

République algérienne et démocratique et populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Abou Bekr Belkaid-TLEMCEN

Faculté de technologie

Département de génie civil

Mémoire pour l'Obtention du Diplôme de MASTER en Génie Civil

Option : Construction Métallique et mixte

Thème :

Etude et vérification d'une structure métallique vis-à-vis

de l'incendie – Calcul statique, Dynamique et au Feu avec

consignes de sécurité

Présenté le 22 juin 2019 par :

BELLIL Hadjer

BOUKLI HACENE Mohammed Souhil

Devant le jury composé de :

Dr SELKA.G Dr RAS.A Dr MISSOUM.A Pr BOUMECHRA.N Président Examinateur Encadrant Encadrant

Remerciements

Nous adressons nos sincères remerciements à Messieurs MISSOUM.A et BOUMECHRA.N pour l'orientation et l'encadrement de ce projet de fin d'études.

On tient à remercier Monsieur SELKA.G qui a bien voulu accepter de présider ce jury.

Nos remerciements vont également à Monsieur RAS.A d'avoir accepter de faire partie des examinateurs.

Résumé :

Ce projet a pour l'objet d'étudier et vérifier une construction métallique vis-à-vis l'incendie ainsi qu'un calcul statique, dynamique et au feu avec proposition des solutions.

La structure est destinée à fabrication mécanique et située à Ainfezza, Wilaya de Tlemcen. Elle est composée de deux versants et de 9 portiques, stabilisée avec des contreventements. La toiture et le bardage sont en panneau sandwich. En premier lieu on a évalué les charges et surcharges appliquées sur notre structure .Ça nous permis de pré-dimensionner des éléments secondaires d'après le CCM97 .A l'aide de logiciel « ROBOT» et après une modélisation de la structure on a fait une étude sismique selon le « RPA99v2003 », ensuite un dimensionnement et une vérification des éléments structuraux, puis un calcul des assemblages suivant l'EC3 ; des fondation de la structure et enfin on a vérifié certains éléments vis-à-vis d'un incendie selon la réglementation française et on a terminé ce travail par proposer des solution de protection contre l'incendie.

Les mots clés : charpente métallique, dimensionnement, assemblage, séisme, incendie.

ملخص

يقدم هذا المشروع دراسة وتصميم مبنى صناعي . هذا المبنى مخصص للصناعة الميكانيكية الذي يقع في بلدية عين فزة ولاية تلمسان حيث تمت دراسة هذا المشروع مرورا بعدة مراحل تتمثل أولها في تقييم فضلا على آثار المناخ (الثلوج و الرياح) وفقا للقواعد الجزائرية « RNV99V2013 » ثم دراسة مقاييس عناصر المبنى الأساسية منها والثانوية بعد وقمنا بنمذجة هيكلنا من خلال "ROBOT ANALYSIS STRUCTURAL" ، ومن ثم دراسة زلزالية وفقا للقواعد الجزائرية للزلزال « RPA99V2003 » , وبعد ذلك حساب الوصلات و التجمعات وفقا للتنظيم . تمت دراسة البنية التحتية وفقا لقواعد« BAEL91 » , وفي النهاية حساب بعض العناصر واقتراح الحلول ضد الحرائق.

الكلمات المفتاحية: الهيكل المعدني ، التحجيم ، التجميع ، الزلازل، الحرائق.

Abstract

In this final project we study and design an industrial building located in Ainfezza, East of «Tlemcen» Wilaya. It is constructed of several frames, stabilized by bracing, and covered by a roof with two symmetrical slopes. The work is developed through several stages. First, we assess the loads such as climate effects (snow and wind) under the Algerian climatic rules « RNV 99 V2013 ». Second we evaluate the main and secondary steel structural elements according to their strengths. Next, we modeled our structure under « ROBOT ANALYSIS STRUCTURAL », the dynamical analysis according to the Algerian earthquake codes « RPA99 V2003» in order to choose the bracing system that ensures the stability of the structure. Then, the assemblies. The foundations are dimensioned according to the regulation « BAEL 91 ». Finally, we propose a fire-preventing solution based on the calculation of some steel structure elements.

Keywords: Steel structure – Assembly – Earthquake-fire.

Table des matières

Table des ma	tières	4
Liste des figu	res	9
Liste des Tabl	eaux	12
Liste des nota	itions	13
Introduction §	générale	15
Chapitre I:	Généralités sur la conception de l'ouvrage étudié	16
I. 1. Prés	sentation de l'ouvrage	17
I. 1. 1.	Données géométriques de l'ouvrage	17
I. 1. 2.	Localisation et données concernant le site	18
I. 2. Règ	elements utilisés	19
I. 3. Log	riciels utilisés	19
I. 4. Mat	tériaux utilisés	19
I. 4. 1.	Acier Fe 360	19
I. 4. 2.	Béton armé	19
I. 5. Ass	emblage	19
I. 5. 1.	Le boulonnage	19
I. 5. 2.	Le soudage	20
Chapitre II:	Détermination des charges climatiques	21
II. 1. Intr	oduction	22
II. 2. Act	ion du vent	22
II. 2. 1.	Calcul de la pression aérodynamique	22
II. 2. 2.	Coefficient dynamique (<i>Cd</i>)	22
II. 2. 3.	Pression dynamique de pointe (qp)	23
II. 2. 4.	Coefficient d'exposition au vent (<i>Ce</i>)	23
II. 2. 5.	Les coefficients de pression extérieure	24
II. 2. 6.	Les coefficients de pression intérieure	27
II. 3. Lat	force de frottement	31
II. 4. Acti	ion de neige	32
II. 4. 1.	Charge de neige sur le sol	32
II. 4. 2.	Coefficient de forme de toiture	33
II. 4. 3.	Charge de neige sur la toiture	33
II. 5. Cor	nelusion	34

Chapitre III:	Dimensionnement et vérification des éléments secondaires	. 35
III. 1. I	ntroduction	. 36
III. 2. N	Matériaux de couverture de la toiture :	. 36
III. 3. C	Calcul des pannes	. 36
III. 3. 1.	Espacement entre pannes	. 37
III. 3. 2.	Pré-dimensionnement à la flèche :	. 38
III. 3. 3.	Classe de la section Erreur ! Signet non dé	fini.
III. 3. 4.	Vérification à l'ELS avec poids propre inclus (IPE120) : Erreur ! Signet non dé	fini.
III. 3. 5.	Vérification à l'ELS (IPE 140) :	. 39
III. 3. 6.	Vérification à la résistance	. 40
III. 3. 7.	Vérification de l'élément au déversement	. 42
III. 3. 8.	Conclusion :	. 44
III. 4. C	Calcule des lisses de bardage	. 44
III. 4. 1.	Introduction	. 44
III. 4. 2.	Evaluation des charges	. 44
III. 4. 3.	Vérification à la résistance	. 44
III. 4. 4.	Vérification de l'élément au déversement	. 46
III. 4. 5.	Vérification à l'ELS (à la flèche)	. 46
III. 4. 6.	Conclusion	. 47
III. 5. C	Calcul des potelets	. 47
III. 5. 1.	Calcul des charges et surcharges	. 48
III. 5. 2.	Dimensionnement du potelet	. 48
III. 5. 3.	Classe de la section transversale	. 49
III. 5. 4.	Vérification de la section à la résistance	. 49
III. 5. 5.	Vérification de l'élément aux instabilités	. 50
III. 5. 6.	Conclusion	. 53
III. 6. C	Calcul de l'échantignolle	. 53
III. 7. C	Calcul des chéneaux	. 55
III. 8. Cor	nclusion	. 57
Chapitre IV:	Etude sismique	. 58
IV. 1. I	ntroduction	. 59
IV. 2. C	Caractéristiques sismique de l'ouvrage	. 59
IV. 3. S	Spectre de repense de calcul	60
IV. 4. A	Analyse modale spectrale	61

IV. 5. V	/érification de la structure	62
IV. 5. 1.	Estimation de la période fondamentale de la structure	62
IV. 6. V	/érification de l'effort tranchant à la base	64
IV. 7. V	Vérification des déplacements	66
IV. 8. C	Conclusion	66
Chapitre V:	Dimensionnement et vérification des éléments structuraux	67
V.1. Intr	oduction	68
V. 2. Just	tification du poteau HEA220	68
V. 2. 1.	Caractéristiques du poteau	68
V. 2. 2.	Classe de profilé	69
V. 2. 3.	Vérification de la section à la résistance	69
V. 2. 4.	Vérification d'élément aux phénomènes d'instabilités	70
V. 2. 5.	Conclusion	73
V. 3. Just	tification de la traverse IPE330	73
V. 3. 1.	Caractéristiques du profilé	73
V. 3. 2.	Classe de profilé	74
V. 3. 3.	Vérification de la section à la résistance	74
V. 3. 4.	Vérification d'élément aux phénomènes d'instabilités	75
V. 3. 5.	Conclusion	77
V.4. Vér	ification de la poutre au vent UPN140	77
V. 4. 1.	Caractéristiques du profilé	77
V. 4. 2.	Vérification à la traction	78
V. 4. 3.	Conclusion	78
V. 5. Vér	ification des diagonales de palée de stabilité $2L \ 90 imes 90 imes 9$	78
V. 5. 1.	Caractéristiques du profilé	78
V. 5. 2.	Vérification à la traction	78
V. 5. 3.	Conclusion	79
V. 6. Cor	nclusion	79
Chapitre VI:	Calcul des assemblages	80
VI. 1. I	ntroduction	81
VI. 2. A	Assemblage traverse-poteau (IPE330-HEA220)	81
VI. 2. 1.	Les efforts sollicitants	82
VI. 2. 2.	Vérification des cordons de soudure	83
VI. 2. 3.	Résistance de la zone cisaillée du poteau	83

VI. 2.	4. Résistance de la zone comprimée	83
VI. 2.	5. Résistance de la zone tendue	85
VI. 2.	6. Conclusion	95
VI. 3.	Assemblage traverse-traverse (IPE330 – IPE330)	95
VI. 3.	1. Les efforts sollicitant	96
VI. 3.	2. Vérification des cordons de soudure	96
VI. 3.	3. Résistance de la zone comprimée	97
VI. 3.	4. Résistance de la zone tendue	
VI. 3. 5	5. Conclusion	103
VI. 4.	Assemblage pied de poteau	103
VI. 4.	1. Dimensionnement de la plaque d'assise	103
VI. 4.	2. Cordon de soudure	106
VI. 4. 3	3	106
VI. 4. 4	Le Calcul de la résistance à la flexion en présence de l'effort axial	106
VI. 4.	5. Tige d'ancrage	108
VI. 4.	6. Résistance au cisaillement de la soudure	109
VI. 4.	7. Longueur participant du tronçon en T équivalent tendu	109
VI. 4.	8. Résistance de la partie tendue de l'assemblage	110
VI. 4.	9. Résistance à la flexion de la plaque d'assise (par unité de longueur)	110
VI. 4.	10. Vérification à la résistance en flexion	111
VI. 4.	11. Classification de l'assemblage	111
VI. 4. 1	2. Conclusion	111
VI. 5.	Assemblage des diagonales de palée de stabilité $2L 90 \times 90 \times 9$	111
VI. 5.	1. L'effort sollicitant de l'assemblage	111
VI. 5.	2. Epaisseur du gousset	112
VI. 5.	3. Disposition constructive	112
VI. 5.	4. Calcul du nombre des boulons	112
VI. 5.	5. Vérification de la pression diamétrale	113
VI. 5.	6. Vérification de la pièce à la traction $2L 90 \times 90 \times 9$	113
VI. 5.	7. Conclusion	114
VI. 6.	Conclusion	114
Chapitre VI	I: Calcul des fondations	115
VII. 1.	Introduction	116
VII. 2.	Etude des semelles	117

VII. 2. 1.	Définition des sollicitations (ROBOT)1	17
VII. 2. 2.	Dimensionnement des semelles	17
VII. 2. 3.	Vérification au renversement	18
VII. 2. 4.	Détermination du ferraillage des semelles1	18
VII. 3. Calc	zul des longrines1	19
VII. 3. 1.	Dimensionnement des longrines1	19
VII. 3. 2.	Calcul des ferraillages	20
VII. 4. Con	clusion1	21
Chapitre VIII:	Calcul au feu1	22
VIII. 1. Intro	oduction1	23
VIII. 2. Gén	éralités1	23
VIII. 2. 1.	Connaissance de base sur l'incendie1	23
VIII. 2. 2.	Notions de réaction et de résistance au feu :1	26
VIII. 3. Calc	cul et vérification des éléments de la structure vis-à-vis l'incendie1	32
VIII. 3. 1.	Objet de la partie feu de l'EC3	33
VIII. 3. 2.	Moyens de justification pour la résistance au feu1	33
VIII. 3. 3.	Vérification de quelques éléments de la structure1	33
VIII. 4. Les	solutions constructives pour la protection des structures en acier contre l'incendie 14	41
VIII. 4. 1.	Objectif de la sécurité incendie14	41
VIII. 4. 2.	Solution pour la protection des structures en acier14	41
VIII. 5. Con	clusion14	41
Conclusion géné	rale14	43
REFERENCES BIB	LIOGRAPHIQUE	44
Annexes A : Déte	ermination des charges climatiques14	45
Annexes B : Dim	ensionnement et vérification des éléments secondaires1	50
Annexes C : Etud	le sismique1	52
Annexes D : Asse	emblages 1	54
Annexes E : Calc	ul au feu1	72

Liste des figures

Figure I.1 : Vue 3D de la structure	. 17
Figure I.2 Face long-pan	. 18
Figure I.3 Face pignon	. 18
Figure II.1 : Légende pour les parois verticales	. 24
Figure II.2 : Légende pour toiture	. 25
Figure II.3 : C _{pe} pour la toiture	. 25
Figure II.4 : Légende pour les parois verticales	. 26
Figure II.5 : C _{pe} pour les parois verticales (vent sur longpan 1;2)	. 26
Figure II.6 : C _{pe} pour toiture (vent sur long-pan 1;2)	. 27
Figure II.7 : Légende pour les toitures	. 27
Figure II.8 : Coefficient de pression intérieur Cpi	. 28
Figure II.10 : Pression aérodynamique du vent sur la toiture (vent pignon 1;2)	. 29
Figure II.9 : Pression aérodynamique du vent sur les parois verticales (vent sur pignon 1;2)	. 29
Figure II.11 : Pression aérodynamique de vent sur les parois verticales (vent sur long 1;2)	. 30
Figure II.12 : Pression aérodynamique du vent sur la toiture (Vent sur long-pan 1;2)	. 31
Figure II.13 : Disposition de charge de neige à considérer pour toiture à 2 versants	. 33
Figure II.14 : Application de la charge de neige sur la toiture	. 34
Figure III.1 : Disposition des pannes	. 36
Figure III.2 Répartition de la charge d'entretien sur la panne	. 37
Figure III.3 : Les surcharges climatiques (Vent et neige)	. 37
Figure III.4 : La flexion des pannes	. 40
Figure III.5 : Cisaillement des pannes	. 41
Figure III.6 : La partie susceptible de déverser de la panne	. 42
Figure III.7 : Coupe longitudinale sur les lisses de bardage	. 44
Figure III.8 : La charge permanente et du vent sur les lisses	. 45
Figure III.9 : La flèche des lisses dans les deux sens z et y	. 46
Figure III.10 Les potelets	. 48
Figure III.11 : Position de l'échantignolle sur la traverse	. 53
Figure III.12 : Les dimensions d'un échantignolle	. 54
Figure III.13 : Coupe vertical sur les chéneaux	. 55
Figure III.14 : Coupe transversale du chéneau	. 56
Figure IV.1: Valeur des pourcentages d'amortissement	. 60
Figure IV.2 : Spectre de répense suivant X	. 61
Figure IV.3 : Spectre de repense suivant Y	. 62
Figure IV.4 : Les 3 premiers mode de vibration lors de seisme	. 62
Figure IV.5 : Premier mode propre de vibration	. 63
Figure IV.6 : Troisième mode propre de vibration	. 64
Figure IV.7 : Deuxième mode propre de vibration	. 64
Figure IV.8 : Coefficient d'accélération de zone A	. 65
Figure IV.9 : Valeurs de T1 et T2	. 65
Figure V.1 : Le poteau le plus sollicité	. 69
Figure V.2 : La traverse la plus sollicitée	. 73
Figure VI.1 : Assemblage boulonné par platine d'extrémité d'une structure en acier	. 81

Figure VI.2 : Vue 3D d'assemblage traverse-poteau (IPE330-HEA220)	81
Figure VI.3 : Détails d'assemblage traverse-poteau (IPE330-HEA220)	82
Figure VI.4 : Les différents zones d'assemblage	82
Figure VI.5 : La résistance maximale en compression ou en cisaillement	84
Figure VI.6 : Voilement de l'âme sous compression	85
Figure VI.7 : Les différentes rangées de boulons par rapport au centre de compression	86
Figure VI.8 : Schéma représentatif du mode 1	86
Figure VI.9 : Schéma représentatif du deuxième mode	86
Figure VI.10 : Schéma représentatif du troisième mode	87
Figure VI.11: Schéma représentatif de mode 4	87
Figure VI.12 : Ame du poteau tendue	89
Figure VI.13 : La force pour chaque boulon et son bras de levier	91
Figure VI.14 : Cisaillement vertical des boulons du bas d'assemblage	91
Figure VI.15 : Un modèle ressort d'assemblage par platine d'about	93
Figure VI.16 : Vue 3D d'assemblage traverse-traverse (IPE330-IPE330)	95
Figure VI.17 : Détails d'assemblage traverse-traverse (IPE330-IPE330)	96
Figure VI.18 : L'effort supposé agir au niveau du milieu de la semelle inférieure de la poutre	97
Figure VI.19 : Zone tendue et la zone comprimé d'un assemblage	99
Figure VI.20 : Un moment d'assemblage	. 100
Figure VI.21 : Classification des zones d'assemblage	. 101
Figure VI.22 Détails d'assemblage de pied de poteau	. 104
VI.23: Vue en plan de pied de poteau	. 104
Figure VI.24 : Vue 3D d'assemblage pied de poteau	. 104
Figure VI.25 : Illustration moment + effort tranchant	. 106
Figure VI.26 : Résistance en compression d'un tronçon en T	. 106
Figure VI.27 : Illustration de la partie comprimée du pied de poteau	. 107
Figure VI.28 : Disposition constructive	. 109
Figure VI.29 Assemblage des diagonales double cornières avec un gousset	. 112
Figure VII.1 : La transmission des charges aux fondations	. 116
Figure VII.2 : Les dimensions de la semelle sous poteau	. 118
Figure VIII.1 : Triangle du feu	. 123
Figure VIII.2 : Propagation par rayonnement	. 124
Figure VIII.3 : Propagation par convention	. 124
Figure VIII.4 : Propagation par conduction	. 124
Figure VIII.5 : Effet de Brandon	. 124
Figure VIII.6 : Les modes de propagation d'incendie	. 125
Figure VIII.7 : Résistance au feu-succession des événements	. 126
Figure VIII.8 : Shéma illustratif des critères de résistance au feu	. 127
Figure VIII.9 : Critères de résistance au feu réglementaire	. 128
Figure VIII.10 : Incendie conventionnel ISO834 (incendie normalisé)	. 129
Figure VIII.11 : La différente classe de feu	. 129
Figure VIII.12 : Les euro-classes de résistance au feu	. 130
Figure VIII.13 : Capacité ou catégorie par personnes	. 131
Figure VIII.14 : Exigence se stabilité pour les ERP	. 132
Figure VIII.15 : Analyse par élément	. 134

Figure VIII.16 : Le comportement mécanique d'une traverse soumise à un incendie quelconqu	ıe 134
Figure VIII.17: Facteur de réduction pour les relations contrainte-déformation de l'acier	136
Figure VIII.18 : La traverse sous les différents de charges	137
Figure VIII.19: L'abaque pour déterminer le $lpha$	155
Figure VIII.20 : La pince p et l'entraxe e dans un tronçon en T	156
Figure VIII.21 : <i>leff</i> dans un tronçon en T	157
Figure VIII.22 : La résistance de tronçon pour différents modes	167
Figure VIII.23 : Les différents groupes des rangées	169
Figure VIII.24 : Les différentes couches de la peinture intumescente	172
Figure VIII.25 : Technique de flocage	173
Figure VIII.26 : Les laines de roche	174
Figure VIII.27 : La protection par produits en plaques	174
Figure VIII.28 : Les différentes techniques de la protection par écran	175
Figure VIII.29 : Le compartimentage	176
Figure VIII.30 : Un sprinkler	176
Figure VIII.31 : Alarme incendie	176

Liste des Tableaux

Tableau I.1 : Caractéristiques de l'acier Fe 360	19
Tableau II.1 : Cpe pour les parois verticale (Vent pignon 1;2)	25
Tableau II.2 : Cpe pour la toiture (Vent pignon 1;2)	25
Tableau II.3 : Cpe pour les parois verticale (vent sur lonpang 1;2)	26
Tableau II.4 : Cpe pour la toiture (vent sur longpan 1;2)	27
Tableau II.5 : Pression aérodynamique du vent (vent sur pignon 1;2)	28
Tableau II.6 : Pression aérodynamique du vent (vent sur longpan 1;2)	30
Tableau II.7 : Valeur de coefficient de frottement	32
Tableau II.8 : zone de neige d'après RNV99version2013	32
Tableau II.9 : Coefficient de forme -Toiture à deux versants	33
Tableau III.1 : Caractéristiques géométrique le IPE140	fini.
Tableau III.2 : Les profilés des éléments secondaires	57
Tableau IV.1 : Les facteurs de qualité suivant X et Y	61
Tableau IV.2 : Résultante des forces sismique à la base	66
Tableau V.1 : Ccaractéristique de profilé HEA220	68
Tableau V.2 Caractéristique du profilé IPE330	73
Tableau V.3 : Caractéristiques du profilé UPN14	77
Tableau V.4 Caractéristiques du profilé composé 2L90*90*9	78
Tableau V.5 : Les profilés des éléments structuraux	79
Tableau VI.1 : Longueur efficace de tronçon en T équivalent	87
Tableau VI.2 : Tableau récapulatif des efforts et moment de la semelle du poteau fléchie	88
Tableau VI.3 : Tableau récapulatif de la flexion de la platine d'about et ame du poutre fléchie	88
Tableau VI.4:La résistance de l'assemblage pour différents rangée	90
Tableau VI.5 : Les coefficients de rigidité	92
Tableau VI.6: La régidité du raideur pour chaque rangée	94
Tableau VI.7 : Tableau récapitulatif des efforts et moments de flexion de platine et l'ame de po	utre
tendu	99
Tableau VI.8: Rigidité de chaque rangée	. 102
VI.9 : Les types d'assemblage de la structure	114
VII.1 : Les différentes dimensions de fondation	121
Tableau VIII.1 : Classes de performances de réaction au feu avec ses critères complémentaires	. 127

Liste des notations

Les Charges :

- G : Charges permanentes.
- Q : Surcharge d'entretien.
- S : Surcharge climatique de la neige.
- W : Surcharge climatique du vent.

Les caractéristiques d'un profilé en I ou H :

- b : la longueur de la semelle
- d : la hauteur de l'âme.
- h : Hauteur d'une pièce.
- t_f : Épaisseur d'une semelle de profilé.

 t_w : Épaisseur de l'âme de profilé.

Majuscules latines :

A : Section brute d'une pièce.

Anet : Section nette d'une pièce.

 A_w : Section de l'âme.

 A_v : Aire de cisaillement.

Ct: Coefficient de topographie.

- Cr: Coefficient de rugosité.
- Ce: Coefficient d'exposition.
- Cd: Coefficient dynamique.
- E : Module d'élasticité longitudinale de l'acier (E=2.1 10 MPa).
- F : Force en générale.
- G : Module d'élasticité transversale de l'acier (G=81000 MPa).
- I : Moment d'inertie.
- Ko: Coefficient de flambement.
- K_T : Facteur de terrain.

L : Longueur.

M : Moment de flexion.

 M_{sd} : Moment fléchissant sollicitant.

 M_{Rd} Moment résistant par unité de longueur dans la plaque d'assise.

 M_{pl} : Moment plastique.

 $M_{b,Rd}$: Moment de la résistance au déversement.

 $N_{pl,Rd}$ Effort normal de la résistance plastique de la section transversale brute.

N_{b,Rd} Effort normal d'un élément comprimé au flambement.

 N_{sd} : Effort normal sollicitant.

 $N_{t,sd}$: Effort normale de traction.

 $N_{c,sd}$:: Effort normal de compression.

 $N_{c,Rd}$ Valeur de calcul de la résistance de la section transversale à la compression.

R : Coefficient de comportement de la structure.

 V_{sd} : Valeur de calcul de l'effort tranchant.

- $V_{réf}$: Vitesse de référence du vent.
- W_{pl} : Module de résistance plastique.
- W : Poids de la structure.

Minuscules latines :

f: La flèche.

- fy: Limite d'élasticité.
- 1 : Longueur d'une pièce (Poutre, Poteau).
- l_{f}^{*} : Longueur de flambement.
- t: Épaisseur d'une pièce.
- z : Hauteur au-dessus du sol.
- z0 : Paramètre de rugosité.
- z_{eq} : Hauteur équivalente.

Minuscules grecques :

 ψ_2 : Facteur de combinaison pour catégorie.

- χ : coefficient de réduction pour le mode de flambement approprié.
- β_w : Facteur de corrélation.
- үм : Coefficient de sécurité.
- λ : Élancement.
- λ_{LT} : Élancement de déversement.
- α : Facteur d'imperfection.
- α : l'angle.
- λ_{LT} : Rotation de déversement.
- τ : Contrainte limite de cisaillement en élasticité.
- ε : Coefficient de réduction élastique de l'acier..

 σ_b : Contrainte du béton.

- ξ : Pourcentage d'amortissement critique.
- $\boldsymbol{\eta}$: Facteur de correction d'amortissement.
- δ : Déplacement dû aux forces sismiques.
- γ_s : Coefficient de sécurité d'acier.
- μ : coefficient de forme de la charge de neige

Introduction générale

La construction métallique et plus particulièrement les charpentes métalliques ont connu un développement important ces dernières années. Elle est avantageuse dans le cas de grandes portées avec des fondations réduites ainsi qu'une rapide fabrication et montage des éléments les constituants.

Nous allons étudier une structure en acier avec détermination des charges sollicitant tel que le vent et la neige. Puis un pré- dimensionnement, une vérification de la résistance et de l'instabilité des éléments principaux et secondaires seront développés. Une vérification au séisme sera faite selon le règlement parasismique Algérien « RPA », sans oublier de concevoir et calculer les assemblages.

Une deuxième partie de ce travail va se consacrer sur la vérification de l'incendie sue notre structure métallique.

Nous serons amenés dans ce travail à utiliser certains règlements et plus particulièrement le règlement Algérien « CCM97 » et l'EC 3 pour le calcul des éléments de notre structure. Pour le calcul au feu, ne serons obligés d'utiliser le règlement Français et les recommandations du CTICM du fait qu'à ce jour, il n'y a pas une règlementation bien définie en Algérie.

Ce manuscrit est composé de huit chapitres de la présente introduction et d'une conclusion générale .Le premier chapitre comporte une présentation de notre projet par : les données géométriques ; sa localisation ; règlements, logiciels et matériaux utilisés ; les assemblages . Le deuxième chapitre est consacré a l'évaluation des charges et surcharges : calcul des charges permanentes, surcharge d'exploitations, la charge de neige et le calcul de la pression due au vent. Quant au troisième chapitre est dédié au pré-dimensionnement et vérification des éléments secondaires : pannes, lisses de bardage, liernes, potelets. Etude séismique pour le quatrième chapitre avec le spectre de repense, une modélisation de la structure et une analyse modale. Un dimensionnement des éléments structuraux (poteaux, traverses et palées de stabilité) et leurs vérifications vis-à-vis les instabilités dans le 5^{ème} chapitre. Le sixième chapitre sera consacré pour le calcul des assemblages. Le septième chapitre on a fait un calcul des fondations de la structure. Et le denier chapitre une vérification des éléments vis-à-vis l'incendie (un calcul au feu des éléments) et une proposition des solutions contre le feu.

Chapitre I: Généralités sur la conception de l'ouvrage étudié

I. 1. Présentation de l'ouvrage

Ce projet consiste à étudié un hall industriel destiné à la fabrication mécanique à Ainfezza dans la wilaya de Tlemcen, faire une vérification vis-à-vis l'incendie, calcul statique, dynamique et au feu avec consignes de sécurité.

Le terrain à bâtir est un terrain plat, implanté dans la zone I de faible sismicité; repose sur une superficie 576 m² dont l'altitude égale à 846m.

L'hangar métallique est tout couvert par une (TL75), est constitué de deux versants, il se compose de 9 portiques de système traverses espacés de 6 m, de 2 potelets à chaque pignons.

Figure I.1 : Vue 3D de la structure

I. 1. 1. Données géométriques de l'ouvrage

Les données géométriques de l'ouvrage suivant les plans architecturaux sont :

- ✓ Surface occupée : 576 m^2 .
- ✓ Hauteur totale : H=6,72m
- ✓ La hauteur du poteau h=6m.
- ✓ Largeur de la structure (pignon) : 12 m.
- ✓ Longueur de la structure (long-pan): 48 m.
- ✓ Pente de versant α = 6,8 °.

Pour notre structure nous disposons de deux portes de $(5 \times 5,45)$ m à la face devant du pignon qui permet le passage des engins.

Figure I.2 Face long-pan

Figure I.3 Face pignon

I. 1. 2. Localisation et données concernant le site

Le projet se trouve dans la commune de Ainfezza , Wilaya de Tlemcen classée comme zone I de faible sismicité Selon RPA99v2003 et dont :

- ✓ Altitude : 846 m.
- ✓ Zone de neige par commune : Zone A.
- ✓ Zone du vent : Zone II.
- ✓ Zone sismique : Zone I.
- ✓ Contrainte admissible du sol est $\sigma_{sol} = 2 \ bars$.

I. 2. Règlements utilisés

- ✓ **CCM97** : Règles de conception et calcul des structures en acier.
- ✓ **DTR BC2.2** : Charges permanentes et surcharges d'exploitations.
- ✓ **RPA99 :** Règles parasismiques Algériennes version 2003.
- ✓ **RNV2013 :** Règles définissant les effets de la neige et du vent.
- ✓ **BAEL91 :** Béton armé aux états limites.
- ✓ **EC3** (1-8) : Euro-code 3 partie 1-8.

I. 3. Logiciels utilisés

- ✓ AUTODESK AUTO CAD 2016.
- ✓ AUTODESK ROBOT STRUCTURAL 2014.

I. 4. Matériaux utilisés

I. 4. 1. Acier Fe 360

Nuance	Epaisseur (mm)				
d'acier	t≤ 40 <i>mm</i>		40 < <i>t</i> < 100 <i>mm</i>		
(EN 10025)	$F_y(N/mm^2)$	$F_u(N/mm^2)$	$F_y(N/mm^2)$	$F_u(N/mm^2)$	
Fe 360	235	360	215	340	

Tableau I.1 : Caractéristiques de l'acier Fe 360

Le module d'élasticité longitudinale : E= 210000 MPa .

Le coefficient de poisson : v = 0.3 .

La masse volumique : $\rho = 7850 \ kg/m^3$.

Le module d'élasticité transversale : G = 81GPa.

I. 4. 2. Béton armé

La résistance à la traction : $\rm f_{t28}{=}0,6{+}0,06$ $\rm f_{c28}{=}2,1$ MPa .

La résistance à la compression à 28 jours : $f_{c28} = 25$ MPa.

I. 5. Assemblage

I. 5. 1. Le boulonnage

Le boulonnage est le moyen d'assemblage le plus utilisé en construction métallique du fait dont sa facilité de mise en œuvre et des possibilités de réglage qu'il permet sur site. Cette technique autorise une grande rapidité de montage sur le chantier et ceci à un cout très économique. Deux types de boulons sont couramment utilisés :

- ✓ Les boulons ordinaires : travaillent en traction et en cisaillement par butée.
- ✓ Les boulons HR : pour lesquels l'effort de serrage empêche le glissement entre les pièces assemblées. On les appels aussi les boulons précontraint.

Pour ce cas, des boulons ordinaires de classe 8.8 pour les assemblages rigides des portiques auto stables ont été utilisés, les boulons ordinaires.

I. 5. 2. Le soudage

Le soudage est une opération qui consiste à joindre deux parties d'un même matériau avec un cordon de soudure constitué d'un métal d'apport, ce dernier sert de liant entre les deux pièces à assembler.

Les assemblages soudés sont réalisés en atelier et destinés aux liaisons permanentes. Sont systématiquement soudés :

- Les organes de liaisons (gousset-platine).
- Les profils reconstitués, les aboutages de profilés.

Chapitre II: Détermination des charges climatiques

II.1. Introduction

Dans ce chapitre on va déterminer les différentes actions des charges climatiques : neige et vent d'après le règlement Algérien RNV99 version 2013.

II. 2. Action du vent

L'action du vent sur un ouvrage et sur chacun de ses éléments dépend des caractéristiques suivantes :

✓ Implantation du bâtiment : Ainfezza - Tlemcen					
✓ Zone du vent : II		(RNV99ver 2013 - Tableau 4			
$q_{r\acute{e}f} = 435 \ N/m^2 = 0.435 \mathrm{KN/m^2}$		(RNV99ver 2013 - Tableau 2.2)			
✓ Catégorie du terrain : III.		(RNV99ver 2013 - Tableau 2.4)			
$K_{\rm T} = 0,215$	$Z_0 = 0,3$	$Z_{min} = 5m$	ε = 0,61		
Site plat : $C_t(z) = 1$ pour $\emptyset < 0,05$.		(RNV99ver 201	3 – 2.4.5.2)		
✓ Dimension de l'ouvrag	e :				
Longueur : d=48 m					

Largeur : b=12 m

Hauteur totale : H =6,72 m

La pente : $\alpha = 6.8^{\circ}$

✓ Dimension des ouvertures :

2 portes : $2 \times (5; 5, 45)$ m.

II. 2. 1. Calcul de la pression aérodynamique

La pression aérodynamique $W(z_i)$ agissant sur une paroi est obtenue à l'aide de la formule suivante :

 $W(z_i) = q_p(z_e) \times (C_{pe} - C_{pi}) \quad daN/m^2$ (RNV99ver 2013 – 2.5.2 formule 2.6)

 $q_p(z_e)$: est la pression dynamique de pointe calculée à la hauteur z_e .

C_{pe} : Coefficient de pression extérieure.

*C*_{pi} : Coefficient de pression intérieure.

II. 2. 2. Coefficient dynamique (C_d)

La hauteur de notre structure est inférieur à 15 m. On prend $C_d = 1$ (RNV99ver 2013 – 3.2)

II. 2. 3. Pression dynamique de pointe (q_p)

La pression dynamique à la hauteur de référence z_e est donnée par :

 $q_p(z_e) = q_{réf} \cdot C_e(z_e) \ KN/m^2$ (RNV99ver 2013 – 2.3.1formule 2.1)

 $q_{r\acute{e}f} = 0,435 \ KN/m^2$ (Zone II)

 C_e : Coefficient d'exposition au vent.

II. 2. 4. Coefficient d'exposition au vent (C_e)

Il tient compte des effets de la rugosité du terrain, de la topographie du site et la hauteur au dessus de sol.

 $C_e(z)$ Donnée par :

$$C_e(z) = C_t(z)^2 \times C_r(z)^2 \times [1 + 7I_v(z)]$$

 C_t : Coefficient topographique :

 C_r : Coefficient de rugosité.

 I_v : Intensité de turbulence.

z : La hauteur considérée.

- Coefficient de topographie (C_t) :

$$C_t(z) = 1 \rightarrow \text{Site} \underline{\text{plat}}.$$

- Coefficient de rugosité C_r :

$$\begin{cases} \boldsymbol{C}_{r} = \boldsymbol{K}_{T} \times \boldsymbol{Ln}\left(\frac{\boldsymbol{z}}{\boldsymbol{z}_{0}}\right) & \rightarrow \quad \boldsymbol{z}_{min} \leq \boldsymbol{z} \leq 200 \ \boldsymbol{m} \\ \boldsymbol{C}_{r} = \boldsymbol{K}_{T} \times \boldsymbol{Ln}\left(\frac{\boldsymbol{z}_{min}}{\boldsymbol{z}_{0}}\right) & \rightarrow \quad \boldsymbol{z} \leq \boldsymbol{z}_{min} \end{cases}$$
(RNV99ver 2013 – 2.4.4 formule2.3)

On a z = 6,72 m et $z_{min} = 5 m$ Alors :

$$\Rightarrow z_{\min} = 5 \text{ m} < z = 6,72 \text{ m} < 200 \text{ m}$$

$$C_r = K_T \times Ln\left(\frac{z}{z_0}\right) \qquad C_r = 0,215 \times \ln\left(\frac{6,72}{0,3}\right) = 0,215 \times 3,109$$

$$C_r = 0,668$$

- Intensité de turbulence :

Elle est donnée par la formule suivante :

(RNV99ver 2013 – 2.4.2 formule2.2)

$$\begin{cases} I_{v}(z) &= \frac{1}{C_{t}(z) \times ln\left(\frac{z}{z_{0}}\right)} \quad \text{pour}: \quad z > z_{\min} \\ I_{v}(z) &= \frac{1}{C_{t}(z) \times ln\left(\frac{z_{\min}}{z_{0}}\right)} \quad \text{pour}: \quad z \le z_{\min} \end{cases}$$

(RNV99ver 2013 - 2.4.6 formule2.5)

On a
$$z = 6,72 \text{ m} > z_{min} = 5m$$

$$\rightarrow I_{\nu}(z) = \frac{1}{C_t(z) \times \ln\left(\frac{z}{z_0}\right)} = \frac{1}{1 \times \ln\left(\frac{6,72}{0,3}\right)}$$

 $I_{v}(z) = 0,322$

Donc on obtient :

 $C_e(z) = 1^2 \times 0,668^2 \times [1 + 7 \times 0,322]$ $C_e(z) = 1,45$

$$\rightarrow q_p(z_e) = q_{réf} \cdot C_e(z_e) = 0,435 \times 1,45$$
$$q_p(z_e) = 0,63 \ KN/m^2$$

II. 2. 5. Les coefficients de pression extérieure $S \ge 10m^2 \rightarrow C_{pe} = C_{pe\,10}$

(RNV99ver 2013 – 5.1.5)

• Vent sur pignon 1;2:

b = 12 m d = 48 m H = 6,72 m

> Pour les parois verticales :

 $e = min (b; 2h) = min (12; 13,44) \rightarrow e = 12 m \rightarrow d > e$

Figure II.1 : Légende pour les parois verticales

On utilise les $C_{pe\,10}$ (car les surfaces A,B , C , D et E sont supérieurs à 10 m²)

Parois latérales		Parois au vent	Parois sous le vent	
Α	В	С	D	${f E}$
-1	-0,8	-0,5	0,8	-0,3

Tableau II.1 : C_{pe} pour les parois verticale (Vent pignon 1;2)

Pour la toiture :

$$\alpha = 6.8^{\circ} \qquad \qquad \theta = 90^{\circ}$$

Zone	F	G	Н	I
C _{pe} α = 6, 8°	-1,53	-1,3	-0,68	-0,58

Tableau II.2 : C_{pe} pour la toiture (Vent pignon 1;2)

Figure II.2 : Légende pour toiture

- Vent sur long-pan 1; 2: b=48 m d=12 m H=6,72m
- > <u>Pour les parois verticales :</u>

e=min (b ; 2h)=min (48 ; 13,44) \rightarrow e= 13,44

Figure II.4 : Légende pour les parois verticales

Parois l	atérale	Parois au vent	Parois sous le vent
A'	В'	D	Ε
-1	-0,8	0,8	-0,3

Tableau II.3 : C_{pe} pour les parois verticale (vent sur lonpang 1;2)

 $\begin{array}{c} \succ \quad \underline{\text{Pour la toiture :}} \\ \alpha = 6,8^{\circ} \qquad \qquad \theta = 0^{\circ} \end{array}$

Figure II.5 : C_{pe} pour les parois verticales (vent sur longpan 1;2)

Zone	F	G	Н	Ι	J
$C_{pe} \alpha$	-1 ,522	-1,11	-0,533	-0,555	-0,066
= 6, 8	0,044	0,44	0,44	-0,466	-0,466

Tableau II.4 : C_{pe} pour la toiture (vent sur longpan 1;2)

Calcul des surfaces des ouvertures :

Les plans de façades du pignon 1 et 2 sont symétrique et même chose que les long-pans :

 \rightarrow S ouverture pignon 1 = S ouverture pignon 2 = 5 × 5,45 = 27,25 m²

 \rightarrow S ouverture longpan 1 = S ouverture longpan2 = 0

 \rightarrow S ouverture totale = 2 × 27,25 = 54, 5m²

A l'aide cette abaque :

Figure II.8 : Coefficient de pression intérieur C_{pi}

Calcul de la pression aérodynamique du vent :

• Vent sur pignon 1 ;2

Parois verticales					Toiture				
Zone	q_p KN/m ²	Cpe	C _{pi}	<i>W</i> KN/m ²	Zone	q_p KN/m ²	Cpe	C _{pi}	W KN/m ²
Α	0,63	-1	0,135	-0,71	F	0,63	-1,53	0,135	-1,05
В	0,63	-0,8	0,135	-0,590	G	0,63	-1,3	0,135	-0,9
С	0,63	-0,5	0,135	-0,4	н	0,63	-0,68	0,135	-0,51
D	0,63	0,8	0,135	0,41	I	0,63	-0,58	0,135	-0,45
E	0,63	-0,3	0,135	-0,27					

Tableau II.5 : Pression aérodynamique du vent (vent sur pignon 1;2)

Figure II.9 : Pression aérodynamique du vent sur les parois verticales (vent sur pignon 1;2)

Figure II.10 : Pression aérodynamique du vent sur la toiture (vent pignon 1;2)

Vent sur long-pan 1 ;2 :

Parois verticale				Toiture						
Zone	q_p KN/m ²	Cpe	C _{pi}	W KN/m ²	Zone	q_p KN/m ²	Cpe	C _{pi}	W KN/m ²	
A'	0,63	-1	-0,386	-0,39	F	0,63	-1,522	-0,386	-0,72	
	,		,	,		,	0,044	3,200	0,27	
р,	0.62	0.0	0.200	0.26	G	C	0.62	-1,11	0.296	-0,46
B ²	0,03	-0,8	-0,380	-0,20		0,63	0,44	-0,380	0,52	
D	0.63	0.8	0.386	0.74	н	0.63	-0,533	0.386	-0,09	
D	0,05	0,8	-0,380	0,74	11	0,05	0,44	-0,380	0,52	
							-0.55		0,103	
Е	0,63	-0,3	-0,386	0,05	Ι	Ι	0,63	-0,55	-0,386	0.05
							-0,466		-0,05	
					J		-0,066		0,202	
						0,63	-0,466	-0,386	-0,05	

Tableau II.6 : Pression aérodynamique du vent (vent sur longpan 1;2)

Figure II.11 : Pression aérodynamique de vent sur les parois verticales (vent sur long 1;2)

II. 3. La force de frottement

 A_1 , A_2 : Surface du pignon.

 A_3 , A_4 : Surface du long-pan.

$$A_{3} = A_{4} = 6 \times 48$$

$$A_{3} = A_{4} = 288 m^{2}$$

$$A_{1} = A_{2} = \left[12 \times 6 + 2\left(\frac{0,72 \times 6}{2}\right)\right] - (5 \times 5,45)$$

$$A_{1} = A_{2} = 49,07 m^{2}$$

$$A_{3} + A_{4} < 4 \times (A_{1} + A_{2}) \rightarrow 576 > 392,56$$
 Condition **non** vérifié

$$A_{1} + A_{2} < 4 \times (A_{3} + A_{4}) \rightarrow 98,14 < 1152$$
 Condition vérifié

Donc on tient compte d'une force complémentaire due aux frottements qui s'exercent sur les parois parallèles à la direction du vent.

 $F_{fr} = q_p \cdot C_{fr} \cdot A_{fr}$ $C_{fr} = 0, 01$: est le coefficient de frottement.

Etat de surface	Coefficient de frottement C _{fr}
Lisse (acier, béton lisse, ondulations parallèles au vent, parois enduite, etc)	0,01
Rugueux (béton rugueux, parois non enduite, etc.)	0,02
Très rugueux (ondulation perpendiculaires au vent, nervures, plissements, etc.)	0,04

Tableau II.7 : Valeur de coefficient de frottement

$$q_{p} = 0,63 \ KN/m^{2}$$

 A_{fr} : est l'aire de la surface parallèle au vent.

> Pour la toiture :

 $A_{fr} = 6,043 \times 48 \times 2 = 580,128 \ m^2$

 $F_{fr} = 0.01 \times 0.63 \times 580.128 = 3.65$ KN

Pour les parois verticales :

$$A_{fr} = 48 \times (6,72 - 0,72) \times 2 = 576m^2$$

 $F_{fr} = 0.01 \times 0.63 \times 576 = 3.63$ KN

Force de frottement résultant :

$$F_{fr} = 3,65 + 3,63$$

 $F_{\rm fr} = 7,28 \; {\rm KN}$

II. 4. Action de neige

II. 4. 1. Charge de neige sur le sol

• Zone de neige : A.

	commune i.	
	TLEMCEN Groupe de commune I	
13	TLEMCEN, HAMMAM BOUGHERARA, ZENETA, OULED- RYAH, SABRA, SIDI-MEDJAHED, BENI-SNOUS, BENI- BAHDEL, SEBDOU, AIN-TALLOUT, AIN-FEZZA, MANSOURAH, OUED-CHOULI, MAGHNIA, BENI MESTER, BOUHLOU, BENI-BOUSSAID, AZAIL, AIN GHORABA, BENI-SEMIEL OULED-MIMOUN, CHETOUANE, TERNY-BENI-HEDIEL, HENNAYA.	A
	Groupe de commune II Toutes les communes autres que celles figurant au groupe de commune I	в
	TIARET	

Tableau II.8 : Zone de neige d'après RNV99version2013

• Altitude géographique : **H=846 m**

La charge de neige sur toiture est donnée par la formule suivante :

$$S_k = \frac{0.07.H + 15}{100} = 0.74 \ KN/m^2$$

II. 4. 2. Coefficient de forme de toiture

Figure II.13 : Disposition de charge de neige à considérer pour toiture à 2 versants

 (α) angle du versant par rapport à l'horizontale (en°) 	$0 \leq \alpha \leq 30^\circ$	$30 \leq \alpha \leq 60^\circ$	$\alpha \geq 60^{\circ}$
Coefficient μ	0,8	$0,8(\frac{60-\alpha}{30})$	0,0

Tableau II.9 : Coefficient de forme -Toiture à deux versants

• $0 < \alpha = 6.8^{\circ} < 30^{\circ}$

 $\mu = 0.8$

II. 4. 3. Charge de neige sur la toiture

 $S = \mu \times S_k$

(RNV99ver 2013 – 3.1.1formule 1)

 $S=0.8 \times 0.74 = 0.6 \ KN/m^2$

S=0,6.cos6,8°

$$S = 0,6 \, kN/m^2$$

Figure II.14 : Application de la charge de neige sur la toiture

II. 5. Conclusion

D'après ce qu'on a fait dans ce chapitre on a :

- \circ La charge du vent :
- Suivant le pignon : une pression $W = 0.41 \ kN/m^2$ et une dépression $W = -1.05 \ kN/m^2$
- Suivant le long-pan : une pression $W = 0.74 \text{ kN}/m^2$ et une dépression W = -0.72 kN/m²
- La charge de neige :

$$S = 0.6 \, kN/m^2$$

Chapitre III: Dimensionnement et vérification des éléments secondaires

III. 1. Introduction

Dans ce chapitre on va dimensionner et vérifier les éléments secondaires : pannes, potelets, lisse de bardage et liernes.

III. 2. Matériaux de couverture de la toiture :

La couverture est en panneau sandwich type (TL75) d'épaisseur $10/10^{em}$ mm et de longueur de 6 m.

Les caractéristiques techniques :

- ✓ Poids propre : $P = 0,17 \text{ KN/m}^2$.
- ✓ Contrainte de rupture : f_u =360 N/mm².
- ✓ Module d'élasticité : $E=2.10^5$ N/mm².
- ✓ Contrainte élastique : $f_y=235$ N/mm².
- ✓ Flèche admissible : $\sigma_{max} = 1/200$.
- ✓ Module résistance : $\omega = 5,17 \text{ cm}^3/\text{ml}$.

III. 3. Calcul des pannes

Figure III.1 : Disposition des pannes

Les pannes sont des poutres destinés à transmettre les charges et surcharges s'appliquant sur la couverture à la traverse ou bien à la ferme. Elles sont réalisées soit en profilées I ou U soit à treillis pour des portées supérieurs à 6m.

Compte tenu de la pente des versants, les pannes sont posées inclinées d'un angle α et de ce fait fonctionne en flexion déviée.
37 / 177 Chapitre III: Dimensionnement et vérification des éléments secondaires

Charges à prendre en considération :

> Charges permanente (TL75) : G=0,17 KN/m².

Figure III.2 Répartition de la charge d'entretien sur la panne

- > Charge d'entretient : $Q = 1 KN/m^2$.
- Action de la neige : $S = 0.6 \text{ KN/m}^2$.
- Action du vent : $W = -1,05 \text{ KN/m}^2$.

Figure III.3 : Les surcharges climatiques (Vent et neige)

III. 3. 1. Espacement entre pannes

On suppose que la couverture est de 6m appuyé sur 5 appuis :

e=6/5 = 1,2 m

a. Combinaison des charges :

$$q_1 = 1,35G + 1,5Q_{ent} = (1,35 \times 0,17 \times 1,2) + (1,5 \times 1 \times 1,2) = 2,08 \text{ kN/ml}.$$

$$q_2=1,35G+1,5S = (1,35\times0,17\times1,2)+(1,5\times0,6\times1,2)=1,36$$
 kN/ml.

$$q_3=1,35G+1,5W = (1,35\times0,17\times1,2)+(1,5\times-1,05\times1,2)=-1,6$$
 kN/ml.

 $q = max (q_1, q_2, q_3) = max (2,08; 1,356; 1,6)$

 $q_{sd} = 2,08 \text{KN/ml}.$

- Vérification de l'espacement :

$$\sigma = \frac{M_{max}}{\omega} \rightarrow M_{max} \le f_y \cdot \omega$$
$$\rightarrow 0.117ql^2 \le f_y \cdot \omega \rightarrow l \le \sqrt{\frac{235 \times 10^3 \times 9.24}{0.117 \times 2.089}}$$

$$\rightarrow l \leq 2 m$$

On prend e = 1,1 m

Dimensionnement de la panne :

$$G=0,17\times1,1=0,187$$
 kN/ml

P = 1 kN/ ml

- $S = 0,6 \times 1,1 = 0,66 \text{ kN/ml}$
- W= -1,05 ×1,1 = -1,16 kN/ml III. 3. 2. **Pré-dimensionnement à la flèche :**
 - $\delta \leq \delta_{max}$

 \circ Plan (y-y):

$$\begin{split} \delta_{max} &= \frac{L}{200} = \frac{6000}{200} = 30mm \\ \frac{5.q_{ysd} \cdot (L)^4}{384 \times E \times I_z} &\leq \frac{L}{200} \to \frac{5 \times 0.14 \times 6000^4}{384 \times 210000 \times I_z} \leq 15mm \\ I_z &\geq 10,044 \times 10^4 mm^4 \\ & \circ \quad \text{Plan} \text{ (z-z) :} \\ \delta_{max} &= \frac{L}{200} = \frac{6000}{200} = 30 mm . \\ \frac{5.q_{zsd} \cdot L^4}{384 \times E \times I_y} &\leq \frac{L}{200} \to \frac{5 \times 1.18 \times 6000^4}{384 \times 210000 \times I_y} \leq 30 mm \end{split}$$

 $I_y \ge 313,3928 \times 10^4 mm^4 \rightarrow IPE140 \rightarrow I_y = 541, 2 \times 10^4 mm^4$

Pour un IPE140 $I_y = 541,22 \times 10^4 mm^4$

- Classe de la section transversale :

Classe de l'âme fléchie : (CCM97-Tableau53.1Feuille1)

$$\frac{d}{t_w} = \frac{112,2}{4,7} = 23,87 \le 72.\varepsilon \qquad \to \varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{235}} = 1$$

Donc l'âme est de classe I.

Classe de la semelle comprimée : (CCM97-Tableau53.1Feuille3)

$$\frac{c}{t_f} = \frac{b/2}{t_f} = \frac{73/2}{6.9} = 5.45 \le 10.\varepsilon \to \varepsilon = 1$$

Donc : la semelle est de classe I.

 \rightarrow La section du **IPE140** est de classe I.

III. 3. 3. Vérification à l'ELS :

Condition de la flèche avec poids propre inclus : (CCM97-4.2)

$$q_{max} = G + P = 0,17 \times 1,1 + 1 + 0,104 = 1,29 \ kN/ml$$
$$q_{ysd} = q_{max} \cdot sin\alpha = 1,29 \times sin 6,8^{\circ} = 0,15 \ kN/ml$$
$$q_{zsd} = q_{sd} \cdot cos\alpha = 1,29 \times cos 6,8^{\circ} = 1,28 \ kN/ml$$

 \circ Plan (z-z):

$$\delta_{max} = \frac{L}{200} = \frac{6000}{200} = 30 \ mm$$

$$\delta = \frac{5.q_{zsd}.L^4}{384 \times E \times I_y} = \frac{5 \times 1,28 \times 6000^4}{384 \times 210000 \times 541,22 \times 10^4} = 26,6 < 30 \text{ mm}$$

Condition vérifiée.

• Plan
$$(y-y)$$
:

$$\delta_{max} = \frac{L}{200} = \frac{6000}{200} = 30mm$$

$$\delta = \frac{5.q_{ysd} \cdot (\frac{L}{2})^4}{384 \times E \times I_z} = \frac{5 \times 0.15 \times 3000^4}{384 \times 210000 \times 44.92 \times 10^4} = 3.34 < 15$$

Conclusion

 \rightarrow Le profilé en IPE140 est vérifié à l'état limite de service.

Vérification à la résistance III. 3. 4.

Vérification à la flexion :

Figure III.4 : La flexion des pannes

(CCM97-5.35)

La nature de la sollicitation : Flexion déviée :

 $\left(\frac{M_{ysd}}{M_{nyrd}}\right)^{\alpha} + \left(\frac{M_{zsd}}{M_{nzrd}}\right)^{\beta} \le 1.$ (CCM97-5.35formule5.35) Avec : $\alpha = 2$ et $\beta = 1$ \rightarrow Pour les profilés let H. $M_{nyrd} = M_{plyrd} \frac{1-n}{1-0.5a} \to a = min\left[\frac{A_w}{A}; 0, 5\right] \text{ et } A_w = A - 2. b. t_f$ $A_w = 1640 - 2 \times 73 \times 6,9$ $\rightarrow A_w = 632,6mm^2$ $a = min\left[\frac{632,6}{1640}; 0,5\right] = min[0,38; 0,5]$ $\rightarrow a = 0,38$ $n = \frac{N_{sd}}{N_{plrd}} = 0$ (dans notre cas $N_{sd} = 0$)

 $M_{nzrd} = M_{plzrd}$

Calcul des moments sollicitant :

$$q_{max} = 1,35G + 1,5P = 1,35(0,17 \times 1,1 + 0,104) + 1,5 \times 1 = 1,53 \ kN/ml$$
$$q_{ysd} = q_{max} \cdot sin\alpha = 1,53 \times sin 6,8^{\circ} = 0,18 \ kN/ml$$
$$q_{zsd} = q_{sd} \cdot cos\alpha = 1,53 \times cos 6,8^{\circ} = 1,52 \ kN/ml$$
$$M_{ysd} = \frac{q_{zsd} \times L^2}{8} = \frac{1,52 \times 6^2}{8} = 6,84 \ kN.m$$

$$M_{zsd} = \frac{q_{ysd} \times L^2}{8} = \frac{0.18 \times 6^2}{8} = 0.8 \text{ kN. m}$$
$$M_{nyrd} = \frac{W_{ply} \times f_y}{\gamma_{m0}} \times \frac{1}{1 - 0.5.a} = \frac{88.35 \times 10^3 \times 235}{1.1} \times \frac{1}{1 - 0.5 \times 0.39}$$

$$M_{nyrd} = 23,44 \ kN.m$$

$$M_{nzrd} = \frac{W_{plz} \times f_y}{\gamma_{m0}} = \frac{19,25 \times 10^3 \times 235}{1,1}$$

 $M_{nzrd} = 4,13kN.m$

Figure III.5 : Cisaillement des pannes

 $\left(\frac{6,84}{23,44}\right)^2 + \left(\frac{0,8}{4,13}\right)^1 = 0,27 < 1 \rightarrow \text{Condition vérifiée.}$

- Vérification au cisaillement : (CCM97-5.4.6)

La vérification au cisaillement est donnée par les formules suivantes :

$$\begin{split} V_{z,sd} &\leq V_{plz,Rd} \quad ; \ V_{y,sd} \leq V_{ply,Rd} \qquad (\text{CCM97-5.4.6formule5.20}) \\ V_{plz,Rd} &= \frac{A_{vz}(f_y/\sqrt{3})}{\gamma_{M0}} \qquad ; V_{ply,Rd} = \frac{A_{vy}(f_y/\sqrt{3})}{\gamma_{M0}} \\ \text{IPE140} : \ A_{vz} &= 764 \ mm^2 \qquad ; A_{vy} = 1115 \ mm^2 \\ V_{z,sd} &= \frac{q_{z,sd} \times l}{2} = \frac{1,51 \times 6}{2} = 4,53kN. \\ V_{y,sd} &= 0,625 \times q_{y,sd}. \ l = 0,625 \times 0,15 \times 6 = 0,56 \ kN. \\ V_{plz,Rd} &= \frac{A_{vz}(f_y/\sqrt{3})}{\gamma_{M0}} = \frac{764(235/\sqrt{3})}{1,1} = 94,23 \ kN. \end{split}$$

$$V_{ply,Rd} = \frac{A_{vy}(f_y/\sqrt{3})}{\gamma_{M0}} = \frac{1115(235/\sqrt{3})}{1,1} = 137,53kN.$$

 $V_{z,sd} = 4,53kN < V_{plz,Rd} = 94,23 kN$. Condition vérifiée.

 $V_{y,sd} = 0,56 \ kN < V_{ply,Rd} = 137,53 \ kN$. Condition vérifiée.

Conclusion

Donc la section en IPE140 est vérifiée à la résistance.

III. 3. 5. Vérification de l'élément au déversement

Déversement = Flamebement latéral

+ Rotation de la section transversale.

<u>Semelle supérieure</u> qui est comprimée sous l'action des charges verticales descendantes est susceptible de déverser. Vu qu'elle est fixée à la toiture donc il n'y a pas risque de déversement.

<u>Semelle inférieure</u> qui est comprimée sous l'action de vent de soulèvement est susceptible de déverser du moment

qu'elle est libre tout au long de sa portée.

Figure III.6 : La partie susceptible de déversement de la panne

$$M_{y,sd} = \frac{q_{zsd} \times L^2}{8} = \frac{1,52 \times 6^2}{8} = 6,84 \ kN.m$$

$$M_{z,sd} = \frac{q_{ysd} \times L^2}{8} = \frac{0.18 \times 6^2}{8} = 0.8 \text{ kN. m}$$

$$M_{ply,rd} = \frac{W_{ply} \times f_y}{\gamma_{m0}} \times \frac{1}{1 - 0.5.a} = \frac{88.35 \times 10^3 \times 235}{1.1} \times \frac{1}{1 - 0.5 \times 0.39}$$

$$M_{ply,rd} = 23,44 \ kN.m$$

$$M_{plz,rd} = \frac{W_{plz} \times f_y}{\gamma_{m0}} = \frac{19,25 \times 10^3 \times 235}{1,1}$$
(CCM97-5.35formule5.17)

$$M_{plz,rd} = 4,1 \ kN.m$$

La formule de vérification au déversement est la suivante :

- $\frac{M_{y,sd}}{M_{b,rd}} + \frac{M_{z,sd}}{M_{plz,rd}} \le 1$ (CCM97-5.35formule5.35)
 - Calcul du moment résistant au déversement : (CCM97-5.5.1.1)

$$M_{b,rd} = \frac{\chi_{LT}.\beta_{w}.W_{ply}.f_{y}}{\gamma_{M1}} \qquad \beta_{w} = 1 \text{ Et } \gamma_{M1} = 1. \text{ (CCM97-5.5.1.1formule5.45)}$$

$$\chi_{LT} = \frac{1}{\phi_{LT} + \sqrt{\phi_{LT}^2 - \overline{\lambda_{LT}}^2}} : \text{Coefficient de réduction} . \quad (\text{CCM97-5.5.1.1formule5.46})$$

$$\phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\bar{\lambda}_{LT} - 0.2\right) + \bar{\lambda}_{LT}^2\right].$$

 $\alpha_{LT} = 0,21$: Pour les profilés laminés .

$$\bar{\lambda}_{LT}$$
: Élancement réduit $=\frac{\lambda_{LT}}{\lambda_1}\sqrt{\beta_A} = \frac{\lambda_{LT}}{93,9\varepsilon} = \frac{\lambda_{LT}}{93,9\varepsilon}$

$$\lambda_{LT} = \frac{L \times (\frac{W_{Ply}^2}{I_2 \times I_W})^{0.25}}{C_1^{0.5} \times \left[1 + \frac{L^2 \times G \times I_t}{\pi^2 \times E \times I_W}\right]^{0.25}}$$
(CCM97-B.2formule B.14)
$$C_1 = 1,132$$

 $G = 80.8 \times 10^3 N/mm^2$

 M_{cr} : Moment critique élastique de déversement.

$$I_{t} = 24500mm^{2} \qquad I_{z} = 449200mm^{4}$$

$$I_{w} = 1,98 \times 10^{9}mm^{6} \qquad \text{E}=2100000 \ /\text{mm}^{2}$$

$$\lambda_{LT} = 69,49$$

$$\bar{\lambda}_{LT} = \frac{69,49}{93,9} = 0,74$$

$$\phi_{LT} = 0,86$$

$$\chi_{LT} = \frac{1}{0,86 + \sqrt{0,86^{2} - 0,74^{2}}} \qquad \rightarrow \chi_{LT} = 0,77$$

$$M_{b,rd} = \frac{0,77 \times 1 \times 88350 \times 235}{1} = 16,9 \ kN.m$$

$$\frac{6,8}{16,9} + \frac{0,21}{4,1} \le 1$$

 \rightarrow La stabilité au déversement est vérifiée.

Donc le profilé IPE 140 est vérifié au déversement.

Conclusion :

Le profilé IPE140 est vérifié à l'état ultime.

III. 3. 6. Conclusion :

Le profilé en IPE140 est vérifié aux états ultimes et services donc vérifiée à la sécurité et convient comme panne de toiture.

On a vérifié les pannes sur deux appuis (on apprit toute la longueur = 6m) et ça vérifiée donc on n'est pas besoin de mettre des liernes sur ces pannes.

III. 4. Calcule des lisses de bardage

III. 4. 1. Introduction

Les lisses de bardage sont constituées de poutrelles (IPE, UAP, UPN) ou de profils minces pliés. Disposées horizontalement, elles portent sur les poteaux de portiques ou éventuellement sur des potelets intermédiaires.

Les lisses destinées à reprendre les efforts du vent sur le bardage, sont posés naturellement pour présenter leur inertie maximale dans le plan horizontal.

La lisse fléchie verticalement en outre, sous l'effet de son poids propre et du poids bardage qui lui est associé, et de ce fait fonctionne à la flexion déviée.

Espacement entre lisse : 2 m.

Hauteur du poteau : 6 m . 6/2=3 lisses

III. 4. 2. Evaluation des charges Charge permanente (G) :

Poids du panneau sandwich (TL35) : $0,13 \text{ kN/m}^2$.

Poids propre de la lisse de bardage (UPN 120) : 0,134kN/m

 $G = 0,13 \times 2+0,134=0,4 \text{ kN/ml}$

Surcharge de vent :

 $V = 0.74 \times 2 = 1.48$ kN/ml.

Combinaison de charge la plus défavorable :

1,35G + 1,5V

III. 4. 3. Vérification à la résistance

- Vérification à la flexion déviée (bi-axiale):

La lisse travaille à la flexion bi-axiale (dans les deux plans) et la formule de vérification est donnée comme suit :

Figure III.8 : La charge permanente et du vent sur les lisses

 \circ Plan (y-y):

 $q_{vsd} = 1,35G = 1,35 \times 0,4 = 0,54 \ kN/ml$

$$M_{zsd} = \frac{q_{ysd} \times (L)^2}{8} = \frac{0.54 \times (6)^2}{8} = 2.43 \text{ kN.m}$$

$$M_{plzrd} = \frac{W_{plz} \times f_y}{\gamma_{M0}} = \frac{28.3 \times 10^3 \times 235}{1.1} = 6.045 \text{ kN.m} \quad (\text{CCM97-5.35formule5.17})$$

$$\circ \quad \text{Plan} (z\text{-}z):$$

$$q_{zsd} = 1.5V = 1.48 \times 1.5 = 2.22 \text{ kN/ml}$$

$$M_{ysd} = \frac{q_{zsd} \times L_z^2}{8} = \frac{2.22 \times 6^2}{8} = 10 \text{ kN.m}$$

$$M_{rland} = \frac{W_{ply} \times f_y}{8} = \frac{103 \times 10^3 \times 235}{8} = 22 \text{ kN/ml}$$

 $M_{plzrd} = \frac{w_{ply} \times y_y}{\gamma_{M0}} = \frac{105 \times 10^{-7} \times 233}{1,1} = 22 \ kN. m$ $\rightarrow (\frac{10}{22})^2 + (\frac{2,43}{10}) = 0,206 < 1 \rightarrow \text{Condition vérifiée.}$

La vérification au cisaillement est donnée par les formules suivantes :

$$V_{z,sd} \le V_{plz,Rd} \qquad ; \qquad V_{y,sd} \le V_{ply,Rd}$$
$$V_{plz,Rd} = \frac{A_{vz}(f_y/\sqrt{3})}{\gamma_{M0}} \qquad ; V_{ply,Rd} = \frac{A_{vy}(f_y/\sqrt{3})}{\gamma_{M0}}$$
$$UPN120: \ A_{vz} = 842 \ mm^2 \qquad ; A_{vy} = 1100 \ mm^2$$

$$V_{z,sd} = \frac{q_{z,sd} \times l}{2} = \frac{2,22 \times 6}{2} = 6,66 \ kN.$$

$$V_{y,sd} = 0,625 \times q_{y,sd}(l/2) = 0,625 \times 0,54(6/2) = 1 \ kN.$$

$$V_{plz,Rd} = \frac{A_{vz}(f_y/\sqrt{3})}{\gamma_{M0}} = \frac{842(235/\sqrt{3})}{1,1} = 103.85 \ kN.$$

$$V_{ply,Rd} = \frac{A_{vy}(f_y/\sqrt{3})}{\gamma_{M0}} = \frac{1100(235/\sqrt{3})}{1,1} = 135,67 \ kN.$$

 $V_{z,sd} = 6,66kN < V_{plz,Rd} = 103,65 kN$. Condition vérifiée.

 $V_{y,sd} = 1 \ kN < V_{ply,Rd} = 135,67 \ kN$. Condition vérifiée.

Conclusion

 \rightarrow UPN 120 est vérifiée à la résistance.

III. 4. 4. Vérification de l'élément au déversement

Déversement = Flambement latéral de la partie comprimée + Rotation de la section transversale.

<u>Semelle comprimée :</u> Il n'y a pas de risque de déversement de la lisse du moment que la semelle comprimée est soutenue latéralement sur toute sa longueur par le bardage.

III. 4. 5.Vérification à l'ELS (à la flèche)(CCM97-4.2)

Figure III.9 : La flèche des lisses dans les deux sens z et y

Le calcul de la flèche se fait par les combinaisons de charge et surcharge de service (non pondérés)

$$q_{max} = G + V = 0.4 + 1.48 = 1.88 \ kN/ml$$

 \circ Plan (z-z):

$$\delta_{max} = \frac{L}{200} = \frac{6000}{200} = 30 \ mm$$

$$\delta = \frac{5.V.L^4}{384 \times E \times I_y} = \frac{5 \times 1.48 \times 6000^4}{384 \times 210000 \times 541.22 \times 10^4} = 21.97mm < 30 mm$$

Condition vérifiée.

$$\delta_{max} = \frac{\frac{L}{2}}{200} = \frac{3000}{200} = 15mm$$

$$\delta = \frac{5.q_{ysd} \cdot (\frac{L}{2})^4}{384 \times E \times I_z} = \frac{5 \times 0.4 \times 3000^4}{384 \times 210000 \times 44,92 \times 10^4} = 4,47 \text{ mm} < 15 \text{ mm}$$

Conclusion

 \rightarrow Le profilé en UPN120 est vérifié à l'état limite de service.

III. 4. 6.ConclusionLa lisse de bardageen UPN120 est vérifiée à la sécurité.

III. 5. Calcul des potelets

Les potelets sont le plus souvent des profilés en I ou en H destinées à rigidifier le bardage et résister aux efforts horizontaux du vent. Leurs caractéristiques varient en fonction de la nature du bardage et de la hauteur de construction.

Ils sont considérés comme articulé dans les deux extrémités.

Le potelet travaille à la flexion sous l'action de l'effort du vent provenant du bardage et des lisses, et à la compression sous l'effet de son poids du bardage et des lisses qui lui est associée, et de ce fait fonctionne à la flexion composé.

III. 5. 1. Calcul des charges et surcharges Charges permanentes (G) :

Poids du bardage : $0,13 \text{ kN/m}^2$.

Poids propre de la lisse (UPN 120) : 0,134 kN/ml

Longueur de la lisse (Pignon) : 3,5m.

On a 4 lisses supportées par les potelets donc :

G=0,13×6,42 × 3,5 +0,134×3,5 × 3 = 4,33kN (Potelet le plus sollicité).

Surcharge climatique : $W = 0.42 \times 3.5 = 1.47 \ kN/m$

III. 5. 2. Dimensionnement du potelet Sous la condition de la flèche :

(CCM97-4.2)

La vérification de la flèche se fait sous les charges non pondérés :

$$f_{z} \leq f_{ad}$$

$$f_{ad} = \frac{L}{200} = \frac{6420}{200} = 32,1 mm.$$

$$f_{z} = \frac{5.W.l^{4}}{384 \times E \times} = \frac{5 \times 1,47 \times (6,72 \times 10^{3})^{4}}{384 \times 210000 \times I_{y}} \leq 32,1 mm.$$

$$I_{y} \geq 55,5 \times 10^{6} \quad \rightarrow \quad I_{y} = 549,9 \times 10^{4} mm^{4}$$

 \rightarrow HEA120 $I_v = 606.2 \times 10^4$

Donc on prend Potelet de HEA140 : $I_y = 1033 \times 10^4$

III. 5. 3.Classe de la section transversaleClasse de l'âme fléchie :(CCM97-Tableau53.1Feuille1)

$$:\frac{d}{t_w} = \frac{92}{5,5} = 16,72 \le 72\varepsilon \quad \to \ \varepsilon = \sqrt{\frac{235}{f_y}} = 1$$

Donc l'âme est de classe I

Classe de la semelle comprimée :

(CCM97-Tableau53.1Feuille3)

$$\frac{b/2}{t_f} = \frac{70}{8,5} = 8,23 \le 72\varepsilon \quad \to \ \varepsilon = \sqrt{\frac{235}{f_y}} = 1$$

Donc la semelle est de classe I

La section de HEA140 est de classe I.

III. 5. 4. Vérification de la section à la résistance $M_{ysd} \le M_{nrd}$

$$M_{ysd} = \frac{q_{zsd} \times L^2}{8} = \frac{3,68 \times 1,5 \times 6,42^2}{8} = 28..43 \ kN.m$$

$$M_{ply,rd} = \frac{W_{ply} \times f_y}{\gamma_{M0}} = \frac{173,51 \times 10^3 \times 235}{1,1} = 37 \ kN.m \qquad (CCM97-5.35 \text{formule} 5.17)$$

$$M_{resc} = 28.42 \ kN.m \leq M_{resc} = 27 \ kN.m \qquad \text{Condition v} \text{ wirfield}$$

 $M_{ysd} = 28.43kN.m \le M_{nrd} = 37 \ kN.m$ Condition vérifiée

- Incidence de l'effort normal : (CCM97-5.13) $N_{sd} \le \min[0,25N_{plrd}; 0,5\frac{A_w.f_y}{\gamma_{M0}})$

$$\begin{split} N_{sd} &= 1,35.\,G = 1,35 \times 4,33 = 5,85\,kN \\ N_{plrd} &= \frac{A \times f_y}{\gamma_{M0}} = \frac{3140 \times 235}{1,1} = 670,81\,kN \\ A_w &= A - 2.\,b.\,t_f = 3140 - 2 \times 140 \times 9 = 620mm^2 \\ \min\left(0,25N_{plrd};0,5\frac{A_w.f_y}{\gamma_{M0}}\right) = \min(167.7;66.22) = 66,22 \\ N_{sd} &= 5,45 < 66,22 : \end{split}$$

Conclusion

L'incidence de l'effort normale sur le moment résistant peut être négligée.

- Incidence de l'effort tranchant : (CCM97-5.4.6 formule5.20) $V_{sd} \leq V_{pl,Rd}$ $Q_{z,sd} = 1,5V = 1,5 \times 1,47 = 2,21 \ kN/ml$ $V_{z,sd} = \frac{Q_{z,sd} \times l}{2} = \frac{2,21 \times 6,42}{2} = 70 kN.$ $A_{vz} = A - 2. \ b. \ t_f + (t_w + 2.r)t_f = 2636 \ mm^2.$ $V_{plz,Rd} = \frac{A_{vz}(f_y/\sqrt{3})}{\gamma_{M0}} = \frac{2636(235/\sqrt{3})}{1} = 357,645 \ kN.$

 $70kN \le 357,645 kN$. Condition vérifiée.

Conclusion

L'incidence de l'effort tranchant sur le moment résistant peut être négligée.

III. 5. 5. Vérification de l'élément aux instabilités

Le potelet est sollicité à la flexion (due au vent) et à la compression (due à son poids propre, aux poids des bacs de bardage et des lisses). En aucun cas, il ne supporte la toiture (il est assujetti au portique par appui glissant). Il travail à la flexion composée.

La vérification aux instabilités est donnée par la formule suivante pour une section bisymétrique comprimés et fléchis dans le plan de l'âme :

- Flexion composée avec risque de flambement : $\frac{N_{sd}}{\chi_{min}.N_{pl,Rd}} + \frac{k_y.M_{y,sd}}{M_{ply,Rd}} \le 1 \quad (CCM97-5.5.4 \text{ formule5.51})$

- Flexion composée avec risque de déversement :

$$\frac{N_{sd}}{\chi_z . N_{pl,Rd}} + \frac{k_{LT} . M_{y,sd}}{M_{ply,Rd}} \le 1$$
 (CCM97-5.5.4 formule5.52)

Calcul du coefficient de réduction minimal pour le flambement χ_{min} :

$$\chi_{min} = \min\{\chi_{y}, \chi_{z}\}.$$
• Axe (y-y) :

$$\lambda_{y} = \frac{l_{f}}{i_{y}} = \frac{l}{i_{y}} = \frac{6420}{57,3} = 112 \qquad (CCM97-5.4.6 \text{ formule} 5.47)$$

$$\rightarrow \overline{\lambda_{y}} = \frac{112}{93,9} = 1,19$$

$$\chi_{y} = \frac{1}{\phi_{y} + \sqrt{\phi_{y}^{2} - \overline{\lambda_{y}}^{2}}} \qquad Avec: \phi_{y} = 0,5 \left[1 + \alpha(\overline{\lambda} - 0,2) + \overline{\lambda_{y}}^{2}\right]$$

$$\begin{split} \overline{\lambda_{y}} &= \frac{\lambda}{\lambda_{1}} \sqrt{\beta_{A}} = \frac{\lambda_{y}}{93,9z} = \frac{\lambda_{y}}{93,9z} \\ \frac{h}{b} &= \frac{133}{140} = 0.95 \leq 1.2 \quad \rightarrow \quad axe \; (y - y) courbe \; b \rightarrow \alpha = 0.34 \\ \phi_{y} &= 0.5 \left[1 + \alpha (\overline{\lambda_{y}} - 0.2) + \overline{\lambda_{y}}^{2} \right] = 1.38 \\ \chi_{y} &= \frac{1}{\phi_{y} + \sqrt{\phi^{2} - \lambda^{2} y}} \qquad (CCM97-5.5.1.1 formule5.46) \\ \chi_{y} &= \frac{1}{1,38 + \sqrt{1,38^{2} - 1,19^{2}}} = 0.48 \\ \bullet \quad Axe \; (z - z) : \\ \chi_{z} &= \frac{1}{\phi_{z} + \sqrt{\phi^{2} - \lambda^{2} z}} \qquad Avec : \; \phi_{z} = 0.5 \left[1 + \alpha (\overline{\lambda_{z}} - 0.2) + \overline{\lambda_{z}}^{2} \right] \right] \\ \overline{\lambda_{z}} &= \frac{\lambda}{\lambda_{1}} \sqrt{\beta_{A}} = \frac{\lambda_{z}}{93.9z} = \frac{\lambda_{z}}{93.9} \\ \lambda_{z} &= \frac{l_{f}}{l_{z}} = \frac{l_{f}}{6z} = \frac{6420}{57.3} = 112 \quad \rightarrow \; \overline{\lambda_{z}} = \frac{112}{93.9} = 1.19 \\ t_{f} &= 9 \; mm < 40 \; mm \; \rightarrow \; axe \; (z - z) courbe \; c \rightarrow \alpha = 0.49 \quad (CCM97-Tableau55.1) \\ \phi_{z} &= 0.5 \left[1 + \alpha (\overline{\lambda_{z}} - 0.2) + \overline{\lambda_{z}}^{2} \right] = 2.81 \\ \chi_{z} &= \frac{1}{\phi_{z} + \sqrt{\phi^{2} z^{-3} z_{z}}} \qquad (CCM97-5.5.1.1 formule5.46) \\ \chi_{z} &= \frac{1}{2,81 + \sqrt{2,81^{2} - 1,19^{2}}} = 0.21 \\ \chi_{min} &= \min(\chi_{y}, \chi_{z}) = \min(0.48; 0.21) = 0.21. \\ Détermination de l'élancement réduit vis-à-vis le déversement \; \overline{\lambda_{LT}} : \end{split}$$

 $\frac{1}{1} - \lambda \sqrt{2} - \lambda_{LT} - \lambda_{LT}$ (CCM07 D2 1 formula D

$$\overline{\lambda_{LT}} = \frac{\lambda}{\lambda_1} \sqrt{\beta_A} = \frac{\lambda_{LT}}{93,9\varepsilon} = \frac{\lambda_{LT}}{93,9}.$$
 (CCM97-B2.1-formule B12)

 λ_{LT} : Élancement de l'élément vis-à-vis le déversement.

$$\lambda_{LT} = \frac{l_z/i_z}{c_1^{0.5} \times \left[1 + \frac{1}{20} + \left(\frac{l_z/i_z}{h/t_f}\right)\right]^{0.25}}$$
(CCM97-B2.1-formule B21)
$$\lambda_{LT} = \frac{6420/57.3}{1,132^{0.5} \times (1 + \frac{1}{20} + \frac{6420/57.3}{133/8.5})} = \frac{112,04}{1,15} = 97,43$$
 $C_1 = 1,132$ Pour les profilés en I en H.

$$\overline{\lambda_{LT}} = \frac{\lambda_{LT}}{93,9} = \frac{97,43}{93,3} = 1 > 0,4$$
 Il y a risque de déversement.

$$\phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda_{LT}} - 0.2 \right) + \overline{\lambda_{LT}}^2 \right]$$

 $\alpha_{LT} = 0,21$ Pour les sections laminées.

$$\phi_{LT} = 0.5. [1 + 0.21(1 - 0.2) + 1] = 1.4$$
$$\chi_{LT} = \frac{1}{\phi_{LT} + \sqrt{\phi_{LT}^2 - \bar{\lambda}_{LT}^2}} = 0.42$$

Calcul de coefficient k :

$$\begin{split} \mu_y &= \overline{\lambda_y} \Big(2.\,\beta_{My} - 4 \Big) + \frac{W_{ply} - W_{ely}}{W_{ely}} \end{split} \tag{CCM97-5.5.4-formule5.51} \\ \mu_y &= 1 (2 \times 1, 3 - 4) + \frac{173510 - 155400}{155400} = -1,28 \le 0,9 \\ k_y &= 1 - \frac{\mu_y \cdot N_{sd}}{\chi_y \cdot A.f_y} = 1 - \frac{-1,28 \times 46,12}{0,36 \times 3142} = 1,05 \qquad \text{Avec } k_y = 1,05 \le 1,5 \\ \mu_{LT} &= 0,15. \overline{\lambda_z} \cdot \beta_{MLT} - 0,15 = 0,15 \times 1,19 \times 1,3 - 0,15 = 0,08 < 0,9 \\ k_{LT} &= 1 - \frac{\mu_{LT} \cdot N_{sd}}{\chi_z \cdot A.f_y} = 1 - \frac{0,08 \times 46,12}{0,44 \times 3142 \times 235} = 0,99. \end{split}$$

 β_{My} : est un facteur de moment équivalent pour le flambement.

Poutre simplement appuyée avec une charge uniformément répartie $\beta_{My} = 1,3$.

$$N_{sd} = 46,12 \ kN.$$

$$M_{ysd} = \frac{q_{zsd} \times L^2}{8} = \frac{3,68 \times 1,5 \times 6,42^2}{8} = 28,44 \ kN.m$$

$$M_{ply,rd} = \frac{W_{ply} \times f_y}{\gamma_{M1}} = \frac{173,51 \times 10^3 \times 235}{1,1} = 37 \ kN.m$$

$$N_{ply,Rd} = \frac{A.f_y}{\gamma_{M1}} = \frac{3142 \times 235}{1,1} = 671,25 \ kN.$$

Vérification au flambement :

$$\frac{N_{sd}}{\chi_{min} . N_{pl,Rd}} + \frac{k_y . M_{y,sd}}{M_{ply,Rd}} \le 1 .$$

53 / 177 Chapitre III: Dimensionnement et vérification des éléments secondaires

 $\frac{46,12}{0,21\times671,25} + \frac{1,05\times28,44}{37} = 0,12 + 0,88 = 1 \le 1.$

Condition vérifiée

Vérification au déversement :

(CCM97-5.5.4-formule5.51)

$$\frac{N_{sd}}{\chi_z.N_{pl,Rd}} + \frac{k_{LT}.M_{y,sd}}{M_{ply,Rd}} \le 1$$

 $\frac{46,12}{0,44\times671,26} + \frac{0,99\times31,16}{37} = 0,83 \le 1$

Condition vérifiée

III. 5. 6. Conclusion

Le HEA140 convient comme potelet.

III. 6. Calcul de l'échantignolle

• Introduction :

Figure III.11 : Position de l'échantignolle sur la traverse

L'échantignolle est un diapositif de fixation permettant d'attacher des pannes sur les traverses.

Le principe effort de résistance de l'échantignolle est le moment de renversement du au chargement (surtout sous l'action de soulèvement de vent)

L'excentrement « t » :

« t » est limité par la condition suivante :

$$2 \times \left(\frac{b_f}{2}\right) \le t \le 3 \times \left(\frac{b_f}{2}\right)$$

Pour un IPE140 : b = 73 mm.

 $73 \ mm \le t \le \ 109,5 \ mm$.

Donc on prend t = 8cm.

- Calcul du moment de renversement M_r :

 M_r Sera déterminée par rapport à la section d'encastrement :

Figure III.12 : Les dimensions d'un échantignolle

$$M_r = R_y \times t + R_z \times \frac{h}{2}$$

 $R_{y} = q_{y,sd} \times \frac{l}{2}$ $q_{y,sd} = 1,35G \times sin\alpha = 1,35 \times [12,9 + (1,1 \times 14,2)] \times sin 6,8^{\circ} = 4,56 \, daN/ml$ $R_{y} = 4,56 \times \frac{6}{2} = 13,68 \, daN.$ $R_{z} = q_{z,sd} \times \frac{l}{2}$ $q_{z,sd} = G \times cos\alpha + 1,5V = [12,9 + (1,1 \times 14,2)] \times cos6,8^{\circ} + 1,5 \times (-105)$ $= -129,18 \, daN/ml$ $R_{z} = 26,82 \times \frac{6}{2} = -287.54 \, daN$

$$R_z = 26,83 \times \frac{6}{2} = -387,54 \, daN.$$

• Echantignolle de rive :

$$\begin{cases} R_y = 13,68 \ daN \\ R_z = -387,54 \ daN \end{cases}$$

Le moment de renversement :

$$M_r = R_y \times t + R_z \times \frac{h}{2} = 13,68 \times 8 + 387,54 \times 7 = 2822,22 \ daN.\ cm$$

• Echantignolle intermédiaire :

$$\begin{cases} R_y = 13,68 \times 2 = 27,36 \ daN \\ R_z = -387,54 \ \times 2 = -775,08 \ daN \end{cases}$$
$$M_r = R_y \times t + R_z \times \frac{h}{2} = 27,36 \times 8 + 775,08 \times 7 = 5644,44 \ daN. \ cm$$

- L'épaisseur de l'échantignole :

Les échantignolles sont généralement des tôles pliées à froid, de la classe minimale (classe3).

$$M_{sd} \le M_{el,Rd}$$

 $M_{sd} = M_r \le \frac{W_{el} \times f_y}{\gamma_{M0}}$

 $W_{el} \ge \frac{M_r \times \gamma_{M0}}{f_y}$

$$W_{el} \geq \frac{2822,22 \times 1,1}{2350} = 1,32 cm^3$$

 $W_{el} = \frac{b \times e^2}{6}$ Pour la section rectangulaire :

$$e \ge \sqrt{\frac{6.W_{el}}{b}} = \sqrt{\frac{6 \times 1.32}{7.3}} = 1.04cm$$

• Conclusion :

On prend un échantignolle de e = 11 mm.

III. 7. Calcul des chéneaux

Le chéneau est un conduit en métal (généralement en zinc), collectant les eaux pluviales à la base de la toiture ou entre deux versants pour en permettre l'évacuation vers les tuyaux de descente

Figure III.13 : Coupe vertical sur les chéneaux

La section du chéneau sera déterminée comme suit :

$$\frac{S}{s} \ge \frac{63}{\sqrt{\frac{S}{d} \cdot p}}$$

Avec :

- s : Section transversale du chéneau en cm^2 .
- S : Surface couverte du chéneau en m^2 .
- d : Périmètre de la section mouillée du chéneau en cm.
- p : Pente de chéneau.

Remarque : Le chéneau est de type moignon cylindrique-sans trop plein, on prévoit 6 points de descente d'eau sur le long-pan.

Figure III.14 : Coupe transversale du chéneau

Dimensionnement du chéneau

Surface en plan des combles desservis-en m^2 .

$$S = 48 \times 6,04 = 289,92 m^2$$
. $p = 2 mm/m$.
 $S' = \frac{S}{5} = 58 m^2$.

• Conclusion :

Suivant l'abaque (Annexe) : $\begin{cases} s = 120 \ cm^2 \\ d = 20 \ cm \end{cases}$

III. 8. Conclusion

L'élément	Profilé		
Panne	IPE140		
Lisse de bardage	UPN120		
Potelet	HEA140		
Echantignolle	e = 1.1 cm		
Chéneau	$s = 120 \ cm^2 \qquad d = 20 \ cm$		

Tableau III.1 : Les profilés des éléments secondaires

Chapitre IV: Etude sismique

IV.1. Introduction

Les tremblements de terre ou séismes sont les catastrophes naturelles les plus dangereuses et imprévisibles. Ils peuvent dévaster une région entière et sinistre des dizaines voire des centaines de milliers de personne.

C'est le déplacement des plaques lithosphériques à la surface de la Terre qui engendre des contraintes sur les roches. Celles-ci peuvent alors se déformer et même se rompre déclenchant un séisme qui se traduit par la libération d'une quantité d'énergie colossale. Cette énergie se traduit par des ondes sismiques de volume et de surface qui compressent et étirent les roches traversées (ondes P) ou les secouent de haut en bas (ondes S). Le point de rupture s'appelle foyer ou hypocentre et le lieu en surface, directement à sa verticale, l'épicentre.

Donc l'étude sismique des constructions est importante pour que la structure résiste aux efforts sismique et assurer leur stabilité.

On utilise dans ce chapitre le « RPA99 » version 2003 qui nous permet de faire cette étude suivant trois méthodes :

- La méthode statique équivalente.
- La méthode d'analyse modale spectrale.
- La méthode d'analyse dynamique par accélérogrammes.

La méthode statique équivalente bien que simple, est limité à des géométries simples et régulières, et avec le développement de logiciels de calcul des structures par éléments finis, permettant à la fois la modélisation spatiale des structures ainsi que le calcul dynamique, elle laisse de plus en plus place à la méthode d'analyse modale spectrale, qui elle peut être utilisée dans tous les cas de structures courantes. Quant à la méthode d'analyse dynamique par accélérogrammes, elle ne peut être utilisée que cas par cas, par un personnel qualifié ayant justifiés auparavant le choix des accélérogrammes à considérer. Toutefois, cette dernière méthode peut trouver son utilisation dans les structures particulière nécessitant notamment un calcul temporel non linéaire.

La limitation et le manque d'accélérogrammes enregistrés pour une zone sismique donnée, est à l'origine de la première motivation à l'utilisation d'accélérogrammes générés à partir de spectres de réponse (souvent réglementaires).

Le présent travail, fait l'objet de l'étude de la réponse sismique de structures par analyse modale spectrale

IV. 2. Caractéristiques sismique de l'ouvrage

- Zone sismique : Zone I.
- Classification de l'ouvrage : 1B
- Système de contreventement : catégorie 9a : ossature contreventé par palée triangulées en X (R=4).
- Pourcentage d'amortissement critique \rightarrow Acier dense : $\xi = 5\% \rightarrow \eta = 1$.

- Catégorie de site : site rocheux (S1) : $T_1=0,15$ s $T_2=0.30$ s.

IV. 3. Spectre de repense de calcul

$$\frac{S_{a}}{g} = \begin{cases} 1,25A\left(1+\frac{T}{T_{1}}\left(2,5\eta\frac{Q}{R}-1\right)\right) & 0 \le T \le T_{1} \\ 2,5\eta(1,25A)\left(\frac{Q}{R}\right) & T_{1} \le T \le T_{2} \\ 2,5\eta(1,25A)\left(\frac{Q}{R}\right)\left(\frac{T_{2}}{T}\right)^{2/3} & T_{2} \le T \le 3,0 \text{ s} \\ 2,5\eta(1,25A)\left(\frac{Q}{R}\right)\left(\frac{T_{2}}{T}\right)^{2/3} \left(\frac{T_{3}}{T}\right)^{5/3} & T > 3,0 \text{ s} \end{cases}$$
(RPA99 ver2003-4.3.3-formule4.13)

Avec :

A : Coefficient d'accélération de la zone. (RPA99 ver2003 Tableau4.1) ξ : Pourcentage d'amortissement critique. (RPA99 ver2003- Tableau4.2) η : Facteur de correction d'amortissement. (RPA99 ver2003-4.2.3-formule4.3) $\eta = \sqrt{7/(2+\xi)} \ge 0.7$ Avec :

 ξ : est le pourcentage d'amortissement critique fonction du matériau constitutif, de type de structure et de l'importance des remplissages quand $\xi = 5\%$ on a $\eta = 1$.

	Portiques	1	Voiles ou murs		
Remplissag e	Béton armé	Acier	Béton armé/maçonnerie		
Léger	6	4	10		
Dense	7	5			

Figure IV.1:	Valeurs des	pourcentages	d'amortissement
--------------	-------------	--------------	-----------------

Q : Facteur de qualité =1 + $\sum_{1}^{5} P_q$. Il est retiré d'après le tableau suivant :

(RPA99 ver2003 Tableau4.4)

	F	P q
Critère « q »	Suivant x	Suivant y
Condition minimales sur les files de contreventement	0	0,05
Redondance en plan	0	0,05
Régularité en plan	0	0
Régularité en élévation	0	0
Contrôle de la qualité des matériaux	0,05	0,05
Contrôle de la qualité de l'exécution	0,10	0,10
	Q _x =1,15	Q _Y =1,25

Tableau IV.1 : Les facteurs de qualité suivant X et Y

Remarque :

La valeur « 0 » indique les critères qui sont observées lors des travaux de construction du bâtiment.

IV. 4. Analyse modale spectrale

L'objectif de l'étude dynamique d'une structure est de déterminer sa caractéristique dynamique comme les efforts et les déplacements maximum de la structure lors d'un séisme. Ceci est obtenu en considérant son comportement en vibration libre non amortie.

Ce type d'analyse peut être appliqué à tous type de structure.

Figure IV.2 : Spectre de répense suivant X

Figure IV.3 : Spectre de repense suivant Y

IV. 5. Vérification de la structure

La valeur T calculé par le logiciel ROBOT ne doit pas dépasser elle estimé à partir de la formule empirique appropriée de plus 30%.

Vérification de la période fondamentale de la structure :

T= 0,44 s (ROBOT)

Cas/Mode	Fréquence [Hz]	Période [sec]
6/ 1	2.25	0.44
6/ 2	2.41	0.41
6/ 3	2.53	0.40

Figure IV.4 : Les 3 premiers modes de vibration lors d'un seisme

IV. 5. 1. Estimation de la période fondamentale de la structure La période empirique est donnée par la formule suivante :

$$T=C_T\times h_N^{\frac{3}{4}}.$$

(RPA99 ver2003-4.2.4-formule4.6)

Avec :

 h_N : est la hauteur maximale ente la base de la structure jusqu'au point le plus haut . $h_N = 6,72 m$.

 C_t : Coefficient dépend du système de contreventement et de type de remplissage.

tableau 4.6 RPA99 ver2003) .Portique auto-stable en acier sans remplissage en maçonnerie.

 $\rightarrow C_t = 0,085$.

Cas nº	Système de contreventement	CT
1	Portiques autostables en béton armé sans remplissage en	0,075
2	maçonnerie	0,085
3	Portiques autostables en acier sans remplissage en maçonnerie	
4	Portiques autostables en béton armé ou en acier avec remplissage en maçonnerie	0,050
	Contreventement assuré partiellement ou totalement par des voiles en béton armé, des palées triangulées et des murs en maçonnerie	0,050

$$T = C_T \times h_N^{\frac{3}{4}} = 0,085 \times 6,72^{\frac{3}{4}} = 0,35 s$$

 $T=0,44\ s<1,3\times T=1,3\times 0,35=0,46\ s\rightarrow$ Condition vérifiée .

Figure IV.5 : Premier mode propre de vibration

Figure IV.7 : Deuxième mode propre de vibration

Figure IV.6 : Troisième mode propre de vibration

IV. 6. Vérification de l'effort tranchant à la base $V_t > 0.8V$

Avec :

La force sismique totale :

$$V = \frac{A.D.Q}{R} \cdot W$$
 (RPA99version2003-4.2.3-formule4.1)

Avec :

- W : Poids totale de la structure (calculée parle Robot) W=41498,3 daN
- A : Coefficient d'accélération de la zone (A=0,12).

	ZONE					
Groupe	I	lla	llb	III		
1 A	0,15	0,25	0,30	<mark>0,40</mark>		
1 B	0,12	0,20	0,25	0,30		
2	0,10	0,15	0,20	0,25		
3	0.07	0.10	0.14	0.18		

Figure IV.8 : Coefficients d'accélération de zone	Α
---	---

D : Coefficient d'amplification dynamique moyen

$$D = \begin{cases} 2,5\eta & 0 \le T \le T_2. \\ 2,5\eta (T_2/T)^{\frac{2}{3}} & T_2 \le T \le 3s \\ 2,5\eta (T_2/3)^{\frac{2}{3}} (3/T)^{\frac{5}{3}} & T \ge 3s \end{cases}$$

(RPA99version2003-4.2.3-formule4.2)

Site	S ₁	S ₂	S ₃	S ₄
T _{1(sec)}	<mark>0,15</mark>	0,15	0,15	0,15
T _{2(sec)}	0,30	0,40	0,50	0,70

Figure IV.9 : Valeurs de T1 et T2

On a $T_2 \le T \le 3s$

Donc $D = 2.5\eta (T_2/T)^{\frac{2}{3}} = 2.5 \times 1(0.30/0.44)^{\frac{2}{3}} = 1.94.$

R = 4: Coefficient de comportement de la structure global (RPA99 ver2003- Tableau 4.3)

$$V_x = \frac{0.12 \times 1.94 \times 1.15}{4} \times 447,333 = 29,94 \ KN$$
.

 $V_y = \frac{0,12 \times 1,94 \times 1,25}{4} \times 447,333 = 32,54 \ Kn$.

$$V = \frac{0,12 \times 1,94 \times 1,2}{4} \times 447,333 = 31.24KN$$

	V _t (kN)	V(kN)	80% V(kN)	$V_t > 80V$
$V_x(kN)$	29,9	31.24	24.99	Vérifiée
$V_y(kN)$	32.54	31.24	24.99	Vérifiée

Tableau IV.2 : Résultante des forces sismiques à la base

IV. 7. Vérification des déplacements

Le déplacement horizontal est calculé par la formule suivante :

 $\delta_k = R \times \delta_{ek} < 0.01 \times H$ (RPA99version2003-4.43-formule4.19)

Avec R : Coefficient de comportement.

 δ_{ek} : Déplacement du aux forces sismique.

Les déplacements latéraux ne doivent pas dépassent 1%.

• Déplacement selon X-X :

 $\delta_{ek} = 1,5 \ cm$ R=4

 $\delta_k = 4 \times 1,5 = 6 \ cm < 6,72 \ cm$ Condition vérifiée.

• Déplacement selon Y-Y :

 $\delta_{ek} = 0,2 \ cm$

 $\delta_k = 4 \times 0.2 = 0.8 \ cm < 6.72 \ cm$ Condition vérifiée.

IV. 8. Conclusion

Notre structure résiste au séisme et vérifie les conditions du RPA99 version 2003 avec une période de T= 0,44 s et des déplacements $\delta_{ek} = 1,5 \ cm$ suivant (X-X) et $\delta_{ek} = 0,2 \ cm$ suivant (Y-Y).

Chapitre V: Dimensionnement et vérification des éléments structuraux

V.1. Introduction

Après la modélisation de notre structure sur le logiciel ROBOT sur toutes les combinaisons d'action exigé dans notre règlement CCM97, le but c'est d'assurer la stabilité des différents éléments et résistent aux instabilités.

V. 2. Justification du poteau HEA220

Les poteaux sont des éléments porteurs verticaux des ossatures de bâtiment. Ils sont soumis à la compression avec éventuellement de la flexion.

Les profilés laminés en I ou en H sont les plus utilisées comme poteau de charpente métallique. Ils conviennent particulièrement bien à l'assemblage des traverses dans les deux directions perpendiculaires avec facilité d'assemblage.

Les poteaux doivent avoir des dimensions suffisantes pour pouvoir résister aux :

- Efforts de compression dus aux charges permanentes (poids propres de la couverture et des pannes) et aux surcharges climatiques (action de la neige et de vent).
- Effort de flexion due à la poussée horizontale du vent.

Profilé	Paramètres de la section								
HEA220	$\begin{array}{c} A \times 10^2 \\ (mm^2) \end{array}$	h (mm)	b (mm)	t _f (mm)	t _w (mm)	$I_y imes 10^4$ (mm^4)	$I_z \times 10^4$ (mm ⁴)	$W_{ply} \\ \times 10^3 \\ (mm^3)$	$W_{plz} \\ \times 10^3 \\ (mm^3)$
Matériau Acier S235	64,3	210	220	11	7	5410	1955	568,5	270,6

V. 2. 1. Caractéristiques du poteau

Tableau V.1 : Caractéristiques de profilé HEA220

69 / 177 Chapitre V: Dimensionnement et vérification des éléments structuraux

Figure V.1 : Le poteau le plus sollicité

 $N_{sd} = 92,22 \text{ kN}.$ $M_{sd} = 58,25 \text{ kN}. \text{ m}.$ $V_{sd} = 27,84 \text{ kN}.$ $\underbrace{\textbf{V. 2. 2. Classe de profilé}}_{\circ Classe de la semelle comprimée}: (CCM97-Tableau53.1Feuille1)$ $\frac{c}{t_f} = \frac{b/2}{t_f} = \frac{110}{11} = 10 \le 10. \boldsymbol{\xi} \qquad \boldsymbol{\xi} = \sqrt{235/f_y} = 1 \qquad \text{Semelle de classe 1.}$ $\circ \text{ Classe de l'âme fléchie}: (CCM97-Tableau53.1Feuille3)}$

$$\frac{d}{t_w} = \frac{152}{7} = 21,71 \le 33.\xi$$
 $\xi = \sqrt{235/f_y} = 1$ L'âme est de classe 1.

Donc la section HEA220 est de classe 1.

V. 2. 3. Vérification de la section à la résistance

- Vérification de l'effort tranchant : (CCM97-5.4.6formule5.20)

Pour la vérification de l'effort tranchant on applique la condition :

Si $V_{sd} \le 0.5 V_{plRd} \rightarrow M_{sd} \le M_{c,Rd}$

 $M_{c,Rd}$: Moment résistant plastique.

 $V_{sd} = 27,84 \ kN.$

$$V_{pl,Rd} \frac{A_{v} (f_{y}/\sqrt{3})}{\gamma_{M0}} \qquad A_{v} = A - (2.b.t_{f}) + (t_{w} + 2.r) \times t_{f}$$

$$A_v = 6430 - (2 \times 220 \times 11) + (7 + 2 \times 18) \times 11 =$$

 $2063mm^2$

 $V_{pl,Rd} \frac{2063 \times (235/\sqrt{3})}{1,1} = 254,46 \ kN.$ $V_{sd} \le 0.5V_{plRd} \rightarrow 27,84 \le 0.5 \times 254,46 = 127,23 \ kN$

L'incidence de l'effort tranchant sur le moment résistant est négligeable.

- Vérification de l'effort axial : (CCM97-5.13)

$$N_{sd} \le \min(0,25N_{plrd}; 0,5\frac{A_w.f_y}{\gamma_{M0}})$$

On $N_{sd} = 92,22 \ kN$.

 $N_{plrd} = \frac{A \times f_y}{\gamma_{M0}} = \frac{6430 \times 235 \times 10^{-3}}{1.1} = 1373,68 \ kN$

 $A_w = A - 2. b. t_f = 6430 - 2 \times 220 \times 11 = 1590 mm^2$

$$0.5\frac{A_{w}.f_{y}}{\gamma_{M0}} = \frac{0.5 \times 1590 \times 235 \times 10^{-3}}{1.1} = 169.84 \ kN.$$

$$\min\left(0,25N_{plrd};0,5\frac{A_w\cdot f_y}{\gamma_{M0}}\right) = \min(343,42;169,84) = 169,84$$

$$N_{sd} = 92,22 \ kN \le 169,84 \text{kN}$$

L'incidence de l'effort axial sur le moment fléchissant est négligeable.

- Vérification au moment fléchissant : (CCM97-5.35formule5.17)

$$M_{sd} = 58,25 \ kN.m$$

$$M_{c,rd} = M_{ply,rd} = \frac{W_{ply} \times f_y}{\gamma_{M0}}$$

 $M_{c,rd} = M_{ply,rd} = \frac{568,5 \times 235 \times 10^{-3}}{1,1} = 121,45kN.m$

 $58,25 \ kN \leq 121,45 kN. m$

V. 2. 4. Vérification d'élément aux phénomènes d'instabilités

- Flexion composée :
 - Flexion composée sans risque de déversement :

$$\frac{N_{sd}}{\chi_{\min}.N_{pl,rd}} + \frac{k_y.M_{y,sd}}{M_{ply,rd}} + \frac{K_z.M_{z,sd}}{M_{plz,rd}} \le 1 \dots \dots \dots (1)$$
 (CCM97-5.5.4 formule5.51)

Flexion composée avec risque de déversement :

$$\frac{N_{sd}}{\chi_z N_{pl,rd}} + \frac{k_y M_{y,sd}}{M_{ply,rd}} + \frac{K_z M_{z,sd}}{M_{plz,rd}} \le 1 \dots \dots \dots (2)$$
(CCM97-5.5.4 formule5.52)

• Calcul de coefficient de réduction minimal pour le flambement :

$$\chi_{min} = \min(\chi_y, \chi_z)$$

- Flambement par rapport à l'axe (y-y) : $\chi_y = \frac{1}{\phi_y + \sqrt{\phi_y^2 - \overline{\lambda_y}^2}}$ $\phi_y = 0.5 \left[1 + \alpha_y (\overline{\lambda_y} - 0.2) + \overline{\lambda_y}^2 \right]. \quad (CCM97-5.5.1.1 \text{formule5.46})$ $\overline{\lambda_y} = \frac{\lambda_y}{\lambda_1} \sqrt{\beta_A} = \frac{\lambda_y}{93.9\epsilon} = \frac{\lambda_y}{93.9} \quad (CCM97-B2.1 \text{-formule B12})$ Avec : $\beta_A = 1 \text{ Classe 1.}$ $\lambda_1 = 93.9$

$$\lambda_y = \frac{0.5.l_y}{l_y} = \frac{0.5 \times 6000}{91.7} = 32,71$$
 (CCM97-5.4.6 formule5.47)

$$\rightarrow \overline{\lambda_y} = \frac{32,71}{93.9} = 0.348.$$

Courbe de flambement :

$$\frac{h}{b} = \frac{210}{220} = 0.95 \le 1.2 \to (y - y) \to \alpha_y = 0.34$$

$$\phi_y = 0.5 \left[1 + \alpha_y (\bar{\lambda}_y - 0.2) + \bar{\lambda}_y^2 \right] = 0.5 [1 + 0.34(0.348 - 0.2) + 0.348^2] = 0.59$$

$$\chi_y = \frac{1}{0.59 + \sqrt{0.59^2 - 0.348^2}} = 0.95.$$

- Flambement par rapport à l'axe (z-z) :

$$\chi_z = \frac{1}{\phi_z + \sqrt{\phi_z^2 - \overline{\lambda_z}^2}} \qquad \qquad \phi_z = 0.5 \left[1 + \alpha_z (\overline{\lambda_z} - 0.2) + \overline{\lambda_z}^2 \right]$$

$$\overline{\lambda_z} = \frac{\lambda_z}{\lambda_1} \sqrt{\beta_A} = \frac{\lambda_z}{93.9\varepsilon} = \frac{\lambda_z}{93.9} \qquad \text{Avec} : \qquad \beta_A = 1 \ Classe \ 1.$$

$$\lambda_1 = 93.9$$

$$\lambda_z = \frac{0.5 \cdot l_z}{l_z} = \frac{0.7 \times 6000}{55.1} = 76.22 \qquad (CCM97-5.4.6 \text{ formule} 5.47)$$

$$\rightarrow \overline{\lambda_z} = \frac{76,22}{93,9} = 0,81.$$

Courbe de flambement :

$$\frac{h}{b} = \frac{210}{220} = 0.95 \le 1.2 \to (z - z) \to \alpha_z = 0.49.$$

$$\phi_z = 0.5 \left[1 + \alpha_z (\bar{\lambda}_z - 0.2) + \bar{\lambda}_z^2 \right] = 0.5 [1 + 0.49(0.81 - 0.2) + 0.81^2] = 0.98$$

$$\chi_z = \frac{1}{0.98 + \sqrt{0.98^2 - 0.81^2}} = 0.88.$$

 $\chi_{min} = \min(\chi_y, \chi_z) = \min(0.95; 0.88) = 0.88.$

• Calcul de l'élancement réduit vis-à-vis du déversement :

$$\lambda_{LT} = \frac{\frac{L}{i_z}}{c_1^{0.5} \times \left[1 + \frac{1}{20} (\frac{L/i_z}{h/t_f})^2\right]^{0.25}} \qquad C_1 = 1,132 \quad (\text{CCM97-B2.1-formule B26})$$
$$\lambda_{LT} = \frac{\frac{6000}{55,1}}{1,132^{0.5} \times \left[1 + \frac{1}{20} (\frac{6000/55,1}{210/11})^2\right]^{0.25}} = \frac{108,9}{1,35} = 80,66$$

 $\bar{\lambda}_{LT}$: Élancement réduit = $\frac{\lambda_{LT}}{\lambda_1}\sqrt{\beta_A} = \frac{\lambda_{LT}}{93,9\varepsilon} = \frac{\lambda_{LT}}{93,9} = \frac{80,66}{93,9} = 0,86 \ge 0,4$ il y'a risque de déversement.

$$\phi_{LT} = 0.5 \left[1 + \alpha_{LT} (\bar{\lambda}_{LT} - 0.2) + \bar{\lambda}_{LT}^{2} \right]$$

 $\alpha_{LT} = 0,21$: Pour les profilés laminés.

$$\phi_{LT} = 0.5[1 + 0.21(0.86 - 0.2) + 0.86^2] = 0.94$$

$$\chi_{Lt} = \frac{1}{0.94 + \sqrt{0.94^2 - 0.86^2}} = 1.$$

• Calcul de coefficient k :

$$\psi = \frac{M_{min}}{M_{max}} = \frac{133,6}{-58,25} = -2,29$$

$$\beta_{MLt} = 1,8 - 0,7 \times (-2,29) = 3,4.$$

 $\mu_{Lt} = 0.15\overline{\lambda_z}.\beta_{MLt} - 0.15 = 0.15 \times 0.81 \times 3.4 - 0.15 = 0.26 \le 0.9$

$$k_{Lt} = 1 - \frac{\mu_{Lt} \cdot N_{sd}}{\chi_z \cdot A \cdot f_y} = 1 - \frac{0,26 \times 92,22}{0,88 \times 6430 \times 235} = 1 - \frac{15,14}{1329,72} = 0,98 \le 1,5$$

On remplace dans (2):
$$\frac{92,22}{0,88 \times 1373,68} + \frac{0,98 \times 26}{63,59} = \mathbf{0}, \mathbf{47} \le \mathbf{1}.$$

V. 2. 5. Conclusion

Le profilé choisi HEA220 convient comme poteau de la structure.

V. 3. Justification de la traverse IPE330

V. 3	. I. Caracte	risuques	au prome	5					
Profilé				Paramè	etres de la	a section			
IPE 330	$A \times 10^2$ (mm ²)	h (mm)	b (mm)	t _f (mm)	t _w (mm)	$egin{array}{l} I_y \ imes 10^4 \ (mm^4) \end{array}$	$egin{array}{c} I_z \ imes 10^4 \ (mm^4) \end{array}$	$W_{ply} \ imes 10^3 \ (mm^3)$	$W_{plz} imes 10^3 \ (mm^3)$
Matériau Acier S235	62,61	330	160	11	8	11766	788	804,4	153,68

V. 3. 1. Caractéristiques du profilé

Tableau V.2 Caractéristiques du profilé IPE330

 $N_{sd} = 75,73 \ kN.$

 $M_{sd} = 89,95 \ kN.m$

 $V_{sd} = 10,96 \, kN.$

Figure V.2 : La traverse la plus sollicitée

V. 3. 2. Classe de profilé

• Classe de la semelle comprimée :

$$\frac{c}{t_f} = \frac{b/2}{t_f} = \frac{80}{11} = 7,27 \le 10. \xi \qquad (CCM97-Tableau53.1Feuille1)$$

$$\xi = \sqrt{235/f_y} = 1 \qquad \text{Semelle de classe 1.}$$

$$\circ \quad \text{Classe de l'âme fléchie :}$$

$$\frac{d}{t_w} = \frac{271}{8} = 36,13 \le 72. \xi \qquad (CCM97-Tableau53.1Feuille3)$$

$$\xi = \sqrt{235/f_y} = 1 \qquad \text{L'âme est de classe 1.}$$

Donc la section IPE330 est de classe 1.

V. 3. 3. Vérification de la section à la résistance
Vérification de l'effort tranchant : (CCM97-5.4.6formule5.20)

Pour la vérification de l'effort tranchant on applique la condition :

Si $V_{sd} \le 0.5 V_{plRd} \rightarrow M_{sd} \le M_{c,Rd}$

 $M_{c,Rd}$: Moment résistant plastique.

 $V_{sd} = 10,96 \ kN.$

$$\begin{split} V_{pl,Rd} & \frac{A_{v}.(f_{y}/\sqrt{3})}{\gamma_{M0}} & A_{v} = A - (2.b.t_{f}) + (t_{w} + 2.r) \times t_{f} \\ A_{v} &= 6261 - (2 \times 160 \times 8) + (8 + 2 \times 13,7) \times 11 = 4090.4 \ mm^{2} \\ V_{pl,Rd} & \frac{4090,4 \times (235/\sqrt{3})}{1,1} = 504,52 \ kN. \\ V_{sd} &\leq 0.5V_{plRd} \rightarrow 10,96 \leq 0.5 \times 504,52 = 252,26 \ kN \\ L'incidence de l'effort tranchant sur le moment résistant est négligeable. \end{split}$$

- Vérification de l'effort axial : (CCM97-5.13)

$$N_{sd} \leq \min(0,25N_{plrd};0,5\frac{A_w.f_y}{\gamma_{M0}})$$

On $N_{sd} = 75,73 \ kN$.

$$N_{plrd} = \frac{A \times f_y}{\gamma_{M0}} = \frac{6261 \times 235 \times 10^{-3}}{1.1} = 1337,57 \ kN$$
$$A_w = A - 2. \ b. \ t_f = 6261 - 2 \times 160 \times 11 = 2741 \ mm^2$$

$$0.5\frac{A_w.f_y}{\gamma_{M0}} = \frac{0.5 \times 2741 \times 235 \times 10^{-3}}{1.1} = 292.78 \ kN.$$

$$\min\left(0,25N_{plrd};0,5\frac{A_w.f_y}{\gamma_{M0}}\right) = \min(334,39;292,78) = 292,78$$
$$N_{sd} = 75,73 \ kN \le 292,78 \text{kN}.$$

L'incidence de l'effort axial sur le moment fléchissant est négligeable.

- Vérification au moment fléchissant :

$$M_{sd} = 89,95 \ kN.m$$

 $M_{c,rd} = M_{ply,rd} = \frac{W_{ply} \times f_y}{\gamma_{M0}}$ (CCM97-5.35formule5.17)

$$M_{c,rd} = M_{ply,rd} = \frac{804.4 \times 235 \times 10^{-3}}{1.1} = 171.84 kN.m$$

$$89,95 \ kN \le 171,84 \ kN.m$$

V. 3. 4. Vérification d'élément aux phénomènes d'instabilités

- Flexion composée :

Flexion composée sans risque de déversement :

$$\frac{N_{sd}}{\chi_{min}.N_{pl,rd}} + \frac{k_y.M_{y,sd}}{M_{ply,rd}} + \frac{K_z.M_{z,sd}}{M_{plz,rd}} \le 1 \dots \dots \dots (1)$$
(CCM97-5.5.4 formule5.51)

Flexion composée avec risque de déversement :

 $\frac{N_{sd}}{\chi_z \cdot N_{pl,rd}} + \frac{k_y \cdot M_{y,sd}}{M_{ply,rd}} + \frac{K_z \cdot M_{z,sd}}{M_{plz,rd}} \le 1 \dots \dots \dots (2)$ (CCM97-5.5.4 formule5.52)

• Calcul de coefficient de réduction minimal pour le flambement :

$$\chi_{min} = \min(\chi_y, \chi_z)$$

- Flambement par rapport à l'axe (y-y) :

$$\chi_{y} = \frac{1}{\phi_{y} + \sqrt{\phi_{y}^{2} - \overline{\lambda_{y}}^{2}}}$$

$$\phi_{y} = 0.5 \left[1 + \alpha_{y} (\overline{\lambda}_{y} - 0.2) + \overline{\lambda}_{y}^{2} \right]. \quad (CCM97-5.5.1.1 \text{formule} 5.46)$$

$$\overline{\lambda}_{y} = \frac{\lambda_{y}}{\lambda_{1}} \sqrt{\beta_{A}} = \frac{\lambda_{y}}{93.9\varepsilon} = \frac{\lambda_{y}}{93.9} \quad (CCM97-B2.1 \text{-formule B12})$$

$$Avec: \qquad \beta_{A} = 1 \ Classe \ 1.$$

$$\lambda_{1} = 93.9$$

$$\lambda_y = \frac{0.5 \cdot l_y}{i_y} = \frac{0.5 \times 6040}{125} = 24,16 \qquad (\text{CCM97-5.4.6 formule5.47})$$

$$\rightarrow \overline{\lambda_y} = \frac{24,16}{93,9} = 0,26.$$

Courbe de flambement :

$$\frac{h}{b} = \frac{330}{160} = 2 \ge 1, 2 \to (y - y) \to \alpha_y = 0,21$$

$$\phi_y = 0,5 \left[1 + \alpha_y (\bar{\lambda}_y - 0,2) + \bar{\lambda}_y^2 \right] = 0,5 [1 + 0,21(0,26 - 0,2) + 0,26^2] = 0,54$$

$$\chi_y = \frac{1}{0,54 + \sqrt{0,54^2 - 0,26^2}} = 0,98.$$

$$\lambda_z = \frac{0,7.l_z}{l_z} = \frac{0,7 \times 6040}{33,5} = 126,21 \rightarrow \overline{\lambda_z} = \frac{126,21}{93,9} = 1,34.$$

Courbe de flambement :

$$\frac{h}{b} = \frac{330}{160} = 2 > 1,2 \rightarrow (z - z) \rightarrow \alpha_z = 0,34.$$

$$\phi_z = 0,5 \left[1 + \alpha_z (\bar{\lambda}_z - 0,2) + \bar{\lambda}_z^2 \right] = 0,5 [1 + 0,34(1,34 - 0,2) + 1,34^2] = 1,96$$

$$\chi_z = \frac{1}{1,96 + \sqrt{1,96^2 - 1,34^2}} = 0,29.$$

 $\chi_{min} = \min(\chi_y, \chi_z) = \min(1, 34; 0, 29) = 0, 29.$

• Calcul de l'élancement réduit vis-à-vis du déversement :

$$\lambda_{LT} = \frac{\frac{L}{i_z}}{c_1^{0.5} \times \left[1 + \frac{1}{20} \left(\frac{L/i_z}{h/t_f}\right)^2\right]^{0.25}} \qquad C_1 = 2,704 \qquad (CCM97-B2.1-formule B26)$$

Avec : L = 1.1 m : entre axe des pannes

$$\lambda_{LT} = \frac{\frac{1100}{35,5}}{2,704^{0,5} \times \left[1 + \frac{1}{20} \left(\frac{1100/35,5}{330/11}\right)^2\right]^{0,25}} = \frac{30,98}{1,2} = 28,17.$$

 $\bar{\lambda}_{LT}$: Élancement réduit = $\frac{\lambda_{LT}}{\lambda_1}\sqrt{\beta_A} = \frac{\lambda_{LT}}{93,9\varepsilon} = \frac{\lambda_{LT}}{93,9} = \frac{28,17}{93,9} = 0,30 < 0,4$ il y'a risque de déversement.

- Calcul de coefficient k :

(CCM97-5.5.4-formule5.51)

 $\beta_{My} = 1$

$$\mu_{y} = \overline{\lambda_{y}} (2.\beta_{My} - 4) + \frac{W_{ply} - W_{ely}}{W_{ely}} = 1,34(2 \times 1 - 4) + \frac{804,4 - 713}{713}$$

 $\mu_y = 2.67$

$$k_y = 1 - \frac{\mu_y \cdot N_{sd}}{\chi_z \cdot A \cdot f_y} = 1 + \frac{2,67 \times 75,76}{0,92 \times 6261 \times 235} = 1 + \frac{203}{1353,62} = 1.15 \le 1,5$$

On remplace dans (2):

$$\frac{75.73}{0.29 \times 1337.57} + \frac{1.15 \times 89.95}{171.84} = 0.79 < 1$$

V. 3. 5. Conclusion

Le profilé choisi IPE330 convient comme traverse de la structure.

V. 4. Vérification de la poutre au vent UPN140 $N_{sd} = 52,76 \ kN.$

L = 6,96 m avec L la longueur de la diagonale.

V. 4. 1. Caractéristiques du profilé

Profilé		Paramètres de la section							
UPN 140	$A \times 10^2$ (mm ²)	h (mm)	b (mm)	t _f (mm)	t _w (mm)	$egin{array}{c} I_y \ imes 10^4 \ (mm^4) \end{array}$	$egin{array}{c} I_z \ imes 10^4 \ (mm^4) \end{array}$	$W_{ply} \times 10^{3} \ (mm^{3})$	$W_{plz} imes 10^3 \ (mm^3)$
Matériau Acier S235	20,4	140	60	10	7	605	62,7	103	28,3

Tableau V.3 : Caractéristiques du profilé UPN14

V. 4. 2. Vérification à la traction

$$N_{sd} \le \min\{N_{plrd}; N_{u,rd}, N_{net,rd}\}$$
 (CCM97-5.4.6 formule5.13)
 $N_{plrd} = \frac{A \times f_y}{\gamma_{M0}} = \frac{2040 \times 235}{1,1} = 435,81 \ kN$
 $N_{urd} = 0.9. \frac{A_{net} \times f_u}{\gamma_{M2}} = \frac{0.9 \times 2040 \times 360}{1,25} = 528,76 \ kN$
 $N_{urd} = \frac{A_{net} \times f_y}{\gamma_{M0}} = \frac{2040 \times 235}{1,1} = 435,81 \ kN$

 $N_{sd} = 52,76 < 435,81$: On peut négliger l'incidence de l'effort normale sur le moment résistant.

V. 4. 3. Conclusion

Le profilé choisi UPN140 convient comme diagonale de la poutre au vent.

γмо

Vérification des diagonales de palée de stabilité $2L 90 \times 90 \times 9$ V. 5.

 $N_{sd} = 52,84 \ kN.$

L = 8,49 m avec la longueur de la diagonale.

V. 5. 1. Caractéristiques du profilé

Profilé	Paramètres de la section							
<i>L</i> 90 × 90 × 9	$A \times 10^2$ (mm ²)	h (mm)	b (mm)	r _y (mm)	r _z (mm)	$egin{array}{c} I_y \ imes 10^4 \ (mm^4) \end{array}$	$egin{array}{c} I_z \ imes 10^4 \ (mm^4) \end{array}$	
Matériau Acier S235	31,04	9	19	2,7	4,1	115,8	115,8	

Tableau V.4 Caractéristiques du profilé composé 2L90*90*9

V. 5. 2. Vérification à la traction $N_{sd} \leq \min(N_{plrd}; N_{u,rd}, N_{net,rd})$

(CCM97-5.4.6 formule5.13)

$$N_{plrd} = \frac{A \times f_y}{\gamma_{M0}} = \frac{3104 \times 235}{1,1} = 663,12kN$$

$$N_{urd} = 0.9. \frac{A_{net} \times f_u}{\gamma_{M2}} = \frac{0.9 \times 2040 \times 360}{1.25} = 804.55 \ kN$$

$$N_{urd} = \frac{A_{net} \times f_y}{\gamma_{M0}} = \frac{2040 \times 235}{1.1} = 663.12 \ kN$$

 $N_{sd} = 52,84 < 804,55$: On peut négliger l'incidence de l'effort normale sur le moment résistant.

V. 5. 3. Conclusion

Le profilé choisi L 90 × 90 × 9 convient comme diagonale de la poutre au vent.

V. 6. Conclusion

L'élément	Profilé
Poteau	HEA220
Traverse	IPE330
Poutre au vent	UPN140
Palée de stabilité	$2L90\times90\times90$

Tableau V.5 : Les profilés des éléments structuraux

Chapitre VI: Calcul des assemblages

VI. 1. Introduction

Le terme assemblage signifie la zone d'interaction qui englobe une partie de la poutre assemblée, la platine d'extrémité y compris les boulons et soudures et la partie du poteau à hauteur de la platine.

Les différents types d'assemblage par platine d'extrémité :

- Assemblage traverse-poteau.
- Assemblage traverse-traverse.
- Assemblage de raboutage (continuité).
- Assemblage de pied de poteau.

Figure VI.1 : Assemblage boulonné par platine d'extrémité d'une structure en acier

VI. 2. Assemblage traverse-poteau (IPE330-HEA220)

Les sollicitations sont transmises de la traverse au poteau à l'aide de la platine soudée à l'extrémité de la poutre et attachée au poteau par des boulons :

Figure VI.2 : Vue 3D d'assemblage traverse-poteau (IPE330-HEA220)

Figure VI.3 : Détails d'assemblage traverse-poteau (IPE330-HEA220)

VI. 2. 1. Les efforts sollicitant $M_{sd} = 29,94 \ kN.m$.

 $V_{sd} = 11,15 \ kN$.

$$N_{sd} = 25,17 \ kN$$
.

Donnée par ROBOT sous la combinaison suivante : $1,35G + 1,5V_2$

Les composantes de bases sont situées dans des différentes zones de l'assemblage :

Figure VI.4 : Les différents zones d'assemblage

(EC3 1-8-tableau 4.1 EV3 1-8)

VI. 2. 2. Vérification des cordons de soudure (4.5.3.2 EC3 1-8)

$$\frac{a}{t} = \frac{1}{\sqrt{2}} \frac{f_y}{f_u} \frac{\beta_w \gamma_{M2}}{\gamma_{m0}}$$

Avec :

- a : est la largeur de chaque gorge.
- t : est l'épaisseur attachée.
- f_u : est la résistance ultime à la traction de la pièce attachée la plus faible.
- f_y : est la limite d'élasticité de la pièce assemblée.
- ✓ Soudure semelle/platine :

-
$$f_{yc} = 235 MPa$$
;

- $f_{uc} = 360 MPa$;

$$- t = t_{fc} = 11 mm;$$

-
$$\beta_w = 0.8$$
 pour S235 ;

$$- a \ge \frac{1}{\sqrt{2}} \frac{235}{360} \frac{0.8 \times 1.25}{1} \times 11 = 5 mm$$

$$-a = a_f = 6 mm \ge 5 mm : OK$$

$$\gamma_{M2} = 1,25.$$

✓ Soudure âme/platine :

-
$$f_{vc} = 235 MPa$$
;

 $f_{uc} = 360 MPa;$

$$- t = t_{wc} = 7 mm;$$

- $\beta_w = 0.8 \text{ pour S235};$ $a \ge \frac{1}{\sqrt{2}} \frac{235}{360} \frac{0.8 \times 1.25}{1} \times 7 = 3.23 \text{ mm}.$ - $a = a_f = 6 mm \ge 3,23 mm : OK$ (EC3 1-8-tableau 4.1 EV3 1-8)

-
$$\gamma_{M2} = 1,25.$$

VI. 2. 3. Résistance de la zone cisaillée du poteau $V_{wp,Rd} = 0.9 \frac{f_{y,wc} A_{vc}}{\sqrt{3}.\gamma_{M0}}$ (6.2.6.1 EC3 1-8)

 $A_{vc} = 2067 \ mm^2$ Aire de cisaillement du poteau. (6.2.6.1EC3 1-8)

$$f_{y,wc} = 235 MPa$$

 $\gamma_{M0} = 1$

$$V_{wp,Rd} = 0.9 \frac{235 \times 2067}{\sqrt{3} \times 1} = 252.4 \ kN.$$

VI. 2. 4. Résistance de la zone comprimée $F_{c,Rd} = \min\{F_{c,wc,Rd}; F_{c,fb,Rd}\}$ (6.2.7.1(6) EC3 1-8) $F_{c,wc,Rd}$: Ame du poteau en compression transversale. (6.2.6.2. EC3 1-8)

 $F_{c,fb,Rd}$: Semelle de la poutre et âme en compression. (6.2.6.7 EC3 1-8)

Résistance de l'âme du poteau en compression

transversale :

Figure VI.5 : La résistance maximale en compression ou en cisaillement

$$F_{c,wc,Rd} = \frac{\rho.\omega.k_{wc}.b_{eff,c,wc}.t_{wc}.f_{y,wc}.}{\gamma_{M1}}$$
(6.2.6.3EC3 1-8)

 ω : Interaction avec le cisaillement dans l'âme du poteau (Coefficient réducteur)

$$\omega = \omega_1 = \frac{1}{\sqrt{1 + 1.3(\frac{b_{\text{eff},c,\text{wc}}\cdot t_{\text{wc}}}{A_{\text{vc}}})^2}}$$
(Tableau6.3 EC3 1-8)

 k_{wc} : Interaction avec la contrainte de compression dans l'âme du poteau par simplification : k_{wc} = 1.

$$b_{eff,c,wc} = t_{fb} + 2\sqrt{2} \, a_p + 5(t_{fc} + s) + s_p$$

Avec :

$$s = \frac{h_i - d}{2} = \frac{307 - 271}{2} = 18$$
mm.

 $s_p = t_p + c = 20 + 18 = 38 \text{ mm}.$

 $a_p = a_f = 6mm.$

 $t_{fb} = 12 \text{ mm}.$

$$t_{fc} = 11$$

 $b_{eff,c,wc} = 12 + 2\sqrt{2} \times 6 + 5(11 + 18) + 38 = 214$ mm.

$$\omega = \omega_1 = \frac{1}{\sqrt{1 + 1.3\left(\frac{214 \times 7}{2067}\right)^2}} = 0.77.$$

ρ: réduction pour risque de voilement de l'âme.

Voilement de l'âme sous compression :

(6.2.6.2(1) EC3 1-8)

$$\overline{\lambda_p} = 0.932 \sqrt{\frac{h_{eff,c,wc} \cdot d_{wc} \cdot f_{y,wc}}{E \cdot t_{wc}}^2}$$

$$d_{wc} = h_c - 2(t_{fc} + r_c) = 210 - 2(11 + 18) = 152 \text{ mm.}$$

$$\overline{\lambda_p} = 0.932 \sqrt{\frac{214 \times 152 \times 235}{210000 \times 7^2}} = 0.8 > 0.72$$

$$\rightarrow \rho = \frac{\overline{\lambda_p} - 0.2}{\overline{\lambda_p}^2} = \frac{0.8 - 0.2}{0.8^2} = 0.94$$

$$F_{c,wc,Rd} = \frac{0.94 \times 0.77 \times 1 \times 214 \times 7 \times 235}{1} = 253,58 \text{ kN.}$$

Figure VI.6 : Voilement de l'âme sous

compression

- Résistance de l'aile et de l'âme comprimée :

$$F_{c,fb,Rd} = \frac{M_{c,Rd}}{h_b - t_{fb}}$$
(6.2.6.7EC3 1-8)

$$M_{c,Rd} = \frac{W_{plb} \times f_{yb}}{\gamma_{M0}}$$

$$\begin{split} W_{plb} &= 804400 \ mm^2 \\ M_{c,Rd} &= \frac{80400 \times 235}{1} = 189,03 \ kN. \ m \\ F_{c,fb,Rd} &= \frac{189,03}{0,33 - 0,12} = 589,28 \ kN. \end{split}$$

VI. 2. 5. Résistance de la zone tendue

- Coté poteau

• Calcul de la semelle du poteau fléchie $F_{t,fc,Rd}$:

On a 3 rangées de boulons intérieurs (2 rangées intérieurs et une rangée centrale) pour chaque rangées de boulons on a 4 modes telle que : 6.2.6.4 Tableau 6.4 EC3 1-8

Le calcul détaillé du semelle du poteau fléchie pour les différents modes (Annexes D « assemblage »)

Figure VI.7 : Les différentes rangées de boulons par rapport au centre de compression

 \circ <u>Mode 1</u>: la semelle du tronçon en T est le composant critique qui se plastifie en flexion en double courbure.

• <u>Mode 2 :</u> La semelle du tronçon en T se plastifie et les boulons atteignant la ruine pour la même charge.

Figure VI.9 : Schéma représentatif du deuxième mode

• <u>Mode 3 :</u> Les boulons sont les composants critiques et la résistance est celle des boulons à la traction.

Figure VI.10 : Schéma représentatif du troisième mode

• <u>Mode 4</u> : plastification de l'âme tendue du poutre (pour coté poutre) .

Figure VI.11: Schéma représentatif de mode 4

• <u>Rangée 1 :</u>

Rangée intérieure :

- Détermination des longueurs efficaces d'un tronçon en T équivalent d'une semelle de poteau fléchie non raidie : 6.2.6.4 Tableau 6.5 EC3 1-8

	Rangée de boulons prise isolement	Rangée de boulons considérée comme partie d'un groupe de rangées de boulons
Mode 1	$l_{eff,1} = l_{eff,nc}$ mais $l_{eff,1} \le l_{eff,cp}$	$\sum l_{eff,1} = \sum l_{eff,nc} \operatorname{mais} \sum l_{eff,1} \le \sum l_{eff,nc}$
Mode 2	$l_{eff,2} = l_{eff,nc}$	$\sum l_{eff,2} = \sum l_{eff,nc}$

Tableau VI.1 : Longueur efficace de tronçon en T équivalent

			Mode 1		Mode 2		Mode3	F,fc,Rd
rangée	l _{eff1}	l _{eff 2}	$M_{PL,1,rd}$	$F_{T,1,rd}$	$M_{PL,2,rd}$	$F_{T,2rd}$	$F_{T,3,rd}$	min
Rangée1	139	176	0,98	178,18	1,25	173,4	221,18	173,4
Rangée2	139	176	0,98	178,18	1,25	173,4	221,18	173,4
Rangée 3	139	148	0,98	178,18	1,052	165,4	221,18	165,4
Rangée 1+2	239	239	1,7	309	1,7	314,5	221,18	221,18
Rangée 2+3	239	239	1,7	309	1,7	314,5	221,18	221,18
Rangée 1+2+3	339	339	2,4	436,36	2,4	221,2	221,18	221,18

Tableau VI.2 : Tableau récapulatif des efforts et moments de la semelle du poteau fléchie

- Coté poutre :
- Platine d'about fléchie et âme du poutre tendue : (un calcul détaillé dans l'annexes D « assemblage »)

			Mode 1		Mode 2		Mode3	Mode 4	Ft rangé	F,ep,Rd
rangée	l _{eff 1}	l _{eff 2}	$M_{PL,1,rd}$	$F_{T,1,rd}$	$M_{PL,2,rd}$	F _{T,2rd}	$F_{T,3,rd}$	$F_{T,4,Rd}$	moyenne	min
Rangée1	176	176	4,136	570,5	4,136	249,93	221,18	330,88	190,95	249,55
Rangée2	182	176	4,28	590,34	4,13	249,87	221,18	342,16	190,95	249,37
Rangée 3	182,12	203,5	4,28	590,34	4,78	266,85	221,18	342,16	188,25	221,18
Rangée 1+2	169	180,25	3,97	547,58	4,23	252,42	221,18	317,72	281,56	221,18
Rangée 2+3	100	100	2,35	322,75	2,34	194,71	221,18	188	281,56	194,71
Rangée 1+2+3	100	100	2,35	322,75	2,34	194,71	221,18	188	292,91	194,71

Tableau VI.3 : Tableau récapulatif de la flexion de la platine d'about et ame du poutre fléchie

• Ame du poteau tendue transversalement :

$$F_{t,wc,Rd} = \frac{\omega \cdot b_{eff,t,wc} \cdot t_{wc} \cdot f_{y,wc}}{\gamma_{M0}}$$

$$(6.2.6.3EC3 1-8)$$

$$\omega = \omega_1 = \frac{1}{\sqrt{1+1.3(\frac{b_{eff,c,wc} \cdot t_{wc}}{A_{vc}})^2}}$$
(Tableau6.3 EC3 1-8)

 k_{wc} : interaction avec la contrainte de compression dans l'âme du poteau par simplification : k_{wc} = 1.

$$b_{eff,c,wc} = t_{fb} + 2\sqrt{2}a_p + 5(t_{fc} + s) + s_p$$

Avec :

 $s = \frac{h_i - d}{2} = \frac{307 - 271}{2} = 18mm$. $s_p = t_p + c = 20 + 18 = 38 mm$. $a_p = a_f = 6mm$.

 $t_{fb} = 12 \text{ mm}.$

 $t_{fc} = 11$

 $b_{eff,c,wc} = 12 + 2\sqrt{2} \times 6 + 5(11 + 18) + 38 = 214$ mm.

Figure VI.12 : Ame du poteau tendue

$$\omega = \omega_1 = \frac{1}{\sqrt{1 + 1.3 \left(\frac{214 \times 7}{2067}\right)^2}} = 0.77.$$

F_{t,wc,Rd} = $\frac{0.77 \times 214 \times 7 \times 235}{1} = 271$ kN

• Ame du poutre en traction :

$$F_{t,wcb,Rd} = \frac{b_{eff,t,wb}.t_{wb}.f_{y,wb}}{\gamma_{M0}}$$
(6.2.6.8EC3 1-8)

 $F_{t,wcb,Rd} = \frac{157,35 \times 8 \times 235}{1} = 295,83 \ kN$

• Résistance de l'assemblage :

Rangée	ngée Rangée / Groupe		F,ep,Rd	F _{t,wc,Rd}	F _{t,wcb,Rd}	Ft,i,Rd	
Rangée 1	Rangée 1	228,65	249,55			228,65	
	Rangée 2	228,65	249,37			228,65	
Rangee 2	Groupe 1 à 2	393,15	221,18	071	205.02		
	Rangée 3	228,65	221,18	271 295,83			
Dongáo 2	Groupe 1 à 3	393,15	194,71			194,71	
Kanget J	Groupe 2 à 3 393,15 194,71						

Tableau VI.4:La résistance de l'assemblage pour différents rangées

totale :652,01 kN

- Limitation : (5.3 Tableau5.4 EC3 1-8)

Distribution plastique des forces dans les rangées de boulons :

Si la capacité de déformation plastique d'une rangée est jugée insuffisante c'est-à-dire si $F_{t,i,Rd} > 1,9F_{t,Rd}$ on limite la capacité résistante des rangées situées en dessous suivant une réparation triangulaire.

On :

-
$$F_{t,Rd} = 110,6 \, kN$$
.

- $1,9.F_{t,Rd} = 1,9 \times 110,6 = 210,14 \ kN$.

Pour toutes les rangées, la résistance en traction est inférieures à 1,9 . $F_{t,Rd}$.

Cette répartition doit aussi être appliquée sur les rangées centrales si la composante en compression ou cisaillement qui limite la résistance de l'assemblage.

- Moment résistant de l'assemblage :

$$M_{jRd} = \sum_{r} F_{tr,Rd} \cdot h_r$$
 (6.2.7.2(1)EC3 1-8)

 $M_{jRd} = F_{t1,Rd} \cdot h_1 + F_{t2,Rd} \cdot h_2 + F_{t3,Rd} \cdot h_3$

 $M_{jRd} = 173,17 \times 237 + 79,24 \times 137$ = 51,79 kN.m.

Nr	hj	F _{tj,Rd}	
1	237	173.17	
2	137	79.24	
3	37	<u>18</u>	

Figure VI.13 : La force pour chaque boulon et son bras de levier

• Calcul de l'effort tranchant résistant :

$$W_{Ed} \le n_s . \min(F_{\nu,Rd}, F_{b,Rd})$$
 (6.2.2(2) EC3 1-8)

- Résistance de calcul au cisaillement pour un boulon isolé :

$$F_{\nu,Rd} = \frac{\alpha_{\nu} f_{ub} A}{\gamma_{M2}}$$
(Tableau3.4 EC3 1-8)

$$\alpha_v = 0.6$$
 (Classe 8.8)

$$F_{\nu,Rd} = \frac{0.6 \times 254, 5 \times 800}{1,25} = 97,72 \ kN.$$

- Résistance de la pression diamétrale pour un boulon isolé

$$F_{b,Rd} = \frac{k_1 \cdot \alpha_b \cdot f_u \cdot d \cdot t}{\gamma_{M2}}$$
(Tableau 3.4 EC 3 1-8)

$$\alpha_d = \min[\alpha_d; \frac{f_{ub}}{f_u}; 1)$$
 (Tableau3.4 EC3
1-8)

$$\alpha_d = \frac{p_1}{3.d_0} - \frac{1}{4} = \frac{100}{3 \times 20} - 0,25 = 1,42$$
$$\alpha_d = \min\left(1,42; \frac{800}{235} = 3,4;1\right) = 1$$
$$F_{b,Rd} = \frac{k_1.\alpha_b.f_u.d.t}{1.25} = \frac{2,5 \times 1 \times 235 \times 18 \times 8}{1.25}$$

$$\gamma_{b,Rd} = \frac{\gamma_{M2}}{\gamma_{M2}} = \frac{1,25}{1,25}$$

= 142,56 kN.

$$V_{Ed} \le n_s.\min(F_{v,Rd}, F_{b,Rd}) = 2 \times 97,72 =$$

Figure VI.14 : Cisaillement vertical des boulons du bas d'assemblage

195,44 kN

• Rigidité de l'assemblage :

La classification de l'assemblage par rigidité :

- ✓ Zone 1 : rigide si : $S_{j,ini} \ge k_b \cdot E \cdot l_b / L_b$.
- ✓ Zone 2 : semi rigide si : $0,5.E.l_b < S_{j,ini} < k_b.E.l_b/L_b$.
- ✓ Zone 3 : nominalement articulé si : $S_{j,ini} ≤ 0,5. E. l_b / L_b$
 - Raideur équivalente par rangée :

$$k_{eff,r} = \frac{1}{\frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} + \frac{1}{k_4} + \frac{1}{k_5} + \frac{1}{k_{10}}}$$

Coefficient de rigidité	Composant de l'attache
k_1	Panneau d'âme de poteau en cisaillement
k_2	Ame de poteau comprimée
k_3	Ame de poteau tendue
k_4	Semelle du poteau fléchie
k_5	Platine d'about fléchie
$\overline{k_{10}}$	Boulon tendue

Tableau VI.5 : Les coefficients de rigidité

Panneau d'âme de poteau en cisaillement non raidi :

$$k_1 = \frac{0.38.A_{vc}}{\beta . z} \tag{6.3.2 EC3 1-8}$$

z : le bras de levier z=187 mm. (5.3(7) EC3 1-8)

 $\beta = 1$: Une attache unilatérale.

 $A_{vc} = 2067 \ mm^2$

$$k_1 = \frac{0,38 \times 2067}{187} = 4$$

Panneau d'âme de poteau comprimée non raidie :

$$k_2 = \frac{0.7.b_{eff,c,wc}.t_{wc}}{d_c}$$
(6.3.2 EC3 1-8)

Avec :

 $b_{eff,c,wc} = 214 mm$: est la largeur efficace.

 $t_{wc} = 7mm$: est l'épaisseur de l'âme du poteau.

 $d_c = 188 \ mm$: est la hauteur libre de l'âme du poteau.

$$k_2 = \frac{0,7.\times 214 \times 7}{188} = 5$$

Ame de poteau tendue

$$k_3 = \frac{0.7.b_{eff,t,wc}.t_{wc}}{d_c}$$
(6.3.2 EC3 1-8)

 $b_{eff,t,wc}$: est la largeur efficace de l'âme du poteau tendue égale à la plus petite des longueurs efficaces.

Pour les rangées de boulons on a les mêmes largeurs efficaces $b_{eff,t,wc} = 139 mm$

Donc :

$$k_3 = \frac{0.7 \times 139 \times 7}{188} = 3$$

Semelle du poteau fléchie :

$$k_4 = \frac{0.9.l_{eff}.t_{fc}^3}{m^3}$$
(6.3.2 EC3 1-8)

 l_{eff} : est la plus petite des longueurs efficaces.

 t_{fc} : est l'épaisseur de la semelle du poteau.

m : distance du boulon de l'âme.

Figure VI.15 : Un modèle ressort d'assemblage par platine d'about

Pour les rangées de boulons on a les mêmes largeurs efficaces $l_{eff} = 139 \ mm$

$$k_4 = \frac{0.9 \times 139 \times 11^3}{22^3} = 15$$

Platine d'about fléchie :

$$k_5 = \frac{0.9.l_{eff} \cdot t_p^3}{m^3}$$
 (6.3.2 EC3 1-8)

 l_{eff} : est la plus petite des longueurs efficaces

 $t_p = 20$: L'épaisseur de la platine d'about.

m: Distance du boulon de l'âme.

$$k_{5,1} = \frac{0.9 \times 176 \times 20^3}{29^3} = 40$$
$$k_{5,2} = \frac{0.9 \times 176 \times 20^3}{29^3} = 40$$
$$k_{5,3} = \frac{0.9 \times 203.7 \times 20^3}{29^3} = 60$$

➢ Boulons tendus :

$$k_{10} = \frac{1.6.A_s}{L_b} \tag{6.3.2 EC3 1-8}$$

 $A_s = 192$: L'aire de résistance des boulons.

 $L_b = 55$: La longueur du boulon soumise à l'allongement.

$$k_{10} = \frac{1.6 \times 192}{55} = 6$$

➢ Raideur par rangé :

Rangée	k _{3,i}	k _{4,i}	k _{5,i}	k _{eff,i}
R=1	3	15	40	1
R=2	3	15	40	1
R=3	3	15	60	2,4

Tableau VI.6: La rigidité du raideur pour chaque rangée

• La rigidité en rotation :

$$S_{j,ini} = \frac{E \cdot z^2}{\frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_{eq}}}$$
(6.3.3 EC3 1-8)

 k_{eq} : Est le coefficient de rigidité équivalent.

$$k_{eq} = \frac{\sum_{r \, k_{eff,r} h_r}}{z_{eq}}$$

 h_r : Est la distance entre la rangée de boulon r et le centre de compression.

 \triangleright

 $k_{eff,r}$:Est le coefficient de rigidité efficace pour la rangée de boulon r prenant compte les coefficients de rigidité k_i pour les composants de base. $k_{eff,r} = \frac{1}{\sum_{i \neq i} \frac{1}{\sum_{i \neq i$

 z_{eq} : Est le bras de levier équivalent.

$$z_{eq} = \frac{\sum_{r} k_{eff,r} h_r^2}{\sum_{r} k_{eff,r} h_r}$$

Raideur équivalente pour la partie de l'assemblage :

$$z_{eq} = \frac{\sum_{r} k_{eff,r} \cdot h_{r}^{2}}{\sum_{r} k_{eff,r} \cdot h_{r}} = \frac{1 \times 237^{2} + 1 \times 137^{2} + 2.4 \times 37^{2}}{1 \times 237 + 1 \times 137 + 2.4 \times 37} = 169 \text{ mm}.$$

- Coefficient de rigidité de l'assemblage : $k_{eq} = \frac{\sum_{r} k_{eff,r} h_r}{z_{eq}} = \frac{1 \times 237 + 1 \times 137 + 2.4 \times 37}{169} = 2,73 \text{ mm}$

Rigidité en rotation initiale
$$S_{j,ini}$$
 :
 $S_{j,ini} = \frac{210000 \times 187^2}{\frac{1}{4} + \frac{1}{5} + \frac{1}{2,73}} = 8955,47 \text{ kN.m/rad.}$

VI. 2. 6. Conclusion

La classification de notre assemblage :

 $S_{j,pin} = 2044,54 \ kN.\frac{m}{rad}$ La rigidité de l'assemblage s'il est articulé (obtenue par ROBOT).

 $S_{j,rig} = 32712,63 \ kN.\frac{m}{rad}$ La rigidité de l'assemblage s'il est rigide (obtenue par ROBOT).

 $S_{j,pin} < S_{j,ini} < S_{j,rig} \rightarrow$ Notre assemblage **est semi-rigide.**

VI. 3. Assemblage traverse-traverse (IPE330 – IPE330)

Cet assemblage est réalisé à l'aide de deux platines boulonnée entre elles et soudée avec les deux traverses.

L'assemblage est sollicité par un moment fléchissant , effort tranchant et un effort normal sont obtenues par la combinaison suivante : 1,36G+1,5N donnée par le logiciel ROBOT

Figure VI.16 : Vue 3D d'assemblage traverse-traverse

VI. 3. 1. Les efforts sollicitant

 $N_{sd} = 73,33 \ kN.$ $V_{sd} = 7,91 \ kN.$ $M_{sd} = 79,85 \ kN. m$

Donnée sous la combinaison : 1,35G+1,5N.

Figure VI.17 : Détails d'assemblage traverse-traverse (IPE330-IPE330)

VI. 3. 2. Vérification des cordons de soudure

$$\frac{a}{t} = \frac{1}{\sqrt{2}} \frac{f_y}{f_u} \frac{\beta_w \gamma_{M2}}{\gamma_{m0}}$$
(4.5.3.2 EC3 1-8)

Avec :

a : est la largeur de chaque gorge.

t : est l'épaisseur attachée.

 f_u : est la résistance ultime à la traction de la pièce attachée la plus faible.

 f_y : est la limite d'élasticité de la pièce assemblée.

- Soudure semelle/ platine:

 $f_{yb} = 235 \, MPa$;

 $f_{ub} = 360 MPa$;

 $t = t_{fb} = 12 mm;$

$$\begin{split} \beta_w &= 0.8 \text{ Pour S235 }; \\ \gamma_{M2} &= 1,25. \\ & a \geq \frac{1}{\sqrt{2}} \frac{235}{360} \frac{0.8 \times 1,25}{1} \times 12 = 5,54 \text{ mm.} \\ & a = a_f = 6 \text{ mm} \geq 5,54 \text{ mm} : \text{OK} \quad (\text{EC3 1-8-tableau 4.1 EV3 1-8}) \\ & - \text{ Soudure âme / platine:} \\ f_{yb} &= 235 \text{ MPa }; \\ f_{ub} &= 360 \text{ MPa }; \\ t &= t_{wb} = 8 \text{ mm;} \\ \beta_w &= 0,8 \text{ pour S235 }; \\ \gamma_{M2} &= 1,25. \\ & a \geq \frac{1}{\sqrt{2}} \frac{235}{360} \frac{0.8 \times 1,25}{1} \times 8 = 3,7 \text{ mm.} \\ & a = a_f = 6 \text{ mm} \geq 3,7 \text{ mm : OK} \quad (\text{EC3 1-8-tableau 4.1 EV3 1-8}) \end{split}$$

VI. 3. 3. Résistance de la zone comprimée

- Résistance de la et de l'âme comprimée :

$$F_{c,fb,Rd} = \frac{M_{c,Rd}}{h_b - t_{fb}}$$
(6.1.6.7 EC3 1-8)

$$M_{c,Rd} = \frac{W_{plb} \times f_{yb}}{\gamma_{M0}}$$

 $W_{nlh} = 804400 \ mm^2$ $M_{c,Rd} = \frac{80400 \times 235}{1} = 189,03 \ kN. m$ $F_{c,fb,Rd} = \frac{189,03}{0.33 - 0.12} = 589,28 \ kN.$ Résistance de la zone tendue VI. 3. 4. - Résistance en traction des boulons : $F_{t,Rd} = \frac{k_2 f_u A_s}{\gamma_{M2}}$ (EC3 1-8-tableau 3.4) $k_2 = 0.9$ $\gamma_{M2} = 1,25$ $A_{\rm s} = 192 \ mm^2$ $f_u = 800 MPa$ $F_{t,Rd} = \frac{0.9 \times 800 \times 192}{1.25} = 110.6 \ kN.$ - Résistance au poinçonnement de la platine par l'écrou du boulon : $B_{p,Rd} = \frac{0.6\pi.d_m.t_p.f_{up}}{v_{M2}}$ (EC3 1-8-tableau 3.4)

 $d_m = 29,09 \ mm$ $t_p = 20 \ mm$ $f_{up} = 360 \ MPa$

 $B_{p,Rd} = \frac{0.6 \times 3.14 \times 29.09 \times 20 \times 360}{1.25} = 315,7 \ kN > F_{t,Rd} = 110,6 \ kN \rightarrow$ le poinçonnement n'est pas critique.

- Résistance de la platine fléchie par unité de longueur du tronçon en Té :

$$M_{pl,Rd} = \frac{(\sum l_{eff})t_p^2 \cdot f_{yp}}{4 \cdot \gamma_{M0}}$$

 $m_{pl,Rd} = \frac{M_{pl,Rd}}{\sum l_{eff}} = \frac{t_p^2 f_{yp}}{4.\gamma_{M0}} = \frac{20^2.360}{4 \times 1} = 360 \ kNmm/mm$

- Résistance de l'âme tendue de la poutre :

 $F_{t,wb,Rd} = b_{eff,t,wb} \cdot t_{wb} \cdot \frac{f_{y,wb}}{\gamma_{M0}} \qquad \qquad \frac{F_{t,wb,Rd}}{\sum l_{eff}} = t_{wb} \cdot \frac{f_{y,wb}}{\gamma_{M0}} = 8 \times \frac{235}{1} = 1,88 \, kN/m$

- Résistance des boulons en cisaillement :

$$F_{v,Rd} = \frac{\alpha_v f_u A_s}{\gamma_{M2}} \qquad \qquad \alpha_v = 0,6 \text{ (classe 8.8)} \qquad \qquad f_u = 800 \text{ MPa}$$
$$A_s = 192 mm^2 \qquad \qquad \gamma_{M2} = 1,25$$

$$F_{\nu,Rd} = \frac{0.6 \times 800 \times 192}{1.25} = 73.73 \ kN.$$

- Détermination des longueurs efficace d'un tronçon en T équivalent d'une semelle

Figure VI.19 : Zone tendue et la zone comprimé d'un assemblage

de poteau fléchie non raidie : 6.2.6.4 Tableau 6.5 EC3 1-8

Le calcul détaillé de la zone tendue (les efforts et moments de flexion de platine et l'ame de poutre tendu) dans l'annexes D « assemblage ».

			Mode 1		Mode 2		Mode3	Mode 4	F,T,Rd
rangée	l _{eff 1}	l _{eff 2}	$M_{PL,1,rd}$	$F_{T,1,rd}$	$M_{PL,2,rd}$	F _{T,2rd}	$F_{T,3,rd}$	$F_{T,4,Rd}$	min
Rangée1	150,72	150,72	4,25	708,3	4,25	280,3	221,18	283,35	221,18
Rangée2	150,72	152,25	3,54	590	3,57	193,66	221,18	283,35	193,66
Rangée 3	150,72	150,72	4,25	708,3	4,25	280,3	221,18	283,35	221,18
Rangée 1+2	240,72	240,72	5,65	941,66	5,65	332,15	221,18	452,55	221,18
Rangée 2+3	240,72	240,72	5,65	941,66	5,65	332,15	221,18	452,55	221,18
Rangée 1+2+3	330,72	330,72	7,77	1295	7,77	410,66	221,18	621,75	221,18

Tableau VI.7 : Tableau récapitulatif des efforts et moments de flexion de platine et l'ame de poutre tendu

- Limitation : (5.3 Tableau5.4 EC3 1-8)

Distribution plastique des forces dans les rangées de boulons :

Si la capacité de déformation plastique d'une rangée est jugée insuffisante c'est-à-dire si $F_{t,i,Rd} > 1,9F_{t,Rd}$ on limite la capacité résistante des rangées situées en dessous suivant une réparation triangulaire.

On :

-
$$F_{t,Rd} = 110,6 \ kN$$
.
- $1,9 \cdot F_{t,Rd} = 1,9 \times 110,6 = 210,14 \ kN$.

Pour toutes les rangées, la résistance en traction est inférieures à 1,9. $F_{t,Rd}$.

Cette répartition doit aussi être appliquée sur les rangées centrales si la composante en compression ou cisaillement qui limite la résistance de l'assemblage.

- Moment résistant de l'assemblage :

 $M_{jRd} = \sum_{r} F_{tr,Rd} \cdot h_r$ (6.2.7.2 EC3 1-8)

Figure VI.20 : Un moment d'assemblage

$$M_{jRd} = F_{t1,Rd} \cdot h_1 + F_{t2,Rd} \cdot h_2 + F_{t3,Rd} \cdot h_3.$$

$$M_{jRd} = 221,18 \times 284 + 151,15 \times 194 + 81,1$$

$$\times 104 = 100,67 \ kN \cdot m.$$

$$Nr \qquad h_j \qquad F_{tj,Rd}$$

$$1 \qquad 284 \qquad 221.18$$

$$2 \qquad 194 \qquad 151.14$$

$$3 \qquad 104 \qquad 81.10$$

• Calcul de l'effort tranchant résistant :

$$V_{Rd} = \frac{A_v f_y}{\sqrt{3} \gamma_{M0}}$$
(6.2.(2) EC3 1-8)

$$V_{Rd} = \frac{3081 \times 235}{\sqrt{3} \times 1} = 418 \ kN.$$
$$V_{Rd} = 2\left(n_1 + \frac{0.4}{1.4}n_2\right)F_{\nu,Rd} < 0.5V_{Rd}$$

 $n_1 = 0$: Nombre de rangée de boulons non utilisées pour reprendre la traction.

 $n_2 = 3$: Nombre de rangée de boulons utilisés pour reprendre la traction.

$$V_{Rd} = 2\left(\frac{0.4}{1.4} \times 3\right) \times 97,72 = 167,52 < 0.5 \times 418 = 209$$

• Rigidité de l'assemblage :

Figure VI.21 : Classification des zones d'assemblage

- Raideur équivalente par rangée :

$$k_{eff,r} = \frac{1}{\frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} + \frac{1}{k_4} + \frac{1}{k_5} + \frac{1}{k_{10}}}$$

Dans le cas d'assemblage de faitage avec platine d'about, $k_{eff,r}$ doit être basé sur (et remplacer) les coefficients de rigidité k_i pour : (6.3.3.1 EC3 1-8)

- Platine d'about fléchie (k_5)
- Les boulons tendus (k_{10})
- Platine d'about fléchie :

$$k_5 = \frac{0.9.l_{eff} \cdot t_p^3}{m^3}$$
(6.3.2 EC3 1-8)

 l_{eff} : est la plus petite des longueurs efficaces

 $t_p = 20$: L'épaisseur de la platine d'about.

m = 24: Distance du boulon de l'âme.

$$k_{5,1} = \frac{0.9 \times 150,72 \times 20^3}{24^3} = 78,5$$
$$k_{5,2} = \frac{0.9 \times 150,72 \times 20^3}{24^3} = 78,5$$
$$k_{5,3} = \frac{0.9 \times 150,72 \times 20^3}{24^3} = 78,5$$

Boulons tendus :

 $k_{10} = \frac{1.6.A_s}{L_b} \tag{6.3.2 EC3 1-8}$

 $A_s = 192$: L'aire de résistance des boulons.

 $L_b = 55$: La longueur du boulon soumise à l'allongement.

$$k_{10} = \frac{1.6 \times 192}{55} = 6$$

➢ Raideur par ranger :

Rangée	k ₃	k_4	k_5	k _{eff,r}
Rangée 1	∞	∞	78,5	5
Rangé 2	∞	∞	78,5	5
Rangée 3	3 C	00	78,5	5

 $k_{eq} = \frac{\sum_{r k_{eff,r} h_r}}{z_{eq}}$

Tableau VI.8: Rigidité de chaque rangée

• La rigidité en rotation :

$$S_{j,ini} = E \times Z_{eq}^{2} \times k_{eq}$$
 (6.3.3 EC3 1-8)

 k_{eq} : est le coefficient de rigidité équivalent.

$$h_r$$
: est la distance entre la rangée de boulon r et le centre de compression.

 $k_{eff,r}$:Est le coefficient de rigidité efficace pour la rangée de boulon r prenant compte les coefficients de rigidité k_i pour les composants de base. $k_{eff,r} = \frac{1}{\sum_{i \in k_{i,r}}}$

$$z_{eq}$$
: est le bras de levier équivalent. $z_{eq} = \frac{\sum_{r} k_{eff,r} h_r^2}{\sum_{r} k_{eff,r} h_r}$

Raideur équivalente pour la partie de l'assemblage :

$$z_{eq} = \frac{\sum_{r} k_{eff,r} \cdot h_{r}^{2}}{\sum_{r} k_{eff,r} \cdot h_{r}} = \frac{5 \times 284^{2} + 5 \times 194^{2} + 5 \times 104^{2}}{5 \times 284 + 5 \times 194 + 5 \times 104} = 221,78 \text{ mm}.$$

- Coefficient de rigidité de l'assemblage :

$$k_{eq} = \frac{\sum_{r} k_{eff,r} h_{r}}{z_{eq}} = \frac{5 \times 284 + 5 \times 194 + 5 \times 104}{221,78} = 13mm$$

Rigidité en rotation initiale $S_{j,ini}$: $S_{j,ini} = 210000 \times 221,78^2 \times 13 = 134278,7 \ kN.m/rad.$

VI. 3. 5. Conclusion

La classification de notre assemblage :

 $S_{j,pin} = 2044,54 \ kN.\frac{m}{rad}$ La rigidité de l'assemblage s'il est articulé (obtenue par ROBOT).

 $S_{j,rig} = 32712,63 \ kN.\frac{m}{rad}$ La rigidité de l'assemblage s'il est rigide (obtenue par ROBOT).

 $S_{j,ini} > S_{j,rig} \rightarrow$ Notre assemblage est rigide.

VI. 4. Assemblage pied de poteau

Le pied de poteau a le rôle de transmettre les effort développés dans le poteau aux fondations .Elle est constituée d'une platine en acier soudée à la base du poteau par un cordon de soudure appliqué sur le pourtour de la section du profilé constituant le poteau. Son épaisseur ne peut pas excéder aux beaucoup l'épaisseur de l'âme et des semelles su poteau. Elle peut être renforcée par des raidisseurs.

On admet que les platines, soumises au réactions des fondations risque de se plier suivant les lignes tangente au contour du poteau.

Notre structure possède des pieds de poteaux encastrés alors que la norme algérienne CCM97ne concerne que les pieds de poteaux articulés.

Pour cela on doit utiliser d'autre norme ; l'Euro-code 3 parties 1-8 «les assemblages».

VI. 4. 1. Dimensionnement de la plaque d'assise

Le dimensionnement de la plaque d'assise d'un HEA 220 se fait sous les charges suivantes :

 $N_{sd} = 38,75 \ kN$. $V_{sd} = 26,61 \ kN$

 $M_{sd} = 61,75 \ kN.m.$

Figure VI.22 Détails d'assemblage de pied de poteau

VI.23: Vue en plan de pied de poteau

Résistance de béton à la compression :

$$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c.$$
 (6.2.5 EC3 1-8)
Fondation béton de classe C25/30
 $f_{ck} = 25 \ N/mm^2$

 $\gamma_c = 1,5$; $\alpha_{cc} = 1$

$$f_{cd} = 1 \times 25/1,5 = 16,67 MPa$$

Résistance de calcul à l'écrasement du matériau de scellement :

Figure VI.24 : Vue 3D d'assemblage pied de poteau

 $f_{jd} = \alpha. \beta_j. f_{cd}$ (6.7 EC3 1-8)

La valeur de coefficient du matériau de scellement est : $\beta_j = 2/3$.

Les dimensions de la fondation étant inconnues, On prend : $\alpha = 1,5$.

$$f_{jd} = \alpha. \beta_j. f_{cd} = f_{cd} = 16,67 MPa$$

Estimation de l'aire de la plaque d'assise :

$$A_{c0} = \frac{1}{h.b} \left(\frac{N_{sd}}{f_{cd}}\right)^2 = \frac{1}{500 \times 400} \times \left(\frac{38750}{16,67}\right)^2 = 6754,33 \ mm^2$$
$$A_{c0} = \frac{N_{sd}}{f_{cd}} = \frac{38750}{16,67} = 2320,4 \ mm^2.$$

- Choix de type de plaque d'assise :

Comme estimation pour $A_{c0} = 2320.4 \ mm^2 < 0.95 \times 500 \times 400 = 190000 \ mm^2$.

Une plaque à projection courte est satisfaite.

- Les dimensions en plan adéquates pour la plaque d'assise courte sont choisies comme suite :

 $b_p \ge b_{fc} + 2 \times t_{fc} = 220 + 2 \times 11 = 242 \, mm$

 $h_p \ge h_c + 2 \times t_{fc} = 210 + 2 \times 11 = 232 \ mm$

On prend :

$$b_p = 400 mm \qquad \qquad h_p = 500 mm$$

- Calcul de largeur d'appui additionnelle C :

On posant : t = 25 mm. Epaisseur de la platine.

$$C = t. \left(\frac{f_{yp}}{3.f_{jd} \cdot \gamma_{m0}}\right)^{0.5} = 25 \times \left(\frac{235}{3 \times 16,7 \times 1,1}\right)^{0.5} = 51,62 \text{ mm.}$$
$$C < \frac{(h-2.t_f)}{2} = \frac{(210-2 \times 11)}{2} = 94 \text{ mm.}$$

C = 51,62 mm < 94 mm. Il n'y a pas de recouvrement des ailes en compression pour les tronçons des deux semelles.

- Détermination de l'épaisseur de la plaque d'assise :

L'épaisseur de la plaque devra satisfaire aux conditions suivantes :

$$t_p \ge t_{p,min} = c_{\sqrt{\frac{3 \times f_j \times \gamma_{m0}}{f_y}}} = 52 \times \sqrt{\frac{3 \times 16,67 \times 1,1}{235}} = 25 \ mm.$$

On adopte une épaisseur de $t_p = 25 mm$.

VI. 4. 2. Cordon de soudure A l'aide de l'abaque de pré-dimensionnement :

HEA220 : $t_f = 11 mm$. $t_w = 7 mm$.

$$a_{min} = 3,1 \ mm \le t_f \le a_{max} = 7,8 \ mm \le a_{min} = 2,5 \ mm \le t_w \le a_{max} = 5 \ mm \le 10^{-1} \ mm \le$$

On choisit un cordon de soudure de 4 mm.

VI. 4. 3.

Figure VI.25 : Illustration moment + effort tranchant

VI. 4. 4. Calcul de la résistance à la flexion en présence de l'effort axial

La résistance à la flexion dépend de l'excentricité :

$$e_N = \frac{M_{j,Ed}}{N_{j,Ed}} = \frac{M_{j,Rd}}{N_{j,Rd}}$$

Avec :

 $M_{j,Ed} = 61,75 \ kN.m$: Le moment fléchissant d'assemblage.

 $N_{j,Ed} = 38,75 \ kN$: L'effort axial d'assemblage.

 $M_{j,Rd}$: Résistance de l'assemblage à la flexion.

 $N_{j,Rd} = F_{c,Rd}$: Résistance de la semelle à l'effort axial.

$$e_N = \frac{M_{j,Ed}}{N_{j,Ed}} = \frac{61,75}{38,75} = 1,6 \ m > 0,15$$

Moment flexion dominant.

- > La résistance est atteinte dans l'une de ces parties :
 - Résistance en compression d'un tronçon en T de semelle

$$F_{c,Rd} = f_{jd} \cdot b_{eff} \cdot I_{eff}$$
 (6.4 EC3 1-8)

Avec :

$$I_{eff} = \min(b_p; b_{fc} + 2c)$$

 $I_{eff} = \min(400; 220 + 2 \times 25) = 270mm.$

$$b_{eff} = \min\left(c; \frac{h_c}{2} - t_{fc}\right) + t_{fc} + \min(c; \frac{h_p - h_c}{2})$$

= $\min\left(25; \frac{210}{2} - 11\right) + 11 + \min(25; \frac{500 - 210}{2}) = 25 + 11 + 25$
= $61mm.$

$$F_{c,Rd} = f_{jd} \cdot b_{eff} \cdot I_{eff} = 16,7 \times 61 \times 270 = 275 \ kN.$$

Figure VI.27 : Illustration de la partie comprimée du pied de poteau

Avec :

 $I_{eff} = \min(b_p; b_{fc} + 2c) = \min(400; 220 + 2 \times 25) = 270mm.$

$$b_{eff} = \min\left(c; \frac{h_c}{2} - t_{fc}\right) + t_{fc} + \min(c; \frac{h_p - h_c}{2})$$

= $\min\left(25; \frac{210}{2} - 11\right) + 11 + \min(25; \frac{500 - 210}{2}) = 25 + 11 + 25$
= $61mm.$

$$F_{c,Rd} = f_{jd} \cdot b_{eff} \cdot I_{eff} = 16,7 \times 61 \times 270 = 275 \ kN$$

- Résistance au cisaillement de l'assemblage :

 $F_{v,Rd} = F_{f,Rd} + n_b \cdot F_{vb.Rd.}$

Résistance par frottement en présence en présence d'un effort axial de compression

$$F_{f,Rd} = 0,2. N_{sd} = 0,2 \times 38,75 = 7,75 \ kN.$$

VI. 4. 5. Tige d'ancrage Pour 6 tiges d'ancrage. M20 classe 6.8

- Résistance au cisaillement des boulons d'ancrage :

 $F_{vb,Rd} = \frac{\alpha_{cb}.f_{ub}.A_{yb}}{\gamma_{m0}}.$

 $\alpha_{cb} = 0.44 - 0.0003 f_{yb} = 0.44 - 0.0003 \times 410 = 0.317$

$$F_{vb,Rd} = \frac{0,317 \times 600 \times 314}{1,25} = 47,78 \ kN.$$

$$F_{\nu,Rd} = 7,75 + 47,78 \times 6 = 46,5 \ kN.$$

- Vérification de la résistance de la tige d'ancrage :

 $F_{t,anc,Rd} = \min(F_{t,bond,Rd}; F_{t,Rd})$

- Résistance du boulon d'ancrage à la traction :

$$F_{t,Rd} = 0.9. \times \frac{A_s \times f_{ub}}{\gamma_{mb}} = 0.9 \times \frac{245 \times 600}{1.25} = 117.6 \ kN.$$

- Calcul de la contrainte d'adhérence :

On a *d* < 32 *mm*.

$$f_{bd} = \frac{0.36.\sqrt{f_{ck}}}{\gamma_c} = \frac{0.36 \times 5}{1.5} = 1.2 MPa.$$

- Résistance de calcul par adhérence entre le béton et le boulon d'ancrage :

 $F_{t,bond,Rd} = \frac{\pi \dots d. \, l_b. \, f_{bd}}{\alpha}$
$l_1 = 60 \ mm$

r = 3.d = 60mm

$$l_2 = 500$$

d : diamètre de la tige d'ancrage d=20 mm.

 l_b : L'ancrage dans le béton $l_b = (l_1 + 6, 4, r + 3, 5, l_2) = 500.$

 f_{bd} : Adhérence de calcul admissible $f_{bd} = 1,2 MPa$.

 α : Facteur tenant compte la forme de la tige : crochet $\rightarrow \alpha = 0,7$.

$$F_{t,bond,Rd} = \frac{\pi \dots d. \, l_b. \, f_{ck}}{\alpha} = \frac{3.14 \times 20 \times 500 \times 1.2}{0.7} = 120,66 \, kN$$

 $F_{t,anc,Rd} = \min(F_{t,bond,Rd}; F_{t,Rd}) = \min(120,66; 117,6) = 117,6 kN.$

VI. 4. 6. Résistance au cisaillement de la soudure $V_{sd} \le F_{v,Rd} = \frac{a.\sum l. f_u}{\sqrt{3}. \beta_w. \gamma_{m0}}$

Avec :

$$\beta_w = 0.8 \qquad ; \gamma_{m0} = 1.25 \qquad ; \quad a = 4 \ mm.$$

$$\sum l = 2. \left(h_c - 2. t_{fc} - 2. r_c \right) = 2. \left(210 - 2 \times 11 - 2 \times 18 \right) = 304 \ mm.$$

$$F_{v,Rd} = \frac{4 \times 304 \times 360}{1.73} = 253 \ kN.$$

 $V_{sd} = 26,61 \ kN < \min(F_{v,Rd}; F_{w,Rd}) = 62kN.$

VI. 4. 7. Longueur participant du tronçon en T équivalent tendu

Calcul de longueur efficace du tronçon en T : (EC3-1-8 –tableau6.6)

```
w = 150 mm e = 50 mm.
e_x = 60 mm. m_x = 380 mm.
```

• Mécanisme circulaire :

$$\begin{split} l_{eff,cp} &= min \begin{cases} 2.\pi.mx = 2386,4\ mm \\ \pi.mx + w = 1343,2\ mm \\ \pi.mx + 2e = 1293,2\ mm \\ \rightarrow l_{eff,cp} &= 1293mm \end{split}$$

Figure VI.28 : Disposition constructive

• Mécanisme non circulaire :

$$l_{eff,nc} = min \begin{cases} 4.mx + 1,25ex = 1595mm \\ 2mx + 0,625ex + \frac{w}{2} = 872,5mm \\ 2mx + 0,625ex + e = 847,5 \\ \frac{b_p}{2} = 200mm \end{cases} \rightarrow l_{eff,nc} = 200 mm$$

VI. 4. 8. Résistance de la partie tendue de l'assemblage Vérification de la présence de l'effet de levier :

 L_b : Longueur d'allongement du boulon d'ancrage (tableau 6.2 EC3 1-8)

$$L_b = 8d + e_m + t_p + t_{wa} + 0.5k$$

 t_{wa} : Epaisseur de la rondelle $t_{wa} = 5 mm$.

k : Epaisseur de l'écrou k = 0.8d.

 e_m : Epaisseur de mortier de calage $e_m = 25 mm$.

$$L_b = 8d + e_m + t_p + t_{wa} + 0.5k = 8 \times 20 + 5 + 0.5 \times 16 = 181.5 mm.$$

 L_b^* : longueur limite d'allongement du boulon d'ancrage.

$$L_b * = \frac{8,8.mx^3.A_s}{l_{eff,1}.t_p^3} \qquad \qquad l_{eff,1} = \min(l_{eff,cp}; l_{eff,nc}) = \min(1293; 200) = 200 \text{ mm}$$

200 mm

$$L_b * = \frac{8,8 \times 380^3 \times 245}{200 \times 25^3} = 37857,3 \ mm > L_b = 181,5mm$$

Un effet de levier se développe et les mode de ruine 1,2,3 et 4 doivent être considérés .

VI. 4. 9. Résistance à la flexion de la plaque d'assise (par unité de longueur)

$$m_{pl,Rd} = \frac{t_p^2 \times f_{yp}}{4.\gamma_{m0}} = \frac{25^2 \times 235}{4 \times 1,1} = 33,38 \ kN.$$

$$\blacktriangleright \text{ Mode } 1: M_{pl,1Rd} = m_{pl,Rd} \times l_{eff,1} = 33,38 \times 200 = 6,676 \ kN \ .m$$

La résistance à la traction de l'assemblage d'un tronçon en T équivalent tendue pris égale à la valeur de résistance la plus petite des modes de ruine :

$$F_{t,Rd} = \min\{F_{t,1-2,Rd}; F_{t,3,Rd}; F_{t,4,Rd}\}$$
(Tableau 6.2 EC3 1-8)

$$Mode 1-2:$$

$$2.M_{rl} 1Rd \qquad 2 \times 6.68$$

$$F_{t,1-2,Rd} = \frac{2.M_{pl,1Rd}}{m_x} = \frac{2 \times 6,68}{0,38} = 35,16 \, kN.$$

 \blacktriangleright Mode 3 :

$$F_{t,3,Rd} = 2.F_{t,Rd,anchor} = 2 \times 117,6 = 235,2 \ kN.$$

> Mode 4 :

$$F_{t,4,Rd} = \frac{b_{eff,t} \cdot t_w \cdot f_y}{\gamma_{m0}} = \frac{200 \times 7 \times 235}{1,1} = 299 \ kN$$

D'où :

$$F_{t,Rd} = \min(F_{t,1-2,Rd}; F_{t,3,Rd}; F_{t,4,Rd}) = \min(35,16; 235,2; 299) = 35,16 \, kN$$

VI. 4. 10. Vérification à la résistance en flexion

$$M_{sd} < M_{j,Rd} = \min[\underbrace{\frac{-F_{c,Rd} \times Z}{2T}}_{e_N}, \frac{F_{t;Rd} \times Z}{\frac{Z_c}{e_N}+1}]$$
 (Tableau 6.7 EC3 1-8)

 $Z = Z_T + Z_c = 150 + 125 = 275mm$ Bras de levier.

$$M_{j,Rd} = \min(47,83;92,42) = 47,83 \ kN > M_{sd} = 61,57 \ kN.$$

Condition vérifiée.

VI. 4. 11.Classification de l'assemblageL'assemblage de pied de poteau peut être classifié rigide si :(Tableau 6.7 EC3 1-8)

$$0.5 \le \overline{\lambda_0} \le 3.93$$
 et $S_{i,ini} \ge 72(2\overline{\lambda_0} - 1)E.I_c/L_c$

Avec :

 $\overline{\lambda_0} = 1,16$: Elancement du poteau.

 $L_c = 6m$ Hauteur du poteau

 $I_c = 5409,7 \ cm^2$: Moment d'inertie du poteau.

 $S_{i,ini} = 190983,82 \text{ kN. } m$: Rigidité en rotation initiale de poteau.

$$S_{i,ini} = 1909983,82 \ge 72(2 \times 1,16 - 1)210000 \times 5409,7 \times \frac{10^6}{6} = 20522,88 \ kN.$$

VI. 4. 12. Conclusion

Notre assemblage pied de poteau dans notre structure est rigide .

VI. 5. Assemblage des diagonales de palée de stabilité $(2L 90 \times 90 \times 9)$

VI. 5. 1. L'effort sollicitant de l'assemblage $N_{sd} = 52,84 \ kN.$

Figure VI.29 Assemblage des diagonales double cornières avec un gousset

VI. 5. 2. Epaisseur du gousset

- La dimension du gousset : $660 \times 660 mm$
- Le diamètre des boulons : d = 18 mm.
- On suppose t = 10 mm.

VI. 5. 3. Disposition constructive

L'assemblage est réalisé avec une file de 3 boulons Ø 16 classe 4.8 dans chaque coté de la barre.

$$t = \min(t_w; t_{gousset}) = \min(7; 10) = 7mm$$

 $d_0 = \emptyset + 2 = 18 mm$

Entraxe (p_1) :

2,2. $d_0 \le p_1 \le 14t$ Alors on prend $p_1 = 60 \ mm$. \triangleright Pince (e_1) :

 $1, 2, d_0 \le e_1 \le 12 t$ Alors on prend $e_1 = 70 mm$.

 $N_{sd} \leq n. F_{v,Rd}$

n : nombre du boulon .

$$F_{v,Rd} = 0.6 \times \frac{A_s \times f_{ub} \times m}{\gamma_{mb}}$$

 $A_s = 192 \ mm^2$

 $f_{ub} = 800 MPa$

m = 2 plans de cisaillement.

$$F_{v,Rd} = 0.6 \times \frac{192 \times 800 \times 2}{1.25} = 147.45 \ kN$$

 $n = \frac{N_{sd}}{F_{v,Rd}} = \frac{52,84}{147,45} = 0,35$ prenons : $n_{boulons} = 2$ boulons.

VI. 5. 5. Vérification de la pression diamétrale

$$\frac{V_{sd}}{n} \le F_{b,Rd}$$

 $F_{b,Rd} = \frac{2,5 \times \alpha \times f_u \times d \times t}{\gamma_{mb}}$

Avec :

$$\alpha = \min\left(\frac{e_1}{3.d_0}; \frac{p_1}{3.d_0} - 0.25; \frac{f_{ub}}{f_u}; 1\right) = 1.$$

$$F_{b,Rd} = \frac{2,5 \times 1 \times 360 \times 18 \times 10}{1,25} = 129,6 \ kN.$$

Pour un boulon

$$F_1 = \frac{N_{sd}}{2} = 26,42 \le F_{b,Rd} = 129,6 \ kN.$$

Condition vérifiée, les boulons assurent la stabilité à la pression diamétrale.

VI. 5. 6. Vérification de la pièce à la traction (2L 90 × 90 × 9)
➢ Section brute :

$$N_{t,sd} < N_{pl,Rd}$$
$$N_{pl,Rd} = \frac{A \times f_y}{\gamma_{M0}} = \frac{3104 \times 235}{1} = 729,44 \ kN$$
$$\frac{N_{t,sd}}{2} = \frac{52,84}{2} = 26,42 < 729,44$$

➢ Section nette :

$$N_{t,sd} < N_{u,Rd}$$

Avec :

$$N_{u,Rd} = \frac{0.9 \times A_{net} \times f_u}{\gamma_{M2}} = \frac{0.9 \times 2941 \times 360}{1.25} = 762.3 \ kN$$

$$\frac{N_{t,sd}}{2} = \frac{52,84}{2} = 26,42 < 762,3 \ kN$$

VI. 5. 7. Conclusion

La pièce $2L 90 \times 90 \times 9$ résiste à la traction.

VI. 6. Conclusion

Assemblage	Type d'assemblage
Traverse-Poteau	Semi-rigide
Traverse-Traverse	Rigide
Pied de poteau	Rigide

VI.9 : Les types d'assemblage de la structure

Chapitre VII: Calcul des fondations

VII. 1. Introduction

Une structure quelle que soit sa forme et sa destination, prend toujours appui sur un sol d'assise. Les éléments qui jouent le rôle d'interface entre la structure et le sol s'appellent fondation. Ainsi quelle que soit le matériau utilisé, sous chaque porteur vertical ;mur, voile, ou poteau il existe une fondation.

Son rôle principal est de supporter les différents charges telle que :

- des charges verticales : comme les charges permanentes telles que le poids des éléments porteurs et non porteurs et les charges variables telles que le poids des meubles, poids des personnes et la neige.
- Des charges horizontales comme : comme les charges permanentes telles que la poussée de la terre et les charges variables telles que le vent.

Figure VII.1 : La transmission des charges aux fondations

Le choix de type de fondation dépend de type d'ouvrage et aussi de la contrainte du sol.

Notre structure repose sur les fondations superficielles, le calcul de cette partie est fait suivant le « BAEL91 » et le « RPA99 version2003 » .

Dans ce chapitre on va dimensionner les semelles isolées de notre structure et ses longrines avec leur ferraillage et espacement d'après les efforts obtenue par le logiciel ROBOT.

VII. 2. Etude des semelles

 σ_{sol} : Contrainte admissible du sol = 2 bars (d'après le rapport géotechnique).

VII. 2. 1. Définition des sollicitations (ROBOT)

ELU: $N_{sd} = N_u = 92,22kN$. $M_{sd} = M_u = 58,25 kN$.

ELS: $N_{sd} = N_s = 60,70 \ kN$. $M_{sd} = M_s = 44,5 \ kN$.

VII. 2. 2. Dimensionnement des semelles

Les dimensions de la semelle sont choisies de manière qu'elles soient homothétiques avec celles du pied de poteau.

A et B les dimensions de la semelle :

$$a \ge a_p + (2 \times t_f) = 500 + 22 = 522 mm$$

 $b \ge b_p + (2 \times t_f) = 400 + 22 = 422 mm$

Donc en prend $\begin{cases} a = 530 \ mm \\ b = 430 \ mm \end{cases}$

$$\frac{A}{B} = \frac{a}{b} \rightarrow \begin{cases} A = B \frac{a}{b} \\ B = A \frac{b}{a} \end{cases}$$

$$A \ge \sqrt{\frac{a}{b}} \cdot \frac{N_s}{A.B} \to A \ge \sqrt{\frac{0,53}{0,43} \times \frac{60,70}{200}} \to A \ge 0,65m$$
$$B \ge \sqrt{\frac{b}{a}} \cdot \frac{N_s}{A.B} \to A \ge \sqrt{\frac{0,43}{0,53} \times \frac{60,70}{200}} \to B \ge 0,5m$$

Donc on prend une semelle carrée de dimensions (1×1) m

- Détermination de h et d :

$$\frac{B-b}{4} \le d \le A-a$$
$$\frac{1,5-0,43}{4} \le d \le 1-0,53$$

 $0,\!14\,m\leq d\leq 0,\!47m$

On prend $d = 30 \ cm$

Alors $h = d + 5 = 30 + 5 = 35 \ cm$

- Calcul de l'excentricité :

Figure VII.2 : Les dimensions de la semelle sous poteau

$$e = \frac{M_s}{N_s} = \frac{44,5}{60,70} = 0,73m$$

VII. 2. 3. Vérification au renversement

La stabilité au renversement des fondations doit se faire pour les semelles sous les combinaisons d'action : G + Q + E $0,8G \mp E$

 $N_{sd} = 60,46kN$ $M_{sd} = 12,58kN$ $e = \frac{M_{sd}}{N_{sd}} = \frac{12,58}{60,46} = 0,21 \le \frac{A}{4} = 0,25$ Condition vérifiée.

VII. 2. 4. Détermination du ferraillage des semelles

Avec la méthode de BIELLE :

- Calcul du ferraillage à l'ELU :

$$A_u = \frac{N_u \times (A - a)}{8 \times d \times \sigma_{st}}$$

Avec :

$$\sigma_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1,15} = 347,82$$
$$A_u = \frac{92220 \times (1000 - 530)}{8 \times 300 \times 347,82} = 0,52 \ cm^2$$
$$A_u = 0,52 \ cm^2$$

Vue que la semelle de fondation est une massive le ferraillage calcule reste toujours très faible et inferieur selon le règlement RPA99/V2003(T12) avec un espacement min =15 ; max=25cm

Calcul de l'espacement :

 $s_t \ge \max(6\emptyset + 6cm; 15cm)$

 $s_t = 15 \text{ cm}$

Calcule de nombre des barres :

e=st=15cm

Enrobage :C=3cm

na = A-2c/e=100-2*3/15= 6,26

On prend un ferraillage de $7T12 = 7,917cm^2$

- Calcul du ferraillage à l'ELU :

$$A_u = \frac{N_u \times (A - a)}{8 \times d \times \sigma_{st}}$$

Avec :

$$\sigma_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1,15} = 347,82$$
$$A_u = \frac{92220 \times (1000 - 430)}{8 \times 300 \times 347,82} = 0,63 cm^2$$
$$A_u = 0,63 cm^2$$

Vue que la semelle de fondation est une massive le ferraillage calcule reste toujours très faible et inferieur selon le règlement RPA99/V2003(T12) avec un espacement min =15 ;max=25cm

Calcule de nombre des barres :

e=st=15cm

Enrobage :c=3cm

na = B-2c/e=100-2*3/15= 6,26

On prend un ferraillage de $7T12 = 7,917cm^2$

VII. 3. Calcul des longrines

Les longrines sont des liaisons qui sont situées à l'intérieur du périmètre de la structure, elles jouent le rôle de chainage dans les deux sens , elles sont calculée sous un effort axial de traction.

VII. 3. 1. Dimensionnement des longrines

Selon le RPA 99 version 2003, les dimensions minimales sont de $(25 \times 30)cm^2$ pou un sol S_3 .

Donc on prend des longrines de dimensions $(30 \times 35)cm^2$.

VII. 3. 2. Calcul des ferraillages

Les longrines doivent être calculée pour résistée à la traction sous l'action d'une force égale :

$$F = \frac{N}{\alpha}$$

Avec :

N : égale à la valeur maximale des charges verticales de gravité apportées par les points d'appuis solidarisés .

 α : Coefficient fonction de la zone sismique et de la catégorie de site .

 $\alpha = 15$ selon la catégorie de site .

- Calcul du ferraillage à l'ELU :

$$F_u = \frac{N_u}{\alpha} = \frac{92,22}{15} = 6,15 \ kN$$

 $A_{st} = \frac{N_u}{\sigma_{st}} = \frac{92,22}{347,82} = 0,26 \ cm^2$

- Calcul du ferraillage à l'ELS :

$$F_s = \frac{N_s}{\alpha} = \frac{60,7}{15} = 6,15 \ kN$$

$$A_{st} = \frac{N_s}{\sigma_{st}} = \frac{60,7}{347,82} = 0,17 \ cm^2$$

Le RPA99 version 2003 exige que le ferraillage minimum doit être de 0,6% de la section avec des cadres dont l'espacement est inférieur au min $(20 cm, 15 \emptyset)$

donc : $A_{min} = 0,06 \times 30 \times 35 = 6,3 \ cm^2$

On prend $A_{st} = 6T12 = 6,79cm^2$

- Condition de non fragilité :

$$A_{st\ min} \ge 0,23b \times d \frac{f_{t28}}{f_e}$$

 $0,23 \times 30 \times 35 \times \frac{2,1}{400} = 1,26 \ cm^2$

 $A_{st\ min} = 6,79 cm^2 \ge 1,26\ cm^2$ Condition vérifiée.

- Calcul des armatures transversales :

- Calcul de l'espacement des cadres :

Selon le RPA99 l'espacement des cadres ne doit pas dépasser (20 cm; 15ø).

 $S_t \leq (20 \ cm; 15 \times 8) = 12 \ cm$

On prend un espacement de $S_t = 15 \ cm$.

VII. 4. Conclusion

L'élément	Dimensions	Ferraillage		Espacement
	(m)	Longitudinal	Transversal	(cm)
Semelle	1 × 1	7T12	7T12	15
Longrine	0,30 × 0,35	6T12	$\phi_t = 8 mm$.	15

VII.1 : Les différentes dimensions de fondation

Chapitre VIII: Calcul au feu

VIII. 1. Introduction

La sécurité incendie des constructions est un sujet que de nombreux ingénieurs de stabilité ne comptent pas dans leur domaine d'activité. Et c'est étonnant parce que l'incendie est une des actions auxquelles une construction doit résister comme c'est le cas par exemple, de poids propre, des charges variable ou du vent. En prenant compte de l'incendie dés le début du projet-au niveau fonctionnel et constructif - il est possible de trouver des solutions qui assurent à la construction une sécurité incendie suffisante à un coût minimum.

Dans ce chapitre en décrit tout d'abord des généralités sur l'incendie (connaissance de base sur l'incendie et des notions de réaction et du résistance au feu). Ensuite un calcul et vérification des éléments de notre structure vis-à-vis l'incendie.

Enfin on proposera des solutions constructives pour la protection des structures en acier.

VIII. 2. Généralités

VIII. 2. 1. Connaissance de base sur l'incendie

L'incendie est un phénomène ou il est essentiellement question de combustion qui se développe généralement de façon désordonnée et incontrôlable. Pour qu'un incendie puisse démarrer, il faut qu'il y ait en un point une température suffisamment élevée .Elle résulte de la combinaison d'un combustible et d'un comburant et en présence d'une source de chaleur. Cet apport d'énergie dite « énergie d'activation »est indispensable pour démarrer ce phénomène.

- combustible : matière capable de se consommer (solides : papier , carton...;liquide : hydrocarbure, solvant ; gazeux :méthane butane...).
- Comburant : corps qui en se combinant avec un combustible, permet la combustion (air, protoxyde d'azote,...).
- Source de chaleur : apporte l'énergie nécessaire au démarrage de la combustion (étincelle, allumette,..).

Ces trois sont réunis pour produire un feu, ce principe fondamental est souvent représenté sous la forme « triangle du feu ».

Figure VIII.1 : Triangle du feu

Les paramètres qui gouvernent les conditions dans lesquelles un incendie réel peut prendre naissance puis se développer dans un compartiment sont très nombreux :

- Quantité et répartition des matériaux combustibles dans le compartiment. .
- Température d'inflammation et la vitesse de combustion des matériaux combustibles.
- Condition de ventilation du compartiment « ouvertures, systèmes d'aération ».
- Géométrie du compartiment.
- Propriétés thermique des parois du compartiment.

Le phénomène de propagation du feu :

✓ Propagation par rayonnement : émission d'énergie sous forme des ondes électromagnétiques absorbés par les matériaux à proximité sous forme d'énergie thermique.

Figure VIII.2 : Propagation par rayonnement

✓ Propagation par convection :

transmet une partie de la chaleur dégagée par un matériau qui brule par l'intermédiaire des mouvements de l'air. Le transfert de chaleur s'effectue par l'action combinée d'accumulation d'énergie et de mouvement naturel de l'air.

Figure VIII.3 : Propagation par convention

Figure VIII.4 : Propagation

par conduction

solide.

✓ Brandon : un incendie peut également se transmettre par l'effet Brandon, en effet des escarbilles enflammées peuvent se propager à d'autres bâtiments sous l'effet de la convection ou du vent.

Figure VIII.5 : Effet de Brandon

Les modes de propagation d'un feu :

Un incendie passe par une phase de développement, puis de régression, entraînant une élévation suivie d'une baisse de température.

Selon le mode d'inflammation et la nature du combustible, le développement sera plus ou moins rapide. La sévérité du feu et la durée de ces phases dépendent de plusieurs paramètres :

Figure VIII.6 : Les modes de propagation d'incendie

• **Démarrage du feu (1ere phase) :** La rapidité de démarrage d'un incendie sera fonction du combustible en cause, de sa forme, de la ventilation de lieu et de type de source d'allumage.

Durant la phase du feu couvrant, la température est localisée au point d'ignition ; les premiers gaz et la fumée apparaissent.

- **Déclenchement de l'incendie (2eme phase) :** Au cours de la deuxième phase, ou le foyer est vif mais encore localisé, le rayonnement ou le contact des flammes atteints les matières proches, les gaz chauds se dégagent et emplissent le volume, annonçant la troisième phase.
- **Phase de croissance :** Après allumage par un point chaud (cigarette, allumettes, courtcircuit,..)
- Embrassement généralisé ou FLASH-OVER.
- Feu pleinement développé (ou feu généralisé).
- Phase de décroissance.

VIII. 2. 2. Notions de réaction et de résistance au feu :

Résistance au feu : est le temps durant lequel l'élément de construction joue son rôle de limitation de la propagation. Elle est classée comme suit :

Figure VIII.7 : Résistance au feu-succession des événements

✓ La réaction au feu des matériaux de construction :

La réaction au feu caractérise les quatre éléments du matériau qui contribuent au développement d'un incendie : sa combustibilité, son inflammabilité, le dégagement de gaz et de fumées ainsi que la production de particules et/ou gouttelettes enflammées. La réaction au feu est une caractéristique intrinsèque d'un matériau.

L'euro- code a définit les modes de classement des matériaux ; selon ce système les matériaux sont répartis selon **sept** classes de performances allant de A1 à F et associées ou non à des critères complémentaires qui caractérisent sa contribution (S et d) :

- à la production de fumée,
- à la production de particules et/ou gouttelettes enflammées.

A1	Aucune contribution au feu, même dans le cas d'un feu très développé.		
A2	Très faible contribution au feu.		
В	Contribution faible au feu.		
С	Contribution significative au feu.		
D	Contribution élevée au feu.		
Ε	Contribution importante au feu.		
F	Pas de comportement en réaction au feu déterminée.		
	Production de fumée		
	S1 : très faible production de fumée.		
S	S2 : production limitée de fumée.		
5	S3 : production élevées de fumée.		
	Production de gouttelettes/particules enflammées.		
	d0 : pas de gouttelette et/ou particule enflammées.		
d	d1 : gouttelette et/ou particule enflammées ne persistant pas plus de 10 secondes.		
	d2 : gouttelette et/ou particule enflammées		

Tableau VIII.1 : Classes de performances de réaction au feu avec ses critères complémentaires

✓ Résistance au feu des éléments de construction :

La résistance au feu est l'aptitude d'un élément de construction à conserver, pendant une durée déterminée, la stabilité au feu, l'étanchéité au feu, l'isolation thermique et/ou toute autre fonction exigée. Ces différentes performances sont évaluées lors d'un essai normalisé de résistance au feu. Les normes européennes classent essentiellement les éléments structuraux selon trois critères de performance (figure):

Figure VIII.8 : Shéma illustratif des critères de résistance au feu

- La stabilité au feu (symbole R) est le symbole selon lequel est déterminée l'aptitude de l'élément ou de la structure à supporter des charges et/ou des actions spécifiées. On utilise aussi couramment le terme de capacité portante, qui est l'aptitude de l'élément de construction à supporter l'exposition au feu, sous des actions mécaniques définies, sur une ou plusieurs faces pendant un temps donné sans perte de stabilité structurale
- L'étanchéité au feu (symbole E) est le symbole selon lequel est déterminée l'aptitude d'un élément séparatif exposé au feu d'un seul côté à empêcher les flammes et les gaz chauds de le traverser; cette fonction est parfois qualifiée de pare-flamme
- L'isolation thermique (symbole I) est le symbole selon lequel est déterminée l'aptitude d'un élément séparatif à prévenir le passage de la chaleur. La transmission doit être limitée de façon à ne pas enflammer la surface non exposée ni aucun élément au voisinage immédiat de celle-ci. L'élément doit également assurer une isolation thermique suffisante pour protéger les personnes situées à proximité. L'élévation des températures sur la face non exposée à l'incendie doit être en moyenne inférieure à 140°C et ne doit excéder en aucun point 180°C pour éviter le risque d'autoinflammation des matériaux entreposée.

Le « degré » de résistance au feu est attribué à l'élément en fonction de deux critères :

- Un critère qualitatif, de l''élément vis-à-vis du feu.
- Un critère quantitatif, c'est-à-dire le temps pendant lequel l'élément va conserver cette propriété qualitative.

Figure VIII.9 : Critères de résistance au feu réglementaire

Pour les éléments porteurs

- **R** t : t étant la période durant laquelle le critère de capacité portante est satisfait
- Pour les éléments porteurs et séparant:
 - **REI t** : t étant la période durant laquelle tous les critères (capacité portante, étanchéité et isolation) sont satisfaits.
- Pour les éléments non-porteurs :

EI t : t étant la période durant laquelle les critères d'étanchéité et d'isolation sont satisfaits.

E t : t étant la période durant laquelle le critère d'étanchéité est satisfait

La période t est exprimée en minutes. Ainsi, par exemple, une colonne stable au feu durant une heure sera dénommé R60 et une cloison légère résistant au feu durant une heure EI 60.

- ✓ Pour une poutre stable au feu 1 heure « R 60 »;
- ✓ Pour une porte pare-flamme $\frac{1}{2}$ heure "E 30 »;
- ✓ Pour une cloison coupe-feu heure « EI 60 » ;
- ✓ Pour un mur coupe-feu 1 heure 30 « REI 90 »

Notons que les durées de résistance au feu spécifiées dans la plus part des réglementations nationales applicables aux bâtiments concernent le comportement de l'élément lorsque l'incendie est représenté par une courbe température/temps internationalement agréée et définie dans la norme ISO 834 (dit incendie normalisé), illustré en figure.

Figure VIII.10 : Incendie conventionnel ISO834 (incendie normalisé)

- ✓ Classification :
 - Classe de feu :

Figure VIII.11 : La différente classe de feu

• A : Feux de matériaux solides (bois, papier, carton, tissu,..).

- B : Feux de liquides et de solides liquéfiables (essence, peinture, alcool, PVC, caoutchouc, polyéthylène,..).
- C : Feux de gaz (gaz de ville, hydrogène, propane, butane,..).
- D : Feux de métaux (Lithium, aluminium, Sodium, Potassium,...).
- F : Feux liés aux auxiliaires de cuisson (huile alimentaires, graisses,..)

Et on distingue ainsi 3 catégories de performance au feu(les euro-classes de résistance au feu) :

- > SF : « Stable au feu » : correspond à une résistance mécanique.
- **PF : « Pare-flammes »** : correspond à une résistance mécanique et d'étanchéité aux flammes et aux gaz chauds ou inflammables.
- CF: « Coupe-feu »: correspond à une résistance mécanique, d'étanchéité aux flammes et au gaz chaud u inflammables et d'isolation thermique.

Figure VIII.12 : Les euro-classes de résistance au feu

- Classification de l'établissement :
- **type J :** établissements de soins (par ex : maisons de retraite régies par le code de l'action sociale et de la famille).
- type L : salles d'audition, de conférences, de spectacles ou à usages multiples .
- type M : magasins, centres commerciaux.
- type N : restaurants, débits de boissons.
- **type O :** hôtels et pensions de famille.
- **type P** : salles de danse et de jeux.
- type R : établissements d'enseignement, colonies de vacances.
- **type S** : bibliothèques, centres de documentation.
- type T : halls et salles d'exposition.
- type U : établissements sanitaires (hôpitaux, cliniques).
- **type V :** établissements de culte.
- **type W** : administrations, banques et bureaux.
- type X : établissements sportifs couverts.
- types Y : musées.

Établissements spéciaux :

• **type PA :** établissements de plein air.

- type CTS : chapiteaux, tentes et structures.
- **type SG :** structures gonflables.
- type PS : parcs de stationnement couverts.
- type GA : gares accessibles au public.
- type OA : hôtels, restaurants d'altitude.
- type EF : établissements flottants.
- type **REF** : refuges de montagne.

- La capacité, ou "catégorie":

- 1ère catégorie plus de 1500 personnes.
- 2ème catégorie de 701 à 1500 personnes.
- 3ème catégorie 301 à 700 personnes.
- 4ème catégorie 20 à 300 personnes en fonction du type.
- 5ème catégorie moins de 20 personnes.

2 ^{ème} GROUPE		1er GROU	PE	
	300 personnes	700 personnes		1500
5ème cat. 4ème caté	gorie 3ème ca	tégorie	P 2ème catégorie	lère catégorie
Figure VIII.13 : Capacité ou catégorie par personnes				

Pour l'application du règlement de sécurité, les établissements recevant du public sont classés en deux groupes :

- le premier groupe comprend les établissements des 1ère, 2ème, 3ème et 4ème catégories ; ils sont soumis aux règles les plus contraignantes et doivent en particulier faire l'objet d'un suivi systématique par les commissions de sécurité.
- deuxième groupe comprend les établissements de la 5e catégorie qui sont les plus petits ; ils font l'objet de mesures plus légères et leur suivi ne nécessite pas l'intervention des commissions de sécurité (hormis les locaux à sommeil)

ERP occupant entièrement le bâtiment	ERP occupant partiellement le bâtiment	Catégorie de l'établissement	Exigences en résistance au feu
Simple rez-de- chaussée	Etablissement à un seul niveau	1ère catégorie 2ème catégorie 3ème catégorie 4ème catégorie 5ème catégorie (si locaux avec sommeil)	Structure =R30 Plancher =REI30
Plancher bas du niveau le plus haut situé à moins de 8 m du sol	Différence de hauteur entre les niveaux extrêmes de l'ERP inférieure ou égale à	5ème catégorie	Pas d'exigence
		2ème catégorie 3ème catégorie 4ème catégorie	Structure R30 Plancher =REI30
	0.11	1ère catégorie	Structure R60 Plancher =REI60
Plancher bas du niveau le plus haut situé à plus de 8 m et jusqu'à 28 m compris du sol	Différence de hauteur entre les niveaux extrêmes de l'ERP supérieure à 8 m	2ème catégorie 3ème catégorie 4ème catégorie 5ème catégorie	Structure R60 Plancher =REI60
		1er catégorie	Structure R90 Plancher =REI90

Classification de la structure :

- Le hall industriel (destiné à fabrication mécanique) est considéré comme un établissement recevant du public (ERP) de type « T ».
 - Calcul de l'effectif :

L'effectif théorique dans cet établissement est calculé sur la base d'une personne par mètre carré, on a une surface de 576 m^2 donc 576 personnes.

301 personnes < 576 personnes < 700 personnes $\rightarrow 3$ eme catégorie.

VIII. 3. Calcul et vérification des éléments de la structure vis-à-vis l'incendie

L'ouvrage doit être conçu et construit de telle sorte que, en cas d'incendie :

- La stabilité des éléments porteurs de l'ouvrage puisse être présumée pendant une durée spécifiée.
- L'apparition et la propagation du feu et de la fumée à l'intérieur de l'ouvrage soit limitées.

- o L'extension du feu aux constructions environnantes soit limitée.
- Les occupants puissent évacuer l'ouvrage ou puissent être secourus par d'autres moyens.
- La sécurité des équipes de secours soit prise en considération.

VIII. 3. 1. Objet de la partie feu de l'EC3

- Les règles de calcul couvrent seulement la fonction porteuse R des structures en acier.
- Elles s'appliquent aux structures, ou parties de structures, couvertes par l'EN 1993-1.
- Elle doit être utilisée conjointement avec l'EN 1991-1-2.
- Elle identifie seulement les différences ou les compléments par rapport au calcul à la température normale.
- Elle traite uniquement de protection passive contre le feu.
- Elle s'applique aux matériaux suivants :
- ✓ Acier de construction : S235, S275, S355, S420 et S460 de l'EN 10025 et toutes les nuances de l'EN 10210 et de l'EN 10219.
- ✓ Acier formé à froid : éléments et tôles couverts par l'EN 1993-1-3.
- ✓ Acier inoxydable : éléments et tôles couvert par l'EN 1993-1-4.

VIII. 3. 2. Moyens de justification pour la résistance au feu

Les performances de résistance au feu des structures peuvent être justifiés à partir :

- Des résultats des essais de résistance au feu normalisé pour les produits, ouvrages ou éléments de construction.
- D'une analyse spécifique prenant la forme d'un avis de chantier ou d'un avis sur étude, délivrée par un laboratoire agréé par le ministère accrédité.
- D'une différence à un procédé de fabrication ou de construction approuvé.
- D'une note de calcul s'appuyant sur les parties feu des Euro-codes, ou sur toute autre méthode agréée par le CECMI « Comité d'études et de classification des matériaux vis-à-vis du danger d'incendie ».

Les parties feu des Euro-codes structuraux traitent principalement du calcul de la résistance au feu en terme de capacité portante «Critère R ». Actuellement, différentes types de méthodes peuvent être utilisés pour évaluer le comportement au feu des structures en acier et mixtes acier-béton. Ces méthodes peuvent être séparées en deux principaux groupes :

- Les outils de calcul simplifiés.
- Les modèles de calcul avancés

L'utilisation de ces différentes méthodes de calcul dépend principalement du type d'analyse envisagé pour l'évaluation du comportement au feu ; les analyses peuvent être réalisées selon l'une des démarches suivantes :

VIII. 3. 3. Vérification de quelques éléments de la structure

Principe de base :

Vérification de la fonction porteuse d'une structure pour la durée d'exposition au feu donnée t :

$$N_{fi,d} \le R_{fi,d,t}$$

 $N_{fi,d}$: Valeur de calcul des effets des actions dans la situation d'incendie (EN1991-1-2).

 $R_{fi,d,t}$: Valeur de calcul de la résistance correspondante dans la situation d'incendie.

L'analyse structurale se fait sous différent types :

- Analyse globale de structure.
- Analyse de partie de structure.
- Analyse par éléments (un poteau et une traverse).

Figure VIII.15 : Analyse par élément

Dans notre structure on va faire une analyse par éléments :

🖊 La résistance au calcul d'un poteau au flambement :

- Bâtiment : stockage.
- Durée de résistance au feu : R15.
- Charge :

$$G = 0.505 \frac{kN}{m} \times 6m = 3.03 kN$$
. (Poids du poteau fois sa longueur)

- $Q_1 = 0,41 \, kN/m^2 \times 6,04 \, m \times 48m \, \times 2$
- $Q_1 = 237,73 \ kN$. (Charge de vent fois la surface de toiture)

 $Q_2 = 0.6 \ kN/m^2 \times 6.04 \ m \times 48m \ \times 2$

 $Q_2 = 347,9 \ kN$. (Charge de neige fois la surface de toiture)

- Profilé :
 - Section laminé.
 - HEA 220.
- Protection au feu : Aucune.
- Action variable : la neige.
- Nuance d'acier : S235.
- Echauffement à une température uniforme $\theta_a = 700$ °C.
- ✤ Actions :
 - Action mécanique pendant l'exposition au feu :
 - Situation accidentelle : (EC3 1-2 formule 4.3).

$$N_{fi,d} = G + \psi_1. Q_1 + \sum_{i>1} \psi_{2,i} Q_i$$

 $N_{fi,d} = G + 0,9.Q_1 + 0,8.Q_2$

G : Valeur caractéristique des charges permanentes.

 Q_1 : Valeur caractéristique de l'action variable dominante.

 Q_2 : Valeur caractéristique de l'action variable d'accompagnement.

 ψ_1 : Facteur pour la valeur fréquente de l'action variable dominante - catégorie E , stockage = 0,9

 ψ_2 : Facteur pour la valeur fréquente de l'action variable d'accompagnement -

catégorie E , stockage = 0.8

 $N_{fi,d} = 3,03 \ kN + 0,9 \times 237,73 + 0,8 \times 347,9 \ kN = 495,31 \ kN.$

• Facteur de réduction : $k_{\gamma,\theta}$ et $k_{E,\theta}$: (EC3 1-2 formule 4.2.3.2).

 $\theta_a = 700$ °C. Par interpolation on obtient :

 $k_{y,\theta} = 0,23$ et $k_{E,\theta} = 0,13$ (Tableau)

Tompérature	Facteurs de réduction à la température θ_a par rapport à la valeur de f_y ou E_a à 20°C			
de l'acier θ_a	Facteur de réduction (par rapport à f_y) pour la limite d'élasticité efficace $k_{y,\theta} = f_{y,\theta}/f_y$	Facteur de réduction (par rapport à f_y) pour la limite de proportionnalité $k_{p,\theta} = f_{p,\theta}/f_y$	Facteur de réduction (par rapport à E_a) pour la pente du domaine élastique linéaire $k_{E,\theta} = E_{a,\theta}/E_a$	
20°C	1,000	1,000	1,000	
100°C	1,000	1,000	1,000	
200°C	1,000	0,807	0,900	
300°C	1,000	0,613	0,800	
400°C	1,000	0,420	0,700	
500°C	0,780	0,360	0,600	
600°C	0,470	0,180	0,310	
700°C	0,230	0,075	0,130	
800°C	0,110	0,050	0,090	
900°C	0,060	0,0375	0,0675	
1000°C	0,040	0,0250	0,0450	
1100°C	0,020	0,0125	0,0225	
1200°C	0,000	0,0000	0,0000	

NOTE : Pour des valeurs intermédiaires de la température de l'acier, une interpolation linéaire peut être utilisée.

Figure VIII.17: Facteur de réduction pour les relations contrainte-déformation de l'acier

✤ F

acteur de réduction χ_{fi} :

$$\overline{\lambda_{\theta}} = \bar{\lambda} \cdot \sqrt{k_{y,\theta}/k_{E,\theta}}$$

Avec :

$$\bar{\lambda} = L_{kz}/(i_z, \lambda_a) = 0.5 \times 600/(5.51 \times 93.9) = 0.58$$

$$\overline{\lambda_{\theta}} = \overline{\lambda} \cdot \sqrt{k_{y,\theta}/k_{E,\theta}} = 0,58 \cdot \sqrt{0,23/0,13} = 0,77$$
$$\chi_{fi} = \frac{1}{\varphi + \sqrt{\varphi^2 + \overline{\lambda_{\theta}}^2}}$$

Avec :

 $\alpha = 0,65.\sqrt{235/f_y} = 0,65.\sqrt{235/235} = 0,65$

$$\varphi = 0.5. \left(1 + \alpha. \overline{\lambda_{\theta}} + \overline{\lambda_{\theta}}^2\right)$$

 $\varphi = 0.5.(1 + 0.65 \times 0.77 + 0.77^2) = 1.0$

$$\chi_{fi} = \frac{1}{\varphi + \sqrt{\varphi^2 + \overline{\lambda_{\theta}}^2}} = \frac{1}{1,05 + \sqrt{1,05^2 + 0,8^2}} = 0,41$$

✤ Flambement par flexion : (EC3 1-2formule 4.2.3.2)

 $N_{b,fi,t,Rd} = \chi_{fi}.A.k_{y,\theta}.f_y/\gamma_{M,fi} = 0,41 \times 64,3 \times 10^2 \times 0,901 \times 235/1 = 558,196 \times 10^3 N$

$$N_{fi,d}/N_{b,fi,t,Rd} = \frac{495,31}{558,196} = 0,89 < 1.$$

Conclusion :

Le poteau de la structure résiste au flambement par flexion pendant l'exposition d'un feu de 700°C pendant R=15 minutes.

4 La résistance au calcul d'une traverse à la flexion composée :

- Bâtiment : stockage.
- Durée de résistance au feu : R15.
- Charge : la charge de neige la plus dominante donc on prend $P_k = N$

Figure VIII.18 : La traverse sous les différents de charges

- $G = 0,443 \ kN/m \times 6,04 \ m = 2,6 \ kN$. (Poids du traverse fois sa longueur).
- $Q_1 = 0.74 \ kN/m^2 \times 6.04m \times 48m \ \times 2 = 430.5kN$. (Le vent fois la surface de toiture).

 $Q_2 = 0.6 \ kN/m^2 \times 6.04 \ m \times 48m \times 2 = 347.9 \ kN$. (la neige fois la surface de toiture).

- Profilé
 - Section laminé.
 - IPE330.
- Protection au feu : Aucune.

- Action variable : la neige.
- Nuance d'acier : S235.
- Echauffement à une température uniforme $\theta_a = 700$ °C.
- ✤ Actions :
 - Action mécanique pendant l'exposition au feu :
 - Situation accidentelle : (EC3 1-2 formule 4.3).

$$N_{fi,d} = G + \psi_1 \cdot Q_1 + \sum_{i>1} \psi_{2,i} Q_i$$

 $N_{fi,d} = G + 0,9.Q_1 + 0,8.Q_2$

G : Valeur caractéristique des charges permanentes.

 Q_1 : Valeur caractéristique de l'action variable dominante.

 Q_2 : Valeur caractéristique de l'action variable d'accompagnement.

 ψ_1 : Facteur pour la valeur fréquente de l'action variable dominante - catégorie E , stockage = 0,9

 ψ_2 : Facteur pour la valeur fréquente de l'action variable d'accompagnement - catégorie E , stockage = 0,8

$$N_{fi,d} = 2,6 \ kN + 0,9 \times 430,5 + 0,8 \times 347,9 \ kN = 668,37 \ kN.$$

$$M_{fi,d} = N_{fi,d} \times \frac{l^2}{8}$$

 $M_{fi,d} = (668,37) \frac{6,04^2}{8} m = 20,18 \text{ kN. } m$

- ★ Facteur de réduction : $k_{y,\theta}$ et $k_{E,\theta}$: (EC3 1-2 formule 4.2.3.2).
- $\theta_a = 700^{\circ}$ C. Par interpolation on obtient $k_{v,\theta} = 0,23$ et $k_{E,\theta} = 0,13$

Traverse maintenue latéralement :

• Facteur de réduction $\chi_{min,fi}$: (EC3 1-1 formule 6.3.1.3).

$$\bar{\lambda}_{y} = L_{cr} / (i_{y} \cdot \lambda_{a}) = 6040 / (13,7 \times 93,9) = 4,69$$

$$\bar{\lambda}_{z} = L_{cr} / (i_{z} \cdot \lambda_{a}) = 6040 / (3,55 \times 93,9) = 18,12$$

$$\overline{\lambda}_{y,\theta} = \bar{\lambda}_{y} \cdot \sqrt{k_{y,\theta} / k_{E,\theta}} = 4,69 \cdot \sqrt{0,23/0,13} = 6.24$$
(EC3 1-1 formule 4.2.3.5).
$$\overline{\lambda}_{z,\theta} = \bar{\lambda}_{z} \cdot \sqrt{k_{y,\theta} / k_{E,\theta}} = 18,12 \cdot \sqrt{0,23/0,13} = 24.1$$

$$\varphi_{y,\theta} = 0.5. \left(1 + \alpha. \overline{\lambda_{y,\theta}} + \overline{\lambda_{y,\theta}}^2\right) = 0.5. \left(1 + 0.65 \times 6.24 + 6.24^2\right) = 22$$

$$\varphi_{z,\theta} = 0.5. \left(1 + \alpha. \overline{\lambda_{z,\theta}} + \overline{\lambda_{z,\theta}}^2\right) = 0.5. \left(1 + 0.65 \times 24.1 + 24.1^2\right) = 298.73$$

Avec :
$$\alpha = 0.65. \sqrt{235/f_y} = 0.65. \sqrt{235/235} = 0.65$$

D'où :

$$\chi_{y,fi} = \frac{1}{\varphi_{y,\theta} + \sqrt{\varphi_{y,\theta}^2 + \overline{\lambda_{y,\theta}}^2}} = \frac{1}{22 + \sqrt{22^2 + 6,24^2}} = 0,002$$

$$\chi_{z,fi} = \frac{1}{\varphi_{z,\theta} + \sqrt{\varphi_{z,\theta}^2 + \overline{\lambda_{z,\theta}}^2}} = \frac{1}{298,73 + \sqrt{298,73^2 + 24,1^2}} = 0,00084$$

 $\chi_{min,fi}=\chi_{y,fi}=0,00084$

$$\beta_{My} = 1,3$$

$$\mu_{y} = (1,2,\beta_{My} - 3) + \overline{\lambda_{y,\theta}} + 0,44\beta_{My} - 0,29$$

$$\mu_{y} = (1,2 \times 1,3 - 3) + 6,24 + 0,44 \times 1,3 - 0,29$$

$$\mu_{y} = 5,08$$

$$k_y = 1 - \frac{\mu_y \cdot N_{fi,d}}{\chi_{y,fi} \cdot A \cdot k_{y,\theta} \cdot f_y / \gamma_{M,fi}} = 1 - \frac{5,08 \times 3,4}{0,00084 \times 60,6 \times 10^2 \times 0,23 \times 235/1} = 0,94$$

Traverse non maintenue latéralement :

• Calcul $\bar{\lambda}_{LT,\theta}$: (EC3 1-1 formule 6.3.1.3).

$$M_{cr} = C_1 \cdot \frac{\pi^2 \cdot E \cdot I_z}{(K \cdot L)^2} \left[\sqrt{\left(\frac{k}{k_w}\right)^2 \frac{I_w}{I_z} + \frac{(k \cdot L)^2 \cdot G \cdot I_t}{\pi^2 \cdot E \cdot I_z} + \left(C_2 \cdot z_g\right)^2} - C_2 \cdot z_g \right]$$

$$\begin{split} M_{cr} &= 1,132. \frac{\pi^2 \times 210000 \times 788 \times 10^4}{\left(1 \times 10 \times 10^3\right)^2} \\ &\times \left[\sqrt{\left(\frac{1}{1}\right)^2 \frac{199 \times 10^9}{788 \times 10^4} + \frac{\left(1 \times 10 \times 10^3\right)^2 \times 81000 \times 28,2 \times 10^4}{\pi^2 \times 210000 \times 788 \times 10^4} + \left(0,459.\frac{330}{2}\right)^2} \right. \\ &\left. - 0,459 \times \frac{330}{2} \right] = 315,66 k N.m \end{split}$$

d'où :
$$\bar{\lambda}_{LT} = \sqrt{\frac{W_{ply} \cdot f_y}{M_{cr}}} = \sqrt{\frac{804 \times 10^3 \times 235}{315,66 \times 10^6}} = 0,77$$

 $\overline{\lambda}_{LT,\theta} = \bar{\lambda}_{LT} \cdot \sqrt{k_{y,\theta}/k_{E,\theta}} = 0,77 \cdot \sqrt{0,23/0,13} = 1$
• Calcul de $\chi_{LT,fi}$:

$$\varphi_{LT,\theta} = 0.5. \left(1 + \alpha. \overline{\lambda_{LT,\theta}} + \overline{\lambda_{LT,\theta}}\right) = 0.5. \left(1 + 0.65 \times 1 + 1^2\right) = 1.33$$

Avec : $\alpha = 0.65. \sqrt{235/f_y} = 0.65. \sqrt{235/235} = 0.65$

D'où :

$$\chi_{LT,fi} = \frac{1}{\varphi_{LT,\theta} + \sqrt{\varphi_{LT,\theta}^2 + \overline{\lambda_{LT,\theta}^2}}} = \frac{1}{1,33 + \sqrt{1,33^2 + 1^2}} = 0,35$$
• Vérification :

$$\frac{N_{fi,d}}{\chi_{z,fi}.A.k_{y,\theta}.f_y/\gamma_{M,fi}} + \frac{K_{LT}.M_{y,fi,Ed}}{\chi_{LT,fi}.W_{pl,y}.k_{y,\theta}.f_y/\gamma_{M,fi}} \le 1$$

avec :

$$\begin{split} \mu_{LT} &= 0,15. \,\overline{\lambda_{z,\theta}}. \,\beta_{MLT} - 0,15 = 0,15 \times 24.1 \times 1,3 - 1.5 = 3,2 \\ k_{LT} &= \frac{\mu_{LT}. N_{fi,d}}{\chi_{z,fi}. A. k_{y,\theta}. f_y / \gamma_{M,fi}} = \frac{3,2 \times 668,37}{0,00084 \times 60,6 \times 10^2 \times 0,23 \times 235/1} = 7,77 \\ &= \frac{668,37}{0,021 \times 60,6 \times 10^2 \times 0,23 \times 235/1} + \frac{7,77 \times 20,18}{0,37 \times 804 \times 10^3 \times 0,23 \times 235/1} = 0,1 \le 1 \end{split}$$

Condition vérifiée.

✤ Conclusion :

La traverse de la structure résiste à la flexion composée pendant l'exposition d'un feu de 700°C pendant R=15 minutes.

VIII. 4. Les solutions constructives pour la protection des structures en acier contre l'incendie

VIII. 4. 1. Objectif de la sécurité incendie

La sécurité incendie est un aspect important pour la conception des bâtiments, elle a une influence aussi bien sur l'architecture que sur la stabilité et les installations techniques.

La protection incendie des structures a deux objectifs :

- la protection des vies humaines ;
- la limitation des dégâts matériels directs et indirects

Les différents stratégies de conception mises en œuvre pour assurer la sécurité incendie sont généralement constitué d'un ensemble de mesures.

C'est pourquoi l'utilisation du bâtiment et les aspects organisationnels - comme l'évacuation de personnes à mobilité réduite, par exemple - jouent aussi un rôle important.

Le choix des mesures prises - c'est-à-dire le concept de sécurité incendie – dépend fortement de l'aménagement spatial et de l'utilisation du bâtiment. Par exemple, dans les bâtiments accessibles au public - comme les commerces et les bibliothèques - la sécurité incendie requise est obtenue par la combinaison d'un ou plusieurs systèmes comme des détecteurs de fumée, des extracteurs de fumée et des sprinklers. Il est faux de croire que la résistance au feu d'une structure en acier ne peut être obtenue qu'en la protégeant avec des revêtements isolants. Aujourd'hui, il existe des méthodes de calcul avancées permettant de réaliser un bâtiment résistant au feu, même avec de l'acier non protégé.

En général, la sécurité incendie se concentre sur les trois points suivants :

- la sécurité des personnes ;
- l'évacuation de fumée et les chemins d'évacuation ;
- les dégâts matériels.

VIII. 4. 2. Solution pour la protection des structures en acier

Tout immeuble doit pouvoir garder son intégrité structurale au moins pendant le temps d'évacuation des occupants défini de manière règlementaire.

On a cité les différentes solutions dans l'annexe E « Calcul au feu »

VIII. 5. Conclusion

Les structures qui ne répondent pas, mais de peu, à une exigence de résistance au feu de 15 minutes, il est souvent possible de parvenir quand-même à cette performance en sur-dimensionnant par rapport à ce que la stricte résistance requiert. Ce dimensionnement face à l'incendie peut être obtenu de plusieurs manières. Par exemple :

Structure en acier visible :

- surdimensionnement (sans protection);
- utilisation de structure extérieure ;
- structure irriguée ;

- profilés en I partiellement enrobés ou tubes remplis de béton ;
- application de peinture intumescente.

Structure en acier non visible :

- intégration de la structure;
- plaques de produits isolants.

Conclusion générale

Ce projet était l'occasion de mettre en œuvre nos connaissances acquises lors de notre formation master. C'était l'occasion de faire un calcul détaillé et complet d'une structure métallique allant de l'élément à la structure et du calcul statique, dynamique au calcul au feu.

Non seulement, nous avons utiliser différents règlements « CCM97, RNV99version2013, RPAversion2003, EC3 » régissant le calcul d'une structure métallique avec une maitrise d'un outil de calcul pour ce type de projet, à savoir, Robot Structure.

L'étude était mené sur un hangar métallique de type halle : par pré-dimensionnement aux états limites et une vérification des éléments secondaires aux instabilités selon le CCM97 après l'évaluation des différents charges , surcharges et action climatiques appliquées sur notre structure selon le règlement de neige et vent version 2013 ; une modélisation « 3D » du hangar métallique par le logiciel « ROBOT STRUCTURAL » afin de déterminer les sollicitations agissantes sur la structure et détermination des efforts pour le dimensionnement des éléments structuraux et leurs vérifications à la résistance et des instabilités d'après le CCM97 Par la suite, un calcul de notre structure vis-à-vis du séisme a été pour nous permettre de déduire la période et les déplacements selon le RPA99ver2003. Le calcul des assemblages n'était pas une tâche facile. Non seulement, il fallait concevoir les assemblages mais surtout les calculer selon la méthode des composantes de l'EC 3 qui est une méthode longue avec une compréhension minutieuse.

Une particularité de ce projet était de se pencher sur e calcul d'une structure métallique qui est très sensible à l'incendie. Nous avons vérifié l'instabilité de certains éléments vis-à-vis de l'incendie.

Nous avons dans un premier temps défini la sollicitation due à un incendie pour une résistance au feu ¹/₄ heure puis dans un deuxième, nous avons une liste de moyens de protection des éléments structuraux contre le feu.

REFERENCES BIBLIOGRAPHIQUE

Charges et surcharges (DTR B.C 2.2) ministère de l'habitat et de l'urbanisme (ALGERIE).

Règlement neige et vent « RNV99 version 2013 » ministère de l'habitat et de l'urbanisme (ALGERIE).

Règlement de conception et de calcul des structures en acier « CCM97 » ministère de l'habitat et de l'urbanisme (ALGERIE).

Règles parasismiques algériennes « RPA99 version 2003 » ministère de l'habitat et de l'urbanisme.

Les normes européennes de dimensionnement et de justification des structures de bâtiment et de génie civil. (EC3 1-8) et (EC1 1-1).

Règles techniques de conception et de calcul des ouvrages et de la construction en béton armé « BAEL91 ».

Règlement de sécurité contre les risques d'incendie et de panique dans les établissements recevant publics. Ministère de l'intérieur et des collectives locales.

LAHLOU.D Calcul des éléments de construction métallique selon l'euro-code3.

LAHLOU.D Calcul des éléments résistant d'une construction métallique.

Jean-Louis Granja Béton armé Théorie et applications selon l'euro-code 2.

CTSB (Centre scientifique et technique du bâtiment) Assemblages poteaux-poutres et poutres-poutres en acier d'après l'eurocode3.

CTSB (Centre scientifique et technique du bâtiment) Règles de la sécurité incendie.

Louis-Guy Cajot, Rik Debruyckere, Jean-Marc Franssen, Sécurité incendie et calcul de la résistance au feu des bâtiments en acier selon EC3.
Annexes A: Détermination des charges climatiques

					TECHNIQUES DES PANNEAUX SANDWICH					
Panneaux	5e Bardo		• 11 35			-3				
Туре	Longwaa mass	r Largeor stéadach	LDOISSER	e enids	Réfistance à la conductibilite	coulticient de Banamistiko Shermique K	Dib Movens minue	Tance IV 165 87330 199715 de	en mi	
	(51)	IT-134	(17)	xō.m,	mér y W	Watny K	3	4	ŝ	
11, 35 P 11, 60 P 11, 80 P 61, 600 P	1) 11 12 11	1000 1065 1000	35 60 80 100	10.9 11.54 12.75 13.64	10 2.95 3.55 4.45	0.54 0.32 0.24 0.15	3.10 4.79 5.37 5.81	2,59 2,76 4,34 4,51	3.99 4.2) 4.99 5.12	
SUITO DE MARTE	i pierien euere			1			1259599		110019	
11-35-98 61-60-91 61-90-91 61-90-91 61-360-91	12 13 13 13	1000 1600 1600 1600	15 60 10 109	11:59 17:69 13:69 14:69	1.7 2.95 3.95 4.45	0.53 0.32 0.34 0.19	3 10 4.79 5 17 5 81	3,59 3,75 4,54 4,51	9.99 A 29 4 99 5 92	
LL 35 G LL 35 G LL 40 G LL 35 G LL 35 G LL 100 G	1. 1.1. 1.1.	1000 1000 3000 3000	1100 1100 1100	1538 1415 1534 1534	17 285 375 445	0.51 0.32 0.24 0.13	510 1279 137 541	3.59 3.75 4.34 4.51	2 49 A 23 & 99 5 47	
			Nora: 44	. Les 2 point	ax en Linéain a (Ine	Dir-				

Effet de vent

Zone	qréf (N/m ²)
I	375
II	435
III	500
IV	575

Tableau 2.2 : Valeurs de la pression dynamique de référence

Hauteur z	Catégories de terrain							
(m)	0	I	П	III	IV			
≤ 1	1,811	1,545	1,423	1,276	1,173			
2	2,137	1,883	1,423	1,276	1,173			
5	2,603	2,373	1,929	1,276	1,173			
10	2,983	2,776	2,352	1,703	1,173			
15	3,216	3,025	2,616	1,973	1,440			
20	3,387	3,207	2,810	2,174	1,640			
25	3,521	3,352	2,965	2,335	1,801			
30	3,633	3,472	3,094	2,470	1,937			
35	3,729	3,575	3,205	2,587	2,055			
40	3,813	3,666	3,302	2,690	2,159			
50	3,956	3,820	3,468	2,865	2,337			
60	4,074	3,947	3,606	3,012	2,487			
70	4,175	4,056	3,725	3,139	2,617			
80	4,264	4,152	3,829	3,250	2,731			
100	4,414	4,315	4,006	3,440	2,926			
125	4,566	4,480	4,187	3,634	3,127			
150	4,692	4,617	4,337	3,796	3,295			
175	4,800	4,735	4,466	3,936	3,440			
200	4,895	4,838	4,579	4,058	3,568			

Tableau 2.3 : Valeurs du coefficient d'exposition $C_e(z)$ pour $C_l(z) = l$

Catégories de terrain	Kr	2.0 (m)	čmiv (m)	E
0 Mer ou zone côtière exposée aux vents de mer	0.156	0.003	1	0.38
I Lacs ou zone plate et horizontale à végétation négligeable et libre de tous obstacles.	0.170	0,01	1	0,44
II Zone à végétation basse telle que l'herbe, avec ou non quelques obstacles isolés (arbres, bâtiments) séparés les uns des autres d'au moins 20 fois leur hauteur.	0,190	0,05	2	0,52
III Zone à couverture végétale régulière ou des bâtiments, ou avec des obstacles isolés séparés d'au plus 20 fois leur hauteur (par exemple des villages, des zones suburbaines, des forêts permanentes).	0,215	0,3	5	0,61
IV Zones dont au moins 15% de la surface est occupée par des bâtiments de hauteur moyenne supérieure à 15 m.	0,234	1	10	0,67

Tableau 2.4	 Définition e 	les catégories	de terrain
CARDY CONTRACTOR ANY T	·	The Contraction and	THE THEFT

Hauteur z	Catégories de terrains							
(m)	0	1	II	III	IV			
<1	0,906	0,783	0,701	0,605	0,539			
2	1,014	0,901	0,701	0,605	0,539			
3	1,078	0,970	0,778	0,605	0,539			
5	1,157	1,056	0,875	0,605	0,539			
10	1,265	1,174	1,007	0,754	0,539			
15	1,329	1,243	1,084	0,841	0,634			
20	1,374	1,292	1,138	0,903	0,701			
25	1,408	1,330	1,181	0,951	0,753			
30	1,437	1,361	1,215	0,990	0,796			
35	1,461	1,387	1,245	1,023	0,832			
40	1,482	1,410	1,270	1,052	0,863			
50	1.517	1,448	1,312	1,100	0,915			
60	1.545	1,479	1,347	1,139	0.958			
70	1,569	1,505	1,376	1,172	0,994			
80	1.590	1,528	1,402	1,201	1,025			
100	1,625	1,566	1,444	1,249	1,078			
125	1,659	1,604	1,487	1,297	1,130			
150	1,688	1,635	1,521	1,336	1,172			
175	1,712	1,661	1,550	1,369	1,209			
200	1,733	1,684	1,576	1,398	1,240			

Tableau 2.5 : Valeurs du coefficient de rugosité Cr (z)

Effet de neige :

Figure 6 : Coefficient de forme - Toitures à deux versants

(α) angle du versant par rapport à l'horizontale (en °)	$0^{\circ} \le \alpha \le 30^{\circ}$	$30^\circ < \alpha < 60^\circ$	$\alpha \geq 60^\circ$
coefficient μ_1	0.8	$0.8.\left(\frac{60-\alpha}{30}\right)$	0.0

Tableau 2 : Coefficients de forme - Toitures à deux versants

Annexes B : Dimensionnement et vérification des éléments secondaires

Tableau 8.1.2	Coefficients C1. C2 et dans le cas de charger	C3, pour différe transversales	entes valeur	rs de k,	
Chargement st	Diagramme de	Valeur de		Coefficients	
conditions d'appuis	moment de flexion	k	0 ₁	Cz	C3
for the second s		1,0	1,132	0,459	0,525
10 80 B		0,5	0,972	0,304	0,980
¥	A	1,0	1,285	1,552	0,753
		0,5	0,712	0,652	1,070
r		1,0	1,365	0,553	1,730
F T		0.5	1,070	0,432	3,050
d 1 5		1,0	1,565	1,267	2,640
a té		0,5	0,938	0,715	4,800
ę		1.0	1,046	0,430	1,120
		0,5	1,010	0,410	1,890

151 / 177

Annexes C : Etude sismique

	ZONE						
Groupe	I	lla	llb	III			
1 A	0,15	0,25	<mark>0,30</mark>	0,40			
1 B	0,12	0,20	0,25	0,30			
2	0,10	0,15	0,20	0,25			
3	0.07	0.10	0.14	0.18			

Tableau 4.1. : coefficient d'accélération de zone A.

Tableau 4.4.: valeurs des pénalités P_q

	Pq			
Critère q »	Observé	N/observé		
1. Conditions minimales sur les files de contreventement	0	0,05		
2. Redondance en plan	0	0,05		
3. Régularité en plan	0	0,05		
4. Régularité en élévation	0	0,05		
5. Contrôle de la qualité des matériaux	0	0,05		
6. Contrôle de la qualité de l'exécution	0	0,10		

Cat	Description du système de contreventement (voir chapitre III § 3.4)	Valeu <mark>r de R</mark>
A	Béton armé	
1a	Portiques autostables sans remplissages en maçonnerie	5
1b	rigide	3,5
2	Portiques autostables avec remplissages en maçonnerie	3,5
3	rigide	3,5
4a	Voiles porteurs	5
4b	Noyau	4
5	Mixte portiques/voiles avec interaction	2
6	Portiques contreventés par des voiles	2
	Console verticale à masses réparties	
	Pendule inverse	
B	Acier	
7	Portiques autostables ductiles	6
8	Portiques autostables ordinaires	4
9a	Ossature contreventée par palées triangulées en X	4
9b	Ossature contreventée par palées triangulées en V	3
10a	Mixte portiques/palées triangulées en X	5
10b	Mixte portiques/palées triangulées en V	4
11	Portiques en console verticale	2
C	Maçonnerie	
12	Maconnerie porteuse chaînée	2,5

Tableau 4.3 : valeurs du coefficient de comportement R

Annexes D : Assemblages

Dési	ignation	MS	M10	M12	M14	M16	M18	M20	M22	M24	M27	M30
d	(mm)	8	10	12	14	16	18	20	22	24	27	30
do	(mm)	9	11	13	15	18	20	22	24	26	30	33
А	(mm²)	50,3	78,5	113	154	201	254	314	380	452	573	707
A_s	(mm²)	36,6	58	84,3	115	157	192	245	303	353	459	561
$\phi_{\rm R}$	(mm)	16	20	24	27	30	34	36	40	44	50	52
ź,	(mm)	<3	<3	3	3	3	3/4	4	4	4	4/5	5
dm	(mm)	14	18,3	20,5	23,7	24,58	29,1	32,4	34.5	38.8	44.2	49.6
Ø, ((mm) ⁽¹⁾	12/14	15/17	18/22	21/24	24/27	27/31	30/32	33/35	36/41	41/46	46/50
h _T	(mm)	6	7.	8	9	10	12	13	14	15	17	19
$\phi_{\rm E}$	(mm)	12/14	15/17	18/22	21/24	24/27	27/31	30/32	33/35	36/41	41/46	46/50
h _E (mm) ⁽²⁾	717	9/9	10,8/11	12,6/13	14,8/15	16,2/17	18/18	20/20	21.5/22	24 3/25	25.607
$\phi_{clé}$	(mm)	21	27	31	51	51	51	58	58	58	58	58
Tôle (n	usuelle un)	2	3	4	5	6	7	8	10,14	>14	-	-

<u>Assemblage traverse-poteau :</u> Coté poteau :

Le calcul détaillé de la semelle du poteau fléchie pour les différents modes $F_{t,fc,Rd}$:

Mécanisme circulaire : $l_{eff,cp} = 2. \pi. m$

m = 22 mm distance de boulon de l'âme.

 $e_1 = 90 mm$

 $l_{eff,cp}=139\,mm$.

Mécanisme non circulaire $l_{eff,nc} = \alpha.m$

e = 70 mm distance entre boulon et le bord extérieur.

 $\alpha \rightarrow \lambda_1 = \frac{m}{m+e} = \frac{22}{22+70} = 0,24$ $\lambda_2 = \frac{m_2}{m+e} = \frac{90}{22+70} = 1$ Donc $\alpha = 8$

$$l_{eff,nc} = \alpha.m = 8 \times 22 = 176mm$$

$$l_{eff,1} = \min(l_{eff,cp}; l_{eff,nc})$$

= min(139; 176) = 139 mm

♦ Mode 1 :

 $M_{pl,1,Rd} = \frac{l_{eff,1} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{139 \times 11^2 \times 235}{4 \times 1} = 0,98KN.m$

$$F_{T,1,Rd} = \frac{4 \times M_{Pl,1,Rd}}{m} = \frac{4 \times 0.98}{22 \times 10^{-3}}$$
$$= 178,18KN$$

$$\begin{split} l_{eff,2} &= l_{eff,nc} = 176 \ mm \\ M_{pl,2,Rd} &= \frac{l_{eff,2} \times t_f^2 \times f_y}{4. \gamma_{M0}} = \frac{176 \times 11^2 \times 235}{4 \times 1} = 1,25 \ KN. \ mm \\ F_{T,2,Rd} &= \frac{2. M_{Pl,2,Rd} + n \sum F_{t,Rd}}{m + n} \\ F_{T,2,Rd} &= \frac{2 \times 1,25 + (\frac{27,5}{1000}) \times 2 \times 110,59}{(22 + 27,5)/1000} = 173,4 \ kN. \end{split}$$

Figure VIII.19: L'abaque pour déterminer le α

✤ Mode 3 :

$$F_{T,3,Rd} = \sum F_{t,Rd} = 2 \times 110,59 = 221,18 \text{ KN}$$

Rangée 2 :

Rangée centrale

 $l_{eff,cp} = 2. \pi. m = 2 \times 3,14 \times 22 = 139 mm$ $l_{eff,nc} = 4. m + 1,25. e = 4 \times 22 + 1,25 \times 70 = 176 mm$ $l_{eff,1} = min(l_{eff,cp}; l_{eff,nc}) = min(139; 176) = 139 mm$ **♦** Mode 1 : $M_{pl,1,Rd} = \frac{l_{eff,1} \times t_f^2 \times f_y}{4_v \gamma_{vre}} = \frac{139 \times 11^2 \times 235}{4 \times 1} = 0.98 \text{ KN. m}$ $F_{T,1,Rd} = \frac{4 \times M_{Pl,1,Rd}}{m} = \frac{4 \times 0.98}{22 \times 10^{-3}} = 178,18 \text{ KN}$ ✤ Mode 2 : $l_{eff,2} = l_{eff,nc} = 176 \text{ mm}$ $M_{pl,2,Rd} = \frac{l_{eff,2} \times t_f^2 \times f_y}{4.7} = \frac{176 \times 11^2 \times 235}{4 \times 1} = 1,25 \text{ KN. m}$ $F_{T,2,Rd} = \frac{2.M_{Pl,2,Rd} + n\sum F_{t,Rd}}{m+n} = \frac{2 \times 1,25 + (\frac{27,5}{1000}) \times 110,59}{(22+27,5)/1000} = 173,4kN$ ✤ Mode 3 : $F_{T,2,Rd} = \sum F_{t,Rd} = 2 \times 110,59 = 221,18 \text{ KN}$ Rangée 3 : Rangée intérieur $l_{eff,cp} = 2. \pi. m$ m = 22 mm distance de boulon de l'âme. $e_1 = 90 \text{ mm}$

 $l_{eff,cp} = 139 \text{ mm}$.

 $l_{eff,nc} = \alpha.m$

e = 70 mm distance entre boulon et le bord extérieur .

$$\alpha \to \lambda_1 = \frac{m}{m+e} = \frac{22}{22+70} = 0,24 \qquad \lambda_2 = \frac{m_2}{m+e} = \frac{80}{22+70} = 0,86 \text{ Donc } \alpha = 2\pi.$$

$$l_{eff,nc} = \alpha. m = 6,72 \times 22 = 148 \text{ mm}$$

$$l_{eff,1} = \min(l_{eff,cn}; l_{eff,nc}) = \min(139; 148) = 139 \text{ mm}$$

$$\iota_{eff,1} = \min(\iota_{eff,cp}; \iota_{eff,nc}) = \min(139; 146) = 1$$

✤ Mode 1 :

$$M_{pl,1,Rd} = \frac{l_{eff,1} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{139 \times 11^2 \times 235}{4 \times 1} = 0,98KN.m$$

 $F_{T,1,Rd} = \frac{4 \times M_{Pl,1,Rd}}{m} = \frac{4 \times 988,11}{22 \times 10^{-3}} = 178,18 \text{ KN}$

✤ Mode 2

$$\begin{split} l_{eff,2} &= l_{eff,nc} = 148 \ mm \\ M_{pl,2,Rd} &= \frac{l_{eff,2} \times t_f^2 \times f_y}{4. \gamma_{M0}} = \frac{148 \times 11^2 \times 235}{4 \times 1} = 1,052KN. \\ F_{T,2,Rd} &= \frac{2. M_{Pl,2,Rd} + n \sum F_{t,Rd}}{m + n} \\ F_{T,2,Rd} &= \frac{2 \times 1,052 + (\frac{27,5}{1000}) \times 2 \times 110,59}{(22 + 27,5)/1000} = 165,4 \ kN. \\ &\diamondsuit Mode 3: \end{split}$$

 $F_{T,3,Rd} = \sum F_{t,Rd} = 2 \times 110,59 = 221,18 \, KN$

• <u>Groupe de rangée 1+2 :</u>

Groupe de rangée intérieur + centrale :

$$l_{eff,cp} = 2.\pi.m + 2.p$$

m = 22 mm distance de boulon de l'âme.

 $p_1 = 100 mm$

$$l_{eff,cp} = 2 \times 3,14 \times 22 + 2 \times 100 = 339$$
 mm.

 $l_{eff,nc} = \alpha.m + p = 239 mm$

$$l_{eff,1} = \min(l_{eff,cp}; l_{eff,nc}) = \min(339; 239) = 239 mm$$

т

Figure VIII.21 : l_{eff} dans un tronçon en T ✤ Mode 1 :

$$M_{pl,1,Rd} = \frac{l_{eff\,1} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{239 \times 11^2 \times 235}{4 \times 1} = 1,7 \, KN. \, m$$

 $F_{T,1,Rd} = \frac{4 \times M_{Pl,1,Rd}}{m} = \frac{4 \times 1.7}{22 \times 10^{-3}} = 309 \ KN$

✤ Mode 2 :

$$l_{eff,2} = l_{eff,nc} = 239 \, mm$$

$$M_{pl,2,Rd} = \frac{l_{eff,2} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{239 \times 11^2 \times 235}{4 \times 1} = 1,7 \ KN.m$$

$$F_{T,2,Rd} = \frac{2.M_{Pl,2,Rd} + n\sum F_{t,Rd}}{m+n}$$

$$F_{T,2,Rd} = \frac{2 \times 1.7 + (\frac{27.5}{1000}) \times 2 \times 110.59}{(22+27.5)/1000} = 314.5 \text{ kN}.$$

♦ Mode 3 :

$$F_{T,3,Rd} = \sum F_{t,Rd} = 2 \times 110,59 = 221,18 \, KN.$$

• <u>Groupe de rangée 2+3 :</u>

Groupe de rangée intérieur + centrale :

$$l_{eff,cp} = 2.\pi m + 2p$$

m = 22 mm distance de boulon de l'âme .

 $p_1 = 100 mm$

$$l_{eff,cp} = 2 \times 3,14 \times 22 + 2 \times 100 = 339 \text{ mm}. l_{eff,nc} = \alpha.m + p = 239 mm$$

$$l_{eff,1} = \min(l_{eff,cp}; l_{eff,nc}) = \min(339; 239) = 239 mm$$

♦ Mode 1 :

$$M_{pl,1,Rd} = \frac{l_{eff\,1} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{239 \times 11^2 \times 235}{4 \times 1} = 1,7KN.m$$
$$F_{T,1,Rd} = \frac{4 \times M_{Pl,1,Rd}}{m} = \frac{4 \times 1,7}{22 \times 10^{-3}} = 309 KN$$

$$l_{eff,2} = l_{eff,nc} = 239 \, mm$$

$$M_{pl,2,Rd} = \frac{l_{eff,2} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{239 \times 11^2 \times 235}{4 \times 1} = 1,7 \ KN.m$$

$$F_{T,2,Rd} = \frac{2.M_{Pl,2,Rd} + n \sum F_{t,Rd}}{m+n}$$

$$F_{T,2,Rd} = \frac{2 \times 1,7 + (\frac{27,5}{1000}) \times 2 \times 110,59}{(22+27,5)/1000} = 314,5 \ kN.$$

✤ Mode 3 :

$$F_{T,3,Rd} = \sum F_{t,Rd} = 2 \times 110,59 = 221,18 \text{ KN}$$

• Groupe de rangée 1+2+3 :

Groupe de rangée intérieur + centrale :

$$l_{eff,cp} = 2.\pi .m + 2\sum p_i$$

m = 22 mm distance de boulon de l'âme.

$$p_1 = 100 mm$$

$$p_2 = 100 mm$$

$$l_{eff,cp} = 2 \times 3,14 \times 22 + 2 \times (100 + 100) = 539 mm.$$

$$l_{eff,nc} = \alpha.m + \sum p_i = 339 mm$$

$$l_{eff,1} = \min(l_{eff,cp}; l_{eff,nc}) = \min(539; 339) = 339 \, mm$$

♦ Mode 1 :

$$M_{pl,1,Rd} = \frac{l_{eff\,1} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{339 \times 11^2 \times 235}{4 \times 1} = 2,4 \text{ KN. } m$$

$$4 \times M_{Pl\,1,Rd} = 4 \times 2.4$$

 $F_{T,1,Rd} = \frac{4 \times M_{Pl,1,Rd}}{m} = \frac{4 \times 2.4}{22 \times 10^{-3}} = 436,36 \text{ KN}$

$$\begin{split} l_{eff,2} &= l_{eff,nc} = 339 \ mm \\ M_{pl,2,Rd} &= \frac{l_{eff,2} \times t_f^2 \times f_y}{4. \gamma_{M0}} = \frac{339 \times 11^2 \times 235}{4 \times 1} = 2,4 \ kN. m \\ F_{T,2,Rd} &= \frac{2. M_{Pl,2,Rd} + n \sum F_{t,Rd}}{m + n} \\ F_{T,2,Rd} &= \frac{2 \times 2,4 + (\frac{27,5}{1000}) \times 2 \times 110,59}{(22 + 27,5)/1000} = 221,2 \ kN. \end{split}$$

✤ Mode 3 :

$$F_{T,3,Rd} = \sum F_{t,Rd} = 2 \times 110,59 = 221,18 \text{ KN}$$

- **Coté poutre :**

Le calcul détaillé de la platine d'about fléchie et âme de poutre tendue :

Rangée 1 :

Mécanisme circulaire : $l_{eff,cp} = 2. \pi. m$

m = 29 mm distance de boulon de l'âme.

$$l_{eff,cp} = 182,12 mm$$
.

Mécanisme non circulaire $l_{eff,nc} = \alpha.m$

e = 40 mm distance entre boulon et le bord extérieur .

$$\alpha \rightarrow \lambda_1 = \frac{m}{m+e} = \frac{29}{29+40} = 0,24$$

 $\lambda_2 = \frac{m_2}{29+40} = \frac{90}{29+70} = 0,9 \ Donc \ \alpha = 2.\pi$
 $l_{eff,nc} = \alpha. m = 2.\pi \times 29 = 176mm$

 $l_{eff,1} = \min(l_{eff,cp}; l_{eff,nc}) = \min(182,12; 176) = 176 mm$

 $\bigstar \quad \text{Mode } 1: t_f = t_p$

$$M_{pl,1,Rd} = \frac{l_{eff,1} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{176 \times 20^2 \times 235}{4 \times 1}$$

= 4,136 KN.m

$$l_{eff,2} = l_{eff,nc} = 176 mm$$

$$M_{pl,2,Rd} = \frac{l_{eff,2} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{176 \times 20^2 \times 235}{4 \times 1} = 4,136 \text{ KN. m}$$

$$F_{T,2,Rd} = \frac{2.M_{Pl,2,Rd} + n\sum F_{t,Rd}}{m+n}$$

$$F_{T,2,Rd} = \frac{2 \times 4,136 + (\frac{36,25}{1000}) \times 2 \times 110,59}{(29 + 36,25)/1000} = 249,55 \, kN.$$

♦ Mode 3 :

$$F_{T,3,Rd} = \sum F_{t,Rd} = 2 \times 110,59 = 221,18 \, KN$$

✤ Mode 4 :

$$F_{T,4,Rd} = F_{Tw,Rd} = \frac{l_{eff,1} \cdot t_w \cdot f_y}{\gamma_{M0}} = \frac{176 \times 8 \times 235}{1} = 330,88 \ kN$$

• <u>Rangée 2 :</u>

Rangée centrale

$$l_{eff,cp} = 2.\pi.m = 2 \times 3,14 \times 29 = 182,12 mm$$
$$l_{eff,nc} = 4.m + 1,25.e = 4 \times 29 + 1,25 \times 70 = 203,5 mm$$
$$l_{eff,1} = \min(l_{eff,cp}; l_{eff,nc}) = \min(182; 203,5) = 182 mm$$

♦ Mode 1 :

$$M_{pl,1,Rd} = \frac{l_{eff,1} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{182 \times 20^2 \times 235}{4 \times 1} = 4,28 \text{ KN. } m$$
$$F_{T,1,Rd} = \frac{4 \times M_{Pl,1,Rd}}{m} = \frac{4 \times 4,28}{29 \times 10^{-3}} = 590,34 \text{ KN}$$

♦ Mode 2 :

$$l_{eff,2} = l_{eff,nc} = 176 mm$$

$$M_{pl,2,Rd} = \frac{l_{eff,2} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{176 \times 20^2 \times 235}{4 \times 1} = 4,13 \text{ KN. m}$$

$$F_{T,2,Rd} = \frac{2.M_{Pl,2,Rd} + n\sum F_{t,Rd}}{m+n} = \frac{2 \times 4,13 + (\frac{36,5}{1000}) \times 2 \times 110,59}{(29+36,5)/1000} = 249,37 \ kN$$

♦ Mode 3 :

$$F_{T,2,Rd} = \sum F_{t,Rd} = 2 \times 110,59 = 221,18 \, KN$$

 \bigstar Mode 4 :

$$F_{T,4,Rd} = F_{Tw,Rd} = \frac{l_{eff,1} \cdot t_w \cdot f_y}{\gamma_{M0}} = \frac{182 \times 8 \times 235}{1} = 342,16 \ kN$$
• Rangée 3:

Rangée intérieur

$$l_{eff,cp} = 2.\pi.m = 2 \times 3,14 \times 29 = 182,12 mm$$

m= 29 mm distance de boulon de l'âme.

$$e = 40 \text{ mm}$$

$$l_{eff,rp} = 182,12 \text{ mm}.$$

$$l_{eff,nc} = 4.m + 1,25.e = 4 \times 29 + 1,25 \times 70 = 203,5 \text{ mm}$$

$$e = 70 \text{ mm} \text{ distance entre boulon et le bord extérieur.}$$

$$\alpha \rightarrow \lambda_{1} = \frac{m}{m+e} = \frac{29}{29+70} = 0,24 \qquad \lambda_{2} = \frac{m_{2}}{m+e} = \frac{80}{29+70} = 0,86 \text{ Donc } \alpha = 2\pi.$$

$$l_{eff,1} = \min(l_{eff,cp}; l_{eff,nc}) = \min(182,12; 203,5) = 182,12 \text{ mm}}$$

$$\diamond \text{ Mode 1}:$$

$$M_{pl,1,Rd} = \frac{l_{eff,1} \times t_{f}^{2} \times f_{y}}{4.\gamma_{M0}} = \frac{182,12 \times 20^{2} \times 235}{4 \times 1} = 4,28 \text{ KN.m}$$

$$F_{T,1,Rd} = \frac{4 \times M_{Pl,1,Rd}}{m} = \frac{4 \times 4,28}{29 \times 10^{-3}} = 590,34 \text{ KN}$$

$$\diamond \text{ Mode 2}$$

$$l_{eff,2} = l_{eff,rc} = 203,5 \text{ mm}$$

$$M_{pl,2,Rd} = \frac{l_{eff,2} \times t_{f}^{2} \times f_{y}}{4.\gamma_{M0}} = \frac{203,5 \times 20^{2} \times 235}{4 \times 1} = 4,78 \text{ KN.m}$$

$$F_{T,2,Rd} = \frac{2.M_{Pl,2,Rd} + n \sum F_{t,Rd}}{m+n}$$

$$F_{T,2,Rd} = \frac{2 \times 4,78 + (\frac{36,5}{1000}) \times 2 \times 110,59}{(29+36,5)/1000} = 266,85 \text{ kN}.$$

$$\diamond \text{ Mode 3}:$$

$$F_{T,3,Rd} = \sum F_{t,Rd} = 2 \times 110,59 = 221,18 \text{ KN}$$

$$\diamond \text{ Mode 4}:$$

$$F_{T,A,Rd} = F_{Tw,Rd} = \frac{l_{eff,1} \cdot t_{w} \cdot f_{y}}{\gamma_{M0}} = \frac{182 \times 8 \times 235}{1} = 342,16kN$$

$$\bullet \text{ Groupe de rangées 1+2}:$$

Groupe de rangée intérieur + centrale :

 $l_{eff,cp} = \pi.m + p$

m = 29 mm distance de boulon de l'âme.

$$p = 100 mm$$

$$\rightarrow \lambda_1 = \frac{m}{m+e} = \frac{29}{29+70} = 0,24 \qquad \lambda_2 = \frac{m_2}{m+e} = \frac{80}{29+70} = 0,86 \text{ Donc } \alpha = 8$$

$$l_{eff,cp} = 3,14 \times 22 + 100 = 169 \text{ mm.}$$

 $l_{eff,nc} = 0.5p + \alpha m - (2m + 0.625e) = 0.5 \times 100 + 8 \times 29 - (2 \times 29 + 0.625 \times 70) = 180.25 mm$

$$l_{eff,1} = \min(l_{eff,cp}; l_{eff,nc}) = \min(169; 180,25) = 169 mm$$

✤ Mode 1 :

$$M_{pl,1,Rd} = \frac{l_{eff\,1} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{169 \times 20^2 \times 235}{4 \times 1} = 3,97 \, KN. \, m$$
$$F_{T,1,Rd} = \frac{4 \times M_{Pl,1,Rd}}{m} = \frac{4 \times 3,97}{29 \times 10^{-3}} = 547,58 \, KN$$

✤ Mode 2

$$\begin{split} l_{eff,2} &= l_{eff,nc} = 180,25 \text{ mm} \\ M_{pl,2,Rd} &= \frac{l_{eff,2} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{180,25 \times 20^2 \times 235}{4 \times 1} = 4,23 \text{ KN. m} \\ F_{T,2,Rd} &= \frac{2.M_{Pl,2,Rd} + n \sum F_{t,Rd}}{m+n} \\ F_{T,2,Rd} &= \frac{2 \times 4,23 + (\frac{36,5}{1000}) \times 2 \times 110,59}{(29+36,5)/1000} = 252,42 \text{ kN} \end{split}$$

✤ Mode 3 :

$$F_{T,3,Rd} = \sum F_{t,Rd} = 2 \times 110,59 = 221,18 \, KN$$

♦ Mode 4 :

$$F_{T,4,Rd} = F_{Tw,Rd} = \frac{l_{eff,1} \cdot t_w \cdot f_y}{\gamma_{M0}} = \frac{169 \times 8 \times 235}{1} = 317,72 \ kN$$

• <u>Groupe de rangées 2+3</u> :

Groupe de rangée intérieur + centrale :

$$l_{eff,cp} = 2.p$$

m = 29 mm distance de boulon de l'âme.

$$p = 100 \, mm$$

 $l_{eff,cp} = 2 \times 100 = 200$ mm.

 $l_{eff,nc} = p = 100 mm$

$$l_{eff,1} = \min(l_{eff,cp}; l_{eff,nc}) = \min(200; 100) = 100 mm$$

♦ Mode 1 :

$$M_{pl,1,Rd} = \frac{l_{eff\,1} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{100 \times 20^2 \times 235}{4 \times 1} = 2,34 \, KN. \, m$$

 $F_{T,1,Rd} = \frac{4 \times M_{Pl,1,Rd}}{m} = \frac{4 \times 2,34}{29 \times 10^{-3}} = 322,75 \text{ KN}$

✤ Mode 2

$$l_{eff,2} = l_{eff,nc} = 100 mm$$
$$M_{pl,2,Rd} = \frac{l_{eff,2} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{100 \times 20^2 \times 235}{4 \times 1} = 2,34 \ KN.m$$

$$F_{T,2,Rd} = \frac{2.M_{Pl,2,Rd} + n\sum F_{t,Rd}}{m+n}$$

$$F_{T,2,Rd} = \frac{2 \times 2,34 + (\frac{36,5}{1000}) \times 2 \times 110,59}{(29 + 36,5)/1000} = 194,71 \, kN.$$

✤ Mode 3 :

$$F_{T,3,Rd} = \sum F_{t,Rd} = 2 \times 110,59 = 221,18 \, KN$$

♦ Mode 4 :

$$F_{T,4,Rd} = F_{Tw,Rd} = \frac{l_{eff,1} \cdot t_w \cdot f_y}{\gamma_{M0}} = \frac{100 \times 235}{1} = 188 \ kN$$

• <u>Groupe de rangée 1+2+3 :</u>

Groupe de rangée intérieur + centrale :

m = 29 mm distance de boulon de l'âme.

$$p = 100 \, mm$$

 $l_{eff,cp} = 2 \times 100 = 200 \text{ mm.}$ $l_{eff,nc} = p = 100 \text{ mm}$ $l_{eff,1} = \min(l_{eff,cp}; l_{eff,nc}) = \min(200; 100) = 100 \text{ mm}$

♦ Mode 1 :

$$M_{pl,1,Rd} = \frac{l_{eff\,1} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{100 \times 20^2 \times 235}{4 \times 1} = 2,34 \, KN. \, m$$

$$F_{T,1,Rd} = \frac{4 \times M_{Pl,1,Rd}}{m} = \frac{4 \times 2,34}{29 \times 10^{-3}} = 322,75 \text{ KN}$$

✤ Mode 2

$$l_{eff,2} = l_{eff,nc} = 100 mm$$

$$M_{pl,2,Rd} = \frac{l_{eff,2} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{100 \times 20^2 \times 235}{4 \times 1} = 2,34 \text{ KN. m}$$

$$F_{T,2,Rd} = \frac{2.M_{Pl,2,Rd} + n\sum F_{t,Rd}}{m+n}$$

$$F_{T,2,Rd} = \frac{2 \times 2,34 + (\frac{36,5}{1000}) \times 2 \times 110,59}{(29 + 36,5)/1000} = 194,71 \, kN.$$

✤ Mode 3 :

$$F_{T,3,Rd} = \sum F_{t,Rd} = 2 \times 110,59 = 221,18 \, KN$$

♦ Mode 4 :

$$F_{T,4,Rd} = F_{Tw,Rd} = \frac{l_{eff,1} \cdot t_w \cdot f_y}{\gamma_{M0}} = \frac{100 \times 235}{1} = 188 \ kN$$

• Assemblage traverse-traverse :

Le calcul détaillé de la zone tendue (les efforts et moments de flexion de platine et l'ame de poutre tendu) :

- <u>Rangée 1 :</u>

Rangée intérieure :

Mécanisme circulaire : $l_{eff,cp} = 2. \pi. m$

m = 24 mm distance de boulon de l'âme.

 $e_1 = 120 mm$

 $l_{eff,cp} = 150,72 mm$. p= 90mm

Mécanisme non circulaire $l_{eff,nc} = \alpha.m$

e = 45 mm distance entre boulon et le bord extérieur.

$$\alpha \to \lambda_1 = \frac{m}{m+e} = \frac{24}{24+45} = 0,35 \qquad \lambda_2 = \frac{m_2}{m+e} = \frac{98}{24+45} = 1,42 \text{ Donc } \alpha = 2.\pi$$
$$l_{eff,nc} = \alpha.m = 2 \times 3,14 \times 24 = 150,72 \text{ mm}$$

$$l_{eff,1} = \min(l_{eff,cp}; l_{eff,nc}) = 150,72 mm$$

✤ Mode 1 :

$$M_{pl,1,Rd} = \frac{l_{eff,1} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{150,72 \times 20^2 \times 235}{4 \times 1} = 4,25KN.m$$
$$F_{T,1,Rd} = \frac{4 \times M_{Pl,1,Rd}}{m} = \frac{4 \times 4,25}{24 \times 10^{-3}} = 708,3KN$$

✤ Mode 2 :

$$l_{eff,2} = l_{eff,nc} = 150,72 mm$$
$$M_{pl,2,Rd} = \frac{l_{eff,2} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{150,72 \times 20^2 \times 235}{4 \times 1} = 4,25 KN.m$$

$$F_{T,2,Rd} = \frac{2.M_{Pl,2,Rd} + n\sum F_{t,Rd}}{m+n}$$

$$F_{T,2,Rd} = \frac{2 \times 4,25 + (\frac{30}{1000}) \times 2 \times 110,59}{(24+30)/1000} = 280,3 \ kN.$$

✤ Mode 3 :

$$F_{T,3,Rd} = \sum F_{t,Rd} = 2 \times 110,59 = 221,18 \, KN$$

✤ Mode 4 :

$$F_{T,4,Rd} = F_{Tw,Rd} = \frac{l_{eff,1} \cdot t_w \cdot f_y}{\gamma_{M0}} = \frac{150,72 \times 8 \times 235}{1} = 283,35 \ kN$$

Rangée 2 :

Rangée centrale

 $l_{eff,cp} = 2.\pi.m = 2 \times 3,14 \times 24 = 150,72 mm$

$$l_{eff,nc} = 4.m + 1,25.e = 4 \times 24 + 1,25 \times 45 = 152,25 mm$$

$$l_{eff,1} = \min(l_{eff,cp}; l_{eff,nc}) = \min(150,72; 152,25) = 150,72 mm$$

♦ Mode 1 :

$$M_{pl,1,Rd} = \frac{l_{eff,1} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{150,72 \times 20^2 \times 235}{4 \times 1} = 3,54 \text{ KN. } m$$

$$F_{T,1,Rd} = \frac{4 \times M_{Pl,1,Rd}}{m} = \frac{4 \times 3,54}{24 \times 10^{-3}} = 590 \ KN$$

♦ Mode 2 :

$$l_{eff,2} = l_{eff,nc} = 152,25 \, mm$$

$$M_{pl,2,Rd} = \frac{l_{eff,2} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{152,25 \times 20^2 \times 235}{4 \times 1} = 3,57KN.m$$

$$F_{T,2,Rd} = \frac{2.M_{Pl,2,Rd} + n\sum F_{t,Rd}}{m+n}$$
$$= \frac{2 \times 3,57 + (\frac{30}{1000}) \times 110,59}{(24+30)/1000}$$
$$= 193,66kN$$

♦ Mode 3 :

 $F_{T,2,Rd} = \sum F_{t,Rd} = 2 \times 110,59 =$ 221,18 *KN*

Figure VIII.22 : La résistance de tronçon pour différents modes

♦ Mode 4 :

$$F_{T,4,Rd} = F_{Tw,Rd} = \frac{l_{eff,1} \cdot t_w \cdot f_y}{\gamma_{M0}} = \frac{150,72 \times 8 \times 235}{1} = 283,35 \ kN$$

- <u>Rangée 3 :</u>

$$l_{eff,cp} = 2.\pi.m$$

m = 24 mm distance de boulon de l'âme.

$$e_1 = 120 mm$$

 $l_{eff,cp} = 150,72 mm$. p= 90mm
 $l_{eff,nc} = \alpha.m$

e = 45 mm distance entre boulon et le bord extérieur.

$$\alpha \to \lambda_1 = \frac{m}{m+e} = \frac{24}{24+45} = 0,35 \qquad \lambda_2 = \frac{m_2}{m+e} = \frac{98}{24+45} = 1,42 \text{ Donc } \alpha = 2.\pi$$
$$l_{eff,nc} = \alpha.m = 2 \times 3,14 \times 24 = 150,72 \text{ mm}$$

 $l_{eff,1} = \min(l_{eff,cp}; l_{eff,nc}) = 150,72 mm$

♦ Mode 1 :

$$M_{pl,1,Rd} = \frac{l_{eff,1} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{150,72 \times 20^2 \times 235}{4 \times 1} = 4,25KN.m$$

$$F_{T,1,Rd} = \frac{4 \times M_{Pl,1,Rd}}{m} = \frac{4 \times 4,25}{24 \times 10^{-3}} = 708,3KN$$

✤ Mode 2 :

$$l_{eff,2} = l_{eff,nc} = 150,72 mm$$

$$M_{pl,2,Rd} = \frac{l_{eff,2} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{150,72 \times 20^2 \times 235}{4 \times 1} = 4,25 \text{ KN. m}$$

$$F_{T,2,Rd} = \frac{2.M_{Pl,2,Rd} + n\sum F_{t,Rd}}{m+n}$$

$$F_{T,2,Rd} = \frac{2 \times 4,25 + (\frac{30}{1000}) \times 2 \times 110,59}{(24+30)/1000} = 280,3 \, kN.$$

✤ Mode 3 :

$$F_{T,3,Rd} = \sum F_{t,Rd} = 2 \times 110,59 = 221,18 \, KN$$

♦ Mode 4 :

$$F_{T,4,Rd} = F_{Tw,Rd} = \frac{l_{eff,1}t_w f_y}{\gamma_{M0}} = \frac{150,72 \times 8 \times 235}{1} = 283,35 \ kN$$

Figure VIII.23 : Les différents groupes des rangées

- <u>Groupe de rangées 1+2 :</u>

Groupe de rangée intérieur + centrale :

$$l_{eff,cp} = 2.\pi.m + 2.p$$

m = 24 mm distance de boulon de l'âme.

 $p_1 = 90 mm$

$$l_{eff,cp} = 2 \times 3,14 \times 24 + 2 \times 90 = 330,72 \text{ mm}. l_{eff,nc} = \alpha.m + p = 240,72 \text{ mm}$$

 $l_{eff,1} = \min(l_{eff,cp}; l_{eff,nc}) = \min(330,72; 240,72) = 240,72 mm$

♦ Mode 1 :

$$M_{pl,1,Rd} = \frac{l_{eff\,1} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{240,72 \times 20^2 \times 235}{4 \times 1} = 5,65 \, KN. \, m$$
$$F_{T,1,Rd} = \frac{4 \times M_{Pl,1,Rd}}{m} = \frac{4 \times 5,65}{24 \times 10^{-3}} = 941,66 \, KN$$

$$l_{eff,2} = l_{eff,nc} = 240,72 mm$$

$$M_{pl,2,Rd} = \frac{l_{eff,2} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{240,72 \times 20^2 \times 235}{4 \times 1} = 5,65 \ KN.m$$

$$F_{T,2,Rd} = \frac{2.M_{Pl,2,Rd} + n\sum F_{t,Rd}}{m+n}$$

$$F_{T,2,Rd} = \frac{2 \times 5,65 + (\frac{30}{1000}) \times 2 \times 110,59}{(24+30)/1000} = 332,15 \text{ kN}.$$

✤ Mode 3 :

$$F_{T,3,Rd} = \sum F_{t,Rd} = 2 \times 110,59 = 221,18 \, KN$$

✤ Mode 4 :

$$F_{T,4,Rd} = F_{Tw,Rd} = \frac{l_{eff,1} \cdot t_w \cdot f_y}{\gamma_{M0}} = \frac{240,72 \times 8 \times 235}{1} = 452,55 \ kN$$

- Groupe de rangées 2+3 :

Groupe de rangée intérieur + centrale :

- $l_{eff,cp}=2.\,\pi.\,m+2.\,p$
- m = 24 mm distance de boulon de l'âme .
- $p_1 = 90 mm$

$$l_{eff,cp} = 2 \times 3,14 \times 24 + 2 \times 90 = 330,72 \text{ mm.} l_{eff,nc} = \alpha.m + p = 240,72 \text{ mm}$$
$$l_{eff,1} = \min(l_{eff,cp}; l_{eff,nc}) = \min(330,72; 240,72) = 240,72 \text{ mm}$$

♦ Mode 1 :

$$M_{pl,1,Rd} = \frac{l_{eff\,1} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{240,72 \times 20^2 \times 235}{4 \times 1} = 5,65 \, KN. \, m$$

$$F_{T,1,Rd} = \frac{4 \times M_{Pl,1,Rd}}{m} = \frac{4 \times 5,65}{24 \times 10^{-3}} = 941,66 \text{ KN}$$

✤ Mode 2

$$l_{eff,2} = l_{eff,nc} = 240,72 mm$$

$$M_{pl,2,Rd} = \frac{l_{eff,2} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{240,72 \times 20^2 \times 235}{4 \times 1} = 5,65 \ KN.m$$

$$F_{T,2,Rd} = \frac{2.M_{Pl,2,Rd} + n\sum F_{t,Rd}}{m+n}$$

$$F_{T,2,Rd} = \frac{2 \times 5,65 + (\frac{30}{1000}) \times 2 \times 110,59}{(24+30)/1000} = 332,15 \text{ kN}.$$

♦ Mode 3 :

$$F_{T,3,Rd} = \sum F_{t,Rd} = 2 \times 110,59 = 221,18 \, KN$$

 \bigstar Mode 4 :

$$F_{T,4,Rd} = F_{Tw,Rd} = \frac{l_{eff,1}.t_w.f_y}{\gamma_{M0}} = \frac{240,72 \times 8 \times 235}{1} = 452,55 \ kN$$

- <u>Groupe de rangées 1+2+3 :</u>

Groupe de rangée intérieur + centrale :

Mécanisme circulaire : $l_{eff,cp} = 2.\pi.m + 2\sum p_i$

m = 24 mm distance de boulon de l'âme.

 $p_1=90\;mm$

$$p_2 = 90 \ mm$$

$$l_{eff,cp} = 2 \times 3,14 \times 24 + 2 \times (90 + 90) = 510,72 \text{ mm}.$$

Mécanisme non circulaire $l_{eff,nc} = \alpha. m + \sum p_i = 330,72 mm$

$$l_{eff,1} = \min(l_{eff,cp}; l_{eff,nc}) = \min(510,72; 330,72) = 330,72 mm$$

♦ Mode 1 :

$$M_{pl,1,Rd} = \frac{l_{eff\,1} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{330,72 \times 20^2 \times 235}{4 \times 1} = 7,77 \ kN. m$$
$$F_{T,1,Rd} = \frac{4 \times M_{Pl,1,Rd}}{m} = \frac{4 \times 7,77}{24 \times 10^{-3}} = 1295 \ KN$$

✤ Mode 2

$$l_{eff,2} = l_{eff,nc} = 330,72 mm$$
$$M_{pl,2,Rd} = \frac{l_{eff,2} \times t_f^2 \times f_y}{4.\gamma_{M0}} = \frac{330,72 \times 20^2 \times 235}{4 \times 1} = 7,77 kN.m$$

$$F_{T,2,Rd} = \frac{2.M_{Pl,2,Rd} + n\sum F_{t,Rd}}{m+n}$$

$$F_{T,2,Rd} = \frac{2 \times 7,77 + (\frac{30}{1000}) \times 2 \times 110,59}{(24+30)/1000} = 410,66 \, kN.$$

✤ Mode 3 :

$$F_{T,3,Rd} = \sum F_{t,Rd} = 2 \times 110,59 = 221,18 \, KN$$

♦ Mode 4 :

$$F_{T,4,Rd} = F_{Tw,Rd} = \frac{l_{eff,1} \cdot t_w \cdot f_y}{\gamma_{M0}} = \frac{330,72 \times 8 \times 235}{1} = 621,75kN$$

Annexes E : Calcul au feu

On distingue deux grandes familles de protection :

• La protection passive rapportée autour de l'acier :

La protection passive signifie que la structure porteuse est revêtue d'un matériau isolant ou enrobée de béton pour éviter l'effondrement du bâtiment sous l'effet de l'incendie (voir Figure 1-16). Cette forme de protection passive est généralement utilisée pour des structures en acier ou en bois, mais parfois aussi pour des éléments en béton. Pour les bâtiments à un seul niveau, la protection passive est le moyen le moins efficace pour prévenir les accidents et limiter les dommages économiques. Lorsque la température dans le compartiment en feu a atteint un niveau tel que la structure s'effondre, les personnes qui y seraient encore présentes sont mortes depuis longtemps. En outre, à ce stade de l'incendie, le contenu a aussi subi des dommages très importants :

- La peinture intumescente :

Figure VIII.24 : Les différentes couches de la peinture intumescente

Ce produit se présente sous l'aspect d'un film de peinture de 0,5 mm à 4 mm d'épaisseur. Chauffé entre 100° et 200 °C, il gonfle et se transforme en mousse à l'aspect meringué dont l'épaisseur peut atteindre 30 à 40 mm. Il provoque alors une isolation thermique des structures. Il est utilisé pour des degrés SF de 30 min, plus rarement pour une SF de 60 min ou 120 min. Produit relativement onéreux, il permet cependant de ne pas altérer la perception visuelle des structures.

Les produits projetés (flocage) :

Les produits dits de flocage sont projetés directement sur l'élément. Ils sont généralement composés soit de produits de faible densité (< 250 kg/m3) constitués de fibres minérales agglomérées par un liant, soit de produits pâteux à forte densité (>450 kg/m3) tels que vermiculite, ciment, plâtre, laitier, tous exempts d'amiante. Les enduits pâteux sont le plus souvent préférables aux enduits fibreux. Ils sont appliqués en plusieurs couches. Certains d'entre eux peuvent aussi s'appliquer sur une structure non protégée contre la corrosion. Ces produits peuvent procurer des SF allant jusqu'à 240 min. Secs et compactés par roulage, ils peuvent être peints. Ces matériaux présentent l'inconvénient d'être fragiles (cas des enduits fibreux) et d'un aspect peu esthétique.

On les réserve aux parties cachées de la structure (par exemple poutres dissimulées par un faux plafond).

Figure VIII.25 : Technique de flocage

- Les produits en plaque :

Les produits en plaque forment un caisson isolant autour du profil métallique. Ils sont généralement fabriqués à base de fibres minérales (plaques de faible densité < 180 kg/m3) ou de plâtre, vermiculite, ou composants silico-calcaires (plaques de forte densité > 450 kg/m3). Les plaques sont fixées mécaniquement sur une ossature secondaire propre par vissage ou par collage. Cette technique est particulièrement utilisée pour des profils de section constante. Il est possible d'obtenir jusqu'à 240 min de stabilité au feu.

Le plâtre est le matériau le plus utilisé parce qu'il est économique, léger, maniable et partiellement composé avec de l'eau de cristallisation qui lui assure son bon comportement au feu. En assurant la protection au feu, il a aussi le mérite de constituer un parement de paroi verticale comme horizontale prêt à la finition. L'utilisation de plaques de plâtre spéciales feu permet de doubler la durée de protection.

- Les laines :

Figure VIII.26 : Les laines de roche

Lorsqu'un système constructif composé d'une structure métallique et de parois métalliques ne peut assurer à lui seul la stabilité demandée, on utilise des laines de roche ou des complexes laine de roche + réfractaire pour résister aux très hautes températures sur une durée de temps importante. Dans la majorité des cas, les laines conviennent pour respecter l'exigence de résistance au feu des parois décrites par la réglementation.

La laine de roche utilisée, dans les cas de forte résistance au feu, doit :

- Assurer la tenue mécanique (avec ou sans fixations

selon l'ouvrage) ; résister à la chaleur ;

- Conserver la performance de la paroi pour la durée déterminée.

Elle doit donc répondre aux caractéristiques suivantes :

- Forte masse volumique > 70kg/m3;
- Faible teneur en liant ;
- Forte rigidité du produit ;
- Composition spécifique (choix des matières premières).

- Les protections par écran :

Il s'agit soit de plafonds suspendus, soit de panneaux de cloison qui, par l'interposition entre le foyer et l'ossature en acier, ralentissent l'échauffement de cette dernière.

Une attention toute particulière doit être apportée au mode d'assemblage et de fixation et plus particulièrement à toutes les jonctions : entre les

éléments d'écran eux-mêmes et entre les éléments

d'écran et les discontinuités créées (cloisons, dalles, poteaux) afin que le feu ne puisse pas se propager dans les plénums.

En combinant la fonction de protection à celles du cloisonnement, de l'isolation thermique ou

Protection par produits en plaques. Exemple : plaques de plâtre

	Standard	Spéciales feu
2 BA 13	30 mn	60 mn
2 BA 15	30 mn	60 mn
2 BA 18	60 mn	90 mn
4 BA 13	60 mn	120 mn

Figure VIII.27 : La protection par produits en plaques

phonique et du parement esthétique, ces écrans offrent l'avantage d'un coût réduit. L'utilisation d'écrans horizontaux ou verticaux implique que le produit concerné ait subi un essai approprié de résistance au feu. Pour les plafonds suspendus ou les cloisons, les procès verbaux officiels délivrés par un laboratoire agréé donnent le degré de résistance au feu pouvant être obtenu. Des écrans métalliques appelés déflecteurs peuvent également être fixés sur les structures exposées à protéger. Ces déflecteurs sont susceptibles de participer à la composition architecturale.

Figure VIII.28 : Les différentes techniques de la protection par écran

- Compartimentage :

La division d'un immeuble en plusieurs espaces qui sont séparés par des murs coupe-feu est un moyen efficace pour réduire les effets d'un incendie. Le compartimentage tient ainsi une place importante dans tous les codes de construction nationaux.

Figure VIII.29 : Le compartimentage

• La protection active des structures :

Même sans protection passive, il est possible d'assurer la sécurité d'une structure en acier face à un incendie conséquent en utilisant les moyens suivants :

Sprinkler :

Une installation de sprinkler contribue tout d'abord à limiter l'incendie, évitant ainsi sa propagation. Ensuite, le dégagement de fumée est limité et avec lui le risque de dégâts corporels. Comme la température reste relativement faible, les dommages au contenu du bâtiment et à la structure elle-même sont limités.

Figure VIII.30 : Un sprinkler

- Alarme incendie :

Les systèmes d'alarme incendie- le plus souvent basés sur la détection de chaleur et/ou de fumée - font en sorte que les occupants soient alertés à un stade précoce de l'incendie, de sorte que le temps disponible pour l'évacuation soit maximum. Les systèmes d'alarme incendie permettent une intervention rapide des services d'incendie, ce qui réduit le risque d'embrasement généralisé et l'étendue des dommages.

Figure VIII.31 : Alarme incendie

- Ventilation

Il est essentiel de ne pas garder la chaleur et la fumée dans le bâtiment mais de les évacuer aussi vite que possible vers l'extérieur. La propagation dans le bâtiment de la fumée et de la chaleur peut, non seulement mettre les occupants en grand danger, mais aussi entraver l'action des services d'incendie.