REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE وزارة التعليم العالي و البحث العالمي و البحث العالمي Ministère de l'Enseignement Supérieur et de la Recherche Scientifique - امعة أبي بكر بلقايد تامسان Université Aboubakr Belkaïd Tlemcen –

كلية التكنولوجيا Faculté de Technologie

قسم الري

Département d'hydraulique

Mémoire de projet de fin d'études pour l'obtention du

Diplôme de MASTER En : Hydraulique

Option: Hydraulique urbaine

Par:

Mlle. FERHI zahra

Mlle.BENKHOUANE Amina

Sujet:

L'influence de concentration de sel sur la qualité de l'eau traitée par les membranes d'osmose inverse.

Soutenu publiquement, le 29/06/2019, devant le jury composé de :

Mme LALLAM F.
M BOUMEDIENNE M.
Mme BELARBI F.
M CHIBOUB FELLAH A
Mme BOULFRED S.

Président
Examinateur
Examinatrice
Encadreur
Co-Encadreur

Remerciement

Toute nos gratitude et remerciement vont à Allah, le clément et le miséricordieux qui nous a donné la force, la patience, le courage et la volonté pour élaborer ce travail que nous tenons à exprimer nos profondes gratitudes à toutes les personnes ayant contribuées de près ou de loin à l'élaborer.

Nous voudrons dans un premier temps remercier nos encadreurs **Mr A.CHIBOUB FELLAH** Professeurs au Département d'Hydraulique et **Mme S.BOULEFRED** Chercheuse au centre de recherche CRAPC qui ont eu la bienveillance de nous orienter durant notre travail. Leurs conseils, leur confiance et la patience qu'ils nous ont accordée ont grandement contribuées à l'élaboration de ce projet.

Nous remercions aussi *Mme F. LALLAM* pour avoir accepté de nous faire l'honneur de présider le jury de ce mémoire et de bien vouloir l'examiner.

Nous adressons nos profonds remerciements à **Mr M. BOUMEDIENE** et **Mme F.BELARBI** qui ont spontanément eux la volonté et l'honneur d'examiner ce travail.

Nous adressons aussi nos sincères remerciements aux responsables et agents de laboratoire de traitement des eaux de département d'Hydraulique au niveau de la faculté qui nous ont beaucoup aidés aux cours des expériences.

Nous tenons à remercier vivement tous les gens de la station de dessalement BWC et Mr CH.BOUZADA en particulier pour son accueil, son écoute et ses conseils.

Nous exprimons nos gratitudes à tous nos enseignants qui ont contribué à notre formation depuis l'école primaire jusqu'aux études universitaires.

Enfin à nos chers parents, qui nous ont soutenus, encouragés, aidés durant notre formation et durant toute notre vie, sans eux on n'en serait pas là, gratifions leurs efforts.

Dédicace

A la mémoire de ma grande mère

Puisse dieu l'accueillir dans son infinie miséricorde.

A celui qui a toujours garni mes chemins avec force et lumière ... mon très cher père Ahmed.

A la plus belle du mondema tendre mère Malika.

A mes chères sœurs Wassila et Marwa.

A mes frères Abdel Ali et Seif El Dine.

A ma nièce Abir et mon neveu Ahmed Abde Samad.

A toute ma famille pour l'amour et le respect qu'ils mon toujours accordé.

A mon binôme pour la sœur agréable qu'elle était et qu'elle restera pour moi.

A tous mes amís

Pour une sincérité si merveilleuse jamais oubliable, en leurs souhaitant tous le succées et le bonheur.

A toutes la promotion " Hydraulique Urbain 2018/2019 "

Pour tout ce que nous avons partagé, échangé ensemble durant ces années.

A tous les personnes

Qui m'a aidé à franchir un horizon dans ma vie.

Je dédie ce modeste travail...

BENKHOUANE Amína

DEDICACE

A cœur vaillant rien d'impossible

A conscience tranquille tout est accessible

Quand il y a la soif d'apprendre Tout vient à point à qui sait attendre

Quand il y a le souci de réaliser un dessein Tout devient facile pour arriver à nos fins

Malgré les obstacles qui s'opposent En dépit des difficultés qui s'interposent

Les études sont avant tout Notre unique et seul atout

Tout d'abord je tiens à remercier le tout puissant de m'avoir donné le courage et la Patience pour arriver à ce stade afin de réaliser ce modeste travail que je le dédie à :

Mes très chers parents que dieu le tout puissant les protège et les garde, ils m'ont Guidé durant les moments les plus pénibles de ce long chemin ;

Ma mère qui a été à mes côtés et m'a soutenu durant toute ma vie.

Mon père qui n'a pas cessé de m'encourager et de se sacrifier pour que je puisse franchir tout obstacle durant toutes mes années d'étude.

A ma précieuse sœur « Asma », les mots ne peuvent résumer ma reconnaissance et mon amour à ton égard

Mes très chers frères « Oussama, Alaeddine et Mohammed el Amine ».

A ma nièce adorable « Alae ». je t'exprime à travers ce travail ma grande affection, mon grand amour et mon profond attachement.

A mon futur mari « Chemsseddine » je te dédié ce travail avec mes vœux de réussite, de prospérité et de bonheur. Je prie Dieu le tout puissant de préserver notre attachement mutuel, et d'exaucer tous nos rêves.

A mon binôme « Amina » d'avoir eu le courage d'achever ce travail malgré tout ce qu'elle a enduré.

A tous mes amies avec lesquelles j'ai partagé mes moments de joie et de bonheur Que toute personne m'ayant

aidé de près ou de loin, trouve ici l'expression de ma reconnaissance. Toute la promotion 2019. A vous ...merci.

F.ZAHRA.

Résumé:

La pénurie en eau semble devenir une perspective inquiétante pour l'humanité. Aujourd'hui les pays en situation de stress hydrique sont de plus en plus nombreux tandis que les besoins en eau ne cessent de grandir. Face à ce constat, de nombreuses solutions techniques ont été apportées dont celle du dessalement de l'eau de mer.

L'objectif de ce travail est de faire une étude expérimentale sur l'efficacité d'une membrane

type mince spirale, disponible dans notre laboratoire, pour le dessalement des eaux saumâtres préparées par dissolution du sel avec l'eau de robinet (salinité de 2 à 5 g/l) et aussi pour les eaux issues du prétraitement de la station de 'Chatt El Hilal'(salinité 3 à 6 g/l). Plusieurs paramètres (salinité de l'eau, pression transmembranaire appliquée, pression d'attaque de la membrane) ont été étudiés en vue de tester l'efficacité de cette membrane vis-à-vis à la rétention en sel et la production d'une eau de bonne qualité à la consommation.

Les résultats obtenus ont démontré que plus le temps augmente plus le volume de perméat augmente et plus la conductivité du perméat diminue, mais aussi que le meilleur compromis est obtenu à $\Delta P = 1$.

Mots-clés: Dessalement des eaux de mer et des eaux saumâtres, osmose inverse, pression osmotique, perméat, concentrât, conductivité.

Abstract:

Water scarcity seems to be a worrying prospect for humanity. Today, countries experiencing water stress are becoming more and more numerous as the need for water continues to grow. Faced with this observation, many technical solutions have been made including the desalination of seawater.

The objective of this work is to make an experimental study on the efficiency of a membrane

thin spiral type, available in our laboratory, for the desalination of brackish water prepared by dissolving salt with tap water (salinity of 2 to 5 g / l) and also for water from the pretreatment of the station 'Chatt El Hilal '(salinity 3 to 6 g / l). Several parameters (water salinity, applied transmembrane pressure, membrane attack pressure) were studied in order to test the effectiveness of this membrane with respect to salt retention and the production of a salt, water of good quality for consumption.

The results obtained have shown that the more the time increases the more the permeate volume increases and the permeate conductivity decreases, but also that the best compromise is obtained at $\Delta P = 1$.

Keywords: Desalination of seawater and brackish water, reverse osmosis, osmotic pressure, permeate, concentrate, conductivity.

ملخص :

إن مشكل نذرة المياه أصبح أمر مقلق للبشرية. حيث أن الكثير من البلدان تعاني من الإجهاد المائي بسبب تزايد الاحتياجات. لذلك تم تقديم عدد من الحلول التقنية كتحليه مياه البحر.

الهدف من هذا العمل هوإجراء دراسة حول تحلية المياه المالحة المحضرة في المخبر من المحاليل الملحية المخففة في ماء الحنفية والمياه المالحة المحضرة من مياه البحر الناتجة عن المعالجة المسبقة لمحطة شاطئ الهلال بتراكيز مختلفة (من 2 الى 6 مغ/ل) لإظهار تأثير المعالجة على جودة المياه ونفاذية الغشاء.

وأظهرت النتائج أن ناقلية المياه المحلاة تتناقص مع الوقت ويتم الحصول على أفضل حل في $\Delta P = 1$.

الكلمات المفتاحية

تحلية مياه البحر المالحة والمياه القليلة الملوحة، الماء المخفف، الماء المركز، الضغط التناضحي، التناضح العكسي، الناقلية

Liste des figures

Figure I.1: schéma général d'une installation dessalement.	5
Figure I.2: Répartition géographique des grandes stations de dessalement sur le littoral	
Algérien	
Figure II.1 : Procédés de dessalement conventionnels industrialisés	12
Figure II.2 : schéma de principe de distillation	13
Figure II.4 : Schéma de principe d'un système de distillation à multiples effets	14
Figure II.7 : Principe de l'électrodialyse	16
Figure II.8: Principe des phénomènes d'osmose et d'osmose inverse	18
Figure II.9: Représentation de la pression osmotique	19
Figure II.10: Éléments constitutifs d'une unité d'osmose inverse	20
Figure II.11: Représentation des membranes planes	21
Figure II.12: Représentation d'un module spirale	21
Figure II.13: Représentation des modules tubulaires	22
Figure II.14: Représentation des modules à fibre creuses	22
Figure II.15 : Récupération de l'énergie du concentrât par turbin Pelton	25
Figure II.16: schéma récupération d'énergie par échangeurs de pression	25
Figure III.1: Les différentes formes de colmatage	28
Figure IV. 1 : Station de dessalement de Chatt El Hilal	33
Figure IV.2: Plan des émissaires	35
Figure IV. 3: plan de bâtiment de captage	36
Figure IV. 4: Réservoirs des différents dosages chimiques	37
Figure IV. 5: Filtres à sables et anthracites	38
Figure IV. 6: filtre à cartouches	39
Figure IV. 8 : bâtiment de la saumure	39
Figure IV. 9: Système CO2	40
Figure IV.11: Réservoir de stockage de l'eau dessalée.	40
Figure IV.12: colorimètre HACH DR 890.	43
Figure IV.13: Turbidimètre	45
Figure IV.14: réactifs pour la détermination de carbonate et bicarbonate	
Figure IV.15: Appareil de détermination de SDI	58
Figure IV.16 : Appareil de détermination de MES	60
Figure IV.17: Comparaison de valeurs d'alcalinité avec la norme algérienne	61
Figure IV.18: comparaison des valeurs de calcium avec la norme Algérienne.	62
Figure IV.19: Comparaison de la dureté totale de l'eau avec la norme algérienne	62
Figure IV.20: Variation de l'indice de Langelier en fonction du temps.	63
Figure IV. 21: Comparaison des valeurs de chlore libre avec la norme	63
Figure IV.22:Comparaison des valeurs de pH avec la norme Algérienne.	64
Figure IV.23:Comparaison des valeurs de température avec la norme Algérienne	64
Figure IV.24: Comparaison des valeurs de TDS avec la norme Algérienne	65
Figure IV.25: Comparaison des résultats de la conductivité avec la norme Algérienne	65
Figure IV.26: Comparaison de la turbidité avec la norme Algérienne.	
Figure V.1: Construction de pilot TE 200	
Figure V.2: Construction de pilot TE 200	42
Figure V.3: Instrumentation du pilot TE 200	43
Figure V.4: Liste des vannes.	44

Figure VI. 1: La variation de la conductivité de perméat en fonction du temps	
$(P_{entrée}=4.5 \text{ bar }; \Delta P=0; 0.5;1; 1.5; 2; C=2g/L)$	75
Figure VI.2: La variation de la conductivité du perméat en fonction du temps	
$(P_{entrée}=4.5 \text{ bar }; \Delta P=0; 0.5;1;1.5; 2; C=2g/L)$	75
Figure VI.3: La variation de volume de perméat en fonction du temps	
$(P_{\text{entrée}}=4.5 \text{ bar }; \Delta P=0; 0.5;1; 1.5; 2; C=2g/L)$	76
Figure VI.4: La variation de taux de rejet en fonction du temps	
$(P_{\text{entrée}}=4.5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2; C=2g/L).$	77
Figure VI. 5: La variation de la conductivité de perméat en fonction du temps	
(P _{entrée} =5.5 bar; ΔP= 0; 0.5;1; 1.5; 2; C=2g/L)	79
Figure VI.6 : La variation de la conductivité de concentrât en fonction du temps	
$(P_{\text{entrée}} = 5.5 \text{ bar}; \Delta P = 0; 0.5; 1; 1.5; 2; C = 2g/L).$	79
Figure VI.7: La variation de volume de perméat en fonction du temps	
$(P_{\text{entrée}} = 5.5 \text{ bar}; \Delta P = 0; 0.5;1; 1.5; 2; C = 2g/L).$	79
Figure VI.8: La variation de taux de rejet en fonction du temps	
$(P_{\text{entrée}} = 5.5 \text{ bar}; \Delta P = 0; 0.5; 1; 2; C = 2g/L).$	80
Figure VI. 9: La variation de la conductivité de perméat en fonction du temps	
Pigne VI. 9. La variation de la conductivité de permeat en fonction du temps $(P_{entrée}=5.5 \text{ bar}; \Delta P=0; 0.5;1;2;C=3g/L)$	82
	02
Figure VI.10 : La variation de la conductivité de concentrât en fonction du temps	92
(Pentrée=5.5 bar; $\Delta P = 0$; 0.5;1; 2; C=3g/L).	83
Figure VI.11: la variation de volume du perméat en fonction du temps	0.2
$(P_{\text{entrée}} = 5.5 \text{ bar }; \Delta P = 0; 0.5; 1; 2; C = 3g/L).$	83
Figure VI.12: La variation de taux de rejet en fonction du temps	0.4
(P _{entrée} =5.5 bar; Δ P= 0; 0.5;1; 2; C=3g/L)	84
Figure VI.13: La variation de la conductivité de perméat en fonction du temps	0.5
$(P_{\text{entrée}} = 8.5 \text{ bar}; \Delta P = 0; 0.5; 1; 2; C = 3g/L).$	85
Figure VI.14 : La variation de la conductivité de concentrât en fonction du temps	0.5
$(P_{\text{entrée}} = 8.5 \text{ bar}; \Delta P = 0; 0.5; 1; 2; C = 3g/L).$	86
Figure VI.15: La variation de volume du perméat en fonction du temps	
$(P_{\text{entrée}} = 8.5 \text{ bar}; \Delta P = 0; 0.5; 1; 2; C = 3g/L).$	86
Figure VI.16: La variation de taux de rejet en fonction du temps	
$(P_{\text{entrée}} = 8.5 \text{ bar}; \Delta P = 0; 0.5; 1; 2; C=3 \text{ g/L}).$	87
Figure VI.17: La variation de la conductivité de perméat en fonction du temps	
$(P_{entrée}=5.5 \text{ bar }; \Delta P=0; 0.5;1; 1.5; 2; C=4g/L).$	89
Figure VI.18: La variation de la conductivité de concentrât en fonction du temps	
$(P_{entrée}=5.5 \text{ bar }; \Delta P=0; 0.5;1; 1.5; 2; C=4g/L).$	90
Figure VI.19 : La variation de volume de perméat en fonction du temps	
$(P_{entrée}=5.5 \text{ bar }; \Delta P=0; 0.5;1; 1.5; 2; C=4g/L).$	90
Figure VI.20: La variation de taux de rejet en fonction du temps	
$(P_{entrée}=5.5 \text{ bar }; \Delta P=0; 0.5;1; 1.5; 2; C=4g/L).$	91
Figure VI.21: La variation de la conductivité de perméat en fonction du temps	
$(P_{entrée}=5.5 \text{ bar }; \Delta P=0; 0.5;1; 1.5; 2; C=4g/L).$	92
Figure VI.22: La variation de la conductivité de concentrât en fonction du temps	
$(P_{entrée}=5.5 \text{ bar }; \Delta P=0; 0.5;1; 1.5; 2; C=4g/L).$	93
Figure VI.23: La variation de volume de perméat en fonction du temps	
$(P_{\text{entrée}} = 5.5 \text{ bar}; \Delta P = 0; 0.5; 1; 1.5; 2; C = 4g/L).$	93
Figure VI.24: La variation de taux de rejet en fonction du temps	
$(P_{\text{entrée}} = 8.5 \text{ bar}; \Delta P = 0; 0.5; 1; 1.5; 2; C = 4g/L).$	94

Figure VI.25: La variation de la conductivité de perméat en fonction du temps	
$(P_{entrée}=10.5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2; C=4g/L)$	95
Figure VI.26: La variation de la conductivité de concentrât en fonction du temps	
$(P_{entrée}=10.5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2; C=4g/L).$	96
Figure VI.27: La variation de volume de perméat en fonction du temps	
$(P_{entrée}=10.5 \text{ bar }; \Delta P=0; 0.5;1;1.5; 2; C=4g/L)$	96
Figure VI.28: La variation de taux de rejet en fonction du temps	
$(P_{\text{entrée}}=10.5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2; C=4g/L)$	99
Figure VI.29: La variation de la conductivité de perméat en fonction du temps	
$(P_{\text{entrée}}=5.5 \text{ bar}; \Delta P=0; 0.5; 1; 1.5; 2; C=5g/L)$	99
Figure VI.30: La variation de la conductivité de concentrât en fonction du temps	
$(P_{\text{entrée}} = 5.5 \text{ bar}; \Delta P = 0; 0.5; 1; 1.5; 2; C = 5g/L).$	100
Figure VI.31: La variation de volume du perméat en fonction du temps	
(P _{entrée} =5.5 bar; ΔP= 0; 0.5;1;1.5; 2; C=5g/L)	100
Figure VI.32: La variation de taux de rejet en fonction du temps	
(P _{entrée} =5.5 bar; ΔP= 0; 0.5;1;1.5; 2; C=5g/L)	101
Figure VI.33: La variation de la conductivité de perméat en fonction du temps	101
Pigure VI.33. La variation de la conductivité de permeat en fonction du temps $(P_{\text{entrée}}=8.5 \text{ bar}; \Delta P=0; 0.5;1;1.5; 2; C=5g/L)$	102
	102
Figure VI.34: La variation de la conductivité de concentrât en fonction du temps (P _{entrée} =8.5 bar; ΔP= 0; 0.5;1;1.5; 2; C=5g/L)	102
	103
Figure VI.35: La variation de volume du perméat en fonction du temps	102
$(P_{\text{entrée}} = 8.5 \text{ bar}; \Delta P = 0; 0.5; 1; 1.5; 2; C = 5g/L).$	103
Figure VI.36: La variation de taux de rejet en fonction du temps	104
$(P_{\text{entrée}} = 8.5 \text{ bar}; \Delta P = 0; 0.5; 1; 1.5; 2; C = 5g/L).$	104
Figure VI.37: La variation de la conductivité de perméat en fonction du temps	107
$(P_{\text{entrée}}=10.5 \text{ bar}; \Delta P=0; 0.5;1;1.5; 2; C=5g/L).$	105
Figure VI.38: La variation de la conductivité de concentrât en fonction du temps	106
$(P_{\text{entrée}}=10.5 \text{ bar}; \Delta P=0; 0.5;1;1.5; 2; C=5g/L).$	106
Figure VI.39: La variation de volume de perméat en fonction du temps	
$(P_{\text{entrée}}=10.5 \text{ bar }; \Delta P=0; 0.5;1;1.5 ; 2 ; C=5g/L).$	106
Figure VI.40 : La variation de taux de rejet en fonction du temps	
$(P_{\text{entrée}}=10.5 \text{ bar}; \Delta P=0; 0.5;1;1.5; 2; C=5g/L).$	107
Figure VI.41: La variation de la conductivité du perméat en fonction du temps	
$(P_{entr\'ee}=5.5 \text{ bar }; \Delta P=0; 0.5;1;1.5; 2; C=3g/L)$	109
Figure VI.42: La variation de la conductivité du concentrât en fonction du temps	
$(P_{\text{entrée}}=5.5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2; C=3g/L).$	110
Figure VI.43: La variation du volume du perméat en fonction du temps	
$(P_{entrée}=5.5 \text{ bar }; \Delta P=0; 0.5;1; C=3g/L).$	110
Figure VI.44: La variation du taux de rejet en fonction du temps	
$(P_{entrée}=5.5 \text{ bar }; \Delta P=0; 0.5;1;1.5 ; 2 ; C=3g/L).$	111
Figure VI.45: La variation de la conductivité de perméat en fonction du temps	
$(P_{entr\'ee}=8.5bar; \Delta P=0; 0.5;1; 1.5; 2; C=3g/L)$	113
Figure VI.46: La variation de la conductivité du concentrât en fonction du temps	
$(P_{entrée}=8.5 \text{ bar }; \Delta P=0; 0.5;1; 1.5; 2; C=3g/L).$	113
Figure VI.47: La variation du volume du perméat en fonction du temps	
$(P_{entrée}=8.5 \text{ bar }; \Delta P=0; 0.5;1; C=3g/L).$	113
Figure VI.48: La variation du taux de rejet en fonction du temps	
$(P_{entrée}=8.5 \text{ bar }; \Delta P=0; 0.5;1; 1.5 ; 2 C=3g/L).$	114

Figure VI.49: La variation de la conductivité de concentrât en fonction du temps	
$(P_{entrée}=8.5 \text{ bar}; \Delta P=0; 0.5; 1; 1.5; 2; C=5g/L).$	116
Figure VI.50: La variation de la conductivité de concentrât en fonction du temps	
$(P_{entrée}=8.5 \text{ bar}; \Delta P=0; 0.5; 1; 1.5; 2; C=5g/L).$	117
Figure VI.51: La variation du volume du perméat en fonction du temps	
$(P_{entrée}=8.5 \text{ bar}; \Delta P=0; 0.5;1; 2; C=5g/L)$	117
Figure VI.52: La variation du taux de rejet en fonction du temps	
$(P_{entrée}=8.5 \text{ bar}; \Delta P=0; 0.5;1; 15; 2; C=5g/L)$	118
Figure VI.53: La variation de la conductivité du perméat en fonction du temps	
$(P_{entr\'ee}=10.5 \text{ bar }; \Delta P=0 ; 0.5 ; 1 ; 1.5 ; 2 ; C=5g/L)$	119
Figure VI.54: La variation de la conductivité du concentrât en fonction du temps	
$(P_{entrée}=10.5 \text{ bar}; \Delta P=0; 0.5; 1; 1.5; 2; C=5g/L)$	120
Figure VI.55: La variation du volume du perméat en fonction du temps	
$(P_{entrée}=10.5 \text{ bar}; \Delta P=0; 0.5;1; 2; C=5g/L)$	120
Figure VI.56: La variation du taux de rejet en fonction de temps	
$(P_{entr\'ee}=10,5 bar; \Delta P=0; 0.5; 1; 1.5; 2; C=5g/L)$	121
Figure VI.57: La variation de la conductivité de perméat en fonction du temps	
(P entrée=8.5 bar ; $\Delta P = 0$; 0.5 ; 1 ; 1.5 ; 2 ; C=6g/L).	123
Figure VI.58: La variation de la conductivité du concentrât en fonction du temps	
$(P_{entrée}=8,5 \text{ bar}; \Delta P=0; 0.5; 1; 1.5; 2; C=6g/L).$	124
Figure V.59: La variation du volume de perméat en fonction du temps	
$(P_{entr\'ee} = 8.5 \text{ bar}; \Delta P = 0; 0.5; 1; 1.5; 2; C=6g/L)$	124
Figure VI.60: La variation du taux de rejet en fonction du temps	
$(P_{entrée}=8,5 \text{ bar }; \Delta P=0; 0.5;1; 1.5; 2; C=6g/L).$	125
Figure VI.61: La variation de la conductivité de perméat en fonction du temps	
$(P_{entrée}=10,5 \text{ bar }; \Delta P=0 ; 0.5 ; 1 ; 1.5 ; 2 ; C=6g/L).$	126
Figure VI.62: La variation de la conductivité du concentrât en fonction du temps	
$(P_{entrée}=10.5 \text{ bar }; \Delta P=0 ; 0.5 ; 1 ; 1.5 ; 2 ; C=6g/L).$	127
Figure VI.63: La variation du volume de perméat en fonction du temps	
$(P_{entrée}=10.5 \text{ bar }; \Delta P=0 ; 0.5 ; 1 ; 1.5 ; 2 ; C=6g/L).$	127
Figure VI.64: La variation du taux de rejet en fonction du temps	
$(P_{entrée}=10,5 \text{ bar }; \Delta P=0; 0.5;1; 1.5; 2; C=6g/L)$	128

Liste des tableaux

Tableau I.1 : Classification des eaux selon la salinité.	
Tableau I.2 : La salinité moyenne des eaux de mer	
Tableau I.3: Les grandes stations en Algérie.	
Tableau I.4: Les stations monoblocs.	
Tableau IV.5 : Observations lors de titrage d'un échantillon	
Tableau IV.6: Résultats d'analyses d'eau traité	

Liste des abréviations

A : Perméabilité au solvant.

ADE: Algérienne des eaux.

B : La perméabilité de la membrane au soluté.

C : Concentration (g/L).

Cm : La concentration d'une espèce au voisinage de la membrane.

Cp : Concentration de perméat.

FC: Facteur de conversion.

i : Nombre d'ions dissociés dans le cas d'un électrolyte.

Jm: Flux massique du solvant.

J soluté : Le flux massique de soluté (Kg.m⁻².s⁻¹).

J solvant: Le flux massique de solvant (Kg.m⁻².s⁻¹).

Jv1: Flux volumique de solvant(m³.s⁻¹).

MES: Matière en suspension (mg/l).

MF: Microfiltration.

MFI: Modified Fouling Index.

MFI-UF: Modified Fouling Index by using Ultrafiltration membrane.

MSF: Multi-Flash.

NF: Nanofiltration.

OI: Osmose Inverse.

P: Pression (bar)

Pe: Pression efficace.

PH: Potentiel d'Hydrogène.

PS: Passage de sels.

Q0: Débit d'alimentation (l/h).

Qc: Débit de concentrât (l/h).

Qp: Débit de perméat (l/h)

 ${f R}$: Constante des gaz parfaits (0,082 L.bar.mol $^{-1}{f K}^{-1}$).

R: Sélectivité.

Rm : Rétention globale du module.

RS: Rejet de sels.

S: Surface (m²).

SDI: Silt Density Index.

T: Température (C°).

TDS: Total de Sel Dissous (ppm).

UF: Ultrafiltration.

V: Volume (ml)

VC: Compression de Vapeur.

Y: Taux de conversion.

 γ : Facteur de polarisation.

 ΔP : La différence de pression de part et d'autre de la membrane (bar).

 Π : Pression osmotique (bar).

 ρ : La masse volumique (kg/m³).

Table des matières

Liste des figures.
Liste des tableaux.
Liste des Abréviations.
INTRODUCTION GENERALE1
CHAPITRE I: Généralités sur l'eau et le dessalement
I.2.REPARTITION DE L'EAU SUR TERRE :
I.3. DEFINITIONS:4
I.3.1. l'eau potable :
I.3.2. l'eau de mer :
I.3.3. les eaux saumâtres :
I.4.LE DESSALEMENT DE L'EAU DE MER :
I.4.1. définition de dessalement :
I.4.2. étapes de dessalement :
I.4.2.1. Le captage d'eau de mer :
I.4.2.2.Le prétraitement :
I.4.2.3. Procèdes de dessalement :
I.4.2.4. Le post-traitement :6
I.4.3. Le dessalement en Algérie:
I.4.4.La capacité installée en Algérie :
I.4.4.1.Les grandes stations :
I.4.4.2. Les stations monoblocs :
I.4.5. Les avantages et les inconvénients de dessalement en Algérie :
I.5.CONCLUSION:11

CHAPITRE II: Les différents procédés de dessalement

II.1. INTRODUCTION:	12
II.2. LA DISTILLATION :	12
II.2.1. Principe:	12
II.2. 2. Distillation a simple effet :	13
II.2.3. Le procédé de distillation a multiples effets :	13
II.2.4. Distillation par détentes successives (Multi Stage Flash, MSF) :	14
II.2.5. Distillation avec compresseur de vapeur :	15
II.3. LES PROCEDES MEMBRANAIRES :	16
II.3.1.L'électrodialyse :	16
II.3.2.L'osmose inverse :	17
II.3.2.1.Définitions :	17
II.3.2.2.Principe d'osmose inverse :	18
II.3.2.3.Pression osmotique :	19
II.3.2.4.schéma générale d'une unité d'osmose inverse :	20
II.3.2.5.Membrane d'osmose inverse:	20
II.3.2.6.Modules d'osmose inverse :	21
II.3.2.7.Caractéristiques principales d'une unité d'osmose inverse :	23
II.3.2.8.Les paramètres influençant le fonctionnement d'un système d'osmose in	verse :
	25
II.3.2.9. Les avantages et les inconvénients de l'osmose inverse:	27
II.4.CONCLUSION:	27
CHAPITRE III: Le colmatage des membranes	
III.1.INTRODUCTION:	28
III.2.DEFINITION:	28
III.3.LES TYPES DE COLMATAGE :	28
III.4.LES COMPOSES A L'ORIGINE DU COLMATAGE :	29
III.5.LES FACTEURS INFLUENCANT LE COLMATAGE :	30

III.6. ESTIMATION DU POTENTIEL DE COLMATAGE :	30
II.6.1 Le test SDI:	30
III.7. PREVENTION DU COLMATAGE :	31
III.8. LE NETTOYAGE DES MEMBRANES :	31
III.9.CONCLUSION:	32
CHAPITRE IV: Description de la station de Chatt El	l Hilal
IV.1.INTRODUCTION:	33
IV.2.DESCRIPTION DE LA STATION DE CHATT EL HILAL :	33
IV.2.1.Situation géographique de la station :	33
IV.3.DESCRIPTION DU FONCTIONNEMENT DE LA STATION:	35
IV.3.1.captage d'eau de mer :	35
IV.3.2.Le bâtiment de captage et de nettoyage préliminaire :	35
IV.3.3.Dosage des produits chimiques :	36
IV.3.4.Les filtres à sables et d'anthracites :	37
IV.3.5.Bâtiment de production d'osmose inverse :	38
IV.3.6.Bâtiment de la saumure :	39
IV.3.7.Post-traitement:	39
IV.3.8.Stockage et livraison :	40
IV.3.9.Différents équipements:	41
IV.4.LES FACTEURS QUI INFLUENCE LE FONCTIONNEMENT DE LA	STATION:41
IV.4.1.Les Incidents fortuits:	41
IV.4.2.Les conditions météorologiques :	41
IV.4.3.Le colmatage des membranes:	41
IV.5.PARTIE LABORATOIRE :	42
IV.5.1.Echantillonnage et mode de prélèvement :	42
IV.5.2.Analyses physico-chimiques :	42
IV.5.2.1.La couleur :	42
IV.5.2.2.La turbidité :	43
IV.5.2.3.ALCALINITE:	45

IV.5.2.4.Calcium:	47
IV.5.2.5.Carbonates et bicarbonates :	49
IV.5.2.6.Chlore libre, chlore total et chlore combiné :	51
IV.5.2.7.Dureté:	52
IV.5.2.8.Indice de Langelier (LSI):	55
IV.5.2.9.SDI :	57
IV.5.2.10.Solides en suspension :	59
IV.5.3.Interprétation des résultats d'eau traité :	61
CHAPITRE V: Matériels et méthodes	
V.1.1.Introduction:	67
V.1.2.Matériels et méthodes :	67
V.1.2.1.Description du pilote TE 200 :	67
V.3.1.Etude de rétention globale de module :	75
V.3.2.Description des appareillages de mesure :	70
CHAPITRE VI: Résultats et interprétation	ıs
VI.1.ETUDE D'OSMOSE INVERSE SUR LES EAUX SAUMATRES : .	7′
VI.1.1.Etude de la variation de la conductivité de perméat et du concent temps pour une concentration de 2g/L :	
VI.1.1.Pression d'entrée 4.5 bar :	
VI.1.1.2.Pression d'entrée 5.5 bar :	80
VI.1.2.Etude de la variation de la conductivité de perméat et du concent temps pour une concentration de 3 g/L:	
VI.2.2.1.Pression d'entrée 5.5 bar :	84
VI.1.2.2.Pression d'entrée 8.5 bar :	8
VI.1.3.Etude de la variation de la conductivité de perméat et du concent temps pour une concentration de 4g/L :	
VI.1.3.1.Pression d'entrée 5.5 bar :	9
VI.1.3.2.Pression d'entrée 8.5 bar :	94
VI.1.3.3.Pression d'entrée 10.5 bar :	97

VI.1.4. Etude de la variation de la conductivité de perméat et du concentrât en fonction du
temps pour une concentration de 5 g/L:101
VI.1.4.1.Pression d'entrée 5.5 bar :
VI.1.4.2.Pression d'entrée 8.5 bar :
VI.2.4.3.Pression d'entrée 10.5 bar :
VI.2.ETUDE D'OSMOSE INVERSE SUR LES EAUX DE MER :
VI.2.1.Etude de la variation de la conductivité de perméat et du concentrât en fonction du
temps pour une concentration de 3g/L :111
VI.2.1.1.Pression d'entrée 5.5 bar :
VI.2.1.2.Pression d'entrée 8.5 bar :
VI.2.2.Etude de la variation de la conductivité de perméat et du concentrât en fonction du
temps pour une concentration de 5g/L :
VI.2.2.1.Pression d'entrée 8.5 bar :
VI.2.2.2.Pression d'entrée 10.5 bar :
VI.2.3.Etude de la variation de la conductivité de perméat et du concentrât en fonction du
temps pour une concentration de 6g/L:
VI.2.3.1.Pression d'entrée 8.5 bar :
VI.2.3.2.Pression d'entrée 10.5 bar :
Conclusion générale
Bibliographies.
Webographies.

Annexes.

Introduction Générale

Introduction générale

L'eau est un élément vital pour toute société et un facteur prépondérant pour son sort économique. En Algérie, pays à climat généralement aride la demande en eau tant pour l'AEP que pour l'agriculture et l'industrie ne cesse de s'accroître d'année en année et par conséquent de plus en plus difficile à satisfaire par la conjugaison de la multiplicité des besoins face à la vulnérabilité de la ressource aux changements climatiques [1].

Face à des situations de pénuries ou de déficit chronique, les pouvoirs publics tentent à capter et mobiliser les eaux pour pouvoir les mettre au service des usagers en temps opportun en quantité suffisante et en qualité souhaité, Cela se traduit par une programmation préparée minutieusement permettant de planifier les actions engagées [2].

Devant cette situation de fait, la volonté des hommes s'est appuyée sur les ressources de la science pour faire appel à la technologie du dessalement de l'eau de mer.

Perçue il y a deux à trois décennie presque comme un gadget, le dessalement se profile aujourd'hui comme une alternative crédible.

Les pouvoirs publics l'ont bien compris en lançant un chapelet de projets de dessalement d'eau de mer intégrant des usines de grande et de moyenne capacité tout au long des cotes algériennes.

Intégrants des technologies pionnières, notamment en matière de récupération d'énergie, le dessalement s'est imposé aujourd'hui comme une solution économiquement viable. Elle libère l'homme des incertitudes saisonnières, libère des disponibilités en eau classique en les réaffectant vers l'agriculture [3].

L'objectif de ce travail consiste à faire une étude sur le procédé d'osmose inverse pour le dessalement des eaux faiblement saumâtres préparées à partir des eaux de mer de la station de 'Chatt El Hilel' à l'aide du pilote TE 200 disponible dans notre laboratoire.

Le manuscrit est divisé en deux parties : Partie théorique et partie expérimentale.

La partie théorique se décompose en 3 chapitres, le 1^{er} est une sorte de généralité sur l'eau et le dessalement à travers le monde, tant dit que le 2^{ème} chapitre, traite des différents procédés de dessalement.et le 3^{ème} chapitre décrit le phénomène de colmatage.

La partie expérimentale qui traite le dessalement de l'eau saumâtre préparée à partir des eaux de mer issues du prétraitement de la station de 'Chatt El Hilel' est décomposée

Introduction générale

en deux parties. La 1^{ère}fait part des analyses prisent au niveau de la station de' Chatt El Hilel' et ses interprétations, la 2^{ème} partie concernant les analyses de l'eau de mer dans laboratoire de traitement des eaux « TEE » département d'hydraulique université Abou Bekr Belkaid, ainsi que les méthodes et le matériel utilisé durant notre travail et puis les résultats obtenus son décrite sous forme de tableaux et graphiques avec l'interprétation des données.

Chapitre I

Généralité sur l'eau et le dessalement

I.1. INTRODUCTION:

L'eau est un élément de la nature qui illustre au mieux les liens étroits qui existent entre l'homme et son environnement. Cette liaison est particulièrement étroite pour les besoins en eau de l'homme, puisqu'il consomme des quantités énormes d'eau et en polluent une bonne partie [4].

L'accès durable aux ressources en eau est une préoccupation majeure qui concerne tous les pays du bassin méditerranéen. Les besoins en eau se multiplient avec l'accroissement des populations, l'urbanisation, le développement économique, industriel et agricole.

De ce fait, la situation de stress hydrique qui frappe déjà la plupart des pays du Sud et de l'Est de la méditerranée (PSEM) peut être s'aggraver [5].

I.2.REPARTITION DE L'EAU SUR TERRE :

La Terre est la planète la plus fortunée du système solaire, elle est en effet la seule à posséder autant d'eau sur sa surface et dans son atmosphère. L'essentiel toutefois est constitué d'eau de mer (97,2 %) et de glace (2,15 %) inutilisables directement. L'eau douce, facilement disponible (lacs, fleuves, certaines eaux souterraines), ne représente que (0,07%) de la ressource totale soit environ un million de km³.

La pénurie d'eau est le deuxième problème majeur du monde nouveau qui se profile à l'horizon avec celle de l'énergie. L'eau n'est pas rare à la surface du globe mais elle est répartie de manière très inégale dans le monde : certains pays ont des ressources en eau très abondantes alors que d'autres en manquent [6].

Tableau I.1 : Classification des eaux selon la salinité [7].

Type d'eau	Salinité (mg/L)
Eau douce	<500
Eau légèrement saumâtre	1 000 – 5 000
Eau modérément saumâtre	5 000 – 15 000
Eau très saumâtre	15 000 – 35 000
Eau de mer	35 000 – 42 000

I.3. DEFINITIONS:

I.3.1. l'eau potable :

Une eau potable est celle qui porte une série de qualités chimiques, physiques et bactériologiques non nuisibles à la santé. La qualité physique fait allusion à une eau incolore, inodore, insipide et fraîche. La qualité chimique, quand à elle, renvoie au fait que l'eau potable ne doit pas contenir de substances chimiques, ni toxiques, ni d'éléments polluants.

Elle ne peut contenir qu'un faible taux de sels minéraux qui lui assure une saveur agréable et une valeur nutritive certaine [8].

I.3.2. l'eau de mer :

L'eau de mer est une eau salée, la caractéristique la plus importante de cette dernière est leur salinité c'est-à-dire leur teneur globale en sels (chlorures de sodium et de magnésium, sulfates, carbonates). La salinité moyenne de l'eau de mer est de 35 g/L, cette valeur varie d'une région à une autre (tableau I.2) [9].

Tableau I.2 : La salinité moyenne des eaux de mer [9].

	Tubicua 112 1 Ea summe moyeme aes caan de mei [5].	
Mer méditerranée	36 à 39 g/l	
Mer rouge	40 g/l	
Mer morte	270 g/l	
Golf persique	40 à 70 g/l	
Mer noir	20 g/l	
Mer baltique	7 g/l	

I.3.3. les eaux saumâtres :

On appelle eau saumâtre une eau salée non potable de salinité inférieure à celle de l'eau de mer. La plupart des eaux saumâtres contiennent entre 1 et 10 g de sels par litre. Ce sont parfois des eaux de surface mais le plus souvent des eaux souterraines qui se sont chargées en sels en dissolvant certains sels présents dans les sols qu'elles ont traversés. Leur composition dépend donc de la nature des sols traversés et de la vitesse de circulation dans ces sols. Les principaux sels dissous sont le CaCO₃, le CaSO₄, le MgCO₃ et le NaCl [9].

I.4.LE DESSALEMENT DE L'EAU DE MER:

I.4.1. définition de dessalement :

Le dessalement est un procédé de déminéralisation. Il consiste à séparer l'eau et les sels à partir d'une eau brute, qui peut être de l'eau de mer ou une eau saumâtre d'origine continentale pour obtenir une eau de salinité voisine de celle des eaux douces [10].

I.4.2. étapes de dessalement :

Une installation de dessalement peut être schématiquement subdivisée en 4 postes :

- une prise d'eau;
- un prétraitement ;
- l'installation de dessalement ;
- le post-traitement.

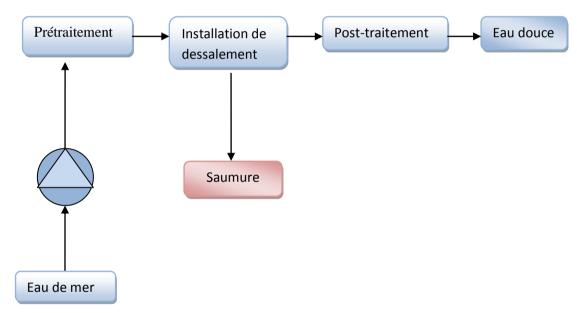


Figure I.1: schéma général d'une installation dessalement [6].

I.4.2.1. Le captage d'eau de mer :

La prise d'eau de mer doit permettre d'obtenir à l'entrée de l'usine de dessalement une eau de meilleure qualité possible, en particulier du point de vue matières en suspension. Deux technologies peuvent être utilisées:

- Les forages côtiers: permettant d'obtenir une eau des très bonnes qualités et relativement stable.
- La prise d'eau de surface: peut être faite en pleine mer. Dans le cas idéal, le captage doit être effectué en zone profonde, éloigné de la côte, protégée des pollutions et des forts courants et ne pas être sous l'influence de rejets [11].

I.4.2.2.Le prétraitement :

Le prétraitement de l'eau de mer avant osmose inverse est absolument nécessaire car ces membranes sont très sensibles au colmatage et une bonne qualité de l'eau en entrée des modules d'osmose inverse est indispensable pour assurer des performances stables de ce procédé sur le long terme.

Les procédés de prétraitement peuvent être divisés en deux catégories : les prétraitements physico-chimiques et les prétraitements chimiques.

- Les prétraitements physico-chimiques : incluent les préfiltres mécaniques, la clarification, la décantation, la filtration et la microfiltration.
- Le prétraitement chimique : consiste en l'addition d'inhibiteurs d'entartrage, de désinfectants, acidification, injection de séquestrant et coagulation-floculation [12].

I.4.2.3. Procèdes de dessalement :

Il existe différents procédés de dessalement de l'eau de mer qui peuvent être classés en trois grandes familles :

1 - les procédés faisant intervenir un changement de phase :

- évaporation;
- congélation.

2- les procédés de perméation sélective à travers une membrane :

- transfert d'ions sous l'action d'un champ électrique (électrodialyse) ou d'un gradient de pression (piezodialyse) ;
- transfert d'eau sous l'action d'un gradient de pression (osmose inverse) ou sous l'action d'un gradient de température (thermo-osmose).

3- les procédés chimiques :

- échange d'ions ;
- extraction par solvant.

En fait, la totalité des installations actuellement en service fait appel à deux grandes familles de procédés : sont la distillation thermique et l'osmose inverse [13].

I.4.2.4. Le post-traitement :

En général, l'étape de post-traitement comporte deux phases principales : l'ajustement du pH et la chloration.

> L'ajustement du pH:

L'eau produite par un des procédés de dessalement est agressive, son pH est inférieur au pH de saturation. Subséquemment, la correction de pH se fait à l'aide d'une solution

alcaline. A ce jour, il existe deux technologies, les saturateurs de chaux et les lits de calcite [14].

La chloration :

Il est nécessaire d'assurer une étape de désinfection pour éviter toute contamination et développement biologique. Dans ce contexte, il existe de nombreuses méthodes de désinfection de l'eau, mais la plus utilisée est la chloration par l'utilisation d'une solution d'hypochlorite de sodium.

La chloration permet de détruire les organismes pathogènes présents dans l'eau et protéger l'eau contre de nouvelles contaminations ultérieures au cours de son transport ou de son stockage. Cette définition fait apparaître trois notions importantes: les désinfectants, le temps de contact et la concentration en désinfectant. Les trois principaux désinfectants utilisés en eau potable sont les suivants : le chlore, l'ozone et le rayonnement par l'ultra-violet [7].

I.4.3. Le dessalement en Algérie:

L'expérience algérienne en matière de dessalement des eaux est étroitement liée au développement de l'industrie et tout particulièrement de l'industrie pétrolière et sidérurgique. Le recours au dessalement en vue d'un usage destiné exclusivement à l'alimentation de la population en eau potable est quasi-inexistant. Une seule expérience a été tentée dans une situation où il n'existait aucune autre solution. Il s'agit de l'unité de déminéralisation d'Ouled Djellaba dans la Wilaya de Biskra (Sud-Est Algérien).

En 1964, trois petits blocs de 8 m³/h chacun ont été installés au complexe Gaz liquéfié d'Arzew (ville côtière à l'ouest du pays). Le procédé utilisé est la distillation à multiple effet.

En 1969, une autre installation a vu le jour à Arzew avec une capacité de production de 4560 m³/j. Le procédé utilisé est le multi stage flash - MSF.

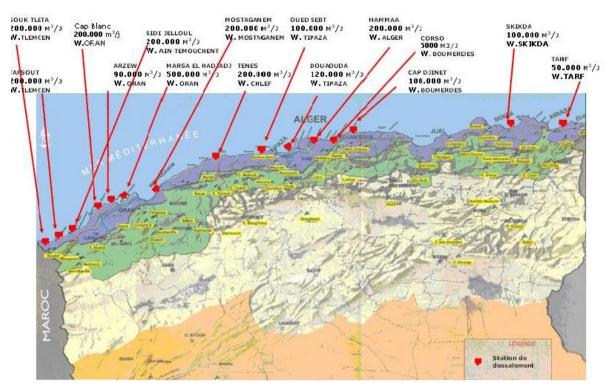
D'autres installations ont été mises en exploitation pour les besoins en eau de haute pureté nécessaire au processus des complexes de production de l'électricité (Cap Djanet à l'Est d'Alger) et l'industrie de liquéfaction (Arzew et Skikda). Il y a également quelques installations qui sont destinées, principalement dans le sud, à fournir de l'eau de qualité pour la consommation humaine dans les bases pétrolières [15].

I.4.4.La capacité installée en Algérie :

I.4.4.1.Les grandes stations :

Treize grandes stations ont été installées, dont la capacité globale est à l'ordre de 2.26 millions de m³/j.

Tableau I.3: Les grandes stations en Algérie [16].


Wilaya	Nom	Capacité	Date de mise en
		${f M}^3/{f j}$	service
Oran	Kahrama(Arzew)	90 000	2005
Alger	Hamma (Alger)	200 000	2008
Skikda	Skikda	100 000	2009
(Ain.Temouchent)	Chatt El Hilal	200 000	2009
Mostaganem	Mostaganem	200 000	2010
Alger	Daouaouda	120 000	2010
Boumerdes	Cap Djenet	100 000	2010
Tlemcen	Souk Thleta	200 000	2010
Tlemcen	Honaine	200 000	2010
Oran	Mactaa	500 000	2015
Taref	Echatt	50 000	2011
Chelef	Ténès	200 000	2010
Tipaza	Oued Sebt	100 000	2010

I.4.4.2. Les stations monoblocs :

En 2002, vingt trois stations ont été réalisées, avec une capacité de production globale de 57 500 m^3/j .

Tableau I.4: Les stations monoblocs [16].

	m³/j
Ain benian 1	2500
Ain benian 2	2500
Bou ismail	5000
Palm beach	2500
Zeralda 1	2500
Zeralda 2	2500
Ghazaouet 1	2500
Ghazaouet 2	2500
Bousfer 1	2500
Bousfer 1	3000
Skikda 1	2000
Skikda 3	5000
Tigzirt	2500
Bateau casse	2500
Cap caxine	2500
Corso	5000
Les dunes	5000
Bateau casse 2	2500
Ain benian 3	2500
	Ain benian 2 Bou ismail Palm beach Zeralda 1 Zeralda 2 Ghazaouet 1 Ghazaouet 2 Bousfer 1 Bousfer 1 Skikda 1 Skikda 3 Tigzirt Bateau casse Cap caxine Corso Les dunes Bateau casse 2

Figure I.2: Répartition géographique des grandes stations de dessalement sur le littoral Algérien [17].

I.4.5. Les avantages et les inconvénients de dessalement en Algérie :

Le dessalement de l'eau de mer est un moyen moderne pour avoir de l'eau. C'est l'une des techniques les plus utilisés pour permettre de produire de l'eau afin de subvenir aux besoins des populations.

Parmi les avantages du procédé de dessalement on distingue :

- L'Algérie dispose d'un littoral de 1200 km;
- L'utilisation de l'eau de mer qui est pratiquement une ressource non polluante et inépuisable ;
- La population et l'industrie à grande consommation d'eau se trouve à proximité de la mer ;
- ➤ Le domaine de dessalement de l'eau de mer a connu ces dernières années une avancée technologique remarquable grâce au développement de différents procédés (l'osmose inverse);
- Une importante demande en eau se situé à proximité de la cote ce qui réduit d'avantage les pris de revient d'eau;

- L'un des grandes avantages de dessalement d'eau de mer est la sécurisation de l'alimentation en eau (potable ou industrie) des différents consommateurs, car cette ressource n'obéit pas aux aléas climatiques et elle permet donc de produire d'une manière permanente les quantités voulues, des quantités journaliers qui dépassent les 200 000 m³/j (station kahrama à Oran 500 000m³/j) [13].
 - Malgré que le dessalement de l'eau de mer apporte une réponse aux besoins d'eau, quelque soit le procédé utilisé il n'est pas sans inconvénients :
- Les installations de dessalement coûtent cher et elles se caractérisent par leur grande consommation énergétique ;
- Ces installations dégagent des gaz à effet de serre, ce qui provoque le réchauffement climatique;
- > Elles détruisent les zones côtières ;
- ➤ Elles bouleversent les écosystèmes, car elles rejettent les déchets appelés saumure ; Certaines espèce ou végétations sont très sensibles à la salinité ;
- Présence de traces de métaux lourds échappés des installations ;
- les rejets associés aux unités de dessalement comme les eaux provenant du nettoyage (filtre à sable, membranes et dépôts) contaminent le milieu [18].

I.5.CONCLUSION:

Puisque, l'eau de mer représente un gisement considérable et une richesse quasiment inépuisable, la technique de dessalement constitue une solution clés pour subvenir aux besoins et à la satisfaction des exigences de développement durable.

Bien qu'un peu moins de 1% de l'eau potable consommée dans le monde soit produite à partir du dessalement, les perspectives offertes par cette technologie sont inexorablement grandissantes. En effet, 40 % de la population mondiale vit sur la côte, soit la zone d'utilisation raisonnable du dessalement [A].

Chapitre II

Les différents procédés de dessalement

II.1. INTRODUCTION:

Plusieurs méthodes permettent la séparation de l'eau de mer en une eau douce contenant une faible concentration des sels dissoutes, et une solution concentrée en sels. La figure présente les principales techniques. On citera notamment la distillation, l'osmose inverse, la congélation et l'électrodialyse [19].

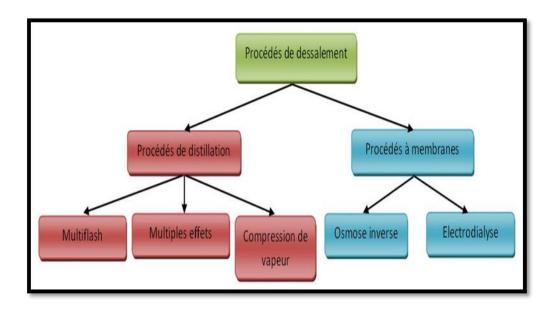


Figure II.1: Procédés de dessalement conventionnels industrialisés [6].

II.2. LA DISTILLATION:

La distillation est un procédé de séparation selon lequel un composé volatil d'une solution est évaporé et ensuite condensé. Cette technologie est la plus ancienne utilisée pour dessaler l'eau de mer commercialement. On distingue deux principaux procédés de distillation (à multiple effet et à détentes étagées) [20].

II.2.1. Principe:

Sur ce montage, l'eau de mer contenue (en 2) est chauffée au moyen d'un bec bunsen (en 1). L'eau se transforme alors en vapeur et passe (en 3), où sa température est évaluée à l'aide d'un thermomètre (en 4). La vapeur passe ensuite (en 5) dans la colonne réfrigérante (alimentée en eau froide par le 6 et le 7). Elle est alors condensée et redevient donc liquide. Ainsi (en 8) on obtient de l'eau pure et parfaitement potable.

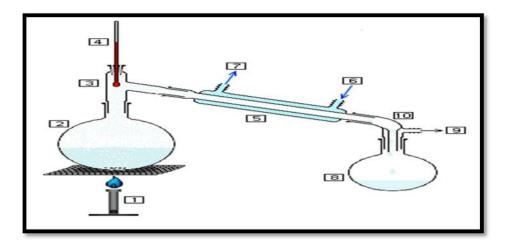
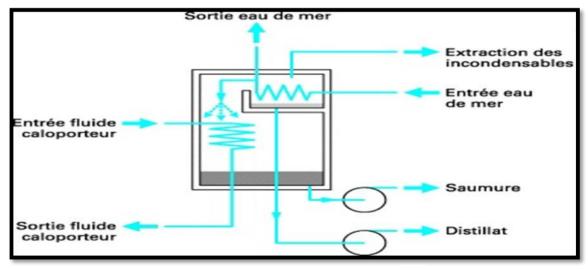



Figure II.2 : schéma de principe de distillation [B].

II.2. 2. Distillation a simple effet :

Permet de reproduire le cycle naturel de l'eau. Dans une enceinte fermée, un serpentin de réchauffage porte à ébullition l'eau de mer. La vapeur produite se condense au contact d'un deuxième serpentin alimenté par de l'eau de mer froide. Un groupe électropompe soutire l'eau condensée, un deuxième, l'eau de mer concentrée [21].

Figure II.3: Distillation à simple effet [C].

II.2.3. Le procédé de distillation a multiples effets :

Ce procédé est basé sur le principe de l'évaporation, sous pression réduite, d'une partie de l'eau de mer préchauffée à une température variant entre 70 et 80°C. L'évaporation de l'eau a lieu sur une surface d'échange, contrairement au cas du procédé précédent, où elle est assurée par détente au sein des étages successifs. La chaleur transférée au travers de cette surface est apportée soit par une vapeur produite par une chaudière, soit par une eau chaude provenant d'un récupérateur de chaleur. La vapeur

ainsi produite dans le 1er effet est condensée pour produire de l'eau douce dans le 2ème effet où règne une pression inférieure, ainsi la chaleur de condensation qu'elle cède permet d'évaporer une partie de l'eau de mer contenue dans le 2ème effet et ainsi de suite. Ainsi seule l'énergie nécessaire à l'évaporation dans le premier effet est d'origine externe. La multiplication du nombre d'effets permet donc de réduire la consommation spécifique (énergie/m3 d'eau douce produite). Son coût est de 5kWh/m³ et pour transformer un kg d'eau liquide en 1 kg d'eau vapeur à la même température il faut environ 2250 kilojoules [D].

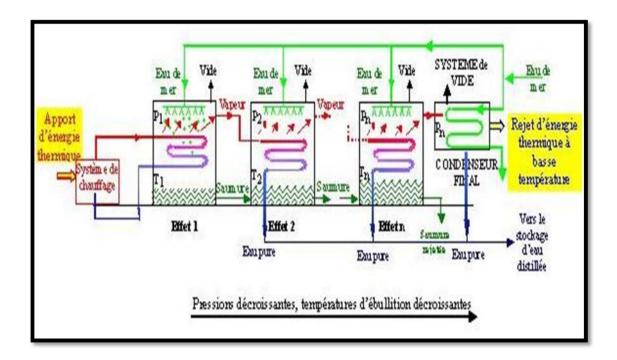
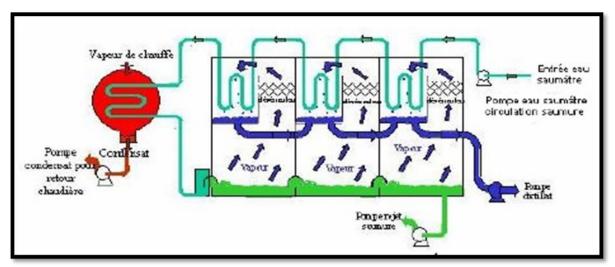



Figure II.4 : Schéma de principe d'un système de distillation à multiples effets [D].

II.2.4. Distillation par détentes successives (Multi Stage Flash, MSF) :

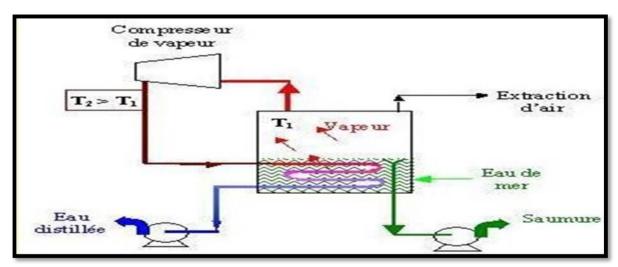

Ce procédé dit Flash consiste à maintenir l'eau sous pression pendant toute la durée du chauffage ; lorsqu'elle atteint une température de l'ordre de 120°C, elle est introduite dans une enceinte (ou étage) où règne une pression réduite. Il en résulte une vaporisation instantanée par détente appelée Flash. Une fraction de l'eau s'évapore puis va se condenser sur les tubes condenseurs placés en haut de l'enceinte, et l'eau liquide est recueillie dans des réceptacles en dessous des tubes [22].

Figure II.5 : Schéma de principe d'un système de distillation par détentes successives [E].

II.2.5. Distillation avec compresseur de vapeur :

Consiste à une revalorisation de la vapeur d'eau du dernier effet par compression grâce à un compresseur mécanique ou via un éjecteur, on parle alors de thermocompression. La compression par éjecteur nécessite par ailleurs une vapeur motrice [23].

Figure II.6: Schéma de principe d'une unité d'évaporation avec Compression de Vapeur [23].

II.3. LES PROCEDES MEMBRANAIRES:

Au lieu d'extraire par évaporation l'eau douce de l'eau de mer, on peut envisager une séparation de l'eau et des sels dissous au moyen de membranes sélectives. Deux procédés utilisant de telles membranes sont actuellement commercialisés: ce sont l'électrodialyse et l'osmose inverse [23].

II.3.1. L'électrodialyse :

L'électrodialyse est un procédé à membranes très ancien puisque la première installation date des années 1960. Ce procédé consiste à éliminer des sels dissous dans l'eau saumâtre par migration à travers des membranes sélectives sous l'action d'un champ électrique [24].

Description du procédé

L'électrodialyse consiste à transférer des ions de sels dissous à travers des membranes semi-perméable.Le mouvement des ions est provoqué par un champ électrique, l'électrode négative (cathode) attire les cations, tandis que les anions se déplacent vers l'électrode positive (anode).

Les installations sont formées d'empilements compartimentés de membranes alternativement anionique et cationique, un compartiment sur deux renferme des saumures concentrées et un sur deux du perméat épuré [25].

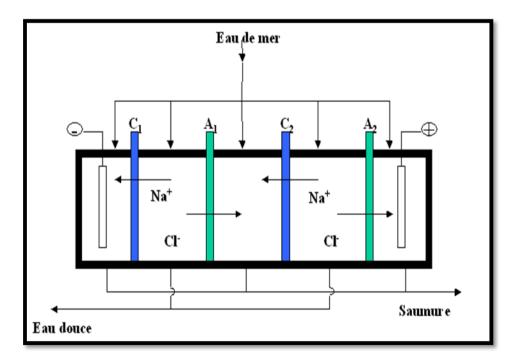


Figure II.7: Principe de l'électrodialyse [25].

On distingue trois types d'électrodialyse :

- L'électrodialyse dite conventionnelle (ED) ;
- L'électrodialyse à membrane bipolaire (EDMB) ;
- L'électrolyse à membranes (EM).

Le point commun de ces techniques est la mise en œuvre de membranes échangeuses d'ions permettant de transférer des ions de façon sélective sous l'effet d'un champ électrique [26].

A. L'ELECTRODIALYSE DITE CONVENTIONNELLE:

Le terme dialyse désigne la diffusion d'une solution à travers une membrane qui lui est perméable. L'électrodialyse désigne le transfert d'ions à travers une membrane qui leur est perméable sous l'effet d'un champ électrique.

B. L'ELECTRODIALYSE A MEMBRANE BIPOLAIRE :

Les membranes bipolaires sont constituées d'une face perméable aux anions et d'une face perméable aux cations. Sous l'effet d'un champ électrique, l'eau présente au cœur de la membrane est dissociée en ions H+ et OH- générés respectivement par les faces cationiques et anioniques.

C. L'ELECTROLYSE A MEMBRANES:

L'électrolyse à membranes est la technique électro-membranaire dans laquelle on couple les effets d'une électrodialyse (migration d'ions au travers d'une membrane semi-perméable) à ceux d'une électrolyse (réaction aux électrodes) [26].

II.3.2.L'osmose inverse:

II.3.2.1. Définitions :

> L'osmose:

Phénomène caractérisé par le passage de la solution la moins concentrée vers la solution la plus concentrée, lorsque deux liquides de concentration différente sont séparés par une membrane semi-perméable, le liquide contenant la plus faible concentration de solides dissous va traverser la membrane pour aller dans le liquide contenant la plus forte concentration de solides dissous.

> L'osmose inverse :

Le phénomène d'osmose est un phénomène qui tend à équilibrer la concentration en solutés de part et d'autre d'une membrane semi-perméable. Ce phénomène est un phénomène naturel courant, notamment à travers les membranes cellulaires. La membrane semi-perméable laissera passer le solvant (le soluté ne passe pas) pour équilibrer la concentration. La différence de concentration crée une pression, appelée Pression osmotique. Pour inverser le passage du solvant et augmenter la différence de concentration, il faut appliquer une pression supérieure à la pression osmotique [27].

II.3.2.2.Principe d'osmose inverse :

Le phénomène d'osmose va se traduire par un flux d'eau dirigé de la solution diluée vers la solution concentrée. Si l'on essai d'empêcher ce flux d'eau en appliquant une pression sur la solution concentrée, la quantité d'eau transférée par osmose va diminuer. Il arrivera un moment ou la pression appliquée sera tel que le flux d'eau va s'annuler. Si pour simplifier, on suppose que la solution diluée est de l'eau pure, cette pression d'équilibre est appelée pression osmotique. Une augmentation de la pression au-delà de la pression osmotique va se traduire par un flues d'eau dirigé en sens inverse du flux osmotique c'est-à-dire de la solution concentrée vers la solution diluée ; c'est le phénomène d'osmose inverse [6].

Figure II.8: Principe des phénomènes d'osmose et d'osmose inverse [28].

II.3.2.3. Pression osmotique:

Si on applique une pression sur la solution concentrée, la quantité d'eau transférée par osmose va diminuer. Avec une pression suffisamment forte, le flux d'eau va même s'annuler: cette pression est nommée la pression osmotique Π (en faisant l'hypothèse que la solution diluée est de l'eau pure). Si on dépasse la valeur de la pression osmotique, on observe un flux d'eau dirigé en sens inverse du flux osmotique: c'est le phénomène d'osmose inverse.

La pression osmotique d'une solution est directement proportionnelle à la concentration en soluté :

$$\Pi = i *C*R*T$$

Où:

i : est le nombre d'espèces d'ions constituant le soluté,

C: la concentration molaire du soluté (mol/l),

T: la température (K) et R la constante des gaz parfaits (0,082 bar.mol⁻¹.K⁻¹).

Π: pression osmotique, exprimée en bar.

Cette relation est valable pour des solutions diluées [29].

Dans le cas d'une solution saline, la pression osmotique peut être, en première approximation estimée à 0.7 bar par gramme/litre de salinité :

$\Pi = 0.7 \text{ C}$

Avec:

 Π : pression osmotique (bar);

C: concentration (g/L).

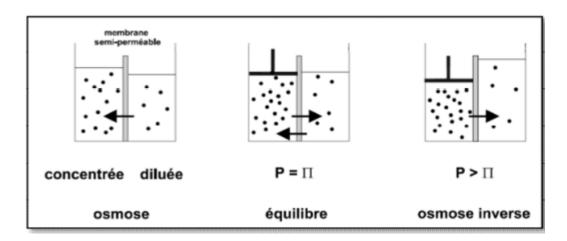


Figure II.9: Représentation de la pression osmotique [24].

II.3.2.4.schéma générale d'une unité d'osmose inverse :

Les principaux constituants d'une installation d'osmose inverse sont les suivant:

- Le poste de prétraitement ;
- -Module avec la membrane;
- -La pompe haute pression;
- Un système de récupération d'énergie.

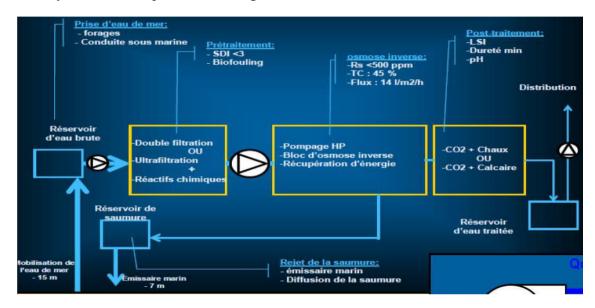
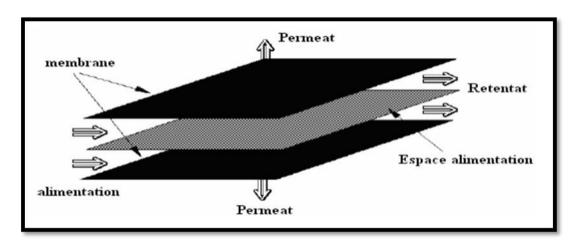


Figure II.10: Éléments constitutifs d'une unité d'osmose inverse [30].

II.3.2.5.Membrane d'osmose inverse:

Les membranes d'osmose inverse (membranes denses) : peuvent retenir les ions monovalents par un mécanisme différent qui fait appel à la solubilisation et la diffusion. Celui-ci considère que le taux de transmission d'un soluté à travers une membrane d'osmose inverse résulte d'un processus dans lequel le soluté se solubilise dans la phase membranaire puis diffuse à travers celle-ci pour rejoindre le compartiment perméat. Les principales applications industrielles de l'osmose inverse sont les suivantes :


- Dessalement d'eau de mer et d'eaux saumâtres ;
- Elimination de pesticides et d'herbicides ;
- Production d'eau ultra pure (industrie électronique, pharmaceutique...);
- Concentration d'antibiotiques [F].

II.3.2.6. Modules d'osmose inverse :

Pour être mise en œuvre, les membranes doivent être montées dans des supports appelés modules. Actuellement, quatre types de modules sont commercialisés:

MODULES PLANES:

Les modules plans sont les modules les plus simples et les plus anciens. Ils présentent sous la forme de plaques unitaires disposées parallèlement les unes aux autres et séparées par des grilles [31].

Figure II.11: Représentation des membranes planes [31].

MODULES SPIRALES:

Les membranes planes sont enroulées en spirale autour d'un tube creux et perforé destiné à collecter le perméat. Entre les membranes est placé un grillage plastique de 0,8 à 1,2 mm d'épaisseur, qui a pour but de créer une turbulence dans la circulation du fluide. On obtient ainsi un cylindre multi- couches où le perméat s'écoule selon un chemin spiralé vers le tube poreux tandis que l'alimentation circule axialement dans les canaux [32].

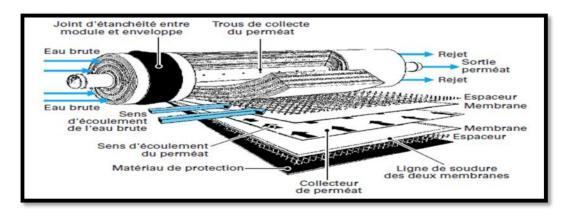
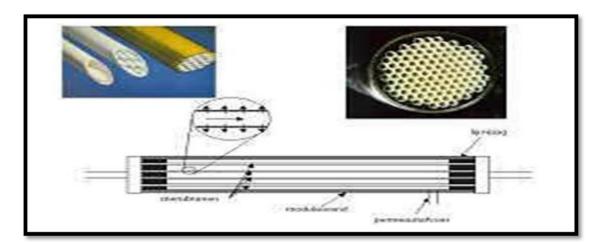



Figure II.12: Représentation d'un module spirale [32].

MODULES TUBULAIRES :

Ce type de module est constitué de tubes métalliques ou plastiques sur lesquels est fixée la membrane semi-perméable. Le diamètre du tube est compris entre 7 et 25 mm et le plus souvent 12,5 mm. L'eau à traiter circule à l'intérieur des tubes et le perméat est recueilli à l'extérieur des tubes. Le tube est soit poreux, soit perforé de trous pour permettre l'évacuation du perméat [22].

Figure II.13: Représentation des modules tubulaires [33].

MODULES FIBRES CREUSES :

Ils contiennent plusieurs milliers de fibres dont le diamètre est de l'ordre de mm. Les faisceaux obtenus sont encollés aux extrémités de façon à assurer l'étanchéité entre les compartiments eau traitée (perméat) et l'alimentation en eau brute (Figure II.16). En osmose inverse, le perméat circule à l'intérieur des fibres et est collecté aux extrémités, rassemblées d'un même côté [34].

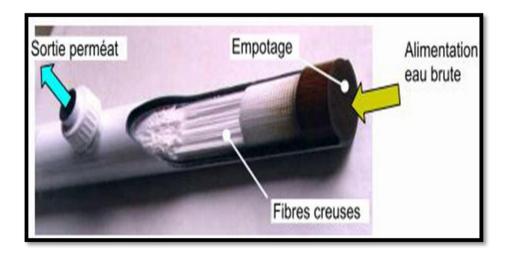


Figure II.14: Représentation des modules à fibre creuses [34].

II.3.2.7. Caractéristiques principales d'une unité d'osmose inverse :

1. Taux de conversion :

Le taux de conversion (TC) est, par définition, la fraction du débit de liquide qui traverse la membrane [35]:

$$TC = Qp/Qo$$
 (II.2)

Avec:

Qp: Le débit de perméat (l/h).

Qo: Le débit d'alimentation (L/h).

2. Sélectivité:

La sélectivité d'une membrane est définie par le taux de rejet R (ou taux de rétention) de l'espèce que la membrane est censée retenir [36]:

$$R = \frac{c_0 - c_p}{c_0} = 1 - \frac{c_p}{c_0}$$
 (II.3)

Où:

C0 : est la concentration de l'espèce à retenir dans la solution

Cp: est la concentration de la même espèce dans le perméat.

3. Débit spécifique (Densité du flux volumique) :

C'est le débit par unité de surface, il s'exprime le plus souvent en l.h⁻¹.m⁻².

4. Taux de production :

C'est la capacité d'un osmoseur à produire une quantité d'eau donnée en temps donnés, il est exprimé en l/h, m³/h ou m³/jour [6].

5. Mécanisme de transfert :

En osmose inverse, les transferts de solvant et de soluté se font par solubilisation - diffusion: toutes les espèces moléculaires (soluté et solvant) se dissolvent à travers la membrane et diffusent à l'intérieur de celle-ci comme dans un liquide sous l'action d'un gradient de concentration et de pression. Le transfert ne dépend donc plus de la dimension des particules mais de leur solubilité dans le milieu membranaire.

Les séparations sont donc d'origine chimique et sont liées au pouvoir solvant de la membrane.

Le flux massique **J solvant** (kg. m⁻².s⁻¹) de solvant et le débit volumique de solvant (m³.s⁻¹) .traversant la membrane sont donnés par les relations:

J solvant = A* (ΔP – ΔΠ) et Q_P = A*S/
$$\rho$$
*(ΔP – ΔΠ) (II.4)

Où:

A: est la perméabilité de la membrane au solvant (m.s⁻¹);

S: la surface de la membrane (m^2) ;

ρ: la masse volumique du solvant (kg. m⁻³);

 ΔP : la différence de pression de part et d'autre de la membrane (bar);

 $\Delta\Pi$: la différence de pression osmotique de part et d'autre de la membrane.

Le flux massique **Jsoluté** (kg. m⁻².s⁻¹) de soluté traversant la membrane est donné par la relation:

$$J \text{ soluté} = B * (C_0 - C_P)$$
 (II.5)

Où:

B: est la perméabilité moyenne de la membrane au soluté (m. s⁻¹);

C0 et CP : sont respectivement la concentration en soluté de l'alimentation et du perméat de part et d'autre de la membrane (kg. m⁻³).

On montre donc que le flux de solvant est proportionnel à la pression efficace ΔP - $\Delta \Pi$ tandis que le flux de soluté en est indépendant. On montre également que le taux de rejet d'une membrane augmente lorsque la pression efficace augmente [37].

6. Système de récupération d'énergie de concentrât :

Dès que l'OI a été appliquée au dessalement de quantités importantes d'eau de mer, on a tout naturellement pensé à récupérer l'énergie hydraulique du concentrât, qui est de l'ordre de 55% de celle nécessaire à la mise en pression des modules d'OI [38].

La décision d'adopter un système de récupération d'énergie doit être prise en comparant le coût des annuités financières dues à cet investissement supplémentaire et le coût de l'énergie récupérée. Elle dépend de [6] :

- de la taille de l'unité;
- du coût de l'énergie;
- de la pression de fonctionnement ;
- du taux de conversion.

Du point de vue technologique deux solutions sont actuellement disponibles : les turbines Pelton et les systèmes dits échangeurs de pression.

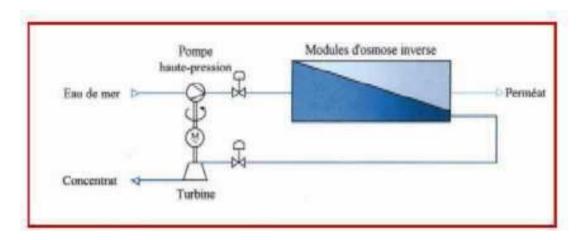


Figure II.15 : Récupération de l'énergie du concentrât par turbin Pelton [13].

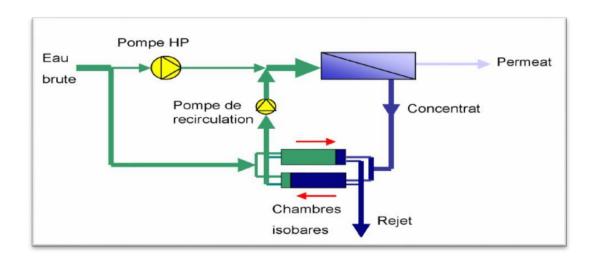


Figure II.16 : schéma récupération d'énergie par échangeurs de pression [6].

II.3.2.8.Les paramètres influençant le fonctionnement d'un système d'osmose inverse :

a) le vieillissement des membranes :

La productivité des membranes diminue avec le temps, cette diminution est due au compactage et au vieillissement des membranes, pour prédire la baisse des performances des membranes on peut se baser sur :

- ✓ une diminution du flux de 7% par an ;
- ✓ une augmentation du passage en sels de 10% par an [33].

b) Le dimensionnement :

Un bon dimensionnement du système d'osmose inverse permet d'optimiser son exploitation, par diminution des risques de colmatage rapide ; le bon dimensionnement permet aussi de diminuer le compactage naturel des membranes [39].

c) condition d'exploitation :

Un système d'OI doit fonctionner le plus possible en continu afin d'éviter les arrêts et les démarrages brusques qui entraînent des cycles répétés de compression et de relâchement des membranes ce qui accélère leur vieillissement il faut aussi éviter les coups de bélier qui endommagent la couche active des membranes, ce qui se caractérise par l'empreinte des espaceurs sur la surface visible des membranes.

On peut aussi constater le vieillissement ou le mauvais fonctionnement des membranes en surveillant l'évolution de la perte de charge tout au long des éléments.

Le procédé d'OI semble être la technologie du futur pour le traitement de l'eau .En effet, ce procédé non polluant permet de produire une qualité constante quelque soit la qualité de l'eau brute [33];[39].

d) La durée de vie d'une membrane :

La durée de vie d'une membrane dépend évidemment de ses qualités chimiques et ses conditions d'emploi [6]:

- ✓ pression de fonctionnement ;
- √ température de ;
- ✓ pH;
- ✓ qualité du pré traitement.

Figure II.17: Module des membranes [39].

II.3.2.9. Les avantages et les inconvénients de l'osmose inverse:

Avantage:

- La méthode de l'osmose inverse tend à se développer car elle présente un fort intérêt en termes de coût, d'investissement, de consommation d'énergie et de qualité de l'eau produite;
- Le coût de l'osmose inverse est devenu inférieur à celui de la distillation en 1995, avec l'apparition d'une nouvelle génération de membranes ;
- Les usines d'osmose inverse rejettent moins de CO₂ que celles par distillation car le procédé consomme moins d'énergie et utilise moins de combustibles fossiles tels que le pétrole ou le charbon [40].

! Inconvénients :

- Ce procédé rejette de la saumure et des produits chimiques nécessaires à l'entretien des membranes;
- L'énergie consommée est énorme ;
- La faible durée de vie des membranes, qui est de l'ordre de 3 ans.
- Les pertes en eau : le rendement n'est que de 75% et ainsi 25% de saumure (solution aqueuse très concentrée en sel) restent à la fin et sont inutilisables [40].

II.4.CONCLUSION:

Le meilleur procédé de dessalement est l'osmose inverse. En terme énergétique il est basé sur une pompe à haute pression suivi d'un système de récupération d'énergie. Ce procédé est actuellement un des moyens les plus utilisés pour obtenir de l'eau ultra pure [41].

Chapitre III

Le colmatage des membranes

III.1.INTRODUCTION:

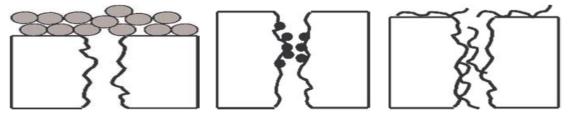
Le colmatage des membranes est le problème le plus aigu des problèmes rencontrés en filtration membranaire des eaux de surface. Il est défini comme l'accumulation des matières à la surface de la membrane (en particulier à l'entrée des pores) ou à l'intérieure des pores de la membrane [42].

III.2.DEFINITION:

Les eaux naturelles (eaux de mer ou eaux saumâtres) contiennent la plupart du temps des matières organiques en suspension qui vont avoir tendance à se déposer sur les surfaces d'échange et à les colmater. Il va en résulter une augmentation de la résistance de transfert et une diminution de la capacité de production de l'installation.

Le développement de microorganismes, dans les parties des installations ou les conditions physico-chimiques le permettent, peut accentuer le phénomène par suite de la formation de films biologiques sur les surfaces de transfert (biofouling). Le colmatage a comme conséquences :

- ✓ Une augmentation de la perte de charge ;
- ✓ Une augmentation du passage de sels, le colmatage empêche la retro diffusion des sels rejetés par la membrane ;
- ✓ Une perte de flux ;


Ainsi, qu'un problème reconnu dans le dessalement qui est les rejets de saumure.

Dans le cas d'installation de dessalement d'eau de mer, des problèmes peuvent éventuellement se poser dans le cas ou les rejets de saumure ne sont pas évacués aux larges ou dilués par les courants marins [43].

III.3.LES TYPES DE COLMATAGE:

Le colmatage d'une membrane peut résulter soit de l'obstruction des pores à

L'intérieure même de la membrane (blocage des pores), soit de phénomènes d'adsorption, soit enfin d'un dépôt de matière en surface de la membrane par convection [44].

Dépôt de particules en surface

Blocage des pores

Adsorption

Figure III.1: Les différentes formes de colmatage [44].

- Le phénomène de polarisation de concentration est lié à l'accumulation de solutés au voisinage de la membrane sous l'effet du flux de solvant. L'accumulation de solutés génère un gradient de concentration et un flux de rétrodiffusion proportionnel au gradient de concentration est créé en opposition au flux convectif .Lorsque la concentration devient très élevée, un gel peut se former notamment en présence d'une forte concentration en macromolécules ou un dépôt en présence de colloïdes. La polarisation de concentration est particulièrement importante en osmose inverse [45].
- L'adsorption de composés présents dans l'eau à la surface d'un matériau membranaire s'explique par des interactions physico-chimiques de type ioniques, hydrophobes. Dans les eaux naturelles, les matières organiques comme les substances humiques vont ainsi s'adsorber à la surface des membranes ou à l'intérieur des pores. Pour ce type de composés, il s'agit préférentiellement d'interactions de type hydrophobe. L'adsorption est d'autant plus importante que le matériau de la membrane est hydrophobe. L'adsorption d'un composé à la surface d'un matériau membranaire concerne toutes les classes de filtration membranaire [46].
- Le blocage de pores est lié à la présence de composés dont la taille est voisine de celle des pores de la membrane. La pénétration de ces composés dans les pores réduit fortement les flux locaux au niveau des pores engendrant alors un colmatage important. En filtration frontale, des lois ont été établies par Hermans et Bredee (1936) pour caractériser les différentes étapes allant du blocage de pores à la formation d'un dépôt: le blocage complet, le blocage standard, le blocage intermédiaire puis la filtration sur gâteau [47].

III.4.LES COMPOSES A L'ORIGINE DU COLMATAGE :

De nombreuses études ont été réalisées afin de déterminer les composés à l'origine du colmatage. Guo et al. (2012) identifient quatre catégories : les composés organiques, les particules, les composés inorganiques et les organismes vivants.

- <u>Composés organiques</u>: Les matières organiques des eaux sont à l'origine de nombreux phénomènes de colmatage, essentiellement par adsorption et blocage de pores. Des techniques analytiques et de fractionnement de matières organiques ont été développées pour caractériser les fractions les plus comatantes [48].
- <u>Particules</u>: Les particules (i.e. défini comme la fraction de matières organiques supérieure à 0,45 µm) sont de nature inorganique (e.g. argiles, charbon actif) ou organique (agrégats de matières organiques). Selon la taille des pores de la membrane,

les particules engendrent un colmatage interne lorsqu'elles pénètrent à l'intérieur des pores ou bien externe lorsque leur taille est supérieure aux diamètres des pores. Elles créent alors un gâteau à la surface de la membrane.

- <u>Composés inorganiques</u>: L'accumulation de composés dissous (e.g. silice, fer) au voisinage de la membrane va engendrer une augmentation de la polarisation de concentration pouvant aller jusqu'à la précipitation. La présence de cations tels que Ca2+ ou des modifications du pH vont impacter l'apparition du colmatage.
- <u>Microorganismes</u>: L'adhésion et le développement de microorganismes (bactéries) conduit à la formation d'un biofilm à la surface de la membrane. On parle alors de biofouling[49].

III.5.LES FACTEURS INFLUENÇANT LE COLMATAGE:

Plusieurs facteurs peuvent influer sur le colmatage et le comportement de la filtration et plusieurs paramètres doivent être pris en compte:

- Les conditions opératoires (mode de filtration, pression transmembranaire, débit d'air, fréquence et intensité des rétro lavages, durée du temps de relaxation, procédure et intervalle des nettoyages chimiques);
- Les caractéristiques des membranes (matériaux, taille et distribution des pores, hydrophobicité et charge des membranes, rugosité de surface);
- Les caractéristiques du module de filtration (géométrie des membranes, hauteur et espacement des membranes, tailles et form es des bulles,...);
- La solution/suspension filtrée (nature, concentration et propriétés physico chimiques des substances de la solution ou la suspension filtrée) [50].

III.6. ESTIMATION DU POTENTIEL DE COLMATAGE:

Plusieurs méthodes d'estimation du potentiel de colmatage d'une eau on été developpées.la plus utiliser est :

II.6.1 Le test SDI:

Le SDI ou indice d'encrassement ou de colmatage des membranes est un procédé pour estimer le degré de blocage ou d'encrassement des membranes dû à la contamination des particules colloïdales qui incluent communément les bactéries, les argiles et le fer. Les produits chimiques utilisés dans le prétraitement comme le chlorure de fer ou les polyélectrolytes peuvent causer un blocage colloïdal.

Selon les équipements de traitement et le type de membranes, des valeurs de SDI ou d'autres sont considérées acceptables. Un SDI 15 inférieur ou égal à 5 pour l'eau

d'entrée à l'usine et un SDI 15 inférieur ou égal à 3 pour l'eau d'entrée aux modules d'osmose, sont considérés comme acceptables [51].

$$SDI_{15} = [(1 - T_0/T_f) \times 100] / T_{15}$$

Avec:

SDI: Silt Density Index (%min⁻¹);

T0: Temps initial pour filtrer un échantillon de 500 mL (sec);

T : Temps après le départ de la mesure (min) ;

 T_f : Temps pour filtrer un échantillon de 500 mL après le temps T (sec).

III.7. PREVENTION DU COLMATAGE:

La stratégie générale de prévention du colmatage peut prendre les formes suivantes

- ✓ Pré-filtration :
- ✓ Enlèvement plus poussé des particules et des colloïdes par un autre procédé ; membranaire ou par un traitement conventionnel ;
- ✓ Ajustement de pH (acidification) pour déplacer les équilibres de solutés des sels susceptibles de précipiter (sel de fer, de manganèse, de calcium, de baryum...);
- ✓ Ajout d'un agent antitartre pour empêcher le dépôt de sels à la surface des membranes
- ✓ Coagulation de la Matière Organique Naturelle. En effet, l'effet colmatant des flocs est, a priori, moins fort que celui des colloïdes ;
- ✓ Enlèvement du fer (Fe²⁺⁾ qui pourrait précipiter.

L'autre stratégie de prévention du colmatage consiste à limiter l'accumulation des agents colmatant à la surface de la membrane. La réduction de la vitesse de filtration (ou vitesse de perméation) réduit les risques de colmatage et amène à opérer les systèmes membranaires à plus faible pression transmembranaire [52].

III.8. LE NETTOYAGE DES MEMBRANES:

Le nettoyage des membranes a pour but de limiter le colmatage irréversible de perméabilité, et par le fait même, à prolonger la durée de vie des membranes. Les différentes techniques de nettoyage sont :

• <u>Le nettoyage mécanique</u> : Le principe consiste à décoller et retirer la matière accumulée sur la membrane par des forces mécanique, d'origine hydrodynamique.

La procédure généralement utilisée est le rétrolavage qui consiste à inverser le sens d'écoulement et le gradient de pression par rapport à la filtration. Le compartiment perméat est ainsi mis sous pression, le perméat passe au travers de la membrane et permet l'arrachement et l'évacuation du dépôt de particules participant au blocage des pores [44].

- <u>Le nettoyage chimique</u>: Il se compose d'une séquence de lavage acide et basique, ainsi que de phases de rinçage. La durée d'une séquence de nettoyage peut aller de 30 à 60 min. Les nettoyages sont généralement effectués à la température la plus élevée que la membrane peut supporter sans dégradation, pour une meilleure efficacité, soit de 60 à 80 °C. L'agent de nettoyage doit à la fois être efficace pour éliminer l'agent colmatant et inoffensif vis- à-vis des membranes et du procédé. Par exemple, des solutions d'HCl ne sont pas utilisables en présence d'acier inoxydable [53].
- <u>Le nettoyage enzymatique</u>: Ce type de nettoyage constitue une alternative aux traitements chimique. Il peut être appliqué dans les cas de membranes sensibles aux réactifs chimique, au pH ou à la température élevée, ainsi que dans les cas de colmatage avancé. Bien que peu énergivores et biodégradables, les enzymes requièrent des temps de traitement plus longs que les traitements chimiques et sont aussi plus coûteux. Pour ces raisons, ils sont peu souvent adoptés [42].

III.9.CONCLUSION:

Les procédés membranaires font partie des nouvelles technologies qui peuvent être utilisés pour la production de l'eau potable à partir de l'eau de surface puisqu'ils permettent d'enlever les ions, les particules inertes en suspension, les colloïdes organiques et les micro-organismes pathogènes. Le colmatage des membranes est le problème le plus aigu des problèmes rencontrés en filtration membranaire des eaux de surface. Ce sujet a fait l'objet de nombreux travaux de recherche portant sur la modélisation du colmatage, sur les indicateurs de colmatage ou sur les mécanismes de colmatage [54].

Le colmatage des membranes d'osmose inverse est un problème inévitable dans les stations de dessalement et pour rendre aux membranes leurs caractéristique initiales, ils doivent fréquemment subir des procédures de nettoyage afin d'éliminer le colmatage qui découle de la filtration membranaire. Ces nettoyages sont responsables d'une Accélération du vieillissement des matériaux qui ont un impact direct sur les performances techniques et économiques des procédés membranaires [55].

Chapitre IV

Description de la station Chatt El Hilal

IV.1.INTRODUCTION:

Parmi les grandes stations de dessalement en Algérie, on trouve la station de Chatt El Hilal dont on a fait un stage de 6 semaines. On a choisie cette station pour plusieurs raisons :

- L'usine de dessalement de Béni Saf utilise la technologie d'osmose inverse, le procédé qui nous intéresse dans notre travail ;
- L'usine de dessalement est exploitée conformément aux normes actuelles en matière de pollution et de rejet ;
- La station dessert les wilayas d'Ain Temouchent (60.000 m 3 /j) et Oran (140.000 m 3 /j);
- Elle a dépassé la capacité de 200 million m³, cette production constitue un record, non seulement au niveau national, mais aussi en Afrique ;
- Le cas de la station de Chatt El Hilal n'a jamais été étudié dans le département d'hydraulique, université de Tlemcen.

IV.2.DESCRIPTION DE LA STATION DE CHATT EL HILAL:

IV.2.1. Situation géographique de la station :

La commune de Oueled El Kihel, ou se situe plage El Hilal se localise au nord-ouest du territoire national et est limité par la mer méditerranéen au nord La commune Ouled El Kihel, ou se situe plage el Hilal s'étend sur une superficie de 54,86km² et possède une cote de 19km de long [43].

Figure IV. 1 : Station de dessalement de Chatt El Hilal [58].

L'usine a été réalisée par une société de projet « Beni Saf Water Company Spa » constituée à partir du consortium GEIDA, de l'ADE et de l'AEC.

Grupo Espagnol de Instaladoras de Desaladoras para Argelia (GEIDA) est un consortium qui a été constitué au début de l'année 2003 à partir de quatre importantes compagnies espagnoles d'études, de construction et d'expert -conseils spécialisées dans le développement des infrastructures dans le domaine d'énergie et de l'eaudénommées qui sont COBRA, BEFESA, CODESA et SADYT.

Sonatrach, la société nationale de pétrole et de gaz d'Algérie et Sonelgaz, la régie de production et de distribution de gaz et d'électricité de l'état algérien ont été incorporées dans l'AEC en mai 2001. Chacune détient 50% du capital-actions d'AEC.

❖ Fiche technique de L'usine de dessalement Chatt El Hilal :

► Surface Totale : 5.12 ha

► Surface Bâtie : 2.68 ha

▶ Date signature du contrat : 10 Septembre 2005

► Type de Captage d'eau de mer : Emissaire Long de 1000 M

▶ **Rejet de Saumure** : Emissaire long de 500 M

▶ Date ouverture du chantier : 01 Août 2006

► Mise en service partielle : 09 Nov 2009

► Mise en service totale : 04 Avril 2010

► Capacité de production : 200.000 M³/jours

► Consommation électrique : 4.15 KW/M³

▶ **Procédé de traitement** : osmose inverse

► Taux de rendement de la station : 75%

► Marque des membranes : hydranotie

Nombre de membrane /tube de pression : 7 unité

► Forme : roulement en spiral

▶ Diamètre : 200mm

IV.3.DESCRIPTION DU FONCTIONNEMENT DE LA STATION:

IV.3.1.captage d'eau de mer :

Le système est constitué d'un émissaire DN 2400 d'une longueur de 1000 ML off shore lié à une tour de captage posée sur une profondeur de 18m de sorte qu'environ 432.000 m³/j d'eau de mer brute coulent par gravité.

Le captage d'eau de mer se réalise a travers un seul point qui permette généralement d'obtenir une eau de bonne qualité, ce qui soulage d'autant les prétraitements, et de s'affranchir des risques entraînes par des pollutions accidentelles de l'eau de mer.

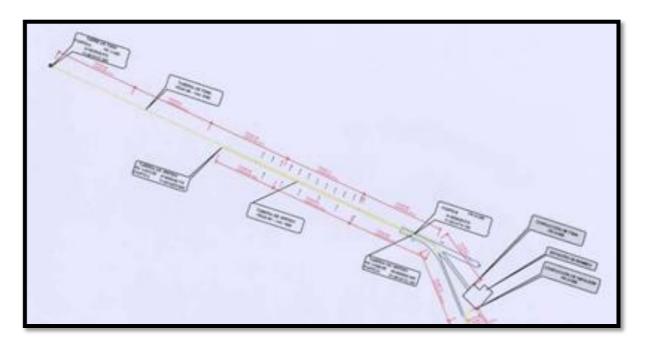
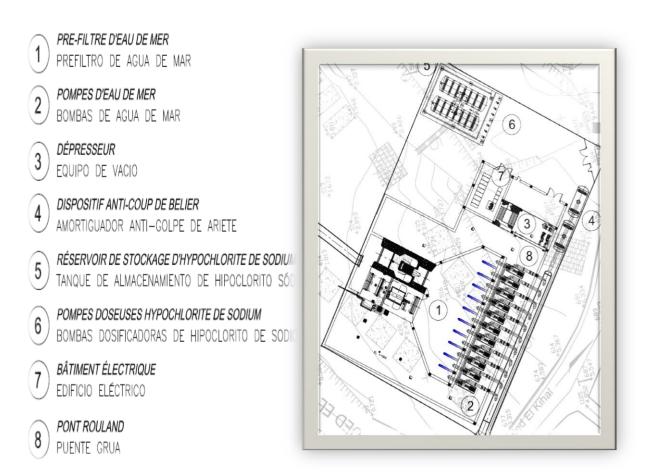


Figure IV.2: Plan des émissaires [57].


IV.3.2.Le bâtiment de captage et de nettoyage préliminaire :

Il est constitué de :

- ➤ Un dégrilleur d'épaisseur de 5 cm entre les grille pour capté les plus grand pièces (déchés, poisson, algues);
- ➤ Deux filtres à tamis rotatif qui sont plus fine il vaut jusqu'à 400 micron, lorsque l'un des tamis est au nettoyage l'autre peu prendre en charge toute la quantité d'exploitation ;

- ➤ Bassin d'aspiration d'eau de mer ;
- ➤ Onze pompes de refoulement (10 pompes en marche +01 pompe stand-by);
- > Deux réservoirs anti- coup de bélier ;
- ➤ Une salle électrique ;
- ➤ Un réservoir de stockage d'hypochlorite de sodium doté de pompes doseuses afin d'injecter le produit jusqu'à la tour de captage ou bien dans le réservoir de stockage du bâtiment de captage.

La fonction de ce bâtiment est de capter l'eau venant de la tour de captage, la prétraiter et l'expédier vers le bâtiment de production d'osmose inverse.

Figure IV. 3: plan de bâtiment de captage [57].

IV.3.3.Dosage des produits chimiques :

La zone de production d'osmose inverse est composée de différents bâtiments qui interviennent dans le procédé de production d'eau.

Elle se compose de :

- ➤ l'hypochlorite de sodium (6001/h) afin d'empêcher le développement de la faune marine, des algues et des micro-organismes dans l'ouvrage de prise d'eau de mer sous-marin et dans la chambre d'aspiration des pompes;
- Le chlorure ferrique (1080 l/h) pour éliminer les matières en suspension et les colloïdes dans des filtres de sables ;
- ➤ Le bisulfite sodique (427 l/h) pour éliminer le chlore résiduel dans les filtres à cartouche ;
- ➤ Le Dispersante (permatreat -100) pour la coagulation ;
- L'acide sulfurique (254 l/h) pour la correction du pH.

Les produits chimiques sont stockés dans des réservoirs équipés de cuvettes de rétention, dont la capacité peut contenir tout le volume de réservoir plus 10%.

Figure IV. 4: Réservoirs des différents dosages chimiques [57].

IV.3.4.Les filtres à sables et d'anthracites :

- L'eau d'alimentation va subir un traitement secondaire consistant à supprimer les MES les résidus de la floculation, les microbes et les virus par un passage à travers une batterie de filtres à sable (une zone de filtration avec 24 filtres (48 réservoirs)) avec une vitesse de filtration : 9.7m/h et une pression d'entrée de 6 bars ;
- L'eau étant ensuite prête à passer par les filtres à anthracite (14 filtres (28 réservoirs))

Il faudra nettoyer les filtres périodiquement, le lavage se fait de bas vers le haut, on injecte l'aire puis l'eau de saumure avec une pression de 0.4 bar.

Figure IV. 5 : Filtres à sables et anthracites [57].

IV.3.5.Bâtiment de production d'osmose inverse :

- ✓ L'eau filtrée avant de passé a travers la membrane d'osmose inverse il est pompée à travers deux rangées de filtres à cartouche pour supprimer les éventuelles fines particules restantes, jusqu'à 5 microns. Les cartouches sont de type jetable en polypropylène enroulé.
- ✓ Ensuite l'eau passé par une installation d'osmose inverse qui comprend 10 modules identiques, contenant 246 tubes de pression en fibre de verre, équipée chacun de 7 membranes en polyamide composite enroulé en spirale. Le système transforme environ 40% du flux d'eau d'alimentation en eau potable avec une pression de 65 bar , La transformation des 60% restants est assurée par l'énergie récupérée de la saumure qui conserve une haute pression (près de 65 bars) avant les pompes à haute pression . D'où un gain d'énergie. Le PH doit être constamment surveillé et réglé pour respecter les limites de contrôle requises.

Malgré le procédé de prétraitement de l'eau d'alimentation, les membranes de l'installation d'osmose inverse devront être nettoyées de temps à autre.

Après utilisation, le pH des fluides de nettoyage usagés sera neutralisé avant leur rejet avec le flux principal d'effluents salins provenant de l'installation d'osmose inverse.

Figure IV. 6: filtre à cartouches [57].

Figure IV. 7: membrane OI [57].

IV.3.6.Bâtiment de la saumure :

Avant d'êtres déversés dans le milieu récepteur (la mer) par le biais d'une canalisation de 1800 mm de diamètre à 500 mètre de la côte, l'eau de rejet et les eaux pluviales doivent êtres collecté dans un bâtiment qui s'appel bâtiment de la saumure.

Le lieu de déversement a été déterminé par les résultats de l'étude marine afin d'atténuer les impacts.

Figure IV. 8 : bâtiment de la saumure [57].

IV.3.7.Post-traitement:

L'eau produite est stockée dans deux réservoirs d'une capacité de 2500 m³ chacun. L'eau produite sera de nouveau traitée pour qu'elle soit potable avant d'être envoyée vers le réseau de distribution. Le traitement est constitué d'une injection de $C0_2$ et suivi d'une injection de soude caustique pour le PH et d'une injection d'hypochlorite de sodium (113 l/h) pour la stérilisation.

Figure IV. 9: Système CO2 [57].

Figure IV.10: Injection de CaCO3 [57].

IV.3.8.Stockage et livraison:

Après le post-traitement, l'eau sera conservée dans un réservoir d'une capacité de 5000 m³ qui sert de réservoir d'attente pour réguler les fluctuations de la demande de la compagnie des eaux et pour prévoir également un temps de contact nécessaire à la désinfection, avant le pompage de l'eau vers le système de distribution de l'eau.

Figure IV.11: Réservoir de stockage de l'eau dessalée.

IV.3.9.Différents équipements:

- ✓ Equipement de nettoyage des membranes ;
- ✓ Equipement de nettoyage des filtres ;
- ✓ Système de communication ;
- ✓ Sale de contrôle ;
- ✓ Ateliers ;
- ✓ Système de contre incendie ;
- ✓ Laboratoire.

IV.4.LES FACTEURS QUI INFLUENCE LE FONCTIONNEMENT DE LA STATION:

IV.4.1.Les Incidents fortuits:

Les incidents fortuits sont dus essentiellement aux cassures survenues sur les conduites et aux pannes des automates.

IV.4.2.Les conditions météorologiques :

Les conditions météorologiques ont provoqué l'arrêt total ou partiel de la SDEM plusieurs fois de suite, soit pour des raisons de forte humidité, qui a incité le déclenchement de la sous station électrique, ou pour des raisons de forte houle en mer, qui a provoqué l'augmentation des MES (matières en suspension) dans l'eaubrute lorsque la valeur de test SDI dépasse 3 NTU la station sera arrêter afin de protéger les membranes.

IV.4.3.Le colmatage des membranes:

Le colmatage des membranes est le phénomène le plus important dans le dessalement de l'eau de mer par procédé osmose inverse, comme il n'y a pas de grande turbidité dans les eaux prisent par la station de Chatt El Hilal le colmatage est généralement de nature organique.

Ce colmatage est déterminé à partir des compteurs de cellule électrique qui montre la consommation d'énergie de pompe booster est la pompe HP pour chaque unité de membrane d'OI, lorsque la consommation d'énergie dépasse les 220 A La station lance le lavage chimique CIP pour l'unité colmaté.

Remarque:

Dans cette station le lavage des membranes se fait à co-courant, alors qu'il doit se fait à contre courant. Ceci est du à une erreur dans l'étude de conception.

IV.5.PARTIE LABORATOIRE:

IV.5.1. Echantillonnage et mode de prélèvement :

La station est équipée de trois points de prélèvement d'échantillons :

- ❖ Au niveau de la prise d'eau de mer ;
- ❖ Au niveau des filtres à sable ;
- ❖ Au niveau du réservoir de l'eau traitée.

Le prélèvement a été effectué selon les étapes suivantes :

- Préparation de trois flacons propres en plastique d'un litre pour l'échantillonnage ;
- Ouvrir la vanne d'échantillonnage et permettre à l'eau de s'écouler pendant au moins
 2 minutes avant la collection ;
- Rinçage du flacon d'échantillonnage au moins deux fois avec de l'eau traitée ;
- Remplir chaque flacon lentement avec un faible débit pour éviter les turbulences et la formation des bulles d'air ;
- Fermer le flacon et s'assurer qu'il n'y a pas de vide au-dessus de l'échantillon ;
- Ètiquetages des flacons d'échantillonnage en déterminant le point de prélèvement, la date et l'heure ;
- ➤ Il est recommandé d'effectuer l'analyse immédiatement après la collecte. Si non, conserver l'échantillon avec la méthode de stockage appropriée en conséquence.

IV.5.2. Analyses physico-chimiques:

Les paramètres organoleptiques mesurés dans le laboratoire de la station de dessalement sont la turbidité et la couleur, ces derniers ont été évalués selon les procédures d'opération standards suivantes:

IV.5.2.1.La couleur:

Solutions et matériels utilisés :

- L'eau ultra pure ;
- Colorimètre HACH DR 890;
- Cuvette en verre (25 ml).

Mode opératoire :

- 1) Rincer la cuvette avec l'eau ultra pure et la remplir avec 25 ml de l'eau ultra pure (le blanc) ;
- 2) Placer le blanc dans le colorimètre et appuyer sur le zéro ;
- 3) Rincer la cuvette avec l'eau ultra pure et la remplir avec 25 ml de l'eau à analyser ;
- 4) Placer la cuvette qui contient l'échantillon dans le colorimètre et appuyer sur READ ;
- 5) La mesure de la couleur est affichée en (Pt Co) sur l'écran de l'appareil ;
- 6) Rincer les cuvettes.

Figure IV.12: colorimètre HACH DR 890.

IV.5.2.2.La turbidité:

Matériel et équipements :

- Turbidimètre WTW 550 IR;
- Cuvettes cylindriques.

Procédure analytique :

- 1. Allumer le turbidimètre et attendre environ 30 minutes que l'appareil se chauffe ;
- 2. Mettre de l'échantillon dans l'un des tubes d'essai du turbidimètre ;
- 3. Rincer deux fois la cuvette de mesure avec un peu d'échantillon ;
- **4.** Verser environ 30 ml d'échantillon à analyser dans la cuvette, la fermer et s'assurer qu'il n'y ait plus de bulles et que l'extérieur soit bien propre ;
- 5. Introduire la cuvette dans l'appareil et l'aligner;
- 6. L'appareil sélectionne automatiquement l'étendue de mesure selon les besoins. Quand il sera stabilisé, faire la lecture. La valeur sera donnée en Unités Néphélométriques de Turbidité (NTU);

7. Si l'on souhaite comparer des données, au moment de faire une mesure appuyé sur le bouton :

La donnée sera mémorisée et apparaîtra sur la partie inférieure de l'écran. Au moment de faire la mesure suivante, la valeur actuelle apparaîtra sur la partie supérieure.

4 Calibrage:

- 1. Allumer le turbidimètre et attendre un temps de chauffe de 30 minutes ;
- **2.** Homogénéiser l'étalon, nettoyer la cellule avec un chiffon pour s'assurer que l'extérieur de la cuvette est bien propre et sec ;
- **3.** Appuyer sur **CAL.** Les indications **Ident** et **Cal** apparaîtront sur l'écran. Sur la partie inférieure de l'écran, il apparaîtra 1000. Ceci est la valeur du premier étalon qu'il faut introduire dans l'appareil ;
- 4. Aligner la cuvette avec l'appareil et attendre que la lecture soit stabilisée ;
- 5. Une fois stabilisée, appuyé sur la touche . L'indicateur de Store apparaîtra, clignotera pendant environ 3 secondes et la donnée sera mémorisée ;
- **6.** Sur la partie supérieure de l'écran, il apparaîtra 1000 (NTU) et sur la partie inférieure il apparaîtra la valeur de l'étalon suivant 10 ;
- 7. Introduire la cuvette de 10(NTU) dans l'appareil et refaire les étapes 4 et 5 ;
- 8. Sur la partie supérieure de l'écran, il apparaitra 10 (NTU) et sur la partie inférieure 0.02 (NTU);
- 9. Introduire l'étalon de 0.02 NTU et répéter les étapes 4 et 5 une autre fois ;
- 10. Le calibrage est terminé et l'appareil reviendra automatique au mode de mesure.

Figure IV.13: Turbidimètre [57].

IV.5.2.3.ALCALINITE:

Instruments et équipements :

- Matras d'Erlenmeyer 125 ml;
- Burette graduée.

4 Réactifs :

- Phénolphtaléine 1%: Dissoudre 0,25 g de phénolphtaléine dans 100 ml d'éthanol à 50%;
- Bleu de bromophénol 0,04 %: Dissoudre 0,04 g de bleu de bromophénol dans 15 ml de NaOH et jauger à 100 ml avec de l'eau distillée;
- HCl 0.01N: Diluer 0,83 ml d'HCl à 37% dans de l'eau distillée et jauger à 1000 ml;
- Solution de Na₂CO₃ 0.01N: Sécher Na₂CO₃ à 110°C pendant 2 heures. Dissoudre 0,530 g dans de l'eau distillée et jauger à 1 000 ml.

Standardisation d'HCI:

- Placer 15 ml de la solution de Na₂CO₃ 0.01N dans un matras d'Erlenmeyer de 100 ml et ajouter 3 gouttes de bleu de bromophénol 0,04 %. L'échantillon prend une couleur bleue, titrer avec de l'HCI jusqu'à ce qu'il vire au vert.
- Calculer la normalité :

$$Na_2CO_3 = HCl$$

$$V1x N1 = V1xN2$$

$$N2 = \frac{V1 * N1}{V2}$$

Où:

V1= Volume de la solution de Na₂CO₃;

N1= Normalité de la solution de Na₂CO₃;

v2= Volume de l'HCI dépensé dans le titrage ;

N2= Normalité de l'HCl.

♣ Procédure :

- 1. Placer 5 ml d'échantillon dans un matras d'Erlenmeyer de 100 ml.
- 2. Ajouter 3 gouttes de phénolphtaléine à 0,25 %;
- **3.** S'il apparaît une couleur rose, titrer avec HCl 0.01N jusqu'à un virage incolore, coïncidant avec la valeur de pH 8,3. Si la couleur rose n'apparaît pas, inscrire carbonates égal à zéro. Noter le volume (**Volume 1**);
- **4.** Ajouter 3 gouttes de bleu de bromophénol à 0,04 % au même matras et une couleur bleue apparaîtra ;
- **5.** Continuer à titrer avec de l'HCl 0.01N jusqu'à l'apparition d'une couleur verte. Le point de virage du titrage coïncidera avec les valeurs de pH entre 4,3 et 4,7. Noter le volume (**Volume 2**).

Tableau IV.5 : Observations lors de titrage d'un échantillon.

Titrage	Alc (mg/L CaCO ₃)
Très bas	< 12.3
Bas	24.6 - 41
Moyen	41 - 98.4
Haut	98.4 - 147.6
Très haut	> 147.6

IV.5.2.4.Calcium:

Lorsqu'on ajoute à un échantillon d'eau, de l'acide éthylènediaminetétracétique (EDTA) ou son sel, les ions de Calcium et Magnésium contenant l'eau sont associés à l'EDTA. On peut déterminer le calcium directement en ajoutant NaOH pour élever le pH de l'échantillon entre 12 et 13 unités de sorte que le magnésium précipite en tant qu'hydroxyde et n'interfère pas, on utilise aussi un indicateur combiné seulement avec le calcium.

Lors de l'analyse de calcium, l'échantillon est traité au NaOH ₄N. Pour obtenir un pH compris entre 12 et 13, ce qui produit la précipitation du magnésium sous forme de Mg(OH)₂. On ajoute ensuite l'indicateur murexide qui forme un complexe de couleur rose avec l'ion calcium puis on procède à la détermination avec la solution d'EDTA jusqu'à apparition d'un complexe de couleur pourpre.

4 Réactions :

$$Ca^{+2}$$
 + Mg^{+2} + NaOH (4N) -----> Mg (OH)₂ + Ca^{+2}
 Ca^{+2} + Murexide ----> [Murexide- Ca^{++}] (couleur rose)

Matériel et équipements :

- -Burette graduée 25 ml;
- -Matras erlenmeyer 100 ml.

A Réactifs :

- Solution de NaOH 4N :Dissoudre 16.495gr de NaOH en eau distillée et jauger à 100ml ;
- **Indicateur Murexida**: Mélanger 0,2g de murexide à 100g de NaCl et broyer au mortier jusqu'à éliminer la moindre granulométrie (40-50 mailles);
- **Solution d'EDTA 0.02N (0.01M)** :Dissoudre 3.723g de EDTA dans 1 litre d'eau distillée.

- Solution de CaCl2 0.01N ou de solution de calcium standard :
- CaCl₂:Dissoudre 0.5g de CaCO₃ sec à 100°C pendant 2 heures et le dissoudre dans 10ml de HCl 3N.Jauger à 1000 ml avec de l'eau distillée.
- Calcium standard: peser 1g de CaCO₃ dans un erlenmeyer de 500ml. Placer un entonnoir sur le col du matras et ajouter peu à peu l'HCl 1:1 jusqu'à la totale dissolution du CaCO₃. Ajouter 200ml d'eau distillée et faire bouillir quelques minutes pour expulser le CO₂. Refroidir et ajouter quelques gouttes d'indicateur rouge de méthyle et ajuster jusqu'à trouver une couleur oranger.
- Intermédiaire par ajout de NH₄OH₃N ou HCl 1:1 comme requis.Diluer jusqu'à 1000 ml avec de l'eau distillé; 1 ml = 1 mg de CaCO₃.

Standardisation du edta

- 1. Placer 5ml d'échantillon de la solution de CaCl₂ 0.01N dans un matras erlenmeyer de 125ml.
- **2.** Ajouter 5 gouttes de solution de NaOH 4N et un epointe de spatule d'indicateur murexide.
- **3.** Déterminer la concentration au EDTA jusqu'à un noter un changement de rose en pourpre.
 - **La Calculs pour la normalité du edta :**

$$N2 = \frac{V1 * N1}{V2}$$

N2= Normalité de l'EDTA;

V1= ml de solution de CaCl₂:

N1= Normalité de la solution de CaCl₂;

V2= ml utilisés de la solution de EDTA.

Procédure :

1. Mesurer 5ml d'échantillon. Si la valeur de l'alcalinité de l'échantillon est supérieure à 300 mg/L, on prendra une dilution de l'échantillon tel que l'alcalinité de celle-ci se situera sur des valeurs inférieures à 300 mg/L;

- **2.** Ajouter 5 gouttes de la solution NaOH 4N, ou une quantité suffisante pour atteindre une valeur de pH de l'échantillon entre 12 et 13 ;
- 3. Ajouter une "pointe de spatule" de l'indicateur Murexide 0.2% dans le NaCl;
- **4.** Évaluer immédiatementà l'aide d'une burette arasée de la solution évaluée avec du EDTA 0,02N (0.01M).Le point final de l'évaluation correspondra au moment de passage de la coloration de rose à pourpre.

Calculs:

Meq/l de Ca=
$$\frac{V*N*1000}{M}$$

V= ml utilisés de la solution de EDTA

N= Normalité de la solution de EDTA

M= ml d'échantillon.

Échantillon et conservation :

- Récupérer 100ml de l'échantillon dans un récipient en plastique (polyéthylène ou équivalent) ou en verre ;
- N'exige aucune conservation spéciale.

Observations:

- Pour passer de meq/L à mg/L:

Meg/l de Ca \times 20.04 = mg/l de Ca

- En cas de précipitation du carbonate de calcium, dissoudre à nouveau l'échantillon, ajouter quelques gouttes de HCl.

IV.5.2.5. Carbonates et bicarbonates :

Ils se trouvent dans toutes les eaux et, parfois, en proportions très élevées. Les carbonates sont également fréquents en fonction du pH de l'eau.

L'eau de mer contient des ions bicarbonate qui sont en équilibre avec des ions carbonate et hydrophile.

$$2HCO_3^- = CO_3^- + CO_2 + H_2O_3^-$$

$$CO_{3}^{-} + H_{2}O = 2OH_{1}^{-} + CO_{2}^{-}$$

Une haute température ou un pH élevé déplacent l'équilibre vers la production d'ions carbonate et hydrophile et, quand ceci arrive, précipitent le calcium et/ou le magnésium sous forme d'hydroxydes.

Pour éviter ceci, l'eau est traitée avec de l'acide pour maintenir la réaction d'équilibre vers la gauche et avec davantage d'acide pour éliminer les bicarbonates.

$$CO_3 + H^+ = HCO_3^-$$

$$HCO_3^- + H^+ = H_2O + CO_2$$

Cependant, même dans le cas de l'acidification de l'eau, il faut prendre des précautions pour éviter la formation de sulfate de calcium qui n'est pas affecté par le traitement acide.

Un aspect important à considérer est le changement de la solubilité d'un sel comme conséquence de la présence dans la solution d'autres sels qui n'ont pas d'ions communs avec elle et qui se trouvent en hautes concentrations.

Cet effet qui est employé, par exemple, dans l'adoucissement des eaux, par le biais du dosage d'un excès de Ca(OH)₂ pour éliminer le Mg⁺⁺ comme le Mg (OH)₂, fait que dans le cas de l'eau de mer le carbonate de calcium est plusieurs fois plus soluble qu'en eau douce, réduisant donc les risques de précipitation sur les membranes.

Procédure :

- Suivre la procédure analytique pour la détermination de l'alcalinité. PEC-8515-LAB-004.

Calculs:

- Appliquer les calculs de la procédure analytique pour la détermination de l'alcalinité. PEC-8515-LAB-004.

Prélèvement et conservation :

L'échantillon devra être immédiatement analysé. Les résultats des échantillons stockés ne sont pas représentatifs.

Figure IV.14: réactifs pour la détermination de carbonate et bicarbonate [57].

IV.5.2.6. Chlore libre, chlore total et chlore combiné:

Le chlore libre est le paramètre indicateur de la concentration en désinfectant (biocide) nécessaire pour maintenir l'eau sans micro-organismes pathogène.

Le chlore résiduel total présent dans l'eau correspondra à la somme du chlore résiduel plus le chlore combiné résiduel.

Le chlore résiduel total correspond à la différence entre la dose de chlore et la demande de chlore.

Le chlore combiné résiduel est la part du chlore résiduel total combiné à des composés azotés, provenant de matière organique pour former des chloramines ou autres.

Détériorer les membranes et dans l'eau traitée en tant qu'agent désinfectant.

- Méthode spectrophotométrique :
- **Matériel et équipements :**
- Spectrophotomètre Spectroquan Phro 300;
- Pipette.
 - **4** Réactifs :
- Kit pour sans Chlore et total 00597 de Merck.

4 Procédure :

- 1. L'échantillon doit se situer sur une valeur du PH entre 4-8.
- **2.** Pipeter dans une cuvette 5 ml d'échantillon.
- 3. Ajouter 1 micro cuillère bleue arasée (sur le couvercle du flacon) de réactif Cl₂-1).
- **4.** Laisser reposer 3 minutes.
- 5. Mesurer sur le photomètre : résultat A (Chlore libre).
- **6.** Dans la même cuvette, ajouter 2 gouttes de réactif Cl₂ -2.Fermer la cuvette et mélanger.
- 7. Mesurer l'échantillon sur le photomètre : résultat B (Chlore total).

> Détermination du chlore combiné :

Pour la détermination du chlore combiné, il est nécessaire de réaliser le chlore libre et le chlore total. Une fois les résultats en main, on procédera à l'opération suivante :

mg/l de Chlore combiné = résultat B (mg/l de chlore total) – résultat A (mg/l de chlore libre)

Prélèvement et conservation :

Analyser les échantillons immédiatement après le prélèvement.

4 Observations:

Filtrer les échantillons troubles.

IV.5.2.7. Dureté:

Le mot dureté fait référence à la quantité de composés de calcium et magnésium dissous dans l'eau, correspondants à la teneur en ions alcalino-terreux. Ces minéraux ont leur origine dans les formations rocheuses calcaires, on peut les trouver, en grande ou faible quantité, dans la majeure partie des eaux de source. Les sels, plus communs dans l'eau dure sont les sulfates, carbonates, bicarbonates et chlorures de calcium, magnésium, fer et autres.

4 Types de dureté :

Les eaux dures peuvent être classées en deux types :

- **Dureté temporaire (carbonée) :** Ce type de dureté est dû à la présence de carbonates et bicarbonate de calcium et magnésium.
- **Dureté permanente (non-carbonée) :** Celle-ci est due aux carbonates. On attribue sa présence dans l'eau aux sulfates, chlorures, nitrates et silicates alcalino-terreux.
- **Dureté totale :** dureté temporaire + dureté permanente.

Matériel et équipements :

- Burette;
- Matras erlenmeyer 250ml.

4 Réactifs :

- Solution d'amortissement PH10 : dissoudre 6.56 gr. de chlorure d'ammonium (NH₄Cl) et 57 ml d'hydroxyde d'ammonium (NH₃ à 25%).
- Solution indicatrice du noir d'ériochrome T 1% :dissoudre 1gr de noir d'eriochrome
 T dans 80 ml de triéthanolamine et porter à 100 ml avec de l'eau distillée.
- Solution de CaCl₂ 0.01N ou de solution de calcium standard :
- CaCl₂:Dissoudre 0.5g de CaCO₃ sec à 100°C pendant 2 heures et le dissoudre dans 10ml de HCl 3N.Jauger à 1000 ml avec de l'eau distillée.

Calcium standard :peser 1g de CaCO₃ dans un erlenmeyer de 500ml.Dissoudre 0.5g de CaCO₃ sec à 100°C pendant 2 heures et le dissoudre dans 10ml de HCl 3N.Ajouter 200ml d'eau distillée et faire bouillir quelques minutes pour expulser le CO₂.Refroidir et ajouter quelques gouttesd'indicateur rouge de méthyle et ajuster jusqu'à trouver une couleur oranger intermédiaire par ajout de NH₄OH 3N ou HCl 1 :1 comme requis. Diluer jusqu'à 1000 ml avec de l'eau distillée ; 1 ml = 1 mg de CaCO₃.

Standardisation du edta :

- 1. Placer 5ml d'échantillon de la solution de CaCl₂ 0.01N dans un matras erlenmeyer de 125ml.
- 2. Ajouter 5 gouttes de solution de NaOH 4N et un epointe de spatule d'indicateur murexide.

3. Déterminer la concentration au EDTA jusqu'à un noter un changement de rose en pourpre.

La Calculs pour la normalité du edta :

$$N2 = \frac{V1*N2}{V1}$$

N2= Normalité de l'EDTA.

V1= ml de solution de CaCl₂.

N1= Normalité de la solution de CaCl₂.

V2= ml utilisés de la solution de EDTA.

♣ Procédure :

- 1. Mesurer 5ml d'échantillon. Si la valeur de l'alcalinité de l'échantillon est supérieure à 300 mg/L, on prendra une dilution de l'échantillon tel que l'alcalinité de celle-ci se situera sur des valeurs inférieures à 300 mg/L.
- **2.** Ajouter 1 ml de buffer PH 10 et 1 ou 2 gouttes de solution indicatrice Noir d'Eriochrome T.
- **3.** Évaluer à l'aide d'une burette remplie à ras de la solution évaluée avec du EDTA 0,02N (0.01M).
- **4.** Le point final de l'évaluation correspondra au moment de passage de la coloration de pourpre à bleu

Calculs:

ml utilisés EDTAx N EDTA x 50.044

Échantillon et conservation :

- Récupérer 100ml de l'échantillon dans un récipient en plastique (polyéthylène ou équivalent) ou en verre.

- Pour sa conservation, ajouter HNO₃ jusqu'à obtenir un PH < 2. La durée maximale conseillée de conservation est de 6 mois.

IV.5.2.8.Indice de Langelier (LSI):

Selon le décret royal 140/2003 établissant les critères sanitaires de qualité des eaux de consommation humaine, à aucun moment l'eau ne pourra être agressive ni incrustante. Le résultat du calcul de l'indice de Langelier devra se situer entre ± 0.5 .

Si IL = 0, eau en équilibre chimique

Si IL < 0, eau ayant tendance à être corrosive

Si IL > 0, eau ayant tendance à être incrustante

Pour obtenir cet objectif, on utilise en dessalement des systèmes de reminéralisation à base de carbonate de calcium amorphe (CaCO₃). Les lits de calcite permettent d'augmenter l'alcalinité et la dureté de l'eau dessalée et de réduire sa corrosivité (LSI).

Instruments et équipements :

- PH-mètre
- Conductimètre
- Thermomètre
- Spectrophotomètre DR5000
- Burettes graduées de 25 ml
- Matras d'Erlenmeyer de 100 ml

Réactifs :

- HCl 0.01N, phénolphtaléine et bleu de bromophénol pour alcalinité, carbonates et bicarbonates.
- EDTA 0.02N, NaOH₄N et Murexide pour calcium.

Procédure :

Pour calculer le LSI, il faut déterminer les paramètres suivants :

1. PH. Voir (PEC-8515-LAB-024).

- 2. Conductivité. Voir (PEC-8515-LAB-014).
- 3. Température. Voir (PEC-8515-LAB-032).
- **4.** Carbonates et bicarbonates. Voir (PEC-8515-LAB-009).
- **5.** Calcium. Voir (PEC-4615-LAB-008).

4 Calculs:

Avec les résultats des paramètres mesurés antérieurement, on calcule :

CALCIUM (mg CaCO₃/l)= [Calcium (mg Ca
$$^{+2}$$
/l) * 10]/ 4,01

ALCALINITÉ =
$$[(mg HCO_3-/l) + 2 *(mg CO_3/l) *10] / 12,2$$

Une fois les résultats du TDS, du calcium et de l'alcalinité obtenus, nous pourrons calculer l'indice de Langelier.

$$LSI = PH_A - PH_{S_A}$$

Où:

 $PH_A = PH$ actuel de l'eau

PH_S = PH de saturation ou PH auquel on obtient l'équilibre calcocarbonique de l'eau

$$PH_S = (9,3 + A + B) - (C + D)(\acute{E}quation 1)$$

Où:

$$A = (Log [TDS] -1)/10$$

$$B = -13,12 \times Log (^{\circ}C + 273) + 34,55$$

$$C = Log [Ca^{+2} comme CaCO_3]$$

D =Log [Alcalinité comme CaCO₃]

4 Observations:

Une feuille de calcul du laboratoire à été créée à titre interne.

IV.5.2.9.SDI:

Le SDI ou indice d'encrassement ou de colmatage des membranes est un procédé pour estimer le degré de blocage ou d'encrassement des membranes dû à la contamination des particules colloïdales qui incluent communément les bactéries, les argiles et le fer. Les produits chimiques utilisés dans le prétraitement comme le chlorure de fer ou les polyélectrolytes peuvent causer un blocage colloïdal.

Selon les équipements de traitement et le type de membranes, des valeurs de SDI ou d'autres sont considérées acceptables. Un SDI 15 inférieur ou égal à 5 pour l'eau d'entrée à l'usine et un SDI 15 inférieur ou égal à 3 pour l'eau d'entrée aux modules d'osmose, sont considérés comme acceptables.

Instruments et équipements :

- Équipement de SDI
- Membranes de 47 mm de diamètre et pore de 45 microns
- Chronomètre
- Éprouvette graduée de 500 ml

Procédure analytique :

- **1.** Monter le système de mesure comme indiqué sur la figure et mettre en place le régulateur de pression à 2,1 bars.
- **2.** Avant d'installer le filtre Milliporte, passer un échantillon à travers le système de mesure, afin d'éliminer les contaminants qui auraient pu y entrer.
- **3.** Ouvrir le porte-filtres et placer sur sa plaque-support une membrane filtrante avec une sélectivité de 0,45 um et 47 mm de diamètre. La membrane ne pourra être manipulée qu'avec des pinces à bord lisse pour éviter de la crever. Éviter de toucher la membrane avec les doigts.
- **4.** S'assurer que le joint torique se trouve en bon état et correctement mis en place. Installer de nouveau la moitié supérieure du porte-filtre et fermer de façon à ce qu'elle soit légèrement lâche.
- 5. Ouvrir le robinet-vanne d'eau et réaliser la première mesure. Simultanément, avec un chronomètre mesurer le temps nécessaire pour recueillir dans l'éprouvette un volume de $500 \text{ ml } (T_o)$.

- **6.** 5 (T5), 10 (T10) et 15 (T15) minutes après avoir commencé l'essai, mesurer de nouveau le temps nécessaire pour recueillir le volume de 500 ml (T_f).
- **7.** Une fois l'essai terminé, la membrane filtrante peut être conservée pour son analyse ou sa comparaison ultérieure.



Figure IV.15: Appareil de détermination de SDI [57].

Calculs:

$SDI = [(1 - T_o/T_f) \times 100] / T_f$

Observations :

Rincer l'instrument à l'eau douce après l'essai dans le cas où il serait effectué avec de l'eau de mer ou de l'eau très saumâtre afin d'éviter l'endommagement des pièces métalliques de l'instrument.

La pression devra être maintenue à 2,1 bars.

IV.5.2.10.Solides en suspension:

Les matières solides en suspension sont de petites particules solides, immergées dans un fluide en flux turbulent qui agit sur la particule avec des forces en directions aléatoires, qui contrebalancent la force de gravité, empêchant ainsi que la matière solide ne se dépose au fond. Les facteurs qui influent pour qu'une particule ne se décante pas au fond sont :

• La taille, la densité et la forme de la particule ;

• La vitesse de l'eau.

Les matières solides peuvent affecter négativement la qualité de l'eau ou sa fourniture de différentes manières. Les eaux ayant d'abondantes matières dissoutes sont généralement de potabilité inférieure et peuvent induire une réaction physiologique défavorable chez le consommateur occasionnel. C'est pourquoi il est souhaitable que les eaux potables aient une limite de 500 mg/L de matières dissoutes.

Les analyses de matières solides sont importantes dans le contrôle du processus de traitement biologique et physique des eaux usées, et pour évaluer le respect des limitations qui réglementent leur rejet.

Matériel et équipements :

- Rampe de filtration
- Entonnoirs
- Filtre 0.45um

♣ Procédure :

- 1. Faire sécher le filtre au minimum 30 minutes dans l'étuve à 105°C.
- 2. Faire refroidir dans le dessiccateur.
- 3. Peser et noter le poids (A).
- **4.** Placer le filtre dans l'appareil de filtration à vide et y faire passer 1 litre ou un volume représentatif de l'échantillon (**V**).
- 5. Laver le filtre avec un litre d'eau distillée.
- **6.** Faire sécher dans l'étuve à 105°C pendant 1 heure.
- 7. Faire refroidir dans le dessiccateur et peser (B).

Calculs:

$$\frac{mg}{l} = \frac{(B-A)*1000}{V(l)}$$

Où:

A = poids initial

B = poids final

Prélèvement et conservation :

Prendre les échantillons dans des récipients de plastique ou de verre. Analyser dans les plus courts délais. Peut être conservé réfrigéré pendant 7 jours.

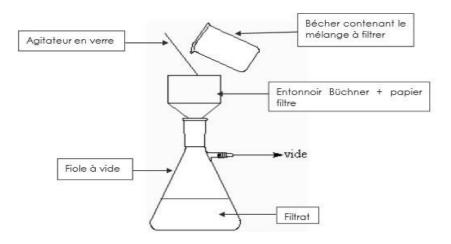


Figure IV.16: Appareil de détermination de MES [57].

IV.5.3.Interprétation des résultats d'eau traité :

Les résultats des analyses d'eau traitée au niveau de la station de 'Chatt El Hilal' sont représentés dans le tableau ci-dessous:

Tableau IV.6: Résultats d'analyses d'eau traité [57].

Tableau 17.0. Resultats a unaryses a cau traite [57].										
	Alcalinité	Carbonate	Bicarbonate	Calcium	Dureté	LSI	Chlore	PH	T°C	TDS
					totale		libre			
	mg/L en	mg/L en	mg/L en	mg/L en			mg/L			
	caco ₃	co_3^{-2}	HCO_3	ca ²⁺	mg/L en					
					CaCO ₃					
09/12/18	58.80	00	71.70	21.04	52.55	0.12	0.52	8.49	19.4	399
10/12/18	58.80	00	71.70	20.04	50.04	0.08	0.55	8.47	19.7	420
11/12/18	60.05	00	73.22	20.04	50.04	0.13	0.56	8.51	19.3	408
12/12/18	58.80	00	71.70	21.04	52.55	0.12	0.54	8.49	19.3	394
13/12/18	60.05	00	73.22	20.04	50.04	0.03	0.55	8.42	18.9	412
10, 11, 10										
14/12/18	58.05	00	70.78	20.04	50.04	0.12	0.58	8.52	19.0	392
17/12/10	36.03		70.76	20.07	50.04	0.12	0.50	0.52	17.0	372
15/12/18	60.05	00	73.22	22.04	55.05	0.10	0.66	8.44	18.8	371
15/12/10	00.05	00	13.22	22.04	33.03	0.10	0.00	0.77	10.0	3/1
		l			1					

1. <u>l'alcalinité</u>:

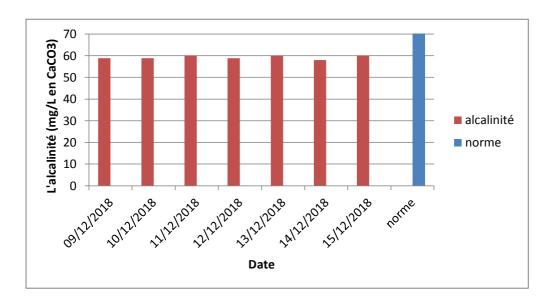


Figure IV.17: Comparaison de valeurs d'alcalinité avec la norme algérienne.

Les résultats montrent des valeurs comprises entre 58 – 60,05mg/L de CaCO₃ avec une valeur moyenne de 59,23mg/l en CaCO₃.

Ces valeurs sont conformes aux normes algériennes qui limitent le taux d'alcalinité des eaux de consommation >65 mg/L en CaCO₃ [56].

2. Le Calcium:

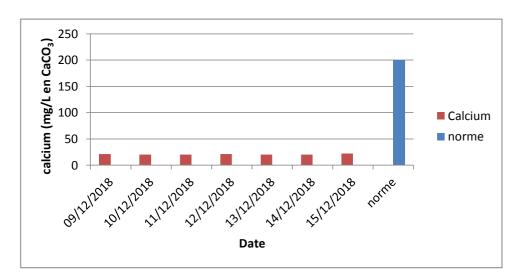


Figure IV.18: comparaison des valeurs de calcium avec la norme Algérienne.

L'analyse des concentrations en calcium sont comprises entre 21,04 et 22,04 mg/L en CaCO₃. Ces valeurs sont très inférieures par rapport à la norme algérienne qui indique 200mg/L en CaCO₃ [56].

3. La dureté totale :

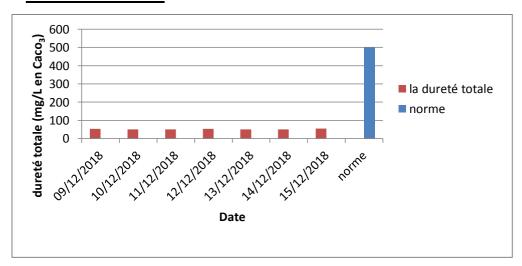


Figure IV.19: Comparaison de la dureté totale de l'eau avec la norme algérienne.

Les mesures de la dureté totale de l'eau traitées comprises entre 50,04 et 55,05 mg/L en CaCO₃ avec une valeur moyenne de 51,47mg/L. les valeurs enregistrées s'avèrent inferieurs à la valeur maximale admissible recommandée par les normes algériennes qui est de 500mg/L [56].

4. L'INDICE DE LANGELIER (LSI) :

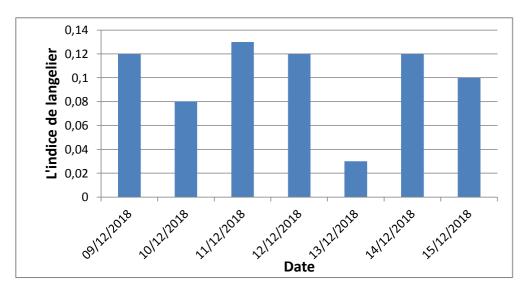


Figure IV.20: Variation de l'indice de Langelier en fonction du temps.

Les résultats de calcul de cet indice comprise entre 0.03 et 0.13 se qui signifier que l'eau produite conforme à la potabilité.

5. Le chlore libre:

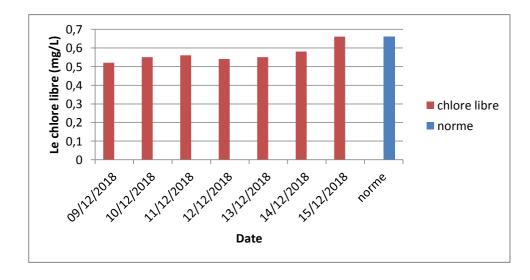


Figure IV. 21: Comparaison des valeurs de chlore libre avec la norme.

Le chlore est l'un des réactifs le plus utilisé lors de la désinfection. Dans les conditions normales d'exploitation, il doit être compris entre 0,6 mg/L et 1mg/L de chlore libre (HOCI, OCI) dans l'eau de consommation.

Cependant, les résultats donnent une valeur maximale égale à 0,66 mg/L (<1 mg/L) se qui est dans les normes algérienne de potabilité [56].

The potential of the phase of t

6. <u>Le potentiel d'hydrogène (PH):</u>

Figure IV.22: Comparaison des valeurs de pH avec la norme Algérienne.

Les valeurs du pH des eaux traitées sont comprises entre 8,44 et 8,52 avec une valeur moyenne de 8,47. Se référant aux normes de qualité de l'eau potable, les valeurs de pH des eaux traitées sont conformes aux normes Algériennes dont les valeurs sont fixées de 6,5 à 8,5[56].

7. La température :

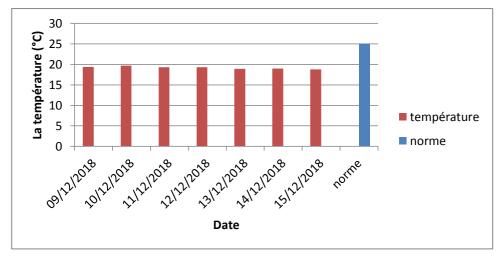


Figure IV.23: Comparaison des valeurs de température avec la norme Algérienne.

Les échantillons ont une température varie entre 18,8 et 19,70. La norme algérienne indique la température est <25°C, donc ces valeurs sont dans les normes de potabilité [56].

8. Totale des solides dissous (TDS) :

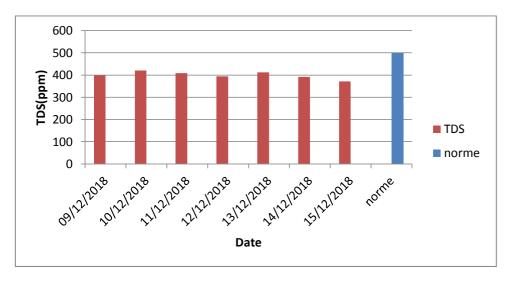


Figure IV.24: Comparaison des valeurs de TDS avec la norme Algérienne.

Les résultats obtenus ont montrés que le taux de TDS varie entre 371 et 420 ppm, soit une valeur moyenne de 399,43 ppm.

Les valeurs de TDS se révèlent conformes aux normes préconisées par les normes algériennes qui sont de 150 à500ppm dans les eaux traitées par dessalement [56].

9. <u>La conductivité électrique :</u>

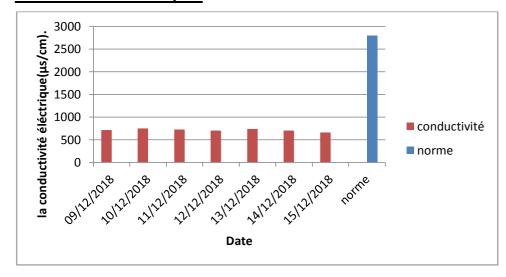


Figure IV.25: Comparaison des résultats de la conductivité avec la norme Algérienne.

Les valeurs enregistrées sont entre 663et 749 (μs/cm) avec une valeur moyenne 712,86 (μs/cm). La valeur de conductivité électrique est conforme à la norme Algérienne, dont Les concentrations maximales admissibles sont respectivement inferieurs à 2800(μs/cm) [56].

10. La turbidité :

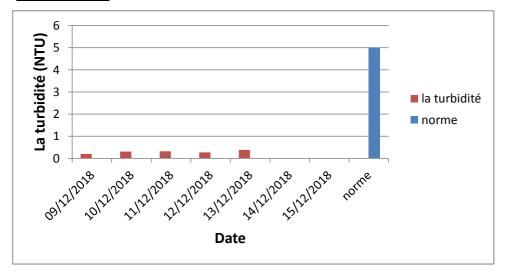


Figure IV.26: Comparaison de la turbidité avec la norme Algérienne.

La norme algérienne fixe une valeur de 5 NTU de la potabilité de l'eau, les échantillons analysés ont une valeur plus proche de zéro ; ce qui est dans la norme.

Chapitre v

Matériels et méthodes

V.1.PARTIE LABORATOIRE DE TRAITEMENT DE L'EAU:

V.1.1.Introduction:

Afin d'étudier l'influence des pressions d'entrée et des différences de pressions de part et d'autres de la membrane pour chaque (P_{entrée}) étudiée sur la qualité de l'eau du perméat trouver, nous avons travaillé avec quatre concentrations d'eau saumâtres (2 ; 3 ; 4 et 5 g/L) et trois concentration de l'eau de mer (3 ; 5 et 6 g/L).

Pour chaque concentration de l'eau saumâtres et l'eau de mer diluée nous avons choisi les pressions d'entrée adéquates et pour chaque pressions d'entrée fixée on a fait varier la différence de pression de part et d'autres de la membrane ($\Delta P=0$; $\Delta P=0.5$; $\Delta P=1$; $\Delta P=1.5$; $\Delta P=2$).

Les essais ont été réalisés au laboratoire de TTE du Département d'Hydraulique à l'université Abou Bakr Belkaid de Tlemcen sur des échantillons d'une solution d'eaux saumâtres préparés au laboratoire par la dissolution de sel avec l'eau de robinet et d'eau saumâtre diluées à partir des eaux de mer issues du prétraitement de la station de Chatt El Hilal.

V.1.2. Matériels et méthodes :

V.1.2.1.Description du pilote TE 200 :

Le rôle principal du pilote TE 200 est de dessaler des solutions peu concentrées en NaCl où dessaler les eaux saumâtres.

Figure V.1: Construction de pilot TE 200[59].

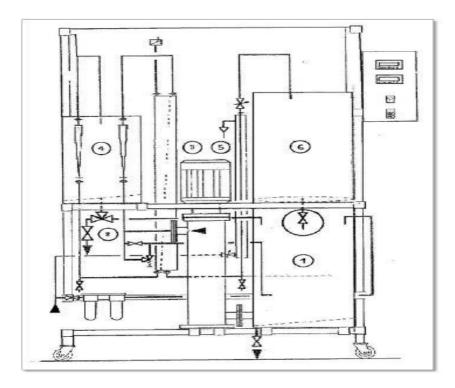
4 Construction:

L'appareil consiste essentiellement en une cartouche contenant la membrane filtrante, montée sur un panneau lui-même supporté par une charpente, ainsi que ses organes de stockage de contrôle et de mesure.

1 : Cuve d'alimentation de la solution, en PVC transparent, cylindrique, capacité utile 60L, avec vanne de vidange de type à boisseau sphérique en PVC et joint d'étanchéité en PTFE, DN 15 ;

2 : Canalisation d'alimentation de la solution dans la cartouche d'osmose inverse en PVC, DN 10, PN 16 ;

3 : Cartouche d'osmose inverse, de type enroulée en spirale; membrane en film mince; pression maximum d'utilisation 21bars; débit d'alimentation maximum 660 1/h; diamètre 50 mm, longueur 1000 mm ;


4 : Cuve de réception du perméat, en PVC transparent, cylindrique, capacité utile 40L, avec vanne de vidange de type trois voies (prélèvement ou recyclage) à boisseau sphérique en PVC et joint d'étanchéité en PTFE, DN 15 ;

5:Echangeur de chaleur sur le circuit du concentrât, de type LIEBIG (mono tubulaire), en acier inoxydable 316, surface totale d'échange 0,03 m²;

6 : Cuve de réception du concentrât, en PVC transparent, cylindrique, capacité utile 60L, avec vanne de vidange de type à boisseau sphérique en PVC et joint d'étanchéité en PTFE, DN 15 ;

7: Charpente de supportage en tube carrés en acier inoxydable 304 L,

L*P*H:1100*600*1500.

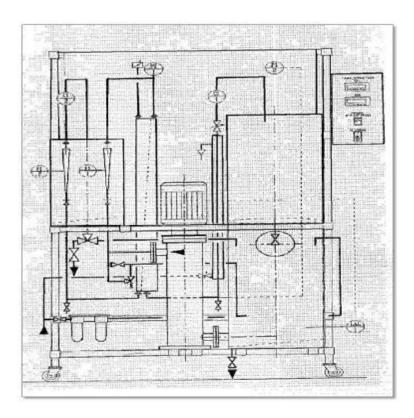


Figure V.2: Construction de pilot TE 200 [60].

4 Instrumentation:

- Débitmètre à flotteur du circuit de sortie du perméat, en PVC transparent, DN 15; échelle (20- $160\ 1/h$) ; précision + /- $5\ \%$;
- Débitmètre à flotteur du circuit d'alimentation de la solution, en PVC transparent, DN20; échelle (100 -1000 1/h); précision +/-5%;
- Sonde de mesure de conductivité en plastique; électrodes de mesure en graphite spécial; gamme de service (0 100 °C); sonde de correction de température incluse ;
- Transmetteurs de conductivité; gamme de mesure $(0 200 \,\mu\text{s}/\text{cm})$ et $(0 200 \,\text{ms/cm})$; fréquence de mesure 3 KHz; écart de mesure +/- 2 %; correction automatique de la température de mesure; sortie analogique 4 20 mA;
- Pompe centrifuge d'alimentation d type multi étagée, corps et aubages en acier inoxydable 316 ; moteur électrique monophasé, 220 v, 50 Hz, 2,2KW ;
- -Détecteur de niveau de sécurité de la cuve d'alimentation, de type à flotteur magnétique en plastique ;

- Afficheur digital multivoies de la conductivité du perméat et du concentrât; entrée (4-20 mA); alimentation électrique monophasé, 220 v, 50 Hz.
- Armoire de contrôle et de commande située sur la charpente comprenant :
- Arrêt/Marche général;
- Fusibles de protection de tour les appareils électriques ;
- Arrêt/Marche de la pompe d'alimentation avec protection par thermique de sécurité
- Alimentations stabilisées 220V, 50Hz / 5V DC des transmetteurs de conductivité;
- Alimentation stabilisée 220V 50Hz /24V DC des transmetteurs de conductivité,
- Transmetteurs de conductivité 200 ms/cm et 200µs/cm;
- Afficheur digital de conductivité.
- Deux manomètres l'un pour mesurer la pression à l'entrée du module (16 bars max) et l'autre pour mesurer la pression à la sortie du concentrât.

Figure V.3: Instrumentation du pilot TE 200.

Liste des vannes :

VA1: Vanne manuelle d'arrêt alimentation eau naturelle.

VA2 : Vanne manuelle d'arrêt échangeur concentrât.

VA3 : Vanne manuelle d'arrêt sortie perméat.

VS1: Vanne manuelle sortie cuve alimentation.

VS2 : Vanne manuelle sortie cuve perméat.

VS3: Vanne manuelle sortie cuve concentrât.

VS4 : Vanne manuelle vidange canalisation concentrât.

VS5 : Vanne manuelle vidange canalisation perméat.

VR1 : Vanne manuelle de réglage by-pass pompe alimentation.

VR2 : Vanne manuelle de réglage sortie concentrât

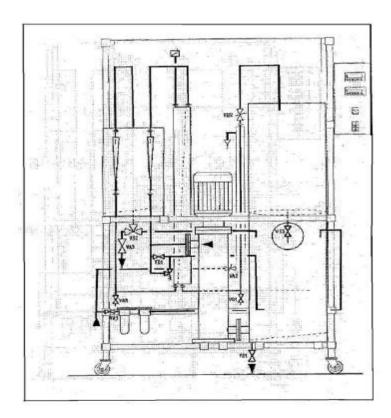


Figure V.4: Liste des vannes.

Procédure de démarrage du pilote:

- Raccorder le câble d'alimentation électrique général sur une prise de courant électrique 220 V, monophasé, 50 Hz, 10 A ;
- Raccorder un tuyau souple à la vidange de la cuve d'alimentation vers une évacuation de laboratoire pourvue de traitements d'effluents ;
- Raccorder un tuyau souple d'évacuation de l'échangeur du concentrât a une évacuation de laboratoire;
- Raccorder un tuyau souple à la sortie de la soupape de sécurité située sur le circuit de recyclage de la cuve d'alimentation vers une évacuation de laboratoire pourvue de traitements d'effluents;
- Raccorder un tuyau souple d'alimentation d'eau brute du réseau sur le pilote
- -Raccorder un tuyau souple à la vidange de la cuve de réception du perméat ;
- Mettre sous tension le pilote par le contacteur général sur la position "MARCHE" ;
- Fermer la vanne de vidange de la cuve d'alimentation VS1;
- Fermer la vanne de remplissage d'eau brute de la cuve d'alimentation VA1 ;
- Ouvrir la vanne de vidange de la cuve de réception, du concentrât VS3 ;
- Ouvrir vanne d'alimentation générale d'eau brute ;
- -Ouvrir en plein la vanne de réglage de débit de recyclage de l'alimentation VR1;
- Ouvrir à moitié la vanne de réglage de débit de sortie du concentrât VR2 ;
- Positionner la vanne trois voies de sortie de la cuve de réception du perméat VS2 de manière à recycler celui-ci vers la cuve d'alimentation (L orienté à droite) ;
- Ouvrir la vanne d'alimentation de l'eau de refroidissement de l'échangeur du circuit concentrât VA2 ;
- Le pilote est prêt pour une manipulation [60].

♣ Production d'eau osmosée:

- Mettre en marche le pilote;
- Positionner le tuyau de sortie de la cuve de réception du perméat dans un bidon de stockage d'eau osmosée ;
- Ouvrir VA1 faiblement de manière à faire passer l'eau brute d'alimentation à travers le filtre lentement ;
- Lorsque la cuve d'alimentation est pleine fermer VA1 ;
- Mettre en marche la pompe d'alimentation ;
- Régler la pression d'alimentation de la cartouche à 8 bars en fermantVA1;
- Régler le débit d'alimentation à 500 l/h avec VR2 ;
- Ajuster à nouveau la pression d'alimentation avec VR1 à 10 bars ;
- Ajuster à nouveau le débit d'alimentation avec VR2 à 500 1/h;
- Procéder par étapes successives avec les vannes de réglage VR1 et VR2 pour obtenir les paramètres de fonctionnement correctes (alimentation 10 bars, 500 1/h);
- Le perméat et le concentrât sont recycles pendant cette période de réglage ;
- Lorsque la conductivité du perméat (CI₂< 10 μs/cm), il convient de le prélever ;
- Positionner VS2 de manière à prélever l'eau osmosée ;
- Lorsque la conductivité du perméat remonte (CI₂>10 μs/cm), il convient de le recycler;
- Positionner VS2 de manière à recycler l'eau osmosée vers la cuve d'alimentation ;
- Ouvrir au maximum VRI et VR2;
- Arrêter la pompe d'alimentation;
- Vidanger la cuve d'alimentation par VS1;
- Fermer la vanne de vidange de la cuve d'alimentation VS1;

- Si la quantité d'eau osmosée produite n'est pas suffisante, il convient de recharger la cuve d'alimentation en eau brute ;
- Remplir à nouveau la cuve d'alimentation d'eau brute par VA1 ;
- Lorsque la cuve d'alimentation est pleine, fermer VA1;
- Recommencer les opérations décrites ci-dessus jusqu'a obtention de la quantité d'eau osmosée nécessaire ;
- Lorsque la quantité d'eau osmosée nécessaire est obtenue, il convient d'arrêter le pilote [60].

Procédure générale d'arrêt:

- Ouvrir au maximum VR1 et VR2;
- Arrêter la pompe d'alimentation;
- Fermer la vanne d'alimentation d'eau de refroidissement VA2 ;
- Fermer VA1;
- Vidanger la cuve d'alimentation par VS1;
- Vidanger si nécessaire la cuve de réception du concentrât par VS3 dans la cuve d'alimentation ;
- Vidanger si nécessaire la cuve de réception du perméat par VS2 (L orienté à gauche) ; Positionner le tuyau d'évacuation de la sortie de la cuve de réception du perméat vers l'égout du laboratoire ;
- Nettoyer les cuves d'alimentation et de réception ;
- Rincer les cuves avec de l'eau déminéralisée ;
- Fermer les vannes VS1, VS3 et VA1 et à trios voies (L orienté à droite)
- Arrêter le coffret général électrique « ARRET » ;
- Fermer la vanne d'alimentation générale d'eau ;
- Le pilote est prêt pour une autre manipulation [27].

V.3.1. Etude de rétention globale de module :

➤ But: Déterminer dans quel sens les paramètres principaux (pression appliqué en amont, différence de pression de part et d'autre de la membrane, concentration en NaCl de la solution d'alimentation et taux de conversion) doivent évoluer pour parvenir à obtenir un taux de rejet élever tout en gardant un débit de perméat important. La durée de chaque manipulation est de 30 minutes.

Mode opératoire

- ➤ Diluer la solution de 40 g/L jusqu'à 2g/L: $V = \frac{50*2}{40.5} = 5.47 L$
- ➤ Dans le bac d'alimentation verser 2.47L, compléter ensuite avec de l'eau de robinet jusqu'au 50L.
- Mesurer la conductivité de la solution.
- > Utiliser un thermomètre pour lire la température de la solution.
- \triangleright Démarrer l'installation en laissant la recirculation et se placer à une pression d'alimentation de 5.5 bars et une différence de pression de part et d'autre de la membrane $\Delta P = 0$ (pression de sortie est 5.5bars).
- Noter alors les débits de perméat Qp et d'alimentation Qa, les conductivités de perméat et de concentrât et puis pour la même pression d'alimentation faire varier Δ P (0,0.5, 1, 1.5, 2 bars).
- ➤ Pour chaque couple de valeurs calculer:

- Faire de même pour les concentrations de 3 ; 4 ; 5 ; 6 g/l de NaCl.
- Ensuite, recommencer les étapes décrites ci-dessus pour une pression d'alimentation de 8.5 bars et 10.5 bars.

❖ Pour les résultats obtenus tracer les courbes :

- Conductivité du perméat en fonction de temps de différente pression de sortie pour une concentration donnée.
- Conductivité du concentrât en fonction de temps de différente pression de sortie pour une concentration donnée.

Pour chaque concentration, Rm = f (t) pour des différentes de pression de part et d'autre de la membrane.

V.3.2.Description des appareillages de mesure :

Figure V.5: Conductimètre [53].

Figure V.6: Balance électronique [53].

Chapitre VI

Résultats et interprétations

VI.1.ETUDE D'OSMOSE INVERSE SUR LES EAUX SAUMATRES:

VI.1.1. Etude de la variation de la conductivité de perméat et du concentrât en fonction du temps pour une concentration de 2g/L:

Pour une concentration de 2 g/l on a choisie deux pression d'entrées P=4.5 bar et P=5.5 bar.

VI.1.1.1.Pression d'entrée 4.5 bar :

• Manipulation 01:

P=4.5bar; $\Delta P=0$ bar; C=2g/L

Conductivité de la solution d'alimentation : 3900 µs/cm.

Température avant:17°C.

Température après : 34°C.

Calcul de la pression osmotique:

C = 2g/l = 34.18 mol/m3.

 $\pi = 2*35.18*8.316*(20+273.5).$

Donc: $\pi = 1.697$ bar.

Les résultats de cette manipulation sont représentés dans le tableau 01 (annexe A.1).

• Manipulation n°02:

P= 4.5bar; Δ P=0.5 bar; C=2g/L

Conductivité de la solution d'alimentation : 3900 µs/cm.

Température avant : 18°C.

Température après 34°C.

Les résultats de cette manipulation sont représentés dans le tableau 02 (annexe A.1).

• Manipulationn • 03:

P=4.5bar; Δ P=1 bar; C=2g/L

Conductivité de la solution d'alimentation : 3900 µs/cm.

Température avant : 19°C.

Température après : 34°C.

Les résultats de cette manipulation sont représentés dans le tableau 03 (annexe A.1).

• Manipulationn • 04:

P=4.5bar; $\Delta P=1.5$ bar; C=2g/L

Conductivité de la solution d'alimentation : 3900 µs/cm.

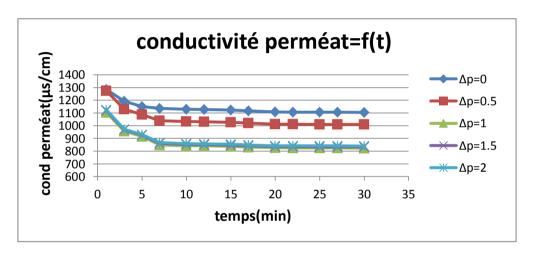
Température avant :20°C. Température après : 34°C.

Les résultats de cette manipulation sont représentés dans le tableau 04 (annexe A.1)

• Manipulationn • 05:

P=4.5bar; Δ P=2 bar; C=2g/L

Conductivité de la solution d'alimentation : 3900 µs/cm.


Température avant : 22°C. Température après : 34°C.

Les résultats de cette manipulation sont représentés dans le tableau 5 (annexe A.1)

La variation de la conductivité du perméat et concentrât en fonction du temps :

La variation de la conductivité de perméat en fonction du temps :

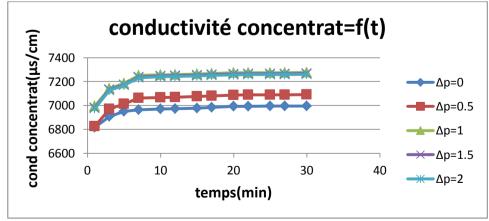

La figure ci-dessous montre la variation de la conductivité de perméat en fonction du temps :

Figure VI. 1: La variation de la conductivité de perméat en fonction du temps $(P_{\text{entrée}}=4.5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2; C=2g/L).$

La variation de la conductivité de concentrât en fonction du temps :

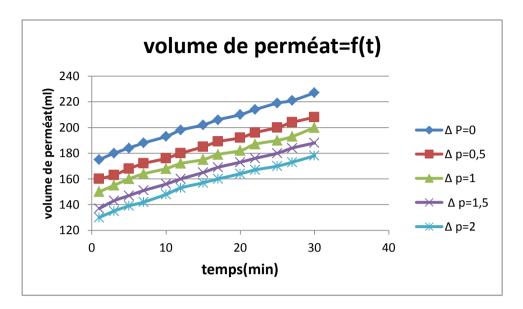

La figure ci-contre montre la variation de la conductivité de concentrât en fonction du temps :

Figure VI.2: La variation de la conductivité du perméat en fonction du temps $(P_{\text{entrée}}=4.5 \text{ bar}; \Delta P=0; 0.5;1;1.5; 2; C=2g/L).$

La variation de volume du perméat en fonction du temps :

La figure ci contre montre la variation de volume de perméat en fonction du temps :

Figure VI.3: La variation de volume de perméat en fonction du temps $(P_{\text{entrée}}=4.5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2; C=2g/L).$

La variation de la rétention globale du module :

• IMPORTAN

- Du fait de la faible concentration en NaCl dans le perméat on peut la calculer par la formule suivante:

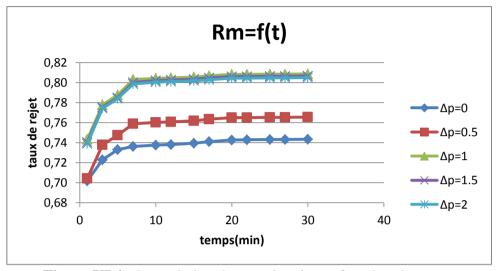
Conductivité=
$$(C Na^+ * Z Na^+ * \lambda 0 Na^+) + (C Cl^-ZCl^- * \lambda 0 Cl^-) Z Na^+ = Z Cl^- = 1$$

 $C NA^+ = C Cl^- = C NaCl$

Donc:

Conductivité = $C NaCl^* (\lambda 0 Na^+ + \lambda 0 Cl^-)$

$$\lambda 0 \text{ Na}^+ + \lambda 0 \text{ Cl} = 126.$$


- Le taux de rejet a été calculé suivant les équations suivantes :
- La concentration du perméat:

• Le taux de rejet:

$$Rm = 1 - (Cp/C0)$$

La variation de taux de rejet en fonction du temps :

La figure suivante présente la variation de la conductivité de perméat en fonction du temps :

Figure VI.4 : La variation de taux de rejet en fonction du temps $(P_{\text{entrée}}=4.5 \text{ bar }; \Delta P=0; 0.5;1; 1.5; 2; C=2g/L).$

VI.1.1.2.Pression d'entrée 5.5 bar :

• Manipulation 01:

P=5.5bar; Δ P=0 bar; C=2g/L

Conductivité de la solution d'alimentation : 3900 µs/cm.

Température avant:19°C. Température après : 28°C.

Calcul de la pression osmotique:

 $C = 2g/l = 34.18 \text{ mol/m}^3$.

 $\pi = 2*35.18*8.316*(20+273.5).$

Donc: $\pi = 1.697$ bar.

Les résultats de cette manipulation sont représentés dans le tableau 06 (annexe A.1)

Manipulation n°02:

P=5.5bar; Δ P=0.5 bar; C=2g/L

Conductivité de la solution d'alimentation : 3900 µs/cm.

Température avant : 18°C. Température après : 28°C.

Les résultats de cette manipulation sont représentés dans le tableau 07 (annexe A.1).

• *Manipulation n* • 03:

P=5.5bar; Δ P=1 bar; C=2g/L

Conductivité de la solution d'alimentation : 3900 µs/cm.

Température avant : 18°C. Température après : 28°C.

Les résultats de cette manipulation sont représentés dans le tableau 08 (annexe A.1).

• Manipulation n°04:

P=5.5bar; Δ P=1.5 bar; C=2g/L

Conductivité de la solution d'alimentation : 3900 µs/cm.

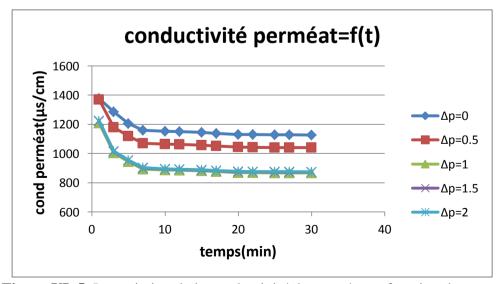
Température avant : 19°C. Température après : 28°C.

Les résultats de cette manipulation sont représentés dans le tableau 09 (annexe A.1).

• *Manipulation n*•05:

P=5.5bar; Δ P=2 bar; C=2g/L

Conductivité de la solution d'alimentation : 3900 µs/cm.


Température avant : 20°C. Température après : 29°C.

Les résultats de cette manipulation sont représentés dans le tableau10 (annexe A.1).

La variation de la conductivité du perméat et du concentrât en fonction du temps :

La variation de la conductivité de perméat en fonction du temps :

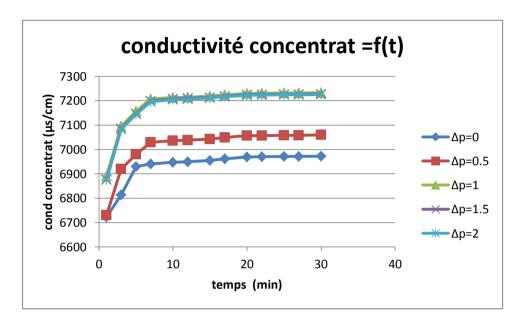

La figure ci contre montre la variation de la conductivité de perméat en fonction du temps :

Figure VI. 5: La variation de la conductivité de perméat en fonction du temps $(P_{entrée}=5.5 \text{ bar }; \Delta P=0; 0.5;1; 1.5; 2; C=2g/L).$

❖ La variation de la conductivité du concentrât en fonction du temps :

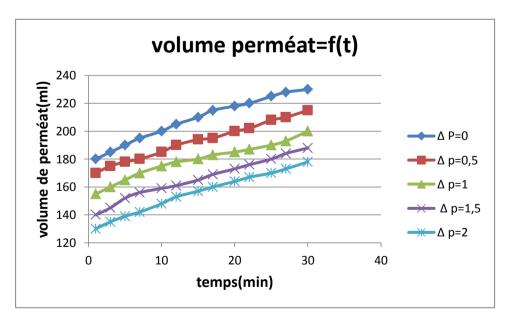

La figure ci contre montre la variation de la conductivité de concentrât en fonction du temps :

Figure VI.6: La variation de la conductivité de concentrât en fonction du temps $(P_{entrée} = 5.5 \text{ bar}; \Delta P = 0; 0.5; 1; 1.5; 2; C=2g/L).$

La variation de volume de perméat en fonction du temps :

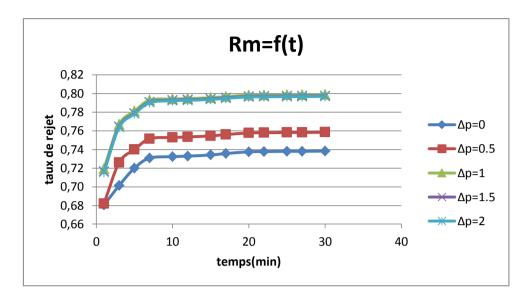

La figure ci contre montre la variation de volume de perméat en fonction du temps :

Figure VI.7: La variation de volume de perméat en fonction du temps $(P_{entrée}=5.5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2; C=2g/L).$

La variation du taux de rejet en fonction du temps :

La figure suivante montre la variation de taux de rejet en fonction du temps :

Figure VI.8: La variation de taux de rejet en fonction du temps $(P_{\text{entrée}} = 5.5 \text{ bar}; \Delta P = 0; 0.5;1;2; C=2g/L).$

INTERPRETATION DES RESULTATS:

L'examen des résultats obtenus au-dessus montrent que la différence de pression de part et d'autres de la membrane influe considérablement sur la conductivité du perméat et du concentrât.

Pour une concentration en sel de 2g/L étudiée avec des pressions d'entrée de 4.5 et 5.5 bar. Nous avons trouvé une certaine stabilité des conductivités du perméat à partir de la $7^{\text{ème}}$ minute comme le montre la **(figure VI. 1et figure VI. 5)** nous constatons aussi que ces valeurs de perméat sont proches entre elles pour ($\Delta P=1$; $\Delta P=1.5$ et $\Delta P=2$) et plus petites que les valeurs pour ($\Delta P=0$ et $\Delta P=0.5$). Néanmoins les valeurs de $\Delta P=1$ sont les plus petites donc les meilleures et pour les deux cas.

Par contre si on fait une comparaison sur les deux pressions d'entrée à savoir $(P_{entrée})$ =4.5 bar et $(P_{entrée})$ =5.5 bar dans le cas de ΔP =1 nous constatons que la conductivité moyenne de perméat pour le premier cas est de 869 (µs/cm) et pour le deuxième cas est de (917 (µs/cm)) ce qui montre bien que $P_{entrée}$ =4.5 bar donne des meilleures résultats que la seconde.

VI.1.2. Etude de la variation de la conductivité de perméat et du concentrât en fonction du temps pour une concentration de 3 g/L:

Pour la concentration de 3g/L on a choisie deux pressions d'entrée P=5.5 et 8.5 bar.

VI.2.2.1.Pression d'entrée 5.5 bar :

• Manipulation n°01:

P=5.5bar; Δ P=0 bar; C=3g/L

Conductivité de la solution d'alimentation : 4800 µs/cm.

Température avant : 16°C.

Température après : 23°C.

Calcul de la pression osmotique:

 $C= 3 \text{ g/l} = 51.28 \text{ mol/m}^3$.

 $\pi = 2*51.28*8.316*(20+273.5).$

Donc : π =2.50bar.

Les résultats de cette manipulation sont représentés dans le tableau 11 (annexe A.1).

• Manipulation n°02:

P=5.5bar; Δ P=0.5 bar; C=3g/L

Conductivité de la solution d'alimentation : 4800 µs/cm.

Température avant : 16°C.

Température après : 23°C.

Les résultats de cette manipulation sont représentés dans le tableau 12 (annexe A.2).

• *Manipulation n*•03:

P=5.5bar; Δ P=1 bar; C=3g/L

Conductivité de la solution d'alimentation : 4800 µs/cm.

Température avant : 16°C.

Température après : 23°C.

Les résultats de cette manipulation sont représentés dans le tableau 13 (annexe A.2).

• Manipulation n°04:

P=5.5bar; Δ P=1.5 bar; C=3g/L

Conductivité de la solution d'alimentation : 4800 µs/cm.

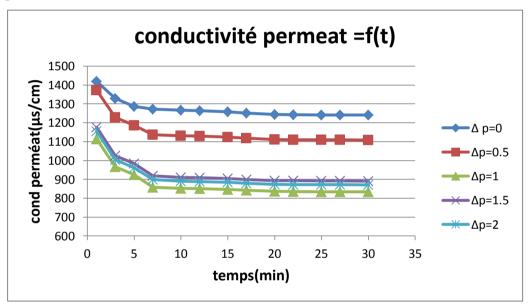
Température avant : 16°C.

Température après 23°C.

Les résultats de cette manipulation sont représentés dans le tableau 14 (annexe A.2).

• *Manipulation n*•05:

P=5.5bar; Δ P=2 bar; C=3g/L


Conductivité de la solution d'alimentation : 4800 µs/cm.

Température avant : 16°C. Température après : 23°C.

Les résultats de cette manipulation sont représentés dans le tableau 15 (annexe A.2).

❖ La variation de la conductivité du perméat et du concentrât en fonction du temps :

La figure ci-dessus présente la variation de la conductivité de perméat en fonction du temps :

Figure VI. 9: La variation de la conductivité de perméat en fonction du temps $(P_{\text{entrée}}=5.5 \text{ bar}; \Delta P=0; 0.5;1;2;C=3g/L).$

La variation de la conductivité du concentrât :

La figure ci-dessous présente la variation de la conductivité de concentrât en fonction du temps :

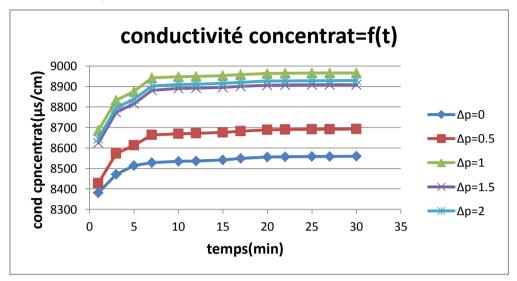



Figure VI.10 : La variation de la conductivité de concentrât en fonction du temps (Pentrée=5.5 bar ; ΔP= 0; 0.5;1 ; 2 ; C=3g/L).

La variation de volume de perméat en fonction du temps :

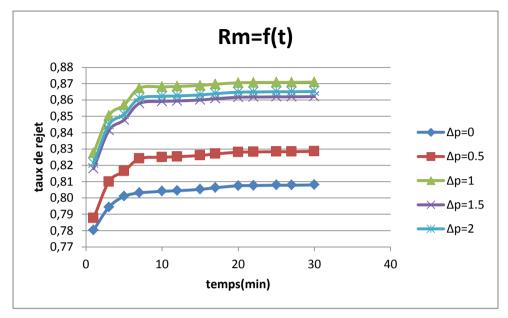

La figure ci-dessous présente la variation de volume de perméat en fonction du temps :

Figure VI.11: la variation de volume du perméat en fonction du temps $(P_{entrée}=5.5 \text{ bar}; \Delta P=0; 0.5;1;2;C=3g/L).$

❖ La variation du taux de rejet en fonction du temps :

La figure suivante présente la variation du temps de rejet en fonction du temps :

Figure VI.12: La variation de taux de rejet en fonction du temps $(P_{\text{entrée}}=5.5 \text{ bar}; \Delta P=0; 0.5;1; 2; C=3g/L).$

VI.1.2.2.Pression d'entrée 8.5 bar :

• Manipulation n • 01:

P=8.5 bar; Δ P=0 bar; C=3g/L

Conductivité de la solution d'alimentation : 4700 µs/cm.

Température avant : 17°C. Température après : 25°C.

Calcul de la pression osmotique:

 $C= 3 \text{ g/l} = 51.28 \text{ mol/m}^3.$

 $\pi = 2*51.28*8.316*(20+273.5).$

Donc: π =2.50bar.

Les résultats de cette manipulation sont représentés dans le tableau 16 (annexe A.2).

• Manipulation n°02:

P=8.5bar; Δ P=0.5bar; C=3 g/L

Conductivité de la solution d'alimentation : 4700 µs/cm.

Température avant : 17°C. Température après : 25°C.

Les résultats de cette manipulation sont représentés dans le tableau 17 (annexe A.2).

• *Manipulation n* • 03:

P=8.5bar; Δ P=1bar; C=3g/L

Conductivité de la solution d'alimentation : 4700 µs/cm.

Température avant : 17°C. Température après : 25°C.

Les résultats de cette manipulation sont représentés dans le tableau 18 (annexe A.2).

Manipulation n°04 :

P=8.5bar; Δ P=1.5bar; C=3 g/L

Conductivité de la solution d'alimentation : 4700 µs/cm.

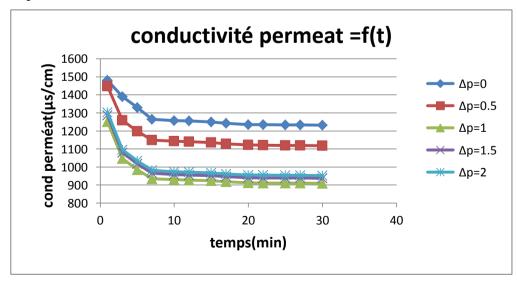
Température avant : 17°C. Température après : 25°C.

Les résultats de cette manipulation sont représentés dans le tableau 19 (annexe A.2).

• Manipulation n • 05:

P=8.5bar; Δ P=2 bar; C=3 g/L

Conductivité de la solution d'alimentation : 4700 µs/cm.


Température avant : 17°C. Température après : 25°C.

Les résultats de cette manipulation sont représentés dans le tableau 20 (annexe A.2).

❖ La variation de la conductivité du perméat et du concentrât en fonction du temps :

La variation de la conductivité du perméat :

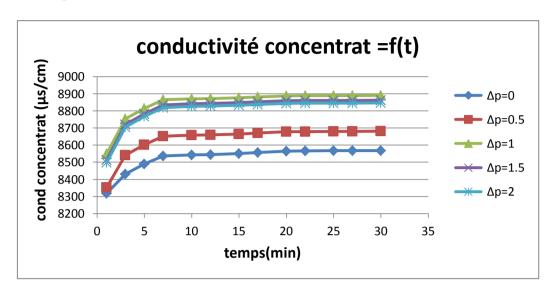

La figure suivante montre la variation de la conductivité de perméat en fonction du temps :

Figure VI.13: La variation de la conductivité de perméat en fonction du temps $(P_{\text{entrée}}=8.5 \text{ bar}; \Delta P=0; 0.5;1; 2; C=3g/L).$

La variation de la conductivité de concentrât :

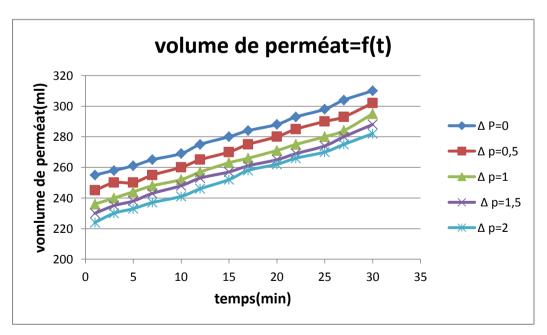

La figure suivante présente la variation de la conductivité de concentrât en fonction du temps :

Figure VI.14 : La variation de la conductivité de concentrât en fonction du temps $(P_{entrée} = 8.5 \text{ bar }; \Delta P = 0; 0.5;1; 2; C=3g/L).$

La variation de volume de perméat en fonction du temps :

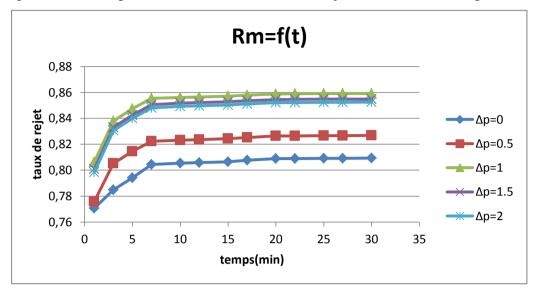

La figure ci-contre présente la variation de volume de perméat en fonction de temps :

Figure VI.15: La variation de volume du perméat en fonction du temps $(P_{entrée} = 8.5 \text{ bar}; \Delta P = 0; 0.5; 1; 2; C=3g/L).$

La variation de taux de rejet en fonction du temps :

La figure ci-dessous présente la variation de taux de rejet en fonction du temps :

Figure VI.16: La variation de taux de rejet en fonction du temps $(P_{entr\'ee} = 8.5 \text{ bar}; \Delta P = 0; 0.5;1;2; C=3 \text{ g/L}).$

■ INTERPRETATION DES RESULTATS

lorsqu'on augmente la concentration en sel à 3g/L et on fait varier la pression d'entrée (5.5 et 8.5 bar), toujours on remarque que les bons résultats sont obtenus avec ΔP (1;1.5;2), par rapport à $(\Delta P=0;0.5)$ mais les plus faibles valeurs de la conductivité de perméat correspond bien pour $\Delta P=1$.

L'étude sur l'influence des pressions d'entrée montre bien que la conductivité moyenne du perméat à partir de la 7^{ème} minute est de 879 (µs/cm) pour la pression d'entrée 5.5 bar par contre cette même conductivité moyenne de perméat est de 959 (µs/cm) ce qui montre bien que le choix de la pression d'entrée 5.5 bar est le meilleure.

VI.1.3. Etude de la variation de la conductivité de perméat et du concentrât en fonction du temps pour une concentration de 4g/L :

Pour la concentration de 4g/L on a choisie trois pressions d'entrée P=5.5, 8.5 et 10.5 bar

VI.1.3.1.Pression d'entrée 5.5 bar :

• Manipulation n°01:

P=5.5bar; Δ P=0bar; C=4g/L

Conductivité de la solution d'alimentation : 6420 µs/cm.

Température avant : 22°C.

Température après : 30°C.

Calcul de la pression osmotique:

 $C = 4 \text{ g/l} = 68.38 \text{ mol/m}^3$.

 $\pi = 2*68.38*8.316*(20+273.5).$

Donc : π =3.34bar.

Les résultats de cette manipulation sont représentés dans le tableau 21 (annexe A.3).

• Manipulation n°02:

P=5.5bar; Δ P=0.5bar; C=4g/L

Conductivité de la solution d'alimentation : 6420 µs/cm.

Température avant: 19°C. Température après : 28°C.

Les résultats de cette manipulation sont représentés dans le tableau 22 (annexe A.3).

• Manipulation n°03

P=5.5bar; Δ P=1bar; C=4g/L

Conductivité de la solution d'alimentation : 6240 µs/cm.

Température avant:20°C.

Température après : 24°C.

Les résultats de cette manipulation sont représentés dans le tableau 23 (annexe A.3).

• Manipulation n • 04:

P=5.5bar; Δ P=1.5 bar; C=4g/L

Conductivité de la solution d'alimentation : 6240 µs/cm.

Température avant:20°C.

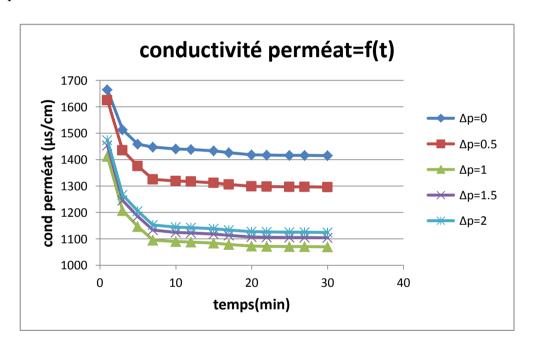
Température après : 24°C.

Les résultats de cette manipulation sont représentés dans le tableau 24 (annexe A.3).

• Manipulation n • 05:

P=5.5bar; Δ P=2 bar; C=4g/L

Conductivité de la solution d'alimentation : 6240 µs/cm.


Température avant:20°C. Température après : 24°C.

Les résultats de cette manipulation sont représentés dans le tableau 25 (annexe A.3).

❖ La variation de la conductivité du perméat et du concentrât en fonction du temps :

La variation de perméat en fonction du temps :

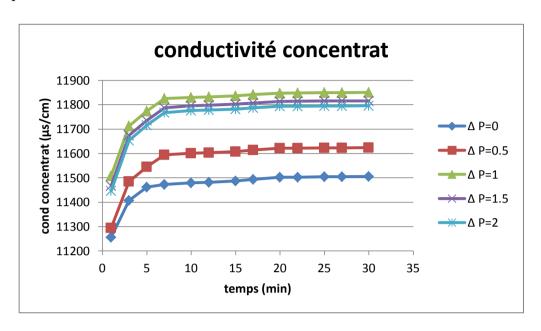

La figure ci contre montre la variation de la conductivité de perméat en fonction du temps :

Figure VI.17: La variation de la conductivité de perméat en fonction du temps $(P_{entrée}=5.5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2; C=4g/L).$

La variation de conductivité de concentrât en fonction de temps :

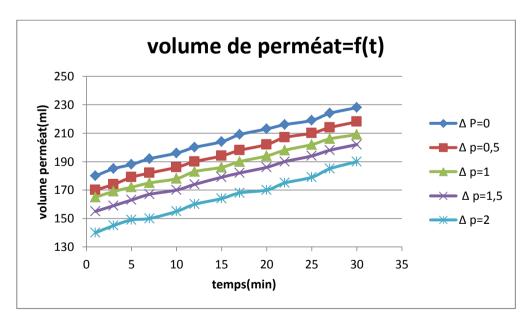

La figure ci contre montre la variation de la conductivité de perméat en fonction du temps :

Figure VI.18: La variation de la conductivité de concentrât en fonction du temps $(P_{entrée}=5.5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2; C=4g/L).$

La variation de volume de perméat en fonction du temps :

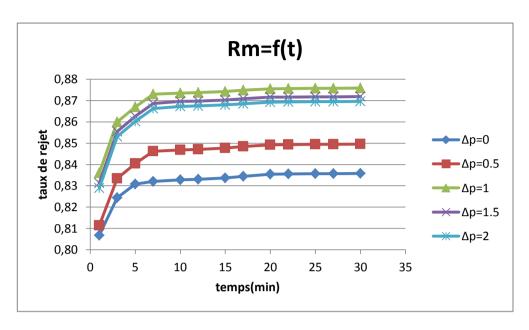

La figure ci contre montre la variation de volume de perméat en fonction du temps :

Figure VI.19 : La variation de volume de perméat en fonction du temps $(P_{entrée}=5.5 \text{ bar }; \Delta P=0; 0.5;1; 1.5; 2; C=4g/L).$

La variation du taux de rejet en fonction du temps :

La figure ci contre montre la variation de taux de rejet en fonction du temps :

Figure VI.20: La variation de taux de rejet en fonction du temps $(P_{entrée}=5.5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2; C=4g/L).$

VI.1.3.2.Pression d'entrée 8.5 bar :

• Manipulation n • 01:

P=8,5bar; Δ P=0 bar; C=4g/L

Conductivité de la solution d'alimentation : 6420 µs/cm.

Température avant : 22°C. Température après : 30°C.

Calcul de la pression osmotique:

 $C = 4 \text{ g/l} = 68.38 \text{ mol/m}^3$.

 $\pi = 2*68.38*8.316*(20+273.5).$

Donc : $\pi = 3.34 bar$.

Les résultats de cette manipulation sont représentés dans le tableau 26 (annexe A.3).

• Manipulation n°02:

P=8,5bar; Δ P=0.5bar; C=4g/L

Conductivité de la solution d'alimentation : 6420 µs/cm.

Température avant:23°C. Température après : 32°C.

Les résultats de cette manipulation sont représentés dans le tableau 27 (annexe A.3).

• Manipulation n • 03:

P=8,5bar; Δ P=1bar; C=4g/L

Conductivité de la solution d'alimentation : 6420 µs/cm.

Température avant:18°C. Température après : 24°C.

Les résultats de cette manipulation sont représentés dans le tableau 28 (annexe A.3).

• *Manipulation* n • 04:

P=8,5bar; Δ P=1.5 bar; C=4g/L

Conductivité de la solution d'alimentation : 6420 µs/cm.

Température avant:18°C. Température après : 26°C.

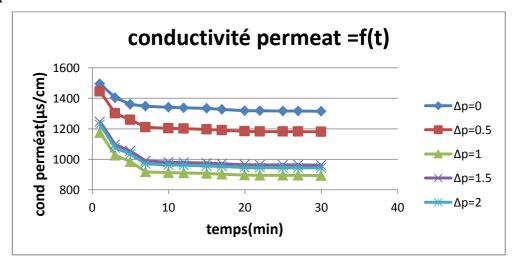
Les résultats de cette manipulation sont représentés dans le tableau 29 (annexe A.3).

• *Manipulation n*•05:

P=8,5bar; Δ P=2 bar; C=4g/L

Conductivité de la solution d'alimentation : 6420 µs/cm.

Température avant:18°C.


Température après : 28°C.

Les résultats de cette manipulation sont représentés dans le tableau 30 (annexe A.3).

La variation de la conductivité du perméat et du concentrât en fonction du temps :

La variation de perméat en fonction du temps:

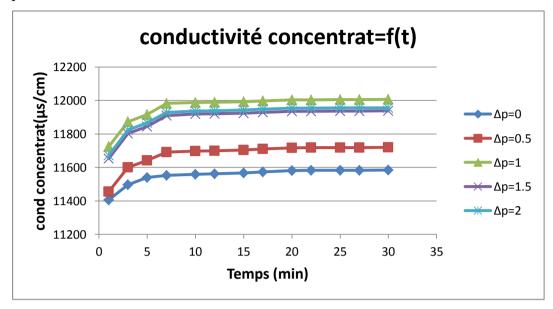

La figure ci contre montre la variation de la conductivité de perméat en fonction du temps :

Figure VI.21: La variation de la conductivité de perméat en fonction du temps $(P_{entrée}=5.5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2; C=4g/L).$

La variation du concentrât en fonction du temps :

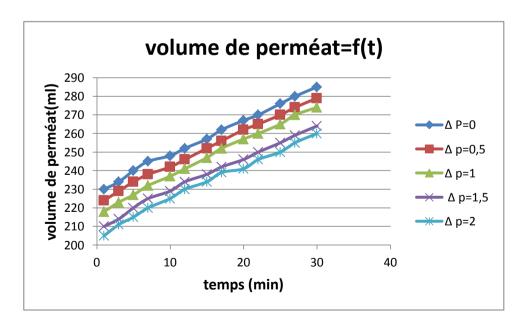

La figure ci contre montre la variation de la conductivité de concentrât en fonction du temps :

Figure VI.22: La variation de la conductivité de concentrât en fonction du temps $(P_{entrée}=5.5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2; C=4g/L).$

La variation de volume de perméat en fonction du temps :

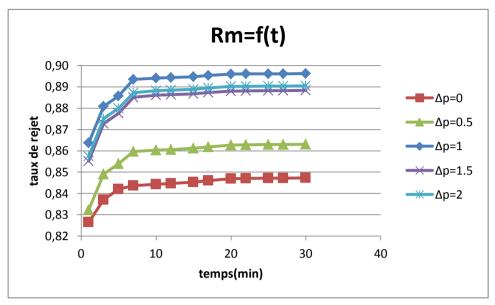

La figure ci contre montre la variation de volume de perméat en fonction du temps :

Figure VI.23: La variation de volume de perméat en fonction du temps $(P_{entrée}=5.5 \text{ bar }; \Delta P=0; 0.5;1; 1.5; 2; C=4g/L).$

La variation de taux de rejet en fonction du temps :

La figure ci contre montre la variation de taux de rejet en fonction du temps :

Figure VI.24: La variation de taux de rejet en fonction du temps $(P_{entr\'ee}=8.5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2; C=4g/L).$

VI.1.3.3.Pression d'entrée 10.5 bar :

• *Manipulation n*•01:

P=10,5bar; Δ P=0bar; C=4g/L

Conductivité de la solution d'alimentation : 6420 µs/cm.

Température avant : 20°C. Température après : 27°C.

Calcul de la pression osmotique:

 $C = 4 \text{ g/l} = 68.38 \text{ mol/m}^3$.

 $\pi = 2*68.38*8.316*(20+273.5).$

Donc: π =3.34bar.

Les résultats de cette manipulation sont représentés dans le tableau 31 (annexe A.3).

• Manipulation n°02:

P=10,5bar; Δ P=0.5bar; C=4g/L

Conductivité de la solution d'alimentation : 6420 µs/cm.

Température avant: 22°C. Température après : 35°C.

Les résultats de cette manipulation sont représentés dans le tableau 31(annexe A.3).

• *Manipulation n* • 03:

P=10,5bar; Δ P=1bar; C=4g/L

Conductivité de la solution d'alimentation : 6420 µs/cm.

Température avant:24°C. Température après : 31°C.

Les résultats de cette manipulation sont représentés dans le tableau 33(annexe A.3).

• Manipulation n°04:

P=10,5bar; Δ P=1.5 bar; C=4g/L

Conductivité de la solution d'alimentation : 6420 µs/cm.

Température avant:20°C. Température après : 29°C.

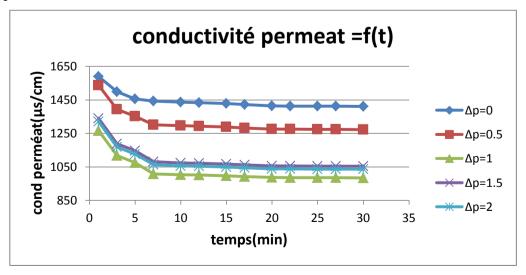
Les résultats de cette manipulation sont représentés dans le tableau 34 (annexe A.3).

• Manipulation n°05:

P=8,5bar; Δ P=2 bar; C=4g/L

Conductivité de la solution d'alimentation : 6420 µs/cm.

Température avant:21°C.


Température après : 34°C.

Les résultats de cette manipulation sont représentés dans le tableau 35 (annexe A.3).

La variation de la conductivité du perméat et du concentrât en fonction du temps :

La variation de volume de perméat en fonction du temps:

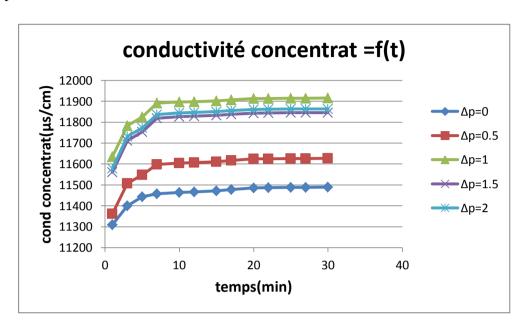

La figure ci contre montre la variation de la conductivité de perméat en fonction du temps :

Figure VI.25: La variation de la conductivité de perméat en fonction du temps $(P_{entrée}=10.5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2; C=4g/L)$

La variation de la conductivité du concentrât :

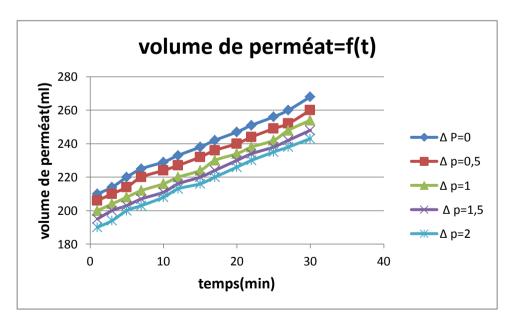

La figure ci contre montre la variation de la conductivité de perméat en fonction du temps :

Figure VI.26: La variation de la conductivité de concentrât en fonction du temps $(P_{\text{entrée}}=10.5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2; C=4g/L).$

La variation de volume de perméat en fonction du temps :

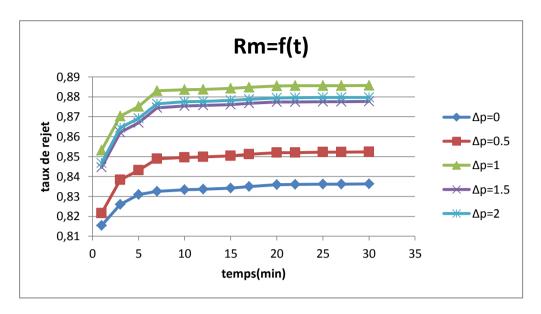

La figure ci contre montre la variation de volume de perméat en fonction du temps :

Figure VI.27: La variation de volume de perméat en fonction du temps $(P_{entrée}=10.5 \text{ bar}; \Delta P=0; 0.5;1;1.5; 2; C=4g/L).$

La variation de taux de rejet en fonction du temps :

La figure ci-dessous présente la variation de taux de rejet en fonction du temps :

Figure VI.28: La variation de taux de rejet en fonction du temps $(P_{entrée}=10.5 \text{ bar}; \Delta P=0; 0.5;1; 1.5;2; C=4g/L).$

INTERPRETATION DES RESULTATS:

Dans le cas de 4g/l nous avons opté pour une étude de trois ($P_{entrée}$) à savoir (5.5 ;8.5 et 10.5 bar) et nous avons trouvé les mêmes allures des courbes précédentes voir (74 ;78 et 82) qui montre bien que les meilleures courbes correspond pour les trois cas des valeurs de la conductivité de permeat les plus faibles correspondant au ΔP =1, par contre l'importance des pressions d'entrée montre bien qu'à partir de la $7^{\text{ème}}$ minute la conductivité moyenne de perméat pour une P entrée de 8.5 bar est de 939(μ s/cm) plus petite que celle de $P_{\text{entrée}}$ = 10.5 bar qui correspond à 1030 (μ s/cm) et plus petite encore aux valeurs de conductivité moyenne de perméat correspondant à 5.5 bar qui sont de 1120(μ s/cm).

VI.1.4. Etude de la variation de la conductivité de perméat et du concentrât en fonction du temps pour une concentration de 5 g/L:

Pour une concentration de 5g/L on a choisie trois pression d'entrée P=5.5 ,8.5 et 10.5 bar.

VI.1.4.1.Pression d'entrée 5.5 bar :

• Manipulation n°01:

P=10.5 bar, C=5 g/L, Δ P= 0bar

Conductivité de la solution d'alimentation : 7400 µs/cm.

Température avant : 16 °C.

Température après : 27°C.

Calcul de la pression osmotique:

 $C= 5 \text{ g/l} = 85.47 \text{ mol/m}^3$.

 $\pi = 2*85.47*8.316*(20+273.5).$

Donc : π =4.17bar.

Les résultats de cette manipulation sont représentés dans le tableau 36 (annexe A.4).

• Manipulation n°02:

P=10.5 bar, C=5 g/L, Δ P= 0.5bar

Conductivité de la solution d'alimentation : 7800 µs/cm.

Température avant : 17°C. Température après : 28°C.

Les résultats de cette manipulation sont représentés dans le tableau 37 (annexe A.4).

• Manipulation n°03:

P=10.5 bar, C=5 g/L, Δ P= 1bar

Conductivité de la solution d'alimentation : 7800µs/cm.

Température avant : 17°C.

Température après : 28°C.

Les résultats de cette manipulation sont représentés dans le tableau 38 (annexe A.4).

• *Manipulation n*•04:

P=5.5 bar, C=5 g/L, Δ P= 1.5bar

Conductivité de la solution d'alimentation : 7800 µs/cm.

Température avant : 17°C.

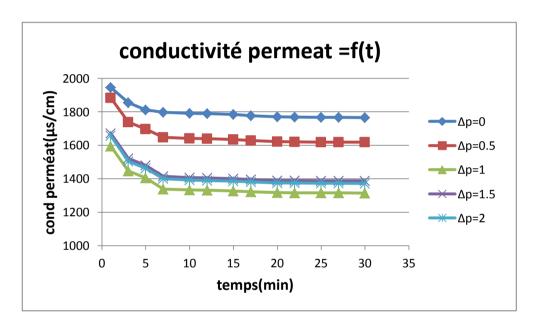
Température après : 28°C.

Les résultats de cette manipulation sont représentés dans le tableau 39 (annexe A.4).

• Manipulation n • 05:

P=5.5 bar, C=5 g/L, Δ P= 2bar

Conductivité de la solution d'alimentation : 7800 µs/cm.


Température avant : 16°C. Température après : 26°C.

Les résultats de cette manipulation sont représentés dans le tableau 40 (annexe A.4).

❖ La variation de la conductivité du perméat et du concentrât en fonction du temps :

La variation de conductivité de perméat en fonction du temps:

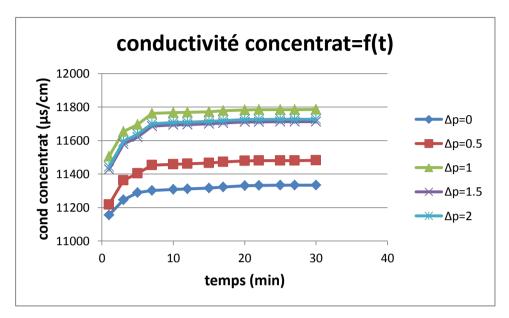

La figure suivante montre la variation de la conductivité de perméat en fonction du temps :

Figure VI.29: La variation de la conductivité de perméat en fonction du temps $(P_{\text{entrée}}=5.5 \text{ bar}; \Delta P=0; 0.5; 1; 1.5; 2; C=5g/L).$

La variation de la conductivité de concentrât :

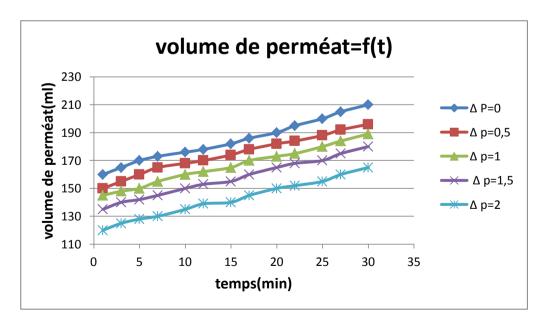

La figure ci contre montre la variation de la conductivité de concentrât en fonction du temps :

Figure VI.30: La variation de la conductivité de concentrât en fonction du temps $(P_{entrée}=5.5 \text{ bar}; \Delta P=0; 0.5;1;1.5; 2; C=5g/L).$

La variation de volume du perméat en fonction du temps :

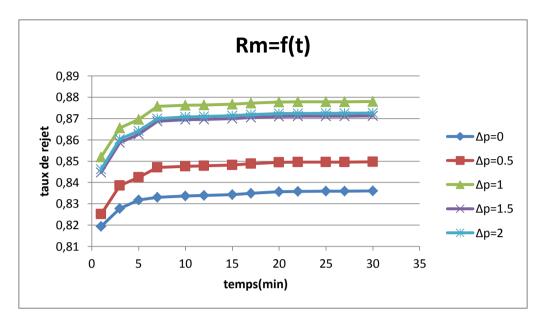

La figure ci contre montre la variation de volume de perméat en fonction du temps :

Figure VI.31: La variation de volume du perméat en fonction du temps $(P_{entrée}=5.5 \text{ bar}; \Delta P=0; 0.5;1;1.5; 2; C=5g/L).$

La variation de taux de rejet en fonction du temps :

La figure ci contre montre la variation de taux de rejet en fonction du temps :

Figure VI.32 : La variation de taux de rejet en fonction du temps $(P_{\text{entrée}}=5.5 \text{ bar }; \Delta P=0; 0.5;1;1.5 ; 2 ; C=5g/L).$

VI.1.4.2.Pression d'entrée 8.5 bar :

• Manipulation n°01:

P=8.5bar; Δ P=0 bar; C=5g/L

Conductivité de la solution d'alimentation : $7400 \mu s/cm$.

Température avant : 18°C. Température après : 26°C.

Calcul de la pression osmotique:

 $C= 5 \text{ g/l} = 85.47 \text{ mol/m}^3$.

 $\pi = 2*85.47*8.316*(20+273.5).$

Donc : $\pi = 4.17$ bar.

Les résultats de cette manipulation sont représentés dans le tableau 41 (annexe A.4).

• *Manipulation n*•02:

P=8.5bar; Δ P=0.5 bar; C=5g/L

Conductivité de la solution d'alimentation : 7400µs/cm.

Température avant : 18°C. Température après : 26°C.

Les résultats de cette manipulation sont représentés dans le tableau 42 (annexe A.4).

• *Manipulation n*•03:

P=8.5bar; Δ P=1 bar; C=5g/L

Conductivité de la solution d'alimentation : 7400 µs/cm.

Température avant : 20°C. Température après 29°C.

Les résultats de cette manipulation sont représentés dans le tableau 43 (annexe A.4).

• Manipulation n°04:

P=8.5bar; Δ P=1.5 bar; C=5g/L

Conductivité de la solution d'alimentation : 7400µs/cm.

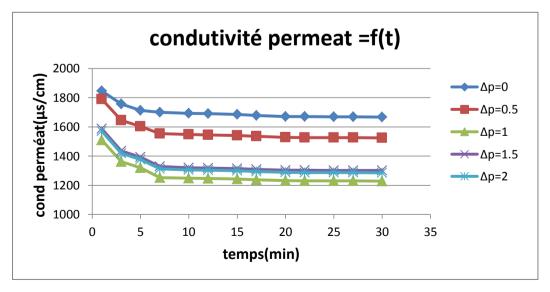
Température avant : 21°C. Température après : 30°C.

Les résultats de cette manipulation sont représentés dans le tableau 44 (annexe A.4).

• *Manipulation n* • 05 :

P=8.5bar; Δ P=2 bar; C=5g/L

Conductivité de la solution d'alimentation : 7400µs/cm.


Température avant : 21°C. Température après : 32°C.

Les résultats de cette manipulation sont représentés dans le tableau 45(annexe A.4).

La variation de la conductivité du perméat et du concentrât en fonction du temps :

La variation de conductivité de perméat en fonction du temps:

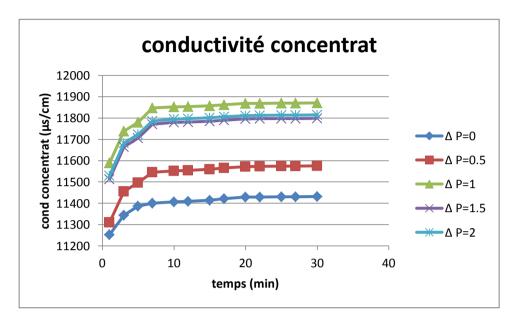

La figure suivante présente la variation de la conductivité de perméat en fonction du temps :

Figure VI.33: La variation de la conductivité de perméat en fonction du temps $(P_{entrée}=8.5 \text{ bar}; \Delta P=0; 0.5;1;1.5; 2; C=5g/L).$

La variation de la conductivité de concentrât:

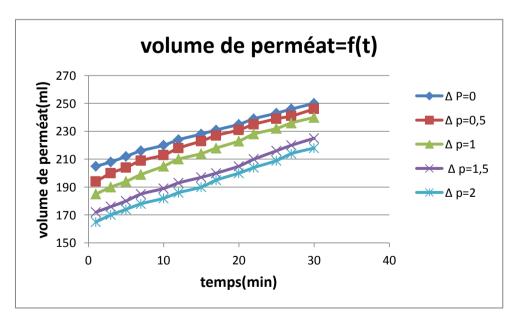

La figure ci contre montre la variation de la conductivité de concentrât en fonction du temps :

Figure VI.34: La variation de la conductivité de concentrât en fonction du temps $(P_{\text{entrée}}=8.5 \text{ bar}; \Delta P=0; 0.5;1;1.5; 2; C=5g/L).$

\$ la variation de volume de perméat en fonction du temps :

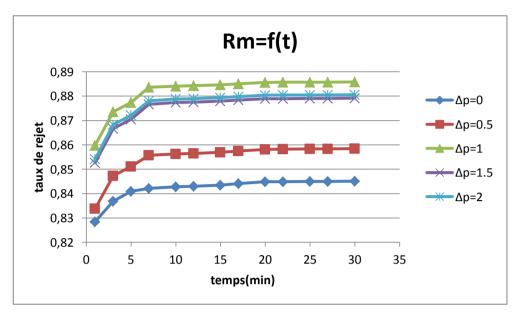

La figure ci contre montre la variation de volume de perméat en fonction du temps :

Figure VI.35: La variation de volume du perméat en fonction du temps $(P_{entrée}=8.5 \text{ bar}; \Delta P=0; 0.5;1;1.5; 2; C=5g/L).$

La variation de taux e rejet en fonction du temps :

La figure ci-dessous montre la variation de taux de rejet en fonction du temps :

Figure VI.36: La variation de taux de rejet en fonction du temps $(P_{entrée}=8.5 \text{ bar}; \Delta P=0; 0.5;1;1.5; 2; C=5g/L).$

VI.2.4.3. Pression d'entrée 10.5 bar :

• Manipulation n°01:

P=10.5 bar, C=5 g/L, Δ P= 0bar

Conductivité de la solution d'alimentation : 7400 µs/cm.

Température avant : 19 °C. Température après : 28 °C.

Calcul de la pression osmotique:

 $C = 5 \text{ g/l} = 85.47 \text{ mol/m}^3$.

 $\pi = 2*85.47*8.316*(20+273.5).$

Donc: π =4.17bar.

Les résultats de cette manipulation sont représentés dans le tableau 46 (annexe A.4).

• Manipulation n°02:

P=10.5 bar, C=5 g/L, Δ P= 0.5bar

Conductivité de la solution d'alimentation : 7800 µs/cm.

Température avant : 20°C. Température après : 30°C.

Les résultats de cette manipulation sont représentés dans le tableau 47 (annexe A.4).

• Manipulation n°03:

P=10.5 bar, C=5 g/L, Δ P= 1bar

Conductivité de la solution d'alimentation : 7800µs/cm.

Température avant : 21°C. Température après : 32°C.

Les résultats de cette manipulation sont représentés dans le tableau 48 (annexe A.4).

• Manipulation n°04:

P=10.5 bar, C=5 g/L, Δ P= 1.5bar

Conductivité de la solution d'alimentation : 7800 µs/cm.

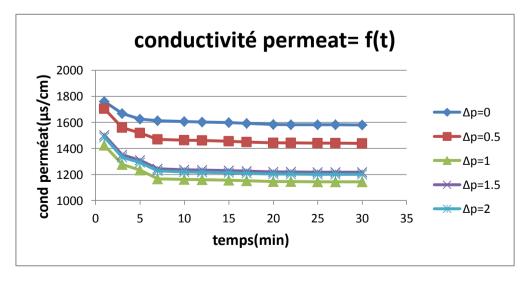
Température avant : 20°C. Température après : 28°C.

Les résultats de cette manipulation sont représentés dans le tableau 49 (annexe A.4).

• *Manipulation n* • 05:

P=10.5 bar, C=5 g/L, Δ P= 2bar

Conductivité de la solution d'alimentation : 7800 µs/cm.


Température avant : 18°C. Température après : 27°C.

Les résultats de cette manipulation sont représentés dans le tableau 50 (annexe A.4).

La variation de la conductivité du perméat et du concentrât en fonction du temps :

La variation de conductivité de perméat en fonction du temps:

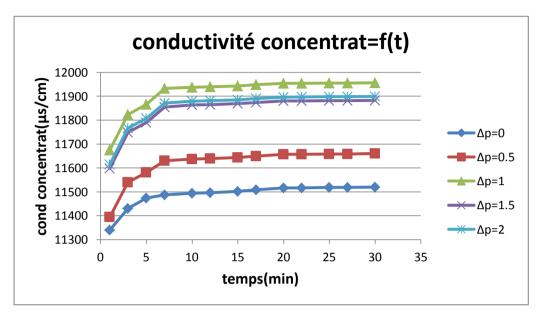

La figure ci contre montre la variation de la conductivité de perméat en fonction du temps :

Figure VI.37: La variation de la conductivité de perméat en fonction du temps $(P_{entrée}=10.5 \text{ bar}; \Delta P=0; 0.5;1;1.5; 2; C=5g/L).$

La variation de la conductivité de concentrât :

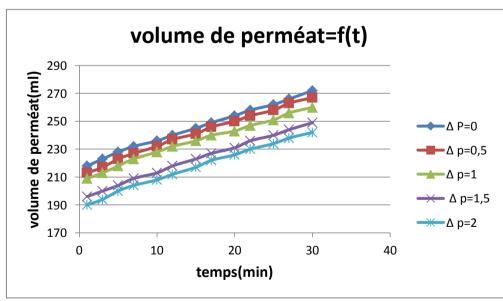

La figure ci contre montre la variation de la conductivité de perméat en fonction du temps :

Figure VI.38: La variation de la conductivité de concentrât en fonction du temps $(P_{entrée}=10.5 \text{ bar}; \Delta P=0; 0.5;1;1.5; 2; C=5g/L).$

La variation de volume de perméat en fonction du temps :

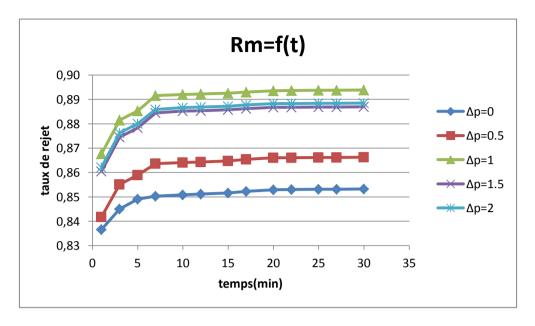

La figure ci contre montre la variation de volume de perméat en fonction du temps :

Figure VI.39: La variation de volume de perméat en fonction du temps $(P_{\text{entrée}}=10.5 \text{ bar}; \Delta P=0; 0.5;1;1.5; 2; C=5g/L).$

La variation de taux de rejet en fonction :

La figure suivante montre la variation de taux de rejet en fonction du temps :

Figure VI.40: La variation de taux de rejet en fonction du temps $(P_{entrée}=10.5 \text{ bar}; \Delta P=0; 0.5;1;1.5; 2; C=5g/L).$

INTERPRETATION DES RESULTATS

lorsqu'on augmente la concentration en sel à 3g/L et on fait varier la pression d'entrée (5.5 et 8.5 bar), toujours on remarque que les bons résultats sont obtenus avec ΔP (1; 1.5; 2), par rapport à $(\Delta P=0;0.5)$ mais les plus faibles valeurs de la conductivité de perméat correspond bien pour $\Delta P=1$.

L'étude sur l'influence des pressions d'entrée montre bien que la conductivité moyenne du perméat à partir de la 7^{ème} minute est de 879 (µs/cm) pour la pression d'entrée 5.5 bar par contre cette même conductivité moyenne de perméat est de 959 (µs/cm) ce qui montre bien que le choix de la pression d'entrée 5.5 bar est le meilleure.

VI.2.ETUDE D'OSMOSE INVERSE SUR LES EAUX DE MER:

VI.2.1.Etude de la variation de la conductivité de perméat et du concentrât en fonction du temps pour une concentration de 3g/L:

Pour une concentration de 3 g/L on a choisie deux pressions d'entrée P=5.5 et P=8.5 bar

VI.2.1.1. Pression d'entrée 5.5 bar :

• Manipulation n°01:

P=5.5bar; Δ P=0 bar; C=3g/L

Conductivité de la solution d'alimentation : 4800 µs/cm.

Température avant : 18 °C.

Température après : 26°C.

Calcul de la pression osmotique :

 $C= 3 \text{ g/l} = 51.28 \text{ mol/m}^3$.

 $\pi = 2*51.28*8.316*(20+273.5).$

Donc: π =2.50bar.

Les résultats de cette manipulation sont représentés dans le tableau 51 (annexe B.1).

• Manipulation n°02:

P=5.5bar; Δ P=0.5 bar; C=3g/L

Conductivité de la solution d'alimentation : 4800 µs/cm.

Température avant : 18 °C.

Température après : 26°C.

Les résultats de cette manipulation sont représentés dans le tableau 52(annexe B.1).

• *Manipulation n* • 03:

P=5.5bar; Δ P=1 bar; C=3g/L

Conductivité de la solution d'alimentation : 4800 µs/cm.

Température avant : 18 °C.

Température après : 26°C.

Les résultats de cette manipulation sont représentés dans le tableau 53 (annexe B.1).

• Manipulation n°04:

P=5.5bar; Δ P=1.5 bar; C=3g/L

Conductivité de la solution d'alimentation : 4800 µs/cm

Température avant : 18 °C.

Température après : 26°C.

Les résultats de cette manipulation sont représentés dans le tableau 54 (annexe B.1).

• Manipulation n°05:

P=5.5bar; Δ P=2 bar; C=3g/L

Conductivité de la solution d'alimentation : 4800 µs/cm.

Température avant : 18 °C. Température après : 26°C.

Les résultats de cette manipulation sont représentés dans le tableau 55 (annexe B.1).

La variation de la conductivité du perméat et du concentrât en fonction du temps :

La variation de la conductivité du perméat :

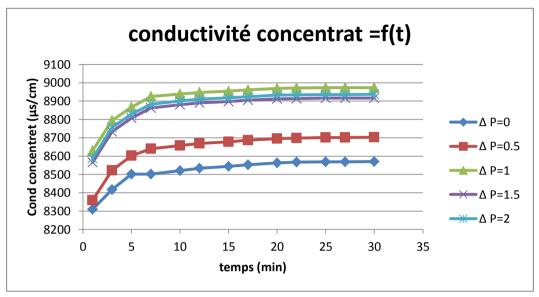

La figure ci contre montre la variation de la conductivité de perméat en fonction du temps :

Figure VI.41: La variation de la conductivité du perméat en fonction du temps $(P_{entrée}=5.5 \text{ bar}; \Delta P=0; 0.5;1;1.5; 2; C=3g/L).$

La variation de la conductivité du concentrât :

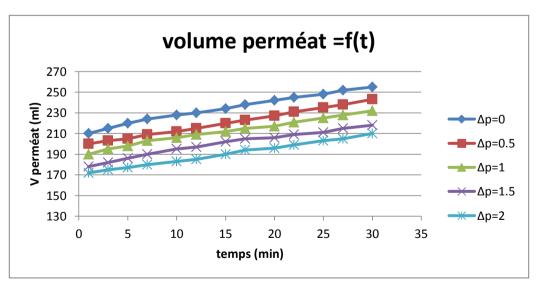

La figure suivante montre la variation de la conductivité de concentrât en fonction du temps :

Figure VI.42: La variation de la conductivité du concentrât en fonction du temps $(P_{\text{entrée}}=5.5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2; C=3g/L).$

La variation du volume du perméat en fonction du temps:

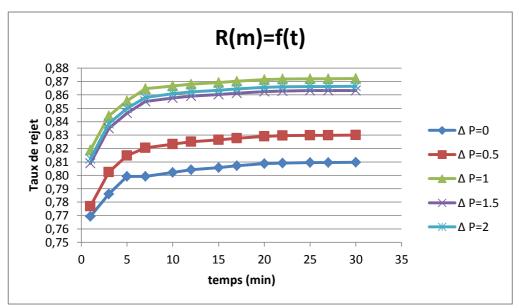

La figure suivante présente la variation de volume de perméat en fonction du temps :

Figure VI.43: La variation du volume du perméat en fonction du temps $(P_{entrée}=5.5 \text{ bar}; \Delta P=0; 0.5;1; C=3g/L).$

La variation du taux de rejet en fonction du temps :

La figure ci contre montre la variation de taux de rejet en fonction du temps :

Figure VI.44: La variation du taux de rejet en fonction du temps (P _{entrée}=5.5 bar ; Δ P= 0; 0.5;1;1.5 ; 2 ; C=3g/L).

VI.2.1.2.Pression d'entrée 8.5 bar :

• *Manipulation n*•01:

P=8.5bar; Δ P=0 bar; C=3g/L

Conductivité de la solution d'alimentation : 4800 µs/cm.

Température avant : 19 °C.

Température après : 27 °C.

Calcul de la pression osmotique :

 $C= 3 \text{ g/l} = 51.28 \text{ mol/m}^3$.

 $\pi = 2*51.28*8.316*(20+273.5).$

Donc: π =2.50bar.

Les résultats de cette manipulation sont représentés dans le tableau 56 (annexe B.1).

• *Manipulation* n°02:

P=8.5bar; Δ P=0.5bar; C=3 g/L

Conductivité de la solution d'alimentation : 4800 µs/cm.

Température avant : 19 °C. Température après : 27°C.

Les résultats de cette manipulation sont représentés dans le tableau 57 (annexe B.1).

• Manipulation n°03

P=8.5bar; Δ P=1bar; C=3g/L

Conductivité de la solution d'alimentation : 4800 µs/cm.

Température avant : 19 °C. Température après : 27°C.

Les résultats de cette manipulation sont représentés dans le tableau 58 (annexe B.1).

• Manipulation n • 04:

P=8.5bar; Δ P=1.5bar; C=3g/L

Conductivité de la solution d'alimentation : 4800 µs/cm.

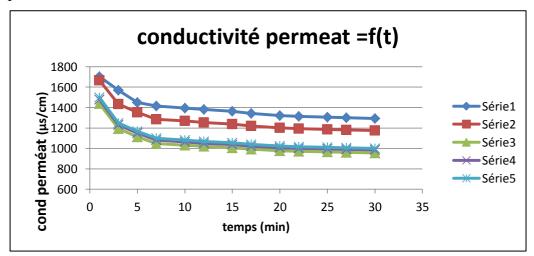
Température avant : 19 °C. Température après : 27 °C.

Les résultats de cette manipulation sont représentés dans le tableau 59 (annexe B.1).

• *Manipulation n* • 05 :

P=8.5bar; Δ P=2bar; C=3g/L

Conductivité de la solution d'alimentation : 4800 µs/cm.


Température avant : 19 °C. Température après : 27°C.

Les résultats de cette manipulation sont représentés dans le tableau 60 (annexe B.1).

La variation de la conductivité du perméat et du concentrât en fonction du temps :

La variation de conductivité du perméat :

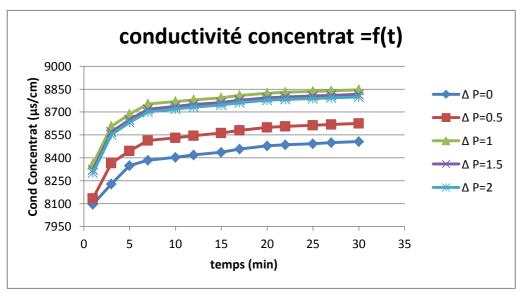

La figure ci-dessus présente la variation de la conductivité de perméat en fonction du temps :

Figure VI.45: La variation de la conductivité de perméat en fonction du temps $(P_{entrée}=8.5bar; \Delta P=0; 0.5;1; 1.5; 2; C=3g/L).$

La variation de conductivité du concentrât :

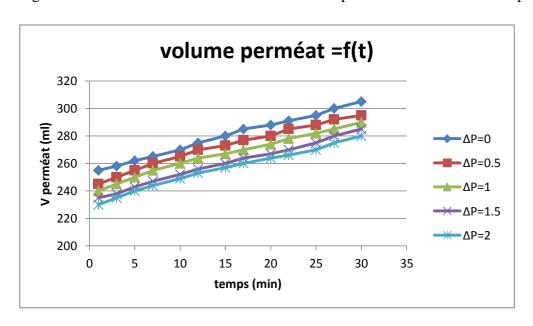

La figure ci contre montre la variation de la conductivité de concentrât en fonction du temps :

Figure VI.46: La variation de la conductivité du concentrât en fonction du temps $(P_{\text{entrée}}=8.5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2; C=3g/L).$

La variation du volume de perméat en fonction du temps :

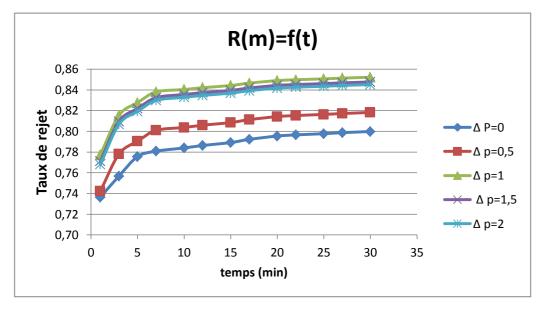

La figure ci contre montre la variation de volume de perméat en fonction du temps :

Figure VI.47: La variation du volume du perméat en fonction du temps $(P_{entrée}=8.5 \text{ bar}; \Delta P=0; 0.5;1; C=3g/L).$

La variation du taux de rejet en fonction du temps :

La figure ci contre montre la variation de taux de rejet en fonction du temps :

Figure VI.48: La variation du taux de rejet en fonction du temps $(P_{entrée}=8.5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2 C=3g/L).$

INTERPRETATION DES RESULTATS

Malgré que les résultats sont un peu proche, on constate pour les deux cas étudiés $(P_{entrée}=5.5 \text{ bar et } P_{entrée}=8.5 \text{ bar})$ que les meilleurs valeurs de la qualité sont données pour un $\Delta P=1$ qui correspondent aux plus petites valeurs de la conductivité.

Nous constatons aussi pour tous les cas étudiés de ΔP une certaine stabilité de la conductivité à partir de la $7^{\text{ème}}$ minute.

Si on compare nos résultats sur les deux études faites des deux pressions P=5.5 bar et P=8.5 bar, on choisie pour une concentration de 3g/l une pression de P=5.5 bar, car elle nous donne des meilleurs résultats de qualité qui correspondent à une conductivité moyenne de 887 (µs/cm) au lieu d'une conductivité moyenne de 1051(µs/cm) trouvé dans le cas d'une pression de 8.5 bar, sans prendre en compte la consommation d'énergie qui est plus faible si on travail avec la plus petite pression.

VI.2.2. Etude de la variation de la conductivité de perméat et du concentrât en fonction du temps pour une concentration de 5g/L :

Pour une concentration de 5g/L on a choisie deux pressions d'entrée P=8.5 bar et P=10.5 bar.

VI.2.2.1.Pression d'entrée 8.5 bar :

• Manipulation n°01:

P=8.5 bar; Δ P=0 bar; C=5g/L

Conductivité de la solution d'alimentation : 7400µs/cm.

Température avant : 20 °C.

Température après : 28°C.

Calcul de la pression osmotique :

 $C= 5 \text{ g/l} = 85.47 \text{ mol/m}^3$.

 $\pi = 2*85.47*8.316*(20+273.5).$

Donc: π =4.17bar.

Les résultats de cette manipulation sont représentés dans le tableau 61 (annexe B.2).

• Manipulation n°02:

P=8.5bar; Δ P=0.5 bar; C=5g/L

Conductivité de la solution d'alimentation : 7400µs/cm.

Température avant : 20 °C.

Température après : 28°C.

Les résultats de cette manipulation sont représentés dans le tableau 62 (annexe B.2).

• *Manipulation n*•03:

P=8.5bar; Δ P=1 bar; C=5g/L

Conductivité de la solution d'alimentation : 7400µs/cm.

Température avant : 20 °C.

Température après : 28°C.

Les résultats de cette manipulation sont représentés dans le tableau 63 (annexe B.2).

• Manipulation n • 04:

P=8.5bar; Δ P=1.5 bar; C=5g/L

Conductivité de la solution d'alimentation : 7400µs/cm.

Température avant : 20 °C.

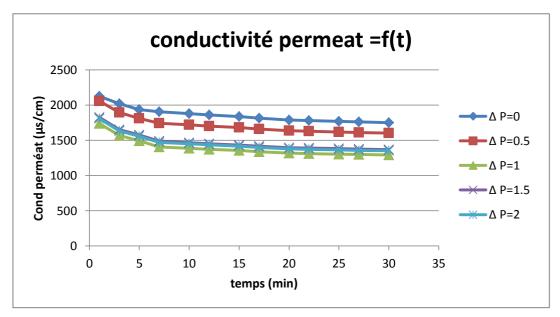
Température après : 28°C.

Les résultats de cette manipulation sont représentés dans le tableau 64 (annexe B.2).

• *Manipulation n* • 05 :

P=8.5bar; Δ P=2 bar; C=5g/L

Conductivité de la solution d'alimentation : 7400µs/cm.


Température avant : 20°C. Température après : 28°C.

Les résultats de cette manipulation sont représentés dans le tableau65 (annexe B.2).

La variation de la conductivité du perméat et du concentrât en fonction du temps :

La variation de conductivité du perméat :

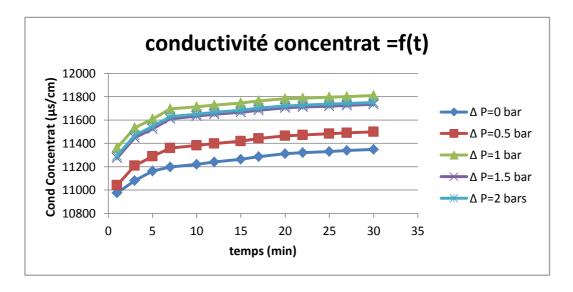

La figure ci contre montre la variation de la conductivité de perméat en fonction du temps :

Figure VI.49: La variation de la conductivité de concentrât en fonction du temps $(P_{entrée}=8.5 \text{ bar}; \Delta P=0; 0.5; 1; 1.5; 2; C=5g/L).$

La variation de conductivité du concentrât :

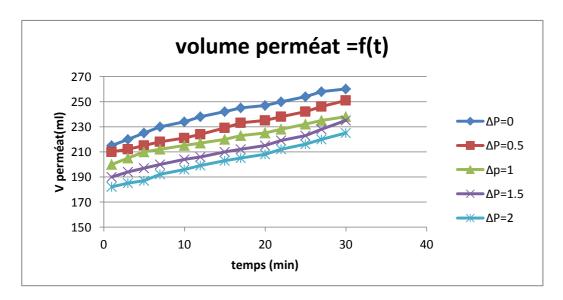

La figure ci contre montre la variation de la conductivité de concentrât en fonction du temps :

Figure VI.50: La variation de la conductivité de concentrât en fonction du temps $(P_{entrée}=8.5 \text{ bar}; \Delta P=0; 0.5; 1; 1.5; 2; C=5g/L).$

La variation du volume de perméat en fonction du temps :

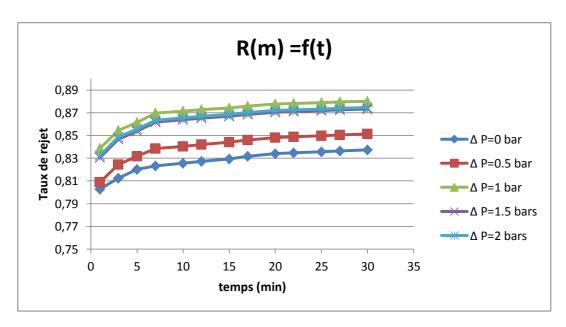

La figure ci-dessous montre la variation de volume de perméat en fonction du temps :

Figure VI.51: La variation du volume du perméat en fonction du temps (P _{entrée}=8.5 bar ; Δ P= 0; 0.5;1; 2 ; C=5g/L).

❖ La variation du taux de rejet en fonction du temps :

La figure ci contre montre la variation de taux de rejet en fonction du temps :

Figure VI.52: La variation du taux de rejet en fonction du temps (P $_{\text{entrée}}$ =8.5 bar ; Δ P= 0; 0.5;1; 1..5 ; 2 ; C=5g/L)

VI.2.2.2.Pression d'entrée 10.5 bar :

• Manipulation n°01:

P=10.5 bar, $\Delta P=0$ bar, C=5 g/L

Conductivité de la solution d'alimentation : 7400 µs/cm.

Température avant : 18 °C. Température après : 26°C.

Calcul de la pression osmotique :

 $C=5 \text{ g/l} = 85.47 \text{ mol/m}^3$.

 $\pi = 2*85.47*8.316*(20+273.5).$

Donc : $\pi = 4.17$ bar.

Les résultats de cette manipulation sont représentés dans le tableau66 (annexe B.2).

• *Manipulation n* • 02:

P=10.5 bar, Δ P= 0.5 bar, C=5 g/L

Conductivité de la solution d'alimentation : 7400 µs/cm.

Température avant : 18 °C. Température après : 26°C.

Les résultats de cette manipulation sont représentés dans le tableau 67 (annexe B.2).

• Manipulation n°03:

P=10.5 bar, Δ P= 1 bar, C=5 g/L

Conductivité de la solution d'alimentation : 7400µs/cm.

Température avant : 19 °C. Température après : 28°C.

Les résultats de cette manipulation sont représentés dans le tableau 68 (annexe B.2).

• *Manipulation* n • 04:

P=10.5 bar, Δ P= 1.5 bar, C=5 g/L

Conductivité de la solution d'alimentation : 7400 µs/cm.

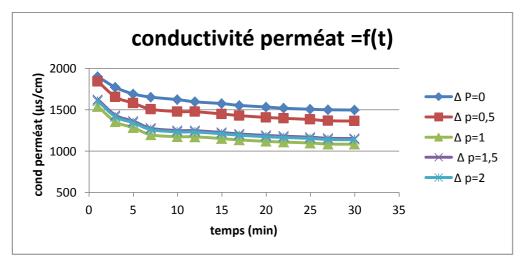
Température avant : 19 °C. Température après : 28 °C.

Les résultats de cette manipulation sont représentés dans le tableau 69 (annexe B.2).

• *Manipulation n* • 05:

P=10.5 bar, $\Delta P= 2$ bar, C=5 g/L

Conductivité de la solution d'alimentation : 7400 µs/cm.


Température avant : 18 °C. Température après : 27°C.

Les résultats de cette manipulation sont représentés dans le tableau 70 (annexe B.2).

❖ La variation de la conductivité du perméat et du concentrât et du volume en fonction du temps :

La variation de conductivité du perméat :

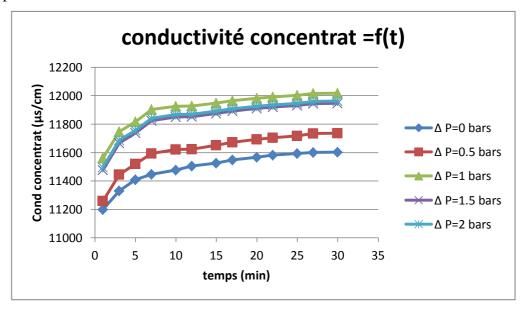

La figure ci contre montre la variation de la conductivité de perméat en fonction du temps :

Figure VI.53: La variation de la conductivité du perméat en fonction du temps $(P_{entrée}=10,5 \text{ bar}; \Delta P=0; 0.5; 1; 1.5; 2; C=5g/L).$

La variation de la conductivité de concentrât :

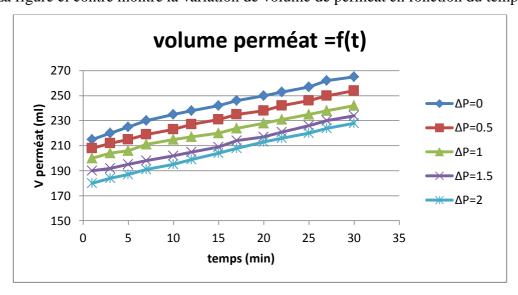

La figure suivante présente la variation de la conductivité de perméat en fonction du temps :

Figure VI.54: La variation de la conductivité du concentrât en fonction du temps $(P_{entrée}=10,5 \text{ bar}; \Delta P=0; 0.5; 1; 1.5; 2; C=5g/L).$

La variation du volume de perméat en fonction du temps :

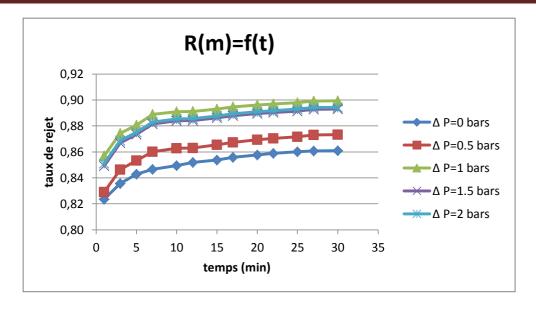

La figure ci contre montre la variation de volume de perméat en fonction du temps :

Figure VI.55: La variation du volume du perméat en fonction du temps $(P_{entrée}=10.5 \text{ bar}; \Delta P=0; 0.5;1; 2; C=5g/L)$

❖ La variation du taux de rejet en fonction du temps :

La figure suivante présente la variation de taux de rejet en fonction du temps :

Figure VI.56: La variation du taux de rejet en fonction de temps (P _{entrée=}10,5 bar ; Δ P = 0 ; 0.5 ; 1 ; 1.5 ; 2 ; C=5g/L).

INTERPRETATION DES RESULTATS

Dans les deux cas de pression étudiées à savoir P=8.5 bar et P=10.5 bar on remarque que pour les variations des pressions ($\Delta P=1$; 1.5 et 2) les résultats trouvées par nos expériences sont mieux que pour ($\Delta P=0$ et 0.5). Cependant les valeurs les plus petites de la conductivité du perméat et pour les deux cas sont trouvées pour $\Delta P=1$.

La comparaison de nos résultats pour les deux pressions d'entrées à savoir 8.5 bar et 10.5 bar montre une certaine stabilité de la conductivité du perméat à partir de la $7^{\rm ème}$ minute avec une valeur moyenne de $1398(\mu s/cm)$ pour le premier cas et $1192(\mu s/cm)$ pour le deuxième cas.

Ces résultats montrent bien que l'étude qualitative favorise la pression de 10.5 bar malgré la consommation énergétique supérieure.

VI.2.3. Etude de la variation de la conductivité de perméat et du concentrât en fonction du temps pour une concentration de 6g/L:

Pour une concentration de 6g/L on a choisie deux pressions d'entrée P=8.5 bar et P=10.5 bar.

VI.2.3.1.Pression d'entrée 8.5 bar :

❖ *Manipulation* n•01:

P=8.5 bar, $\Delta P=0$ bar, C=6 g/L

Conductivité de la solution d'alimentation : 8500 µs/cm

Température avant : 19 °C. Température après : 30°C.

Calcul de la pression osmotique :

 $C = 6 \text{ g/l} = 102.56 \text{ mol/m}^3$.

 $\pi = 2*102.56*8.316*(20+273.5)$

Donc : π = 5 bar.

Les résultats de cette manipulation sont représentés dans le 71 (annexe B.3).

• Manipulation n°02:

P=8.5 bar, Δ P= 0.5 bar, C=6 g/L

Conductivité de la solution d'alimentation : 8500µs/cm.

Température avant : 19 °C. Température après : 29 °C.

Les résultats de cette manipulation sont représentés dans le tableau72 (annexe B.3).

• *Manipulation n*•03:

P=8.5 bar, Δ P= 1 bar, C=6 g/L

Conductivité de la solution d'alimentation : 8500µs/cm.

Température avant : 19 °C. Température après : 29 °C.

Les résultats de cette manipulation sont représentés dans le tableau 73 (annexe B.3).

• Manipulation n • 04:

P=8.5 bar, Δ P= 1.5 bar, C=6 g/L

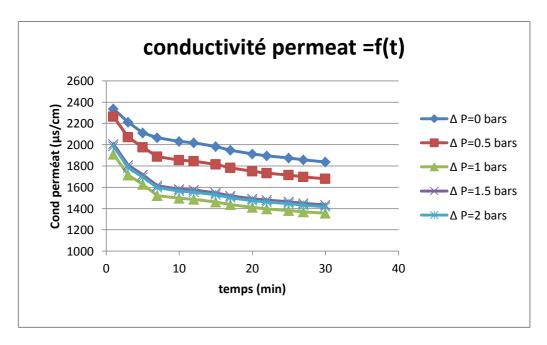
Conductivité de la solution d'alimentation : 8500µs/cm.

Température avant : 19 °C. Température après : 29 °C.

Les résultats de cette manipulation sont représentés dans le tableau 74 (annexe B.3).

• Manipulation n • 05:

P=8.5 bar, Δ P= 2 bar, C=6 g/L


Conductivité de la solution d'alimentation : 8500µs/cm.

Température avant : 19 °C. Température après : 29 °C.

Les résultats de cette manipulation sont représentés dans le tableau 75 (annexe B.3).

- La variation de la conductivité du perméat et du concentrât et du volume en fonction du temps :
- La variation de conductivité du perméat en fonction du temps:

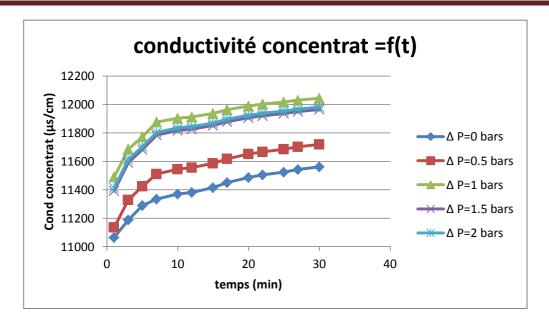

La figure ci contre montre la variation de la conductivité de perméat en fonction du temps :

Figure VI.57: La variation de la conductivité de perméat en fonction du temps (P entrée=8.5 bar ; $\Delta P = 0$; 0.5 ; 1 ; 1.5 ; 2 ; C=6g/L).

La variation de la conductivité du concentrât :

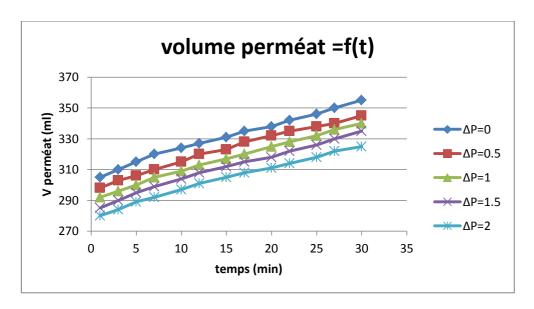

La figure ci contre montre la variation de la conductivité de concertât en fonction du temps :

Figure VI.58: La variation de la conductivité du concentrât en fonction du temps $(P_{entrée}=8,5 \text{ bar}; \Delta P=0; 0.5; 1; 1.5; 2; C=6g/L).$

La variation du volume de perméat en fonction du temps :

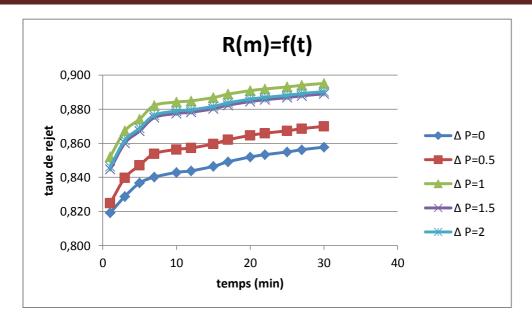

La figure ci-contre montre la variation de volume de perméat en fonction du temps :

Figure V.59: La variation du volume de perméat en fonction du temps $(P_{entrée}=8.5 \text{ bar}; \Delta P=0; 0.5; 1; 1.5; 2; C=6g/L)$

La variation de la rétention globale du module en fonction du temps :

La figure ci contre montre la variation de taux de rejet en fonction du temps :

Figure VI.60: La variation du taux de rejet en fonction du temps $(P_{entrée}=8,5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2; C=6g/L).$

VI.2.3.2.Pression d'entrée 10.5 bar :

• *Manipulation n*•01:

P=10.5 bar, $\Delta P=0$ bar, C=6 g/L

Conductivité de la solution d'alimentation : 8500 µs/cm

Température avant : 19 °C.

Température après : 30°C.

Calcul de la pression osmotique :

 $C = 6 \text{ g/l} = 102.56 \text{ mol/m}^3.$

 $\pi = 2*102.56*8.316*(20+273.5)$

Donc : π = 5 bar.

Les résultats de cette manipulation sont représentés dans le tableau 76 (annexe B.3).

• Manipulation n°02:

P=10.5 bar, Δ P= 0.5 bar, C=6 g/L

Conductivité de la solution d'alimentation : 8500µs/cm.

Température avant : 17 °C.

Température après : 26°C.

Les résultats de cette manipulation sont représentés dans le tableau 77 (annexe B.3).

• Manipulation n • 03:

P=10.5 bar, Δ P= 1 bar, C=6 g/L

Conductivité de la solution d'alimentation : 8500µs/cm.

Température avant : 20 °C. Température après : 29 °C.

Les résultats de cette manipulation sont représentés dans le tableau78 (annexe B.3).

• *Manipulation* n • 04:

 $P=10.5 \text{ bar}, \Delta P=1.5 \text{ bar}, C=6 \text{ g/L}$

Conductivité de la solution d'alimentation : 8500µs/cm.

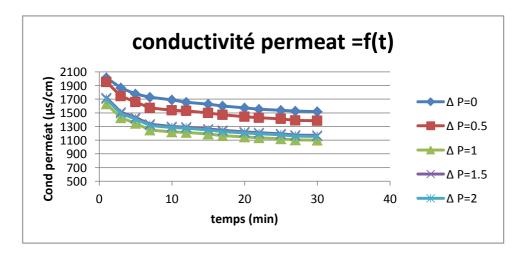
Température avant : 18 °C. Température après : 29 °C.

Les résultats de cette manipulation sont représentés dans le tableau 79 (annexe B.3).

• *Manipulation n* • 05:

P=10.5 bar, $\Delta P=2$ bar, C=6 g/L

Conductivité de la solution d'alimentation : 8500µs/cm.


Température avant : 19 °C. Température après : 27°C.

Les résultats de cette manipulation sont représentés dans le tableau 80 (annexe B.3).

❖ La variation de la conductivité du perméat et du concentrât en fonction du temps

La variation de conductivité du perméat

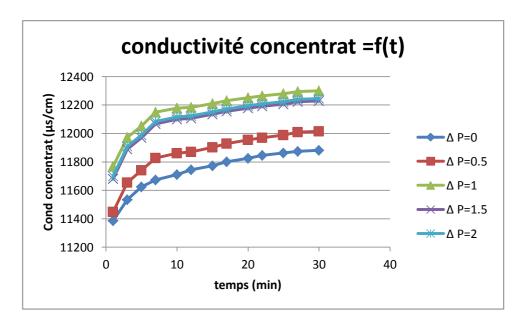

La figure ci contre montre la variation de la conductivité de perméat en fonction du temps :

Figure VI.61: La variation de la conductivité de perméat en fonction du temps $(P_{\text{entrée}}=10,5 \text{ bar}; \Delta P=0; 0.5; 1; 1.5; 2; C=6g/L).$

La variation de conductivité du concentrât :

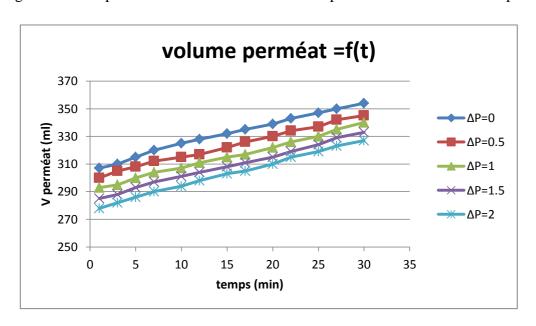

La figure ci contre montre la variation de la conductivité de concentrât en fonction du temps :

Figure VI.62: La variation de la conductivité du concentrât en fonction du temps $(P_{\text{entrée}}=10,5 \text{ bar }; \Delta P=0; 0.5; 1; 1.5; 2; C=6g/L).$

La variation du volume de perméat en fonction du temps :

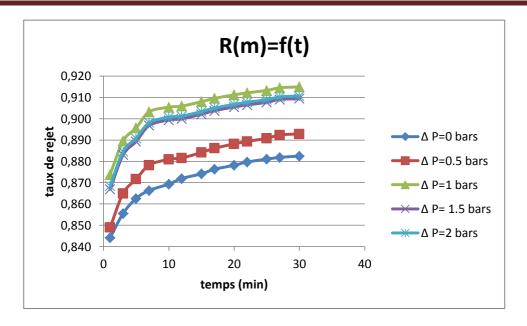

La figure suivante présente la variation de volume de perméat en fonction du temps :

Figure VI.63: La variation du volume de perméat en fonction du temps $(P_{entrée}=10,5 \text{ bar}; \Delta P=0; 0.5; 1; 1.5; 2; C=6g/L).$

La variation du taux du rejet en fonction du temps :

La figure ci contre montre la variation de taux de rejet en fonction du temps :

Figure VI.64: La variation du taux de rejet en fonction du temps $(P_{entr\'ee}=10,5 \text{ bar}; \Delta P=0; 0.5;1; 1.5; 2; C=6g/L).$

INTERPRETATION DES RESULTATS:

Les graphes des conductivités de perméat =f(t) (figure x) nous montre que pour les deux pressions d'entrées P=8.5 bar et P=10.5 bar les bons résultats sont données par une variation de pression de part et d'autre de la membrane Δ P=1.

Les plus petites valeurs de la conductivité du perméat sont données par une pression d'entrée P=10.5 bar avec une moyenne de 1235(µs/cm) .Par contre pour une pression de 8.5bar la valeur moyenne de la conductivité de perméat 1506 (µs/cm).

Conclusion Générale

Conclusion générale

La production de l'eau potable par dessalement présente une solution alternative qui permet d'augmenter les ressources en eau disponible afin de lutter contre les pénuries d'eau.

Parmi les différents procédés de dessalement, on cite l'osmose inverse qui est la technologie de séparation membranaire la plus répondue. Elle permet l'acquisition de l'eau par perméation sélective à travers une membrane dense sous l'action d'un gradient de pression.

Le dessalement par procédés d'osmose inverse nécessite un prétraitement pour éliminer la matière en suspension dans le but de protéger les membranes contre le colmatage, et puis l'étape de post-traitement pour la reminéralisation des eaux produites de façon qu'elles soient conformes aux normes de potabilité des eaux destinées à la consommation humaine.

Ce travail est destiné à apporter une contribution à l'étude d'effet de traitement sur la qualité de l'eau de mer. A savoir la qualité de l'eau produite par la station de dessalement de 'Chatt El Hilel' par un ensemble des analyses physico-chimiques effectuées au niveau de laboratoire de la station.

 A la lumière des résultats acquis lors des différents tests physicochimiques de l'eau produite par l'unité de dessalement de 'Chatt El Hilel', on constate que ces eaux répondent aux normes de potabilité de l'OMS ainsi que les normes Algériennes.

A partir de l'étude expérimentale sur l'efficacité d'une membrane mince (type spiralé) au niveau de laboratoire TTE université Abou Bekr Belkaid pour le dessalement des eaux faiblement saumâtres (salinité de 2 à 6 g/L) issues des eaux de mer de 'Chatt El Hilel', on a tirées les conclusions suivantes:

- ➤ Une augmentation de la concentration en NaCl de la solution d'alimentation provoqueune augmentation de la pression osmotique ce qui nécessite une augmentation de lapression d'entrée du module ;
- ➤ Plus le temps augmente plus la conductivité de concentrât augment et la conductivité de perméatdiminue, elle varie d'une manière forte entre 0 et 7 min.

Conclusion générale

Après la 7^{ème} min

Nous constatons une certaine stabilité pour la conductivité de perméat ainsi que celle du concentrât ;

- Plus la différence de pression de part de la membrane diminue plus la conductivité du perméat et du concentrât diminue;
- Plus le temps augmente plus le volume de perméat augmente. Et plus la différence de pression de part et d'autre de la membrane augmente plus le volume de perméat diminue;
- ➤ La variation du taux de rejet en fonction du temps présente une forte croissance entre
 - 0 min et 7min avec une pente assez importante, puis on remarque qu'il devient stable ;
- Pour ce soit $P_{\text{entrée}}$ =5.5; 8 ou 10bars et pour toutes les concentrations étudiées on obtient le meilleur compromis que si ΔP = 1 bars.

Bibliographie

Bibliographie

- [1] MUSSEAU.F(2007).Article,URLhttp://eau.apinc.org/spip.php?article510, Libération du 8 Aout, consulté le 18/02/2019.
- [2] HACHEMAOUI.B (2014). « Qualité physico-chimique de l'eau dessalée et traitée par la station de dessalement de l'eau de mer de Souk Telata ». Mémoire de fin d'étude pour l'obtention du diplôme de Master, Université de TLEMCEN.pdf.
- [3] TAHRAOUI DOUMA.N(2010). « Qualité des eaux de mer après dessalement au niveau de la station de dessalement de la ville de Ténès, Chlef. Impact de dessalement sur l'environnement (milieu aquatique) ». Département du Tronc Commun Technologie, université HASSIBA BENBOUALI Chlef, ALGER.
- [4]BOUZIANI.M(2002).« l'eau de la pénurie aux maladies ».éditions IBN KHALDOUN.ISBN 9961-71-071-1.
- [5] MORGAN .M, ALEXIS.G(2013). « État des lieux du secteur de l'eau en Algérie ». Études & Analyses.pdf. Consulté le 24/02/2019.
- [6] MAUREL.A (2006). « Dessalement de l'eau de mer et des eaux saumâtres ». 2 ème édition Lavoisier, France.
- [7] DEJARDINS .R(1997). « Traitement des eaux ».Edition de l'école polytechnique de Montréal, 2^{éme} édition revue et améliorée.
- [8] AGGAB.C (2014) « Caractéristique physico-chimique des eaux de la station de dessalement Souk Tleta (NW, Algérie) », Mémoire de fin d'étude, Diplôme d'ingéniorat d'Etat, Hydrogéologie.pdf.
- [9] PATRICK.D (2003) « Dessalement de l'eau de mer » Techniques de l'Ingénieur, J 2700.
- [10] JEAN .D (2014) « Membre de l'Académie d'agriculture de France : Le dessalement de l'eau de mer Une nouvelle méthode pour accroître la ressource en eau » Manuscrit publié en février 2014.
- [11] SENHADJI.M (2017) « Teneurs en bore, nitrites et métaux lourds dans l'eau dessalée traitée par osmose inverse dans la Station de Dessalement de Souk Telata », Mémoire de fin d'étude pour l'obtention du diplôme de Master, Université de TLEMCEN.pdf.
- [12] BOUKELLAL.I, ABDELGHANI.H (2015). « Étude du procédé de dessalement de l'eau de mer et de la qualité physico-chimique dessalée par la station de Cap Djanet de la wilaya de Boumerdes.», Mémoire de fin d'étude pour l'obtention du diplôme de Master, Université Abderrahmane MIRA de Bejaia.pdf

- [13] KEMECHE.H, MADANI.K (2017). « gestion de la saumure de dessalement cas de la station de Cap-Djanet (w. Boumerdes). Mémoire de fin d'étude pour l'obtention du diplôme de Master, Université M'HAMAD BOUGARA BOUMERDES.pdf.
- [14] CHENAOUI.B (2010). « Impact du dessalement de l'eau de mer sur l'environnement cas de la station de MAINIS ».WILAYA DE CHLEF.pdf.
- [15] BESSENASSE. M, BELKACEM FILALI.M(2014)« impact des dessalement sur l'environnement en Algérie »: Etude de Trois Stations du Littoral Algérois... Université SAAD Dahleb (Blida).2014.revue Agrobiologia 2014; N°6,75-81.
- [16] MORSLI.M (2013), «Impact des Arrêts Techniques de L'usine de Dessalement de L'eau de Mer sur L'entreprise et L'environnement», mémoire de magister , université d'Oran .
- [17] KEHAL.S(2001). «Rétrospective et perspective du dessalement en Algérie. Désalinisation ».pdf.
- [18] BOUCHAKOUR.N,SADOK.A (2017). « Impact de dessalement sur l'environnement. Mémoire Impact environnemental de la station de Dessalement de l'eau de mer de Ténès (wilaya de Chlef) » Mémoire de projet de fin d'Etudes Pour l'obtention du Diplôme de master université Abderrahmane Mira-Bejaia .PDF
- [19] MANDRI.Y(2011). « Étude paramétrique du procédé de dessalement de l'eau de mer par congélation sur paroi froide ». Alimentation et Nutrition. Université Claude Bernard Lyon I, Français.
- [20] Henri .B (2008): « Eau, énergie, dessalement et changement climatique en Méditerranée ». Conseil général de l'Environnement et du Développement Durable Ministère de l'Ecologie, de l'Energie, du Développement Durable et de l'Aménagement du Territoire.France.
- [21] TATA DACRU.F(2009). « Dessalement de l'eau de mer : bilan des dernières avancées technologiques ; bilan économique ; analyse critique en fonction des contextes ».Institut des sciences et industries des vivants et de l'environnement paris.
- [22] AMITOUCHE.M(2016). « Impacts des rejets des stations de dessalement sur le milieu récepteur », thèse pour l'obtention du diplôme de Doctorat en sciences en Hydraulique, université BISKRA.pdf.
- [23] ATALLAH.A(2014). « Procédé de dessalement et qualité physico-chimique de l'eau dessalée par la station de dessalement de l'eau de mer de Honaine ». Mémoire de projet de fin d'Etudes Pour l'obtention du Diplôme de master en Hydraulique, université de TLEMCEN.
- [24] BENAISSA .F (2013) « Etude sur le procédé d'osmose inverse pour le dessalement des

- eaux faiblement saumâtres », Mémoire de projet de fin d'Etudes Pour l'obtention du Diplôme de master en Hydraulique, université de TLEMCEN.
- [25] Dossier thématique La Cité de la Mer Technopole Cherbourg-Normandie / Avril 2012.
- [26] BERLAN J M & JUERY C. (2002). le procédé membranaire pour le traitement de l'eau. Office international de l'eau (SNIDE).ministère de l'agriculture, de l'alimentation, de la pêche et des affaires rurales. direction de l'espace rurale et de la foret-France.
- [27] SALAH.H, Bekai.B (2014) « L'influence des différentes concentrations de sel sur le dessalement des eaux faiblement saumâtres avec des concentrations de NaCl=1g/L, 3g/L, 5G/L », mémoire de projet de fin d'études pour l'obtention du diplôme de master en hydraulique, option : technologie de traitement des eaux.
- [28] RENAUDIN.V (2003). « Le dessalement de l'eau de mer et des eaux saumâtres » CNRS,Nancy.
- [29] ABDELLAOUI.H (2015). « Étude comparative de l'eau de mer dessalée par distillation et osmose inverse, cas de la station de Honaine ». Mémoire en vue d'obtention du diplôme de master université TLEMCEN.
- [30] LATTEMANN.S (2010) « Development of an environmental impact assessment and decision support system for seawater desalination plants», Phd Thesis in Delft, The Netherlands.
- [31] BESSIERE .Y, ABIDINE .N, & BACCHIN .P (2005). «Low fouling conditions in deadend filtration: evidence for a critical filtered volume and interpretation using critical osmotic pressure». Journal of membrane science.264 (1-2):37-47.
- [32] UNEP/MAP (2003), dessalement de l'eau de mer en méditerranée évaluation et lignes directrices, MAP Technical Reports Series No. 139, Athens
- [33] NRC (2008): Desalination: A National Perspective, Committee on Advancing Desalination Technology, Water Science and Technology Board, Division on Earth and Life Studies, National Research Council of the National Academies.
- [34] SAGNE .C(2008). « Etude des mécanismes de transfert de molécules organiques en osmose inverse ». Doctorat de l'institut des sciences et industrie du vivant et del'environnement, Agro Paris Tech, France. 234p.
- [35] METAICHE.M (2006).« Optimisation des systemes de dessalement par osmose inverse: conception, paramètres de fonctionnement et simulation numérique», mémoire de doctorat.

- [36] TANSAKUL.C (2009).« Procédés hybrides à membranes pour le prétraitement d'eau de mer avant dessalement par osmose inverse ». Thèse en vue de l'obtention du DOCTORAT, université de TOULOUSE France.
- [37] ETTORI.A (2011).«Vieillissement chimique de membranes d'osmose inverse». Thèse en vue de l'obtention du DOCTORAT université de Toulouse III Paul Sabatier FRANCE.
- [38] TRIKI .Z (2014). «Études, Analyses et Optimisation de la Consommation Énergétique des Unités de Dessalement pour les Sites Isolés » mémoire de Doctorat ; Université Constantine.
- [39] Rovel J.M (2012) « Dessalement de l'eau de mer », Technique de l'Ingénieur.
- [40] GUEZLANE .W, AGGOUN. M(2017). « Étude et simulation par modèle
- Mathématique d'une unité d'osmose inverse pour le dessalement de l'eau de mer ».PDF Consulté le 02/04/2019.
- [41] Étude du colmatage de membranes d'osmose inverse utilisées pour la préparation des eaux de dialyse rénale, E. Roth, B. Fabre, A. Accary et B. Faller, Université du Québec INRS-Eau, Terre et Environnement (INRS-ETE).
- [42] Alfa Arzate, Ph.D (2008) : « procédés de séparation membranaire et leur application dans l'industrie alimentaire ». 142, Rang Lainesse Saint-Norbert d'Arthabaska Québec.
- [43] HADJALI .Y(2012). « Impact des stations de dessalement de l'Eau de mer sur le littoral cas de la Station Plage EL Hilel », PDF. Consulté 6/03/2019.
- [44] MENDRET.J (2007). « Mise au point de méthodes de caractérisation du colmatage de membranes : application à la caractérisation in situ d'un dépôt particulaire en ultrafiltration frontale en lien avec les performances du procédé », thèse de doctorat en génie des procédés et de l'environnement, Insa Toulouse.PDF.consulté le 14/04/2019.
- [45] AIMAR.P, BACCHIN.P, MAUREL.A, (2010b). « Filtration membranaire (OI, NF, UF, MFT) -Aspects théoriques : perméabilité et sélectivité », référence J2790. Techniques de l'ingénieur.
- [46] WIESNER.M.R, & al, (1992). « Committee report: membrane processes in potable water treatment», AWWA, 59–67.
- [47] HERMANS.P.H, BREDEE.H.L, (1936). « Principles of the mathematical treatment of Constant-pressure filtration». Journal of Society of Chemical Industry, 55T, 1–11.
- [48] GU.B, SCHMITT.J, CHEN. Z, LIANG.L, MCCARTHY.J.F (1994). « Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models». Environnemental Science & Technology, 28, 38–46.

- [49] GAELLE.C (2013). « Etude et modélisation du colmatage de membrane d'ultrafiltration par des suspensions de matières organiques et de particules minérales ».thèse pour l'obtention du diplôme de docteur à université POITIERS. Consulté le 18/05/2019.
- [50] CASTAING.J-B (2011).« Procédés de traitement de l'eau de mer en conchyliculture pour la sauvegarde et le maintien de la qualité des mollusques bivalves », thèse de doctorat en Génie des procédés, université de Nantes.
- [51] MERICQ .J-P(2009) : « Approche intégrée du dessalement d'eau de mer : Distillation membranaire sous vide pour la réduction des rejets salins et possibilités de couplage avec l'énergie solaire ». Thèse en vue de l'obtention du DOCTORAT de l'université de TOULOUSE France.
- [52] Les procédés membranaires pour le traitement de l'eau, Nouvelle version rédigée par Jean-Marc BERLAND et Catherine JUERY, Décembre 2002.
- [53] HAMITI .O (2010). « l'influence des paramètres physico-chimique sur la performance de la station de dessalement de Ghazaouet », mémoire de projet de fin d'étude pour l'obtention du diplôme d'ingénieur en hydraulique urbaine, université Aboubakr Belkaid-Tlemcen.
- [54] ETUDE DU COLMATAGE DES MEMBRANES, Gabriela Ciobanu, Gabriela Carja Lacramioara Istrati, Maria Harja, 2006.
- [55] TAIBI. S(2016). « LES FACTEURS INFLUENÇANT LE VIEILLISSEMENT DES MEMBRANES D'OSMOSE INVERSE ». Mémoire pour l'obtention du diplôme master. Ecole nationale supérieur d'hydraulique. PDF. Consulté le 23/03/2019.
- [56] La norme algérienne de potabilité de l'eau de consommation (journal officiel de la république algérienne 9mars 2014).

Décret exécutif n°14-96 du 2 Journada El Oula 1435 correspondant au 4 mars 2014 modifiant et complétant le décret exécutif n° 11-125 du 17 Rabie Ethani 1432 correspondant au 22 mars 2011 relatif à la qualité de l.eau de consommation humaine.

- [57] Documents et photos prisent au niveau de la station de 'Chatt El Hilal'. Le 23/03/2019.
- [58] photos et documents prisent au niveau de la station de dessalement de Souk Telata
- [59] photos prisent au niveau de laboratoire TTE. Université Abou Bekr Belkaid.
- [60] Bulletin technique: « osmose inverse TE200 ». DELTALAB. 38340 VOREPPE. France.

Webographie

[A]: https://portail.cder.dz/spip.php?article135.

[B]:https://dessalement.wordpress.com/la-distillation/.

[C]:http://dessalementunisie.e-monsite.com/pages/sous-partie/1-la-distillation-1.html.

[D]:http://dessalementtpe.e-monsite.com/pages/sommaire/le-procede-de-distillation-a-multiples-effets.html.

 $[E]: http://eduterre.enslyon.fr/ressources/scenario1/planetebleue/techniques_desalinisation.\\$

[F]:http://thesis.univ-biskra.dz/1283/4/Chapitre1.

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=4.5 bars ; $\Delta P=0$ bar ; C=2g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	4,5	4,5	300	11	1284	6816	175	0,70
3	4,5	4,5	300	11	1193	6907	180	0,72
5	4,5	4,5	300	12	1150	6950	184	0,73
7	4,5	4,5	300	12	1136	6964	188	0,74
9	4,5	4,5	300	13	1130	6970	193	0,74
12	4,5	4,5	300	13	1127	6973	198	0,74
15	4,5	4,5	300	13	1122	6978	202	0,74
17	4,5	4,5	300	14	1116	6984	206	0,74
20	4,5	4,5	300	14	1108	6992	210	0,74
22	4,5	4,5	300	14	1107	6993	214	0,74
25	4,5	4,5	300	15	1106	6994	219	0,74
27	4,5	4,5	300	15	1106	6994	221	0,74
30	4,5	4,5	300	16	1105	6995	227	0,74

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=4.5 bars ; ΔP =0.5 bar ; C=2g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	4,5	4	590	10	1274	6826	160	0,70
3	4,5	4	590	10	1130	6970	163	0,74
5	4,5	4	590	11	1088	7012	168	0,75
7	4,5	4	590	12	1038	7062	172	0,76
9	4,5	4	590	12	1032	7068	176	0,76
12	4,5	4	590	12	1030	7070	180	0,76
15	4,5	4	590	13	1025	7075	185	0,76
17	4,5	4	590	13	1019	7081	189	0,76
20	4,5	4	590	14	1012	7088	192	0,76
22	4,5	4	590	14	1012	7088	196	0,77
25	4,5	4	590	14	1010	7090	200	0,77
27	4,5	4	590	15	1010	7090	204	0,77
30	4,5	4	590	15	1009	7091	208	0,77

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=4.5 bars ; $\Delta P=1$ bar ; C=2g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	4,5	3,5	750	10	1105	6995	150	0,74
3	4,5	3,5	750	11	957	7144	155	0,78
5	4,5	3,5	750	11	915	7186	160	0,79
7	4,5	3,5	750	12	847	7253	164	0,80
9	4,5	3,5	750	13	843	7257	168	0,80
12	4,5	3,5	750	14	841	7259	172	0,80
15	4,5	3,5	750	15	837	7263	175	0,81
17	4,5	3,5	750	15	832	7268	179	0,81
20	4,5	3,5	750	15	826	7274	182	0,81
22	4,5	3,5	750	16	826	7274	187	0,81
25	4,5	3,5	750	16	825	7275	190	0,81
27	4,5	3,5	750	16	825	7275	193	0,81
30	4,5	3,5	750	17	824	7276	200	0,81

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=4.5 bars ; $\Delta P=1.5$ bar ; C=2g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	4,5	3	820	12	1118	6982	137	0,74
3	4,5	3	820	12	967	7133	143	0,78
5	4,5	3	820	12	926	7174	147	0,79
7	4,5	3	820	13	860	7240	151	0,80
9	4,5	3	820	13	852	7248	156	0,80
12	4,5	3	820	14	850	7250	160	0,80
15	4,5	3	820	14	846	7254	165	0,80
17	4,5	3	820	14	841	7259	169	0,80
20	4,5	3	820	15	836	7264	173	0,81
22	4,5	3	820	15	835	7265	176	0,81
25	4,5	3	820	16	834	7266	180	0,81
27	4,5	3	820	17	834	7266	184	0,81
30	4,5	3	820	17	833	7267	188	0,81

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=4.5 bars ; ΔP =2 bar ; C=2g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	4,5	2,5	900	13	1124	6976	130	0,74
3	4,5	2,5	900	13	972	7128	135	0,77
5	4,5	2,5	900	14	930	7170	139	0,78
7	4,5	2,5	900	15	867	7233	142	0,80
9	4,5	2,5	900	15	859	7241	148	0,80
12	4,5	2,5	900	16	857	7243	153	0,80
15	4,5	2,5	900	16	853	7247	157	0,80
17	4,5	2,5	900	16	848	7252	160	0,80
20	4,5	2,5	900	17	842	7258	164	0,80
22	4,5	2,5	900	17	842	7258	167	0,80
25	4,5	2,5	900	18	841	7259	170	0,80
27	4,5	2,5	900	18	841	7259	173	0,80
30	4,5	2,5	900	18	840	7260	178	0,80

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (Pentrée=5.5 bars ; $\Delta P=0$ bar ; C=2g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	5,5	390	12	1377	6723	180	0,68
3	5,5	5,5	390	12	1186	6814	185	0,72
5	5,5	5,5	390	12	1126	6930	190	0,74
7	5,5	5,5	390	13	1160	6940	195	0,73
9	5,5	5,5	390	13	1153	6947	200	0,73
12	5,5	5,5	390	14	1151	6950	205	0,73
15	5,5	5,5	390	14	1145	6955	210	0,73
17	5,5	5,5	390	14	1138	6962	215	0,74
20	5,5	5,5	390	14	1131	6969	218	0,74
22	5,5	5,5	390	15	1130	6970	220	0,74
25	5,5	5,5	390	16	1128	6972	225	0,74
27	5,5	5,5	390	16	1128	6972	228	0,74
30	5,5	5,5	390	17	1127	6973	230	0,74

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=5.5 bars ; $\Delta P=0.5$ bar ; C=2g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	5	650	12	1370	6730	170	0,68
3	5,5	5	650	12	1180	6920	175	0,73
5	5,5	5	650	13	1120	6980	178	0,74
7	5,5	5	650	13	1070	7030	180	0,75
9	5,5	5	650	14	1064	7036	185	0,75
12	5,5	5	650	15	1062	7038	190	0,75
15	5,5	5	650	16	1057	7043	194	0,75
17	5,5	5	650	17	1051	7049	195	0,76
20	5,5	5	650	17	1044	7056	200	0,76
22	5,5	5	650	17	1043	7057	202	0,76
25	5,5	5	650	17	1042	7058	208	0,76
27	5,5	5	650	18	1042	7058	210	0,76
30	5,5	5	650	18	1040	7060	215	0,76

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=5.5 bars ; $\Delta P=1$ bar ; C=2g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	4,5	800	13	1209	6891	155	0,72
3	5,5	4,5	800	13	1004	7096	160	0,77
5	5,5	4,5	800	14	943	7157	165	0,78
7	5,5	4,5	800	14	892	7208	170	0,79
9	5,5	4,5	800	14	887	7213	175	0,79
12	5,5	4,5	800	15	885	7215	178	0,79
15	5,5	4,5	800	16	881	7219	180	0,80
17	5,5	4,5	800	17	876	7224	183	0,80
20	5,5	4,5	800	17	870	7230	185	0,80
22	5,5	4,5	800	17	869	7231	187	0,80
25	5,5	4,5	800	18	868	7232	190	0,80
27	5,5	4,5	800	18	868	7232	193	0,80
30	5,5	4,5	800	19	867	7233	200	0,80

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (Pentrée=5.5 bars ; $\Delta P=1.5$ bar ; C=2g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	4	940	13	1221	6879	140	0,72
3	5,5	4	940	13	1014	7086	145	0,76
5	5,5	4	940	14	952	7148	152	0,78
7	5,5	4	940	14	901	7199	156	0,79
9	5,5	4	940	15	892	7208	159	0,79
12	5,5	4	940	16	890	7210	161	0,79
15	5,5	4	940	17	886	7214	165	0,79
17	5,5	4	940	18	881	7219	169	0,80
20	5,5	4	940	19	875	7225	173	0,80
22	5,5	4	940	19	874	7226	176	0,80
25	5,5	4	940	20	873	7227	180	0,80
27	5,5	4	940	20	873	7227	184	0,80
30	5,5	4	940	21	872	7228	188	0,80

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=5.5 bars ; $\Delta P=2$ bar ; C=2g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	3,5	950	13	1225	6875	130	0,72
3	5,5	3,5	950	14	1017	7083	135	0,76
5	5,5	3,5	950	16	955	7145	139	0,78
7	5,5	3,5	950	17	904	7196	142	0,79
9	5,5	3,5	950	17	895	7205	148	0,79
12	5,5	3,5	950	18	893	7207	153	0,79
15	5,5	3,5	950	18	889	7211	157	0,79
17	5,5	3,5	950	18	884	7216	160	0,79
20	5,5	3,5	950	19	878	7222	164	0,80
22	5,5	3,5	950	19	877	7223	167	0,80
25	5,5	3,5	950	20	876	7224	170	0,80
27	5,5	3,5	950	21	876	7224	173	0,80
30	5,5	3,5	950	21	875	7225	178	0,80

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=5.5 bars ; $\Delta P=0$ bar ; C=3g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	5,5	400	12	1620	8380	200	0,78
3	5,5	5,5	400	12	1529	8471	205	0,79
5	5,5	5,5	400	13	1486	8514	208	0,80
7	5,5	5,5	400	13	1472	8528	214	0,80
9	5,5	5,5	400	13	1466	8534	217	0,80
12	5,5	5,5	400	14	1463	8537	220	0,80
15	5,5	5,5	400	14	1458	8542	224	0,81
17	5,5	5,5	400	14	1452	8548	228	0,81
20	5,5	5,5	400	14	1444	8556	232	0,81
22	5,5	5,5	400	15	1443	8557	235	0,81
25	5,5	5,5	400	15	1442	8558	238	0,81
27	5,5	5,5	400	16	1442	8558	240	0,81
30	5,5	5,5	400	16	1441	8559	245	0,81

 $\textbf{Tableau}: L'influence \ de \ la \ différence \ de \ la \ pression \ de \ part \ et \ d'autre \ de \ la \ membrane \ sur \ le \ dessalement \ (Pentrée=5.5 \ bars \ ; \ \Delta P=0.5 \ bar \ ; \ C=3g/l)$

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	5	590	12	1573	8427	190	0,79
3	5,5	5	590	12	1428	8572	195	0,81
5	5,5	5	590	12	1387	8613	200	0,82
7	5,5	5	590	13	1337	8663	204	0,82
9	5,5	5	590	13	1331	8669	208	0,82
12	5,5	5	590	14	1329	8671	212	0,83
15	5,5	5	590	14	1324	8676	216	0,83
17	5,5	5	590	14	1318	8682	220	0,83
20	5,5	5	590	15	1311	8689	225	0,83
22	5,5	5	590	15	1310	8690	228	0,83
25	5,5	5	590	16	1309	8691	232	0,83
27	5,5	5	590	16	1309	8691	234	0,83
30	5,5	5	590	17	1308	8692	238	0,83

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (Pentrée=5.5 bars ; $\Delta P=1$ bar ; C=3g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	4,5	840	13	1315	8685	180	0,83
3	5,5	4,5	840	13	1167	8834	185	0,85
5	5,5	4,5	840	13	1125	8876	189	0,86
7	5,5	4,5	840	14	1057	8943	193	0,87
9	5,5	4,5	840	14	1053	8947	196	0,87
12	5,5	4,5	840	15	1051	8949	200	0,87
15	5,5	4,5	840	16	1047	8953	205	0,87
17	5,5	4,5	840	17	1042	8958	210	0,87
20	5,5	4,5	840	17	1036	8964	215	0,87
22	5,5	4,5	840	17	1036	8964	220	0,87
25	5,5	4,5	840	18	1035	8965	225	0,87
27	5,5	4,5	840	18	1035	8965	228	0,87
30	5,5	4,5	840	18	1034	8966	232	0,87

 $\textbf{Tableau}: L'influence \ de \ la \ différence \ de \ la \ pression \ de \ part \ et \ d'autre \ de \ la \ membrane \ sur \ le \ dessalement \ (Pentrée=5.5 \ bars \ ; \ \Delta P=1.5 \ bar \ ; \ C=3g/l)$

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	4	940	14	1376	8624	170	0,82
3	5,5	4	940	14	1225	8775	175	0,84
5	5,5	4	940	14	1184	8816	179	0,85
7	5,5	4	940	15	1118	8882	182	0,86
9	5,5	4	940	15	1110	8890	185	0,86
12	5,5	4	940	15	1108	8892	190	0,86
15	5,5	4	940	16	1104	8896	194	0,86
17	5,5	4	940	16	1099	8901	199	0,86
20	5,5	4	940	17	1094	8906	204	0,86
22	5,5	4	940	18	1093	8907	208	0,86
25	5,5	4	940	19	1092	8908	212	0,86
27	5,5	4	940	19	1092	8908	218	0,86
30	5,5	4	940	19	1091	8909	223	0,86

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=5.5 bars ; $\Delta P=2$ bar ; C=3g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	3,5	950	14	1355	8645	165	0,82
3	5,5	3,5	950	14	1203	8797	168	0,84
5	5,5	3,5	950	15	1161	8839	172	0,85
7	5,5	3,5	950	15	1098	8902	176	0,86
9	5,5	3,5	950	15	1090	8910	180	0,86
12	5,5	3,5	950	16	1088	8912	183	0,86
15	5,5	3,5	950	16	1084	8916	186	0,86
17	5,5	3,5	950	17	1079	8921	190	0,86
20	5,5	3,5	950	18	1073	8927	194	0,86
22	5,5	3,5	950	18	1073	8927	198	0,86
25	5,5	3,5	950	19	1072	8928	202	0,87
27	5,5	3,5	950	20	1072	8928	208	0,87
30	5,5	3,5	950	20	1071	8929	213	0,87

 $\textbf{Tableau}: L'influence \ de \ la \ différence \ de \ la \ pression \ de \ part \ et \ d'autre \ de \ la \ membrane \ sur \ le \ dessalement \ (P \ entrée=8.5 \ bars \ ; \ \Delta P=0 \ bar \ ; \ C=3g/l)$

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	8,5	480	15	1481	8319	255	0,77
3	8,5	8,5	480	15	1290	8430	258	0,80
5	8,5	8,5	480	15	1230	8490	261	0,81
7	8,5	8,5	480	15	1264	8536	265	0,80
9	8,5	8,5	480	16	1258	8542	269	0,81
12	8,5	8,5	480	16	1255	8545	275	0,81
15	8,5	8,5	480	17	1250	8550	280	0,81
17	8,5	8,5	480	17	1243	8557	284	0,81
20	8,5	8,5	480	17	1235	8565	288	0,81
22	8,5	8,5	480	17	1234	8566	293	0,81
25	8,5	8,5	480	18	1233	8567	298	0,81
27	8,5	8,5	480	18	1233	8567	304	0,81
30	8,5	8,5	480	18	1232	8568	310	0,81

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=0.5$ bar ; C=3g/1)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	8	600	15	1448	8352	245	0,78
3	8,5	8	600	15	1258	8542	250	0,81
5	8,5	8	600	15	1198	8602	250	0,81
7	8,5	8	600	16	1149	8652	255	0,82
9	8,5	8	600	16	1143	8658	260	0,82
12	8,5	8	600	17	1140	8660	265	0,82
15	8,5	8	600	17	1135	8665	270	0,82
17	8,5	8	600	18	1129	8671	275	0,83
20	8,5	8	600	18	1122	8678	280	0,83
22	8,5	8	600	18	1121	8679	285	0,83
25	8,5	8	600	19	1120	8680	290	0,83
27	8,5	8	600	19	1120	8680	293	0,83
30	8,5	8	600	20	1119	8682	302	0,83

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=1$ bar ; C=3g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	7,5	880	15	1251	8549	236	0,81
3	8,5	7,5	880	15	1046	8754	240	0,84
5	8,5	7,5	880	16	985	8815	244	0,85
7	8,5	7,5	880	16	934	8866	248	0,86
9	8,5	7,5	880	16	929	8871	252	0,86
12	8,5	7,5	880	17	927	8873	257	0,86
15	8,5	7,5	880	18	923	8877	263	0,86
17	8,5	7,5	880	18	918	8882	266	0,86
20	8,5	7,5	880	19	912	8888	271	0,86
22	8,5	7,5	880	19	911	8889	275	0,86
25	8,5	7,5	880	20	910	8890	280	0,86
27	8,5	7,5	880	20	910	8890	284	0,86
30	8,5	7,5	880	21	909	8891	295	0,86

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=1.5$ bar ; C=3g/1)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	7	920	16	1286	8514	230	0,80
3	8,5	7	920	16	1079	8721	235	0,83
5	8,5	7	920	16	1018	8782	238	0,84
7	8,5	7	920	17	966	8834	243	0,85
9	8,5	7	920	17	958	8842	248	0,85
12	8,5	7	920	17	956	8844	253	0,85
15	8,5	7	920	18	951	8849	257	0,85
17	8,5	7	920	18	946	8854	261	0,85
20	8,5	7	920	19	940	8860	265	0,85
22	8,5	7	920	20	939	8861	269	0,85
25	8,5	7	920	20	938	8862	274	0,85
27	8,5	7	920	21	938	8862	280	0,85
30	8,5	7	920	21	937	8863	288	1,00

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=2$ bar ; C=3g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	6,5	950	16	1303	8497	224	0,80
3	8,5	6,5	950	16	1095	8705	230	0,83
5	8,5	6,5	950	17	1033	8767	233	0,84
7	8,5	6,5	950	18	982	8818	237	0,85
9	8,5	6,5	950	19	973	8827	241	0,85
12	8,5	6,5	950	19	971	8829	246	0,85
15	8,5	6,5	950	19	967	8833	252	0,85
17	8,5	6,5	950	19	962	8838	258	0,85
20	8,5	6,5	950	20	956	8844	262	0,85
22	8,5	6,5	950	20	955	8845	266	0,85
25	8,5	6,5	950	21	954	8846	270	0,85
27	8,5	6,5	950	22	954	8846	275	0,85
30	8,5	6,5	950	22	953	8847	282	0,85

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=5.5 bars ; $\Delta P=0$ bar ; C=4g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	5,5	390	14	1664	11256	180	0,80
3	5,5	5,5	390	14	1513	11407	185	0,80
5	5,5	5,5	390	14	1458	11462	188	0,81
7	5,5	5,5	390	15	1447	11473	192	0,81
9	5,5	5,5	390	15	1441	11479	196	0,82
12	5,5	5,5	390	16	1438	11482	200	0,82
15	5,5	5,5	390	17	1433	11487	204	0,82
17	5,5	5,5	390	17	1426	11494	209	0,82
20	5,5	5,5	390	18	1418	11502	213	0,83
22	5,5	5,5	390	18	1417	11503	216	0,83
25	5,5	5,5	390	18	1416	11504	219	0,83
27	5,5	5,5	390	19	1416	11504	224	0,84
30	5,5	5,5	390	19	1415	11505	228	0,84

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=5.5 bars ; $\Delta P=0.5$ bar ; C=4g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	5	580	14	1625	11295	170	0,81
3	5,5	5	580	14	1435	11485	174	0,81
5	5,5	5	580	15	1375	11545	179	0,81
7	5,5	5	580	15	1326	11595	182	0,82
9	5,5	5	580	16	1320	11601	186	0,82
12	5,5	5	580	16	1317	11603	190	0,82
15	5,5	5	580	17	1312	11608	194	0,83
17	5,5	5	580	17	1306	11614	198	0,83
20	5,5	5	580	18	1299	11621	202	0,83
22	5,5	5	580	18	1298	11622	207	0,84
25	5,5	5	580	19	1297	11623	210	0,84
27	5,5	5	580	19	1297	11623	214	0,85
30	5,5	5	580	20	1296	11625	218	0,85

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=5.5 bars ; Δ P=1 bar ; C=4g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	4,5	900	15	1412	11508	165	0,83
3	5,5	4,5	900	15	1207	11713	169	0,83
5	5,5	4,5	900	15	1146	11774	172	0,84
7	5,5	4,5	900	16	1095	11825	175	0,84
9	5,5	4,5	900	16	1090	11830	178	0,85
12	5,5	4,5	900	17	1088	11832	183	0,85
15	5,5	4,5	900	17	1084	11836	186	0,86
17	5,5	4,5	900	18	1079	11841	190	0,86
20	5,5	4,5	900	19	1073	11847	194	0,87
22	5,5	4,5	900	19	1072	11848	198	0,87
25	5,5	4,5	900	20	1071	11849	202	0,88
27	5,5	4,5	900	20	1071	11849	206	0,88
30	5,5	4,5	900	21	1070	11850	209	0,88

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=5.5 bars ; $\Delta P=1.5$ bar ; C=4g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	4	940	16	1453	11467	155	0,83
3	5,5	4	940	16	1246	11674	159	0,83
5	5,5	4	940	17	1184	11736	163	0,83
7	5,5	4	940	17	1133	11787	167	0,84
9	5,5	4	940	18	1124	11796	170	0,85
12	5,5	4	940	18	1122	11798	174	0,85
15	5,5	4	940	19	1118	11802	179	0,85
17	5,5	4	940	19	1113	11807	182	0,85
20	5,5	4	940	19	1107	11813	186	0,86
22	5,5	4	940	20	1106	11814	190	0,86
25	5,5	4	940	20	1105	11815	194	0,86
27	5,5	4	940	21	1105	11815	198	0,87
30	5,5	4	940	22	1104	11816	202	0,87

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=5.5 bars ; $\Delta P=2$ bar ; C=4g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	3,5	950	15	1474	11446	140	0,83
3	5,5	3,5	950	15	1266	11654	145	0,83
5	5,5	3,5	950	16	1204	11716	149	0,83
7	5,5	3,5	950	16	1153	11767	150	0,84
9	5,5	3,5	950	16	1144	11776	155	0,84
12	5,5	3,5	950	17	1142	11778	160	0,84
15	5,5	3,5	950	17	1138	11782	164	0,85
17	5,5	3,5	950	18	1133	11787	168	0,85
20	5,5	3,5	950	18	1127	11793	170	0,86
22	5,5	3,5	950	19	1126	11794	175	0,86
25	5,5	3,5	950	19	1125	11795	179	0,86
27	5,5	3,5	950	20	1125	11795	185	0,87
30	5,5	3,5	950	21	1124	11796	190	0,87

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=0$ bar ; C=4g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	8,5	440	25	1495	11405	230	0,83
3	8,5	8,5	440	25	1404	11496	234	0,84
5	8,5	8,5	440	26	1361	11539	240	0,84
7	8,5	8,5	440	27	1347	11553	245	0,84
9	8,5	8,5	440	28	1341	11559	248	0,84
12	8,5	8,5	440	29	1338	11562	252	0,84
15	8,5	8,5	440	30	1333	11567	257	0,85
17	8,5	8,5	440	31	1327	11573	262	0,85
20	8,5	8,5	440	32	1319	11581	267	0,85
22	8,5	8,5	440	32	1318	11582	270	0,85
25	8,5	8,5	440	32	1317	11583	276	0,85
27	8,5	8,5	440	33	1317	11583	280	0,85
30	8,5	8,5	440	33	1495	11585	285	0,85

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=0.5$ bar ; C=4g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	8	620	30	1445	11455	224	0,83
3	8,5	8	620	31	1300	11600	229	0,85
5	8,5	8	620	32	1259	11641	234	0,85
7	8,5	8	620	33	1209	11691	238	0,86
9	8,5	8	620	33	1203	11697	242	0,86
12	8,5	8	620	34	1201	11699	246	0,86
15	8,5	8	620	35	1196	11704	252	0,86
17	8,5	8	620	36	1190	11710	256	0,86
20	8,5	8	620	37	1183	11717	262	0,86
22	8,5	8	620	37	1182	11718	265	0,86
25	8,5	8	620	38	1181	11719	270	0,86
27	8,5	8	620	38	1181	11719	274	0,86
30	8,5	8	620	39	1181	11720	279	0,86

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=1$ bar ; C=4g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	7,5	760	32	1175	11725	218	0,86
3	8,5	7,5	760	32	1027	11874	223	0,88
5	8,5	7,5	760	32	985	11916	227	0,89
7	8,5	7,5	760	33	917	11983	232	0,89
9	8,5	7,5	760	34	913	11987	237	0,89
12	8,5	7,5	760	35	911	11989	241	0,89
15	8,5	7,5	760	35	907	11993	247	0,89
17	8,5	7,5	760	36	902	11998	252	0,90
20	8,5	7,5	760	36	896	12004	257	0,90
22	8,5	7,5	760	37	896	12004	260	0,90
25	8,5	7,5	760	38	895	12005	265	0,90
27	8,5	7,5	760	39	895	12005	270	0,90
30	8,5	7,5	760	40	894	12006	274	0,90

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=1.5$ bar ; C=4g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	7	910	35	1247	11653	210	0,86
3	8,5	7	910	35	1097	11803	214	0,87
5	8,5	7	910	35	1055	11845	220	0,88
7	8,5	7	910	36	990	11910	225	0,89
9	8,5	7	910	36	982	11918	229	0,89
12	8,5	7	910	37	980	11920	234	0,89
15	8,5	7	910	38	976	11924	238	0,89
17	8,5	7	910	38	971	11929	242	0,89
20	8,5	7	910	39	965	11935	246	0,89
22	8,5	7	910	39	964	11936	250	0,89
25	8,5	7	910	40	963	11937	255	0,89
27	8,5	7	910	40	963	11937	259	0,89
30	8,5	7	910	41	962	11938	264	0,89

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=2$ bar ; C=4g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	6,5	950	35	1228	11672	205	0,86
3	8,5	6,5	950	35	1076	11824	211	0,88
5	8,5	6,5	950	36	1034	11866	215	0,88
7	8,5	6,5	950	37	971	11929	220	0,89
9	8,5	6,5	950	37	963	11937	225	0,89
12	8,5	6,5	950	38	961	11939	230	0,89
15	8,5	6,5	950	38	957	11943	234	0,89
17	8,5	6,5	950	39	952	11948	239	0,89
20	8,5	6,5	950	39	946	11954	241	0,89
22	8,5	6,5	950	40	946	11954	246	0,89
25	8,5	6,5	950	40	945	11955	250	0,89
27	8,5	6,5	950	41	945	11955	255	0,89
30	8,5	6,5	950	41	944	11956	260	0,89

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=10.5 bars ; $\Delta P=0$ bar ; C=4g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	10,5	10,5	530	20	1590	11310	210	0,82
3	10,5	10,5	530	25	1499	11401	214	0,83
5	10,5	10,5	530	30	1456	11444	220	0,83
7	10,5	10,5	530	32	1443	11457	225	0,83
9	10,5	10,5	530	33	1436	11464	229	0,83
12	10,5	10,5	530	35	1434	11466	233	0,83
15	10,5	10,5	530	36	1429	11471	238	0,83
17	10,5	10,5	530	37	1422	11478	242	0,83
20	10,5	10,5	530	38	1414	11486	247	0,84
22	10,5	10,5	530	38	1413	11487	251	0,84
25	10,5	10,5	530	39	1412	11488	256	0,84
27	10,5	10,5	530	39	1412	11488	260	0,84
30	10,5	10,5	530	40	1411	11489	268	0,84

 $\textbf{Tableau}: L'influence \ de \ la \ différence \ de \ la \ pression \ de \ part \ et \ d'autre \ de \ la \ membrane \ sur \ le \ dessalement \ (P \ entrée=10.5 \ bars \ ; \ \Delta P=0.5 \ bar \ ; \ C=4g/l)$

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	10,5	10	650	35	1537	11363	206	0,82
3	10,5	10	650	38	1393	11507	210	0,84
5	10,5	10	650	39	1351	11549	214	0,84
7	10,5	10	650	40	1302	11598	220	0,85
9	10,5	10	650	40	1296	11604	224	0,85
12	10,5	10	650	41	1294	11606	227	0,85
15	10,5	10	650	42	1289	11611	232	0,85
17	10,5	10	650	43	1283	11617	236	0,85
20	10,5	10	650	44	1276	11624	240	0,85
22	10,5	10	650	44	1275	11625	244	0,85
25	10,5	10	650	45	1274	11626	249	0,85
27	10,5	10	650	46	1274	11626	252	0,85
30	10,5	10	650	46	1273	11627	260	0,85

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=10.5 bars ; $\Delta P=1$ bar ; C=4g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	10,5	9,5	850	41	1265	11635	200	0,85
3	10,5	9,5	850	42	1117	11783	204	0,87
5	10,5	9,5	850	43	1075	11825	208	0,88
7	10,5	9,5	850	44	1008	11892	212	0,88
9	10,5	9,5	850	45	1004	11896	216	0,88
12	10,5	9,5	850	46	1002	11898	220	0,88
15	10,5	9,5	850	47	998	11902	224	0,88
17	10,5	9,5	850	48	993	11907	230	0,88
20	10,5	9,5	850	49	987	11913	234	0,89
22	10,5	9,5	850	49	986	11914	238	0,89
25	10,5	9,5	850	50	986	11915	242	0,89
27	10,5	9,5	850	51	986	11915	248	0,89
30	10,5	9,5	850	51	985	11915	254	0,89

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (Pentrée=10.5 bars ; $\Delta P=1.5$ bar ; C=4g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	10,5	9	920	25	1339	11561	195	0,84
3	10,5	9	920	27	1188	11712	200	0,86
5	10,5	9	920	28	1147	11753	203	0,87
7	10,5	9	920	29	1082	11818	207	0,87
9	10,5	9	920	30	1073	11827	211	0,88
12	10,5	9	920	31	1071	11829	216	0,88
15	10,5	9	920	32	1068	11832	220	0,88
17	10,5	9	920	33	1063	11837	224	0,88
20	10,5	9	920	35	1057	11843	230	0,88
22	10,5	9	920	35	1056	11844	234	0,88
25	10,5	9	920	36	1055	11845	238	0,88
27	10,5	9	920	36	1055	11845	242	0,88
30	10,5	9	920	37	1054	11846	248	0,88

 $\label{eq:Tableau} \textbf{Tableau}: L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=10.5 bars ; <math>\Delta P=2$ bar ; C=4g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	10,5	8,5	950	33	1321	11579	190	0,85
3	10,5	8,5	950	34	1168	11732	194	0,86
5	10,5	8,5	950	34	1127	11773	200	0,87
7	10,5	8,5	950	34	1064	11836	203	0,88
9	10,5	8,5	950	35	1056	11844	208	0,88
12	10,5	8,5	950	35	1054	11846	213	0,88
15	10,5	8,5	950	36	1050	11850	216	0,88
17	10,5	8,5	950	36	1045	11855	220	0,88
20	10,5	8,5	950	37	1039	11861	226	0,88
22	10,5	8,5	950	37	1038	11862	230	0,88
25	10,5	8,5	950	37	1037	11863	235	0,88
27	10,5	8,5	950	38	1037	11863	238	0,88
30	10,5	8,5	950	38	1036	11864	243	0,88

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=5.5 bars ; $\Delta P=0$ bar ; C=5g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	5,5	400	14	1945	11155	160	0,82
3	5,5	5,5	400	14	1855	11246	165	0,83
5	5,5	5,5	400	14	1812	11289	170	0,83
7	5,5	5,5	400	15	1798	11302	173	0,83
9	5,5	5,5	400	15	1792	11308	176	0,83
12	5,5	5,5	400	15	1789	11311	178	0,83
15	5,5	5,5	400	16	1784	11316	182	0,83
17	5,5	5,5	400	16	1777	11323	186	0,83
20	5,5	5,5	400	17	1769	11331	190	0,84
22	5,5	5,5	400	17	1769	11331	195	0,84
25	5,5	5,5	400	18	1767	11333	200	0,84
27	5,5	5,5	400	18	1767	11333	205	0,84
30	5,5	5,5	400	18	1766	11334	210	0,84

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=5.5 bars ; ΔP =0.5 bar ; C=5g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	5	630	15	1883	11217	150	0,83
3	5,5	5	630	15	1739	11361	155	0,84
5	5,5	5	630	15	1697	11403	160	0,84
7	5,5	5	630	16	1647	11453	165	0,85
9	5,5	5	630	16	1642	11458	168	0,85
12	5,5	5	630	17	1639	11461	170	0,85
15	5,5	5	630	17	1635	11465	174	0,85
17	5,5	5	630	18	1628	11472	178	0,85
20	5,5	5	630	18	1621	11479	182	0,85
22	5,5	5	630	18	1621	11479	184	0,85
25	5,5	5	630	19	1619	11481	188	0,85
27	5,5	5	630	19	1619	11481	192	0,85
30	5,5	5	630	20	1618	11482	196	0,85

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=5.5 bars ; $\Delta P=1$ bar ; C=5g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	4,5	840	15	1595	11505	145	0,85
3	5,5	4,5	840	15	1447	11653	148	0,87
5	5,5	4,5	840	16	1405	11695	150	0,87
7	5,5	4,5	840	16	1338	11762	155	0,88
9	5,5	4,5	840	17	1333	11767	160	0,88
12	5,5	4,5	840	17	1331	11769	162	0,88
15	5,5	4,5	840	18	1327	11773	165	0,88
17	5,5	4,5	840	18	1322	11778	170	0,88
20	5,5	4,5	840	18	1317	11783	173	0,88
22	5,5	4,5	840	19	1316	11784	175	0,88
25	5,5	4,5	840	19	1315	11785	180	0,88
27	5,5	4,5	840	20	1315	11785	184	0,88
30	5,5	4,5	840	20	1314	11786	189	0,88

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=5.5 bars ; $\Delta P=1.5$ bar ; C=5g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	4	930	16	1672	11428	135	0,84
3	5,5	4	930	16	1521	11579	140	0,86
5	5,5	4	930	17	1480	11620	142	0,86
7	5,5	4	930	17	1414	11686	145	0,87
9	5,5	4	930	18	1406	11694	150	0,87
12	5,5	4	930	19	1404	11696	153	0,87
15	5,5	4	930	19	1400	11700	155	0,87
17	5,5	4	930	19	1395	11705	160	0,87
20	5,5	4	930	20	1390	11710	165	0,87
22	5,5	4	930	20	1389	11711	168	0,87
25	5,5	4	930	21	1388	11712	170	0,87
27	5,5	4	930	21	1388	11712	175	0,87
30	5,5	4	930	22	1387	11713	180	0,87

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=5.5 bars ; $\Delta P=2$ bar ; C=5g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	3,5	950	17	1657	11443	120	0,85
3	5,5	3,5	950	17	1504	11596	125	0,86
5	5,5	3,5	950	18	1463	11637	128	0,86
7	5,5	3,5	950	18	1400	11700	130	0,87
9	5,5	3,5	950	19	1392	11708	135	0,87
12	5,5	3,5	950	19	1390	11710	139	0,87
15	5,5	3,5	950	20	1386	11714	140	0,87
17	5,5	3,5	950	20	1381	11719	145	0,87
20	5,5	3,5	950	21	1375	11725	150	0,87
22	5,5	3,5	950	21	1374	11726	152	0,87
25	5,5	3,5	950	22	1373	11727	155	0,87
27	5,5	3,5	950	22	1373	11727	160	0,87
30	5,5	3,5	950	22	1372	11728	165	0,87

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=0$ bar ; C=5g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	8,5	490	25	1847	11253	205	0,83
3	8,5	8,5	490	26	1756	11344	208	0,84
5	8,5	8,5	490	27	1713	11387	212	0,84
7	8,5	8,5	490	27	1700	11400	216	0,84
9	8,5	8,5	490	28	1693	11407	220	0,84
12	8,5	8,5	490	29	1691	11409	224	0,84
15	8,5	8,5	490	30	1685	11415	228	0,84
17	8,5	8,5	490	30	1679	11421	231	0,84
20	8,5	8,5	490	30	1671	11429	235	0,84
22	8,5	8,5	490	31	1670	11430	239	0,84
25	8,5	8,5	490	31	1669	11431	243	0,85
27	8,5	8,5	490	32	1669	11431	246	0,85
30	8,5	8,5	490	32	1668	11432	250	0,85

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=0.5$ bar ; C=5g/1)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	8	600	30	1789	11311	194	0,83
3	8,5	8	600	30	1645	11455	200	0,85
5	8,5	8	600	31	1603	11497	204	0,85
7	8,5	8	600	32	1554	11546	209	0,86
9	8,5	8	600	33	1548	11552	213	0,86
12	8,5	8	600	34	1546	11554	218	0,86
15	8,5	8	600	35	1541	11559	223	0,86
17	8,5	8	600	35	1535	11565	227	0,86
20	8,5	8	600	36	1528	11572	231	0,86
22	8,5	8	600	36	1527	11573	235	0,86
25	8,5	8	600	37	1526	11574	239	0,86
27	8,5	8	600	37	1526	11574	241	0,86
30	8,5	8	600	33	1525	11575	246	0,86

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=1$ bar ; C=5g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	7,5	870	33	1510	11590	185	0,86
3	8,5	7,5	870	33	1362	11738	190	0,87
5	8,5	7,5	870	33	1320	11780	194	0,88
7	8,5	7,5	870	33	1253	11847	199	0,88
9	8,5	7,5	870	33	1248	11852	205	0,88
12	8,5	7,5	870	33	1246	11854	210	0,88
15	8,5	7,5	870	33	1243	11857	214	0,88
17	8,5	7,5	870	33	1238	11862	218	0,89
20	8,5	7,5	870	34	1232	11868	223	0,89
22	8,5	7,5	870	34	1231	11869	228	0,89
25	8,5	7,5	870	35	1230	11870	232	0,89
27	8,5	7,5	870	36	1230	11870	236	0,89
30	8,5	7,5	870	37	1229	11871	240	0,89

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=1.5$ bar ; C=5g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	7	940	35	1586	11514	172	0,85
3	8,5	7	940	35	1436	11664	176	0,87
5	8,5	7	940	35	1394	11706	180	0,87
7	8,5	7	940	35	1329	11771	185	0,88
9	8,5	7	940	35	1321	11779	189	0,88
12	8,5	7	940	35	1319	11781	193	0,88
15	8,5	7	940	35	1315	11785	197	0,88
17	8,5	7	940	36	1310	11790	200	0,88
20	8,5	7	940	36	1304	11796	205	0,88
22	8,5	7	940	36	1303	11797	210	0,88
25	8,5	7	940	37	1302	11798	216	0,88
27	8,5	7	940	37	1302	11798	220	0,88
30	8,5	7	940	38	1301	11799	225	0,88

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=2$ bar ; C=5g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	6,5	950	37	1570	11530	165	0,85
3	8,5	6,5	950	37	1418	11682	170	0,87
5	8,5	6,5	950	37	1376	11724	174	0,87
7	8,5	6,5	950	37	1314	11786	178	0,88
9	8,5	6,5	950	37	1305	11795	182	0,88
12	8,5	6,5	950	37	1303	11797	186	0,88
15	8,5	6,5	950	37	1299	11801	190	0,88
17	8,5	6,5	950	38	1294	11806	195	0,88
20	8,5	6,5	950	38	1289	11811	200	0,88
22	8,5	6,5	950	39	1288	11812	204	0,88
25	8,5	6,5	950	39	1287	11813	209	0,88
27	8,5	6,5	950	40	1287	11813	214	0,88
30	8,5	6,5	950	40	1286	11814	218	0,88

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=10.5 bars ; $\Delta P=0$ bar ; C=5g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	10,5	10,5	540	28	1760	11340	218	0,84
3	10,5	10,5	540	30	1669	11431	223	0,85
5	10,5	10,5	540	30	1626	11474	228	0,85
7	10,5	10,5	540	31	1612	11488	232	0,85
9	10,5	10,5	540	32	1606	11494	236	0,85
12	10,5	10,5	540	33	1603	11497	240	0,85
15	10,5	10,5	540	34	1598	11502	245	0,85
17	10,5	10,5	540	34	1592	11508	249	0,85
20	10,5	10,5	540	35	1584	11516	254	0,85
22	10,5	10,5	540	35	1583	11517	258	0,85
25	10,5	10,5	540	35	1582	11518	262	0,85
27	10,5	10,5	540	36	1582	11518	266	0,85
30	10,5	10,5	540	46	1580	11520	272	0,85

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=10.5 bars ; $\Delta P=0.5$ bar ; C=5g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	10,5	10	550	36	1705	11395	213	0,84
3	10,5	10	550	36	1560	11540	217	0,86
5	10,5	10	550	36	1519	11581	223	0,86
7	10,5	10	550	36	1469	11631	227	0,86
9	10,5	10	550	36	1463	11637	232	0,86
12	10,5	10	550	36	1461	11639	237	0,86
15	10,5	10	550	36	1456	11644	241	0,86
17	10,5	10	550	36	1450	11650	246	0,87
20	10,5	10	550	47	1443	11657	250	0,87
22	10,5	10	550	47	1442	11658	254	0,87
25	10,5	10	550	47	1441	11659	258	0,87
27	10,5	10	550	47	1441	11659	263	0,87
30	10,5	10	550	47	1440	11660	267	0,87

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=10.5 bars ; $\Delta P=1$ bar ; C=5g/I)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	10,5	9,5	900	40	1425	11675	209	0,87
3	10,5	9,5	900	40	1277	11824	213	0,88
5	10,5	9,5	900	40	1235	11866	218	0,89
7	10,5	9,5	900	41	1167	11933	223	0,89
9	10,5	9,5	900	42	1163	11937	228	0,89
12	10,5	9,5	900	43	1161	11939	232	0,89
15	10,5	9,5	900	45	1157	11943	236	0,89
17	10,5	9,5	900	45	1152	11948	240	0,89
20	10,5	9,5	900	45	1146	11954	243	0,89
22	10,5	9,5	900	46	1146	11954	247	0,89
25	10,5	9,5	900	56	1145	11955	251	0,89
27	10,5	9,5	900	57	1145	11955	256	0,89
30	10,5	9,5	900	57	1144	11956	260	0,89

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=10.5 bars ; $\Delta P=1.5$ bar ; C=5g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	10,5	9	940	45	1502	11598	196	0,86
3	10,5	9	940	45	1352	11748	200	0,87
5	10,5	9	940	45	1310	11790	204	0,88
7	10,5	9	940	45	1245	11855	209	0,88
9	10,5	9	940	45	1237	11863	213	0,89
12	10,5	9	940	45	1235	11865	218	0,89
15	10,5	9	940	45	1231	11869	223	0,89
17	10,5	9	940	46	1226	11874	227	0,89
20	10,5	9	940	46	1220	11880	231	0,89
22	10,5	9	940	47	1219	11881	236	0,89
25	10,5	9	940	47	1218	11882	240	0,89
27	10,5	9	940	48	1218	11882	244	0,89
30	10,5	9	940	48	1217	11883	249	0,89

 $\label{eq:Tableau} \textbf{Tableau}: L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=10.5 bars ; <math>\Delta P=2$ bar ; C=5g/l)

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	10,5	8,5	950	47	1485	11615	190	0,86
3	10,5	8,5	950	47	1333	11767	194	0,88
5	10,5	8,5	950	47	1292	11808	200	0,88
7	10,5	8,5	950	47	1229	11871	204	0,89
9	10,5	8,5	950	47	1220	11880	208	0,89
12	10,5	8,5	950	48	1219	11881	212	0,89
15	10,5	8,5	950	48	1215	11885	217	0,89
17	10,5	8,5	950	48	1210	11890	222	0,89
20	10,5	8,5	950	49	1204	11896	226	0,89
22	10,5	8,5	950	49	1203	11897	230	0,89
25	10,5	8,5	950	50	1202	11898	234	0,89
27	10,5	8,5	950	50	1202	11898	238	0,89
30	10,5	8,5	950	50	1201	11899	242	0,89

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=5.5 bars ; $\Delta P = 0$ bar ; C=3g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	5,5	400	10	1491	8309	210	0,77
3	5,5	5,5	400	10	1382	8418	215	0,79
5	5,5	5,5	400	13	1298	8502	220	0,80
7	5,5	5,5	400	13	1298	8502	224	0,80
9	5,5	5,5	400	13	1279	8521	228	0,80
12	5,5	5,5	400	14	1266	8534	230	0,80
15	5,5	5,5	400	14	1256	8544	234	0,81
17	5,5	5,5	400	15	1247	8553	238	0,81
20	5,5	5,5	400	15	1237	8563	242	0,81
22	5,5	5,5	400	15	1233	8567	245	0,81
25	5,5	5,5	400	16	1231	8569	248	0,81
27	5,5	5,5	400	16	1231	8569	252	0,81
30	5,5	5,5	400	16	1229	8571	255	0,81

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (Pentrée=5.5 bars ; $\Delta P = 0.5$ bar ; C=3g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	5	490	15	1441	8359	200	0,78
3	5,5	5	490	15	1277	8523	203	0,80
5	5,5	5	490	16	1198	8602	205	0,81
7	5,5	5	490	16	1160	8640	209	0,82
9	5,5	5	490	17	1142	8658	212	0,82
12	5,5	5	490	18	1131	8669	215	0,82
15	5,5	5	490	18	1122	8678	220	0,83
17	5,5	5	490	19	1114	8686	223	0,83
20	5,5	5	490	19	1104	8696	227	0,83
22	5,5	5	490	20	1101	8699	231	0,83
25	5,5	5	490	21	1099	8701	235	0,83
27	5,5	5	490	21	1099	8701	238	0,83
30	5,5	5	490	21	1098	8702	243	0,83

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=5.5 bars ; $\Delta P = 1$ bar ; C=3g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	4,5	720	18	1170	8630	190	0,82
3	5,5	4,5	720	19	1005	8795	195	0,84
5	5,5	4,5	720	20	933	8867	198	0,86
7	5,5	4,5	720	20	875	8925	203	0,86
9	5,5	4,5	720	20	861	8939	206	0,87
12	5,5	4,5	720	20	852	8948	209	0,87
15	5,5	4,5	720	21	845	8955	212	0,87
17	5,5	4,5	720	21	839	8961	215	0,87
20	5,5	4,5	720	22	831	8969	217	0,87
22	5,5	4,5	720	22	829	8971	221	0,87
25	5,5	4,5	720	22	827	8973	225	0,87
27	5,5	4,5	720	23	827	8973	228	0,87
30	5,5	4,5	720	23	826	8974	232	0,87

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=5.5 bars ; $\Delta P = 1.5$ bar ; C = 3g/I).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	4	930	20	1235	8565	178	0,81
3	5,5	4	930	20	1066	8734	182	0,83
5	5,5	4	930	20	993	8807	186	0,85
7	5,5	4	930	20	937	8863	190	0,86
9	5,5	4	930	21	919	8881	195	0,86
12	5,5	4	930	21	910	8890	197	0,86
15	5,5	4	930	21	903	8897	202	0,86
17	5,5	4	930	22	896	8904	205	0,86
20	5,5	4	930	22	888	8912	206	0,86
22	5,5	4	930	22	886	8914	209	0,86
25	5,5	4	930	23	884	8916	211	0,86
27	5,5	4	930	23	884	8916	215	0,86
30	5,5	4	930	24	883	8917	218	0,86

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=5.5 bars ; ΔP =2 bars ; C=3g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	5,5	3,5	950	22	1213	8587	172	0,81
3	5,5	3,5	950	22	1043	8757	175	0,84
5	5,5	3,5	950	22	970	8830	177	0,85
7	5,5	3,5	950	23	916	8884	180	0,86
9	5,5	3,5	950	23	899	8901	183	0,86
12	5,5	3,5	950	24	890	8910	185	0,86
15	5,5	3,5	950	25	883	8917	190	0,86
17	5,5	3,5	950	25	876	8924	194	0,86
20	5,5	3,5	950	25	868	8932	196	0,87
22	5,5	3,5	950	26	866	8934	199	0,87
25	5,5	3,5	950	26	864	8936	203	0,87
27	5,5	3,5	950	27	864	8936	205	0,87
30	5,5	3,5	950	27	863	8937	210	0,87

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=0$ bar ; C=3g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	8,5	490	21	1704	8096	255	0,74
3	8,5	8,5	490	21	1571	8229	258	0,76
5	8,5	8,5	490	22	1450	8350	262	0,78
7	8,5	8,5	490	23	1416	8384	265	0,78
9	8,5	8,5	490	25	1396	8404	270	0,78
12	8,5	8,5	490	25	1381	8420	275	0,79
15	8,5	8,5	490	27	1362	8438	280	0,79
17	8,5	8,5	490	28	1342	8458	285	0,79
20	8,5	8,5	490	28	1322	8478	288	0,80
22	8,5	8,5	490	29	1314	8486	291	0,80
25	8,5	8,5	490	29	1307	8493	295	0,80
27	8,5	8,5	490	30	1301	8499	300	0,80
30	8,5	8,5	490	30	1293	8507	305	0,80

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P = 0.5$ bar ; C=3g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	Rm
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	8	540	29	1665	8135	245	0,74
3	8,5	8	540	30	1434	8366	250	0,78
5	8,5	8	540	30	1354	8446	255	0,79
7	8,5	8	540	30	1286	8514	260	0,80
9	8,5	8	540	30	1268	8532	265	0,80
12	8,5	8	540	31	1254	8546	270	0,81
15	8,5	8	540	32	1237	8563	273	0,81
17	8,5	8	540	33	1219	8581	277	0,81
20	8,5	8	540	33	1200	8600	280	0,81
22	8,5	8	540	34	1194	8606	285	0,82
25	8,5	8	540	34	1187	8613	288	0,82
27	8,5	8	540	35	1181	8619	292	0,82
30	8,5	8	540	35	1174	8626	295	0,82

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=1$ bar ; C=3g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	Rm
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	7,5	740	31	1439	8361	240	0,74
3	8,5	7,5	740	31	1193	8607	245	0,78
5	8,5	7,5	740	32	1114	8686	250	0,79
7	8,5	7,5	740	33	1047	8753	255	0,80
9	8,5	7,5	740	34	1032	8768	260	0,80
12	8,5	7,5	740	34	1020	8780	264	0,81
15	8,5	7,5	740	35	1007	8793	267	0,81
17	8,5	7,5	740	35	992	8808	270	0,81
20	8,5	7,5	740	35	976	8824	274	0,81
22	8,5	7,5	740	36	971	8829	278	0,82
25	8,5	7,5	740	36	965	8835	282	0,82
27	8,5	7,5	740	36	960	8840	285	0,82
30	8,5	7,5	740	37	955	8845	290	0,82

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P = 1.5$ bar ; C = 3g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	Rm
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	7	940	35	1479	8321	235	0,77
3	8,5	7	940	35	1230	8570	238	0,81
5	8,5	7	940	35	1150	8650	243	0,82
7	8,5	7	940	35	1082	8718	247	0,83
9	8,5	7	940	35	1063	8737	252	0,84
12	8,5	7	940	36	1051	8749	256	0,84
15	8,5	7	940	36	1037	8763	260	0,84
17	8,5	7	940	37	1022	8778	264	0,84
20	8,5	7	940	37	1006	8794	267	0,84
22	8,5	7	940	37	1000	8800	270	0,85
25	8,5	7	940	38	995	8805	275	0,85
27	8,5	7	940	39	990	8810	280	0,85
30	8,5	7	940	39	984	8816	285	0,85

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=2$ bar ; C=3g/I).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	Rm
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	6,5	950	37	1498	8302	230	0,77
3	8,5	6,5	950	37	1248	8552	235	0,81
5	8,5	6,5	950	37	1168	8632	240	0,82
7	8,5	6,5	950	38	1099	8701	244	0,83
9	8,5	6,5	950	38	1080	8720	249	0,83
12	8,5	6,5	950	38	1068	8732	253	0,83
15	8,5	6,5	950	38	1054	8746	257	0,84
17	8,5	6,5	950	39	1039	8761	260	0,84
20	8,5	6,5	950	39	1023	8777	264	0,84
22	8,5	6,5	950	40	1017	8783	266	0,84
25	8,5	6,5	950	40	1011	8789	270	0,84
27	8,5	6,5	950	40	1006	8794	275	0,84
30	8,5	6,5	950	40	1001	8799	280	0,85

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; ΔP =0 bar ; C=5g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	Rm
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	8,5	460	20	2124	10976	215	0,80
3	8,5	8,5	460	20	2020	11080	220	0,81
5	8,5	8,5	460	21	1936	11164	225	0,82
7	8,5	8,5	460	22	1903	11197	230	0,82
9	8,5	8,5	460	23	1879	11221	234	0,83
12	8,5	8,5	460	25	1860	11240	238	0,83
15	8,5	8,5	460	26	1837	11263	242	0,83
17	8,5	8,5	460	27	1813	11287	245	0,83
20	8,5	8,5	460	27	1788	11312	247	0,83
22	8,5	8,5	460	28	1780	11320	250	0,83
25	8,5	8,5	460	28	1769	11331	254	0,84
27	8,5	8,5	460	29	1761	11339	258	0,84
30	8,5	8,5	460	30	1751	11349	260	0,84

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=0.5$ bar ; C=5g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	Rm
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	8,5	570	27	2058	11042	210	0,81
3	8,5	8,5	570	27	1892	11208	212	0,82
5	8,5	8,5	570	28	1812	11288	215	0,83
7	8,5	8,5	570	29	1740	11360	218	0,84
9	8,5	8,5	570	30	1718	11382	221	0,84
12	8,5	8,5	570	30	1700	11400	224	0,84
15	8,5	8,5	570	31	1680	11420	229	0,84
17	8,5	8,5	570	32	1658	11442	233	0,85
20	8,5	8,5	570	32	1635	11465	235	0,85
22	8,5	8,5	570	32	1627	11473	238	0,85
25	8,5	8,5	570	33	1617	11483	242	0,85
27	8,5	8,5	570	33	1610	11490	246	0,85
30	8,5	8,5	570	33	1601	11499	251	0,85

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=1$ bar ; C=5g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	Rm
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	8,5	780	20	1737	11363	200	0,84
3	8,5	8,5	780	20	1567	11533	205	0,85
5	8,5	8,5	780	21	1492	11608	210	0,86
7	8,5	8,5	780	22	1403	11697	212	0,87
9	8,5	8,5	780	23	1386	11714	215	0,87
12	8,5	8,5	780	24	1371	11729	217	0,87
15	8,5	8,5	780	25	1354	11746	220	0,87
17	8,5	8,5	780	25	1337	11763	223	0,88
20	8,5	8,5	780	25	1318	11782	225	0,88
22	8,5	8,5	780	26	1312	11788	228	0,88
25	8,5	8,5	780	27	1304	11796	232	0,88
27	8,5	8,5	780	28	1298	11802	235	0,88
30	8,5	8,5	780	28	1291	11809	238	0,88

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P = 1.5$ bar ; C = 5g/I).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	Rm
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	8,5	940	25	1824	11276	190	0,83
3	8,5	8,5	940	26	1651	11449	194	0,85
5	8,5	8,5	940	27	1575	11525	197	0,85
7	8,5	8,5	940	28	1488	11612	200	0,86
9	8,5	8,5	940	29	1466	11634	204	0,86
12	8,5	8,5	940	30	1451	11649	206	0,87
15	8,5	8,5	940	30	1433	11667	210	0,87
17	8,5	8,5	940	30	1415	11685	212	0,87
20	8,5	8,5	940	31	1395	11705	215	0,87
22	8,5	8,5	940	31	1389	11711	219	0,87
25	8,5	8,5	940	32	1380	11720	223	0,87
27	8,5	8,5	940	32	1374	11726	228	0,87
30	8,5	8,5	940	32	1366	11734	235	0,87

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P = 2$ bar ; C = 5g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	Rm
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	8,5	950	12	1806	11294	185	0,83
3	8,5	8,5	950	12	1631	11469	187	0,85
5	8,5	8,5	950	12	1555	11545	192	0,86
7	8,5	8,5	950	13	1471	11629	196	0,86
9	8,5	8,5	950	13	1449	11651	199	0,87
12	8,5	8,5	950	14	1434	11666	203	0,87
15	8,5	8,5	950	15	1416	11684	205	0,87
17	8,5	8,5	950	15	1398	11702	208	0,87
20	8,5	8,5	950	15	1379	11721	212	0,87
22	8,5	8,5	950	16	1372	11728	216	0,87
25	8,5	8,5	950	16	1364	11736	220	0,87
27	8,5	8,5	950	16	1358	11742	225	0,87
30	8,5	8,5	950	17	1350	11750	230	0,87

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=10.5 bars ; $\Delta P = 0$ bar ; C = 5g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	Rm
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	10,5	10,5	490	29	1900	11200	215	0,82
3	10,5	10,5	490	29	1769	11331	220	0,84
5	10,5	10,5	490	30	1691	11409	225	0,84
7	10,5	10,5	490	31	1653	11447	230	0,85
9	10,5	10,5	490	32	1622	11478	235	0,85
12	10,5	10,5	490	33	1595	11505	238	0,85
15	10,5	10,5	490	34	1574	11526	242	0,85
17	10,5	10,5	490	34	1552	11548	246	0,86
20	10,5	10,5	490	35	1533	11567	250	0,86
22	10,5	10,5	490	35	1518	11582	253	0,86
25	10,5	10,5	490	35	1506	11594	257	0,86
27	10,5	10,5	490	36	1499	11601	262	0,86
30	10,5	10,5	490	36	1497	11603	265	0,86

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=10.5 bars ; $\Delta P = 0.5$ bar ; C = 5g/I).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	Rm
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	10,5	10	540	34	1841	11259	208	0,83
3	10,5	10	540	35	1654	11446	212	0,85
5	10,5	10	540	36	1580	11520	215	0,85
7	10,5	10	540	37	1506	11594	219	0,86
9	10,5	10	540	38	1478	11622	223	0,86
12	10,5	10	540	39	1476	11624	227	0,86
15	10,5	10	540	40	1449	11651	231	0,87
17	10,5	10	540	41	1428	11672	235	0,87
20	10,5	10	540	41	1407	11693	238	0,87
22	10,5	10	540	42	1396	11704	242	0,87
25	10,5	10	540	42	1382	11718	246	0,87
27	10,5	10	540	42	1366	11734	250	0,87
30	10,5	10	540	43	1364	11736	254	0,87

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=10.5 bars ; $\Delta P = 1$ bar ; C = 5g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	Rm
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	10,5	9,5	730	40	1539	11561	200	0,86
3	10,5	9,5	730	41	1353	11747	204	0,87
5	10,5	9,5	730	42	1284	11816	206	0,88
7	10,5	9,5	730	43	1197	11903	211	0,89
9	10,5	9,5	730	44	1174	11926	215	0,89
12	10,5	9,5	730	45	1172	11928	217	0,89
15	10,5	9,5	730	46	1151	11949	220	0,89
17	10,5	9,5	730	47	1135	11965	224	0,89
20	10,5	9,5	730	48	1118	11982	228	0,90
22	10,5	9,5	730	49	1109	11991	231	0,90
25	10,5	9,5	730	49	1098	12002	235	0,90
27	10,5	9,5	730	50	1085	12015	238	0,90
30	10,5	9,5	730	50	1083	12017	242	0,90

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=10.5 bars ; $\Delta P=1.5$ bar ; C=5g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	Rm
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	10,5	9	940	45	1623	11477	190	0,85
3	10,5	9	940	45	1433	11667	192	0,87
5	10,5	9	940	45	1362	11738	195	0,87
7	10,5	9	940	46	1276	11824	198	0,88
9	10,5	9	940	47	1249	11851	202	0,88
12	10,5	9	940	48	1247	11853	205	0,88
15	10,5	9	940	48	1225	11875	209	0,89
17	10,5	9	940	48	1207	11893	214	0,89
20	10,5	9	940	49	1189	11911	217	0,89
22	10,5	9	940	49	1180	11920	221	0,89
25	10,5	9	940	50	1168	11932	226	0,89
27	10,5	9	940	51	1155	11945	230	0,89
30	10,5	9	940	51	1153	11947	234	0,89

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=10.5 bars ; $\Delta P=2$ bar ; C=5g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	Rm
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	10,5	8,5	950	47	1604	11496	180	0,85
3	10,5	8,5	950	47	1413	11687	184	0,87
5	10,5	8,5	950	47	1343	11757	187	0,88
7	10,5	8,5	950	48	1259	11841	191	0,88
9	10,5	8,5	950	48	1233	11867	195	0,89
12	10,5	8,5	950	49	1231	11869	199	0,89
15	10,5	8,5	950	49	1209	11891	204	0,89
17	10,5	8,5	950	49	1191	11909	208	0,89
20	10,5	8,5	950	50	1174	11926	213	0,89
22	10,5	8,5	950	50	1165	11935	216	0,89
25	10,5	8,5	950	51	1153	11947	220	0,89
27	10,5	8,5	950	51	1140	11960	224	0,89
30	10,5	8,5	950	52	1137	11963	228	0,89

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=0$ bar ; C=6g/1).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	8,5	490	22	2336	11064	305	0,82
3	8,5	8,5	490	32	2211	11189	310	0,83
5	8,5	8,5	490	24	2110	11290	315	0,84
7	8,5	8,5	490	24	2065	11335	320	0,84
9	8,5	8,5	490	25	2030	11370	324	0,84
12	8,5	8,5	490	26	2018	11382	327	0,84
15	8,5	8,5	490	27	1984	11416	331	0,85
17	8,5	8,5	490	28	1949	11451	335	0,85
20	8,5	8,5	490	29	1913	11487	338	0,85
22	8,5	8,5	490	29	1895	11505	342	0,85
25	8,5	8,5	490	30	1875	11525	346	0,86
27	8,5	8,5	490	30	1858	11542	350	0,86
30	8,5	8,5	490	30	1839	11561	355	0,86

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=0.5$ bar ; C=6g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	8	540	30	2264	11136	298	0,825
3	8,5	8	540	30	2072	11328	303	0,840
5	8,5	8	540	30	1975	11425	306	0,847
7	8,5	8	540	31	1888	11512	310	0,854
9	8,5	8	540	32	1856	11544	315	0,856
12	8,5	8	540	33	1845	11555	320	0,857
15	8,5	8	540	34	1814	11586	323	0,860
17	8,5	8	540	35	1782	11618	328	0,862
20	8,5	8	540	35	1749	11651	332	0,865
22	8,5	8	540	35	1733	11667	335	0,866
25	8,5	8	540	36	1714	11686	338	0,867
27	8,5	8	540	36	1698	11702	340	0,869
30	8,5	8	540	36	1681	11719	345	0,870

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=1$ bar ; C=6g/1).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	7,5	720	35	1911	11489	292	0,85
3	8,5	7,5	720	35	1715	11685	296	0,87
5	8,5	7,5	720	36	1626	11774	300	0,87
7	8,5	7,5	720	37	1523	11877	305	0,88
9	8,5	7,5	720	38	1497	11903	309	0,88
12	8,5	7,5	720	39	1488	11912	313	0,89
15	8,5	7,5	720	40	1463	11937	317	0,89
17	8,5	7,5	720	40	1437	11963	320	0,89
20	8,5	7,5	720	40	1410	11990	325	0,89
22	8,5	7,5	720	41	1397	12003	328	0,89
25	8,5	7,5	720	41	1382	12018	332	0,89
27	8,5	7,5	720	42	1369	12031	336	0,89
30	8,5	7,5	720	42	1355	12045	340	0,90

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=1.5$ bar ; C=6g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	7	800	35	2007	11393	285	0,85
3	8,5	7	800	35	1808	11592	290	0,86
5	8,5	7	800	35	1717	11683	295	0,87
7	8,5	7	800	35	1615	11785	299	0,87
9	8,5	7	800	35	1583	11817	304	0,88
12	8,5	7	800	35	1574	11826	308	0,88
15	8,5	7	800	35	1548	11852	312	0,88
17	8,5	7	800	36	1521	11879	315	0,88
20	8,5	7	800	36	1493	11907	318	0,88
22	8,5	7	800	37	1479	11921	322	0,89
25	8,5	7	800	38	1463	11937	326	0,89
27	8,5	7	800	39	1450	11950	330	0,89
30	8,5	7	800	40	1435	11965	335	0,89

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=8.5 bars ; $\Delta P=2$ bar ; C=6g/1).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	8,5	6,5	900	37	1986	11414	280	0,85
3	8,5	6,5	900	37	1786	11614	284	0,86
5	8,5	6,5	900	37	1695	11705	289	0,87
7	8,5	6,5	900	37	1596	11804	292	0,88
9	8,5	6,5	900	38	1565	11835	297	0,88
12	8,5	6,5	900	38	1556	11844	301	0,88
15	8,5	6,5	900	39	1530	11870	305	0,88
17	8,5	6,5	900	39	1503	11897	308	0,88
20	8,5	6,5	900	40	1475	11925	311	0,89
22	8,5	6,5	900	40	1461	11939	314	0,89
25	8,5	6,5	900	40	1446	11954	318	0,89
27	8,5	6,5	900	41	1432	11968	322	0,89
30	8,5	6,5	900	42	1418	11982	325	0,89

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=10.5 bars ; $\Delta P=0$ bar ; C=6g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	10,5	10,5	450	32	2014	11386	307	0,84
3	10,5	10,5	450	33	1866	11534	310	0,86
5	10,5	10,5	450	34	1775	11625	315	0,86
7	10,5	10,5	450	34	1727	11673	320	0,87
9	10,5	10,5	450	35	1688	11712	325	0,87
12	10,5	10,5	450	36	1654	11746	328	0,87
15	10,5	10,5	450	37	1626	11774	332	0,87
17	10,5	10,5	450	37	1598	11802	335	0,88
20	10,5	10,5	450	38	1575	11825	339	0,88
22	10,5	10,5	450	38	1555	11845	343	0,88
25	10,5	10,5	450	38	1537	11863	347	0,88
27	10,5	10,5	450	39	1526	11874	350	0,88
30	10,5	10,5	450	39	1519	11881	354	0,88

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=10.5 bars ; $\Delta P=0.5$ bar ; C=6g/1).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	10,5	10,5	560	40	1952	11448	300	0,85
3	10,5	10,5	560	40	1745	11655	305	0,86
5	10,5	10,5	560	40	1659	11741	308	0,87
7	10,5	10,5	560	41	1574	11826	312	0,88
9	10,5	10,5	560	42	1538	11862	315	0,88
12	10,5	10,5	560	43	1530	11870	317	0,88
15	10,5	10,5	560	45	1497	11903	322	0,88
17	10,5	10,5	560	45	1471	11929	326	0,89
20	10,5	10,5	560	45	1445	11955	330	0,89
22	10,5	10,5	560	46	1430	11970	334	0,89
25	10,5	10,5	560	46	1411	11989	337	0,89
27	10,5	10,5	560	46	1391	12009	342	0,89
30	10,5	10,5	560	47	1384	12016	345	0,89

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=10.5 bars ; $\Delta P=1$ bar ; C=6g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	10,5	10,5	740	45	1631	11769	293	0,87
3	10,5	10,5	740	46	1428	11972	295	0,89
5	10,5	10,5	740	47	1348	12052	300	0,90
7	10,5	10,5	740	48	1250	12150	304	0,90
9	10,5	10,5	740	50	1222	12178	307	0,91
12	10,5	10,5	740	50	1216	12184	311	0,91
15	10,5	10,5	740	51	1189	12211	315	0,91
17	10,5	10,5	740	51	1169	12231	317	0,91
20	10,5	10,5	740	51	1148	12252	322	0,91
22	10,5	10,5	740	52	1136	12264	326	0,91
25	10,5	10,5	740	52	1121	12279	330	0,91
27	10,5	10,5	740	53	1105	12295	335	0,91
30	10,5	10,5	740	53	1099	12301	340	0,91

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=10.5 bars ; $\Delta P=1.5$ bar ; C=6g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	10,5	10,5	940	48	1720	11680	285	0,87
3	10,5	10,5	940	49	1512	11888	288	0,88
5	10,5	10,5	940	50	1431	11969	293	0,89
7	10,5	10,5	940	50	1333	12067	297	0,90
9	10,5	10,5	940	50	1300	12100	301	0,90
12	10,5	10,5	940	50	1293	12107	304	0,90
15	10,5	10,5	940	51	1265	12135	308	0,90
17	10,5	10,5	940	51	1244	12156	311	0,90
20	10,5	10,5	940	51	1222	12178	315	0,91
22	10,5	10,5	940	52	1209	12191	319	0,91
25	10,5	10,5	940	52	1193	12207	324	0,91
27	10,5	10,5	940	53	1176	12224	329	0,91
30	10,5	10,5	940	54	1170	12230	333	0,91

Tableau : L'influence de la différence de la pression de part et d'autre de la membrane sur le dessalement (P entrée=10.5 bars ; $\Delta P=2$ bar ; C=6g/l).

Temps	Pression	Pression	Débit	Débit	Conductivité	Conductivité	Volume	Rm
(min)	entrée	sortie	d'alimentation	perméat	Perméat	concentrat	perméat	
	(bars)	(bars)	(l/h)	(l/h)	(µs/cm)	(µs/cm)	(ml)	
1	10,5	10,5	950	48	1700	11700	278	0,87
3	10,5	10,5	950	48	1491	11909	282	0,88
5	10,5	10,5	950	48	1410	11990	286	0,89
7	10,5	10,5	950	49	1316	12084	290	0,90
9	10,5	10,5	950	49	1283	12117	294	0,90
12	10,5	10,5	950	50	1276	12124	298	0,90
15	10,5	10,5	950	51	1248	12152	303	0,90
17	10,5	10,5	950	51	1227	12173	305	0,91
20	10,5	10,5	950	52	1205	12195	310	0,91
22	10,5	10,5	950	52	1192	12208	315	0,91
25	10,5	10,5	950	53	1177	12223	319	0,91
27	10,5	10,5	950	54	1160	12240	323	0,91
30	10,5	10,5	950	54	1155	12245	327	0,91

La norme algérienne de potabilité de l'eau de consommation(journal officiel de la république algérienne 9mars 2014).

Décret exécutif n°14-96 du 2 Journada El Oula 1435 correspondant au 4 mars 2014 modifiant et complétant le décret exécutif n° 11-125 du 17 Rabie Ethani 1432 correspondant au 22 mars 2011 relatif à la qualité de l.eau de consommation humaine.

Tableau n°01 : paramètres de qualité de l'eau de consommation humaine (norme algérienne,2014)

GROUPE DE PARAMETRES	PARAMETRES	UNITE S	VALEURS LIMITES
	Aluminium	mg/l	0,2
	Ammonium	mg/l	0,5
	Baryum	mg/l	0,7
	Bore	mg/l	- Eaux conventionnelles :1 - Eaux déssalées ou déminéralisées :1,3
	Fluorures	mg/l	1,5
	Nitrates	mg/l	50
	Nitrites	mg/l	0,2
	Oxydabilité	mg/l	5
	Acrylamide	mg/l	0,5
	Antimoine	mg/l	20
Paramètres chimiques	Argent	mg/l	100
- Camariques	Arsenic	mg/l	10
	Cadmium	mg/l	3
	Chrome total	mg/l	50
	Cuivre	mg/l	2
	Cyanures	mg/l	70
	Mercure	mg/l	6
	Nickel	mg/l	70
	Plomb	mg/l	10
	Sélénium	mg/l	10
	Zinc	mg/l	5

 $\begin{tableau}{ll} \textbf{Tableau} \ \textbf{n}^{\circ}\textbf{01} : paramètres de qualité de l'eau de consommation humaine (norme algérienne, 2014) (suite). \end{tableau}$

GROUPE DE PARAMETRES	PARAMETRES	UNITES	VALEURS INDICATIVE S
	couleur	mg/l platine	15
Daman Sana	Turbidité	NTU	5
Paramètres Organoleptiques	Odeur à 25 °C	Taux dilution	4
	Saveur à 25 °C	Taux dilution	4
	Alcalinité	mg/l CaCO3	65 pour les eaux déssalées ou déminéralisés (valeur minimale)
Paramètres	Calcium	mg/l	200
physico- chimiques	Chlorure	mg/l	500
en relation	Concentration en ions hydrogène	Unité pH	6,5 et 9
avec la structure	Conductivité à 20 °C	μS/cm	2800
naturelle des eaux	Dureté (TH)	mg/l en CaCO ₃	500
	Fer total	mg/l	0,3
	Manganèse	mg/l	50
	Phosphore	mg/l	5
	Potassium	mg/l	12
potassium	Sodium	mg/l	200
	Sulfates	mg/l	400
	Temperatures	°C	25