

République Algérienne Démocratique et Populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Abou Bakr Belkaid - TLEMCEN

Faculté de Technologie

Département de Génie Civil

MEMOIRE

pour l'Obtention du Diplôme de Master en Génie Civil

Option : Voies et Ouvrages d'Art -Travaux Publics

Thème

Etude d'un Pont en Béton Précontraint

Réalisé par :

HOUD ISLAM

DJELAD SOFIANE

Soutenu le 04 /06 / 2019 devant le jury composé de :

Mr HOUTI Brahim Farid

Mr OUDJEDI Fouzi

Mr TALEB Omar

Mr BELHADJI Ahmed

Année Universitaire 2018 / 2019

M.C.B.

M.A.A.

Président

Examinateur

Encadrant

Encadrant

Remerciement

Nous remercions monsieur TALEB pour son encadrement exemplaire, sa disponibilité et surtout pour son dévouement.

Nous remercions monsieur BELHADJI, pour nous avoir donné l'occasion extraordinaire de réaliser notre travail de terrain.

Nous remercions monsieur HOUTI, d'avoir accepté de présider le jury de notre projet de fin d'étude. On adresse également nos profondes gratitudes à monsieur OUDJEDI de nous avoir accueillis au sein de son service et pour sa précieuse aide et d'avoir examiné le travail avec beaucoup d'attention et de nous avoir consacré de sont temps.

Nous remercions, identiquement l'ensemble des personnes qui ont contribué, de loin ou de prés, à la mise en forme de ce travail.

Résumé

Ce mémoire concerne l'étude d'un viaduc à poutres en béton précontraint. L'ouvrage concerné est un pont situé au niveau du sud de Ghazaouet de wilaya de Tlemcen situé entre les PK3+950.23-PK4+241.63, franchissant le ravin et la RN98, sa longueur totale est de l'ordre de 291.4m.

L'ouvrage est constitué de huit travées de 36.7m, de 7 poutres espacées de 2.3m en béton précontraint avec une dalle d'une épaisseur de 25 cm.

Une étude détaillée a été effectuée sur le comportement des éléments préfabriqués composant ce pont suivant les différentes sollicitations : actions permanentes, actions dues aux surcharges de circulation et l'équipement, et les actions accidentelles de type sismiques

Un traitement numérique de modélisation et d'analyse a été réalisé grâce au logiciel SAP2000

Enfin, les résultats ainsi obtenus seront traduits par les graphiques représentants les ferraillages adéquats des différents éléments composant la structure.

Mots clés : Viaduc, béton, précontraint, modélisation

Abstract

This memory proposes the study of a road bridge with prestressed concrete beams. The structure concerned is a bridge located at the southern level of Ghazaouet wilaya Tlemcen located between PK3 + 950.23-PK4 + 241.63, crossing the ravine and the RN98, its total length is of the order of 291.4m.

The structure consists of eight spans of 36.7m, seven beams spaced 2.3m prestressed concrete with a slab of a thickness of 25 cm.

A detailed study was carried out on the behavior of the prefabricated elements composing this bridge according to the different stresses: permanent actions, actions due to traffic overloads and the equipment, and accidental actions of the seismic type

Numerical modeling and analysis has been done with SAP2000 software

Finally, the results thus obtained will be translated by the graphs representing the adequate reinforcement of the various elements composing the structure.

Keywords: Viaduct, concrete, prestressed, modeling

خلاصة

هذه الذاكرة تقترح دراسة جسر بخرسانة مسبقة لإجهاد .يقع الجسر المعني في المستوى الجنوبي من ولاية غزوات بولاية تلمسان ، ويقع النقاط الكيلومترية 241.63 + 2950.23 + 3 يتكون الجسر من 8 روافد طول كل واحد منها 36.7 م و يحتوي على07 عوارض من الخرسانة المسلحة المسبقة الإجهاد متباعدة ب 2.3 م سمك سطحه 25 سم وبهذا الصدد تمت دراسة دقيقة للعناصر المجهزة التي يكون النفق حسب مختلف المؤثرات مؤثرات دائمة، مؤثرات ناتجة عن شحنات العربات ومؤثرات ناتجة عن الزلزال تمت المعالجة رقميا وحسابيا باستعمال برنامج SAP 2000

الكلمات الرئيسية: الجسر ، خرسانة ، مسبقة الإجهاد ، النمذجة

Table des matieres

Remerciment	I
Resumé	I
Abstract	II
خلاصة	II
Table des matieres	III
Liste des tableaux	IV
Liste des figure	V
Introduction	VI

CHAPITRE 01 : PRESENTATION DE PROJET	1
1- Introduction	1
2- Présentation de l'ouvrage	1
3- Les données géométriques	1
3.1- Profil en travers	1
3.2- Tracé en plan	2
3.3- Profil en long	2
4- Les données naturelles	6
4.1- Travaux géotechniques réalisés	6
4.2- Topographie et géomorphologie	6
4.3- Formations lithologiques	6
4.4- Eaux superficielles et souterraines	7
4.5- Nature du sol	7
5- Les équipements du tablier	9
5.1- Etanchéité	9
5.2- La couche de roulement	9
5.3- Détail d'extrémité du l'ouvrage	9

CHAPI	TRE 2 :ETUDE DU TABLIER	
1- P	RE-DIMENSIONNEMENT DU TABLIER	10
1.1-	Tablier	
1.2-	Les éléments de tablier	11
1.3-	Caractéristiques géométriques des sections	16
2- 0	Calcul des Charges permanentes	
2.1-	Les poutres	
2.2-	Les entretoises	21
2.3-	L'hourdis	
2.4-	Les Corniches	21
2.5-	L'Etanchéité	21
2.6-	Revêtement de la chaussée	
2.7-	Les dispositifs de retenue	
2.8-	Les garde-corps	
2.9-	Charges sur les trottoirs	23
2.10-	Charges sur les remblais	23
3- Т	Cableaux récapitulatif des charges permanentes sur le tablier	23
4- L	es Surcharges	23
4.1-	Notion préliminaire	23
4.2-	Majorations dynamiques	24
4.3-	Les systèmes des charges mobiles	24
4.4-	La modélisation du tablier	
Chapitr	e 03 :Etude des éléments résistantes de tablier	
1- E	Etude de la poutre de précontrainte	
1.1-	Introduction	
1.2-	Les procédés de la précontrainte.	
1.3-	Donner nécessaire aux calculs	
1.4-	Calcul de la précontrainte	
1.5-	Justification de la flexion	46
1.6-	Justification à l'ELU	
1.7-	Tracée des câbles de la précontrainte	
1.8-	Calcul des pertes de la précontrainte	57

1.9-	FERRAILLAGE DE LA POUTRE	61
1.10-	- Justification vis-à-vis l'effort tranchant	64
1.11-	- Conclusion	66
2- E	Etude de l'hourdis	67
2.1-	Introduction	67
2.2-	Moment fléchissant	67
2.3-	Efforts tranchants	69
2.4-	Hypothèses de calcul	69
2.5-	Détermination des ferraillages (à l'ELU)	69
2.6-	Justification de contrainte (à l'ELS)	70
2.7-	Condition de non fragilité	71
2.8-	Condition de non poinçonnement	71
2.9-	Justification aux efforts tranchants	72
3- H	ETUDE DE L'ENTRETOISE	73
3.1-	Introduction	73
3.2-	La modélisation des entretoises	73
3.3-	Hypothèses de calcul	75
3.4-	Détermination des ferraillages (à l'ELU)	75
3.5-	Justification de contrainte (à l'ELS)	76
3.6-	Conclusion	76
CHAPI	TRE04 :APPAREILS D'APPUIS	77
1- I	Introduction	77
2- A	Appareil d'appuis en élastomère frété	77
2.1-	L'élastomère	77
2.2-	Les frettes	78
3- I	Dimensionnement des appareils d'appuis	78
3.1-	Les sollicitations de calcul	78
3.2-	Aire de l'appareil d'appui	78
3.3-	Epaisseur nette de l'élastomère	79
3.4-	Epaisseur des frettes	79
4- I	Les efforts horizontaux en tête des appuis	80
4.1-	Déplacement due au retrait	
4.2-	Déplacement due au fluage	80

	4.3-	Déplacement due à la température	81
	4.4-	Total des variations linéaires	81
5	-	Evaluation du point fixe	81
	5.1-	Calcul de déplacement	82
6	-	Répartition des efforts horizontaux	
	6.1-	Efforts dues aux charges dynamiques	
	6.2-	Variation linéaire du tablier	
	6.3-	Charge séismique	90
	6.4-	Effort du au vent	90
7	-	VERIFICATION DES CONTRAINTES	90
	7.1-	Limitation des contraintes de cisaillement	90
8	-	Les bossages d'appuis	
	8.1-	Dimensionnement de bossage d'appuis	
	8.2-	Ferraillage des dés d'appui	94
9	-	Calcule des joints	94
	9.1-	Déplacement dû au freinage	95
	9.2-	Déplacement dû au séisme	95
Ch	apit	re05 :Etude de séisme	96
1	-	Introduction	96
2	-	Classification des ponts	96
3	-	Classification de zone sismique	97
4	-	Coefficient d'accélération de zone	97
5	-	Classification des sites	97
6	-	Récapitulative de classifications.	97
7	-	Actions sismiques	
	7.1-	Calcul du période	
	7.2-	Les composantes horizontales	101
	7.3-	Le Composante verticale	104
	7.4-	Combinaison des composantes de l'action sismique	
Ch	apit	re06 :Infrastructures	107
1	-	Introduction	107
2	-	Etude de chevêtre	107
3	-	Les hypothèses de calcul	

4- Calcule des charges
4.1- Poids propre des chevêtres109
4.2- Surcharges
5- Modélisation110
6- Calcul du ferraillage111
6.1- Justification à l'ELS111
6.2- Justification à l'effort tranchant113
7- Etude des piles114
7.1- Dimension des piles114
7.2- Etude du flambement
7.3- Détermination des efforts115
7.4- Ferraillage de la pile
8- Etude de culée
8.1- Les hypothèses de calcul
8.2- Implantation des culées
8.3- Pré dimensionnement des culées
8.4- Calcul des charges agissants sur la culé
8.5- Stabilité d'ensemble de la culée remblayée125
8.6- Evaluation des charges
8.7- Calcul du ferraillage
9- Etude de fondation
9.1- Etude des semelles de liaison
10- Etude des pieux
10.1- Pieux sur la semelle de pile(P1g)142
10.2- Pieux sur la semelle de culée (C2)145
Liste de références

Liste des tableaux

Tableau 1.1: longueurs des travées de la chaussée droit	2
Tableau 1.2: longueurs des travées de la chaussée gauche	2
Tableau 1.3 : Travaux géotechniques réalisés	6
Tableau 1.4:Formations lithologiques de site	6
Tableau 1.5:Résultats des essais géotechniques sur roches	7
Tableau 1.6:Caractérisations physique et mécanique de la roche	7
Tableau 2.1: Largeur rouable minimale.	10
Tableau 2.2: Différentes longueurs de la poutre	11
Tableau 2.6:les Caractéristiques géométriques de chaque parties de la section d'about	19
Tableau 2.9: Récapitulatif des charges permanentes sur le tablier.	23
Tableau 2.10: Largeur rouable de classe des ponts	24
Tableau 2.12 : Coefficients de «a ₁ ».	25
Tableau 2.13 : Valeurs de V ₀	25
Tableau 2.14:les coefficients «bc»	26
Tableau 2.15 : Valeurs de coefficient «bt».	27
Tableau 2.16:récapitulative des charges mobiles	31
Tableau 2.17: Valeurs des moments fléchissant sous les actions non pondérées	32
Tableau 2.18 : Coefficients de pondérations primaires	33
Tableau 2.19 : Coefficients de pondérations finales	33
Tableau 2.20: Valeurs des moments fléchissants à l'ELU.	35
Tableau 2.21 : Valeurs des moments fléchissant à l'ELS.	35
Tableau 2.22 : Valeurs des efforts tranchants sous les actions non pondérées	36
Tableau 2.23 : Valeurs des efforts tranchant à l'ELU.	37
Tableau 3.1: Caractéristiques de câble	40
Tableau 3.2: Caractéristiques de la gaine de câble. ("ADD BETON", s.d.)	41
Tableau 3.15: Les pertes de tension par frottement.	58
Tableau 3.16: Les pertes de tension par recul d'ancrage.	58
Tableau 3.17: Pertes par raccourcissement du béton.	59
Tableau 3.18: récapitulative des pertes de tension	61
Tableau 3.21: les moments longitudinal et transversal max	69
Tableau 3.22: les efforts tranchants max.	69
Tableau 3.23: le calcul de ferraillage de l'hourdis	70
Tableau 3.24: le calcul des contraintes à l'ELS dans l'hourdis	71
Tableau 3.25: Moments fléchissant max de l'entretoise	75
Tableau 3.26: le calcul de ferraillage de l'entretoise.	76
Tableau 3.27: le calcul des contraintes à l'ELS.	76
Tableau 4.1: épaisseur des frettes.(en mm)	79
Tableau 4.2: valeur de la variation lignaire de tablier.	81
Tableau 4.3: recapitulative de déplacement, de regidité et de pourcentage H, pour la chaussé	85
Tableau 4.4: centre élastique de chaussé gauche.	86
Tableau 4.5: récapitulative de déplacement, de rigidité et de pourcentage H, pour la chaussé.88	

Tableau 4.6: centre élastique de chaussé droit	89
Tableau 4.7: Répartition de l'effort de freinage de Bc sur les appuis de chaussé gauche	89
Tableau 4.8: Répartition de l'effort de freinage de Bc sur les appuis de chaussé droit	89
Tableau 4.9: Répartition de l'effort de la variation linéaire sur les appuis de chaussé gauche	90
Tableau 4.10: Répartition de l'effort de la variation linéaire sur les appuis de chaussé droit	90
Tableau 5.1: classification des ponts.	96
Tableau 5.2: Coefficient d'accélération de zone A	97
Tableau 5.3: récapitulative de classifications.	97
Tableau 5.4: calcul de la regidité horizontale (longitudinal(x) et transversale(y)) de chaussee	99
Tableau 5.6: les valeurs de période fondamental	101
Tableau 5.7: Valeur de T1, T2 et S pour la composante horizontale	102
Tableau 5.8: composante horizontale longitudinal (x) pour les deux chausses	102
Tableau 5.9: composante horizontale transversal (Y)	104
pour les deux chausse	104
Tableau 5.10: Valeur de T1, T2 et S pour la composante verticale	104
Tableau 5.11: composante vertical (z) poures deux chausse	105
Tableau 5.12: combinaison séismique pour chausse gauche	106
Tableau 5.13: combinaison séismique pour chausse droit	106
Tableau 6.1: les résultats de modélisation pour le chevêtre de pile pleine	110
Tableau 6.2: les résultats de modélisation pour le chevêtre de pile creuse	111
Tableau 6.3: les différent hauteurs des piles.	114
Tableau 6.4: les paramètres de calcul pour l'élancement (Λ).	115
Tableau 6.5: les efforts verticaux sollicitant les piles.	115
Tableau 6.6: le calcul des sollicitations pour la pile (P1g) à l'ELU.	116
Tableau 6.7: les résultats des sollicitations des piles à l'ELU.	116
Tableau 6.8 : le calcul des sollicitations pour la pile (P1g) à l'ELS.	116
Tableau 6.9: les résultats des sollicitations des piles à l'ELS	117
Tableau 6.10 : le calcul des sollicitations pour la pile (P1g) à l'ELA.	117
Tableau 6.11: les résultats des sollicitations des piles à l'ELA.	117
Tableau 6.12: La position des culées.	121
Tableau 6.13: poids propre de culée.	123
Tableau 6.14: charges de culée en construction	125
Tableau 6.15: charges de culée en exploitation.	126
Tableau 6.16: charges de culée en séisme.	127
Tableau 6.17: calcul de moment dus charge et surcharge de remblais	128
Tableau 6.18: les sollicitations sur le mur en retour.	129
Tableau 6.19: Calcul des sollicitations sur le mur de front a l'ELU	131
Tableau 6.20: calcul des sollicitations sur le mur de front a l'ELS.	131
Tableau 6.21 : les moments sollicitons les éléments de culée.	132
Tableau 6.22: paramètres de ferraillage du mur G.G	132
Tableau 6.23: paramètres de ferraillage Transversale du mur en retour	133
Tableau 6.25: paramètres de ferraillage de la dalle de transition.	135
Tableau 6.26: dimenssion de la semelle de la pile (P1g).	139
Tableau 6.27: paramètres de ferraillage de la semelle	139
1 U	

Tableau 6.28: dimenssion de la semelle de culée (C2)	140
Tableau 6.29 : paramétrées de ferraillage de la semelle.	
Tableau 6.30: sollicitations dus au poids propre	142
Tableau 6.31 : Sollicitations de calcul.	142
Tableau 6.32: réactions des pieux	143
Tableau 6.33: sollicitations de calcul.	145
Tableau 6.34: réactions des pieux	145
-	

Liste des figure

Figure 1-1-: Profil en travers.	3
Figure 1-2 : Tracée au plan.	4
Figure 1-3 : Profil en long.	5
Figure 1-4:Résultats des essais pressiométriques dans PK4+242	8
Figure 1-6:Détail d'extrémité du l'ouvrage (coté de intérieur de la chaussée).	9
Figure 1-5:Détail d'extrémité du l'ouvrage (coté extérieur de la chaussée).	9
Figure 2-1:détaille de tete des piles.	11
Figure 2-2: Différentes longueurs de poutre	11
Figure 2-3: La jonction de l'âme avec la table de compression.	13
Figure 2-4: détail du talon.	13
Figure 2-5: Vue de la poutre en. 3D.	14
Figure 2-7: coupe B-B.	15
Figure 2-6: coupe A-A.	15
Figure 2-9: coupe C-C.	15
Figure 2-8: coupe à mi-hauteur de deux poutres successives (au niveau de l'âme).	15
Figure 2-10:coupe transversal de l'entretoise.	15
Figure 2-11: coupe transversal de longrine extérieure avec la corniche.	16
Figure 2-12:coupe transversal de la section médiane avec dalle.	17
Figure 2-13:coupe transversal de la section médiane.	18
Figure 2-14 : Coupe transversal de la section d'about avec dalle.	19
Figure 2-15:coupe transversal de la section d'about.	20
Figure 2-16:le système de charge Bc.	26
Figure 2-17:le système de charge Br.	26
Figure 2-18 : Système de charge «Bt».	27
Figure 2-19 : Systeme de charge MC120.	28
Figure 2-20 : Vue en plan de convoi-type D.	28
Figure 2-21: Vue en plan de convoi-type E.	29
Figure 2-22 : Vue en plan du système D240.	29
Figure 2-23:le moment max a l'ELU sous la charge AL.	35
Figure 2-25 : Effort tranchant max a l'ELU sous la charge Bc.	37
Figure 3-2: câble de 12 torons T15.	40

Figure 3-4:passage de cable moyenne de la Section sous critique.	43
Figure 3-5:vue longitudinale de passage de câble moyenne.	43
Figure 3-7:vue longitudinale de passage de câble moyenne.	44
Figure 3-6:passage de cable moyenne de la Section sur-critique.	44
Figure 3-17:la poutre de calcul en Phase II.	54
Figure 3-18: la section rectangulaire (b x h).	54
Figure 3-21:la position des câbles dans la section d'about(x=0).	56
Figure 3-20:la position des câbles dans la section d'about(x=18.25).	56
Figure 3-22: vue longitudinal des câbles.	57
Figure 3-23: vue longitudinal des câbles en section d'about.	57
Figure 3-28: le moment transversal max a l'ELU3.	68
Figure 3-29: la section de calcul.	69
Figure 3-30: la transmession des effort de « Br ».	71
Figure 3-31: ferraillage de l'hourdis en travée.	72
Figure 3-32: ferraillage de l'hourdis en appuis.	73
Figure 3-34: réaction de tablier.	74
Figure 3-35: le model en SAP2000.	74
Figure 3-36 : le model de calcule de l'entretoise.	75
Figure 3-38: ferraillage de l'entretoise.	76
Figure 4-1: détail de l'appareil d'appuis choisé.(en mm)	80
Figure 4-2:Déplacement de l'appareil d'appuis.	82
Figure 4-3:Déplacement de la pile.	81
Figure 4-4: la contraintes de cisaillement τ_N .	91
Figure 4-5: contraintes de cisaillement $\tau_{\rm H}$.	92
Figure 4-6: vu en plan de bossage.	94
Figure 6-3: vu transversal sur le chevêtre de pile creuse.	108
Figure 6-2: vu transversal sur le chevêtre de pile pleine.	108
Figure 6-5: section de calcul pour le chevêtre de pile creuse.	108
Figure 6-4: section de calcul pour le chevêtre de pile pleine.	108
Figure 6-6: la partie en consol de chevêtre.	109
Figure 6-7: modèle d'analyse de chevetre.	110
Figure 6-8: ferraillage de la partie tracté de chevêtre.	113
Figure 6-10: la section de la pile creuse.	114
Figure 6-9: la section de la pile pleine.	114
Figure 6-11: ferraillage de la pile pleine.	119
Figure 6-12: ferraillage de la pile creuse.	120
Figure 6-13: la téte de culée.	121
Figure 6-14: vu au-dessous de la culée.	122
Figure 6-15: coupe transversal de culée.	122
Figure 6-16: charges agissant sur le mur garde gréve.	128
Figure 6-17:model analytique de mur en retour avec SAP2000	129
Figure 6-18: ferraillage du mur G.G.	133
Figure 6-19: ferraillage du mur en retour	134
Figure 6-20 : ferraillage du mur de front.	135

136
137
138
140
141
142
145

Introduction

Au cours de ces deux dernières décennies, l'Algérie a vu un développement considérable dans le secteur des travaux publics Outre l'achèvement et la livraison totale des tronçons de l'autoroute Est-Ouest, le programme de la politique gouvernementale dans le domaine des travaux publics (2015) prévu est constitué d'autres projets (**pénétrantes**) assurant les liaisons avec l'autoroute Est-Ouest.

Le schéma directeur routier autoroutier (2005-2025), a identifié 24 liaisons autoroutières nord-sud parmi eux la pénétrante **Ghazouet (13/41Km)** relier le port/AEO

L'objectif de franchir les reliefs difficile situé entre les PK3+950.23 et PK4+241.63, s'insère notre recherche, et qui consiste à étudier un viaduc franchissant le ravin et la RN98, avec une longueur totale de 291.4m.

Notre travail repose sur le principe d'une démarche itérative dont l'objectif est l'optimisation technique et économique de l'ouvrage projeté vis-à-vis de l'ensemble des contraintes naturelles et fonctionnelles imposées, tout en intégrant un certain nombre d'exigences de durabilité et de qualité architecturale ou paysagère.

En second lieu, le dimensionnement et la modélisation du tablier se base sur des documents réglementaires (SETRA, CCGT, GTS...) nécessaires dans les calculs et le logiciel (CSI SAP2000 et CSI Bridge) qui reste un moyen de calcul incontournable des efforts internes en basant sur le principe des éléments finis.

Dans notre étude, l'ensemble éléments résistants du pont sera calculé : appareil d'appuis, pile, culée et fondation.

Notre mémoire est divisé en six chapitres :

Dans le premier chapitre, on va présenter les données naturelles du site résultant des différentes essayes, ainsi les données fonctionnels de l'ouvrage

Le deuxième chapitre, nous étudierons tous ce qui concerne le tablier, prédimensionement, descente de charge...

Le troisième chapitre est consacré à l'étude des éléments résistants du tablier, poutre , hourdis et entretoise.

Le quatrième chapitre est destiné à l'étude d'appareils d'appuis

Le cinquième chapitre est réservé au traitement des charges accidentelles (séisme)

Enfin dans le sixième chapitre, nous présenterons les résultats relatifs à tous ce qui concerne l'infrastructure telle que chevêtres et piles, culées et fondations

Notre mémoire est clôturé par une conclusion générale.

CHAPITRE 01 : PRESENTATION DE PROJET

1- Introduction

La conception d'un pont doit satisfaire à un certain nombre d'exigences puisqu'il est destiné à offrir un service à des usagers. On distingue les exigences fonctionnelles (ou données fonctionnelles) qui sont l'ensemble des caractéristiques permettant au pont d'assurer sa fonction d'ouvrage de franchissement, et les exigences naturelles (ou données naturelles) qui sont l'ensemble des éléments de son environnement déterminant sa conception (Calgaro, 2000)

2- Présentation de l'ouvrage

L'ouvrage d'art étudié dans notre mémoire est un pont qui se trouve au sud de GHAZAOUET (wilaya de TLEMCEN) franchissant le ravin et la RN98 entre les points kilométriques PK3 (+ 950.23) et PK4 (+ 241.63), ce pont comporte 8 travées de longueur variable de poutre en béton précontrainte, sa longueur totale est de 291.4m composé de deux chaussées dont chacune est composée de trois voies. La largeur totale des deux chaussés est de 31,5m.

3- Les données géométriques

3.1- Profil en travers

Le profil en travers est l'ensemble des éléments qui définissent la géométrie et les équipements de la voie dans le sens transversal (Calgaro, 2000)

Le profil en travers de l'ouvrage étudié est représenté sur la figure 1-1

3.2- Tracé en plan

Le tracé en plan est la ligne définissant la géométrie de l'axe de la voie portée (Calgaro, 2000) Notre axe de viaduc est constitué de deux courbes (R=550 m; R=820m) liées entre eux par un raccordement progressive de 77 m (Figure1- 2). L'axe franchi l'ensemble des appuis (piles, culés) avec un biais géométrique de 90°.

3.3- Profil en long

Le profil en long est la ligne située sur l'extrados de l'ouvrage (couche de roulement mise en œuvre) définissant, en élévation, le tracé en plan (Calgaro, 2000)

Le viaduc étudié est composé de 8 travées (pour chaque chaussée) (figure1-3) dont les caractéristiques sont présentées sur les tableaux 1 et 2 :

Travée N	Longueur de travée	appuis	Elévation d'appuis	
1	36.41	1	5.00	
1	30.41	2	14.00	
2	36.21	3	16.50	
3	35.85	5	10.30	
5		4	27.50	
4	35.61			
	25.51	5	42.00	
5	35.51	6	37.00	
6	35.61	0	37.00	
-		7	20.00	
7	35.61			
0	05.51	8	7.50	
8	35.51	9	5.00	

Tableau1-1: longueurs des travées
de la chaussée droite.

Travée N	Longueur de travée	appuis	Elévation d'appuis
1	35.68	1	3.50
1		2	11.00
2	36.05	۷	
Δ		3	13.50
3	36.44	5	
5			24.50
1	36.58	4	
4		5	37.00
5	36.59	5	
5		6	37.00
6	36.70	0	
0		7	20.00
7	36.70	/	
,		8	6.50
8	36.60	0	
0		9	6.00

Tableau1-2: longueurs des travéesde la chaussée gauche.

Nous précisons que les longueurs des travées sont présentées sur la figure 1-3 sans tenir compte de l'inclinaison. Toutefois, les inclinaisons sont prises en considération dans les calculs des valeurs des tableaux 1 et 2.

Figure-1-1 profil en travers du pont (hauteur)

Figure 1-2 : Tracée au plan.

Figure 1-3 : Profil en long.

4- Les données naturelles

4.1- Travaux géotechniques réalisés

Les résultats des travaux géotechniques réalisés à différents sondages sont regroupés dans le tableau 1.3.

de lage	PK et distance		coord	lonnées	Altitude	Profondeur de sondage
sonc		Catégo sono	N(m)	E(m)	(m)	(m)
PSO2-1	PK3+953 Axe	PS	607415.748	3883942.836	185.13	30.8
PSO2-2	PK4+026 D8.3m	PS	607419.281	3883870.505	176.72	25.0
SO2-1	PK4+098 Axe	Р	607441.827	3883801.289	163.64	30.5
PSO2-3	PK4+170 G8.3m	PS	607472.660	3883735.816	185.69	31.0
PSO2-4	PK4+242 Axe	PS	607496.501	3883668.088	202.71	34.4
SO2-2	PK4+242 D10m	S	607505.502	3883672.832	202.83	35.3

Tableau 1-3: Travaux géotechniques réalisés

4.2- Topographie et géomorphologie

La morphologie de la région se présente par des collines de faibles hauteurs. Les montagnes possèdent des formes arrondies. La pente naturelle est faible et varie de 10° à 25° .

L'altitude minimale sur l'axe est de 155 m alors que l'altitude maximale est de 203 m. La section routière passe par une unité géomorphologique de collines peu montagneuse,

4.3- Formations lithologiques

Le terrain superficiel est constitué d'une mince couche de graves argileuses et d'un sol caillouteux, peu humides, sous lequel on trouve des couches de calcaire.

N° de couche	Type de sol	code	Epaisseur(m)
1	Grave argileux	GA	0.0 12.0
2	Tuf calcaire	Tuf	0.0 2.5
3	Calcaire	Ca	Non exposé

Tableau 1-4:Formations	lithologiques de site
------------------------	-----------------------

4.4- Eaux superficielles et souterraines

4.4.1- Eaux de surface :

Dans la zone d'étude, les montagnes sont escarpées et les ravines profondes. Généralement, il n'existe pas d'eau de surface, mais des ruissellements pendant la période pluvieuse, c'est donc facile de trouver des eaux provisoires à la surface.

4.4.2- Eaux souterraines :

Au niveau de toutes les profondeurs atteintes au cours des puits de reconnaissance, il n'a pas été trouvé des eaux superficielles ni des ressources d'eaux naturelles.

4.5- Nature du sol

Le sol support est principalement de nature calcaire et correspond à une roche ferme où la performance des travaux reste favorable. Les résultats de la caractérisation géotechnique des composantes du sol sont montrés sur le tableau 1.5 et la figure 1-4, alors que les résultats des essais de caractérisation physique et mécanique des roches calcaires sont consignés dans le tableau 1.6

N° de	Nom	$\gamma(g/cm^3)$	A court	terme	A long	terme
couche	géotechnique		C (kPa)	$\Phi(^{\circ})$	C (kPa)	$\Phi(^{\circ})$
1	Grave argileuse	20.00	5	33	5	33
2	Tuf calcaire	1.90	5	33	5	33
3	Calcaire	2.58	151	36	130	34

Tableau 1-5: Résultats des essais géotechniques sur roches

Paramètre	Cale	Calcaire		
	$\gamma_{\rm h}~({\rm g/cm}^3)$	Rc (nature) (MPa)		
Valeur max, x _{max}	2,68	45,19		
Valeur min, x _{min}	2,38	15,50		
Valeur proposée	2,58	34.45		

Tableau 1-6: Caractérisations physique et mécanique de la roche

A partir de ces résultats, il serait intéressant d'utiliser des fondations superficielles aux piles $1\# \sim 4\#$ et des fondations des pieux encastrés pour les piles $5\# \sim 9\#$.

Figure 1-4:Résultats des essais pressiométriques dans PK4+242

5- Les équipements du tablier

5.1- Etanchéité

Le procédé d'étanchéité est réalisé par des feuilles préfabriquées monocouches, tel que défini dans le [Fascicule 67, titre I]. (Siplast - Icopal, 2016)

Cette partie est constitué par :

- Une couche d'accrochage Siplast Primer (300g/m²).
- Une feuille préfabriquée monocouche adhérente Parafor Ponts (6440 g/m²).

5.2- La couche de roulement

La couche de roulement a une épaisseur de 8,5 cm répartie comme suit :

- Une épaisseur de 3,5 cm pour la couche BBMA.
- Une épaisseur de 5,0 cm pour la couche BBME.

5.3- Détail d'extrémité du l'ouvrage

L'extrémité de l'ouvrage se compose principalement de longrine qui permet de fixer les dispositifs de retenue (garde-corps, glissière de sécurité...).

La longrine de la bordure intérieure de chaussée porte une nervure pour la pose d'une dalle afin de permettre la circulation des ouvriers (lors de l'entretien) (Figure 1-6).

La longrine de la bordure extérieure de chaussé est liée avec une corniche (Figure 1-5).

Figure 1-5:Détail d'extrémité du l'ouvrage (coté extérieur de la chaussée).

Figure 1-6:Détail d'extrémité du l'ouvrage (coté de intérieur de la chaussée).

CHAPITRE 2 : ETUDE DU TABLIER

1- PRE-DIMENSIONNEMENT DU TABLIER

1.1- Tablier

1.1.1- Nombre et largeurs des voies

L'étude du trafic attendu sur ce projet montre qu'il est nécessaire de disposer un nombre de voies de 2×3 .

La largeur roulable minimale à offrir par sens de circulation est indiquée dans le tableau 1.1 (Setra, 2000)

Autoroute à 2×2 voies à trafic modéré	8,75 m
Autoroute à 2×2 voies	9,75 m
Autoroute à 2×3 voies	14,00 m

Tableau 2-1: Largeur rouable

En considérant des dispositifs de sécurité de largeur (l=0.5m), la largeur totale du tablier sera égale à:

$$L_t = L_r + 2 \times l$$

$$L_t = 14 + 0.5 \times 2 \qquad \Longrightarrow \qquad L_t = 15$$

1.1.2- Longueur des travées

Le viaduc étudié est composé de Huit (08) travées. Le tableau 1.2 regroupe les différentes longueurs des travées. Les sollicitations les plus défavorables seront sur la travée la plus longue de longueur L=36.71m

1.2- Les éléments de tablier

1.2.1- La poutre

1.2.1.1- L'espacement des poutres

Le nombre des poutres dépend essentiellement de la largeur du tablier. Leur espacement avoisine les 3,00 mètres et varie dans la pratique entre 2,50 et 3,50 mètres. Cet espacement pourra être exceptionnellement de 4,00 mètres. (Setra, 1996)

On considère un espacement de E=2.50m

Remarque : Après avoir fixé le nombre de poutres, l'espacement est recalculé. Il est de l'ordre de : E=2.3m

1.2.1.2- Le nombre des poutres

On peut calculer le nombre de poutres par la formule empirique suivante : (Setra, 1996)

1.2.1.3- Longueur des poutres

A partir de la longueur de travée (36.71 m), et le détail de tête des piles (voir figure 2-1) , on adopte les longueurs des poutres suivantes :

- La longueur totale :

 $L_T{=}36.71\text{ - }2{\times}0.1 \Longrightarrow \ L_T{=}36.5m$

-La longueur entre axe de l'appareil d'appuis : L_a=36.5 - 2×0.5 \implies L_a=35.5m

Figure 2-2: Différentes longueurs de poutre

Figure 2-1: détaille de tete des piles.

Longueur total	36.5m
Longueur entre axe	35.5m

Tableau 2-2: Différentes longueurs de la poutre

1.2.1.4- La hauteur des poutres

L'élancement usuel se situe aux environs du 1/17 de la portée, il est possible d'amincir l'ouvrage jusqu'au 1/20 de la portée, ce qui permet de fixer la hauteur totale du tablier (poutre+hourdis). L'épaisseur du tablier varie habituellement de 1,80 m à 2,40 m, lorsque la portée varie de 30 à 40 mètres. (Setra, 1996)

1.2.1.5- L'épaisseur de l'âme

L'épaisseur dépend du mode de vibration utilisé (externe ou interne) et indirectement du type de coffrage utilisé pour la réalisation des poutres, Dans le cas d'un coffrage métallique, la vibration est externe. L'épaisseur des âmes peut donc être réduite au strict minimum et descend couramment à 20 cm ou 22 cm en zone **courante** (Setra, 1996)

- Dans le cas des ouvrages exposés à une atmosphère agressive, l'enrobage est supérieur ou égal à 5 centimètres (CGCT,1991b)

1.2.1.6- La largeur de table de compression

La largeur de la table de compression dépend de nombreux critères, généralement on ne descendra pas en dessous d'une largeur qui avoisine 60% de la hauteur. (Setra, 1996)

 $b = 0.6 \text{ x H}_{t} \implies b = 1.2 \text{ m}$

-La face inférieure de la membrure présente une légère pente variant de 1/10 à 1/15, de sorte que l'épaisseur de la table à la jonction avec le gousset d'âme est majorée d'environ 5 cm par rapport à l'épaisseur d'extrémité. (Setra, 1996)

-La jonction de l'âme et de la table de compression est assurée par un gousset supérieur, ses dimensions sont voisines de 0,15 m x 0,15 m avec une inclinaison sensiblement égale à 45° (figure 2-3) (Setra, 1996)

Figure 2-3: La jonction de l'âme avec la table de compression.

1.2.1.7- La largeur du talon bt

(figure 2-4) (Setra, 1996)

On pourra déterminer la largeur totale des talons par la formule empirique suivante : (Setra, 1996)

Figure 2-4: détail **du talon.**

1.2.1.8- Changement de section

Au voisinage des appuis, les âmes sont dimensionnées pour résister à l'effort tranchant, ce qui Conduit généralement à réaliser un épaississement d'âme, appelé blochet, sur une longueur qui peut atteindre le quart de la portée.

Figure 2-5: Vue de la poutre en. 3D.

1.2.2- Entretoise

Les entretoises étant coulées en place, leur épaisseur de l'ordre de 25 à 30 cm, ce qui suffit dans la plupart des cas du point de vue de la résistance. (Setra, 1996)

On prend $E_e=0.30m$

Figure 2-10:coupe transversal de l'entretoise.

1.2.3- Epaisseur de l'hourdis h_d

L'épaisseur du hourdis est voisine du 1/16 de la portée transversale. Un dimensionnement rapide permet de retenir les épaisseurs suivantes, en fonction de l'écartement « e » des poutres : (Setra, 1996)

0,16 m pour	e< 2,75 m
0,18m pour	2,75m <e<3,50m< td=""></e<3,50m<>
0,20 m pour	e>3,50m

-Toutefois, l'épaisseur minimale de 0,16 m n'est que rarement retenue, du fait du faible bras de levier des aciers. (Setra, 1996)

On prend
$$h_d=0.25m$$

N.B

Avant de considérer la hauteur préconisée, nous avons considéré une épaisseur de 20cm ensuite de 22cm, ce qui a engendre d'augmenter considérablement la quantité d'armature à cause du faible bras de levier des aciers.

1.2.4- La corniche

La forme doit être adaptée au matériau et à son mode de mise en œuvre, on propose la forme courante suivante : (Setra, 1994)

Figure 2-11: coupe transversal de longrine extérieure avec la corniche.

1.3- Caractéristiques géométriques des sections

Dans le calcul des caractéristiques géométriques d'une section (position du centre de gravité, aire, moments d'inertie...), on tient compte des dimensions que présente la section dans la phase considérée. (CCTG, 1991b)

Pour l'évaluation :

- du poids propre d'une structure ;

- des rigidités des différentes pièces constituant la structure (en vue de calculer les sollicitations hyperstatiques);

- des déformations pour les parties d'ouvrages respectant les conditions de la classe II ; on prend en compte les sections brutes ainsi définies : ce sont les sections du béton seul, telles qu'elles résultent des dessins de coffrage, sans déduction des évidements, encoches et conduits destinés à recevoir les armatures de précontrainte ou leurs ancrages. (CCTG, 1991b)

1.3.1- La section médiane avec dalle

Figure 2-12:coupe transversal de la section médiane avec dalle.

Section	Dimension (cm)	B (cm)	Z (cm)	I (cm)	I (cm)
(8)	230x25	5700	187.5	299479.16	202447916.66
(1)	120x10	1200	170	10000	34690000
(2)	((32x5)/2)x2	160	161.66	222.22	4050978.38
(3)	((15x15)/2)x2	225	150	2812.5	5065312.5
(4)	((15x5)/2)x2	150	162.5	312.5	3961250
(5)	((26x17.5)/2)x2	460.25	23.76	7830.64	267659.07
(6)	60x15	900	7.5	16875	67500
(7)	149.3x25	3732.5	89.65	6933271.1	36931830.89

Tableau 2-3: les Caractéristiques géométriques de chaque parti de la section médiane.

On a:
$$I=I_{/0}+Z^2$$
. B
 $V'=\frac{\sum S/axe}{\sum B}=\frac{1717611.46}{12572.75}=136.61$ cm
 $V=h-V'=200-136.61=63.39$ cm
 $IG=I-B \cdot V'^2$
 $=287482447.5-(12572.75\times136.61^2)$
 $=52699968.64$ cm⁴

B (cm ²)	12572.75
V'(cm)	136.61
V (cm)	63.39
IG (cm ⁴)	52699968.64
ρ(%)	48.5

Tableau 2-4:les CaractéristiquesgéométriquesDe la section médiane avec dalle.

 $\rho = \frac{I_G}{(B \times V \times V')} = \frac{52699968.64}{12572.75 \times 63.39 \times 136.61} = 0.485 = 48.5\%$

1.3.2- Caractéristiques géométriques de la section médiane

Figure 2-13:coupe transversal de la section médiane.

 $V' = \frac{\sum S/axe}{\sum B} = \frac{639486.46}{6822.75} = 93.72 \text{ cm}$

V=h-V'=175-93.72=81.28 cm

 $I_G = I - B V'^2$

=85180676.69-(6822.75×93.72²)

=25253472.35 cm⁴

$$\rho = \frac{I_G}{(B \times V \times V')} = \frac{25253472.35}{6822.75 \times 81.28 \times 93.72}$$

=0.4868=48.68%

B (cm ²)	6822.75
V'(cm)	93.72
V (cm)	81.28
IG (cm ⁴)	25253472.35
ρ(%)	48.68

Tableau 2-5:les Caractéristiques géométriques De la section médiane.

1.3.3- Caractéristiques géométriques de la section à l'about +hourdis :

Figure 2-14 : Coupe transversal de la section d'about avec

Section	Dimension (cm)	B (cm)	Z (cm)	I (cm)	I (cm)
(1)	230*25	5750	187.5	299479.16	202447916.66
(2)	120*10	1200	170	10000	34690000
(3)	60*170	9600	82.5	245650000	89905000
(4)	((30*4.6)/2) 2	139.38	163	163.84	3703351.06

Tableau 2-6:les Caractéristiques géométriques de chaque parties de la section

On a: $I=I0+Z^2 B$

$$V' = \frac{\sum S/axe}{\sum B} = \frac{2096843.94}{16689.38} = 125.63 \text{ cm}$$

V=h-V'=200-125.63=74.37 cm

 $IG = I0 - B V'^2$

=67339503.85 cm⁴

$$\rho = I_{G} / (B \times V \times V') = \frac{67339503.85}{16689.38 \times 74.37 \times 125.63} = 0.4318 = 43.18\%$$

B (cm ²)	16689.38
V'(cm)	125.63
V (cm)	74.37
IG (cm ⁴)	67339503.85
ρ(%)	43.18

Tableau 2-7: Caractéristiques géométriquesde la section d'about avec dalle.

1.3.4- Caractéristiques géométriques de la section à l'about

Figure 2-15:coupe transversal de la section d'about.

$$V' = \frac{\sum S/axe}{\sum B} = \frac{1018718.94}{10939.38} = 93.12 \text{ cm}$$

V=h-V'=175-93.72=81.88 cm

 $I_G = I - B V'^2$

=33442624.05 cm⁴

Tableau 2-8 : Caractéristiques géométriques de la section d'about.

 $\rho {=} I_G {\rm (B \times V \times V')} {=} \frac{{_{33442624.05}}}{{_{10939.38 \times 81.88 \times 93.12}}} {=} 0.4009 {=} 40.09\%$

2- Calcul des Charges permanentes

2.1- Les poutres

2.5- L'Etanchéité

Le procédé d'étanchéité fait partie de la famille des étanchéités par feuille préfabriquée monocouche, telle que définis dans le [Fascicule 67 (titre I)]. (Siplast - Icopal, 2016)

G₄=11.07KN/ml

 \mathbf{S}_{m}

 S_d

 M_{vm}

La surface de mortier de pose.

La surface de la dalle intermédiaire (Figure)

Masse volumique de mortier KN/m³

-Une couche d'accrochage Siplast Primer (300g/m²).

=(0.13+0.27+0.03) x 25+ 0.0156 x21

-Une feuille préfabriquée monocouche adhérente Parafor Ponts (6440 g/m²).

=>

Masse surfacique totale selon la norme EN 1948-1 :

$$G_{5}=M_{s} \times L_{t}$$

$$M_{s}=0.0674 \text{KN/m2}$$

$$G_{5}=0.0674 \times 15 \implies G_{5}=1.01 \text{KN/ml}$$

2.6- Revêtement de la chaussée

On utilise dans notre projet deux couches : BBMA. BBME).

Selon la fiche technique de laboratoire [Trabet.2007], les caractéristiques des deux couches suivant la norme NF EN 13108-1 sont :

BBMA de e = 3.5cm et $M_v = 24.57$ t/m3

BBME de e = 5cm et $M_v = 24.57$ t/m3

$$G_6=E_t \ x \ L_r \ x \ M_v$$

$$Avec \qquad E_t \quad l'épaisseur totale de revêtement.$$

$$L_r \quad la largeur roulable.$$

$$M_v \quad la masse volumique de BBM en KN/m^3.$$

$$G_6=0.085 \text{ x}14 \text{ x}24.57 => G_6=29.24 \text{KN/ml}$$

2.7- Les dispositifs de retenue

Le choix des résistances à donner aux dispositifs de retenue, aussi bien que le choix de leurs dispositions constructives, reste un sujet très évolutif, l'expérience n'étant pas encore suffisante pour pouvoir formuler des règles générales. (CCTG, 1971)

Pour cela on prend la glissière le plus courant de la masse 0.06t/ml

$$G_7=0.06 \ge G_7=1.2 \text{KN/ml}$$

2.8- Les garde-corps.

Une charge verticale uniforme de 1 KN par mètre linéaire est supposée susceptible d'être appliquée à la main courante d'un garde-corps. (CCTG, 1971)

$$G_8=1 \ge G_8=2KN/ml$$
2.9- Charges sur les trottoirs

L'ouvrage se trouve hors les zones d'agglomérations donc ce n'est pas nécessaire de mettre les trottoirs.

2.10- Charges sur les remblais

On considère que ces remblais sont susceptibles de recevoir une charge d'une tonne par mètre carré, répartie sur toute la largeur de la plate-forme. (CCTG, 1971)

Charges	G (KN/ml)	G(KN)
Les poutres	136.22	5000.63
L'entretoise	-	177
L'hourdis	93.75	3441.56
La Corniches	10.40	381.78
L'Etanchéité	1.01	37.07
Le Revêtement	29.24	1073.40
Les dispositifs de retenue	1.20	44.05
Les garde-corps	2	73.42
	La charge totale	10228.91

3- Tableaux récapitulatif des charges permanentes sur le tablier.

Tableau 2-9: R	lécapitulatif des	charges per	manentes sur	e

4- Les Surcharges

4.1- Notion préliminaire

4.1.1- Charges à considérer

Les charges définies dans les articles 1 a 10 du (CCTG, 1971)sont valables pour les ponts - routes supportant une ou plusieurs chaussées.

4.1.2- Largeur chargeable.

La largeur chargeable se déduit de la largeur roulable, en enlevant une bande de 0,50 m le long de chaque dispositif de retenue (glissière ou barrière) lorsqu'il en existe. (CCTG, 1971)

Ce qui fait $L_{ch}=14-(2 \ge 0.5) => L_{ch}=13m$

4.1.3- Classe des ponts-routes.

Les ponts-routes sont rangés en 3 classes, en fonction de la largeur roulable et de leur destination. (CCTG, 1971)

La classe	La largeur roulable
1	$L_r \ge 7m$
2	$5.50 \text{ m} < L_r < 7 \text{m}$
3	L _r <5.50 m

Tableau 2-10: Largeur rouable de classe des ponts.

Le viaduc étudié est un pont de classe 1

4.2- Majorations dynamiques

Les charges du système B sont frappées de majorations dynamiques et le coefficient de majoration applicable aux trois systèmes B_c , B_r , B_t est le même pour chaque élément d'ouvrage. Le coefficient de majoration dynamique relatif à un tel élément est déterminé par la formule : (CCTG, 1971)

Les majorations dynamiques sont applicables aux charges militaires, le coefficient de majoration étant calculé par la même formule que celle pour le système B. (CCTG, 1971)

Les charges exceptionnelles ne sont pas frappées de majorations pour effets dynamiques. Elles sont supposées ne développer aucune réaction de freinage, ni force centrifuge. (CCTG, 1971)

On calcule les coefficients de majoration dynamique pour chaque système.

Système de charges	Poids maximum	coefficient de
	«S»	majoration
	En (t)	
B _c	171	1.064
Br	10	1.041
B _t	64	1.040
Mc ₁₂₀	110	1.055

G= 10228.91KN et

L=35.5

 Tableau 2-11: Les valeurs des coefficients dynamiques.

4.3- Les systèmes des charges mobiles

4.3.1- Système de charges A

Avec

La chaussée du pont supporte une charge « A » uniformément répartie employé pour la justification de la stabilité d'ensemble d'une structure cette charge égale au produit de la valeur A(l) par les coefficients a_1 et a_2 . (CCTG, 1971)

$$A(L) = 230 + \frac{36000}{L + 12} [^{kg}/_{m^2}]$$

L=35.5m A(l)=987.89 kg/m²

-Le coefficient a_1 est obtenu à partir du tableau en fonction de la classe du pont et du nombre de voies chargées :

Nombre de voies		1	2	3	4	>5
chargées						
Classe	Première	1	1	0.9	0.75	0.7
de	Deuxième	1	0.9	-	-	-
pont	Troisième	0.9	0.8	-	-	-

Tableau 2-12 : Coefficients de «a₁».

D'après le tableau : $a_1 = 0.9$

-Le coefficient a₂ est obtenu à partir du tableau en fonction de la largeur de voies :

$$a_2 = V_0 / V$$

V: la largeur d'une voie

V₀: valeur donnée par le tableau

Classe de pont	V_0
Première classe	3,5 m
Deuxième classe	3,0 m
Troisième classe	2,75 m

Tableau 2-13 : Valeurs de V_0 .

 $a_2=3.5/3.5 \Rightarrow a_2=1$

 $A=987.89 \times 0.9 \times 1 => A=8.89 \text{ KN/m}^2$

4.3.2- Système de charges B

Le système de charges B comprend trois systèmes distincts dont il y a lieu d'examiner indépendamment les effets pour chaque élément des ponts : (CCTG, 1971)

- Le système B_c se compose de camions types.

- -Le système B_r se compose d'une roue isolée.

-- Le système B_t se compose de groupes de deux essieux dénommés essieux-tandems.

4.3.2.1- Système B_c

Dans le sens longitudinal, le nombre de camions par file est limité à **deux**. La distance des deux camions d'une même file est déterminée pour produire l'effet **le plus défavorable.**

On ne doit pas disposer **plus de files** que de voies, même si cela est géométriquement possible. (CCTG, 1971)

Figure 2-16:le système de charge Bc.

En fonction de la classe du pont et du nombre de files considérées, les valeurs des charges du système B_c prises en compte sont multipliées par les coefficients « b_c » du tableau suivant. (CCTG, 1971)

Nombr cha	e de voies Irgées	1	2	3	4	>5
Classe	Première	1.20	1.10	0.95	0.80	0.70
de pont	Deuxième	1.00	1.00	-	-	-
	Troisième	1.00	0.80	-	-	-

Tableau 2-14:les coefficients «bc».

D'après le tableau : b_c=0.95

On a 3 files et 2 camions par files, donc on peut placer 6 camions.

Le poids d'un camion est : 30 t

S=30 x 6 x b_c=180 x 0.95 =171t

 $B_{c}=S \times \delta_{Bc}=171 \times 1.064$ => $B_{c}=1819.4$ KN

4.3.2.2- Système B_r

La roue isolée, qui constitue le système B_r porte une masse de 10 tonnes. (CCTG, 1971) Le rectangle d'impact de la roue

Figure 2-17:le système de charge Br.

placé n'importe où sur la largeur roulable. (CCTG, 1971)

Br= S x
$$\delta_{Br}$$
 = 10 x 1.041 \Rightarrow Br=104.1KN

4.3.2.3- Système B_t

Un tandem du système B_t comporte deux essieux la masse portée par chaque essieu 16 t. Tous deux à roues simples munies de pneumatiques. (CCTG, 1971)

Figure 2-18 : Système de charge

En fonction de la classe du pont, les valeurs des charges du système « Bt » prises en compte sont multipliées par les coefficients « bt » suivants : (CCTG, 1971)

Classe de	Première	Deuxième
pont		
coefficient	1.0	0.9

Tableau 2-15 : Valeurs de coefficient «bt».

$$S=16 \text{ x } 2 \text{ x } 2 \text{ x } \delta_{Bt} \qquad S=64 \text{ x } \delta_{Bt} \qquad S=64 \text{ x } 1 \qquad S=64t$$

Bt=64 x 1.040 => Bt=665.6KN

4.3.3- Charges militaires

Sur les itinéraires classés pour permettre la circulation des convois militaires, les ponts doivent être calculés pour supporter les véhicules types **Mc120**. (CCTG, 1971)

Un véhicule type du système Mc 120 comporte deux chenilles et répond aux caractéristiques suivantes

Figure 2-19 : Systeme de charge

$$Mc_{120} = 2x[(S \times \delta_{MC_{120}})/6.1x1] = 2x[\frac{550 \times 1.055}{6.1 \times 1}]$$
$$=> Mc_{120} = 2x(95.12KN/m^2)$$

4.3.4- Charges exceptionnelles

Sur les itinéraires classés pour permettre la circulation de convois lourds exceptionnels de l'un des types D ou E, les ponts doivent être calculés pour supporter le véhicule-type correspondant décrit ci-après : (CCTG, 1971)

4.3.4.1- Le convoi-type D

Le convoi-type D comporte deux remorques supportant chacune 140 tonnes.

Figure 2-20 : Vue en plan de convoi-type D.

```
D=2x[1400/(11x3.3)] => D=2x(38.57KN/m^2)
```

4.3.4.2- Le convoi-type E

Le convoi-type E comporte deux remorques supportant chacune 200 tonnes.

Figure 2-21: Vue en plan de convoi-type

```
E=2000/(15 \text{ x } 3.3) => E=2 \text{ x } (40.4 \text{KN/m}^2)
```

4.3.4.3- Le convoi-type D240

Il comporte une remorque de trois éléments de quatre lignes à deux essieux de 240 t de poids total. Ce poids est supposé reparti au niveau de la chaussée sur un rectangle uniformément charge de 3,20m de large et de 18,60m de long. (GTS, 2009)

Figure 2-22 : Vue en plan du système

 $D_{240}=2400/(18.6 \times 3.2)$ \Rightarrow $D_{240}=40.32KN/m^2$

4.3.5- Les efforts annexe a système A et B

4.3.5.1- Efforts de freinage

Les charges de chaussée des systèmes A et B_c sont susceptibles de développer des réactions de freinage, efforts s'exerçant à la surface de la chaussée, dans l'un ou l'autre sens de circulation. (CCTG, 1971)

4.3.5.2- Efforts de freinage dû à A

L'effort de freinage correspondant à la charge A est égal à la fraction suivante du poids de cette dernière : (CCTG, 1971)

$$Q_{F}(A) = \frac{Q(Al)}{20 + 0.0035 \times S}$$

$$QA(l) = 3313.75 \text{KN} => Q_{F}(A) = 155.54 \text{KN}$$

4.3.5.3- Efforts de freinage dû à B

L'attention est attirée sur ce que l'effort de freinage susceptible d'être développé par le système B_c se trouve limité par le texte des instructions au poids d'un véhicule de 30 tonnes. (CCTG, 1971)

$$Q_F(B_c) = 300 \text{KN}$$

4.3.6- Forces centrifuges

Par convention les forces centrifuges sont calculées uniquement à partir du système Bc. (CCTG, 1971)

Sur les ponts où la chaussée est en courbe, **tous** les camions du système B_c disposés sur la chaussée sont susceptibles de développer des efforts centrifuges, horizontaux, normaux à l'axe de la chaussée et appliqués à sa surface. (CCTG, 1971)

Il y a lieu d'adopter, pour la force centrifuge développée par un essieu; une fraction de son poids égale à 80/R. (CCTG, 1971)

 $F_c = B_c \ge 80/R = 181.94 \ge 80/550$ avec R : le rayon de tracé en plan $\implies F_c = 263.2 \text{KN}$

4.3.7- Les charges accidentel

4.3.7.1- Charges de vent

Lorsque le vent souffle, le pont n'est supposé porter aucune charge de chaussée ou de trottoir et les effets du vent et des charges ne sont pas susceptibles de se cumuler. (CCTG, 1971) Le vent souffle horizontalement dans une direction normale à l'axe longitudinal de la chaussée. Il développe sur toute surface frappée normalement une pression égale à : 2000 N/m² pour les ouvrages en service. (CCTG, 1971)

$$\Rightarrow Q_v = 2KN/m^2$$

4.3.7.2- Charges sismiques

Les charges sismiques sont à classer parmi les actions accidentelles. (CCTG, 1971). Pour la prise en compte du risque sismique, les ponts sont classés en trois groupes. [RPOA.2008].

	valeurs		
Sy	Système de charge A		
		Système Bc	1819.4KN
Système de c	harge B	Système Br	104.1KN
		Système Bt	665.6KN
Efforts annexes	Efforts de	dû à A	155.54KN
aux systèmes	freinage	dû à B	300KN
A et B	Forces centrifuges		263.2KN
Charges mil	litaires	Mc120	2×(95.12KN/m ²)
		Le convoi-type D	2×(38.57KN/m ²)
Charge	es	Le convoi-type E	$2 \times (40.4 \text{KN/m}^2)$
exceptionnelles		Le convoi-type D ₂₄₀	40.32KN/m ²
Charges acci	dentels	Charges de vent	2KN/m ²

4.3.8- Tableau récapitulative des surcharges

Tableau 2-16:récapitulative des charges mobiles.

4.4- La modélisation du tablier

Le calcul des éléments résistants des ponts, dépend des sollicitations les affectants et de la méthode utilisée. Pour les sollicitations, on utilise les actions calculées dans les tableaux, et on utilise le logiciel SAP2000 ver. 14, CSIbridge, qui se basent dans l'analyse sur la méthode des éléments finis.

Modélisation de tablier (CSI Bridge v20)

Modélisation de tablier (CSI SAP2000v14)

N.B

Puisque les résultats obtenus par les logiciels sont rapprochés, on a préféré prendre le plus défavorable (celle de CSIbridge).

Cas de char	ge	Poutre de rive (KN.m)	Poutre01 (KN.m)	Poutre02 (KN.m)	Poutre03 (KN.m)	Poutre04 (KN.m)	Poutre05 (KN.m)	Poutre de rive (KN.m)
Charges permanent	e	5142.21	5801.43	5825.34	5852.21	5884.27	5928.82	5323.38
Surcharge A(l)	¢	2029.54	2549.87	2727.03	2789.72	2727.03	2549.87	2029.54
Surcharge	c	1322.26	1818.88	2048.23	2119.60	2048.23	1818.88	1322.26
Bc	e	547.39	983.39	1502.80	1943.94	2347.01	2635.29	2757.11
Surcharge	с	701.73	1208.61	1755.86	1940.90	1755.86	1208.61	701.73
Mc120	e	49.47	228.13	628.68	1248.72	2087.86	2641.48	2657.77
Surcharge	c	317.02	491.21	637	736.38	637	491.21	317.02
D	e	3.28	54.66	241.39	480.11	756.42	1054.71	1100.28
Surcharge	с	328.97	557.15	759.62	876.66	759.62	557.15	328.97
E	e	4.33	54.87	256.42	535.44	895.40	1253.10	1302.76
Surcharge D280	•	389.90	652.98	871.77	990	871.77	652.98	389.90

4.4.1- Moments fléchissant dans les poutres

Tableau 2-17: Valeurs des moments fléchissant sous les actions non pondérées.

4.4.2- Valeurs nominales des charges

Les valeurs nominales à considérer sont celles du titre II du fascicule 61 du CPC (arrêté ministériel du 28-12-71), multipliées par les coefficients du tableau ci-après qui dépendent de

l'état limite (ultime ou de service) et de la nature de la charge pour laquelle il est référé aux articles de ce titre II du fascicule 61. (CCTG, 1991a)

charges		Nature de l'état limite		
	ELU	ELS		
Charges de chaussées et effets annexesCharges sur remblais (articles 4, 5, 6, 7, 8)	1,07	1,20		
- Charges militaires et charges exceptionnelles (art. 9 et 10)	1.00	1.00		
- Charges sur trottoirs, passerelles piétons et gardes-corps	1.00	1.00		

Tableau 2-18 : Coefficients de pondérations

4.4.3- Les valeurs des coefficients

Les valeurs des coefficients relatifs aux charges sont fixées par l'annexe (8). (CCTG, 1991b)

Action	ELU		EU	JS
Charge permanent	1.35x1	1.35	1x1	1
Surcharge A(l)	1.5x1.07	1.6	1x1.2	1.2
Surcharge Bc	1.5x1.07	1.6	1x1.2	1.2
Surcharge Mc120	1.35x1	1.35	1x1	1
Surcharge D	1.35x1	1.35	1x1	1
Surcharge E	1.35x1	1.35	1x1	1
Surcharge D280	1.35x1	1.35	1x1	1

Tableau 2-19 : Coefficients de pondérations finales.

4.4.4- Les combinaisons d'action Les combinaisons d'action à considérer sont les suivantes : (CCTG, 1991b) **ELU10**=1.35 G + 1.35 D₂₄₀ ELU ELS **ELU1**=1.35 G + 1.6 A(1) **ELU2**=1.35 G + 1.6 BC(c) **ELS1**=G + 1.2 A(l)**ELU3**=1.35 G + 1.6 BC(e) **ELS2**=G + 1.2 BC(c)**ELU4**= $1.35 \text{ G} + 1.35 \text{ Mc}_{120}(c)$ **ELS3**=G + 1.2 BC(e) $ELS4=G + Mc_{120}(c)$ **ELU5**=1.35 G + 1.35 Mc120(e) **ELU6**=1.35 G + 1.35 D(c) $ELS5=G + Mc_{120}(e)$ **ELU7**=1.35 G + 1.35 D(e) ELS6=G+D(c)**ELU8**=1.35 G + 1.35 E(c) **ELS7**=G + D(e)**ELU9**=1.35 G + 1.35 E(e) **ELS8**=G + E(c)

ELS9=G + E(e)

 $ELS10 = G + D_{240}$

4.4.5- Moment de Flexion sous la combinaison d'actions

Combinaison d'action	Poutre de rive (KN.m)	Poutre01 (KN.m)	Poutre02 (KN.m)	Poutre03 KN.m)	Poutre04 (KN.m)	Poutre05 (KN.m)	Poutre de rive (KN.m)
ELU 1	10189.26	11911.73	12227.46	12364.04	12307.02	12083.72	10433.84
ELU 2	9302.20	10914.14	11220.95	11277.34	11141.38	10742.15	9057.61
ELU 3	7817.81	9405.36	10268.70	11074.79	11687.62	12220.38	11277.96
ELU 4	7889.33	9463.56	10234.63	10520.71	10314.19	9635.55	8133.92
ELU 5	6994.84	8139.91	8712.92	9586.26	10762.39	11569.92	10770.52
ELU 6	7369.97	8503.17	8699.87	8869.91	8779.44	8675.15	7614.56
ELU 7	6942.23	7905.73	8190.08	8548.64	8937.12	9389.27	8633.52
ELU 8	7386.11	8584.10	8889.69	9083.99	8969.26	8757.08	7630.69
ELU 9	6942.23	7906.02	8210.38	8623.33	9152.57	9695.61	8945.30
ELU 10	7468.36	8713.47	9041.11	9236.99	9120.67	8885.45	7712.94

À l'état limite ultime (ELU)

Tableau 2-20: Valeurs des moments fléchissants à l'ELU. Le moment maximum est

Figure 2-23:le moment max a l'ELU sous la charge

À l'état limite de service (ELS) :

Combinaison d'action	Poutre de rive (KN.m)	Poutre01 (KN.m)	Poutre02 (KN.m)	Poutre03 (KN.m)	Poutre04 (KN.m)	Poutre05 (KN.m)	Poutre de rive (KN.m)
ELS 1	7577.66	8861.28	9097.78	9199.88	9156.71	8988.68	7758.84
ELS 2	6728.93	7984.10	8283.22	8384.85	8342.16	8111.49	6910.10
ELS 3	5799.08	6981.50	7628.70	8232.94	8692.16	9091.17	8391.92
ELS 4	5183.36	6029.56	6454.02	7100.93	7972.14	8570.31	7978.16
ELS 5	5843.95	7010.05	7581.20	7793.11	7640.14	7137.44	6025.12
ELS 6	5459.24	6298.64	6444.35	6570.30	6503.29	6426.04	5640.41
ELS 7	5142.39	5856.10	6066.73	6332.32	6620.09	6955.01	6395.20
ELS 8	5471.19	6358.59	6584.96	6728.88	6643.89	6485.98	5652.36
ELS 9	5142.39	5856.31	6081.76	6387.65	6779.68	7181.93	6626.15
ELS 10	5532.11	6454.42	6697.11	6842.22	6756.05	6581.81	5713.29

Tableau 2-21 : Valeurs des moments fléchissant à l'ELS.

Figure 2-24:le moment max a l'ELS sous la charge.

Cas de char	ge	Poutre de rive (KN.m)	Poutre01 (KN.m)	Poutre02 (KN.m)	Poutre03 (KN.m)	Poutre04 (KN.m)	Poutre05 (KN.m)	Poutre de rive (KN.m)
Charges permanent	e	694.06	690.42	687.94	688.58	691.97	700.51	717.91
Surcharge A(l)	;	205.40	280.45	313.78	323.99	313.78	280.45	205.40
Surcharge	c	105.55	242.37	342.39	361.17	342.39	242.37	105.55
Bc	e	35.98	85.17	217.96	329.60	366.69	377.48	325.73
Surcharge	c	46.72	107.32	314.02	317.42	314.02	107.32	46.72
Mc120	e	6.10	18.08	48.83	113.24	339.17	332.61	335.81
Surcharge	c	18.23	43.40	96.39	154.73	96.39	43.40	18.23
D	e	3.22	4.91	16.06	39.14	93.51	167.91	146.79
Surcharge	c	19.89	45.68	100.02	163.82	100.02	45.68	19.89
E	e	3.27	5.40	17.57	41.31	95.01	173.15	147.28
Surcharge D280	•	23.30	53.59	113.43	178.57	113.43	53.59	23.30

4.4.6- Les Efforts tranchants dans les poutres

Tableau 2-22 : Valeurs des efforts tranchants sous les actions non

4.4.7- Les Efforts tranchants sous la combinaison d'actions

À l'état limite ultime (ELU) :

Combinaison d'action	Poutre de rive (KN.m)	Poutre01 (KN.m)	Poutre02 (KN.m)	Poutre03 (KN.m)	Poutre04 (KN.m)	Poutre05 (KN.m)	Poutre de rive (KN.m)
ELU 1	1265.62	1380.79	1430.78	1447.97	1436.22	1394.41	1297.83
ELU 2	1105.87	1319.87	1476.55	1507.45	1481.99	1333.49	1138.08
ELU 3	994.56	1068.35	1277.46	1456.96	1520.88	1549.67	1490.37
ELU 4	1000.05	1076.96	1352.66	1358.11	1358.09	1090.58	1032.26
ELU 5	942.33	956.48	994.64	1082.47	1392.05	1394.72	1422.54
ELU 6	961.60	990.67	1058.85	1138.48	1064.29	1004.28	993.81
ELU 7	938.12	938.70	950.41	982.43	1060.40	1172.37	1167.35
ELU 8	963.83	993.75	1063.75	1150.75	1069.19	1007.37	996.04
ELU 9	938.07	939.37	952.47	985.36	1062.43	1179.44	1168.02
ELU 10	968.43	1004.42	1081.86	1170.65	1087.29	1018.04	1000.64

Tableau 2-23 : Valeurs des efforts tranchant à l'ELU.

Figure 2-25 : Effort tranchant max a l'ELU sous la charge Bc.

Combinaison d'action	Poutre de rive (KN.m)	Poutre01 (KN.m)	Poutre02 (KN.m)	Poutre03 (KN.m)	Poutre04 (KN.m)	Poutre05 (KN.m)	Poutre de rive (KN.m)
ELS 1	940.54	1026.96	1064.49	1077.37	1068.51	1037.05	964.40
ELS 2	820.72	981.27	1098.81	1121.98	1102.84	991.36	844.58
ELS 3	737.24	792.63	949.50	1084.11	1132.01	1153.49	1108.80
ELS 4	698.02	708.51	736.77	801.83	1031.15	1033.12	1053.73
ELS 5	740.78	797.75	1001.97	1006	1005.99	807.84	764.64
ELS 6	712.29	733.82	784.33	843.32	788.36	743.91	736.15
ELS 7	694.90	695.33	704.01	727.73	785.48	868.42	864.71
ELS 8	713.95	736.11	787.96	852.41	791.99	746.20	737.81
ELS 9	694.87	695.83	705.52	729.89	786.98	873.66	865.20
ELS 10	717.36	744.01	801.37	867.15	805.40	754.10	741.22

À l'état limite de service (ELS) :

Tableau 2-24 : Valeurs des efforts tranchant à l'ELS

Figure 2-26 : Effort tranchant max a l'ELS sous la charge Bc.

Chapitre 03 : Etude des éléments résistants de tablier.

1- Etude de la poutre de précontrainte

1.1- Introduction

Le mot «précontraint», créé par E. FREYSSINET, signifie contrainte avant. Le béton précontraint est soumis, préalablement à toute charge extérieure, à un effort de compression qui permettra de supprimer les contraintes de traction qui apparaitraient dans un élément en béton armé. On évite ainsi les inconvénients du béton armé tels que fissuration, corrosion des aciers, béton tendu inutile. (Thonier, 1985)

1.2- Les procédés de la précontrainte.

La mise en œuvre de la précontrainte nécessite l'utilisation de matériel spécifique de mise en tension et de blocage des armatures qui font l'objet de divers brevets (Thonier, 1985)

Ces différents procédés peuvent se classer en deux principales catégories : (Thonier, 1985) - la précontrainte par pré-tension

On entend par précontrainte par pré-tension, la mise en tension des armatures avant le coulage du béton. Cela suppose donc que l'on doive tendre les aciers en s'appuyant, soit sur le coffrage lui-même, soit sur des culées ancrées dans le sol ou tout autre dispositif qui permet de transférer l'effort

de extrémité à l'autre.

- la précontrainte par post-tension

La précontrainte par post-tension suppose le coulage du béton avant la mise en tension des armatures de précontrainte. En général, on utilise la résistance du béton pour « s'appuyer » lors de la mise en tension et transmettre l'effort d'un ancrage à l'autre extrémité.

Les procédés de précontraintes font l'objet de brevet et sont fabriqués par leurs exploitants. Les principaux procédés son :

- Le système Freyssinet exploité par la STUP (Société Technique d'utilisation de la Précontrainte) ou Freyssinet-International.
- Le système PAC. exploité par la SFP (Société Française pour la Précontrainte),
- Le système BBR-B exploité par la CIPEC.

1.2.1- La Procédé Freyssinet

Le procédé Freyssinet utilise des câbles composés de fils Ø5, Ø7 et Ø8 et de torons T 13 de 12.7 mm (1/2 pouce) et T 15 de 15.2 mm (0,6 pouce)

Les forces de rupture nominales varient par étapes de 18,7t pour un monotoron T 13 à 1 028t pour un câble de 55 T 13 (0,183 MN a 10 MN). (Thonier, 1985)

1.3- Donner nécessaire aux calculs

1.3.1- Caractéristiques de câble

Le tableau ci-dessous indique les caractéristiques principales des torons les plus courants, utilisables avec le système de précontrainte Freyssinet selon la norme prEN10138-3. (Groupe Soletanche Freyssinet, 2014)

Classe MPa	Diamètre nominal (mm)	Section nominale (mm ²)	Masse nominale (kg/m)	Charge de rupture garantie (F _{prg} kN)	Limite élastique (F _{peg} kN)	relaxation maximale à 1000 heures sous 0,7 fpk.	allongement caractéristiqu e sous charge maximal.
1T15	15,7	150	1,18	279	246	< 2.50/	> 2 50/
12T15	188.4	1800	14,16	3 348	2952	$\geq 2,3\%$	$\leq 3,3\%$

Tableau 3-1: Caractéristiques de câble.

Figure 3-1: torron de 7 fils Ø5.

Figure 3-2: câble de 12 torons T15.

1.3.2- Caractéristiques de gaine

Figure 3-3: Diamètres de la gaine de câble ("ADD BETON", s.d.)

câble	Référence	Poids(Kg)	D(mm)	d(mm)	L(m)
12T15	GNECO 105	0,63	117	100	200

Tableau 3-2:	Caractéristiques	de la gaine	de câble.	("ADD	BETON",
		1			

1.3.3- Valeurs numériques des coefficients de frottement

Dans le cas fréquent où les câbles sont constitués soit de fils tréfilés ronds et lisses, soit de torons, on peut, pour l'évaluation a priori des pertes de tension dues au frottement, s'appuyer sur les valeurs moyennes des coefficients f et j figurant au tableau ci-après : (CCTG, 1991b)

C25	Nature des	f		()
Cas	armatures	$3 \leq R \leq 6(m)$	R≥6(en m)	Ψ
Câbles ne traversant pas des	Fils tréfilés ronds et lisses	(22-R)/100	0.16	0.002
joints ou surfaces de reprise	torons	(24-R)/100	0.18	0.003

Tableau 3-3 : Valeurs des coefficients de frottement.

L'ensemble de ces éléments entraîne des dispersions très importantes puisque les mesures effectuées sur de nombreux chantiers montrent que les pertes à la transmission peuvent s'écarter de **25 %** des estimations faites à partir des valeurs précédemment définies pour f et φ . (CCTG, 1991b)

1.3.4- Glissement a l'ancrage « g »

Les pertes d'allongements g (recul à l'ancrage) sont de **6 à 8 mm** lors de la mise en tension pour les torons. Il est possible toutefois d'ajuster la tension à la valeur voulue en utilisant un bloc d'ancrage extérieur et bague de cal1age. L'auteur du projet décide de préconiser cette opération si l'abaissement de la tension à l'extrémité du câble a un effet sur les sections d'acier déterminantes de l'ouvrage. (CCTG, 1991b)

1.4- Calcul de la précontrainte

1.4.1- La classe de la section

Le marché fixe les conditions de rattachement aux différentes classes. Les classes correspondantes sont des classes de **vérification** et non pas des classes de qualité. (CCTG, **1991b**)

La classe II est particulièrement destinée aux éléments exposés à une **ambiance agressive** (cas de certains bâtiments industriels) et à ceux qui comportent de nombreux joints. (**CCTG**, **1991b**)

1.4.2- La section de calcul

La section nette c'est la section totale du béton avec déduction des conduits et ancrages. elle est utilisée pour le calcul des contraintes à l'ELS en classe I et II. (Yazid, 2005)

Il est admis de ne pas soustraire les vides transversaux s'ils satisfont simultanément aux conditions suivantes : (CCTG, 1991b)

1. Ils sont injectés.

2. La plus grande dimension de ces vides, perpendiculairement au plan moyen.

Une fois les gaines injectées, devient adhérent au reste du béton et donc participe à la résistance de la section. (CCTG, 1991b)

Les paragraphes qui sont au-dessus, nous aidions de justifier notre choix de la section de calcul, alors on utilise, la section **brut** la plus sollicité (à mi- travée avec dalle) de caractéristiques au (Tableau 2-3)

1.4.3- Calcul des contraintes

Le béton utiliser dans la fabrication des poutres c'est RN35, fc₂₈=35MPa.

fc₂₈ c'est la résistance caractéristique du béton à 28 jours.

Contrainte admissible à la compression

Le marché peut autoriser une limite **supérieure à 0,50 fc₂₈** mais en toute hypothèse inférieure à 0,60 fc₂₈. (CCTG, 1991b)

Contrainte admissible à la traction

En classe II, le calcul des contraintes normales est toujours effectué sur la section non fissurée. Il doit être vérifié que les contraintes de traction du béton sont limitées aux valeurs suivantes : (CCTG, 1991b)

En situation d'exploitation, f_{tj} dans la section d'enrobage, 1,5 f_{tj} ailleurs.

Contrainte	Calcul	Résultats(MPa)
$\overline{\sigma}_{cs}$	0.5 imes 35	17.5
$ar{\sigma}_{ci}$	0.6 imes 35	21
$\bar{\sigma}_{ts}$	1.5×-2.7	-4.05
$\overline{\sigma}_{ti}$	1×-2.7	-2.7

Tableau 3-4 : récapitulatif de contrainte admissible.

1.4.4- Les sollicitations de calcul

Les moments à considérer sont celle de la section définie au titre (la section de calcul), de valeur sité au (Tableau 2-24) (poutre 5 sous la charge AL) à l'ELS.

1.4.5- Section sous critique :

Si tous les segments de passage est à l'intérieure de la zone qui permet un enrobage suffisant, la section est dite sous critique. (Yazid, 2005)

Figure 3-5:vue longitudinale de passage de câble moyenne.

Figure 3-4:passage de cable moyenne de la Section sous critique.

$$P_{sous} = \frac{\Delta M + \rho \times B(\nu \times \overline{\sigma}_{ti} + \nu \times \overline{\sigma}_{ts})}{\rho \times h} = \frac{3.27 + 0.484 \times 1.2572[0.6339 \times (-2.7) + 1.33662 \times (-4.05)]}{0.484 \times 2}$$

=> P_{sous}=-1.175 MPa

1.4.6- Section sur critique

Si le segment de passage à une de ses frontières découpe la zone d'enrobage (segment ouvert),la section est dite sur critique. (Yazid, 2005)

Figure 3-7:vue longitudinale de passage de câble moyenne.

Figure 3-6:passage de cable moyenne de la Section surcritique.

$$P_{sur} = \frac{Mmax + \frac{IG \times \sigma ti}{V}}{V' + \rho V - d'} = \frac{9.2 + [\frac{0.5269 \times (-2.7)}{1.3661}]}{1.3661 + [(0.484 \times 0.6339) - 0.15]}$$

=> $P_{sur} = 5.3572 \text{ MPa}$
P= max (P_{sous}, P_{sur}) => P= 5.3572 MPa

Donc la section est sur-critique.

1.4.6.1- Détermination de l'excentricité « e₀ »

 $e_0 = -(V' - d')$

Phase I: $e_0 = -(1.366 - 0.135)$ => $e_0 = -1.216$ m

Phase II : $e_0 = -(0.9372 - 0.135) \implies e_0 = -0.8022m$

1.4.7- Détermination du nombre des câbles

On calcule la nouvelle valeur de la précontrainte « P_0 » à partir de la section sur-critique et une perte de 25%.

$$P_0 = \frac{p}{0.98 - 1.2 \times \frac{\Delta p}{P_0}} \qquad P_0 = \frac{5.3572}{0.98 - 1.2 \times 0.25} \qquad \Delta p = 0.25 P_0 \text{ (valeurs)}$$

numériques des coefficients de frottement)

$$=>$$
 P₀ = 7.8783 MN

1.4.8- Valeur maximale de la tension à l'origine

La tension à l'origine doit être au plus égale aux valeurs limites autorisées par :(CCTG, 1991b)

- l'arrêté d'agrément des aciers utilisés ;

- l'arrêté d'agrément du procédé de précontrainte, dans le cas de la post tension.

Elle ne doit pas non plus dépasser la plus faible des valeurs suivantes : (0.8 fprg ou 0.9 fpeg)

1.4.9- Détermination du nombre de câble

$$n = \frac{P0}{P}$$

$$P = \sigma p_0 \times A_p = 1487.7 \times 150 \times 12 \times 10^{-6}$$

$$P = 2.6778 \text{ MN}$$

$$n = \frac{P0}{P} = \frac{7.8783}{P}$$

$$P = 2.6778 \text{ MN}$$

 $n = \frac{P0}{P} = \frac{7.8783}{2.6778}$

=> n = 2.94

On prend le nombre des câbles égaux à 3 (12T15)

1.4.10- La nouvelle valeur de la précontrainte :

 $P_0 = n \times P$ $P_0 = 3 \times 2.6778$ $P_0 = 8.0334 \text{ MN}$

Précontrainte	L'excentricit	té « e ₀ » (m)	Nombre de câbles	Précontrainte initiale	
(MN)	Phase I	Phase II	Nombre de cables	P ₀ (MN)	
5.3572	-1.216	-0.8022	3	8.0334	

Tableau 3-5 : Résumé des câbles de la précontrainte.

1.5- Justification de la flexion

1.5.1- Justification à l'ELS

La précontrainte est représentée par une valeur de calcul P_d qui est la plus défavorable de deux valeurs caractéristiques P_1 et P_2 , pour les justifications vis-à-vis des états limites de service. (CCTG, 1991b)

Dans le cas général, elles sont définies par :

$$P_1 (x, t) = 1,02 P_0 -0,80 \Delta P (x, t)$$

$$P_2 (x, t) = 0,98 P_0 -1,20 \Delta P (x, t)$$

$$\implies P_1 = 1.02 (8.0334) - 0.80 (0.25 x (8.0334)) \qquad \implies P_1 = 6.5873 \text{ MN}$$

$$P_2 = 0.98 (8.0334) - 1.20 (0.25 x (8.0334)) \qquad \implies P_2 = 5.4627 \text{ MN}$$

1.5.1.1- Phase I : situation d'exécution (poutre sans dalle)

En situation d'exécution, la formulation des combinaisons de calcul s'identifie à celle des **combinaisons rares**. (CCTG, 1991b)

Les deux équations suivantes doivent être vérifiées : (Thonier, 1985)

$$\frac{\frac{P}{B} + \frac{P \times e \times v}{I} + \frac{M \min \times v}{I} + \frac{1.2 \times MQ \times V}{I} > \sigma ts = -4.5 \text{ MPa.}}{\frac{P}{B} - \frac{P \times e \times v'}{I} - \frac{M \min \times v'}{I} - \frac{1.2 \times MQ \times v'}{I} < \sigma ts = 17.5 \text{ MPa}}$$

		P ₁		
P1/B	$P1 \times e \times v / I$	Mmin × v / I	$1.2 \times MQ \times V /I$	Résultat (MPa)
9.6545	-16.6922	19.0822	12.6313	24.6758
P1/B	$-P1 \times e \times v' / I$	-Mmin × v' /I	$-1.2 \times MQ \times v' /I$	Résultat (MPa)
9.6545	19.2470	-22.0028	-14.5646	-7.6660

Tableau 3-6: les contraintes de P1 sous combinaisons rares.

Figure 3-8: les diagrammes de contrainte de P1 sous combinaisons rares.

$$24.67 > -4.5$$
 MPa \implies condition vérifiée.

7.66 < 21 MPa \longrightarrow condition vérifiée.

P_2							
P2/B	$P2 \times e \times v / I$	Mmin × v / I	$1.2 \times MQ \times V /I$	Résultat (MPa)			
8.0063	-13.3149	19.0822	12.6313	26.4049			
P2/B	$-P2 \times e \times v' / I$	- M min × v' / I	$1.2 \times MQ \times v' /I$	Résultat (MPa)			
8.0063	15.3528	-22.0028	14.5646	-13.2086			

 Tableau 3-7:les contraintes de P2 sous combinaisons rares.

Figure 3-9: les diagrammes de contrainte de P2 sous combinaisons rares.

Alor :

26.40 > -4.5 MPa condition vérifiée. -13.21 < 21 MPa condition vérifiée.

1.5.1.2- Phase II : situation d'exploitation (poutre avec dalle).

En situation **d'exploitation**, **toutes ces combinaisons** sont effectivement à prendre en compte dans la mesure où elles peuvent être déterminantes. (CCTG, 1991b)

Quasi-permanente : P+G Fréquente : P+G+0.72Q Rare : P+G+1.2Q

Combinaison Quasi-permanente :

Les deux équations suivantes doivent être vérifiées : (Thonier, 1985)

$$\frac{P}{B} + \frac{P \times e \times v}{I} + \frac{M \min \times v}{I} > \sigma ts = -4.5 \text{ MPa.}$$
$$\frac{P}{B} - \frac{P \times e \times v'}{I} - \frac{M \min \times v'}{I} < \sigma ci = 17.5 \text{ MPa}$$

P_1							
P1/B	$P1 \times e \times v / I$	Mmin × v / I	Résultat (MPa)				
5.2396	-9.6368	7.1318	2.7346				
P1/B	-P1 × e × v' /I	- M min × v' / I	Résultat (MPa)				
5.2396	20.7665	-15.3684	10.6377				

 Tableau 3-8 : les contraintes de P1 sous la combinaison quasi-permanente.

Figure 3-10:les diagrammes de contrainte de P1 sous quasi-permanente.

Alor :2.73 > -4.5 MPa \bigcirc condition vérifiée10.63 < 21 MPa \bigcirc condition vérifiée

P2							
P2/B	$P2 \times e \times v / I$	Mmin × v /I	Résultat (MPa)				
4.3451	-7.9915	7.1318	3.4854				
P2/ <i>B</i>	$-P2 \times e \times v' / I$	-Mmin × v' /I	Résultat (MPa)				
4.3451	17.2212	-15.3684	6.1979				

Tableau 3-9: les contraintes de P2 sous la combinaison quasi-permanente.

Figure 3-11: les diagrammes de contrainte de P2 sous la combinaison quasi-permanente.

Combinaison Fréquente

Les deux équations suivantes doivent être vérifiées : (Thonier, 1985)

$$\frac{\frac{P}{B} + \frac{P \times e \times v}{I} + \frac{M \min \times v}{I} + \frac{0.72 \times MQ \times V}{I} > \sigma ts = -4.5 \text{ MPa.}}{\frac{P}{B} - \frac{P \times e \times v}{I} - \frac{M \min \times v}{I} - \frac{0.72 \times MQ \times v}{I} < \sigma ts = 17.5 \text{ MPa.}}$$

P ₁							
P1/ <i>B</i>	$P1 \times e \times v / I$	Mmin × v / I	$0.72 \times MQ \times V /I$	Résultat (MPa)			
5.2396	-9.6368	7.1318	2.8325	5.5671			
P1/B	-P1 × e × v' /I	- M min × v' / I	$-0.72 \times MQ \times v' /I$	Résultat (MPa)			
5.2396	20.7665	-15.3684	-6.1038	4.5338			

Tableau 3-10: les contraintes de P1 sous la combinaison

Figure 2-12: les diagrammes de contrainte de P1 sous la combinaison fréquente.

Alor:

P2/B

4.3451

 $-P2 \times e \times v'/I$

17.2212

 \Rightarrow condition vérifiée. 5.56>-4.5 MPa □

⇒ condition non vérifiée 4.53<17.5 MPa С

		P ₂		
P2/B	$P2 \times e \times v / I$	Mmin × v / I	$0.72 \times MQ \times V /I$	Résultat (MPa)
4.3451	-7.9915	7.1318	2.8325	6.3179
ת/ בת		Masia X xx? /I	$0.72 \times MO \times w^2 / I$	Résultat

-Mmin × v' /I

-15.3684

Tableau 3-11: les contraintes de P2 sous la combinaison fréquente.

 $-0.72 \times MQ \times v' /I$

-6.1038

(MPa)

0.0941

Figure 3-13:les diagrammes de contrainte de P2 sous la combinaison

6.31> -4.5 MPa condition vérifiée.
0.09< 21 MPa condition non vérifiée

Combinaison rare :

Les deux équations suivantes doivent être vérifiées : (Thonier, 1985)

 $\frac{\frac{P}{B} - \frac{P \times e \times v}{I} + \frac{M \min \times v}{I} + \frac{1.2 \times MQ \times V}{I} > \sigma ts = -4.5 \text{ MPa.}}{\frac{P}{B} - \frac{P \times e \times v'}{I} - \frac{M \min \times v'}{I} - \frac{1.2 \times MQ \times v'}{I} < \sigma ts = 17.5 \text{ MPa}}$

P ₁							
P1/B	$P1 \times e \times v / I$	Mmin × v / I	$1.2 \times MQ \times V /I$	Résultat (MPa)			
5.2396	-9.6368	7.1318	4.7208	7.4554			
P1/B	$-P1 \times e \times v' / I$	-Mmin × v' /I	$-1.2 \times MQ \times v' /I$	Résultat (MPa)			
5.2396	20.7665	-15.3684	-10.1730	0.4647			

Tableau 3-12:les contraintes de P1 sous la combinaison rare.

Figure 3-14:les diagrammes de contrainte de P1 sous la combinaison rare.

$$7.45 > -4.5$$
 MPa \implies condition vérifiée.

0.46< 17.5 MPa condition non vérifiée

P_2							
P2/B	$P2 \times e \times v / I$	Mmin × v / I	$1.2 \times MQ \times V /I$	Résultat			
4.3451	7.9915	7.1318	4.7208	8.2062			
P2/B	$-P2 \times e \times v' / I$	- M min × v' / I	$1.2 \times MQ \times v' /I$	Résultat			
4.3451	17.2212	-15.3684	-10.1730	-3.9751			

Tableau 3-14:les contraintes de P2 sous la combinaison rare.

Figure 3-15:les diagrammes de contrainte de P2 sous la combinaison rare.

Alor:

1.6- Justification à l'ELU

1.6.1.1- Phase I : situation d'exécution (poutre sans dalle).

Pour vérifier les déformations à l'ELU on adopte une section simplifié (Figure 3-6) de la même résistance mécanique de poutre réale selon. (Thonier, 1985)

Figure 3-16: la poutre de calcul en Phase I.

Calcul du moment résistant de la partie extérieure de la table « M t »:

$$M_t = (b - b_0) \times h_0 \times (d - \frac{h_0}{2}) \times \sigma_{bc}$$

 $M_t = (1.1 - 0.25) \times 0.25 \times (1.615 - \frac{0.25}{2}) \times 19.83$

$$=> M_t = 6.28 \text{ MPa}$$

 $M_t = 6.28 \text{ MPa} < M_u = 12.364 \text{ MPa}$ (**Tableau 2.20**) => l'axe neutre est dans la nervure.

Dans ce cas, le moment à reprendre par la nervure : $\mathbf{M}_n = \mathbf{M}_u$ - \mathbf{M}_t

$$M_n = 12.36 - 6.28 => M_n = 6.08 MPa$$

Calcul du moment réduit :

$$\mu = \frac{M_n}{b_0 \times d^2 \times \sigma_{bc}} = \frac{6.08}{0.25 \times 1.615^2 \times 19.83} \implies \mu = 0.47$$

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu}) \implies \alpha = 0.94$$

La connaissance de la position de la fibre neutre permet d'écrire une relation entre l'allongement de l'acier « $\Delta \varepsilon_3$ » et le raccourcissement de béton « ε_b ». (**Thonier, 1985**)

$$\Delta \varepsilon_3 = \varepsilon_b \frac{1-\alpha}{\alpha} = 3.5 \frac{1-0.94}{0.94} \qquad = > \qquad \Delta \varepsilon_3 = 0.223\%_0$$

Détermination de σ_1 et ε_1 :

La précontrainte est représentée par une valeur de calcul P_d qui est la valeur probable P_m pour les justifications vis-à-vis des états limites ultimes. (**CCTG**, **1991b**)

$$P_{m}(x, t) = P_{0} - \Delta P(x, t)$$

 P_0 représentant la précontrainte « à l'origine », correspondant à la tension σ_{p0} et $\Delta P(x, t)$ la perte de précontrainte au point d'abscisse x, à l'instant t. (**CCTG, 1991b**)

Avec

$$\sigma_{1} = \frac{p_{m}}{A_{p}}$$
Section totale des aciers actifs.

$$p_{m} = P_{0} \times 0.25P_{0} = \frac{P_{1} + P_{2}}{2} = \frac{6.5873 + 5.4627}{2} = 6.025 MN$$

$$\sigma_{1} = \frac{6.025}{3 \times 12 \times 150 \times 10^{-6}} \implies \sigma_{1} = 1115.73 \text{ MPa}$$

$$\sigma_{1} = 1115.73 \text{ MPa} < \sigma_{p_{0}} = 4463.1 \text{ MPa} \implies \text{Domaine élastique}$$

$$\varepsilon_{1} = \frac{\sigma_{1}}{E_{p}} = \frac{1115.73}{1.9 \times 10^{5}} = 0.005869 \implies \varepsilon_{1} = 5.869 \%_{0}$$

Détermination de
$$\sigma_2$$
 et ε_2 :
 $\sigma_2 = \sigma_1 + \Delta \sigma_2 = \sigma_1 + 5\sigma_c$
 $\sigma_c = \frac{P_m}{B} + \frac{P_m \times e^2}{I} - \frac{M_g \times e}{I}$
 $\sigma_c = \frac{6.025}{1.2506} + \frac{6.025 \times (1.2161)^2}{0.2873} - \frac{5.28 \times 1.2161}{0.2873} => \sigma_c = 19.1547$
 $\sigma_2 = \sigma_1 + 5\sigma_c => \sigma_2 = 1115.7 + 5 \times 19.15$
 $\sigma_2 = 1211.51 \text{ MPa} < \sigma_{p_0} = 4463.1 \text{ MPa} => \text{ Domaine élastique}$
 $\varepsilon_2 = \frac{\sigma_2}{E_p} = \frac{1211.51}{1.9 \times 10^5} = 0.006376 => \varepsilon_2 = 6.376 \%_0$

Détermination de σ_3 et ε_3 :

 $\varepsilon_3 = \varepsilon_1 + \Delta \varepsilon_2 + \Delta \varepsilon_3 = \varepsilon_2 + \Delta \varepsilon_3$ $\varepsilon_3 = 6.376 + 0.223 = 6.6\%_0$

La valeur de « σ_3 » par approximations successives de l'équation suivant : (Thonier, 1985)

$$\mathbf{u} = \left[\frac{1}{100} \times \left(\mathcal{E}_3 - \frac{\sigma_3}{E_p}\right)\right]^{0.2} \quad \text{et} \quad \sigma_3 = (\mathbf{u} + 0.9) \mathbf{f}_{\text{peg}} / \gamma_p$$

On propose des valeurs pour « σ_3 » et on calcul « u » ainsi « σ_3 ».

 $\sigma_3 = 2390 \text{MPa}$ => u=0.58 => $\sigma_3 = 2394 \text{MPa}$

Vérification du ferraillage pour une section rectangulaire :

=> l'inéquation est vérifié

1.6.1.2- Phase II : situation d'exploitation (poutre avec dalle).

Pour vérifier les déformations à l'ELU on adopte une section simplifié (Figure 3-17) de la même résistance mécanique de poutre réale selon Thonier, (1985).

Figure 3-17:la poutre de calcul en Phase II.

Calcul du moment résistant de la partie extérieure de la table « M t »:

$$M_t = (b - b_0) \times h_0 \times (d - \frac{h_0}{2}) \times \sigma_{bc}$$
$$M_t = (1.59 - 0.25) \times 0.5 \times (1.865 - \frac{0.5}{2}) \times 19.83$$
$$=> M_t = 21.45 \text{ MPa}$$

 $M_t = 21.45 \text{ MPa} > M_u = 12.364 \text{ MPa}$ (tableau 2.20) => l'axe neutre est dans la table.

Dans ce cas, on considère que :

 $-M_n = M_u$

-La section de la poutre, est une section rectangulaire (b x h).

Figure 3-18: la section rectangulaire (b x h).

Calcul du moment réduit

 $\mu = \frac{M_n}{b \times d^2 \times \sigma_{bc}} = \frac{12.36}{1.59 \times 1.865^2 \times 19.83} \implies \mu = 0.113$ $\alpha = 1.25 \ (1 - \sqrt{1 - 2\mu}) \implies \alpha = 0.15 \text{m}$ La connaissance de la position de la fibre neutre permet d'écrire une relation entre l'allongement de l'acier « $\Delta \varepsilon_3$ » et le raccourcissement de béton « ε_b ». (Thonier, 1985)

$$\Delta \varepsilon_3 = \varepsilon_b \frac{1-\alpha}{\alpha} = 3.5 \frac{1-0.15}{0.15} \qquad => \qquad \Delta \varepsilon_3 = 19.83\%_0 > 10\%_0, \text{ limitons } \Delta \varepsilon_3 = 10\%_0$$

Détermination de σ_3 et ε_3 :

$$\varepsilon_3 = \varepsilon_1 + \Delta \varepsilon_2 + \Delta \varepsilon_3 = \varepsilon_2 + \Delta \varepsilon_3$$
 (pour « ε_2 » voir Phase I)

$$\varepsilon_3 = 6.37 + 10 = 16.37\%_0$$

On détermine « σ_3 » la même façon que la (Phase I) :

 $\sigma_3 = 2580$ MPa => u=0.696 => $\sigma_3 = 2582$ MPa

Vérification du ferraillage pour une section rectangulaire

$$A_p \ge \frac{F_t}{\sigma_3}$$

Les résultantes de compression du béton de la table

$$F_{t} = (b - b_{0}) \times h_{0} \times \sigma_{bc} = (1.59 - 0.25) \times 0.5 \times 19.83 \implies F_{t} = 13.29 \text{MN}$$
$$Ap = 3 \times 12 \times 150 \times 10^{-6} = 0.0054 \text{m}^{2} \ge \frac{13.29}{2582} = 0.0051 \text{m}^{2}$$

=> l'inéquation est vérifié

1.7- Tracée des câbles de la précontrainte

De façon générale, le tracé des armatures de précontrainte doit satisfaire aux conditions de **(CCTG, 1991b)**

1.7.1- Equations des câbles

On choisit un repère (x, y), dont l'axe (x) passe par l'extrémité inferieure de la poutre et l'axe (y) passe par le milieu de la poutre. L'équation des câbles serait alors de la forme : $y = ax^2 + b$

Figure 3-19: le un repère (x, y), dans la poutre.

Câble 01 =>
$$y_1 = 0.00051 x^2 + 0.135$$

2^{eme} câble
Pour
$$x = 0 \implies y = b = 0.135$$

Pour $x = L/2 = 18.25m \implies y = 0.6 = a \times (18.25)^2 + 0.135$
 $\implies a = 0.0014$

Câble 02 =>
$$y_2 = 0.0014 x_2 + 0.135$$

3^{eme} câble
Pour x = 0 => y = b = 0.135
Pour x = L/2 = 18.25m => y =
$$0.9 = a \times (18.25)^2 + 0.135$$

=> a = 0.0023

Câble 03 =>
$$y_3 = 0.0023 x^2 + 0.135$$

Figure 3-22: vue longitudinal des câbles.

Figure 3-23: vue longitudinal des câbles en section

1.8- Calcul des pertes de la précontrainte

1.8.1- Les Pertes instantanées

Dans le cas de la post-tension, les armatures de précontrainte subissent des pertes de tension instantanées qui sont : (Yazid, 2005)

- les pertes de tension par frottement ;
- les pertes de tension à l'ancrage ;
- les pertes de tension par déformations instantanées du béton.

1.8.1.1- Les pertes de tension par frottement :

La tension σ_{p0} d'une armature de précontrainte, dans une section donnée, lors de sa mise en tension, s'obtient, compte tenu des frottements, à partir de la tension σ_{p0} à l'ancrage actif le plus proche, par la formule suivante : (**CCTG, 1991b**)

$$\sigma_{p_0} = 1487.7$$

f = 0.18
 $\phi = 0.002$ (Tableau 3.3)

	Câble 01			Câble 02		Câble 03			
X(m)	0	L/4	L/2	0	L/4	L/2	0	L/4	L/2
α (rd)	0	0.009	0.0183	0	0.025	0.0504	0	0.041 4	0.0828
σ _{pfr} (MPa	1487. 7	1458. 7	1430.3 7	1467. 7	1454. 5	1422.1 3	1487. 7	1450. 3	1413.8 6
Δσ _{fr} (MPa	0	29	57.33	0	33.2	65.57	0	37.4	73.84
$\sum \Delta \sigma_{fr}$	86.33 98.77 111.24								
(MPa)					296.34				

Tableau 3-15: Les pertes de tension par frottement.

 $\Delta \sigma_{fr} = 2 \times 296.34 \implies \Delta \sigma_{fr} = 592.68 \text{MPa}$

1.8.1.2- Les pertes de tension par recul d'ancrage :

La perte de tension, qui peut résulter du glissement de l'armature par rapport à son ancrage, du tassement ou de la déformation de l'ancrage, appelée « perte par recul d'ancrage », est obtenue à partir de la valeur fixée par l'arrêté d'agrément du procédé de précontrainte utilisé. (CCTG, 1991b)

$$\Delta \sigma_{rec} = 2 \times \sigma_{p_0} \times (\frac{f\alpha}{L} + \phi) \times d$$

$$d = \sqrt{\frac{g \times E_p}{\sigma_{p_0} \times (f \times \frac{\alpha}{L} + \phi)}}$$
Intensité de recule d'encrage. (Titre1.3.4)
$$E_p$$
Module d'élasticité de l'acier de précontrainte.

	Câble 01	Câble 02	Câble 03
$\alpha(rd)$	0.0183	0.0504	0.0828
d(m)	18.735	17.493	16.46
$\Delta\sigma_{rec}$ (MPa)	116.588	117.213	118.225
$\sum_{\text{(MPa)}} \Delta \sigma_{rec}$		352.018	

Tableau 3-16: Les pertes de tension par recul d'ancrage.
1.8.1.3- Pertes par raccourcissement du béton

La perte de tension qui résulte des déformations instantanées du béton dues à l'action des armatures de précontrainte et aux autres actions permanentes peut être assimilée à une perte moyenne affectant chacune des armatures et égale dans une section donnée à : (CCTG, 1991b)

 $P = A_p \times (\sigma_{p_0} - \Delta \sigma_{fr} - \Delta \sigma_{rac}) = (12 \times 150 \times 10^{-6}) \times (3 \times 1487.7 - 592.68 - 352.08) = 6.33 \text{MN}$

P (MN)	e (m)	M _g (MN.m)	I (m)	B _{nette} (m)	σ _b (MPa)	$\Delta\sigma_{rac}$ (MPa)
6.33	-0.8022	3.24	0.2525	0.6848	15.08	39.90

Tableau 3-17: Pertes par raccourcissement du béton.

1.8.1.4- La Perte instantanée finale

La valeur totale de ces pertes de tension instantanées, dans une section d'abscisse x de l'armature, est notée $\Delta\sigma_{p_i}~(x).~(CCTG, 1991b)$

La tension au point d'abscisse x, après pertes de tension instantanées, appelée tension initiale, est notée : (CCTG, 1991b)

 $\sigma_{p_{i}}(x)$ (ou simplement $\sigma_{p_{i}}$) = $\sigma_{p_{0}}$ - $\Delta \sigma_{p_{i}}(x)$

 $\sigma_{p_i} = 3 \times 1487.7 - 984.66 \implies \sigma_{p_i} = 3478.44$

1.8.2- Les Pertes différées

1.8.2.1- Pertes par retrait du béton

La perte finale de tension due au retrait du béton est égale à : (CCTG, 1991b)

$$\Delta_{\sigma_{ret}} = \varepsilon_r \times [1 - r(j)] \times E_p$$
$$r(j) = \frac{j}{j + 9 \times r_m}$$

$$r_{m} = \frac{B}{\mu}$$

$$= \left[\left(\frac{0.6848}{6.0876} \right) \times 26.5 + \left(\frac{1.1238}{5.8148} \right) \times 10 \right] \div 36.5$$

$$= r_{m} = 13.46 \text{ cm}$$

$$F_{m} = 13.46$$

 $\Delta_{\sigma_{ret}} = 1.5 \times 10^{-4} \times [1-0.1877] \times 1.9 \times 10^{5}$

$$\Rightarrow \Delta_{\sigma_{ret}} = 23.15 \text{ MPa}$$

1.8.2.2- Pertes dus aux fluages du béton

Lorsqu'une pièce est soumise, à partir de sa mise en précontrainte, à des actions permanentes subissant des variations dans le temps, la perte finale de tension due au fluage du béton est prise égale à : (CCTG, 1991b)

$$\begin{split} \Delta_{\sigma_{fl}} &= 2.5 \times \frac{\sigma_b}{E_i} \times E_p \\ \Delta_{\sigma_{fl}} &= 2.5 \times \frac{15.08}{11000\sqrt[3]{35}} \times 1.9 \times 10^5 \\ &= > \qquad \Delta_{\sigma_{fl}} = 199.5 \text{ MPa} \end{split}$$

1.8.2.3- Pertes dues à la relaxation des aciers

La perte finale de tension due à la relaxation de l'acier est donnée par : (CHARLES et al., 2007)

$$\Delta_{\sigma_{rel}} = \frac{6}{100} \times \rho_{1000} \times (u - u_0) \times \sigma_{pi}$$
$$u = \frac{\sigma_{pi}}{f_{prg}} \quad \text{avec} : f_{prg} = 1860$$

 u_0 : Un coefficient pris égal à 0.43 pour TBR

$$\Delta_{\sigma_{rel}} = \frac{6}{100} \times 2.5 \times \left(\frac{3478.44}{1860 \times 3} - 0.43\right) \times 3476.44$$

=> $\Delta_{\sigma_{rel}} = 100.83$ MPa

1.8.2.4- La perte différée finale

La perte différée finale est prise égale à : (CCTG, 1991b)

$$\Delta \sigma_{\rm d} = \Delta \sigma_{\rm r} + \Delta \sigma_{\rm fl} + \frac{5}{6} \Delta \sigma_{\rm p} \qquad \qquad = > \qquad \Delta \sigma_{\rm d} = 127.12$$

	Pertes instantanés				Pertes diffé	ré
	Par frottement	Par recule	Raccourcissement du béton	Retrait du béton	Fluage du béton	Relaxation des aciers
Δ_{σ} (MPa)	592.68	352.08	39.9	23.15	199.5	84.02
$\sum \Delta \sigma$	$\Delta \sigma_{p_i}$ =	=984.66 =	=> 22.06%	$\Delta \sigma_d = 1$	306.67 =>	> 6.87%
(MPa)	1291.33 => 28.93 %					

1.8.3- Récapitulative des pertes de tension

Tableau 3-18: récapitulative des pertes de tension.

N.B

Il est recommandable d'ajouter une câble de T13.

1.9- FERRAILLAGE DE LA POUTRE

1.9.1- Armatures longitudinales (CCTG, 1991b)

Figure 3-24: l'air de la partie tendu a partir de diagrame de contrainte de P2 sous la combainaison

$$\sigma_{i} = -13.21 \text{ MPa}$$

$$\sigma_{s} = 26.4 \text{ MPa}$$

$$\frac{\sigma_{i}}{Y} = \frac{\sigma_{s}}{h-Y} \qquad => \qquad \frac{13.21}{Y} = \frac{26.4}{h-Y}$$

$$\frac{h}{Y} = 1.99 + 1 \qquad y = \frac{1.75}{3} \qquad => \qquad y = 0.58 \text{m}$$

$$B_{t} = 0.24 \text{ m}^{2}$$

 $N_{bt} = \frac{13.21 \times 0.24}{2} = 1.5852 \text{ MN}$ $A_s = \frac{0.24}{1000} + \frac{1.5852 \times 2.7}{500 \times 13.21} = 8.88 \text{ } cm^2$

On disposera 6T20 en nappe inférieure dans le talon. (Voir armature (1) figure 3-25)

A=18.85cm $2 > A_s \implies$ condition vérifier.

1.9.2- Armature de peau

Des armatures passives dénommées armatures de peau sont réparties et disposées suivant **deux directions sensiblement orthogonales** sur toute la périphérie des pièces prismatiques,

La section des armatures de peau disposées parallèlement à la fibre moyenne d'une poutre doit être d'au moins **3 cm²** par mètre de longueur de parement mesuré perpendiculairement à leur direction, **sans pouvoir être inférieure à 0,10 %** de la section du béton de la poutre. **(CCTG, 1991b)**

Il est souhaitable de **limiter au maximum** la proportion des armatures couplées dans une même section (par exemple à 1/2). (CCTG, 1991b)

$$A_{min} \le A_s \le A_{max}$$

$$A_{min} = max \quad \begin{cases} 3cm2/ml \times \Omega \\ 0.1\% \times B \end{cases} \qquad A_{min} = max \quad \begin{cases} 18.2637cm^2 \\ 6.8220cm^2 \end{cases} = 18.2637cm^2$$

$$A_{max} = 5\%B \qquad A_{max} = 341.1cm^2$$

$$\Omega \qquad A_{max} = 341.1cm^2$$

$$A_{max} = 341.1cm^2$$

$$A_{max} = 341.1cm^2$$

$$A_{max} = 341.1cm^2$$

$$A_{max} = 341.1cm^2$$

On disposera **28T12** en nappe inférieure et supérieure de la table de compression. (voir (2) figure 3-25)

On disposera **10T12**sur les deux périmètres latéraux de l'âme. (Voir (3) figure 3-25) On disposera **3T12** sur les deux périmètres latéraux du talon. (Voir (4) figure 3-25)

A=54T12=61.02 cm²

 $A_{min} \! \leq \! 61.02 \! \leq \! A_{max}$

=>

condition vérifié

Figure 3-25: ferraillage de la poutre.

1.9.3- Armature vertical

1.9.3.1- Diamètre des armatures d'âme

Le diamètre des armatures d'âme d'une poutre est au plus égal à **h/35** (h étant la hauteur totale de la poutre), ainsi qu'au **diamètre des barres longitudinales** et au **dixième de la largeur de l'âme**. (CCTG, 1991a)

On disposera $Ø_t=12mm<20mm$ Et $Ø_t=14mm<20mm$

=> Condition vérifié

1.9.3.2- Espacement maximal

L'espacement St des cours successifs d'armatures transversales d'âme est au plus égal à la plus basse des deux valeurs 0.9 d et 40 cm(CCTG, 1991a)

$$S_{t} \leq \min \left\{ \begin{array}{ll} 0.9d & =157cm \\ 40cm & =40cm & =>18cm \\ 15 \ \varnothing_{1} & =18cm \end{array} \right.$$

On disposera : $St = 15 \text{ cm} \le 18 \text{ cm} \implies \text{condition vérifier}$

1.10- Justification vis-à-vis l'effort tranchant

L'effort tranchant V résultant des actions extérieures, y compris celles dues à la précontrainte longitudinale, doit être l'objet d'une correction dite« correction de Résal » lorsque la variation de hauteur de la poutre est significative, l'effort tranchant ainsi corrigé est appelé effort tranchant réduit et désigné par $V_{réd}$ (CCTG, 1991b)

Pour la justification des armatures d'âme d'une poutre, l'inclinaison β u des bielles de béton est calculée au niveau du centre de gravité de la section

En désignant par β_u l'angle de ces fissures avec la fibre moyenne de la poutre, borné inférieurement à 30°.(**CCTG, 1991b**)

$$A_{t} \ge \max \begin{bmatrix} \gamma_{s} \times S_{t} \times bn \times \frac{(\tau_{u} - f_{tj}/3)}{f_{e}} \times \tan(\beta_{u}) & b_{n} \end{bmatrix}$$
 (épaisseur nette b_n,en soustrayant les évidements.

$$0.4 \times \gamma_{s} \times S_{t} \frac{b_{n}}{f_{e}} & V_{re} \end{bmatrix}$$
 (b'n l'épaisseur nette b_n,en soustrayant les évidements.

$$V_{re} \end{bmatrix}$$
 (b'n l'épaisseur nette b_n,en soustrayant les évidements.

$$V_{re} \end{bmatrix}$$
 (c'n) L'effort tranchant réduit.

$$\Phi$$
 Diamètre de la gaine de câble.

$$S$$
 Le moment statique de la section d'about.

$$\nabla_{red} = V - P \sin\alpha$$
 (voir le tableau)

$$\nabla_{red} = V - P \sin\alpha$$
 (voir le tableau)

$$S_{t}$$
 Espacement des armatures transversal.

$$V_{red} = 1.549 - 8.0334 \sin(2.89) = 1.1432$$
 MN.m

$$b_n = b_0 - \frac{\Phi}{2} = 0.54$$

1.10.1- Phase I : en exécution (poutre sans dalle) $S = V \times B = 0.8956m^2$

$B(m^2)$	1.0939
V' (m)	0.9372
V(m)	0.8188
$I(m^4)$	0.3344

Le nombre des poutres dans une travée.

$$\tau = \frac{1.1432 \times 0.8956}{0.54 \times 0.3344} = 5.66 \text{ MPa}$$

$$A_{t} \ge \max \left\{ \begin{array}{l} 1.15 \times 0.15 \times 0.54 \times \frac{(5.66 - 2.7/3)}{500} \times \tan(30^{\circ}) = 5.11 \text{cm}^{2} \\ 0.4 \times 1.15 \times 0.15 \frac{0.54}{500} = 0.74 \text{cm}^{2} \end{array} \right. = 5.11 \text{cm}^{2}$$

Tableau 3-19: rapel decarractiristique de la section amitravée sans dalle.

On disposera 2T12 et 2T14 (Voir (6) et (10) figure 3-25) => 5.34 cm²

5.34>5.11 => Condition vérifié

1.10.2- Phase II : en exploitation (poutre avec dalle)	
$S = V \times B = 1.2411 m^2$	Γ
$\tau = \frac{1.1432 \times 1.2411}{0.54 \times 0.6733} = 3.90 \text{ MPa}$	
$A_{t} \ge \max \begin{cases} 1.15 \times 0.15 \times 0.54 \times \frac{(3.90 - 2.7/3)}{500} \times \tan(30^{\circ}) = 3.22 \text{cm}^{2} \\ 0.4 \times 1.15 \times 0.15 \frac{0.54}{500} = 0.74 \text{cm}^{2} \end{cases}$	

$B(m^2)$	1.6689
V' (m)	1.2563
V(m)	0.7437
$I(m^4)$	0.6733

Tableau 3-20: rappel de carractiristique de la section a mi travée avec dalle. =3.22cm²

On disposera 2T12 et 2T14 (Voir (6) et (10) figure 3-25) => 5.34 cm²

5.34>3.22 => Condition vérifié.

Figure 3-26: ferraillage verticale de la poutre.

1.10.3- Justification du béton

 $\tau_{u} \leq \frac{f_{cj}}{4 \times \gamma_{b}} = \frac{35}{4 \times 1.5} = 5.83$ MPa Phase I => 5.66MPa<5.83MPa condition vérifiée Phase II => 3.9MPa<5.83MPa condition vérifiée

1.10.4- Vérification de la contrainte de la compression

La condition qui doit être vérifiée est : $\sigma_x \le 0.4 f_{cj}$

$$\sigma_x = \frac{P}{B} = \frac{8.0334}{1.6689} = 4.81 \text{ MPa}$$

 $\sigma_x = 4.81 < 0.4 \times 35 = 14 \text{ MPa}$ => condition vérifiée

1.11- Conclusion

Les résultats nous montrent que le dimensionnement de la poutre en T préfabriquée en béton précontraint est justifié et qu'elle peut satisfaire les exigences de normes et de conception.

2- Etude de l'hourdis

2.1- Introduction

Les surcharges qui recevoir le pont, transmettre aux poutres par une dalle en béton armé dit « hourdi ».

La détermination et la justification des dalles en tant que telles peuvent faire abstraction de leur rôle éventuel de tables de compression des poutres. (CCTG, 1991a)

On traite le hourdis de compression d'une poutre indépendamment de son rôle en tant que dalle. Cependant, dans les zones où un hourdis associé à une nervure peut être mis en traction du fait de la flexion de cette dernière. (CCTG, 1991a)

2.2- Moment fléchissant

Dans notre étude, on a modélisé l'hourdis par logiciel « CSIBridge »comme un élément Shell, les moments maximaux (en travée et en appuis) obtenu par les combinaisons ELU3 et ELS3 dus à la charge « Bc » présenté dans le Tavleau111.

Figure 3-27: le moment longitudinal max a l'ELU3.

Figure 3-28: le moment transversal max a l'ELU3.

ELU (KN.m)	ELS (KN.m)

	Appui	Travée	Appui	Travée
<i>M</i> ₁₁	- 59.98	90.32	- 44.7	67.72
M ₂₂	- 56.41	131.32	- 32.7	98.42

Tableau 3-21: les moments longitudinal et transversal

2.3- Efforts tranchants

	ELU (KN)	ELS (KN)
V ₁₃	209.75	156.92
V ₂₃	250.61	187.82

Tableau 3-2	2: les e	efforts	tranchants	max.
-------------	-----------------	---------	------------	------

2.4- Hypothèses de calcul

Le calcul de ferraillage sera fait par la méthode manuelle suivant le règlement (**CCTG**, **1991a**)

On tenant compte les deux moments longitudinal et transversal.

Fissuration préjudiciable

Ni pas prise en compte des armatures comprimées

Section de calcul Figure 3-29

Béton: $fc_{28} = 27$ (MPa)

Acier: $f_e = 500$ (MPa)

Figure 3-29: la section de calcul.

2.5- Détermination des ferraillages (à l'ELU)

$$f_{bc} = \frac{0.85 \times f_{c_{28}}}{yb} \implies f_{bc} = 15.3 \text{ MPa}$$

	En tr	avée	En appui		
	Sens transversal	Sens longitudinal	Sens transversal	Sens longitudinal	
M_u (MN.m)	0.132	0.090	0.056	0.06	
μ (MN.m)	0.17	0.116	0.072	0.077	
α (m)	0.234	0.154	0.093	0.1	
Z(m)	0.204	0.211	0.216	0.216	
$A_{s}(\mathrm{cm}^{2})$	14.88	9.81	5.96	6.83	

Tableau 3-23: le calcul de ferraillage de l'hourdis .

2.6- Justification de contrainte (à l'ELS)

Les conditions à vérifier sont : (CCTG, 1991a) Avec Moment de flexion a l'ELS.

$$\sigma_{bc} = \frac{M_s}{l} x \le \bar{\sigma}_{bc}$$

$$\sigma_{st} = n \frac{M_s(d-x)}{l} \le \bar{\sigma}_{st}$$

$$\bar{\sigma}_{bc} = 0.6f_{c_{28}}$$

$$I = \frac{bx^2}{3} + nA_{st}(d-x)^2$$

$$Nichtar de Hallow de Hallow$$

$$\frac{b}{2}x^2 - 2 \times n \times A_{st}(d - x) = 0 \dots \dots (A_{sc} = 0)$$

$$50x^2 + (30 \times A_{st}) \times (675 \times A_{st}) = 0$$

	En tr	avée	En appui		
	Sens Sens		Sens	Sens	
	transversal	longitudinal	transversal	longitudinal	
A_{st}	6T20	6T16	5T16	5T16	
$A_{st}(\text{cm}^2)$	18.84	12.06	10.05	10.05	
$M_{\rm s}({\rm MN.m})$	0.098	0.068	0.033	0.045	

X(cm)	11.328	9.787	8.277	9.013
$I(m^4)$	0.000837	0.000617	0.000432	0.000518
σ_{st} (MPa)	196.21	191.03	162.62	175.74
σ_{bc} (MPa)	13.26	10.78	6.31	7.83

Tableau 3-24: le calcul des contraintes à l'ELS dans

2.7- Condition de non fragilité

La condition suivante doit être vérifiée : (CCTG, 1991a)

$$\frac{A_{st}}{b \times d} > \frac{0.23 \times f_{t_{28}}}{f_e}$$

$$f_{t_{28}} = 0.6 + 0.006 \times 27 = 2.22$$

$$A_{st} > \frac{0.23 \times f_{t_{28}}}{f_e} \times b \times d = \frac{0.23 \times 2.22}{500} \times 1 \times 0.225 \times 10^4 = 2.25. \ 10^{-4} \ m^2$$

$$6.31 > 2.25 => \text{Condition vérifiée}$$

2.8- Condition de non poinçonnement

La condition à vérifier est la suivante :

Figure 3-30: la transmession des effort de « Br ».

Avec :

$$- \int_{V'=V+h+2h_r=30+25+2\times 8.5=72}^{U'=U+h+2h_r=30+25+2\times 8.5=72}$$

 $U_c = 2 \times (72 + 102) = 348 \text{ cm}$

 $Q_u = 0.1 \ MN \ < 0.045 \times 3.48 \times 0.25 \times 18 = 0.7047 \ MN$

=> Condition vérifiée

2.9- Justification aux efforts tranchants

La condition à vérifier est la suivante : (CCTG, 1991b)

$$\tau_{u} \leq \tau_{adm}$$

$$\tau_{u} = \frac{T_{u}}{b \times d}$$

$$\tau_{adm} = Min(\frac{0.15 \times f_{c_{28}}}{yb}; 4 \text{ MPa})$$
2.9.1- Transversalement :

$$T_{u} = 0.25 \text{ MN}$$
Avec
$$T_{u}$$
Effort tranchant a l'ELU.
Effort de cisèlement.

$$\tau_u = \frac{T_u}{b \times d} \implies \tau_u = \frac{0.25}{1 \times 0.225} = 1.11 \text{ MPa}$$

 $\tau_{adm} = Min(\ \frac{0.15 \times f_{c_{28}}}{yb}$; 4 MPa) = 2.7 MPa

 $\tau_u = 1.11 \text{ MPa} < \tau_{adm} = 2.7 \text{ MPa}$ => Condition vérifiée

2.9.2- Longitudinalement

$$T_{u} = 0.209 MN$$

$$\tau_{u} = \frac{T_{u}}{b \times d} \implies \tau_{u} = \frac{0.209}{1 \times 0.225} = 0.92 MPa$$

$$\tau_{adm} = Min(\frac{0.15 \times f_{c_{28}}}{yb}; 4 MPa) = 2.7 MPa$$

$$\tau_{u} = 0.92 MPa < \tau_{adm} = 2.7 MPa \implies \text{Condition vérifiée}$$

$$6T20$$

$$6T16$$

Figure 3-31: ferraillage de l'hourdis en travée.

100cm

Figure 3-32: ferraillage de l'hourdis en appuis.

3- ETUDE DE L'ENTRETOISE

3.1- Introduction

Les entretoises ont pour rôle de répartir les charges entre les poutres et de les encastrer à la torsion sur appuis. De plus, leur rôle est indispensable pour le vérinage du tablier, rendu nécessaire pour le

changement des appareils d'appuis, Enfin, les entretoises sur culées sont indispensables pour assurer une bonne tenue des joints de chaussée d'extrémité. (Setra, 1996)

3.2- La modélisation des entretoises

Les entretoises se calculent comme des poutres reposant sur appuis (vérins) chargées par les réactions des poutres. Il ne sera tenu compte que des charges dues au poids propre du tablier. Dans notre cas, on suppose pour le levage (6 vérins).**Figure3-33**

La modélisation fait par logiciel SAP2000, les résultats des moments maximaux présenter dans le **Tableau 3.25.**

Figure 3-33: les vérins de levage de tablier.

Figure 3-34: réaction de tablier.

Figure 3-35: le model en SAP2000.

	En travée	En appui
ELU(MN.m)	1.02	0.34
ELS(MN.m)	0.7	0.25

Tableau 3-25: Moments fléchissant max de l'entretoise .

3.3- Hypothèses de calcul

Le calcul de ferraillage sera fait par la méthode manuelle suivant le règlement (CCTG, 1991a)

Model : poutre sollicité par des charges ponctuel (poutres de tablier).

Contenus sur 6 appuis (vérins). Figure 3-36

Fissuration préjudiciable

Ni pas prise en compte des armatures comprimées

Section de calcul Figure 3-29

Béton: $fc_{28} = 27$ (MPa) Acier: $f_e = 500$ (MPa)

3.4- Détermination des ferraillages (à l'ELU)

On utilise la même méthode dans Titre2-5, les résultats présenter dans le tableau au-dessus :

	En travée	En appui
M_u (MN.m)	1.02	0.34
μ (MN.m)	0.183	0.0612
α (m)	0.254	0.0789
Z(m)	0.988	1.0652
A_{st} (cm ²)	23.74	7.34

Tableau 3-26: le calcul de ferraillage de l'entretoise.

3.5- Justification de contrainte (à l'ELS)

$$\frac{b}{2}x^{2} - 2 \times n \times A_{st}(d - x) = 0 \dots \dots (A_{sc} = 0)$$

	En travée	En appui
$M_s(MN.m)$	0.7	0.25
A_{st} (cm ²)	24.24 (12T16)	8.04 (4T16)
X(m)	34.26	21.26
$I(m^4)$	0.206	0.105
σ_{bc} (MPa)	5.41	4.02
σ_{st} (MPa)	194.53	189.62

Tableau 3-27: le calcul des contraintes à l'ELS.

Figure 3-38: ferraillage de l'entretoise.

3.6- Conclusion

Les résultats nous montrent que le dimensionnement de tous les éléments résistances de tablier, (la poutre préfabriqué béton précontraint, l'hourdis et l'entretoise) est justifié et qu'elle peut satisfaire les exigences de normes et de conception.

CHAPITRE04 : APPAREILS D'APPUIS

1- Introduction

Les poutres reposent sur les appuis par l'intermédiaire d'un appareil d'appui. Compte tenu de l'intensité relativement faible des réactions transmises par les poutres et du grand nombre de ces appareils, on utilise habituellement des appareils d'appuis **fixes** en **caoutchouc fretté**. Les déplacements du tablier sont donc absorbés par **les distorsions du caoutchouc**, et l'on évite ainsi d'avoir recours à des appareils d'appui glissants, bien plus **coûteux**, qui de plus sont bien plus sensibles à un défaut de pose ou d'entretien. (**Setra, 1996**)

Ces appareils d'appui doivent être conformes à la norme NFT 47.815 qui a entériné l'abandon de la fabrication des appareils d'appui non totalement enrobés. De plus cette norme en précise les dimensions normalisées de fabrication pour les appareils d'appui à feuillets d'élastomère de 8, 10 et 12 mm. Leur dimensionnement relève du chapitre III du Bulletin Technique N°4 du SETRA [11], dans l'attente de la mise à jour de ce document. (**Setra, 1996**)

2- Appareil d'appuis en élastomère frété

Ces appareils, placés entre une structure et ses supports, sont destinés à transmettre les charges normales à leur plan. Ils permettent en même temps d'absorber respectivement par rotation et distorsion les déformations et translations de la structure, lorsqu'elles sont limitées. (Setra, 1974)

2.1- L'élastomère

L'élastomère utilisé pour la fabrication des appareils d'appui peut être soit d'origine végétale, le latex, et le produit utilisé est alors un polymère de l'isoprène (polyisoprène), soit d'origine synthétique et dans ce cas le composé est généralement un polymère du chloroprène (polychloroprène) (**Setra, 1974**)

2.2- Les frettes

Pour les appuis courants, les frettes sont en acier doux, de qualité E 24-1. Toutefois, lorsque les appuis sont destinés à fonctionner en atmosphère corrosive, telle que l'atmosphère marine,

il est recommandé d'utiliser pour les frettes un acier inoxydable Les frettes sont solidarisées au néoprène par vulcanisation. Les autres méthodes, le collage en

particulier, ne sont pas admises. Quelque soit le matériau utilisé, l'épaisseur des frettes ne pourra être inférieure à 1 mm. (Setra, 1974)

3- Dimensionnement des appareils d'appuis

3.1- Les sollicitations de calcul

Les sollicitations de calcul sont déterminées de la même manière pour les différents types d'appareils. (Setra, 1974)

Pour la détermination des appareils d'appui, on considère les sollicitations de calcul vis-à-vis des états limites d'utilisation. (Setra, 1974)

Dans notre étude, on va utiliser la valeur de réaction verticale à l'appui (ELU1 (AL)).

Réaction verticale à l'appui :

$$N_{max} = 1641.31 \, KN$$

3.2- Aire de l'appareil d'appui

La contrainte moyenne de compression « σ_{moy} » ne peut dépasser 15MPa. (Setra, 1974) On obtient donc pour un appareil, avec la réaction verticale maximale :

3.3- Epaisseur nette de l'élastomère

Comme les imperfections des surfaces de pose amènent à prévoir une épaisseur minimale d'élastomère, en pratique il est recommandé de respecter la double condition : (Setra, 1974)

$$\frac{a}{10} < T < \frac{a}{5}$$

=> 3 < T < 6

On prend : T = 4.8cm

 $T = n \times t$ et t = 1.2cm

$$n = \frac{T}{t}$$
 => n=4

3.4- Epaisseur des frettes

L'épaisseur des frettes devra respecter les deux conditions suivantes : (Setra, 1974)

$$t_s > \frac{a}{\beta} \times \frac{\sigma_{\rm m}}{\sigma_{\rm e}} \quad , \quad t_{\rm s} \ge 2_{\rm mm}$$

 $\sigma_e = 2200 \text{ Kg}/mm^2$ pour l'acier E 24-1 e<3mm

Dans les cas usuels, on respectera les valeurs suivantes(en mm). (Setra, 1974)

Feuillets élémentaires	Frettes intermédiaires
8	2
10	3
12	3
20	4

Tableau 4-1: épaisseur des frettes.(en

$$t_s > \frac{30}{7.14} \times \frac{136.77}{2200}$$

 $= t_s > 0.26$ cm

On prend $t_s = 3 mm$

Donc l'appareil d'appuis à choisir est en élastomère fretté avec les caractéristiques suivantes :

 $300 \times 400 \times [4(12) + 4(3)]$

Figure 4-1: détail de l'appareil d'appuis choisé.(en mm)

4- Les efforts horizontaux en tête des appuis

Les efforts horizontaux exercés sur le tablier (**freinage, vent ...**) sont transmis aux différents appuis, selon une répartition qu'il convient de déterminer. Il faut, d'autre part, calculer les efforts développés par le tablier en tête des appuis, du fait des déplacements imposés à ces derniers par les déformations de la structure (**retrait, fluage, température**).

Variation linéaire du tablier.(Setra, 1974)

4.1- Déplacement due au retrait

$$\Delta l_r = -\frac{100-60}{100} \times \varepsilon_r \times L$$

Avec :

$$\begin{cases} \varepsilon_r = 25 \times 10^{-4} \\ L = 36.5 \text{ m} \end{cases}$$

 $\Delta l_r = -\frac{40}{100} \times 25 \times 10^{-4} \times 36.5$

$$\Rightarrow \Delta l_r = -3.5 mm$$

4.2- Déplacement due au fluage

$$\Delta l_f = -\frac{100-40}{100} \times 2.5 \times \frac{\sigma_n}{E} \times L$$

4.3- Déplacement due à la température

Longue durée : $\Delta l_t = \pm 25 \times 10^{-5} \times L \times 0.4$ pour L= 35m => $\Delta l_t = \pm 3.5 mm$ Courte durée : $\Delta l_t = \pm 35 \times 10^{-5} \times L \times 0.4$ pour L= 35m => $\Delta l_t = \pm 4.9 mm$

4.4- Total des variations linéaires

	Courte duré	Longue durée
Δl_{min}	-17.88 mm	-16.48 mm
Δl_{max}	4.9 mm	3.5 <i>mm</i>

Tableau 4-2: valeur de la variation lignaire de

5- Evaluation du point fixe

Les efforts se répartissent en fonction de la rigidité de chaque appui. La rigidité **k** d'un appui sera, par définition, $\mathbf{k} = \frac{1}{\delta}$, δ étant le déplacement de la tête d'appui sous l'action d'une force horizontale unité. Ce déplacement $\delta = \delta_1 + \delta_2 + \delta_3$, procède de la distorsion de l'appareil d'appui, de la déformation du corps de l'appui et enfin de la déformation de la fondation. (Setra, 1974)

$$H_i = \delta_i \times K_i$$

$$\delta_{i} = \varepsilon_{t}(X_{i} - X)$$

$$\delta_{i}$$
Le pourcentage de l'effort horizontal dans la pile i.
$$\delta_{i}$$
Le déplacement de l'appareil d'appui.
$$\delta_{1i}$$
Le déplacement dû à l'élastomère.
$$\delta_{2i}$$
Le déplacement dû à l'appui.
$$\delta_{3i}$$
Le déplacement dû à la fondation.

 $\delta_{3i} = 0$ (la fondation de la pile est supposé encastrée dans les pieux, il ne peut pas y avoir de déplacement)

$$= \delta_i = \delta_{1i} + \delta_{2i} = \frac{T_i}{n \times G \times A_i} + \frac{h^3}{3 \times E \times I_i}$$

$$T_i = 48 \times 10^{-3} m$$
$$A_i = 0.12 m^2$$

Moment d'inertie de la pile pleine :

$$I_p = \frac{b \times h^3}{12} = \frac{7 \times 1.8^3}{12} = 3.402m^4$$

Moment d'inertie de la pile creuse :

$$I_c = I_{c_1} - I_{c2} = \frac{7 \times 3^3}{12} - \frac{6 \times 2^3}{12} = 11.75m^4$$

5.1- Calcul de déplacement

5.1.1- Cas I : chaussé gauche

Chargement statique (Lent) : $G = 90 \text{ t/m}^2$; $E = 1150000 \text{ t/m}^2$

Avec K_i	La rigidité de l'IIème appui
T_i	Épaisseur de l'élastomère.
Ii	Moment d'inertie.
A,	Surface de l'élastomère.
G	Module de cisaillement.
h_i	Hauteur de la pile.
n	Nombre de poutre par appui.
E	

$$\delta_{11} = \delta_{110} = \frac{T_i}{n \times G \times A_i} = \frac{0.048}{7 \times 90 \times 0.12} = 0.0006349 \, m/t$$

$$\begin{split} \delta_{12} &= \delta_{13} = \delta_{14} = \delta_{15} = \delta_{16} = \delta_{17} = \delta_{18} = \delta_{19} = \frac{T_i}{n \times G \times A_i} = \frac{T_i 0.048}{14 \times 90 \times 0.12} = 0.0003175 \ m/t \\ \delta_{21} &= \delta_{210} = 0 \ m/t \end{split}$$

$$\begin{split} \delta_{22} &= \frac{h^3}{3 \times E \times I_i} = \frac{11^3}{3 \times 1150000 \times 3.402} = 0.0001134 \, m/t \\ \delta_{23} &= \frac{h^3}{3 \times E \times I_i} = \frac{13.5^3}{3 \times 1150000 \times 3.402} = 0.0002096 \, m/t \\ \delta_{24} &= \frac{h^3}{3 \times E \times I_i} = \frac{24.5^3}{3 \times 1150000 \times 11.75} = 0.0003628 \, m/t \\ \delta_{25} &= \frac{h^3}{3 \times E \times I_i} = \frac{37^3}{3 \times 1150000 \times 11.75} = 0.0012495 \, m/t \\ \delta_{26} &= \frac{h^3}{3 \times E \times I_i} = \frac{37^3}{3 \times 1150000 \times 11.75} = 0.0012495 \, m/t \\ \delta_{27} &= \frac{h^3}{3 \times E \times I_i} = \frac{37^3}{3 \times 1150000 \times 11.75} = 0.0012495 \, m/t \\ \delta_{28} &= \frac{h^3}{3 \times E \times I_i} = \frac{20^3}{3 \times 1150000 \times 11.75} = 0.001973 \, m/t \\ \delta_{29} &= \frac{h^3}{3 \times E \times I_i} = \frac{6.5^3}{3 \times 1150000 \times 3.402} = 2.3398 \times 10^{-5} \, m/t \end{split}$$

Chargement dynamique (instantané) : $G = 120 \text{ t/m}^2$; $E = 3450000 \text{ t/m}^2$

 $\delta_{21} = \delta_{210} = 0 \ m/t$

$$\delta_{11} = \delta_{110} = \frac{T_i}{n \times G \times A_i} = \frac{0.048}{7 \times 120 \times 0.12} = 0.0004762 \, m/t$$

$$\delta_{12} = \delta_{13} = \delta_{14} = \delta_{15} = \delta_{16} = \delta_{17} = \delta_{18} = \delta_{19} = \frac{T_i}{n \times G \times A_i} = \frac{T_i 0.048}{14 \times 120 \times 0.12} = 0.0002381 \, m/t$$

$$\delta_{22} = \frac{h^3}{3 \times E \times I_i} = \frac{11^3}{3 \times 3450000 \times 3.402} = 3.78 \times 10^{-5} \, m/t$$

$$\delta_{23} = \frac{h^3}{3 \times E \times I_i} = \frac{13.5^3}{3 \times 3450000 \times 3.402} = 6.988 \times 10^{-5} \, m/t$$

$$\delta_{24} = \frac{h^3}{3 \times E \times I_i} = \frac{24.5^3}{3 \times 3450000 \times 11.75} = 0.0001209 \, m/t$$

$$\delta_{25} = \frac{h^3}{3 \times E \times I_i} = \frac{37^3}{3 \times 3450000 \times 11.75} = 0.0004165 \, m/t$$

$$\delta_{26} = \frac{h^3}{3 \times E \times I_i} = \frac{37^3}{3 \times 3450000 \times 11.75} = 0.0004165 \, m/t$$

$$\delta_{27} = \frac{h^3}{3 \times E \times I_i} = \frac{37^3}{3 \times 3450000 \times 11.75} = 0.0004165 \, m/t$$

$$\delta_{28} = \frac{h^3}{3 \times E \times I_i} = \frac{20^3}{3 \times 3450000 \times 11.75} = 6.5783 \times 10^{-5} \, m/t$$

$$\delta_{29} = \frac{h^3}{3 \times E \times I_i} = \frac{6.5^3}{3 \times 3450000 \times 3.402} = 7.7995 \times 10^{-6} \, m/t$$

Apuis	n	culée 1	pile 1	pile 2	pile 3	pile 4	pile 4	pile 5	pile 6	pile 7	culée 2
Distance	X	0	36	72,37	109,37	146,01	0	36,91	73,94	110,97	147,89
Ti(m)		0,048	0,048	0,048	0,048	0,048	0,048	0,048	0,048	0,048	0,048
n		7	14	14	14	14	14	14	14	14	7
Ai		0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12
h(m)		0	11	13,5	24,5	37	37	37	20	6,5	0
Ti(m4)		0	3,402	3,402	11,75	11,75	11,75	11,75	11,75	3,402	0
$E(t/m^2)$	lent	1150000	1150000	1150000	1150000	1150000	1150000	1150000	1150000	1150000	1150000
E(VIIZ)	inst	3450000	3450000	3450000	3450000	3450000	3450000	3450000	3450000	3450000	3450000
$C(t/m^2)$	lent	90	90	90	90	90	90	90	90	90	90
G((/112)	inst	120	120	120	120	120	120	120	120	120	120
$\delta 1i(m)$	lent	0,0006349	0,0003175	0,0003175	0,0003175	0,0003175	0,0003175	0,0003175	0,0003175	0,0003175	0,0006349
011(111)	inst	0,0004762	0,0002381	0,0002381	0,0002381	0,0002381	0,0002381	0,0002381	0,0002381	0,0002381	0,0004762
$\delta 2i(m)$	lent	0	0,0001134	0,0002096	0,0003628	0,0012495	0,0012495	0,0012495	0,0001973	2,34E-05	0
021(111)	inst	0	3,78E-05	6,988E-05	0,0001209	0,0004165	0,0004165	0,0004165	6,578E-05	7,799E-06	0
Si(m)	lent	0,0006349	0,0004309	0,0005271	0,0006802	0,001567	0,001567	0,001567	0,0005148	0,0003409	0,0006349
OI(III)	inst	0,0004762	0,0002759	0,000308	0,000359	0,0006546	0,0006546	0,0006546	0,0003039	0,0002459	0,0004762
V;	lent	1575	2320,9215	1897,2177	1470,0724	638,16425	638,16425	638,16425	1942,4701	2933,7666	1575
NI	inst	2100	3624,5509	3247,0588	2785,3498	1527,6348	1527,6348	1527,6348	3290,7949	4066,7812	2100
vi*Ki	lent	0	83553,174	137301,64	160781,82	93178,362	0	23554,643	143626,24	325560,08	232926,75
AI' KI	inst	0	130483,83	234989,65	304633,71	223049,96	0	56385,002	243321,37	451290,71	310569
L10/	lent	0,1993324	0,2937364	0,2401123	0,1860527	0,0807662	0,0825828	0,0825828	0,251369	0,3796495	0,2038158
П%0	inst	0,1580778	0,2728387	0,2444229	0,2096677	0,114993	0,1220853	0,1220853	0,2629933	0,3250085	0,1678275

Tableau 4-3: recapitulative de déplacement, de regidité et de pourcentage H, pour la chaussé gauche.

5.1.1.1- Calcul de centre élastique

travé	es	1 => 4	4 => 8
$\sum h$	lent	7901,3758	7727,56515
$\sum_{k} \kappa_i$	inst	13284,594	12512,8458
$\sum m \times h$	lent	474815	725667,708
$\sum_{i=1}^{x_i \times \kappa}$	inst	893157,15	1061566,09
v	lent	60,092699	93,9063849
$\mathbf{\Lambda}_0$	inst	67,23255	84,838102
$\sum u$	lent	1	1
\sum^{n}	inst	1	1

 $X_0 = \operatorname{som}(x_i \times k_i) / \operatorname{som}(k_i) \qquad ; k_i = 1/\delta_i \qquad ; H_i = (k_i / \sum k_i)$

Tableau 4-4: centre élastique de chaussé gauche.

5.1.2- Cas II : chaussé droit

 $\delta_{21} = \delta_{210} = 0 \ m/t$

Chargement statique (Lent) : $G = 90 \text{ t/m}^2$; $E = 1150000 \text{ t/m}^2$

$$\delta_{11} = \delta_{110} = \frac{T_i}{n \times G \times A_i} = \frac{0.048}{7 \times 90 \times 0.12} = 0.0006349 \, m/t$$

 $\delta_{12} = \delta_{13} = \delta_{14} = \delta_{15} = \delta_{16} = \delta_{17} = \delta_{18} = \delta_{19} = \frac{T_i}{n \times G \times A_i} = \frac{T_i 0.048}{14 \times 90 \times 0.12} = 0.0003175 \ m/t$

$$\begin{split} \delta_{22} &= \frac{h^3}{3 \times E \times I_i} = \frac{14^3}{3 \times 1150000 \times 3.402} = 0.0002338 \, m/t \\ \delta_{23} &= \frac{h^3}{3 \times E \times I_i} = \frac{16.5^3}{3 \times 1150000 \times 11.75} = 0.0001108 \, m/t \\ \delta_{24} &= \frac{h^3}{3 \times E \times I_i} = \frac{27.5^3}{3 \times 1150000 \times 11.75} = 0.000513 \, m/t \\ \delta_{25} &= \frac{h^3}{3 \times E \times I_i} = \frac{42^3}{3 \times 1150000 \times 11.75} = 0.0018276 \, m/t \\ \delta_{26} &= \frac{h^3}{3 \times E \times I_i} = \frac{42^3}{3 \times 1150000 \times 11.75} = 0.0018276 \, m/t \\ \delta_{27} &= \frac{h^3}{3 \times E \times I_i} = \frac{37^3}{3 \times 1150000 \times 11.75} = 0.00124953 \, m/t \\ \delta_{28} &= \frac{h^3}{3 \times E \times I_i} = \frac{20^3}{3 \times 1150000 \times 11.75} = 0.001973 \, m/t \\ \delta_{29} &= \frac{h^3}{3 \times E \times I_i} = \frac{7.5^3}{3 \times 1150000 \times 3.402} = 3.5944 \times 10^{-5} \, m/t \end{split}$$

Chargement dynamique (instantané) : $G = 120 \text{ t/m}^2$; $E = 3450000 \text{ t/m}^2$

 $\delta_{21}=\delta_{210}=0\;m/t$

$$\delta_{11} = \delta_{110} = \frac{T_i}{n \times G \times A_i} = \frac{0.048}{7 \times 120 \times 0.12} = 0.0004762 \, m/t$$

$$\delta_{12} = \delta_{13} = \delta_{14} = \delta_{15} = \delta_{16} = \delta_{17} = \delta_{18} = \delta_{19} = \frac{T_i}{n \times G \times A_i} = \frac{0.048}{14 \times 120 \times 0.12} = 0.0002381 \, m/c$$

$$\begin{split} \delta_{22} &= \frac{h^3}{3 \times E \times I_i} = \frac{14^3}{3 \times 3450000 \times 3.402} = 7.793 \times 10^{-5} \, m/t \\ \delta_{23} &= \frac{h^3}{3 \times E \times I_i} = \frac{16.5^3}{3 \times 3450000 \times 3.402} = 3.694 \times 10^{-5} \, m/t \\ \delta_{24} &= \frac{h^3}{3 \times E \times I_i} = \frac{27.5^3}{3 \times 3450000 \times 11.75} = 0.000171 \, m/t \\ \delta_{25} &= \frac{h^3}{3 \times E \times I_i} = \frac{42^3}{3 \times 3450000 \times 11.75} = 0.0006092 \, m/t \\ \delta_{26} &= \frac{h^3}{3 \times E \times I_i} = \frac{42^3}{3 \times 3450000 \times 11.75} = 0.0006092 \, m/t \\ \delta_{27} &= \frac{h^3}{3 \times E \times I_i} = \frac{37^3}{3 \times 3450000 \times 11.75} = 0.00041651 \, m/t \end{split}$$

$$\delta_{28} = \frac{h^3}{3 \times E \times I_i} = \frac{20^3}{3 \times 3450000 \times 11.75} = 6.5783 \times 10^{-5} \, m/t$$

$$\delta_{29} = \frac{h^3}{3 \times E \times I_i} = \frac{7.5^3}{3 \times 3450000 \times 3.402} = 1.1981 \times 10^{-6} \, m/$$

Appuis	n	culée 1	pile 1	pile 2	pile 3	pile 4	pile 4	pile 5	pile 6	pile 7	culée 2
Distance	Х	0	36,71	73,22	109,43	145,28	0	35,81	71,73	107,73	143,47
Ti(m)		0,048	0,048	0,048	0,048	0,048	0,048	0,048	0,048	0,048	0,048
n		7	14	14	14	14	14	14	14	14	7
Ai		0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12
h(m)		0	14	16,5	27,5	42	42	37	20	7,5	0
Ii(m4)		0	3,402	11,75	11,75	11,75	11,75	11,75	11,75	3,402	0
E(t/m2)	lent	1150000	1150000	1150000	1150000	1150000	1150000	1150000	1150000	1150000	1150000
$E(U \Pi Z)$	inst	3450000	3450000	3450000	3450000	3450000	3450000	3450000	3450000	3450000	3450000
C(t/m2)	lent	90	90	90	90	90	90	90	90	90	90
G(1112)	inst	120	120	120	120	120	120	120	120	120	120
\$1.()	lent	0,0006349	0,0003175	0,0003175	0,0003175	0,0003175	0,0003175	0,0003175	0,0003175	0,0003175	0,0006349
011(111)	inst	0,0004762	0,0002381	0,0002381	0,0002381	0,0002381	0,0002381	0,0002381	0,0002381	0,0002381	0,0004762
$\delta 2i(m)$	lent	0	0,0002338	0,0001108	0,000513	0,0018276	0,0018276	0,0012495	0,0001973	3,594E-05	0
021(111)	inst	0	7,793E-05	3,694E-05	0,000171	0,0006092	0,0006092	0,0004165	6,578E-05	1,198E-05	0
Si(m)	lent	0,0006349	0,0005513	0,0004283	0,0008305	0,0021451	0,0021451	0,001567	0,0005148	0,0003534	0,0006349
Ol(III)	inst	0,0004762	0,000316	0,000275	0,0004091	0,0008473	0,0008473	0,0006546	0,0003039	0,0002501	0,0004762
V:	lent	1575	1814,0495	2334,9517	1204,1108	466,17843	466,17843	638,16425	1942,4701	2829,6176	1575
NI	inst	2100	3164,2957	3635,9239	2444,3627	1180,2071	1180,2071	1527,6348	3290,7949	3998,7735	2100
	lent	0	66630,037	171058,56	131765,84	67726,402	0	22852,662	139333,38	304834,7	225965,25
XI' KI	inst	0	116224,58	266367,79	267486,61	171460,49	0	54704,604	236048,72	430787,87	301287
LI0/	lent	0,2130022	0,2453311	0,3157777	0,1628433	0,0630457	0,0625623	0,0856432	0,2606842	0,3797415	0,2113688
Π70	inst	0,1676675	0,2526426	0,2902982	0,195162	0,0942297	0,0975587	0,1262778	0,2720247	0,3305479	0,1735909

Tableau 4-5: récapitulative de déplacement, de rigidité et de pourcentage H, pour la chaussé droit.

5.1.2.1- Calcul de centre élastique

$X_0 = \operatorname{som}(x_i \times k_i) / \operatorname{som}(k_i)$; $k_i = 1/\delta_i$; $H_i = (k_i / \sum k_i)$
--	----------------------	----------------------------

travées		1 => 4	4 => 8
$\sum k_i$	lent	7901,3758	7727,56515
	inst	13284,594	12512,8458
$\sum x_i \times k_i$	lent	474815	725667,708
	inst	893157,15	1061566,09
v	lent	60,092699	93,9063849
$\mathbf{\Lambda}_0$	inst	67,23255	84,838102
$\sum H$	lent	1	1
	inst	1	1

Tableau 4-6: centre élastique de chaussé droit.

6- Répartition des efforts horizontaux

6.1- Efforts dues aux charges dynamiques

$$H_{fr} = H_{bc} \times \frac{k_i}{\sum k_i} = H_{bc} \times H\%$$

Avec :

H%(voir tableau 4.3 et tableau 4.5)

 $H_{bc} = poid d'un \ camion \times b_c = 300 \times 1.2 = 360 \ \text{KN} = 36 \ t$

Cas I : chaussé gauche

appui	C1	P1	P2	P3	P4	P4	P5	P6	P7	C2
H_{fr}	5.69	9.82	8.79	7.54	4.13	4.39	4.39	9.46	11.7	6.04

Tableau 4-7: Répartition de l'effort de freinage de Bc sur les appuis de chaussé

Cas II : chaussé droit

appui	C1	P1	P2	P3	P4	P4	P5	P6	P7	C2
H _{fr}	6,03	9,09	10,45	7,02	3,39	3,51	4,54	9,79	11,89	6,24

Tableau 4-8: Répartition de l'effort de freinage de Bc sur les appuis de chaussé

6.2- Variation linéaire du tablier

Cas I : chaussé gauche

Appui	C1	P1	P2	P3	P4	P4	P5	P6	P7	C2
Xi	65,59	28,86	7,67	43,84	79,69	84,54	48,73	12,81	23,11	58,93
ΔL_i	0,008	0,0035	0,00093	0,0053	0,0097	0,010	0,0059	0,0015	0,0028	0,0072
H _{vlt}	12,65	11,13	2.95	16.91	30.73	32,61	18.79	4,94	8.91	11.36

Tableau 4-9: Répartition de l'effort de la variation linéaire sur les appuis de chaussé

Cas II : chaussé droit

Appui	C1	P1	P2	P3	P4	P4	P5	P6	P7	C2
Xi	67,23	31,23	5,14	41,89	78,89	84,83	47,92	10,89	26,14	63 <i>,</i> 06
ΔL_i	0,0082	0,0038	0,00062	0,0051	0,009	0,010	0,0058	0,0013	0,0032	0,0077
H _{vlt}	12,96	12,04	1,98	16,15	30,43	32,72	18,48	4,2	10,08	12,16

Tableau 4-10: Répartition de l'effort de la variation linéaire sur les appuis de chaussé droit.

6.3- Charge séismique

Cas I : chaussé gauche

Cas II : chaussé droit

Voir Tableau 5.12

Voir Tableau 5.13

6.4- Effort du au vent

L'action du vent est perpendiculaire à l'axe horizontal de l'ouvrage, on considère une pression de 2KN/m

7- VERIFICATION DES CONTRAINTES

7.1- Limitation des contraintes de cisaillement

7.1.1- Sollicitation sous la compression

Sous un effort normal, des contraintes de cisaillement τ_N apparaissent au niveau du plan de frettage, suivant une répartition conforme à celle indiquée sur la **figure 4.4**.Les Contraintes maximales se développent sur les bords de chaque feuillet et plus précisément au milieu des

grands côtés. Ceci Explique que ce soit en ces endroits que peuvent apparaître les premières dégradations d'un appareil. La valeur maximale de cette contrainte est égale à: (Setra, 1974)

$$\sigma_{m} = \frac{N_{max}}{a \times b} \leq 15000 \text{ KN/m}^{2} , \quad \tau = \frac{1.5 \times \sigma_{m}}{\beta} < 2800 \text{ KN/m}^{2}$$

$$N_{max} = 1641.31 \text{ KN}$$

$$\sigma_{m} = \frac{1641.31}{0.12} = 13677.58 \text{ KN/m}^{2} \leq 15000 \text{ KN/m}^{2}$$

$$=> \text{ Condition vérifiée.}$$

$$\beta = \frac{a \times b}{(a + b) \times 2 \times t} = \frac{30 \times 40}{(30 + 40) \times 2 \times 1.2} = 7.14$$

$$\tau_{N} = \frac{1.5 \times 13677.58}{7.14}$$

$$\tau_{N} = 2698.44 \text{ KN/m}^{2} < 2800 \text{ KN/m}^{2} => \text{ Condition vérifiée}$$

$$M_{max}$$

Figure 4-4: la contraintes de cisaillement τ_{N} .

а

7.1.2- Sollicitation sous la distorsion

β

Dans le cas d'une distorsion, la distribution des contraintes au niveau du plan de frettage est uniforme (Fig.4.5). (Setra, 1974)

Dans les spécifications concernant les appareils d'appui on introduit une contrainte conventionnelle de calcul qui, sous effort statique seul, correspondrait à la même déformation totale:

Cette contrainte conventionnelle de calcul vaut : (Setra, 1974)

$$\tau_H = \frac{G \times \mu}{T} < 0.5 \times G = 450 \ KN/m^2$$

$$\tau_H = \frac{900 \times 0.01648}{0.048} = 309 \ KN/m^2 < 450 \ KN/m^2 \implies \text{Condition vérifiée}$$

Figure 4-5: contraintes de cisaillement

7.1.3- Condition de non glissement

Les deux conditions suivantes doivent être remplies, pour les combinaisons d'actions les plus défavorables: **(Setra, 1974)**

$$\sigma_{min} \ge 2000 \ KN/m^2 \qquad , \quad H < F \times N$$

 $\Rightarrow \sigma_{min} = \frac{N_{min}}{a \times b} = \frac{691.16}{0.12}$

 $\sigma_{min} = 5759.66 \ {\it KN/m^2} > 2000 {\it KN/m^2} \quad = > \quad {\rm Condition \ vérifiée}$

 \Rightarrow H< F × N

Lorsque les faces de l'appareil en contact avec la structure sont des feuilles d'élastomère.

F = 0,26

 $H = 30 t < 0.21 \times 164.131 = 34.46 t =>$ Condition vérifiée

7.1.4- Sécurité au flambement

En fonction de leurs dimensions les appareils d'appui peuvent se déformer par instabilité élastique . (Setra, 1974)

Par analogie avec les formules classiques de la résistance des matériaux, on peut penser que la stabilité élastique des appareils en élastomère fretté impose une limitation de la contrainte moyenne de compression, de la forme suivant (Setra, 1974)

S=7.14

$$d = 12 + 3 = 15 \text{mm}$$

$$h = 4 \times 12 + 5 \times 3 = 63 \text{ mm}$$

$$p_c = (4 \times 1.2 \times 0.12 \times (7.14)^2 \times 0.015)/0.063$$

$$p_c = 6.99 \text{ MN}$$

$$y_s \times N_{max} = 3 \times 1.641 = 4.92 \text{ MN} < p_c = 6.99 \text{ MN} \implies \text{Condition vérifiée}$$

8- Les bossages d'appuis

8.1- Dimensionnement de bossage d'appuis

Le dimensionnement des dès d'appuis inférieurs et supérieurs présenteront par rapport à l'appareil d'appui un débordement de 5cm. (Setra, 1996)

A = a + 10 cm = 40 cm

$$B=b+10cm=50cm$$

Figure 4-6: vu en plan de bossage.

8.2- Ferraillage des dés d'appui

$$A = \frac{0.04 \times N_{\text{max}}}{\overline{\sigma_{st}}}$$

$$\overline{\sigma_{st}} = \min\left(\frac{2}{3}f_e; 110\sqrt{\mu \times f_{t28}}\right)$$

$$= \min\left(\frac{2}{3} \times 400; 10\sqrt{1.6 \times 2.7}\right)$$

$$\overline{\sigma_{st}} = 222863.07 t/m^2$$

$$A \text{vec}$$

$$\overline{\sigma_{st}}$$

$$Contrainte limite de traction des aciers.
Fissuration préjudiciable$$

$$A = \frac{0.04 \times 164.131}{22863.07} = 2.87 \ cm^2$$

On prend $4\emptyset 12 = 4.52 \ cm^2$ dans les deux sens.

9- Calcule des joints

On doit vérifier que
$$\longrightarrow \begin{cases} \Delta L_T + \Delta_{freinage} < W \\ \Delta L_T + \Delta_{seisme} < 1.3W \end{cases}$$

Avec
W Caractérise le type de joint de chaussée choisi.
$\Delta L_T = \Delta L_{retrait} + \Delta L_{fluage} + \Delta L_{température}$ $\Delta L_T = 3.5 + 9.48 + 4.9 = 17.88 mm = 1.788 cm$

9.1- Déplacement dû au freinage

 $\Delta_{freinage} = \frac{T.H}{G.A}$ $H_{fr} = 0.3/7 = 0.042t$ G=0.8MPa

 $A = 0.12 \text{ m}^2$

T = 0.048 m

$$\Delta_{freinage} = \frac{0.048 \times 0.042}{0.8 \times 0.12} = 0.021 \ m = 2.1 \ cm$$

 $\Delta L_T + \Delta_{freinage} = 1.788 + 2.1 = 3.88 \ cm \ < W = 10 \ cm \ =>$ Condition vérifiée

Avec

9.2- Déplacement dû au séisme

$$\Delta_{seisme} = \frac{0.048 \times 13.869}{0.8 \times 0.12} = 6.93 \ cm$$

 $\Delta L_T + \Delta_{fseisme} = 1.788 + 6.93 = 8.718 \ cm \ < 1.3W = 13 \ cm \ =>$ Condition vérifiée

On prend des joints w = FT50

Chapitre05 : Etude de séisme

1- Introduction

La vérification des ouvrages vis-à-vis des actions sismiques de calcul doit être telle que le risque de défaillance sous séisme potentiel soit suffisamment faible.

Il n'y a pas de protection absolue et de risque « nul », mais une protection relative et un risque « Acceptable », aussi, il est admis que certaines structures puissent subir des déformations qui se situent dans le domaine post élastique entraînant des détériorations : fissurations, destruction de certains éléments non structuraux. (**GTS**, 2008)

2- Classification des ponts

Pour la prise en compte du risque sismique, les ponts sont classés en trois groupes. (GTS, 2008)

Groupe de pont	Importance
Groupe 1	Pont stratégique
Groupe 2	Pont important
Groupe 3	Pont d'importance moyenne

Groupe 2 : Pont important

Dans ce groupe sont classés les ponts qui franchissent ou longent au moins une des voies terrestres ci-après: (GTS, 2008)

- Autoroutes, routes express et voies à grande circulation.

- Liaisons assurant la continuité du réseau autoroutier.

- Grandes liaisons d'aménagement du territoire.

- les ponts situés dans les emprises des ports commerciaux maritimes.

- les ponts sur itinéraire de desserte des installations de grande importance (Groupe 1B du RPA 99/2003).

Donc notre pont est de groupe2.

3- Classification de zone sismique

Le territoire national est divisé en cinq (5) zones de sismicité croissante, Un tableau (Annexe B) précise cette classification par Wilaya et par Commune.

A partir de ce tableau (annexe B de (GTS, 2008))on a classé notre zone (ghazaouate-Tlemcen) en **Zone I.**

4- Coefficient d'accélération de zone

Le coefficient d'accélération de zone A est défini en fonction de la zone sismique et de l'importance du pont, est indiqué dans le **tableau 5.2** ci-dessous : (GTS, 2008)

Groupe de	Zone sismique							
pont	Ι	IIa	IIb	III				
1	0.15	0.25	0.30	0.40				
2	0.12	0.20	0.25	0.30				
3	0.10	0.15	0.20	0.25				

Tableau 5-2: Coefficient d'accélération de zone A.

=> A=0.12(g)

5- Classification des sites

Les sites sont classés en quatre (04) catégories en fonction des propriétés mécaniques des couches de sols qui les constituent. (**GTS**, 2008)

Le rapport géotechnique de site de construction indique que le site est de catégorie S2.

Catégorie S2 : (site ferme)

Dépôts de sables et graviers denses à très denses, marnes ou argiles raides très surconsolidées sur 10 à 20m d'épaisseur avec Vs \geq 400m/s à partir de 10m de profondeur. (**GTS, 2008**)

6- Récapitulative de classifications.

Classification des ponts	Groupe 2
Classification de zone sismique	Zone I
Coefficient d'accélération de zone	A=0.12(g)
Classification des sites	catégorie S2

7- Actions sismiques

Le séisme est traité comme une action accidentelle. (GTS, 2008)

7.1- Calcul du période

La période fondamentale T a pour expression. (GTS, 2008)

$$T = 2 \times \pi \sqrt{\frac{M_{(t)}}{K_{(\frac{KN}{m})}}}$$

7.1.1- Calcul de la masse

M est la masse effective totale de la structure, égale à la masse du tablier augmentée de la masse de la moitié supérieure des piles **liées** au tablier. (GTS, 2008)

Pour les ponts supportant un trafic intense, on peut considérer une part des charges d'exploitation : (GTS, 2008)

•20% des charges d'exploitations routières pour ponts routiers urbains,

•30% des charges d'exploitations ferroviaires,

•00% pour les autres cas.

Donc la masse « M » à prendre en compte, celle du tablier totale entre les joins (4 travée).

$$M = 4 \times G$$

$$M = 4 \times 1022.89$$

7.1.2- Calcul de la raideur

Les raideurs à prendre en compte proviennent des trois parties d'ouvrages suivantes : (GTS, 2008)

- fondations et sol environnant,
- appuis,
- appareils d'appuis.

Alor on calcule la raideur (rigidité) de la même façon que Tableau4.3

	C1	P1	P2	P3	P4	P4	P5	P6	P7	C2
h(m)	0	11	13,5	24,5	37	37	37	20	6,5	0
Ix(m4)	0	3,402	3,402	11,75	11,75	11,75	11,75	11,75	3,402	0
Iy(m4)	0	51,45	51,45	49,75	49,75	49,75	49,75	49,75	51,45	0
$\delta 1(x \text{ et } y)$	0,00047	0,00023809	0,00023809	0,00023809	0,00024	0,00024	0,00023809	0,00023809	0,00023809	0,00047
δ2x(m)	0	3,7801E-05	6,9876E-05	0,000120926	0,00042	0,00042	0,000416511	6,57827E-05	7,79948E-06	0
δ2y(m)	0	2,4995E-06	4,6204E-06	2,85604E-05	9,8E-05	9,8E-05	9,83721E-05	1,55366E-05	5,1572E-07	0
$\sum \delta x(m)$	0,00047	0,000275891	0,00030797	0,000359016	0,00065	0,00065	0,000654601	0,000303873	0,000245889	0,00047
∑δy(m)	0,00047	0,000240589	0,00024271	0,00026665	0,00034	0,00034	0,000336462	0,000253627	0,000238606	0,00047
Kx(t)	2127,66	3624,619745	3247,11405	2785,390426	1527,65	1527,65	1527,647065	3290,851604	4066,867836	2127,66
Ky(t)	2127,66	4156,457449	4120,13731	3750,228271	2972,1	2972,1	2972,103361	3942,803791	4191,014357	2127,66
Hx%	0,15983	0,27227332	0,24391594	0,209232292	0,10983	0,12182	0,121815396	0,262414271	0,324294222	0,16966
Hy%	0,12423	0,242690368	0,24056968	0,218971153	0,14766	0,1834	0,183398817	0,243297579	0,258613845	0,13129
$\sum K x(t)$	13312,43086					12540,67314				
∑Ky(t)			17126,58597			16205,68444				

Tableau 5-4: calcul de la regidité horizontale (longitudinal(x) et transversale(y)) de chaussee gauche.

	C1	P1	P2	P3	P4	P4	P5	P6	P7	C2
h(m)	0	14	16,5	27,5	42	42	37	20	7,5	0
Ix(m4)	0	3,402	11,75	11,75	11,75	11,75	11,75	11,75	3,402	0
Iy(m4)	0	51,45	51,45	49,75	49,75	49,75	49,75	49,75	51,45	0
$\delta 1(x \text{ et } y)$	0,00047	0,00023809	0,00023809	0,00023809	0,00024	0,00024	0,00023809	0,00023809	0,00023809	0,00047
δ2x(m)	0	7,79309E-05	3,6938E-05	0,000171009	0,00061	0,00061	0,000416511	6,57827E-05	1,19814E-05	0
δ2y(m)	0	5,15298E-06	8,4358E-06	4,03891E-05	0,00014	0,00014	9,83721E-05	1,55366E-05	7,92242E-07	0
$\sum \delta x(m)$	0,00047	0,000316021	0,00027503	0,000409099	0,00085	0,00085	0,000654601	0,000303873	0,000250071	0,00047
<u></u> Σδy(m)	0,00047	0,000243243	0,00024653	0,000278479	0,00038	0,00038	0,000336462	0,000253627	0,000238882	0,00047
Kx(t)	2127,66	3164,348113	3635,99316	2444,393988	1180,21	1180,21	1527,647065	3290,851604	3998,857236	2127,66
Ky(t)	2127,66	4111,115576	4056,37063	3590,933189	2617,97	2617,97	2972,103361	3942,803791	4186,162982	2127,66
Hx%	0,1695	0,252086882	0,28966035	0,194731943	0,09402	0,09734	0,125989122	0,271405296	0,329796407	0,17547
Hy%	0,12892	0,24909732	0,24578026	0,217578859	0,15863	0,16521	0,187553403	0,248809068	0,264166153	0,13427
$\sum K x(t)$	12552,60921					12125,22986				
∑Ky(t)			16504,05381			15846,70455				

 Tableau 5-5: calcul de la rigidité horizontale (longitudinal(x) et transversale(v)) de chaussée droit.

chausses	chaussée	e gauche	chaussée droit		
travées	1 => 4	4 => 8	1 => 4	4 => 8	
Périodes T(s) Longitudinal(x)	1.10	1.13	1.13	1.15	
Périodes T(s) Transversal(y)	0.97	1.00	0.98	1.00	

7.1.3- Les résultats des périodes « T »

Tableau 5-6: les valeurs de période fondamental.

7.2- Les composantes horizontales

On applique au tablier une force horizontale statique équivalente F donnée par l'expression : (GTS, 2008)

$$F = M$$
. Sae (T)

Le spectre de réponse élastique « Sae »

Le spectre de réponse élastique constitue généralement la donnée de base pour le calcul sismique. (GTS, 2008)

Le spectre de réponse élastique (Sae) pour les deux composantes horizontales est donné en fonction de la période élastique (T) et du taux d'amortissement (ξ) de l'ouvrage par. (**GTS**, **2008**)

$$Sae(T, \zeta) = \begin{cases} AgS (1 + \frac{T}{T_1}(2.5 \Pi) - 1) & 0 < T < T1 \\ 2.5\Pi AgS & T1 < T < T2 \\ 2.5\Pi AgS (\frac{T2}{T}) & T2 < T < 3.08 \\ 2.5\Pi AgS (\frac{3T2}{T^2}) & T > 3.08 \end{cases}$$

Avec G L'accélération de la pesanteur.
S Coefficient de site donné par le tableau.5.7
A Coefficient d'accélération de zone.
 ζ taux d'amortissement = 5%.
 Π facteur de correction de l'amortissement ($\Pi = \sqrt{\frac{7}{2+\zeta}}$).

Site	S 1	S2	S 3	S4
T1	0.15	0.15	0.2	0.2
T2	0.3	0.4	0.5	0.7
S	1	1.1	1.2	1.3

Tableau 5-7: Valeur de T1, T2 et S pour la composante horizontale.

7.2.1- Direction longitudinal

Chaussé gauche

Travée (1 => 4)

0.5 < T < 3s on prend la 3^{eme} équation

Sae(T, ζ) = 2.5 × 1 × 0.12 × 9.81 × 1.2 × (0.4/1.1) = 1,17616

 $Fx = M \times Sae = 4091.564 \times 1,17616 = 481,2342 t$

Travée (1 => 8)

$$0.5 < T < 3s$$
 on prend la 3^{eme} équation

Sae(T, ζ) = 2.5 × 1 × 0.12 × 9.81 × 1.2 × (0.4/1.13) = 1,12249

 $Fx = M \times Sae = 4091,56 \times 1,12249 = 459,2749 t$

Chaussé droite :

Travée (1 => 4)

0.5 < T < 3s on prend la 3^{eme} équation

Sae(T, ζ) = 2.5 × 1 × 0.12 × 9.81 × 1.2 × (0.4/1.13) = 1.1421

 $Fx = M \times Sae = 4091.564 \times 1.1421 = 481,2342 t$

Travée (1 => 8)

0.5 < T < 3s on prend la 3^{eme} équation Sae(T, ζ) = 2.5 × 1 × 0.12 × 9.81 × 1.2 × (0.4/1.15) = 1,12249

 $Fx = M \times Sae = 4091,56 \times 1,12249 = 459,2749 t$

travée	rigidité	masse	Т	Sae	Fx
1=>4Droite	12552,6	4091,56	1,1338	1,1421	467,2989
4=>8Droite	12125,2	4091,56	1,15361	1,12249	459,2749
1=>4Gauche	13312,4	4091,56	1,10097	1,17616	481,2342
4=>8Gauche	12125,2	4091,56	1,15361	1,12249	459,2749

Tableau 5-8: composante horizontale longitudinal (x) pour les deux chausses.

7.2.2- Direction transversal

En direction transversale, le tablier peut être supposé comme étant rigide si $\frac{L}{B} \le 5$. (GTS, 2008)

2000)

Ou :L est la longueur totale du tablier continu (36.71m)B est la largeur du tablier. (15m)2.452.45

Selon (GTS, 2008) les formule décrit en (titre7.2) est alors applicable.

Chaussé gauche :

Travée (1 => 4)

0.5 < T < 3s on prend la 3^{eme} équation Sae(T, ζ) = $2.5 \times 1 \times 0.12 \times 9.81 \times 1.2 \times (0.4/0.97) = 1,33406$ Fy = M × Sae = 4091.564 × 1,33406= 545,837 t

```
Travée (1 => 8)
```

0.5 < T < 3s		on prend la 3 ^{en}	^{ne} équation
Sae(T, ζ) = 2.5 ×	$1\times0.12\times9.81\times$	$1.2 \times (0.4/1.00) = 1$	1,28324
$F_y = M \times Sae = 4$	091,56 × 1,28324=	= 525,046 t	

Chaussé droite :

Travée (1 => 4)

 $\begin{array}{c} 0.5 < T < 3s & & \\ \hline & \\ Sae(T, \zeta) = 2.5 \times 1 \times 0.12 \times 9.81 \times 1.2 \times (0.4/0,9888) = 1,30959 \\ \hline & \\ Fy = M \times Sae = 4091.564 \ \times 1,30959 = 535,825 \ t & \\ \hline & \\ Travée \ (1 => 8) \\ \hline & \\ 0.5 < T < 3s & & \\ \hline & \\ on \ prend \ la \ 3^{eme} \ équation \\ Sae(T, \zeta) = 2.5 \times 1 \times 0.12 \times 9.81 \times 1.2 \times (0.4/1.00) = 1,28324 \\ \hline & \\ F_y = M \times Sae = 4091,56 \times 1,28324 = 525,046 \ t & \\ \end{array}$

travée	regidité	masse	Т	Sae	Fy
1=>4Droite	16504,1	4091,56	0,988801	1,309586	535,8251
4=>8Droite	15846,7	4091,56	1,009101	1,283241	525,0459
1=>4Gauche	17126,6	4091,56	0,970664	1,334057	545,8372
4=>8Gauche	15846,7	4091,56	1,009101	1,283241	525,0459

Tableau 5-9: composante horizontale transversal (Y) pour les deux chausse.

Dans les tabliers en béton précontraint, les effets de la composante sismique verticale ascendante doivent être examinés systématiquement. (GTS, 2008)

7.3- Le Composante verticale

Le spectre de réponse élastique pour la composante verticale est donné en fonction de la période élastique (T) et du taux d'amortissement (ξ) de l'ouvrage par : (**GTS, 2008**)

Sae(T) =
(m/s2)
$$\begin{cases}
Aga (1 + \frac{T}{T_{1}} (2.5 \, \eta - 1)) & 0 < T < T1 \\
2.5 \, \eta Aga & T1 < T < T2 \\
2.5 \, \eta Aga (\frac{T2}{T}) & T2 < T < 3.0s \\
2.5 \, \eta Aga (\frac{3T2}{T^{2}}) & T > 3.0s
\end{cases}$$

Site	S1	S2	S 3	S4
T1	0.15	0.15	0.2	0.2
T2	0.3	0.4	0.5	0.7

Tableau 5-10: Valeur de T1, T2 et S pour la composante

 $T_{v} = \frac{2}{3} T1$ $0 < T_{v} = 0.1 < T1 = 0.15$ on prend la 1^{eme} équation $Sae_{v} = Ag\alpha (1 + \frac{T}{T1} (2.5 \ \Pi - 1))$ $Sae_{v} = 0.12 \times 9.81 \times 0.7 \times (1 + \frac{0.1}{0.15} \times (2.5 \times 1 - 1)) = 1,64808$ $F_{z} = M \times Sae = 4091,56 \times 1,64808 = 674,322 \ t$

travée	masse	Sae	Fz
1=>4Droite	4091,56	1,64808	674,32182
4=>8Droite	4091,56	1,64808	674,32182
1=>4Gauche	4091,56	1,64808	674,32182
4=>8Gauche	4091,56	1,64808	674,32182

Tableau 5-11: composante vertical (z) pour les deux chausse.

7.4- Combinaison des composantes de l'action sismique

La combinaison des forces sismiques orthogonales est employée pour tenir compte de l'incertitude directionnelle du séisme. (GTS, 2008)

L'effet probable de l'action maximale E, dû à l'apparition simultanée des actions sismiques le long des axes horizontaux X et Y et de l'axe vertical Z, peut être estimé, à partir des effets d'actions maximales Ex, Ey et Ez dus à l'action sismique indépendante le long de chaque axe, comme suit : (**GTS, 2008**)

Les effets des différentes composantes du mouvement d'ensemble sont combinés de la manière suivante (GTS, 2008)

$$E = E_x \pm 0.3 (Ey \pm E_z)$$
$$E = E_y \pm 0.3 (E_x \pm Ez)$$
$$E = E_z \pm 0.3 (E_x \pm E_y)$$

Où :

Ex, Ey et Ez sont les effets des actions sismiques dans chacune des directions respectives X, Y et Z.

On utilise les cas les plus défavorables pour notre étude, les résultats dans les tableaux (5.12 et 5.13) F1 = Fx + (0.3Fy) + (0.3Fz)

$$E2 = Fy + (0.3Fx) + (0.3Fz)$$
$$E3 = Fz + (0.3Fx) + (0.3Fy)$$
105

	C1	P1	P2	P3	P4	P4	P5	P6	P7	C2
E1(t)	137,716	211,227	197,234	177,006	124,0995	125,2939	125,294	199,302	230,135	139,06
E2(t)	131,343	212,237	206,985	190,189	151,7495	153,53613	153,536	204,358	220,925	132,769
E3(t)	178,281	213,913	209,472	200,928	179,8483	180,53623	180,536	209,343	220,282	178,921

Tableau 5-12: combinaison séismique pour chausse gauche.

	C1	P1	P2	Р3	P4	P4	P5	P6	P7	C2
E1(t)	140,389	198,301	215,326	166,433	109,8942	111,18529	127,865	204,3	233,536	142,199
E2(t)	133,299	209,272	212,762	184,343	138,636	140,61129	156,293	208,49	224,599	135,132
E3(t)	179,35	210,246	214,98	197,139	173,544	174,29774	181,766	211,45	221,914	180,19

Tableau 5-13: combinaison séismique pour chausse droit.

Chapitre06 : Infrastructures

1- Introduction

On veut dire par l'infrastructure, tous les éléments qui au-dessous de tablier, dans ce chapitre on va traiter chaque élément dans une partie, commençons par le chevêtre, la pile, la culé et les fondations (la fondation sera de type profond composer aux pieux avec d'une semelle de liaison).

2- Etude de chevêtre

Le chevêtre permet de transmettre les charges du tablier verticales ou horizontales à la pile, Il permet aussi la position des vérins de levage lors du remplacement des appareils d'appuis La pile creuse est composée d'un chevêtre de dimension montré dans la figure 6-3 La pile pleine est composée d'un chevêtre de dimension montré dans la figure 6-2

Figure 6-1: vu de chevêtre dans le sens de circulation.

3- Les hypothèses de calcul

- Calcul en poutre continue avec consol, reposé sur la pile. Figure 6.6
- Fissuration préjudiciable.
- prise en compte des dispositions sismiques extérieur.
- Calcul suivant (CCTG, 1991a)
- Enrobage: c= 5.0 (cm).
- Section de calcul dans la Figure 6-4 et 6-5
- Béton: $fc_{28} = 25$ (MPa). Acier: fe = 500 (MPa).

Figure 6-4: section de calcul pour le chevêtre de pile pleine.

Figure 6-5: section de calcul pour le chevêtre de pile creuse.

4- Calcule des charges

Les charges et surcharges provenant du tablier sont transmises au chevêtre par l'intermédiaire des appareils d'appuis, elles sont déduites à partir de chapitre02.

4.1- Poids propre des chevêtres

Pour une pile pleine

$$M_{cp} = 23.1 \times 2.2 \times 25 = 1270.5 \text{ KN}$$
$$P_1 = 0.375 \times 25 \times 2.2 = 20.625 \text{ KN}$$

 $G_1 = \frac{M_{cp}}{L} = \frac{1270.5}{15} = 84.7 \ KN/ml$

Pour une pile creuse

$$M_{cc} = 0.375 \times 3.3 \times 25 = 1905.75 \text{ KN}$$
$$P_2 = 0.375 \times 25 \times 3.3 = 30.937 \text{ KN}$$
$$G_2 = \frac{M_{cc}}{L} = \frac{1905.75}{15} = 127.05 \text{ KN/ml}$$

4.2- Surcharges $P_{AL} = \frac{2 \times AL}{7} = 595.17 \text{ KN}$ $P_T = \frac{G_T}{7} = \frac{10228.91}{7} = 1461.28 \text{ KN}$ $P_T = \frac{G_T}{7} = \frac{10228.91}{7} = 1461.28 \text{ KN}$ $P_T = \frac{G_T}{7} = \frac{10228.91}{7} = 1461.28 \text{ KN}$

Figure 6-6: la partie en consol de chevêtre.

5- Modélisation

En fin le calcul de section du chevêtre est fait selon les états limites $ELU(P_u)$ et $ELS(P_S)$.On considère la structure d'ensemble simulaire de chevêtre et de corps de pile comme modèle d'analyse (**Figure 6.7**) en utilisant le logiciel de SAP2000 pour déterminer les sollicitations, les résultats obtenu sont dans les **Tableau 6.1 et 6.2**

$$P \Longrightarrow \begin{cases} P_u = 1.35 \left[P_T + P_{(1,2)} + G_{(1,2)} \right] + 1.6P_{AL} \\ P_S = P_T + P_{(1,2)} + G_{(1,2)} + 1.2P_{AL} \end{cases}$$

Figure 6-7: modèle d'analyse de chevetre.

Pour une pile pleine

	Ap	pui	travée		
	M (KN.m)	T(KN)	M(KN.m)	Т	
ELU	14.23	6.35	7.32	3.4	
ELS	10.58	4.72	5.44	2.45	

Tableau 6-1: les résultats de modélisation pour le chevêtre de pile pleine.

Pour une pile creuse

	Ар	pui	travée		
	M(KN.m)	T(KN)	M(KN.m)	T(KN)	
ELU	14.72	6.59	7.58	3.47	
ELS	10.94	4.9	5.63	2.58	

Tableau 6-2: les résultats de modélisation pour le chevêtre de pile creuse.

N.B

Les résultats des Tableaux 6.1 et 6.2 sont proche, Alor on utilise le cas le plus défavorable. Celle de **Tableau 6.2**.

Calcul du ferraillage 6-

Pour le calcul de ferraillage on a utilisé le logiciel « SOCOTEC », la note de calcul est dans l'annexe.

 $A_{st} = 208 \text{cm}^2$

On disposera 26T32 dans la partie tracté (supérieur). (Voir 1 dans la Figure6-8) On disposera 10 nappes de 13T14 (Voir 2 dans la Figure6-8)

6.1- Justification à l'ELS

Il faut vérifier ces deux conditions :

$$\begin{cases} \sigma_{bc} < \overline{\sigma_{bc}} \\ \sigma_{st} < \overline{\sigma_{st}} \end{cases}$$

Détermination de l'axe neutre (x)

$$\frac{b \cdot x^2}{2} + n \cdot A_{sc}(x - d') - n \cdot A_{st}(d - x) = 0$$
Avec
$$(a - x) = 0$$

$$(b) = a^2 + [n(A - a - A)] + (a - d') = 0$$

$$=> \left[\frac{1}{2}\right] x^{2} + \left[n(A_{sc} + A_{st})\right] x - \left[n(A_{sc}, d^{2} + A_{st}, d)\right] =$$

=> 165 x^2 + 6890.13x - 855363.6 =0

=> x = 54.09cm

0

6.1.1- Détermination des contraintes

Contrainte admissible

$$\overline{\sigma_{st}} = \min\left(\frac{2}{3} \times f_e; \max\left(0.5f_e; 110\sqrt{\mu \times f_{t28}}\right)\right)$$

 $f_{t28} = 0.6 + 0.06 f_{c28} = 2.7 MPa$

$$\overline{\sigma_{st}} = 228.3 MPa$$

 $\overline{\sigma_{bc}} = 0.6 \times f_{c28}$

$$\overline{\sigma_{bc}} = 21 \text{MPa}$$

Contrainte dans le chevêtre

$$\sigma_{bc} = \frac{M_s \times x}{I}$$

$$I = I_{bc} + n[I_{sc} + I_{st}]$$

$$I_{bc} = \frac{b \cdot x^3}{3} = 0.1741 \ m^4$$

$$I_{sc} = A_{sc}(d' - x) = 0.0063 \ m^4$$

$$I_{st} = A_{st}(d - x) = 0.03844 \ m^4$$

$$I = 0.1741 + 15 \times (0.0063 + 0.03844)$$

 $I = 0.8452 m^4$

 $\sigma_{bc} = \frac{10.94 \times 10^{-2} \times 54.09}{0.8452}$

 $\sigma_{bc}=7~{
m MPa}$

$$\sigma_{bc} < \overline{\sigma_{bc}} =>$$
 Condition vérifiée

$$\sigma_{st} = n \times \frac{M_s(d-x)}{l}$$

$$\sigma_{st} = 15 \times \frac{10.94 \times 10^{-2} (1.7 - 54.09)}{0.8452}$$

 $\sigma_{st} = 225.04 MPa$

$$\sigma_{st} < \overline{\sigma_{st}}$$
 => Condition vérifiée

6.2- Justification à l'effort tranchant

 $T_u = 6.59 \text{ MN}$

$$\tau_u = \frac{T_u}{b \times d}$$

$$\tau_u = \frac{6.59 \times 10^{-2}}{3.3 \times 1.7} = 1.17 MPa$$

$$\tau_{adm} = \min(0.15 \frac{f_{c28}}{\gamma_b}; 4MPa)$$

$$\tau_{adm} = 3.5 MPa$$

 $\tau_u < \tau_{adm} \implies$ Condition vérifiée

Le diamètre minimum des armatures transversales est donnée par :

$$\phi \le \min\left(\frac{h}{35}; \frac{b}{10}; \varphi\right) = \min(5; 33; 32) = 5 mm$$

On prend $\phi = 12mm$

Espacement d'après RPOA :

 $\begin{cases} \text{Zone nodale}: & esp < \min\left(\frac{h}{4}; 12\varphi_L; 30 \text{ } cm\right) => esp = 30 \text{ } cm \\ \text{Zone courante}: & esp < \frac{h}{2} & => esp = 30 \text{ } cm \end{cases}$

On disposera des cadres de T12 (Voir 3 dans la Figure 6-8).

6.2.1- Vérification de condition de RPOA

$$A_{\min} = 0.5\% \times S$$

 $A_{\min} = \frac{0.5}{100} (1.75 \times 3.3) = 288.75 \ cm^2 < A_{st} => Condition vérifiée$

6.2.2- Condition de non fragilité

tracté de chevêtre.

7- Etude des piles

Les piles sont constituées d'un ou de plusieurs fûts, dont la forme relève de nombreux critères, à la fois d'ordre mécanique et esthétique. Les poutres reposent sur un chevêtre ou sommier d'appui, par l'intermédiaire d'appareils d'appui en élastomère fretté. (Setra, 1996)

7.1- Dimension des piles

7.1.1- La section

Figure 6-9: la section de la pile

Figure 6-10: la section de la pile creuse.

_		Pile 1	Pile 2	Pile 3	Pile 4	Pile 5	Pile 6	Pile 7
Pile	Туре	Pleine	Creuse	Creuse	Creuse	Creuse	Creuse	Pleine
uioite	H(m)	12.25	14.75	25.75	40.25	35.25	18.25	5.75
Pile	Туре	Pleine	Pleine	Creuse	Creuse	Creuse	Creuse	Pleine
gauche	H(m)	9.25	11.75	22.75	35.25	35.25	18.25	4.75
H(m) (c	chevêtre)				1.75			

7.1.2- La hauteur

Tableau 6-3: les différent hauteurs des piles.

7.2- Etude du flambement

	Section pleine	Section creuse
$H_{max}(m)$	14.75	40.25
$I_f(m^4)$	10.42	28.46
$i(m^3)$	0.5196	1.1426
$\hat{\Lambda}(m)$	20.05	24.91

Tableau 6-4: les paramètres de calcul pour l'élancement(Λ).

 $24.91 < 50 \implies$ il n'y a pas de risque de flambement

7.3- Détermination des efforts

Efforts verticaux

		charges		
Poide propre du chevâtre	Pleine	1270.5(KN)		
Totas propre du cheveue	Creuse	1905.75(KN)		
Doida propre de la pile	Pleine	315(KN/m)		
Polus propre de la plie	Creuse	225(KN/m)		
Poids du tablier		10228.91(KN)		
Surcharge A(L) (deux tra	vées)	2083.1(KN)		

Tableau 6-5: les efforts verticaux sollicitant les piles.

Efforts horizontaux

Variation linéaire du tablier (Voir Tableau4.9et4.10) Freinage (Voir Tableau4.7et4.8) Séisme (Voir Tableau 5.12)

7.3.1- Efforts sollicitant les piles

7.3.1.1- Sous la combinaison fondamentale ELU 1.35G + 1.6A(L) + 1.6Qfr + 0.8Qvl

Exemple de	calcule	pour	pile 01	l chaussé	gauche
------------	---------	------	---------	-----------	--------

Eléments	charge	Coéf	N(KN)	H(KN)	Z(m)	M(KN.m)
Chevêtre	1270,5	1.35	1715.175	/	/	/
Pile	2913,75	1.35	3933.563	/	/	/
Tablier	10228,9	1.35	13809.03	/	/	/
Charge A(L)	2083,1	1.6	3332.96	/	/	/
Qvl	81,5	0.8		65.2	11	717.2
Qfr	108,26	1.6		173.216	11	1905.376
Σ	/	/	22790.73	238.416		2622.576

Tableau 6-6: le calcul des sollicitations pour la pile (P1g) à

Les résultats de toutes les piles

_		Pile 1	Pile 2	Pile 3	Pile 4	Pile 5	Pile 6	Pile 7
	N(KN)	24066	24195	27536	31941	30422	25258	21302
Profil droite	H(KN)	212.48	197.44	166.02	413.28	126.13	128.27	298.2
uione	M (KN.m)	2974.72	3257.76	4565.66	17357.8	4666.74	2565.44	2236.5
	N(KN)	22790.73	23853.85	26625.06	30421.94	30421.94	25258.19	20877.1
Profil	H(KN)	238.146	181.824	260.88	336.64	224	208.784	272.32
gauche	M (KN.m)	2622.576	2454.624	6391.56	12455.68	8288	4175.68	1770.08

Tableau 6-7: les résultats des sollicitations des piles à l'ELU.

7.3.1.2- Sous la combinaison fondamentale ELS

Exemple de calcule pour pile 01 chaussé gauche

G +	1.2A(L)	+ 1.2Qfr +	0.6Qvl
-----	---------	------------	--------

Eléments	charge	Coéf	N(KN)	H(KN)	Z(m)	M(KN.m)
Chevêtre	1270,5	1	1270,5	/	/	/
Pile	2913,75	1	2913,75	/	/	/
Tablier	10228,9	1	10228,9	/	/	/
ChargeA(L)	2083,1	1.2	2499.72	/	/	/
Qvl	81,5	0.6		48.9	11	537.9
Qfr	108,26	1.2		129.912	11	1429.032
Σ	/	/	16912.88	178.812		1966.932

Tableau 6-8 : le calcul des sollicitations pour la pile (P1g) à l'ELS.

Les résultats de toutes les piles

		Pile 1	Pile 2	Pile 3	Pile 4	Pile 5	Pile 6	Pile 7
Profil droite	N(KN)	17858	17953	20428	23691	22566	18741	15810
	H(KN)	159.36	148.08	124.52	309.96	94.596	96.204	223.65
	M (KN.m)	2231.04	2443.32	3424.25	13018.3	3500.05	1924.08	1677.38
Profil gauche	N(KN)	16912.88	17700.38	19753.13	22565.63	22565.63	18740.63	15495.38
	H(KN)	178.812	136.368	195.66	2052.48	168	156.588	204.24
	M (KN.m)	1966.932	1840.968	4793.67	75941.76	6216	3131.76	1327.56

Tableau 6-9: les résultats des sollicitations des piles à l'ELS.

7.3.1.3- Sous la combinaison accidentelle ELA

Exemple de calcule pour pile 01 chaussé gauche

G+1.2A(L)+1.2Qfr+0.6Qvl

Eléments	charge	Coéf	N(KN)	H(KN)	Z(m)	M(KN.m)
Chevêtre	1270,5	1	1270,5	/	/	/
Pile	2913,75	1	2913,75	/	/	/
Tablier	10228,9	1	10228,9	/	/	/
ChargeA(L)	2083,1	0.2	416.62	/	/	/
Qs	131.0272	1		131.0272	11	1441.299
Σ	/	/	14829.78	131.0272		1441.299

Tableau 6-10 : le calcul des sollicitations pour la pile (P1g) à l'ELA.

Les résultats de toutes les piles

		Pile 1	Pile 2	Pile 3	Pile 4	Pile 5	Pile 6	Pile 7
Profil droite	N(KN)	15775	15870	18345	21608	20483	16658	13727
	H(KN)	117.8	135.36	90.998	44.704	57.864	124.65	151.47
	M (KN.m)	1649.2	2233.41	2502.45	1877.56	2140.95	2492.99	1136
	N(KN)	14829.78	15617.28	17670.63	20482.53	20482.53	16657.53	13412.28
Profil gauche	H(KN)	131.0272	117.3807	100.6897	55.94676	55.94676	120.5203	148.9402
	M (KN.m)	1441.299	1584.639	2466.898	2070.03	2070.03	2410.406	968.1114

Tableau 6-11: les résultats des sollicitations des piles à l'ELA.

7.4- Ferraillage de la pile

7.4.1- Les hypothèses de calcul

On entend par pièce fléchie un élément soumis à la flexion simple ou déviée, dans lequel le taux de compression moyenne dû à l'effort normal réduit le plus défavorable est au plus égal à 0,07 fcj,($\sigma_{cm} \leq 0,07$ fcj). La pièce est dite comprimée dans le cas contraire. σ_{cm} est la contrainte moyenne de compression dans une section S sous l'effort normal de calcul N,($\sigma_{cm}=N/S$).(GTS.2008)(CCTG, 1991a)

=> • Calcul comme une pièce comprimé. ($\sigma_{cm} \leq 2.45$ MPa).

- Calcul suivant (GTS.2008)
- Enrobage: c = 5.0 (cm).
- Section de calcul dans la Figure 6.9 et 6.10.
- Béton: $fc_{28} = 35$ (MPa). Acier: fe = 500 (MPa).

7.4.2- Armatures longitudinales

7.4.2.1- Hors zone de recouvrement

Le pourcentage géométrique ρ_g doit être compris dans les limites de :

$$0.5\% < \rho_g < 3\%$$

 $\rho_g = \frac{A_s}{B}$

$$=>A_s \ge \frac{B \times 0.5}{100}$$

Pile en section plein	Pile en section creuse
$B = 7 \times 1.8 = 12.6 \text{ m}^2$	$B = (7 \times 3) - (6 \times 2) = 9 m^2$
$A_s \ge 630 \ cm^2$	$A_s \ge 450 \ cm^2$
$A_{st} = \frac{630}{(7+1.5)\times 2}$	$A_{st} = \frac{450}{(7+3) \times 2}$
$=> A_{st} = 35.8 \ cm^2/ml$	$=> A_{st} = 22.5 \ cm^2/ml$
On prend $5T32 = 40.21cm^2$	On prend $3T25 + 3T20 = 24.15cm^2$

7.4.2.2- Zone de recouvrement

Dans les zones de recouvrement le rapport ρ_g doit être inférieur ou égal à 6%.

$$A_s \le 6\% B$$

Pile en section plein

 $A_{st} = 40.21 \times ((7 + 1.8) \times 2) \times 2$ = 1415.39cm² $A_{st} = 1415.39cm^2 < 7560cm^2$ => Condition vérifiée Pile en section creuse $A_{st} = 24.15 \times ((7 + 3) \times 2) \times 2$ $= 966cm^{2}$ $A_{st} = 966cm^{2} < 5400cm^{2}$ => Condition vérifiée

7.4.3- Armatures transversales

En zone critique (définie en 5.5.1.1), le pourcentage de ces armatures transversales ne doit pas descendre au-dessous de 0,4 % par direction en zones I et IIa, et 0.5 % par direction en zones IIb et III.

De plus, il y a lieu de respecter la condition :

Espacement maximal = Min [8 Φ_L ; 0,5b ; 200 mm]. b est le petit côté du rectangle circonscrit Φ_L plus gros diamètre des armatures longitudinales.

Donc $A_t \ge 0.4\% A_S \implies A_t \ge 5.66 \text{cm}^2$ en section plein

On prend 6T12 avec un espacement de 20cm

 $\Rightarrow A_t \ge 3.86 \text{cm}^2$ en section creuse

On prend 4T12 avec un espacement de 15cm

Figure 6-11: ferraillage de la pile pleine.

Figure 6-12: ferraillage de la pile creuse.

8- Etude de culée

La conception des culées est tout à fait classique. Il s'agit en effet de piles-culées partiellement ou complètement enterrées ou de culées à mur de front apparent encore appelées **culées remblayées**.

Les culées remblayées jouent le double rôle de soutènement et de structure porteuse. Le tablier s'appuie sur un sommier solidaire d'un mur de front massif qui soutient les terres du remblai. Une telle culée est généralement fondée superficiellement, compte tenu des efforts horizontaux importants, ce qui limite son emploi au cas des très bons sols. Dans tous les cas, on ne pourra l'envisager que si la hauteur du soutènement reste inférieure à une dizaine de mètres. Dans la pratique, son emploi reste limité aux cas où l'on souhaite limiter la longueur du tablier au strict nécessaire.

8.1- Les hypothèses de calcul

- Calcul suivant (CCTG, 1991a)
- Règlement parasismique (GTS.2008)
- Dimensionnement (SETRA.1996).
- Calcul comme des pièces fléchées de moment M_u.
- Enrobage: c= 5.0 (cm).
- Béton: $fc_{28} = 35$ (MPa). Acier: fe = 500 (MPa).

8.2- Implantation des culées

La hauteur de la culée sera évaluée par la formule suivante:

$H_{cul\acute{e}e} = cote_{projet} - cote_{fondation}$

L'ensemble des côtes définissants la position des culées est mentionnée dans le tableau suivant :

culée	Culée 1	Culée 2	Culée 3	Culée 4
côte projet (m)	191.587	206.367	191.623	206.146
côte fondation(m)	185.387	197.628	183.923	198.875
Hauteur (m)	6.2	8.739	7.7	7.271

8.3- Pré dimensionnement des culées

Mur garde grève

h = hauteur du tablier + hauteur de l'appareil d'appui+ dé d'appui

$$h = h_{tablier} + h_{A.p.A} + h_{d\acute{e}}$$

h = 1.95 + 0.06 + 0.12 = 2.13 = 2.20m

Épaisseur : e = Max (0.3m ; h/8) = 0.3m

Longueur : L= 15m

Dalle de transition

Sa longueur est dimensionnée par la formule suivante : L = Min[6m; Max(4m; 0.6H)]Avec : H étant la hauteur de remblai (mur de front+ mur garde grève) = 6.3 m On prend : L= 4m Epaisseur : e = 30cm Largeur de la dalle : Lr =14m

Mur de front

$$e = d + d' + d''$$

d :0.3m e = 1.4 md' :0.5m => h = 6.33md'' :0.5m L = 15m

Figure 6-13: la téte de culée.

Figure 6-15: coupe transversal de culée.

8.4- Calcul des charges agissants sur la culé

Eléments	Poids propre (KN)	d (m)	M (Kn.m)
Mur garde grève	(2.4*0.35*14.5)*25 = 304.5	3.8	1157.1
Corbeau	(1.9*0.3*14)*25 = 199.5	4.15	827.925
	(0.5*0.2*14)*25 = 35	3.9	136.5
Mur de front	(6.3388*1.4*15)*25 = 3327.87	3.1	10316.397
Mur en retour	[(8.73*2.2*0.5)*25]*2 = 480.64	4.9	2355.16
Mur buté séismique	(1.55*1.25*0.25)*25*2 = 24.21	3.025	1453.95
Dalle de transition	(0.3*5*14)*25 = 525	6.5	3412.5
Semelle	(1.5*6*15)*25 = 3375	3	10125
	$\Sigma = 8271.733$		$\Sigma = 29784.532$

8.4.1- Les charges permanentes

Tableau 6-13: poids propre de culée.

Calcul de l'excentricité

 $e = \frac{M}{V} = \frac{29784.532}{8271.733} = 3.6m$ $e_0 = \frac{B}{2} - e \implies e_0 = -0.6m < \frac{B}{6}$

=> L'efforts normal situé dans le noyau central de la Semelle.

8.4.2- Les charges statiques des terres (remblais)

8.4.2.1- Poussée des terres

$$P_h = \frac{1}{2} \times K_a \times \gamma \times h^2 \times L$$

$$K_{a} = tg^{2} \left(\frac{\pi}{4} - \frac{\Phi}{2}\right) = 0.2948 \qquad \Phi = 33^{\circ}$$
$$P_{h} = \frac{1}{2} \times 0.2948 \times 20 \times (8.739)^{2} \times 14$$
$$=> P_{h} = 3151.94 \text{ KN}$$

8.4.2.2- Poids des terres arrière

 $P_t = (7.7389 * 2.2 * 14) * 20$

$$=>$$
 P_t = 4767.16 KN

8.4.2.3- Poids des terres avant $P_{av} = \left(\frac{1.1927 + 0.5}{2}\right) * 24$

$$\Rightarrow P_{av} = 2437.5 \text{ KN}$$

8.4.2.4- Surcharge de remblai vertical $q_v = q.L.S$ $q_v = 10 \times 2.2 \times 15$ $q_v = 10 \times 2.2 \times 15$ $q_v = 330 \text{ KN}$

8.4.2.5- Surcharge de remblai horizontal

 $q_h = K_a. q. h. L$ $q_h = 0.2948 \times 10 \times 8.739 \times 14 => q_h = 360.67 \text{ KN}$

8.4.3- Les charges dynamiques des terres (remblais)

La poussée dynamique des terres est calculée par toute méthode scientifiquement validée. A défaut, la méthode de Mononobé-Okabé décrite ci-dessous peut être appliquée. Sous séisme, la poussée dynamique globale, comportant à la fois les effets statiques et dynamiques de la poussée active des terres, s'exerce à mi-hauteur de la paroi (diagramme de pression rectangulaire) et a pour valeur : (GTS, 2008)

$$F_{ad}(\gamma) = \frac{1}{2}\gamma b(1 \pm K_v)H^2.K_{ad}$$

Les efforts d'inertie du mur ou des terres reposant sur la semelle sont calculés à partir des coefficients sismiques k_H et k_V . (GTS, 2008)

 $K_H = A = 0.12$ (Voire Tableau55)

$$K_{v} = 0.3A = 0.045 \qquad \qquad K_{ad} = \frac{\cos^{2}(\Phi - \theta)}{\cos^{2}\theta [1 + \sqrt{\frac{\sin\phi \cdot \sin(\Phi - \theta)}{\cos\theta}}]^{2}}$$

$$\theta = \arcsin\left(\frac{K_H}{1 \pm K_v}\right) = 8.1684$$

$$H = H_{culée} + H_{semelle} = 10.2392m$$
 $\phi = 33^{\circ}$

8.4.3.1- La poussée dynamique due à la surcharge

$$F_{ad}(q_{sr}) = q_{sr}.b.H(1 \pm K_v).K_{ad}$$

Séisme descendant $(1+K_v)$ Séisme ascendant $(1 - K_v)$ $F_{ad}(\gamma) = \frac{1}{2} * 15 * 20(1 + 0.045) *$
 $(10.2392)^2 * 0.3834$ $F_{ad}(\gamma) = \frac{1}{2} * 15 * 20(1 - 0.045) *$
 $(10.2392)^2 * 0.3834$ $F_{ad}(\gamma) = 6300.74 \text{ KN}$ $F_{ad}(\gamma) = 5758.0945 \text{ KN}$ $F_{ad}(q_{sr}) = 0.2 * 10 * 15 * 10.2392 *$
(1 + 0.045) $F_{ad}(q_{sr}) = 0.2 * 10 * 15 * 10.2392 *$
(1 - 0.045) $F_{ad}(q_{sr}) = 123.06 \text{ KN}$ $F_{ad}(q_{sr}) = 112.47 \text{ KN}$

8.5- Stabilité d'ensemble de la culée remblayée

8.5.1- Phase I : En construction

Dans cette phase le calcul des sollicitations se fait à l'ELU.

$$1.35G + 1.6 A(L) + 1.5Q + 0.6Q_f + 0.8Q_{vl}$$

	coef	Vi (KN)*coef	Hi (KN)*coef	d (m)	Ms (KN.m)	Mr (KN.m)
Culée	1.35	11166.83	/	3.6	40200.588	/
Poussée des terres	1.35	/	4255.119	3.08	/	13105.766
Poids des terres Ar	1.35	3290.625	/	1.2	3948.75	/
Poids des terres Av	1.35	6435.66	/	4.9	31534.734	/
Surcharge V	1.5	495	/	1.1	544.5	/
Surcharge H	1.5	/	541.005	4.61	/	2494.03
Réaction du tablier	1.35	6904.51	/	3.1	21403.98	/
A(L)	1.6	3332.96	/	3.1	10332.176	/
Freinage Bc	1.6	/	64.112	7.338	/	470.45
$F(\Delta L)$	0.8	/	125.104	7.338	/	918.013
		31625.58	4985.34		107964.728	16988.259

Vérification au renversement

$$F_r = \frac{\Sigma Ms}{\Sigma Mr} = \frac{107964.728}{16988.259} = 6.35 > 1.5 => condition vérifier$$

Vérification au glissement

 $F_G = \frac{\Sigma F v}{\Sigma F h} = \frac{31625.58}{4985.34} = 6.343 > 1.5 => condition vérifier$

Stabilité à l'enfoncement

$$e_{c} = \frac{Ms - Mr}{N} = \frac{107964.728 - 16988.259}{31625.58} = 2.87m$$

$$e = \frac{B}{2} - e_{c} = \frac{6}{2} - 2.87 \qquad => e = 0.13 < \frac{B}{6} = 1$$

$$\sigma_{max} = \frac{N}{B \times L} (1 + 6 \times \frac{e}{B}) \qquad => \sigma_{max} = \frac{31625.58}{6 \times 15} \left(1 + 6 \times \frac{0.13}{6}\right) = 0.397 MPa$$

$$\sigma_{min} = \frac{N}{B \times L} \left(1 - 6 \times \frac{e}{B}\right) = 0.305 MPa$$

$$\sigma_{v} = \frac{3\sigma_{max} + \sigma_{min}}{4} = \frac{3(0.397) + 0.305}{4} = 0.374 > 0.03 => condition non vérifier$$

8.5.2- Phase II : En exploitation

Dans cette phase le calcul des sollicitations se fait à l'ELS.

	coef	Vi (KN)*coef	Hi (KN)*coef	d	Ms (KN.m)	Mr (KN.m)
Culée	1	8271.73	/	3.6	29778.228	/
Poussée des terres	1	/	3151.94	3.08	/	9707.975
Poids des terres Ar	1	2437.5	/	1.2	2925	/
Poids des terres Av	1	4767.16	/	4.9	23359.084	/
Surcharge V	1	330	/	1.1	363	/
Surcharge H	1	/	360.67	4.61	/	1662.68
Réaction du tablier	1	5114.455	/	3.1	15854.81	/
A(L)	1.2	2499.72	/	3.1	7749.132	/
Freinage Bc	1.2	/	48.084	7.338	/	352.84
$F(\Delta \Box)$	0.6	/	93.828	7.338	/	688.509
		23420.56	3654.522		80029.254	12412.004

$$G + 1.2A(L) + 1.2Q_f + 0.6Q_{vl}$$

Tableau 6-15: charges de culée en exploitation.

Vérification au renversement :

$$F_r = \frac{\Sigma Ms}{\Sigma Mr} = \frac{80029.254}{12412.004} = 6.447 > 1.5 => condition vérifier$$

Vérification au glissement :

$$F_G = \frac{\Sigma F v}{\Sigma F h} = \frac{23420.56}{3654.522} = 6.343 > 1.5 => condition vérifier$$

Stabilité à l'enfoncement :

$$e_{c} = \frac{Ms - Mr}{N} = \frac{80029.254 - 12412.004}{23420.56} = 4.89m$$

$$e = \frac{B}{2} - e_{c} = \frac{6}{2} - 4.89 \qquad => e = -1.89 < \frac{B}{6} = 1$$

$$\sigma_{max} = \frac{N}{B \times L} (1 + 6 \times \frac{e}{B}) \qquad => \sigma_{max} = \frac{23420.56}{6 \times 15} \left(1 + 6 \times \frac{(-1.89)}{6}\right) = -0.231 MPa$$

$$\sigma_{min} = \frac{N}{B \times L} \left(1 - 6 \times \frac{e}{B}\right) = 0.491 MPa$$

$$\sigma_{v} = \frac{3\sigma_{max} + \sigma_{min}}{4} = \frac{3(-0.231) + 0.491}{4} = -0.101 < 0.03 => condition vérifier$$

8.5.3- Phase III : En séisme

Dans cette phase le calcul des sollicitations se fait à l'ELA.

			force	coef	F_{v}	F_h	d	M _s	M _r
		R _g	5114.4 5	1	5114.4		3.1	15854.7 9	-
Toblier		A(L)	2083.1	0.2	416.62	<u> </u>	3.1	1291.52	-
Tablier		q_{vl}	113.6	0.4		45.44	6.538		297.08
		Q_s	1390.6	1		1390.6	6.538	-	9091.74
Culée		V	_	1	-			29784.5 3	-
		Н		0.15					4467.679
Poussé		$F_{ad}(\gamma)$	6300.74	1	'	6300.7	5.119	-	32253.48
des terres		$F_{ad}(qsr)$	123.06	1	-	123.06	5.119	-	629.94
		Avant	2437.5	1	2437. 5		1.2	2925	-
	V	Arrière	4767.16	1	4767. 16	-	4.9	23359	-
		surcharge	330	1	330	 	1.1	363	
Rembl		Avant	2437.5	0.15		365.62	1	-	365.62
ai	н	Arrière	4767.1	0.15	_	715.07	3.869	_	2766.62
	11	surcharge	360.67	0.15		54.10	8.739	_	472.78
					13065.7	8994.59	, 	73577.84	50344.93

Tableau 6-16: charges de culée en séisme.

Vérification au renversement

$$F_r = \frac{\Sigma Ms}{\Sigma Mr} = \frac{73577.84}{50344.93} = 1.46 \approx 1.5 => condition vérifier$$

Vérification au glissement

$$F_G = \frac{\Sigma F v}{\Sigma F h} = \frac{13065.7}{8994.59} = 1.45 \approx 1.5 => condition vérifier$$

Stabilité à l'enfoncement

$$e_{c} = \frac{M_{s}-M}{N} = \frac{73577.84-50344.93}{13065.7} = 1.78m$$

$$e = \frac{B}{2} - e_{c} = \frac{6}{2} - 1.78$$

$$= > e = 1.22 < \frac{B}{6} = 1$$

$$\sigma_{max} = \frac{N}{B \times L} (1 + 6 \times \frac{e}{B})$$

$$= > \sigma_{max} = \frac{13065.7}{6 \times 15} \left(1 + 6 \times \frac{(1.22)}{6}\right) = 0.322 MPa$$

$$\sigma_{min} = \frac{N}{B \times L} \left(1 - 6 \times \frac{e}{B}\right) = 0.032 MPa$$

$$\sigma_{v} = \frac{3\sigma_{max} + \sigma_{min}}{4} = \frac{3(0.322) + 0.032}{4} = 0.249 > 0.03 => condition non vérifier$$

8.6- Evaluation des charges

8.6.1- Mur garde grève

Charge et surcharge de remblais

$$\sigma_h = K_p * \gamma * h + K_p * q$$
$$K_p = K_q = K_a = 0.2948$$

Figure 6-16: charges agissant sur le mur garde gréve.

h(m)	$\sigma_h (KN/m^2)$	F (KN)	d/0 (m)	M (KN.m)
0	2.948	7.1	1.1	7.81
2.4	17.1	33.96	0.8	27.168

Tableau 6-17: calcul de moment dus charge et surcharge de remblais.

$$M_u = F_1 d_1 + F_2 d_2$$

$$M_u = 35 KN.m$$

8.6.2- Mur en retour

Poussé des terres :

P(0) = 0; $P(8.739) = K_p * \gamma * h = 51.52$

Surcharge :

 $P(0) = P(8.739) = K_p * \gamma * h = 2.95$

Les résultats de calcul des sollicitations par logiciel SAP2000, présenté dans le Tableau 6-18

Figure 6-17:model analytique de mur en retour avec SAP2000

	<i>M</i> ₁₁ (T) (KN.m)	<i>M</i> ₂₂ (L) (KN.m)
ELU	-98.04	-115
ELS	-72.596	-85.19

Tableau 6-18: les sollicitations sur le mur en retour.

8.6.3- La dalle de transition

Poids propre de la dalle : (0.3*1*25) = 7.5 KN/m Poids des terres : (0.7*20*1) = 14 KN/ml Surcharge des remblais : (1*10) = 10 KN/ml Revêtement des chaussées : (0.085*1*24.57) = 2.09 KN/ml

G = 23.59 Kn/ml; Q = 10 KN/ml

 $q_u = 1.35G + 1.6Q \implies q_u = 46.85 \text{ KN/m}$

 $=> q_s = 35.59 \, KN/ml$ $q_{S} = G + 1.6$

$$M = \frac{q * L^2}{8}$$

 $=> M_s = 111.22 KN.m$

 $=> M_u = 140.41 \, KN. m$

8.6.4- Le corbeau

Condition d'une console courte selon (CCTG, 1991a)

 $d \ge Max(a; L) => condition vérifier$

D'abord on va vérifier le cisaillement dans le corbeau.

$$\overline{\tau_u} = \min[4; 0.03(2+\rho) * \min(f_{c28}; 30)]$$

Avec :

 $\rho = \min\left(\frac{1}{a}; 4\right) = 4$ $\overline{\tau_u} = 4000 \, KN$

$$\tau_u = \frac{V_u}{b.\,d}$$

Avec :

$$V_{u} = \frac{q_{u}*l}{2} = \frac{(1.35G+1.5Q)*l}{2} = 117.12 \text{ KN/ml} \quad ; \text{ b} = 1\text{m} \quad ; \text{ d} = 1.7\text{m}$$

$$\tau_{u} = \frac{117.12}{1*1.7} = 69 \text{ KN} \qquad \overline{\tau_{u}} > \tau_{u} \quad => \text{ condition vérifier}$$

$$M_{u} = \frac{V_{u}*L}{2} \quad => \qquad M_{u} = 292.8 \text{ KN. m}$$

8.6.5- Mur de front

8.6.5.1- Calcul des charges

1 – poids propre : (6.34*1.4)*25 = 221.86 KN/ml 2 –mur de garde grève : (2.4*0.35)*25 = 21 KN 3 –corbeau : (0.3*1.9)*25 = 14.25 KN/ml 4 –réaction d'appuis : (5114.45/14.5) = 352.72 KN/ml 5 –surcharge remblai verticale : (10*5) = 50 KN/ml 6 –surcharge remblai horizontale : (0.2948*10*6.34) = 18.69 KN/ml 7 –poussé des terres : $((0.5*0.2948*20(6.34)^2) = 118.5$ KN/ml 8 –variation linéaire : C2 = 96.7/14.5 = 6.67 KN/ml 9 –freinage : C2 = 78.9/14.5 = 5.44 KN/ml 10 –surcharge A(L) : 2083.1/2 = 1041.55 KN/ml 11 –charge de remblai : (0.7*5*20) = 70 KN/ml
			ELU			
	efforts	coeff	N (KN)	H (KN)	d/0 (m)	M _u (KN.m)
1	221,86	1,35	299,511		0	0
2	21	1,35	28,35		0,75	21,2625
3	14,25	1,35	19,2375		1,05	20,1994
4	325,72	1,35	439,722		0	0
5	50	0	0		1,05	0
6	18,69	0		0	-3,17	0
7	118,5	1,35		159,975	-4,23	-676,69
8	6,67	0,8		5,336	-5	-26,68
9	5,44	1,6		8,704	-5	-43,52
10	71,83	1,6	114,928		0	183,885
11	70	1,35	94,5		1,05	127,575
som			996,249	174,015		-393,97

8.6.5.2- Calcul des sollicitations a l'ELU $1.35G + 1.6A(L) + 1.6Q_f + 0.8Q_{vl}$

Tableau 6-19: Calcul des sollicitations sur le mur de front a l'FI II

8.6.5.3- Calcul des sollicitations a l'ELS $G + 1.2A(L) + 1.2Q_f + 0.6Q_{vl}$

	-		ELS		-	
	efforts	coeff	N (KN)	H (KN)	d/0 (m)	M _u (KN.m)
1	221,86	1	221,86		0	0
2	21	1	21		0,75	15,75
3	14,25	1	14,25		1,05	14,9625
4	325,72	1	325,72		0	0
5	50	1	50		1,05	52,5
6	18,69	1		18,69	-3,17	-59,247
7	118,5	1		118,5	-4,23	-501,26
8	6,67	0,6		4,002	-5	-20,01
9	5,44	1,2		6,528	-5	-32,64
10	71,83	1,2	86,196		0	103,435
11	70	1	70		1,05	70
som			789,026	147,72		-356,5

Tableau 6-20: calcul des sollicitations sur le mur de front a l'ELS.

8.6.6- Récapitulative des sollicitations

L'élément	Moment (KN.m)	
Mur garde grève	35	
Mur en retour	Voir le Tableau 6.18	
La dalle de transition	140.41	
Le corbeau	292.8	
Mur de front	Voir le Tableau 6.19	

Tableau 6-21 : les moments sollicitons les éléments de

8.7- Calcul du ferraillage

8.7.1- Mur de garde grève

$$A_{st} = \frac{M_u}{Z * \sigma_{st}}$$

$$M_{u} = 0.035 MN. m \text{ (Tableau22)} \qquad d = 2.4*0.9 = 2.16m$$

$$z = d * (1 - 0.4\alpha) \qquad b = 1m$$

$$\alpha = 1.25(1 - \sqrt{1 - 2\mu}) \qquad f_{bc} = \frac{0.85*35}{1.5} = 19.83MPa$$

$$\mu_{u} = \frac{M_{u}}{b.f_{bc}.d^{2}} \qquad \sigma_{st} = \frac{500}{1.15} = 474.78 MPa$$

?? (MPa)	0.00038
α (m)	0.00047
Z(m)	2.15
$A_{st}(cm^2)$	0.34

Tableau 6-22: paramètres de ferraillage du mur G.G.

8.7.1.1- Ferraillage minimum de l'RPOA

Le pourcentage géométrique ρ_g global est compris dans les limites :

$$0,5 \% \le \rho_g \le 3 \%$$

 $A_{min} = 0.5 * B = 0.5 * (1 * 0.3) = 15cm^2$

On prend $(5T14 \rightarrow 10.05 cm^2)$ et $(5T16 \rightarrow 7.7 cm^2)$

 $17.75cm^2 > 15cm^2 \implies condition vérifier$

8.7.2- Mur en

On calcule le ferraillage de Titre22

Longitudinale

d = 0.45m

b = 1m

On prend 5T20

Transversale

M_u (MPa)	0.115
μ_u (MPa)	0.028
α (m)	0.035
Z(m)	0.44
$A_{st}(\text{cm}^2)$	6.01

retour

la même méthode de

Tableau 6-23: paramètres de ferraillage Transversale du mur en retour

M_u (MPa)	0.098
μ_u (MPa)	0.024
α (m)	0.031
<i>Z</i> (m)	0.44

8.7.2.2- Condition de non fragilité

$$A_{min} \ge 0.23 * b * d * \frac{f_{t28}}{f_e}$$

= 0.23 * 1 * 0.4 * $\frac{2.7}{500}$
= 4.9cm² => condition vérifie

Figure 6-19: ferraillage du mur en retour

8.7.3- Mur de front

 $M_u = 0.394$ MN.m (voir Tableau55)

 $N_u = 0.996 MN$ (Voir Tableau55)

$$d = 1.26 \text{ m}$$

$$e = \frac{M_u}{N_u} = 0.395m > \frac{h}{6} = 0.23m \implies \text{section partiellement comprimé}$$

$$M_a = M_u + N_u \left(d - \frac{h}{2}\right) = 0.394 + 0.996 \left(1.26 - \frac{1.4}{2}\right) = 0.952 \text{ MN. m}$$

$$\mu_u = \frac{M_u}{b.f_{bc}.d^2} = 0.03 < \mu_r \implies \text{simple armature } A_{sc} = 0$$

$$A_{st} = \frac{1}{\sigma_{st}} \left(\frac{M_a}{z} - N\right)$$

$$A_{st} = -4.24cm^2 \implies \text{Tableau 6-24: paramètres de} \text{ferraillage Longitudinale du mur en} c'est pas naissessaire retour.}$$

8.7.3.1- Condition Non fragilité

8.7.3.3- Armature de répartition

$$A_r = 25\% A_{st} = 48.2 * 0.25 = 12.05 cm^2$$

On prend 8T14

Figure 6-20 : ferraillage	du	mur
de front.		

8.7.4- Dalle de transition

M_u (MPa)	0.141
μ_u (MPa)	0.114
α (m)	0.151
<i>Z</i> (m)	0.235
A_{st} (cm ²)	12.64

b = 1m

d = 0.25

$$A_{st} = 6T20 = 18.85cm^2$$

 $A_{sc} = 6T12 = 6.79cm^2$

8.7.4.1- Justification à l'ELS

$$\frac{bx^2}{2} + n A_{sc}(x - d') - n A_{st}(d - x) = 0$$

$$50x^2 + 421.35x - 7761.75 = 0$$

$$x = 8.94cm$$

$$I_{bc} = 0.00024m^4$$

$$I_{sc} = 0.00036m^4$$

$$I_{st} = 0.000302m^4$$

$$I = [(I_{st} + I_{sc}) * 15] + I_{bc}$$

$$I = 0.0053m^4$$

$$\sigma_{st} = 50 MPa \implies condition vérifier$$

 $\sigma_{bc} = 1.87 MPa \implies condition vérifier$

8.7.4.2-Armature de répartition $A_r = \frac{A_{st}}{4} = 4.71 cm^2 \rightarrow 4T12 = 5.65 cm^2$

8.7.4.3-Condition de non fragilité

 $V_u = 0.047 \ MN$

0711

 $\tau_u = \frac{v_u}{d} \le 0.07 * \frac{f_{cj}}{\gamma_b}$

 $\tau_u = 0.188 \le 1.63 => condition vérifier$

Figure 6-21: ferraillage de la dalle de transition.

8.7.5- Corbeau

212T16

5**T**14

$$M_{u} = 0.293 MN$$

$$d = 1.9$$

$$\rho = 4$$

$$a = 0.3$$

$$z = \min[0.75 * d * (1 + \frac{\rho}{10}) ; 1.2a (0.8 + \frac{\rho}{5})]$$

$$z = 0.6$$
Figure 6-22: ferraillage de corbeau.

$$A_{st} = \frac{0.293}{0.6 * 434.78} = 11.23 cm^{2}$$

On prend 12T16

8.7.5.1- Armature de répartition

$A_r = 25\% A_{st} = 6.03 cm^2 \rightarrow 5T14 = 7.7 cm^2$

8.7.5.2- Ferraillage minimum de l'RPOA

 $A_{min} = 0.5\%(1.9 * 0.3) = 28.5 cm^2$

 $24.12 + 7.7 = 31.82 cm^2 > 28.5 cm^2$

=> condition vérifier

N.B

Les armatures de répartition donnée par mètre linéaire.

9- Etude de fondation

Pour des ouvrages pouvant atteindre une cinquantaine de mètres de portée, les fondations doivent être absolument fiables, compte tenu des descentes de charges relativement importantes (réactions de 100 à 150 t par poutre pour des ouvrages dont les poutres sont espacées de 3,00 mètres environ).(Setra,1996)

Les fondations profondes sont réalisées sur une ou deux files de pieux selon 1' importance des efforts horizontaux.

Les hypothèses de calcul

- Calcul suivant (CCTG, 1991a) et (CCTG, 1993).
- Règlement parasismique (STG, 2008).
- Enrobage: c = 5.0 (cm).
- Béton: $fc_{28} = 35$ (MPa). Acier: fe = 500 (MPa).

9.1- Etude des semelles de liaison

9.1.1- Semelle de pile

9.1.1.1-Pré dimensionnement

Figure 6-23: vu au-dessus de la semelle.

La formule de l'entraxes entre les pieux est donnée par :

La largeur de la semelle est donnée par :

 $A \ge L + \phi_p + 30cm \implies A \ge 4 + 1.2 + 0.3 \implies A \ge 5.5m$

La longueur de la semelle est donnée par :

$$B \ge (N_{Q_p} - 1) * L + Q_p + 30cm$$

$$B \ge (4 - 1) * 4 + 1.2 + 0.3 \implies B \ge 13.5m$$

$$N_{Q_p}$$
Nombre de pieu longitudinal.

On prend : B = 13.5m

Φ_p		A (m)	B (m)	H (m)	d (m)
ф(m)	Ν				
1.2	8	6	13.5	2	1.9

Tableau 6-26: dimenssion de la semelle de la pile (P1g).

9.1.1.2- Calcule du ferraillage

$$A_{st} = \frac{T}{\sigma_{st}}$$

$$\overline{\sigma_{st}} = \min[\frac{2}{3}f_e; \max(0.5f_e; 110\sqrt{\mu.f_{t28}}]$$

 $\overline{\sigma_{st}} = 228.63 MPa$

	ELU	ELS
R(MN)	5.76	4.26
T(MN)	3.79	2.81
$A_{st}(\text{cm}^2)$	165.78	122.9

Tableau 6-27: paramètres de ferraillage de la semelle.

Ferraillage inferieur

Longitudinale :

$$A_{st(L)} = 165.78 cm^2 \rightarrow 22T32$$

176.88*cm*²

Transversale :

$$A_{st(T)} = \frac{A_{st}}{4} = \frac{165.78}{4} = 41.44 cm^2 \rightarrow 10725$$

Ferraillage supérieur

Longitudinale :

$$A_{cl} = \frac{A_{st(L)}}{10} = 16.6 cm^2 \rightarrow 22T20$$

Transversale :

$$A_{ct} = \frac{A_{st(T)}}{10} = 4.14cm^2 \rightarrow$$

pile (P1g).

9.1.2- Semelle de culée

N.B

On utilise la même méthode de calcul pour la semelle de la pile

9.1.2.1- Pré dimensionnement

Φ_p		A (m)	B (m)	H (m)
ф(m)	N	6	15	1.5
1.2	8			

Tableau 6-28: dimenssion de la semelle de culée (C2).

9.1.2.2- Calcule du ferraillage

$$A_{st} = \frac{T}{\sigma_{st}}$$

 $T = \frac{R}{tg\theta}$

_	ELU	ELS
R(MN)	9.64	7.153
T(MN)	10.95	8.128
A_{st} (cm ²)	479.14	355.5

Tableau 6-29 : paramétrées de ferraillage de la semelle.

Ferraillage inferieur Ferraillage supérieur : Longitudinale : Longitudinale : $A_{cl} = \frac{A_{st(L)}}{10} = 47.914 cm^2 \to 40716$ $A_{st(L)} = 479.14 cm^2 \rightarrow 40740$ $= 502.8 cm^{2}$ Transversale : Transversale : $\begin{array}{c} A_{ct} = \\ \frac{A_{st(T)}}{10} = \end{array}$ 10⁰cm 10T16 40T16 $11.978cm^2 \rightarrow$ 1 1.5m 10Ť40 40T40 $A_{st(T)} = \frac{A_{st}}{4} = \frac{479.14}{4} = 119.78 cm^2$ $\rightarrow 10T40$

141

10- Etude des pieux

On applique la méthode des bielles, tel que cette méthode n'est valable que si ces deux conditions suivantes seront vérifiées :

$$-\begin{bmatrix} \alpha \ge 45^{\circ} \\ h \ge \frac{L}{2} - \frac{a}{4} \end{bmatrix}$$

Figure 6-26: la méthode des bielles.

Dans notre cas, les deux conditions sont vérifiées

10.1- Pieux sur la semelle de pile(P1_g)

10.1.1- Sollicitations de calcul

Poids propre de la semelle

$$M_{pp} = 25 * 2 * (6 * 13.5) = 4050 \ KN$$

_	ELU	ELS	ELA
M(KN.m)	5467.5	4050	4050

Tableau 6-30: sollicitations dus au poids propre.

On ajout la charge de la semelle a les charges calculer au Tableau 6.30

	ELU	ELS	ELA
N(KN)	37408.5	27741	25658
M(KN.m)	17357.8	13018.3	1877.56

10.1.1.1- Réactions des pieux $S = \pi * r^2 = 1.13m^2$ Avec

On a deux files de quatre pieux donc

$$B = 8 * S = 9.04m^2$$

$$I = 2 * 4 * S * V^2 = 32 * S m^2$$

$$V = \frac{L}{2} = 2m$$

On a :

$$\sigma = \frac{N_u}{B} \pm \frac{M_u * V}{I}$$
$$R = \sigma * S$$

A l'ELU

$$M_u = 17.3578 \ MN. m$$

$$N_u = 37.4085 \ MN$$

$$R_{max} = \frac{37.4085}{8} + \frac{17.3578 * 2}{32} = 5.76MN$$

$$R_{min} = \frac{37.4085}{8} - \frac{17.3578 * 2}{32} = 3.58MN$$

A l'ELS :

$$M_{s} = 27.741 \text{ MN. m}$$

$$N_{s} = 13.0183 \text{ MN}$$

$$R_{max} = \frac{13.0183}{8} + \frac{27.741 * 2}{32} = 4.28 \text{MN}$$

$$R_{min} = \frac{13.0183}{8} - \frac{27.741 * 2}{32} = 2.66 \text{MN}$$

A l'ELA

$$M_A = 25.658 \text{ MN. } m$$

$$N_A = 1.87756 \text{ MN}$$

$$R_{max} = \frac{1.87756}{8} + \frac{25.658 + 2}{32} = 4.38 \text{MN}$$

$$R_{min} = \frac{1.87756}{8} - \frac{25.658 + 2}{32} = 2.02 \text{MN}$$

		ELU	ELS	ELA
R(MN)	Min	3.58	2.66	2.02
	max	5.76	4.28	4.38

Tableau 6-32: réactions des pieux.

10.1.2- Vérification des pieux

Charge de fluage en compression Q_{adm}

Les charges de fluage en compression Q_{adm} d'un élément de fondation profonde sont évaluées à partir de Qpu et de Qsu par la relation suivante : (CCTG, 1993)

$$Q_{adm} = 0.5Q_{pu} + 0.7Q_{su}$$

Force limite de pointe

 $Q_{pu} = Rc * Sp = 34.45 * 1.13 = 44.78 MN$

Frottement latérale de pointe

 $Q_{su} = (8 * 0.04) * 3.768 = 1.2 MN$ => $Q_{adm} = 0.5 * 44.78 + 0.7 * 1.2 = 23.23 MN$

Charge des pieux

 $M_{pp} = (1.13 * 8 * 0.025) = 0.226 MN$

Charge totale à l'ELU = 37.485 MN

Pour un pieu = (37.485/8) = 4.68 MN

La charge totale par pieu : $Q_v = 0.226 + 4.68 = 4.9 Mn$

 $Q_v \ll Q_{adm} => condition vérifier$

10.1.3- Calcul de ferraillage

armatures longitudinales (GTS, 2008) Nombre minimal de barres 6 Diamètre minimal 12 mm

Section totale rapportée à la section nominale du pieu : Minimum : 0,5 % => As=56cm² on prend 12T25

armatures transversales (GTS, 2008)

Elles doivent être composées de cerces ou cadres répondant aux conditions ci-après : Diamètre minimal 10 mm

On prend des cercles 4T12

Figure 6-27: ferraillage de pieu.

10.2- Pieux sur la semelle de culée (C2)

10.2.1- Sollicitations de calcul

	ELU	ELS
N(MN)	31.62	23.42
M(MN.m)	90.98	67.617

Tableau 6-33: sollicitations de calcul.

Réactions des pieux

		ELU	ELS
σ (MPa)	Min	-1.15	-1.15
	Max	8.53	6.33
R(MN)	min	-1.73	-1.3
	max	9.64	7.153

Tableau 6-34: réactions des pieux.

Force limite de pointe :

$$Q_{up} = q_{up} * S_p$$

 $q_{up} = K_p * ple$ $ple = \sqrt[n]{P_1 * P_2 \dots P_n} = \sqrt[13]{P_T} \quad \text{(Les valeurs de P sont dans le figure 1.4)}$ ple = 15.73 bar $q_{up} = 1.89 \text{ MN}$

$$Q_{up} = 2.13$$
MN

Frottement latérale

 $Q_{su} = 3.768 * (30 * 0.04) = 4.52 MN$

$$=> Q_{adm} = 4.23 MN$$

Charge limite pour un pieu

 $Q_v = (31.62/8) + 0.226 = 4.18 Mn$

$$Q_v \ll Q_{adm} => condition vérifier$$

10.2.2- Calcul de ferraillage

On adapte le même ferraillage de pieux sous la semelle de pile (P1g)

Conclusion

L'objectif de ce projet de fin d'études était de pré-dimensionner et d'étudier un viaduc situé sur la nouvelle pénétrante reliant le sud de Ghazaouet à l'autoroute Est-Ouest. Ce pont est situé entre les PK3+950.23 et PK4+241.63, franchissant le ravin et la RN98, avec une longueur totale de l'ordre de 291.4m.

L'élaboration de ce type de projet reste une expérience enrichissante dans le cycle de formation d'un ingénieur des travaux publics car il nécessite de la réflexion, des connaissances étendues tout en faisant preuve de rigueur et d'un sens de l'observation très développé.

Cette étude nous a permis d'approfondir nos connaissances et ceci en complétant la formation acquise au sein du département de génie civil, aussi grâce aux calculs effectués manuellement, et à partir de logiciels adaptés pour ce genre d'études.

Ce projet nous a permis de mener une étude presque complète d'un viaduc, du pré-dimensionnement de l'ouvrage au calcul de ces différentes parties.

Concernant les résultats, nous pouvons apporter les conclusions suivantes :

L'élément principal qui fait la différence entre les autres types de ponts est la poutre de béton précontraint qui pèse 72t et qui contient 3 câbles de 12T15

Une dalle en béton armé qui contient 6 barres de HA20 dans le sens longitudinale et HA16 dans le sens transversale

Le chevêtre en béton armé nécessite 26 barres de HA32 dans la partie tracté qui reçoit les charges du tablier par l'intermédiaire des appareils d'appuis en élastomère fretté de dimensions 300×400×[4(12) +4(3)]

Annexe

Logiciel	BaelR - Version 1.02.035	23/05/2019
développé par O chevetre		
SOCOTEC	chevetre	Page 1 / 1

Données saisies :

Largeur section :	3,3 n	n
Hauteur section :	1,75	m
Position centre de gravité des armatures supérieure	s: 0,05	m
Position centre de gravité des armatures inférieures	: 0,05	m
Contrainte du béton : frai	35	MPa
Limite élastique de l'acier : f	500	MPa
Coefficient de durée d'application des charges : 0	1	
Coefficient de sécurité du béton : y	1,5	
Coefficient de sécurité de l'acier : γ_s	1,15	
Effort normal ELU :	0	kN
Moment fléchissant ELU :	-14 720	kN*m

Résultats des calculs aux ELU

Section des armatures	supérieures :	208	cm2
Section des armatures	inférieures :	0	cm2

Position de l'axe neutre : y0 = 0,17 m

LISTE DE REFERENCES

- Add beton. (s.d.). récupéré 14 juin, 2019, de https://www.addbeton.com
- Bernard-gély, a., & calgaro, j. A. (1994). *conception des ponts*. paris, france: presses de l'ecole nationale des ponts et chaussées.
- Calgaro, j. A. (2000). *projet et construction des ponts: généralités, fondations, appuis, ouvrages courants* (3ème éd). paris, france: ministère de l'equipement, des transports et du logement-direction des routes.
- **CCTG. (1971).** conception, calcul et épreuves des ouvrages d'art titre ii. programmes de charges et épreuves des ponts-routes(fascicule n° 61 -titre ii). paris, france: ministère de l'équipement et du logement et ministère de l'économie et des finances.
- **CCTG. (1991a).** règles techniques de conception et de calcul des ouvrages et constructions en béton armé suivant la méthode des états limites ((fascicule n° 62 titre i section i)ou(bael 91 révisé 99)). paris, france: ministère de l'equipement, des transports et du logement secrétariat d'etat au logement secrétariat d'etat au tourisme.
- **CCTG. (1991b)**. règles techniques de conception et de calcul des ouvrages et constructions en béton précontraint suivant la méthode des états limites ((fascicule n° 62 titre i section ii)ou(bpel 91 révisé 99)). paris, france: ministère de l'equipement, des transports et du logement secrétariat d'etat au logement secrétariat d'etat au tourisme.
- **CCTG. (1993).** *règles techniques de conception et de calcul des fondations des ouvrages de génie civil(fascicule n° 62 titre v).* paris, france: ministère de l'équipement, du logement et des transports.
- Charles, e., causse, g., & bouchon, p. (2007). *béton précontrainte-support de cours*. paris, france: presses de l'ecole nationale des ponts et chaussées.
- Groupe soletanche freyssinet. (2014). la précontrainte freyssinet. bagneux, france: freyssinet.
- Groupe technique specialise (gts). (2008). *regles parasismiques applicables au domaine des ouvrages d'art(rpoa 2008)*. alger, algérie: ministere des travaux publics.
- **GTS. (2009).** *regles definissant les charges a appliquer pour le calcul et les epreuves des ponts routes -rcpr*. alger, algérie: ministere des travaux publics.
- Setra. (1974). appareils d'appui en élastomére fretté. bagneux-cedex, france: setra.
- Setra. (1994). corniches-collection du guide technique gc. bagneux-cedex, france: setra.
- **Setra. (1996).** *ponts à poutres préfabriquées précontraintes par post-tension: guide de conception.* bagneux-cedex, france: setra.

- Setra. (2000). *(ictaal) instruction sur les conditions techniques d'aménagement des autoroutes de liaison*. bagneux-cedex, france: ministère de l'equipement, des transports et du logement-direction des routes.
- Siplast icopal. (2016). *avis technique ouvrages d'art (étanchéité de ponts-routes)*. paris, france: cerema.
- Thonier, h. (1985). *le béton précontraint aux états-limites* (3ème éd). paris, france: presses de l'école nationale des ponts et chaussées.
- Yazid, a. (2005). *béton précontrainte- cours et exercices*. bechar, algérie: centre universitaire de bechar.