\ \frac{\partial L_{31}}{\partial d_i} & \frac{\partial L_{32}}{\partial d_i} & \frac{\partial L_{33}}{\partial d_i} & \frac{\partial L_{34}}{\partial d_i} \\ \frac{\partial L_{41}}{\partial d_i} & \frac{\partial L_{42}}{\partial d_i} & \frac{\partial L_{43}}{\partial d_i} & \frac{\partial L_{44}}{\partial d_i} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -sin\alpha_i \\ 0 & 0 & 0 & cos\alpha_i \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Alors:

$$\Delta L_{i} = \begin{bmatrix} -\sin\theta_{i}\Delta\theta_{i} & -\cos\theta_{i}\Delta\theta_{i} & 0 & \Delta a_{i} \\ \cos\alpha_{i}\cos\theta_{i}\Delta\theta_{i} & -\cos\alpha_{i}\sin\theta_{i}\Delta\theta_{i} & 0 & -\sin\alpha_{i}\Delta d_{i} \\ \sin\alpha_{i}\cos\theta_{i}\Delta\theta_{i} & -\sin\alpha_{i}\sin\theta_{i}\Delta\theta_{i} & 0 & \cos\alpha_{i}\Delta d_{i} + \Delta l_{i} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
(6.9)

6.1.3 Calcul de la matrice jacobienne J:

Après le développement de (1.4), on ré-ordonne le résultat tel que :

$$T + \Delta T = L_1 A_1 L_2 A_3 A_4 L_3 A_6 L_4 + E_0 + E_1 + E_2 + E_3 + E_4 + E_5 + E_6 + E_7$$
(6.10)

Les E_i représentent les erreurs ou les déviations des paramètres de D-H Après le développement de l'équation 6.5 on trouve que le 1^{er} terme d'erreur E_0 est le plus considérable par rapport les autres termes, on peut dire que ΔT approximativement égale à E_0 en ignorant les autres termes

Concernant l'expression de E_0 en choisissent du développement de $T + \Delta T$ les termes qui contient une seule ΔA_i pour que :

$$E_0 >>> E_1, E_2, E_3, E_4, E_5, E_6, E_7$$

Alors:

$$E_0 = \Delta A_0 A_1 A_2 A_3 A_4 A_5 A_6 A_7 + A_0 \Delta A_1 A_2 A_3 A_4 A_5 A_6 A_7 + (6.11)$$

Alors, on écrit:

$$E_0 = \sum_{i=0}^{7} (A_0 A_1 \dots A_{i-1} \Delta A_i A_{i+1} \dots A_5 A_6 A_7)$$
(6.12)

L'expression de E_0 contient huit termes, et pour simplifier les calculs et arriver à séparer ce qu'on veux pour la suite, on écrit chaque terme de E_1 de cette façon :

$$E_{00} = \frac{\partial L_1}{\partial l_1} \Delta l_1 A^{1}_7 + \frac{\partial L_1}{\partial a_0} \Delta a_0 A^{1}_7 + \frac{\partial L_1}{\partial \theta_0} \Delta \theta_0 A^{1}_7 + \frac{\partial L_1}{\partial d_0} \Delta d_0 A^{1}_7$$
 (6.13)

$$E_{01} = A_0 \frac{\partial A_1}{\partial a_1} \Delta a_1 A_7^2 + A_0 \frac{\partial A_1}{\partial \theta_1} \Delta \theta_1 A_7^2 + A_0 \frac{\partial A_1}{\partial d_1} \Delta d_1 A_7^2$$

$$(6.14)$$

$$E_{02} = A^{0}{}_{1}\frac{\partial L_{2}}{\partial l_{2}}\Delta l_{2}A^{3}{}_{7} + A^{0}{}_{1}\frac{\partial L_{2}}{\partial a_{2}}\Delta a_{2}A^{3}{}_{7} + A^{0}{}_{1}\frac{\partial L_{2}}{\partial \theta_{2}}\Delta \theta_{2}A^{3}{}_{7} + A^{0}{}_{1}\frac{\partial L_{2}}{\partial d_{2}}\Delta d_{2}A^{3}{}_{7}$$
(6.15)

$$E_{03} = A_{2}^{0} \frac{\partial A_{3}}{\partial a_{3}} \Delta a_{3} A_{7}^{4} + A_{2}^{0} \frac{\partial A_{3}}{\partial \theta_{3}} \Delta \theta_{3} A_{7}^{4} + A_{2}^{0} \frac{\partial A_{3}}{\partial d_{3}} \Delta d_{3} A_{7}^{4}$$

$$(6.16)$$

$$E_{04} = A^{0}{}_{3} \frac{\partial A_{4}}{\partial a_{4}} \Delta a_{4} A^{5}{}_{7} + A^{0}{}_{3} \frac{\partial A_{4}}{\partial \theta_{4}} \Delta \theta_{4} A^{5}{}_{7} + A^{0}{}_{3} \frac{\partial A_{4}}{\partial d_{4}} \Delta d_{4} A^{5}{}_{7}$$

$$(6.17)$$

$$E_{05} = A_{4}^{0} \frac{\partial L_{3}}{\partial l_{3}} \Delta l_{3} A_{7}^{6} + A_{4}^{0} \frac{\partial L_{2}}{\partial a_{5}} \Delta a_{5} A_{7}^{6} + A_{4}^{0} \frac{\partial L_{2}}{\partial \theta_{5}} \Delta \theta_{5} A_{7}^{6} + A_{4}^{0} \frac{\partial L_{2}}{\partial d_{5}} \Delta d_{5} A_{7}^{6}$$
(6.18)

$$E_{06} = A^{0}{}_{5} \frac{\partial A_{6}}{\partial a_{6}} \Delta a_{6} A_{7} + A^{0}{}_{5} \frac{\partial A_{6}}{\partial \theta_{6}} \Delta \theta_{6} A_{7} + A^{0}{}_{5} \frac{\partial A_{6}}{\partial d_{6}} \Delta d_{6} A_{7}$$
(6.19)

$$E_{07} = A^{0}{}_{6} \frac{\partial L_{4}}{\partial l_{4}} \Delta l_{4} + A^{0}{}_{6} \frac{\partial L_{4}}{\partial a_{7}} \Delta a_{7} + A^{0}{}_{6} \frac{\partial L_{4}}{\partial \theta_{7}} \Delta \theta_{7} + A^{0}{}_{6} \frac{\partial L_{4}}{\partial d_{7}} \Delta d_{7}$$
(6.20)

D'après l'algorithme de moindres carré [3]:

Ici on ne considère que les trois premières lignes de la dernière colonne de la matrice ΔT qui peut être notées Y, avec Y a les dimensions 3×1 , et représente le vecteur des erreurs de position de l'effecteur final en x, y et z. La relation linéaire entre le vecteur des erreurs de position de l'effecteur final et les déviations des paramètres D-H de chaque articulation est obtenue par

$$Y = JX (6.21)$$

Avec:

J : présente la matrice jacobienne du modèle nominale de notre robot, de taille 30×27 (dans ce cas on va prendre juste la partie linéaire J_v)

X : est le vecteur de taille 27×1 qui présente les déviations des paramètres D-H de chaque articulation , comme suit :

$$X = [\Delta l^T \Delta a^T \Delta \theta^T \Delta d^T]^T \tag{6.22}$$

6.1. INTRODUCTION 87

Après les étapes de calcul qu'on a déjà expliqué, maintenant on va calculer la matrice jacobien J

Tout d'abord on va calculer les huit termes de E_0 , chaque terme à part, on peut écrit :

$$E_0 = E_{00} + E_{01} + E_{02} + E_{03} + E_{04} + E_{05} + E_{06} + E_{07}$$

$$(6.23)$$

$$E_{00} = \Delta L_1 A_1 L_2 A_3 A_4 L_3 A_6 L_4 \tag{6.24}$$

donc (11) sera :

$$E_{00} = \left(\frac{\partial L_1}{\partial l_1} \Delta l_1 + \frac{\partial L_1}{\partial a_0} \Delta a_0 + \frac{\partial L_1}{\partial \theta_0} \Delta \theta_0 + \frac{\partial L_1}{\partial d_0} \Delta d_0\right) (A^{1}_{7})$$
(6.25)

En continuant les calculs:

$$E_{00} = \frac{\partial L_1}{\partial l_1} (A^1_7) \Delta l_1 + \frac{\partial L_1}{\partial a_0} (A^1_7) \Delta a_0 + \frac{\partial L_1}{\partial \theta_0} (A^1_7) \Delta \theta_0 + \frac{\partial L_1}{\partial d_0} (A^1_7) \Delta d_0$$
 (6.26)

On prend les trois lignes de la quatrième colonne de chaque terme de E_{00} qu'ils vont présentées les colonnes d'une matrice de 3×3 multiplier par un vecteur 3×1 qui contient les différentes $\Delta a_0, \Delta t h_0$ et Δd_0 comme ceci :

$$E_{00} = \begin{bmatrix} J_0^{11} & J_0^{12} & J_0^{13} & J_0^{14} \\ J_0^{21} & J_0^{22} & J_0^{23} & J_0^{24} \\ J_0^{31} & J_0^{32} & J_0^{33} & J_0^{34} \end{bmatrix} \begin{bmatrix} \Delta l_1 \\ \Delta a_0 \\ \Delta \theta_0 \\ \Delta d_0 \end{bmatrix}$$

On continue à calculer les autres E_i de la même façon :

$$E_{01} = \begin{bmatrix} J_{1}^{11} & J_{1}^{12} & J_{1}^{13} \\ J_{1}^{21} & J_{1}^{22} & J_{1}^{23} \\ J_{1}^{31} & J_{1}^{32} & J_{1}^{33} \end{bmatrix} \begin{bmatrix} \Delta a_{1} \\ \Delta \theta_{1} \\ \Delta \theta_{1} \\ \Delta d_{1} \end{bmatrix}$$

$$E_{02} = \begin{bmatrix} J_{2}^{11} & J_{2}^{12} & J_{2}^{13} & J_{2}^{14} \\ J_{2}^{21} & J_{2}^{22} & J_{2}^{23} & J_{2}^{24} \\ J_{2}^{31} & J_{3}^{32} & J_{3}^{33} & J_{2}^{34} \end{bmatrix} \begin{bmatrix} \Delta l_{2} \\ \Delta a_{2} \\ \Delta \theta_{2} \\ \Delta d_{2} \end{bmatrix}$$

$$E_{03} = \begin{bmatrix} J_{3}^{11} & J_{3}^{12} & J_{3}^{13} \\ J_{3}^{21} & J_{3}^{22} & J_{3}^{23} \\ J_{3}^{31} & J_{3}^{32} & J_{3}^{33} \end{bmatrix} \begin{bmatrix} \Delta a_{3} \\ \Delta \theta_{3} \\ \Delta d_{3} \end{bmatrix}$$

$$E_{04} = \begin{bmatrix} J_{4}^{11} & J_{4}^{12} & J_{4}^{13} \\ J_{4}^{21} & J_{4}^{22} & J_{4}^{23} \\ J_{4}^{21} & J_{4}^{22} & J_{4}^{23} \\ J_{3}^{31} & J_{3}^{32} & J_{3}^{33} \end{bmatrix} \begin{bmatrix} \Delta a_{4} \\ \Delta \theta_{4} \\ \Delta \theta_{4} \\ \Delta \theta_{4} \end{bmatrix}$$

$$E_{05} = \begin{bmatrix} J_{5}^{11} & J_{5}^{12} & J_{5}^{13} & J_{5}^{14} \\ J_{5}^{21} & J_{5}^{22} & J_{5}^{23} & J_{5}^{24} \\ J_{5}^{31} & J_{5}^{32} & J_{5}^{33} & J_{5}^{34} \end{bmatrix} \begin{bmatrix} \Delta l_{3} \\ \Delta a_{5} \\ \Delta \theta_{5} \\ \Delta d_{5} \end{bmatrix}$$

$$E_{06} = \begin{bmatrix} J_6^{11} & J_6^{12} & J_6^{13} \\ J_6^{21} & J_6^{22} & J_6^{23} \\ J_6^{31} & J_6^{32} & J_6^{33} \end{bmatrix} \begin{bmatrix} \Delta a_6 \\ \Delta \theta_6 \\ \Delta d_6 \end{bmatrix}$$

$$E_{07} = \begin{bmatrix} J_7^{11} & J_7^{12} & J_7^{13} & J_7^{14} \\ J_7^{21} & J_7^{22} & J_7^{23} & J_7^{24} \\ J_7^{31} & J_7^{32} & J_7^{33} & J_7^{34} \end{bmatrix} \begin{bmatrix} \Delta l_4 \\ \Delta a_7 \\ \Delta \theta_7 \\ \Delta d_7 \end{bmatrix}$$

Alors, pour calculer la matrice J qui est mentionnée au part avant dans l'équation 6.1.3, et arriver à calculer X, on choisit les termes de cette matrice J d'une façon qu'on obtient la forme de l'équation 6.1.3 c.à.d on va sommer les termes de E_0 (qui représente JX) de tel façon à déduire le produit JX, avec J 3×27 et X 27×1 , on peut écrit J:

$$J(:,1:13) = \begin{bmatrix} J_0^{11} & J_2^{11} & J_5^{11} & J_7^{11} & J_0^{12} & J_1^{11} & J_2^{12} & J_3^{11} & J_4^{11} & J_5^{12} & J_6^{11} & J_7^{12} & J_0^{13} & J_1^{12} \\ J_0^{21} & J_2^{21} & J_5^{21} & J_7^{21} & J_0^{22} & J_1^{21} & J_2^{22} & J_3^{21} & J_4^{21} & J_5^{22} & J_6^{21} & J_7^{22} & J_0^{23} & J_1^{22} \\ J_0^{31} & J_2^{31} & J_5^{31} & J_7^{31} & J_0^{32} & J_1^{31} & J_2^{32} & J_3^{31} & J_3^{31} & J_5^{32} & J_6^{31} & J_7^{32} & J_0^{33} & J_1^{32} \end{bmatrix}$$

$$J(:,14:27) = \begin{bmatrix} J_2^{13} & J_3^{12} & J_4^{12} & J_5^{13} & J_6^{12} & J_7^{13} & J_0^{14} & J_1^{13} & J_2^{14} & J_3^{13} & J_4^{13} & J_5^{14} & J_6^{13} & J_7^{14} \\ J_2^{23} & J_3^{22} & J_4^{22} & J_5^{23} & J_6^{22} & J_7^{23} & J_0^{24} & J_1^{23} & J_2^{24} & J_3^{23} & J_4^{23} & J_5^{24} & J_6^{23} & J_7^{24} \\ J_2^{33} & J_3^{32} & J_3^{32} & J_3^{33} & J_3^{33} & J_3^{32} & J_3^{33} & J_0^{34} & J_1^{33} & J_2^{34} & J_3^{33} & J_3^{34} & J_5^{34} & J_6^{33} & J_7^{34} \end{bmatrix}$$

6.2 Présentation des figures

6.3 Le processus du calcul:

Afin de calculer le vecteur X de (28×1) des déviations des paramètres D-H par les deux méthodes LSE et EKF, on a choisie dix configurations de façon que le motif fixé sur la sonde est détecté par la caméra a chaque configuration . Ces configurations sont mentionnées dans le tableau suivant :

	θ_0	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6	θ_7
configuration 01	0	$\frac{5\pi}{18}$ $\frac{4\pi}{4\pi}$	$\frac{\frac{\pi}{2}}{5\pi}$	$\frac{5\pi}{18}$	$\frac{5\pi}{18}$	$\frac{5\pi}{18}$ 4π	$\frac{13\pi}{36}$ $\frac{5\pi}{}$	0
configuration 02	0	9	$\frac{5\pi}{18}$	$\frac{11\pi}{18}$	$\frac{\pi}{2}$	9	18	0
configuration 03	0	$\frac{15\pi}{36}$	$\frac{\pi}{2}$	$\frac{5\pi}{18}$ 5π	$\frac{13\pi}{36}$ 78π	$\frac{13\pi}{36}$	$\frac{13\pi}{36}$	0
configuration 04	0	$\frac{19\pi}{36}$ $\frac{5\pi}{}$	$\frac{\pi}{2}$	$\frac{5\pi}{18}$	180	$\frac{13\pi}{36}$ 5π	$\frac{17\pi}{36}$	0
configuration 05	0	9	$\frac{5\pi}{9}$	$\frac{\pi}{3}$	$\frac{78\pi}{180}$	18	$\frac{17\pi}{36}$	0
configuration 06	0	$\frac{19\pi}{36}$ 5π	$\frac{15\pi}{36}$	$\frac{87\pi}{180}$	$\frac{78\pi}{180}$	$\frac{13\pi}{36}$	$\frac{17\pi}{36}$	0
configuration 07	0	$\frac{5\pi}{9}$	$ \begin{array}{r} $	$\frac{\pi}{3}$	$\frac{78\pi}{180}$	$\frac{\pi}{2}$	$\frac{19\pi}{36}$	0
configuration 08	0	$\frac{11\pi}{18}$	$\frac{13\pi}{36}$	$\frac{15\pi}{36}$	$\frac{17\pi}{36}$	$\frac{11\pi}{18}$	$\frac{5\pi}{9}$	0
configuration 09	0	$\frac{5\pi}{9}$	$\frac{36}{4\pi}$	$\frac{\pi}{2}$	$\frac{36}{5\pi}$	$\frac{\pi}{2}$	$\frac{15\pi}{36}$	0
configuration 10	0	$\frac{\pi}{3}$	$\frac{14\pi}{36}$	$\frac{15\pi}{36}$	$\frac{5\pi}{18}$	$\frac{15\pi}{36}$	$\frac{5\pi}{18}$	0

Avec ces dix configurations, on calcul:

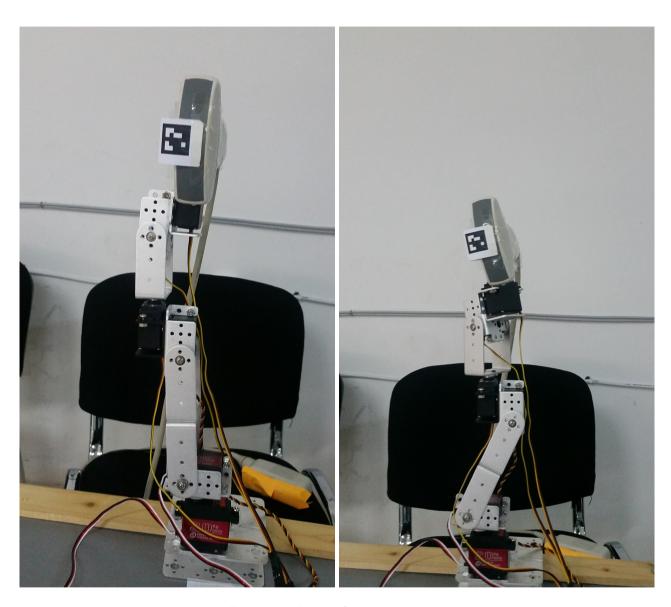


Figure 6.2: Les configurations 1 et 2

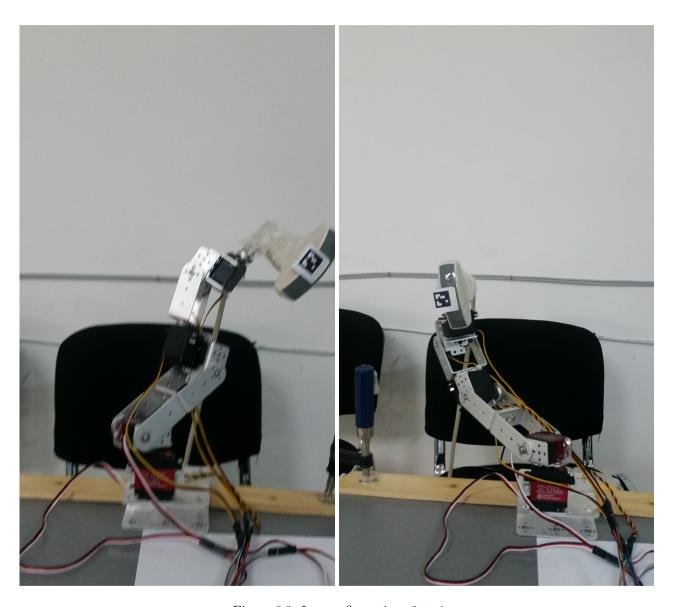


Figure 6.3: Les configurations 3 et 4

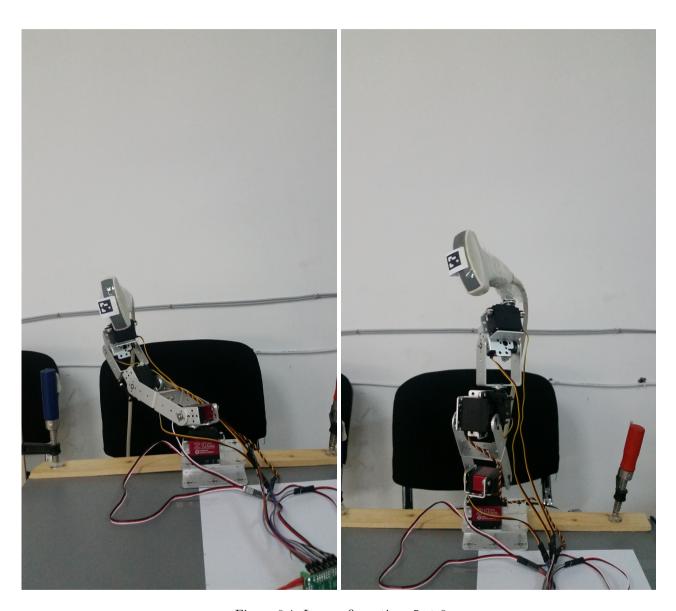


Figure 6.4: Les configurations 5 et 6

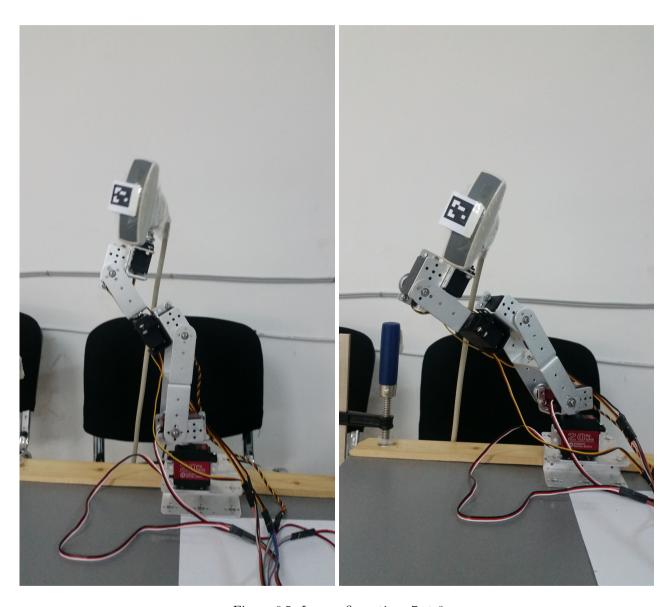


Figure 6.5: Les configurations 7 et 8

- La matrice jacobienne J, est une matrice de (30×28) (voir l'annexe 6.46)
- Puis on calcule le vecteur Y de (30×1) (voir l'annexe 6.47)
- Ensuite , on va calculé le vecteur Y' de (30×1) qui représente la position perturbée de l'effecteur final dans les dix configurations choisies , le Y' est comme suit :

$$Y'(1:10,1) = \begin{bmatrix} -18.81 & -31.83 & 85.59 & -37.32 & 0.91 & 95.07 & 11.28 & -16.79 & 83.62 & 2.87 \end{bmatrix}$$

$$Y^{'}(21:30,1) = \begin{bmatrix} 89.95 & -36.79 & -8.12 & 83.29 & 7.18 & -6.48 & 90.46 & 17.32 & -24.11 & 99.72 \end{bmatrix}$$

6.4 Les résultats d'estimation:

6.4.1 Les résultats d'estimation avec LSE:

Après le calcul de la matrice J de (30×28) , le vecteur Y de (30×1) et le vecteur Y' de (30×1) avec les dix configurations choisies, on estime le vecteur X de (28×1) des déviations des paramètres D-H par LSE, on obtient le résultat suivant:

$\Delta l 10^4 \times$	$\begin{array}{c cccc} \Delta l 10^4 \times & 0.0085 \\ \Delta_{ai} 10^4 \times & -0.0026 & -0.0026 \end{array}$		-0.0	-0.0047		004	-0.0006	
$\Delta_{ai}10^4 \times$			-0.0006	-0.0042	0.0307	-0.0224	0.0087	-3.2592
$\Delta_{\theta i} 10^4 \times$	0.0001	0.0001	-0.0008	0.0002	0.0005	0.0009	0.2706	0.0000
$\Delta_{di}10^4 \times$	-0.0047	-0.0047	-0.0052	-0.0052	-0.0004	-0.0050	-0.0006	-0.005

Les résultats d'estimation avec EKF:

On prend est le résultat du vecteur X du LSE comme un vecteur X à estimer par EKF Avec la même matrice J de (30×28) et les mêmes deux vecteurs Y (de 30×1) et Y' (de 30×1) du LSE , on estime le vecteur X de (28×1) des déviations des paramètres D-H par EKF après 100 itérations ,on obtient les résultats suivants :

• Le vecteur des 28 déviations des paramètres D-H X_k après 100 itération est:

	$\Delta l \times 10^4$			-0.0	-0.0074		068	0.0117	
	$\Delta_{ai} \times 10^4$			-0.1189	-0.0070	-0.1087 0.1387 -0.0837		-0.0837	0.0665
	$\Delta_{\theta i} \times 10^4$	-0	0	0	-0	0	-0	0	0
ĺ	$\Delta_{di} \times 10^4$	-0.0074	-0.0074	-0.0612	-0.0612	-0.0069	0.0684	0.0117	0.0257

• La norme de l'erreur d'estimation après 100 itérations :

$$norm(Y_k - J_k X_k) = 0$$

• Enfin, la progression des 28 paramètres D-H est représenté dans la figure suivante :

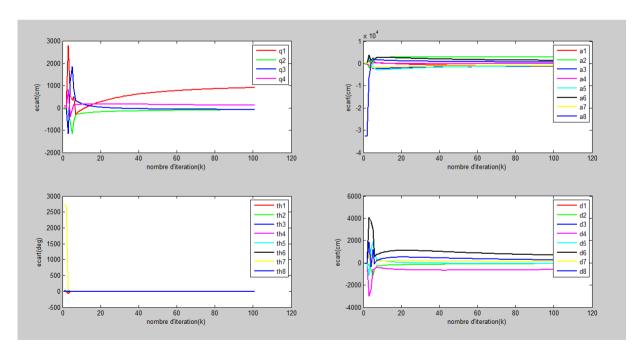


Figure 6.6: Déviations des 28 paramètre D-H identifiées avec l'algorithme EKF

Conclusion comparative entre calibrage avec LSE et EKF

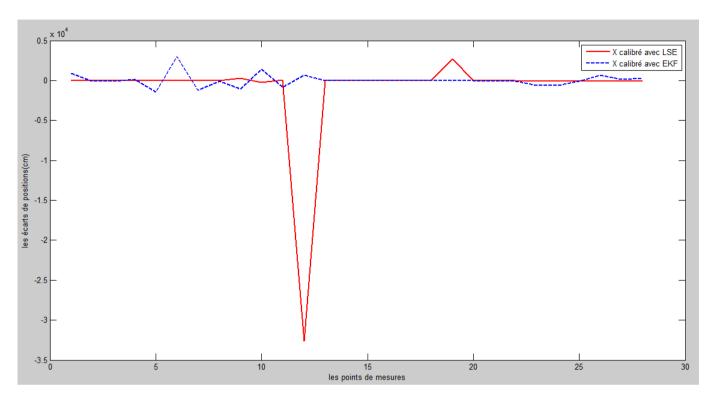


Figure 6.7: Les écarts de position du robot réel après le calibrage avec les deux algorithmes LSE et EKF

	la moyenne en (cm)
après le calibrage avec LSE	-1074.5
après le calibrage avec EKF	33.1786

Table 6.2: Les écarts de positionnement de l'effecteur final du robot

Conclusion du chapitre 5 et 6

Le raison pour lequel les résultats des deux derniers chapitres sont différents par rapport aux résultats du chapitre 3 et 4, c'est qu'on a changé le repère de base de notre robot réel dans les chapitres 5 et 6 par rapport ce qui est déjà mentionné dans les chapitres 3 et 4. Enfin, on peut confirmer l'efficacité de l'algorithme EKF par rapport à l'algorithme LSE par les résultats après calibrage mentionnés dans le tableau précédent

Conclusion générale

Dans ce travail, on a présenté deux méthodes pour le calibrage des robots, la première méthode est basé sur l'algorithme LSE alors que la deuxième basée sur l'algorithme EKF qui prend les résultats de la première méthode comme ses valeurs initiales.

Les résultats expérimentaux ont montré que la méthode de EKF était efficace pour le calibrage des paramètres des robots par rapport au méthode de LSE.

l'algorithme EKF a été utilisé pour calibrer avec succès les paramètres géométriques du robot.

ANNEXE

Les matrices jacobiennes et les vecteurs Y de nos expériences

- 6.5 Les matrices jacobiennes et les vecteurs Y du chapitre 03
 - 6.5.1 La première expérience avec le robot classique

Estimation avec $a_4 = 0$:

• La matrice jacobienne J, est une matrice de 18×18

	Γ1	0.86	0.86	0.86	0.5	0.5	-0.5	-0.86	-0.86]
	0	0.5	0.5	0.5	0.86	0.86	0.86	-0.5	
	0	0	0	0	0	0	0	1	0
	1	1	0.86	0.86	0.86	0.5	0	-1.36	
	0	0	0	0	0	0	0.36	0	0
	0	0	0.5	0.5	0.5	0.86	0	0.36	-0.5
	1	1	1	0.86	0.86	0.86	0	-0.86	-0.86
	0	0		0	0	0	0.5	0	0
I(. 1 . 0)	0	0	0	0.5	0.5	0.5	0	0.5	-0.5
J(:,1:9) =	1	0.707	0.707	0.707	0	0	-0.707	-0.707	-0.707
	0	0.707	0.707		1	1	0.707	-0.707	-0.707
	0	0	0	0	0	0	0	1	0
	1	1	0.707	0.707	0.707	0	0	-1.4	-0.707
	0	0	0	0	0	0	0	0	0
	0	0	0.707	0.707	0.707	1	0	0	-0.707
	1	1	1	0.707	0.707	0.707	0	-0.707	-0.707
	0	0	0	0	0	0	0.29	0	0
		0	0	0.707	0.707	0.707	0	0.29	-0.707

$$J(:,10:18) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0.5 & 0.5 & 0 & 0.86 & 0 \\ 0 & 0 & 0 & 0 & -0.86 & -0.86 & 0 & -0.5 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -0.5 & 0 & -0.86 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0.86 & 0 & 0.5 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0.86 & 0 & 0.5 \\ 0 & 0 & 0 & 0 & 0 & 0 & -0.5 & 0 & -0.5 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0.86 & 0 & 0.86 \\ 0 & 0 & 0 & 0 & -1 & -1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0.86 & 0 & 0.86 \\ 0 & 0 & 0 & 0.707 & 0.707 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -0.707 & -0.707 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -0.707 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0.707 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0.707 & 0 & -0.707 \\ 0 & 0 & 0 & 0 & -1 & -1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0.707 & 0 & -0.707 \\ 0 & 0 & 0 & 0 & -1 & -1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0.707 & 0 & 0.707 \end{bmatrix}$$
The vectour $Y 18 \times 1$

$$Y = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 1 & -1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$
(6.28)

Le vectour $Y' 18 \times 1$ qui représente la position perturbée de l'effecteur final dans les six configurations choisies

• le vecteur Y 18×1

 \bullet Le vecteur $Y^{'}$ 18 × 1 qui représente la position perturbée de l'effecteur final

$$Y'(:,1:9) = [1.3 -0.3 1.3 0.35 1.25 1.3 -1.1 -0.3 1.3]$$

$$Y'(:, 10:18) = \begin{bmatrix} -0.05 & -0.3 & 0.25 & 1.3 & -0.1 & 1.3 & 1.15 & -0.3 & 1.25 \end{bmatrix}$$

$$(6.29)$$

Estimation avec $a_4 = 0.2$:

• La matrice jacobienne J , est une matrice de 18×18

• Puis on calcule le vecteur Y 18×1

$$Y = \begin{bmatrix} 1.2 & 0 & 1 & 0 & 1.2 & 1 & -1 & 0 & 1.2 & 0 & 0 & 0.2 & 1.2 & 0 & 1 & 1.2 & 0 & 1 \end{bmatrix}$$

$$(6.31)$$

 \bullet Le vecteur $Y^{'}$ 18 × 1 qui représente la position perturbée de l'effecteur final dans les six configurations choisies

6.5.2 La deuxième expérience avec le robot réel

Essaie 01

• La matrice jacobienne J, est une matrice de (21×19)

$$J(:,1:9) = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 & -6.3 & 15 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 17.3 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -15.9 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & -17.3 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & -6.3 & 15 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -6.3 & -15.9 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & -6.3 & -15.9 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & -6.3 & -15.9 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 16.4 & 0 \\ 0 & 0 & 0 & -1 & -1 & -1 & -1 & 0 & -15 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & -6.3 & -5.4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 26.9 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1 & -1 & 0 & -25.5 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & -6.1 & 15 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 12.1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -10.7 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & -6.3 & 7.3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & -18.6 \\ 0 & 1 & 0.707 & 0.707 & 0.707 & 0.707 & 0.707 & -16.68 & 10.6 \\ 0 & 0 & 0.707 & 0.707 & 0.707 & 0.707 & 0.707 & 7.77 & 10.6 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -15.9 \end{bmatrix}$$

$$I04 \qquad CHAPITRE 6. \ INSTALLATION D'UNE SONDE ÉCHO-GRAPHIQUE SUR LE ROBOT \\ \begin{bmatrix} 15 & -2.7 & 5.2 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 2.5 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ -5.4 & 0 & -2.5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & -2.5 & 0 & 0 & 0 & -1 & -1 & 0 & -1 & 0 \\ 15 & -2.7 & 5.2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -5.4 & 0 & -2.5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ -5.4 & 0 & -2.5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ -5.4 & 0 & -2.5 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 2.5 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 2.5 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ -15 & 2.7 & -5.2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -5.4 & 0 & -2.5 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 2.5 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 2.5 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 2.5 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 2.5 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 2.5 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 2.5 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & -2.7 & 5.2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 15 & -2.5 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & -2.7 & 5.2 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & -2.5 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 5.2 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & -2.5 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 5.2 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 5.2 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 10.6 & -3.67 & 3.67 & 0 & 0 & -0.707 & 0 & -0.707 & 0 \\ -5.4 & 0 & -2.5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & -5.4 & 0 & -2.5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & -5.4 & 0 & -2.5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & -5.4 & 0 & -2.5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & -5.4 & 0 & -2.5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & -5.4 & 0 & -2.5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & -5.4 & 0 & -2.5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & -5.4 & 0 & -2.5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & -5.4 & 0 & -2.5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & -5.4 & 0 & -2.5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & -5.4 & 0 & -2.5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & -5.4 & 0 & -2.5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & -5.4 & 0 & -2.5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & -5.4 & 0 & -2.5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & -5.4 & 0 & -2.5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & -5.4 & 0 & -2.5 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & -5.4 & 0 &$$

$$Y(:,1:10) = \begin{bmatrix} 17.3 & 6.3 & 20 & -6.3 & 17.3 & 20 & 16.4 & 6.3 & -10.9 & 26.9 \end{bmatrix}$$

 $Y(:,11:21) = \begin{bmatrix} 6.3 & -0.4 & 12.1 & 6.1 & 20 & 20 & 6.3 & 12.3 & 7.77 & 16.68 & 20 \end{bmatrix}$

$$(6.34)$$

• Le vecteur Y' 21 × 1 qui présente la position perturbée de l'effecteur final

$$Y^{'}(:,1:10) = \begin{bmatrix} 18.46 & 6.85 & 19.71 & -6.83 & 18.44 & 19.71 & 16.04 & 6.826 & -12.03 & 26.79 \end{bmatrix}$$

Essai 02

• La matrice jacobienne J, est une matrice de (21×19)

• le vecteur Y de (21×1)

$$Y(:,1:10) = \begin{bmatrix} 22.13 & 6.3 & -3.65 & -9.04 & 9.53 & -13.9 & 16.23 & 18.97 & -5.9 & 4.75 \end{bmatrix}$$

$$Y(:,11:21) = \begin{bmatrix} 15.8 & -4.3 & -3.15 & 7.7 & -8.4 & 8.98 & -0.9 & 9.7 & 12.8 & 20.4 & -4.98 \end{bmatrix}$$

$$(6.37)$$

 \bullet Le vecteur $Y^{'}$ 21 \times 1 qui présente la position perturbée de l'effecteur final

dans les sept configurations choisies

$$Y'(:,1:10) = \begin{bmatrix} 21.5 & 7 & -4.56 & -9.5 & 8.96 & -14.05 & 15.46 & 19.4 & -6.9 & 4.15 \end{bmatrix}$$

Essai 03

- La matrice jacobienne J, est une matrice de 21×19 (la même J de l'essai 02)
- Le vecteur Y 21 \times 1 (le même Y de l'essai 02)
- Le vecteur $Y^{'}$ 21 × 1 qui représente la position perturbée de l'effecteur final dans les sept configurations choisies

$$Y'(:,1:10) = \begin{bmatrix} 21.96 & 6.69 & -3.98 & -9.25 & 9.26 & -14.03 & 15.89 & 19.25 & -6.27 & 4.47 \end{bmatrix}$$

6.6 Les matrices jacobiennes et les vecteurs Y du chapitre 04

6.6.1 La première expérience avec le robot classique

Essaie 01

Le vecteur $Y^{'}$ 21 × 1 qui représente la position perturbée de l'effecteur final dans les six configurations choisies est:

$$Y^{'}(:,1:9) = \begin{bmatrix} 1.45 & -0.13 & 1.16 & 0.21 & 1.37 & 1.16 & -0.95 & -0.15 & 1.34 \end{bmatrix}$$

$$Y'(:, 10:18) = \begin{bmatrix} 0.13 & -0.14 & 0.27 & 1.34 & 0.07 & 1.16 & 1.32 & -0.13 & 1.19 \end{bmatrix}$$

$$(6.40)$$

6.6.2 La deuxième expérience avec le robot réel

Essai 01

Le vecteur $Y^{'}$ 21 × 1 qui représente la position perturbée de l'effecteur final dans les sept configurations choisies est:

$$Y'(:,1:10) = [17.8 \ 6.6 \ 19.98 \ -6.6 \ 17.8 \ 19.98 \ 16.29 \ 6.6 \ -11.37 \ 26.9]$$

Essai 02

Le vecteur $Y^{'}$ 21 × 1 qui représente la position perturbée de l'effecteur final dans les sept configurations choisies est:

Essai 03

Le vecteur $Y^{'}$ 21 × 1 qui représente la position perturbée de l'effecteur final dans les sept configurations choisies est:

$$Y'(:,1:10) = \begin{bmatrix} 22.3 & 7 & -4.9 & -9.6 & 8.9 & -14.4 & 15.9 & 19.9 & -7.4 & 4.59 \end{bmatrix}$$

$$Y^{'}(:,11:21) = \begin{bmatrix} 16.18 & -5.09 & -3.2 & 7.7 & -8.49 & 8.7 & -0.8 & 10 & 12.45 & 21.2 & -6.38 \end{bmatrix}$$

$$(6.43)$$

6.7 Les matrices jacobiennes et les vecteurs Y correspondants aux résultats d'estimation du chapitre 05:

• La matrice jacobienne J, est une matrice de 30×27

$$J(:,1:9) = \begin{cases} 0 & 0.5 & 0.061 & 1 & 1 & 0.9 & 0.81 & 0.75 & 0.81 \\ 0 & -0.2 & 0 & 0 & 0 & -0.3 & -0.2 & -0.2 & 0.2 \\ 1 & 0.79 & -0.07 & 0 & 0 & 0 & -0.5 & -0.6 & -0.5 \\ 0 & 0.38 & 0.5 & 1 & 1 & 0.8 & 0.8 & 0.7 & 0.7 \\ 0 & -0.2 & 0.7 & 0 & 0 & -0.5 & -0.5 & -0.5 & -0.4 \\ 1 & 0.8 & -0.2 & 0 & 0 & 0 & -0.08 & -0.4 & -0.4 \\ 0 & 0.33 & 0.67 & 0 & 0 & -0.70 & 0.68 & 0.62 & 0.51 \\ 0 & -0.33 & 0.67 & 0 & 0 & -0.70 & -0.68 & -0.62 & -0.7 \\ 1 & 0.88 & 0.08 & 0 & 0 & 0 & -0.25 & -0.46 & -0.46 \\ 0 & 0.4 & 0.75 & 1 & 1 & 0.7 & 0.68 & 0.55 & 0.38 \\ 0 & -0.4 & 0.6 & 0 & 0 & -0.7 & -0.68 & -0.5 & -0.7 \\ 1 & 0.7 & 0.1 & 0 & 0 & 0 & -0.25 & -0.6 & -0.5 \\ 0 & 0.47 & 0.67 & 1 & 1 & 0.76 & 0.7 & 0.6 & 0.4 \\ 0 & -0.3 & 0.7 & 0 & 0 & -0.6 & -0.6 & -0.5 & -0.6 \\ 1 & 0.7 & 0 & 0 & 0 & 0 & -0.2 & -0.6 & -0.5 \\ 0 & 0.4 & 0.7 & 1 & 1 & 0.7 & 0.7 & 0.6 & 0.5 \\ 0 & -0.3 & 0.6 & 0 & 0 & -0.6 & -0.6 & -0.5 & -0.6 \\ 1 & 0.8 & -0.07 & 0 & 0 & 0 & -0.1 & -0.5 & -0.5 \\ 0 & 0.2 & 0.7 & 1 & 1 & 0.7 & 0.7 & 0.7 & 0.6 \\ 0 & -0.2 & 0.6 & 0 & 0 & -0.6 & -0.6 & -0.5 & -0.6 \\ 1 & 0.9 & 0 & 0 & 0 & 0 & -0.1 & -0.3 & -0.3 \\ 0 & 0.4 & 0.2 & 1 & 1 & 0.8 & 0.8 & 0.7 & 0.8 \\ 0 & -0.2 & 0.9 & 0 & 0 & -0.5 & -0.4 & -0.4 & -0.2 \\ 1 & 0.8 & 0.2 & 0 & 0 & 0 & -0.1 & -0.4 & -0.4 \\ 0 & 0.3 & 0.2 & 1 & 1 & 0.8 & 0.8 & 0.7 & 0.8 \\ 0 & -0.1 & 0.9 & 0 & 0 & -0.5 & -0.4 & -0.4 & -0.2 \\ 1 & 0.9 & 0.2 & 0 & 0 & 0 & -0.3 & -0.3 & -0.3 \\ 0 & 0 & 0 & 1 & 1 & 0.9 & 0.8 & 0.8 & 0.9 \\ 0 & -0.1 & 0.9 & 0 & 0 & -0.4 & -0.3 & -0.3 & -0.3 \\ 1 & 0.9 & 0.2 & 0 & 0 & 0 & -0.4 & -0.3 & -0.3 \\ 1 & 0.9 & 0.2 & 0 & 0 & 0 & -0.4 & -0.3 & -0.3 \\ 1 & 0.9 & 0.2 & 0 & 0 & -0.4 & -0.3 & -0.3 \\ 0 & -0.1 & 0.9 & 0.2 & 0 & 0 & -0.4 & -0.3 & -0.3 \\ 1 & 0.9 & 0.2 & 0 & 0 & -0.4 & -0.3 & -0.3 \\ 1 & 0.9 & 0.2 & 0 & 0 & 0 & -0.4 & -0.3 & -0.3 \\ 1 & 0.9 & 0.2 & 0 & 0 & -0.4 & -0.3 & -0.3 \\ 1 & 0.9 & 0.2 & 0 & 0 & 0 & -0.4 & -0.3 & -0.3 \\ 1 & 0.9 & 0.2 & 0 & 0 & 0 & -0.4 & -0.3 & -0.3 \\ 1 & 0.9 & 0.2 & 0 & 0 & 0 & -0.4 & -0.3 & -0.3 \\ 1 & 0.9 & 0.2 & 0 & 0 & 0 & -0.4 & -0.3 & -0.3 \\ 1 & 0.9 & 0.2 & 0 & 0$$

	0.3	0.3	-2	-2	1.6	6.5	-4	-0.7	0 -	1
	0.3	0	31	31	-0.5	-2.3	10	4.3	2	
	-0.8	-0.9	0	0	-28	-18	5.59	-13	1.9	
	0.2	0.1	11	11	3.79	4.5	3.8	-1	1	
	-0.1	-0.3	31	31	-2	-3	12	1	2.9	
	-0.9	-0.9	0	0	-31	-20	2	-13.5	1.5	
	0.2	0.36	17	17	4	5.9	5.8	0.2	1	
	-0.3	-0.2	28	28	-4	-5.9	10	-1.6	2	
	-0.88	-0.88	0	0	-31	-20.9	1.8	-13	2	
	0.1	0.3	19	19	2	4	6	-1	1.3	
	-0.39	-0.23	28	28	-2	-4	9	-1.5	2.2	
	-0.9	-0.9	0	0	-32	-22	1.9	-13	2.3	
	0.25	0.4	16	16	4	6	3.9	0.4	0.7	
	-0.4	-0.3	30	30	-3	-5	9	-3	2.7	
. 10 . 10)	-0.8	-0.8	0	-32	-22	2	-12	2	0	
:, 10:19) =	0.2	0.2	16	16	3	4.7	5	-0.8	1	
	-0.3	-0.3	29	29	-2	-3	10	-0.6	2	
	-0.9	-0.9	0	0	-32	-21	1	-13	1.9	
	0.1	0.1	15	15	3	4	6	-1	1	
	-0.2	-0.2	28	28	-2.8	-4	12	0.4	2	
	-0.9	-0.9	0	0	-30	-20	1	-13	2	
	0.2	0.2	5	5	3	5	-0.4	-1.4	0.1	
	0.01	0.1	32	32	-2	-2.9	13	1.8	2	
	-0.9	-0.9	0	0	-29	-19	3.7	-13	2.8	
	0.4	0.5	5	5	5	8	-1	1	-0.5	
	0	0.08	31	31	-3	-4	12	0.5	2	
	-0.8	-0.8	0	0	-28	-18	3	-13	2.6	
	0.5	0.5	0.2	0.2	6	10	-4	3	-1	
	0.07	0.2	30	30	-2.9	-4.8	10	1	2	
	-0.8	-0.7	0	0	-26	-16	3.5	-12	2.5	

J(:

J(:, 19

	Γ0	0	0	0.3	0.3	0.5	-0.1	0.9	0.9]
	0	0	0	0.9	0.9	-0.2	0.9	0	0	
	0	1	1	0	0	0.7	0.3	0.3	0.3	
	0	0	0	0.5	0.5	0.3	0.5	0.7	0.79	
	0	0	0	0.8	0.8	-0.2	0.8	-0.5	-0.5	
	0	1	1	0	0	0.8	0	0.2	0.2	
	0	0	0	0.7	0.7	0.33	0.7	0.5	0.5	
	0	0	0	0.7	0.7	-0.33	0.6	-0.68	-0.68	
	0	1	1	0	0	0.8	-0.06	0.4	0.4	
	0	0	0	0.7	0.7	0.4	0.8	0.56	0.5	
	0	0	0	0.7	0.7	-0.4	0.56	-0.7	-0.7	
	0	1	1	0	0	0.78	-0.1	0.3	0.3	
	0	0	0	0.6	0.6	0.4	0.7	0.5	0.5	
	0	0	0	0.7	0.7	-0.3	0.6	-0.5	-0.5	
. 27) —	1	1	0	0	0.7	-0.1	0.5	0.5	0	
: 27) =	0	0	0	0.6	0.6	0.4	0.7	0.6	0.6	
	0	0	0	0.7	0.7	-0.3	0.6	-0.6	-0.6	
	0	1	1	0	0	0.8	-0.07	0.3	0.3	
	0	0	0	0.6	0.6	0.2	0.7	0.6	0.6	
	0	0	0	0.7	0.7	-0.2	0.6	-0.6	-0.6	
	0	1	1	0	0	0.9	-0.05	0.2	0.2	
	0	0	0	0.5	0.5	0.4	0.3	0.9	0.9	
	0	0	0	0.8	0.8	-0.2	0.9	-0.3	-0.3	
	0	1	1	0	0	0.8	0	0.2	0.2	
	0	0	0	0.5	0.5	0.3	0.3	0.8	0.8	
	0	0	0	0.8	0.8	-0.1	0.9	-0.3	-0.3	
	0	1	1	0	0	0.9	0	0.4	0.4	
	0	0	0	0.4	0.4	0.3	0	0.8	0.8	
	0	0	0	0.9	0.9	-0.1	0.9	-0.1	-0.1	
		1	1	0	0	0.9	0.1	0.5	0.5	

(6.44)

6.7. LES MATRICES JACOBIENNES ET LES VECTEURS Y CORRESPONDANTS AUX RÉSULTATS D'ESTIMATION

• Le vecteur Y de (30×1)

$$Y(:,1:10) = [71.5 \ 2 \ 10 \ 70.7 \ 11.7 \ 13 \ 67.7 \ 17.6 \ 14.8 \ 68]$$

$$Y(:,11:20) = [19 \ 12 \ 69.8 \ 16 \ 14.5 \ 69.5 \ 16 \ 13 \ 68 \ 15]$$

$$Y(:,21:30) = [13.6\ 71.\ 5\ 13\ 70\ 5\ 15\ 70\ 0.2\ 16]$$
 (6.45)

6.8 Les matrices jacobiennes et les vecteurs Y correspondants aux résultats d'estimation du chapitre 06:

• La matrice jacobienne J de (30×28)

	$\int 0.2$	0.1	-0.1	2	2	8	10	-1	0.8	٦
	-0.3	-0.5	-0.4	0	0	-0.3	-10	-2	-5.8	
	-0.9	-0.8	-0.8	-1	-1	-8	-10	-8	-5	
	0.9	0.9	0.7	6.9	6.9	22	18	7	8.9	
	-0.03	0.2	0.1	0	0	11	1.6	-0.2	-2	
	-0.05	-0.05	-0.6	10	10	-6	-4	-2	-0.4	
	0.7	0.7	0.5	5.6	5.6	12	15	5	5	
	-0.3	-0.3	-0.3	0	0	2.8	-7.2	-2	-4	
	-0.5	-0.5	-0.7	2	2	-4	-5	-5	-4	
	0.9	0.9	0.9	5.8	5.8	15.9	18.7	8.6	8	
	-0.3	-0.3	-0.3	0	0	8	-1.7	-3.4	-0.7	
	0	0	0	9	9	0	0	2.5	0	
I(10 10)	0.9	0.9	0.9	4.6	4.6	13.9	18	9	8	
	-0.03	-0.2	-0.2	0	0	12	2	-0.3	0	
	0.08	0.08	0.08	13	13	1	1	1	0.7	
J(:, 10:19) =	1	1	1	5.8	5.8	18	18	9	8.2	
	0	0	0	0	0	15	5	0	2	
	0	0	0	17	17	0	0	2	0	
	0.9	0.9	0.9	4	4	17	18	7	7	
	-0.3	0	0	0	0	14	4	-3	5	
	0	0	0.2	16	16	1	1.5	8	0.6	
	0.8	0.8	0.7	-1	-1	17	15	4	5	
	-0.3	0.3	0.3	0	0	18	8	-2	8	
	0.3	0.3	0.5	20	20	4	4	12	1	
	0.8	0.7	0.8	1	1	14	15	6	5.8	
	0.1	0.5	0.5	0	0	22	12	0.9	4	
	0.4	0.4	0.2	24	24	1	1	7	3	
	0.4	0.4	-0.1	3	3	14	13	0.4	3	
	-0.2	-0.08	0	0	0	2	-8	-1	-5	
	-0.8	-0.8	-0.9	1.9	1.9	-10	- 9	-7	-7	

J(:, 19:28) =

6.8. LES MATRICES JACOBIENNES ET LES VECTEURS Y CORRESPONDANTS AUX RÉSULTATS D'ESTIMATION

• Le vecteur Y de (30×1)

$$Y(:,1:10) = \begin{bmatrix} -1.08 & -53 & 71 & 10 & 65 & 66 & 2 & 56 & 67 & 9 \end{bmatrix}$$

$$Y(:,11:20) = \begin{bmatrix} -58 & 67 & 13 & -56 & 68 & 17 & -60 & 67 & 16 & -59 \end{bmatrix}$$

$$Y(:,21:30) = [69 \ 20 \ -60 \ 74 \ 24 \ -56 \ 72 \ 1.9 \ -60 \ 70]$$
 (6.47)

Bibliography

- [1] Chen-Gang, Li-tong, Chu-Ming, J. Q. Xuan, and S. R. Xu. on Kinematics Calibration Technology of Serial Robots. 2014.
- [2] Hiba Hage. Identification and physical simulation of a Stäubli TX90 robot during high-speed milling. Theses, Université Pierre et Marie Curie Paris VI, May 2012.
- [3] Z. Jiang, W. Zhou, H. Li, Y. Mo, W. Ni, and Q. Huang. A New Kind of Accurate Calibration Method for Robotic Kinematic Parameters Based on the Extended Kalman and Particle Filter Algorithm. *IEEE Transactions on Industrial Electronics*, 65(4):3337–3345, April 2018.
- [4] David Chao-Chia Lu and M John D Hayes. Robot Calibration Using Relative Measurements. page 8, 2015.
- [5] Ali Marwan, Milan Simic, and Fadi Imad. Calibration method for articulated industrial robots. *Procedia Computer Science*, 112:1601–1610, 2017.
- [6] Richard M. Murray, Zexiang Li, and S. Shankar Sastry. *A Mathematical Introduction to Robotic Manipulation*. CRC Press, 1 edition, December 2017.
- [7] Hoai-Nhan Nguyen, Phu-Nguyen Le, and Hee-Jun Kang. A new calibration method for enhancing robot position accuracy by combining a robot model—based identification approach and an artificial neural network—based error compensation technique. Advances in Mechanical Engineering, 11(1):168781401882293, January 2019.

120 BIBLIOGRAPHY

[8] Albert Nubiola, Mohamed Slamani, Ahmed Joubair, and Ilian A. Bonev. Comparison of two calibration methods for a small industrial robot based on an optical CMM and a laser tracker. *Robotica*, 32(3):447–466, May 2014.

- [9] Z. Roth, B. Mooring, and B. Ravani. An overview of robot calibration. *IEEE J. Robot. Automat.*, 3(5):377–385, October 1987.
- [10] Marko Švaco, Bojan Šekoranja, Filip Šuligoj, and Bojan Jerbić. Calibration of an Industrial Robot Using a Stereo Vision System. *Procedia Engineering*, 69:459–463, January 2014.