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Résumé

De nos jours, avoir de bons soins de santé en utilisant moins d’argent devient
un défi, car les technologies sont devenues de plus en plus coûteuses et les bud-
gets sont limités. D’autre part, dans le diagnostic médical, une fausse prédic-
tion négative ( une personne malade déclarée comme étant saine ) peut avoir des
conséquences plus graves qu’une fausse prédiction positive et leur attribuer des
coûts égaux est inapproprié.
Ce projet de fin d’études contribue à la fois aux apprentissages budgétisés et aux
apprentissages sensibles au coût en développant un modèle capable de faire un
compromis entre les coûts de classification erronée et les coûts de test. Le modèle
proposé est basé sur l’idée d’utiliser les mesures d’importance de variables de la
forêt aléatoire en tant que coûts de test et en choisissant l’arbre optimal de la forêt
développée en tant que stratégie de test. Notre modèle a été testé sur dix base de
données: neuf base de données de UCI Machine Learning et une base de données
du monde réel: le myélome multiple; collectée au Centre de Lutte Contre le Can-
cer (CLCC) de Tlemcen.

Mots clés

Apprentissage sensible au coût, apprentissage budgétisé, forêts aléatoires, mesures
d’importance des variables, UCI Machine Learning, Myélome multiple.
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Abstract

Nowdays, having a good health-care using less money become a challenge, as
technologies became more and more expensive and budgets are limited.On the
other hand, in the medical diagnosis, a false negative prediction ( a sick person
declared as healthy one ) may have more serious consequences than a false posi-
tive prediction, and assigning them equal costs is probably inappropriate.
This Master thesis makes contribute to both the fields of budgeted-learning, and
cost sensitive learning in that it develops a model that can make a compromise
between misclassification costs and test costs at the same time. The proposed
model is based on the idea of using the variables importance measures of ran-
dom forest as test costs and choosing the optimal tree from the grown forest as
test strategy. Our model has been tested on nine UCI Machine Learning datasets
and on a real-world database: multiple myeloma; collected from the anti cancer
center of Tlemcen.

Keywords

Cost sensitive learning, budgeted learning, random forests, variables importance
measures, UCI Machine Learning Datasets, Multiple myeloma.
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	الملخص

یمثلاقلأموالباستخدامجیدةصحیةرعایةعلىالحصولاصبحالحاضرالوقتفي
محدودة. المیزانیاتومتزایدالثمن بشكلالتقنیات باھظةأصبحتحیثتحدیا،

بصحةیتمتعأنھیشخصمریض(شخصالخاطئالسلبيللتنبؤیكونقدطبيتشخیصفيأخرىناحیةمن
تكالیفاعتباریكونأنالمحتملنومالخاطئ،الإیجابيالتنبؤمناكثروخیمةعواقبجیدة)
غیر مضبوط. متساویة،الاثنینھذین
حیثمنالحساسوتعلمةالمیزانیفيالمدرجالتعلممنكلفيالأطروحةھذهتساھم
الخاطئ تصنیفتكالیفبینالمفاضلةیحدثأنیمكننموذجتطویرخلالمنالتكلفة

كالتكالیفالعشوائیةغاباتمتغیرأھمیةمقاییساستخدامفكرةعلىالمقترحالنموذجیعتمدالاختباروالتكالیف
اختبار.                        یةكاستراتیجالمطورةللغاباتالشجرة المثلىواختیارالاختبار

UCI machineمنبیانیةقواعد:تسعبیاناتقواعد10علىنموذجنااختبارتم
learningالحقیقي:العالمفيبیانیةوقاعدة

بتلمسان.سرطانمكافحةمركزفيجمعھاتمالتيالمتعددالنخاعيالورم

المفتاحیة:الكلمات

عيالنخاالورممتغیراتأھمیةمقاییسالعشوائیة الغابةالمیزانیةفيالتعلملفة التكحیثمنحساسالتعلم
المتعدد
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Introduction

Machine learning is the science, art and technology of exploring large and com-
plex bodies of data in order to discover useful patterns, classification represents
the most important problem in machine learning; classification can be used in a
variety of applications, such as medical diagnosis for better automation in health-
care, biological data, object recognition, intrusion detection and many.

Usually, the classic classification problem aims to minimize the number of er-
rors. Neverless, the default assumption of equal misclassification costs is most
likely violated; many real-world applications require varying costs for differ-
ent types of misclassification errors. For instance, a false-negative prediction for
a Spam classification system only takes the user an extra second to delete the
email, while a false-positive prediction can mean a huge loss when the email ac-
tually carries important information; in bacteria classification, misclassifying a
Gram-positive species as a Gram-negative one leads to totally ineffective treat-
ments and is hence more serious than misclassifying a Gram-positive species as
another Gram-negative one; when classifying a patient as healthy, cold-infected,
or Tuberculosis-infected, predicting an Tuberculosis-infected patient as healthy
is significantly more serious than predicting a healthy patient as Tuberculosis-
infected .

To address this problem, cost-sensitive classification is developed, which con-
siders the varying costs of different misclassification types, a cost-sensitive classi-
fication problem can be very different from the regular classification one, and can
be used by applications like: targeted marketing, information retrieval, medical
decision making, In fact, cost-sensitive classification can be used to express any
supervised learning problem.

In medical decision making, there is a sequence of tests that each patient
should run to do the diagnostic; theses test are usually expensive and to purchase
all these tests we are going to spend some packets which can’t be possible for ev-
eryone. Therefore, the field of budgeted learning was essentially developed, the
biggest challenge of budgeted learning is to find the most informative attributes
of each instances to provide the best hypothesis for a model that use the minimal
budget.

Thus, the aim of this research is to develop a model that can minimize the
misclassification costs and the budget of the diagnostic tests at the same time.
The following section summarizes the organization of this thesis.

1



Introduction

• Chapter I: This chapter has presented the Cost sensitive and budgeted learn-
ing foundations ( including cost types, and structure of learning system).

• Chapter II: This chapter presents the background and a literature review
covering the fields of cost-sensitive learning, Budgeted-learning and fea-
tures selection.

• Chapter III: This chapter introduces the basic notion and algorithms for au-
tomatically growing decision trees and random forest, as well as the concept
of our proposed algorithm Cost-Vimp.

• Chapter IV: Then in chapter, we analyzed and discussed the performance
of our classifier, the evaluation is based on the cost, the budget and the
accuracy. It also includes experimentation on synthetic datasets and real-
world application: multiple myeloma.

This thesis concludes with a conclusion where we summarize the contribution,
review the extent of our objectives, and foresee the future work.

Introduction 2



Chapter 1

Cost-Sensitive Learning

Introduction

The most major subset of Artificial intelligence is machine learning it combines
techniques which use statistical methods that allow machines to improve with
experiences; classification, is an important subject in machine learning and one
of the main tasks in knowledge discovery and data mining [3].

In the last years so many effective classification approaches have been devel-
oped, such as: naïve Bayes classifier (1968), decision trees (1989), rule induction
(1987), discriminant analysis (1975), neural networks (1943), and support vector
machines (1995), among many others; their common aim is to generate classifiers
that can recognize classes or predict future examples from the labeled discrete or
continuous data. Most of those algorithms crave to minimize the error rate as
it is the most used measure of the performance of a classifier but they suppose
that all errors have equal costs, they do not take into consideration the difference
between types of misclassification errors: cost in this case is used as a synonym
for loss.

For example, in the case of the binary classification, false positives (an exam-
ple is improperly reported as positive “presence of disease”) and false negatives
(positive example misclassified) may have the same cost. However, this suppo-
sition is not true in real-world; some mistakes are just more costly than others.In
this context, Cost-Sensitive Learning seems to be a better option.

1 Cost-Sensitive Learning

Cost-Sensitive Learning is a type of learning that takes the misclassification costs
(and possibly other types of cost: costs of testing, costs of obtaining data . . . ) into
consideration, its aim is to minimize the total costs.

Most of classification algorithms totally ignore the cost of misclassification
that could be incurred, they suppose that misclassification cost is the same for all
instances,that said cost-insensitive learning.

3



CHAPTER 1. COST-SENSITIVE LEARNING

Unlike the cost-insensitive learning, the cost-sensitive learning treats different
misclassification differently. That is, the cost of labeling a positive example as
negative can be different from the cost of labeling a negative example as positive.
Cost-insensitive learning does not take misclassification costs into consideration
[4].

2 Types of costs

According to Turney (2000) there are several types of costs that are involved in
classification problems. In the literature, misclassification costs are highlighted
as being the most important costs in data mining and machine-learning. Costs
can be measured in many distinct units as, for instance, money (euros, dollars),
time (seconds, minutes) or other types of measures (e.g., quality of life in medical
diagnosis).

Figure 1.1: Types of cost

• Cost of misclassification errors: in some cases, certain types of errors may
have the same cost so minimizing the cost is equivalent to minimizing the
error rate ,others the cost depend to features , so it is more important to
minimize the cost of misclassified examples than to minimize the number
of misclassified examples.

• Cost of diagnostic tests: Each medical test (obstetric echography or blood
test) may have an associated cost. In general, we talk about cost of diagnos-

2. TYPES OF COSTS 4



CHAPTER 1. COST-SENSITIVE LEARNING

tic tests only when the cost of misclassification errors is harmless.

• Cost of classifying cases or Cost of Teacher: Ask an expert to classify un-
labeled examples or to verify the difficult cases has a cost. Active learning is
the act of asking the teacher to classify unlabeled examples already selected
from a set.

• Cost of intervention: it is the cost associated to the effort required to ma-
nipulate the process in order to rise or reduce the feature’s value.

• Cost of Unwanted Achievements: if we mess on the process of interven-
tion we will end with a misclassification error rate increased.

• Cost of computation: The size complexity of a computer program , time
complexity, space complexity, training or testing complexity are various
form of computational complexity and they all have a cost to take into ac-
count .

• Cost of cases: in Machine learning and data mining acquiring new cases is
usually very expensive or almost impossible.

• Cost of human-computer interaction: even the best program learner can-
not work by it-self, and this interaction with the expert to prepare data, to
select predictors, to define parameters or to evaluate a model has a cost.

• Cost of instability: it is suitable to have a model that produce relatively
close results, the more our model is stable the more we benefit the less is the
cost.

From the enumeration above, we can say that the cost of misclassification errors
is the most important type; it has a unique position in the taxonomy of Turney
and a majority of the machine learning reviews. Unlike the other forms of cost
that can be only evaluated in the context of the misclassification error cost. [4] .

In this study, we are going to be more interested about the cost of diagnostic
test or what we call too budgeted learning.

3 Budgeted learning

When the learning algorithm has free access to the training set class labels but
have to pay for using each feature to learn a hypothesis is what we call budgeted

3. BUDGETED LEARNING 5



CHAPTER 1. COST-SENSITIVE LEARNING

learning , the idea behind budgeted learning is to use the least costly features as
much as possible to decrease the average classification cost [5].

The diagnostic of a patient is based on a sequence of tests (features), those
medical tests are usually so expensive, our aim is to correctly diagnostic a patient
while respecting a given budget.

The Costs of Misclassification

Being operated for a non-existed tumor or being untreated for an existed one ? Which
mistake would be worse?

The misclassification cost plays its essential role in various cost-sensitive learn-
ing algorithms [6].

In cost-sensitive learning, the costs of false positive(actual negative but pre-
dicted as positive), false negative (FN), true positive (TP), and true negative (TN)
can be given in a cost matrix, the notation C ( A, B) is used to represent the mis-
classification cost of classifying an instance from its actual class A into the pre-
dicted class B (1 is used for positive, and 0 for negative).These misclassification
cost values can be given by domain experts, or learned via other approaches [7].

The cost of misclassification can be very damaging to patients because allow-
ing an unhealthy person to go untreated can be fatal or have severe side effects.

CONFUSION MATRIX

Predicted as positive Predicted as negative

Actually positive True positives (TP) False negatives (FN)

Actually negative False positive (FP) True negatives (TN)

Table 1.1: Confusion matrix

COST MATRIX

Predicted as positive Predicted as negative

Actually positive C ( 1, 1 ) (TP) C ( 0, 1 ) (FN)

Actually negative C ( 1, 0 ) (FP) C ( 0, 0 )(TN)

Table 1.2: Cost matrix
[7]

3. BUDGETED LEARNING 6



CHAPTER 1. COST-SENSITIVE LEARNING

Costs of Diagnostic Tests

We can talk about the cost of diagnostic test from more than one perspective,
running a medical test has a cost either a monetary one (medical test are usually
expensive) or considering the time wasted or the quality of life of the patient.

Most of patients turn down a test that could help them because they cannot
afford it; they tell themselves that they might not have this disease, so they are
not willing to spend extra packets on it because there’s not as much risk.

Not only the financial side, but also medical tests can also be risky (Spinal
biopsy) or uncomfortable (Fiberoptic).

Overall, diagnostic tests should not be ordered if their costs are greater than
the costs of misclassification, if a test is more costly than misclassification errors;
it is pointless to run it. On the other hand, if the cost for a set of tests is less
than the cost of misclassification errors, it is rational to order all possible relevant
tests. These aspects should similarly be considered in a strategy for cost-sensitive
learning [4].

Figure 1.2: Cost of diagnostic test Vs quality of life [1]

4 Structure of Learning System

Depending on the way a cost sensitive algorithm integrates costs it can be cate-
gorized into direct methods or cost-sensitive meta-learning methods, the first ap-
proach is to build directly a classifier that is cost-sensitive in itself. While the sec-
ond one, known as the meta-learning or indirect method is to design a wrapper
that converts cost-insensitive called also cost-blind learners into cost-sensitive.

4. STRUCTURE OF LEARNING SYSTEM 7



CHAPTER 1. COST-SENSITIVE LEARNING

Figure 1.3: Structure of Learning System

• Direct Cost-Sensitive Learning: The idea of direct Cost-Sensitive Learning
is straightforward; it consists in integrating direct costs of misclassification
(or other types of cost) at the learning process. Several works covered this
category, such as ICET [8], [7], [9].

In his work, Turney propose an algorithm that integrates the cost of misclas-
sification in the fitness function of genetic algorithms. While, [7], uses the
misclassification costs directly in building process of what called CSTree.
Unlike classical decision trees that use Gini, Entropy or accuracy, as criteria
to select the best attribute for the construction process, the CSTree take the
classification errors into account and selects the attribute as a root of a sub-
tree, that can lead to the minimal total cost.

In their paper [9], Lomax & Yedara exploit the threshold to adjust the theo-
retic measure of information, based on the classes’s costs in order to include
the misclassification costs.

• Cost-Sensitive Meta-Learning: Converting an existing cost-insensitive clas-
sifier into cost-sensitive one is what called cost-Sensitive Meta-Learning, it
is known as a wrapper or a black box that deal with the algorithm as a
closed box without modifying any behaviors or parameters of the classifier.
The cost-sensitive Meta learning itself can be categorized into two grades:
Algorithms that use thresholding and those that use sampling.

1. Thresholding: We can transform a cost-insensitive classifier into cost
sensitive one by simply choosing a threshold to classify examples into

4. STRUCTURE OF LEARNING SYSTEM 8



CHAPTER 1. COST-SENSITIVE LEARNING

positive or negative if this one can produce accurate probability esti-
mation.

2. MetaCost: (Relabeling) as a first step this algorithm uses the bagging ap-
proach. The main idea is to relabel training instances with an optimal
class according to the minimal cost, and then building new classifier
that can predict the label of test instances. This is known as sampling
with labeling [10].

3. Sampling: This algorithm changes the occurrence of instances in the
training set according to the cost of label of each one (increases the
number of the costly instances: Over-sampling; reduce the number of
the less costly ones: Under-sampling). Sampling is an optimal solu-
tion for the problem of imbalanced data because it does not change
the algorithm itself but just arranges the distribution of data in order
to be more rational toward the costly classes [6]. Two approaches are
proposed to apply sampling: random sampling and determinate sam-
pling. [11]

4. Weighting: In his paper [12] ,Ting proposes to associate each instance
with a weight according to its cost, in such way weights and costs are
proportionally tied (the greater is the cost of misclassifying an instance
the higher is its weights).

5. Costing: (rejection sampling) Sampling techniques (duplicating instances
in the training set), may produce over-fitting in the model construc-
tion, to avoid that [13] proposes costing : keep all instances of the rare
class and sampling those of the majority class without replacement ac-
cording to the cost of each instance, then applying bagging in order to
minimize the misclassification cost.

5 Conclusion

We presented in this chapter a brief overview of Cost sensitive learning and
its methods; In our study, we are going to be more interested at using a Meta-
sensitive learning method as this approach opts to enrich the data instead of
modifying the classifier’s parameters.

5. CONCLUSION 9



Chapter 2

Current cost-sensitive and budgeted
learning approaches

Introduction

Most of the classification algorithms in the literature used the error rate to eval-
uate the performance of a classifier, so minimizing this rate means eventually
a good classifier. Some other works take into account non-uniform misclassi-
fication costs, that is, different costs for different types of errors; however, in
real world problems there are different costs for different types of errors. The
cost sensitive learning takes into account the non-uniform misclassification costs.
The cost sensitive learning is also used to address the class imbalanced problem
(when, in a classification problem, there are many more instances of some classes
than others) [14]. Increasing the cost of misclassifying minority classes can mini-
mize the imbalanced class problem. Re-sampling the training set is also a way to
build an algorithm sensitive to costs.

Other research claimed that it is interesting to take the cost of tests into con-
sideration, but those works ignore misclassification costs while some other works
are concerned simultaneously with several types of costs. On the other hand,
some works tried to tackle the Cost-Sensitive Feature Acquisition problem.

1 Overview of Cost sensitive approaches

In the previous chapter, we talked about the several types of cost and we said that
the misclassification and test cost are the most important two; we precise that we
cannot talk about the other types of cost unless the cost of misclassification is
harmless. In the next section, we are going to present the most known papers
in literature that consider misclassification and test cost, we can distinguish four
categories for the cost sensitive problem : manipulating data to get Cost-Sensitive
learner, Cost Sensitive Trees, Naïve Bayes Classifiers and those who consider cost
sensitive problem as a reinforcement Learning problem and use the Markov De-
cision Processes.

10
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Figure 2.1: Cost sensitive approaches

1.1 Manipulating Data to Obtain Cost-Sensitive learner

A meta-classifier is known as an Algorithm that can manipulate training set or its
outputs in order to obtain cost-sensitive classifiers. One approach is to change the
class distribution in order to minimize, the costs of new instances. These changes
aim to give each class a distribution proportional to its importance (increasing
minority class and minimizing majority one). This process is known by under-
sampling or oversampling . [14].
Another approach is MetaCost as a first step the algorithm uses the bagging ap-
proach. The main idea is to relabel training instances with an optimal class ac-
cording to the minimal cost, and then building new classifier that can predict the
label of test instances. This is also known as sampling with labeling [10].
Another approach, without using sampling,threshold adjusting choosing a thresh-
old to classify examples into positive or negative ones [6].

1.2 Cost sensitive Decision Trees

1. Decision Tree Optimized by a Genetic Algorithm: The work of Turney [8] is
known to be the first that consider both test and misclassification costs, he
implemented a system called ICET (Inexpensive Classification with Expen-
sive Tests), which build a decision tree using a genetic algorithm that min-
imizes test and misclassification costs at the same time. The ICET system
was robust but very time consuming. Turney considered that his method
for the cost-sensitive classification problem was, basically, a reinforcement
learning problem.

Later, [15] showed that in a preprocessing phase the efficiency of learning
can be significantly improved by removing irrelevant attributes. The cost-
sensitive elimination of attributes improved the learning efficiency of the

1. OVERVIEW OF COST SENSITIVE APPROACHES 11
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hybrid algorithm ICET.

2. Cost-Sensitive Decision Trees: In their paper Ling et al., [16] come with an-
other approach to build and test cost sensitive decision trees (CSTree). This
approach was sensitive for both types of costs (the misclassification and
test cost), the proposed algorithm used a new splitting criterion to select the
node parent attribute, and it chooses the attribute that minimizes the total
cost, instead of minimal entropy (as in C4.5).

3. Specific Decision Trees and Hybrid Approaches: Another approach for learn-
ing cost-sensitive decision trees was proposed by [17]. Instead of building
a single decision tree for all test examples, the proposed method builds a
different tree for each new test example with a different set of unknown
attributes. This process considers costs only for attributes with unknown
value (the test cost of known attributes is 0).

In another paper, Sheng & Ling [18] proposed a hybrid cost-sensitive deci-
sion tree to reduce the minimum total cost. The proposed model integrates
cost-sensitive decision trees (to collect required tests) with cost-sensitive
naïve Bayes.

Later, Sheng et al. [19] updated their strategy to build decision trees sensi-
tive to costs, with the insertion of three medical test strategies, sequential
test, single batch and multiple batch tests, to decide and order witch at-
tributes to run tests on.

4. Taking Risk into Account: Freitas et al. [20] presented an approach to com-
bine several types of costs with relevance for health management. They
defined algorithm for the induction of cost-sensitive decision trees, includ-
ing misclassification costs, costs associated with risk, delayed costs and
test costs. This approach used different strategies to test models, includ-
ing group costs, common costs, and individual costs. The aim was to build
decision trees that minimize the costs and be the most “patient-friendly”,
penalties was integrated for risky tests invasive or delayed tests.

1.3 Markov Decision Processes

Some authors as in [21] considered the problem of cost-sensitive learning as a
Markov Decision Process (MDP) that has the disadvantage of being computa-
tionally expensive. They adopt an optimal search strategy (heuristic AO* algo-
rithm "Nilsson 1980"), which may incur a high computational cost and be very
time consuming. To overcome this problem some authors [22], [23] propose to
integrate the notion of time (a cost for the time passed).
Arnt & Zilberstein [22], involved a cost for the time needed to obtain the result of
a test, in which they considered attribute (test) costs, misclassification costs and

1. OVERVIEW OF COST SENSITIVE APPROACHES 12
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also a utility cost related to the time passed while measuring attributes. As in the
work of [21], they also modeled the problem as a Markov Decision Process and
then used the search heuristic AO*. They tried to compromise between time and
accuracy, and proposed an approach to attribute measurement and classification
for a variety of time sensitive applications.

Sheng et al. [23] had seen that in most of real world application data are not
available and getting it is usually time and money costly so he proposed an on-
line framework for Fast Data Acquisition called FDA, this system can estimate
the number of examples needed in each acquisition and acquire them simulta-
neously. Comparing to the naïve step-by-step data acquisition strategy, FDA re-
duces significantly the number of times of data acquisition and model building.

1.4 Naïve Bayes Classifiers

Greiner et al. [24] studied the problem of active learning classifiers basing on a
variation of the Probably-Approximately-Correct (PAC) model, they proposed a
learning and active classification framework that show how to use a budget in
collecting the pertinent information for applications with no actual data at begin-
ning. The learner “pays” to see any attributes (learning costs) and has to predict
the classification for each instance, with possible penalties.

Lizotte et al. [5] studied an active learning situation where the classifier (naïve
Bayes), with a hard budget, could “buy” data during training. Considering that
each attribute of a training data has an associated cost, and the total cost during
training must remain less than the fixed budget. They compared methods for se-
quentially deciding which attribute value to purchase next, considering budget
limitations and knowledge about some parameters of the naïve Bayes model.

Chai et al. [7] proposed a Cost-Sensitive Naïve Bayes algorithm, called CSNB
that can reduce the total cost of attributes and misclassification at the same time in
this paper they integrate sequential and batch test strategies to determine which
feature is selected to be “purchased” (tested).

Leveling et al. [25] proposed a formal justification for a decision function un-
der the Bayesian decision framework that comprises the minimization of Bayesian
risk and an empirical decision function.

This section surveyed the cost sensitive problem, we have seen approaches
that tackle this problem and methods that take cost into consideration, and the
Table 2.1 below summarizes some of recent work in the field of cost sensitive
learning.

1. OVERVIEW OF COST SENSITIVE APPROACHES 13
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AUTHORS TITLE ALGORITHM APPLICATION TYPE OF COST

Sun et al.
2007 [26]

Cost-sensitive
boosting for
classification
of imbalanced
data

AdaBoost
: AdaC1-
AdaC2-AdaC3-
AdaCost-CSB2

Breast cancer,
Hepatitis, Pima
Indian’s dia-
betes database
(Pima), and
Sick-thyroid
from UCI
datasets

Misclassification
costs

Weiss
et al.
2007 [27]

Cost-Sensitive
Learning vs.
Sampling:
Which is Best
for Handling
Unbalanced
Classes with
Unequal Error
Costs?

Oversampling
and Under-
sampling
techniques

Synthetic and
real-world
benchmark

Uniform &
non-uniform
misclassifica-
tion costs

Lev
Reyzin.
2011 [28]

Boosting on
a Budget:
Sampling
for Feature-
Efficient Predic-
tion

AdaBoost for
Uniform and
non-uniform
costs

UCI datasets:
census, splice,
ocr17, and
ocr49

Uniform and ar-
bitrary feature
costs

He et al.
2012 [29]

Cost-sensitive
Dynamic Fea-
ture Selection

DAgger for Fea-
ture Selection

Radar signal
(binary), digit
recognition (10
classes) and
image seg-
mentation (7
classes)

feature cost on
test-time.

Xu et al.
2012 [30]

The Greedy
Miser: Learning
under Test-time
Budgets

Greedy Miser The Yahoo
Learning to
Rank Challenge
data set the
scene recog-
nition data
set

Feature extrac-
tion cost.
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Karayev
and
al.2013
[31]

Dynamic Fea-
ture Selection
for Classifi-
cation on a
Budget

Gaussian Naive
Bayes

Imagenet sub-
set and Scenes-
15 dataset

Features costs
with fixed
budget

Ma et al.
2017 [32]

CURE-SMOTE
algorithm
and hybrid
algorithm for
feature se-
lection and
parameter opti-
mization based
on random
forests

random forests
CURE-SMOTE

UCI datasets Oversampling
and misclassifi-
cation cost

Table 2.1: Summary of recent Cost sensitive works

2 Overview of budgeted learning approaches

If the goal of machine learning in general is learn to predict than we can say that
budgeted learning answer the question what to learn?

The biggest challenge of budgeted learning is to find the most informative
attributes of each instances to provide the best hypothesis for a model that use the
minimal budget. If we want to simply distinguish between active and budgeted
learning we can say that in the first one we don’t have a fixed budget for each
example while in budgeted learning we have a hard budget which the model
should respect.

2.1 Budgeted feature selection and acquisition approaches

The aim is either to reduce the number of the necessary used features when they
all have the same cost “price” or to minimize the total cost when they have non
uniform costs (medical test).

For that several approaches were suggested; starting by feature selection meth-
ods that propose to limit the set of features being used for training ( [24]; [33]);
but those methods lack the aspect of adaptability and the same set is used for all
inputs. Then, [34] proposed probabilistic methods that can measure the informa-
tion value of each feature based on the current evidence; however those methods
are greedy and computationally expensive when applied on large dataset. Some
authors later, ( [35]; [30] ) suggested as an intuitive way to integrate feature costs.
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Another strategy was proposed by [36], where they use greedy min-max on
random forest algorithm to integrate feature costs. More recently, [37] proposed
an approach that employs adaptive linear or tree based classifiers, alternating be-
tween low-cost models for easy-cost to handle instances and higher-cost models
to handle more complicated cases.

More recently, a new Axe appear Adaptive cost-sensitive feature acquisition, the
aim is to develop a new family of models able to acquire information by them-
selves (information needs to be acquired), to choose what to compute (differ-
ent computations are applied to different inputs) and to handle operational con-
straints (size of data), it is about what to learn when to learn, how much to learn. In
this field G. Contardo [38] propose a system his aim is to learn to actively learn,
he define a model based on NN called RADIN (Recurrent ADaptive Acquisition
Network) that considers all examples of a dataset before predicting which ex-
ample should be labeled. Kachuee et al. [39] proposed a method based on deep
Q-networks for cost-sensitive feature acquisition at the prediction time. The pro-
posed solution employs uncertainty analysis in neural network classifiers as a
measure for finding the value of each feature given a context.

2.2 Selection of instances considering budget

Other authors saw that selecting which features to purchase is not enough (se-
lecting attributes to test and then choose randomly an instance) they opt to select
instances and attributes, choosing features that minimize the total cost and in-
stances that are more susceptible to be misclassified.

Uniform sampling and Error Sampling those two methods were proposed
by [40] and [41] to consider only a part of instances instead of all of them. In
this method, they apply the sampling then choose an (instance, feature) pair.

M. Saar-Tsechansky [42] proposed to use Log Gain instead of conditional en-
tropy or GINI index to measure the importance of the feature to select. In parallel
they also tried to reduce the search space of instances by choosing only those ones
that are wrongly predicted. Deng et al. [43] present new heuristics that can select
an instance to purchase after the attribute is selected, instead of selecting an in-
stance randomly.

In this section, we presented learning on a budget or budgeted learning ap-
proaches and the Table 2.2 below presents some of recent works in this field.

AUTHORS TITLE ALGORITHM APPLICATION TYPE OF COST

Lizotte et
al. 2003
[5]

Budgeted
Learning, Part
I: The Multi-
Armed Bandit
Case

Round Robin
(RR) and
Random-
Greedy Algo-
rithms

Budgeted
multi-armed
bandit problem.

Feature costs
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Kapoor
et al.
2005 [44]

Budgeted
Learning of
Bounded Ac-
tive Classifiers

Optimal Pol-
icy, Round
Robin (RR),
Biased Robin
(BR), Single
Feature Looka-
head (SFL) and
Randomized
SFL

Synthetic and
real-world
benchmark

Feature costs
with fixed
budget

Guha
et al.
2007 [45]

Approximation
Algorithms
for Budgeted
Learning Prob-
lems

Approximation
algorithms and
Greedy Order

Budgeted
multi-armed
bandit problem.

Feature and in-
stances costs

Bontempi
et al.
2011 [46]

A Selecting-the-
Best Method
for Budgeted
Model Selection

a variation of
Monte Carlo
stochastic ap-
proximation

Synthetic and
real-world
benchmark

Feature and in-
stances costs

Yang
et al.
2015 [47]

Budget Con-
strained Non-
Monotonic
Feature Selec-
tion

Multiple Ker-
nel Learning
(MKL)

Synthetic and
real-world
benchmark

Cost on the fea-
ture subset size

Nan et al.
2015 [48]

Feature-
Budgeted
Random Forest

Budget ran-
dom forest and
Greedy Miser

4 real world
benchmarked
datasets

Feature costs

Nushi et
al. 2016
[49]

Learning and
Feature Se-
lection under
Budget Con-
straints in
Crowd sourc-
ing

B-LEAFS synthetic and
real-world
crowd sourcing
data

Feature costs
on training and
test phase

Nan et al.
2016 [50]

Pruning Ran-
dom Forests for
Prediction on a
Budget

random forest
(RF)

four benchmark
datasets

Feature cost
and error-cost
trade-off .
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Shim
et al.
2018 [51]

Joint Active
Feature Acqui-
sition and Clas-
sification with
Variable-Size
Set Encoding

Markov deci-
sion process
(MDP)

Synthetic
dataset

feature acquisi-
tion cost

Table 2.2: Budgeted feature selection and acquisition
approaches

3 Conclusion

To conclude it is important to say that the cost sensitive problem attracted so
many researchers and for years they tried to tackle it from more than one per-
spective. The real motivation behind all those works come from the fact that
there is no best solution or optimal algorithm for all the problems and in this con-
text come our study trying to find a compromise between misclassification and
test costs for medical data.
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Chapter 3

Proposition and Methods

Introduction

In many real-world tasks, it is well known that an ensemble is usually signifi-
cantly more accurate and can achieve great success, so it is straightforward that
Ensemble methods techniques in machine learning outperform single classifiers.

This kind of state-of-the art learning approach has been widely studied in the
few last years. The main idea of ensemble methods is to randomize the learn-
ing procedure in order to generate different classifiers from a single learning set,
and then combine those basic classifiers to perform the final prediction. In or-
der to induce the random permutations, several methods have been proposed,
in particular: bagging (1996) [52], pasting (1999) [53], random forests (2001) [54]
and random patches (2012). Finally, after the base classiers are trained, they are
typically combined using either majority voting; Every model makes a predic-
tion (votes) for each test instance and the final output prediction is the one that
receives more than half of the votes [55], weighted voting: Unlike majority vot-
ing, where each model has the same rights, we can increase the importance of
one or more models [55] or stacking: it is an ensemble learning technique that
combines multiple classification or regression models via a meta-classifier or a
meta-regressor. The base level models are trained based on a complete training
set, then the meta-model is trained on the outputs of the base level model as fea-
tures [55].

According to Dietterich [56] there are three main reasons why ensemble meth-
ods perform better than single models:

1. Statistical issue: It is often the case when the learning set is too small and the
hypothesis space is too large, the learning algorithm may find several dif-
ferent models with the same performance on the training data. Combining
all these models, can reduce the risk of choosing the wrong model.

2. Computational issue: In general, learning algorithms rely on some local search
optimization and may get stuck in local optima. Then, an ensemble may
solve this by running the local search from many different startings across
the training data.
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3. Representational issue: In many machine learning tasks, the true function f
cannot be represented by any of the candidate hypotheses. By combing
several hypotheses in an ensemble, it may be possible to obtain a model
that can expand the space of representable functions.

Figure 3.1: Reasons why ensemble methods perform better than single models
A learning algorithm can be viewed as searching a space H of hypotheses to identify the best
hypothesis in the space.The point f is the true hypothesis, and we can see (right) that by averaging
the accurate hypotheses, we can find a good approximation to f; this is the statistical reason
An ensemble constructed by running the local search from many different starting points may
provide a better approximation to the true unknown function than any of the individual classiers,
as shown in the (bottom)of the figure
By forming weighted sums of hypotheses drawn from H , it may be possible to expand the space
of representable functions. Figure 3.1 depicts this situation.

For classification or regression problems, Random Forests (RF) [54] are very
hard to beat in terms of performance. Of course we can probably always find a
model that can perform better, like a neural network, but these usually take much
more time in the development, unlike Random Forests (mostly fast).

On top of that, it provides a pretty good indicator of the importance assigned
to features. Although it has its limitations,the RF algorithm is a simple and flexi-
ble tool. It’s hard to build a “bad” Random Forest, because of its simplicity.

For all that the RF algorithm seems to us to be a great choice to tackle the cost
sensitive problem in this work.

1 Random Forest Algorithm

A Random Forest (RF) is a combination of Bagging [52] and Random Subspace
[57], consisting of many binary or multi-way decision trees. The final decision is
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made by majority voting to aggregate the predictions of all the decision trees. As
show 3.2 the random forst procedure :

1. First, training sets are constructed by using a bootstrap mechanism ran-
domly with replacement.

2. Random features are selected with non-replacement from the total features
when the nodes of the trees are split.

3. For each subensemble a decision tree is constructed, by calculating the daugh-
ter nodes using the same best split approach until the trees are formed with
a root node and having the outcome as the leaf node.

4. Finally, outcomes are gathered from all trees, then considering the high
voted predicted outcome as the final prediction for the random forest al-
gorithm.This concept is known as majority voting.

The size of the feature subset is usually far less than the size of the total fea-
tures. The resulting classifiers are robust, very easy to train, accurate, and yield
strong performance [54].

Figure 3.2: The RF classification procedure [2]
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L. Breiman [54] propose Bagging and Randomization technique to grow many
classification trees with the largest extent possible without pruning. Random For-
est is especially attractive for following reasons:

• First, real-world data is usually noisy and can contain many missing values,
RF has an effective method for estimating missing data and can maintain
good accuracy when a large proportion of the data are missing.

• Furthermore, it has methods for balancing error in class population unbal-
anced data sets.

• RF can handle a lot of different feature types, like binary, categorical and
numerical.

• Random forest can generate an internal estimate of the generalization error
as the forest building progresses.

• The RF algorithm gives estimates of what variables are important in the
classification and give information about the relation between the variables
and the classification.

• RF can also offer an experimental method for detecting variable interac-
tions.

• RF show high predictive accuracy and are applicable in high-dimensional
problems with highly correlated features, especially in the situation which
often occurs in bio-informatics, like medical diagnosis.

• The capabilities of RF can be extended to unlabeled data, leading to unsu-
pervised clustering, data views and outlier detection.

1.1 Decision trees

One of the most successful ensemble learners is random forests (RF), as their
name suggest, the random forest algorithm creates the forest with a number of
trees. In general, in the random forest classifier, the higher the number of trees in
the forest gives the high accuracy results.To understand the random forest model,
we must first learn about the decision tree, the basic building block of a random
forest.
Decision trees are one of the most promising and popular machine learning algo-
rithms [58]. This technique is considered as a white box: so easy to interpret, has
a very low computational cost, and can maintain a good performance compared
with other complex techniques [59].

Depending on the impurity measure used during the split, we can distinguish
two main categories of decision trees. First the CART algorithm that is based in
the Gini index, and later the ID 3 and C 4. 5 which uses the entropy measure.
Both Gini and entropy are measures of impurity of a node. A node having mul-
tiple classes is impure whereas a node having only one class is pure. Entropy in
statistics is analogous to entropy in thermodynamics where it signifies disorder.
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If there are multiple classes in a node, there is disorder in that node.
Information gain is the entropy of parent node minus sum of weighted entropies
of child nodes.
Weight of a child node is number of samples in the node/total samples of all child
nodes. Similarly information gain is calculated with Gini score.

Gini = 1−
n∑

i=1

p2(Ci)

Entopy =
∑
i=1

−p(Ci) log2(Ci)

Where p(Ci) is the probability/percentage of class Ci is a node.

1. CART or Classification And Regression Trees were introduced by Brieman
[60]. It is based on using the Gini index as the impurity measure and the tree
is grow until all examples in each leaf belong to the same class. Afterwards,
the tree is pruned using the cost-complexity method [61].

2. ID3 algorithm uses entropy as the impurity measure. The growing of the
tree stop when all examples belong of each leaf belongs to the same class.
In ID 3 no pruning is applied [62].

3. C4.5 the extension of ID3 both proposed by Quinlan [62]. Both are similar
regarding the measure used, but C 4. 5 define the stopping criteria during
the growth process to be when the number of examples in a set is less than
a threshold. Moreover, after the tree is created an error based pruning is
applied [61].

In his important paper L. Breiman [54], grow an ensemble of CART trees using
the Bagging techniques and let them vote for the most popular class, he calls these
procedures random forests.

1.2 Classification rules and algorithmic procedure

The best attribute can be computed by three methods: information gain, infor-
mation gain rate and Gini coefficient, which correspond to ID3, C4.5 and CART,
respectively. When the attribute value is continuous, the best split point must be
selected.

There are several ways by which the termination criteria for RF can be met:

• Termination occurs when the decision tree reaches maximum depth,

• The impurity of the end node reaches the threshold,

• The number of final samples reaches a set point,

• The candidate attribute is used up.
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The RF classification algorithm and procedure are shown below1.

Algorithm 1 The RF Algorithm
Input: training set, testing set, nTree: tree number, k: hyper parameter, N :
size of subensemble, attribute select method, termination criteria
Output: RF classification model and classification results.
For i=1:nTree
-Use the bootstrap method to produce training sets with size N for each tree,
-Select k attributes randomly building nodes and split the dataset by the best
attribute,
-Generate each tree recursively without pruning
End
Calculate the probability of unknown sample x belonging to class c,

P (c|x) = (1/nTree)
∑

(hj(c|x));

Return Predict class through majority voting and calculate OOB error;

C ← argmaxP (c|x);

1.3 Random Forest Variable Importance Measure

Another great quality of the random forest algorithm is that it is very easy to
measure the relative importance of each feature on the prediction.

There are two measures of importance given for each variable in the random
forest. The first measure is based on how much the accuracy decreases when the
variable is excluded. This is further broken down by outcome class. The second
measure is based on the decrease of Gini impurity when a variable is chosen to
split a node.

• Accuracy-based importance: Each tree has its own out-of-bag sample of
data that was not used during construction. This sample is used to cal-
culate importance of a specific variable. First, the prediction accuracy on
the out-of-bag sample is measured. Then, the values of the variable in the
out-of-bag-sample are randomly shuffled, keeping all other variables the
same. Finally, the decrease in prediction accuracy on the shuffled data is
measured.The mean decrease in accuracy across all trees is reported. This
importance measure is also broken down by outcome class.

• Gini-based importance: When a tree is built, the decision about which
variable to split at each node uses a calculation of the Gini impurity.For
each variable, the sum of the Gini decrease across every tree of the forest is
accumulated every time that variable is chosen to split a node. The sum is
divided by the number of trees in the forest to give an average. The scale is
irrelevant: only the relative values matter.
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Neither measure is perfect, but viewing both together allows a comparison
of the importance ranking of all variables across both measures.Through looking
at the feature importance, we can decide which features we may want to drop,
because they don’t contribute enough or nothing to the prediction processes. This
is important, because a general rule in machine learning is that the more features
you have, the more likely your model will suffer from overfitting and vice versa.

2 Proposition

In order to address the cost sensitive problem in medical data, we proposed in
this work, a Cost Sensitive Random Forest Variable Importance algorithm named
CostVimp Algorithm, that takes into consideration the misclassification costs. Our
proposition works on two steps:

• First, the matrix cost fixed for all of the datasets (Table.3.1) is introduced
into the Random forest induction phase.

• Second, we minimize the total budget, by creating new-costs (features costs
or diagnostic test cost) based on the importance variables measures gener-
ated by the RF Algorithm.

We are interested in measuring how good is our classifier in terms of cost and
budget not only in terms of accuracy because minimizing misclassification rate
does not lead to the same results than minimizing cost.

It is important to precise that the definition of cost matrix is quite subjective.
For example in Table.3.1, labeling a positive instance as negative (FN) is five time
more costly than labeling a negative one as positive (FP).

COST MATRIX

Predicted as positive Predicted as negative

Actually positive 0 (TP) 5 (FN)

Actually negative 1 (FP) 0(TN)

Table 3.1: The proposed cost matrix for experiments

Our proposed algorithm can give a compromise between cost and budget, it
aim to minimize the misclassification cost and the total budget at the same time.
On the top of that our proposed test strategy (choosing the optimal tree), is ex-
tremely fast, easy to interpret and make for straightforward visualizations.

2. PROPOSITION 25



CHAPTER 3. PROPOSITION AND METHODS

In algorithm 2 the pseudo-code of the proposed RF growing procedure is pre-
sented.

Algorithm 2 The CostVimp Algorithm
Input:training set, testing set, nTree: tree number, N : size of sub-ensemble,
attribute select method, termination criteria, matrix cost,
Output: Tree classification model
For i=1:nTree
- Use the bootstrap method to generate a sub-ensemble N for each tree;
-Select variables set randomly and split each sub-ensemble by the best at-
tribute;
-Grow each tree recursively without pruning;
-Calculate the total cost of each tree;

Total cost =
(nbrFP ∗ costFP + nbrFN ∗ costFN)

(NbrP ∗ costFP +NbrN ∗ costFN)

End
- Calculate the importance for each feature.

fii =

∑
nodes splits on feature i∑

allnodes

- Calculate The normalized feature importance for i in tree j.

normfiij =
fii∑

all featuresfiij

- Get the importance measures of each variable generated by the training RF,

RFfii =

∑
i εall trees normfiij

nTree

Calculate the total budget of each tree,

Total budget =
∑

(unique used predictors importance measures)

Somme =
∑

normfiij

Choose the best tree from the forest, then predict test class;

Best tree = min(Total cost)&(Total budget < Somme)

Return The best Tree classification model
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3 Conclusion

To conclude we can say that Random Forest is one of the most machine learning
used algorithms, because of its simplicity and the fact that it can be used for both
classification and regression problems.
RF is a flexible, easy to use and produce great result most of the time next chapter
we are going to test its performance on the cost sensitive task.
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Chapter 4

Experiments and Results

Introduction

The most important process in developing a classifier, it involves evaluating the
result of applying different datasets. In this chapter, we are going to evaluate the
performance of our classifier on ten datasets, nine datasets from UCI Machine
learning and one real world database.

In this research, cost, budget and accuracy are used to evaluate the perfor-
mance of the model. In this section we present the experimental results. Our
experiments are going to be in two phases:

Experiment 1 - standard Datasets we perform experiments on UCI’s standard
medical datasets using the importance variables measures generated by RF as
features costs and a fixed budget.

Experiment 2 - Real World Dataset we test our Cost sensitive Random For-
est Variable Importance (CostVimp Algorithm) on a real world dataset: multiple
myeloma, presented in next section with the real test prices.

1 Experiment 1 - standard Datasets

To evaluate the performance of our proposed algorithm, we first evaluate the
different trees generated by RF without pruning, by the cost of misclassification
ratio (eq.4.1).

Total cost =
(nbrFP ∗ costFP + nbrFN ∗ costFN)

(NbrP ∗ costFP +NbrN ∗ costFN)
(4.1)

• nbr FP: Number of misclassified positive instances.

• nbr FN: Number of misclassified negative instances.

• NbrP: Number of all positive instances.

• NbrN: Number of all negative instances.
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• cost FP: Cost of misclassified positive instances.

• cost FN: Cost of misclassified negative instances.

Next, we try to find a compromise between misclassification cost and total
budget (eq.4.2), we are going to choose the optimal tree with the minimal cost of
misclassification ratio and which at the same time minimize the total budget.

Total budget =
∑

(unique predictors costs) (4.2)

For the experiments we used nine standard datasets from UCI repository 1 (all
the used datasets are binary classes).

Datasets Variables Instances Class distribution

thoracic surgery 16 470 0,14 ; 0,85

EEG Eye 12 14980 0,44 ; 0,55

Pima 8 768 0,65 ; 0,34

Bupa 6 345 0,42 ; 0,57

Cardio 22 129 0,24 ; 0,75

Mammography 5 830 0,48 ;0,51

Breast cancer 9 699 0,65 ; 0,34

Fertility 9 100 0,88 ; 0,12

South Africa HeartD 9 462 0,65 ; 0,34

Table 4.1: Description of the choosen UCI Datasets

1.1 Results and Discussion

For each dataset, we first calculate the class distribution to be able to split suc-
cessfully the original dataset into training (0.7) and testing (0.3) dataset.

We next use the bootstrap technique on the training set to grow 100 trees with
random subsamples considering the cost matrix to minimize the error and the
importance variable measure generated by the RF algorithm as test costs.As test
strategy, we are going to choose the best tree from the grown forest. Some vari-
ables are either irrelevant or have no impact on the learning process so the opti-
mal tree use only the most important variables, it is well known in the machine-
learning community that irrelevant variables can have a negative effect on a

1https://archive.ics.uci.edu/ml/index.php
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learner‘s predictive power and has some disadvantages, using only the most im-
portant variables decrease systematically the total budget and increase the accu-
racy. The results are shown in Table 4.2, the column of total budget show: the
budget of the used predictors in the optimal tree/ the budget of All the predic-
tors.

Rnadom Forest Cost Vimp

Datasets Error rate Miss-
classification
Cost

Error rate Miss-
classification
Cost

Budget Selected
variables

Thoracic surgery 0.20 0.17 0.25 0.12 94.47% 11

EEG Eye 0.25 0.27 0.22 0.44 100% 12

Pima 0.29 0.34 0.31 0.47 100% 8

Bupa 0.44 0.35 0.31 0.36 100% 6

Cardio 0.16 0.10 0.13 0.19 59.33% 4

Mammography 0.24 0.25 0.24 0.45 100% 5

Breast cancer 0.04 0.03 0.04 0.47 99.64% 8

Fertility 0.14 0.14 0.12 0.01 54.01% 3

South Africa HeartD 0.32 0.38 0.29 0.47 94.47% 8

Table 4.2: Results of the proposed CostVimp on nine datasets

It is well known that there is no single algorithm that performs best for all
datasets and this is the case of our algorithm too. From the Table 4.2 above we
can summarize those notes:

• The error rate decrease as the total budget increases (breast cancer, Fertility).

• The features selection is not really meaningful when the number of features
is limited (EEG Eye, Pima, Bupa, Mammography: the grown trees use all
the features, so the budget can’t be minimized ).

• We used the importance variables measures as costs to calculate the budget;
however, this assumption is not always true in the real world. We can find
an expensive test (MRI Scan) that is complementary for some cases and vice
versa.

• The definition of matrix cost was quite subjective, the results would be more
accurate if it was given by domain experts, or learned via automatic ap-
proaches.
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2 Experiment 2 - Real World Dataset on Multiple Myeloma
Disease

2.1 Overview of Multiple myeloma

Multiple myeloma is a cancer that forms in a type of white blood cell called a
plasma cell. Plasma cells help the body fight infections by making antibodies
that recognize and attack germs. Multiple myeloma causes cancer cells to accu-
mulate in the bone marrow, where they crowd out healthy blood cells. Rather
than produce helpful antibodies, the cancer cells produce abnormal proteins that
can cause complications2.

The International Staging System (ISS) is the most commonly used for stag-
ing the multiple myeloma, the system is based on two important factors, Beta2
microglobulin and Albumin see Table 4.3.

STAGE CRITERIA

I
Serum Beta2 microglobulin < 3.5 mg/l

Serum albumin >= 35 g/dl

II Not ISS stage I or III

III Serum Beta2 microglobulin >=5.5 mg/L

Table 4.3: International Staging System (ISS) for multiple myeloma

2.2 Description of the dataset

The MM dataset was collected by R. GUILAL at the Anti-Cancer Center of Uni-
versity hospital of TLEMCEN, Algeria 3. It consists of 200 patients who are diag-
nosed during the period 2008-2019, and 57 features including cover demographic
information, personnel and family antecedents, different results of medical ex-
ams and tests diagnosis of MM.

To be able to perform our experiment on the MM dataset we have selected
only 43 features (only diagnostic tests that have a monetary cost) and 149 in-
stances from the three stages of MM (all the instances are pathologicals), the sus-
picious cases was deleted. The medical signification of each parameter in the
dataset of Multiple myeloma are described as follow4:

• Complete Blood Count (CBC): complete blood count (CBC), also known
as full blood count (FBC) or full blood exam (FBE) or blood panel, is a test

2https://www.myeloma.org/
3http://www.chu-tlemcen.dz/
4https://www.myeloma.org/
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panel that gives information about the cells in a patient’s blood.

• Bone marrow examination: it refers to the pathologic analysis of sam-
ples of bone marrow obtained by bone marrow biopsy and bone marrow
aspiration. Bone marrow examination is used in the diagnosis of a number
of conditions, including leukemia, multiple myeloma, lymphoma, anemia,
and pancytopenia.

• Total protein test: total protein test measures the amount of protein in
your blood. Proteins are important for the health and growth of the body’s
cells and tissues. The test can help diagnose a number of health conditions.

• C-reactive protein (CRP) test: this is another test used to help diagnose
conditions that cause inflammation.CRP is produced by the liver and if
there is a higher concentration of CRP than usual, it’s a sign of inflammation
in your body.

• Blood Electrolytes test: An electrolyte panel is a blood test that measures
the levels of electrolytes and carbon dioxide in blood, electrolytes are min-
erals found in the body, including sodium, potassium and chloride that per-
form jobs such as maintaining a healthy water balance in the body.

• Urine albumin to creatinine ratio (ACR): urine albumin to creatinine ratio
(ACR), also known as urine microalbumin, helps identify kidney disease
that can occur as a complication of diabetes.

• Protein electrophoresis: is used to identify the presence of abnormal pro-
teins, to identify the absence of normal proteins, and to determine when
different groups of proteins are present in unusually high or low amounts
in blood or other body fluids. Protein electrophoresis separates proteins
based on their size and electrical charge. This forms a characteristic pattern
of bands of different widths and intensities on a test media and reflects the
mixture of proteins present in the body fluid evaluated. The pattern is di-
vided into five fractions, called albumin, alpha 1, alpha 2, beta, and gamma.
In some cases, the beta fraction is further divided into beta 1 and beta 2.

• Immunofixation electrophoresis (IFE): The immunofixation blood test is
used to identify proteins called immunoglobulins in blood. Too much of
the same immunoglobulin is usually due to different types of blood cancer.
Immunoglobulins are antibodies that help your body fight infection.

• Bence Jones protein: is a monoclonal globulin protein or immunoglob-
ulin light chain found in the urine, with a molecular weight of 22-24 kDa.
Detection of Bence Jones protein may be suggestive of multiple myeloma or
Waldenström’s macroglobulinemia.

• Blood type test: a blood sample is needed. The test to determine your
blood group is called ABO typing.

• Free light chain test: this test can pick up small amounts of free light chains
in the blood. Doctors measure the ratio of kappa light chains to lambda
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light chains. If myeloma cells make kappa or lambda light chains, the level
of that light chain is increased and the ratio becomes abnormal.

• Serum calcium: it is a blood test to measure the amount of calcium in the
blood. Serum calcium is usually measured to screen for or monitor bone
diseases or calcium-regulation disorders (diseases of the parathyroid gland
or kidneys).

• A serum creatinine test: measures the level of creatinine in your blood
and provides an estimate of how well your kidneys filter (glomerular filtra-
tion rate). If your kidneys aren’t functioning properly, an increased level of
creatinine may accumulate in your blood.

• A blood urea nitrogen (BUN) test: measures the amount of nitrogen in
your blood that comes from the waste product urea. Urea is made when
protein is broken down in your body. Urea is made in the liver and passed
out of your body in the urine. A BUN test is done to see how well your
kidneys are working.

• Creatinine clearance test: measures how well creatinine is removed from
your blood by your kidneys. This test gives better information than a blood
creatinine test on how well your kidneys are working. The test is done on
both a blood sample and on a sample of urine collected over 24 hours.

• Beta-2 microglobulin (B2M) test: is used as a tumor marker for some
people with blood cell cancers. It is not diagnostic for a specific disease,
but it has been associated with the amount of cancer present (tumor bur-
den) and can give a healthcare practitioner additional information about
someone’s likely prognosis. A blood B2M test and sometimes a urine test
may be ordered to help determine the severity and spread (stage) of mul-
tiple myeloma, to help evaluate the prognosis of cancers such as multi-
ple myeloma and lymphoma, and may sometimes be ordered to evaluate
disease activity and the effectiveness of treatment. Recently, the Interna-
tional Myeloma Working Group published new guidelines called the In-
ternational Staging System for Multiple Myeloma. The staging system is
based mainly off of levels of both albumin and B2M in the blood. Higher
blood B2M levels correspond with higher disease stages and therefore more
advanced disease with worse prognosis.

• Bilirubin Test: bilirubin test measures how much bilirubin is in the blood.
Bilirubin is made when red blood cells break down. The liver changes the
bilirubin so that it can be excreted from the body. High bilirubin levels
might mean there’s a problem with the liver. In newborns, it can take some
time for the liver to start working properly. High bilirubin levels can make
skin and eyes look yellow, called jaundice.

• Echo test: An echocardiogram (echo) is a graphic outline of the heart’s
movement. During an echo test, ultrasound (high-frequency sound waves)
from a hand-held wand placed on your chest provides pictures of the heart’s
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valves and chambers and helps the sonographer evaluate the pumping ac-
tion of the heart.

• ECG: An electrocardiogram (ECG) is a medical test that detects cardiac
(heart) abnormalities by measuring the electrical activity generated by the
heart as it contracts. The machine that records the patient’s ECG is called
an electrocardiograph.

• MRI Scan: Magnetic resonance imaging (MRI) uses a large magnet and
radio waves to look at organs and structures inside your body. Health care
professionals use MRI scans to diagnose a variety of conditions, from torn
ligaments to tumors. MRIs are very useful for examining the brain and
spinal cord.

• Radiography: it is an imaging technique using X-rays, gamma rays, or
similar radiation to view the internal form of an object.

• PET scan: Positron emission tomography (PET) scans are used to produce
detailed 3-dimensional images of the inside of the body. The images can
clearly show the part of the body being investigated, including any abnor-
mal areas, and can highlight how well certain functions of the body are
working.

• CT scan: Computerized tomography (CT) scans use X-rays and a com-
puter to create detailed images of the inside of the body. CT scans are some-
times referred to as CAT scans or computed tomography scans.

2.3 Experiments and Results

The dataset contain 149 instances from three classes according to (ISS). The choice
of matrix cost was quite subjective.We first perform our experiments on the MM
dataset using the importance variables measures as features costs then we replace
those importance variables measures with the real prices of each diagnostic test
to see what can be changed.

Using the importance variables measures as features costs :

MULTIPLE MYELOMA

Methods CostVimp Random Forest

Missclassification cost 0.03 0.08

Error rate 0.15 0.17

Selected variables 3 all

Budget 83.07% /

Table 4.4: Results of Multiple myeloma using the importance variables measures
as features costs
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According to our model the three most important features are: Beta-2 mi-
croglobulin (B2M), Free light chain and Albumin.
Figure 4.1 show the final tree of CostVimp with only three selected variables Free
light chain on top as split node, then Beta-2 microglobulin (B2M) and Albumin as
its children nodes.

Free light chain

Albumin

1
< 39.64

2
>= 39.64< 0.5

B2M

1
< 2.83

3
>= 2.83

>=
0.5

Figure 4.1: The optimal tree of CostVimp using the importance variables mea-
sures as features costs on MM dataset

Using the real prices:
The table below, 4.5 show the several used test to diagnostic the MM and its

stage assigned to their real prices.

DIAGNOSTIC TEST REAL PRICE

Complete Blood Count (CBC) 500 DA

Bone marrow examination 600 DA

Total protein test 300DA

C-reactive protein (CRP) test 600 DA

Blood Electrolytes test 900 DA

Protein electrophoresis 4100 DA

Immunofixation electrophoresis (IFE) 1600 DA

Bence Jones protein 1600 DA

Blood type test 300DA

Albumin 500DA
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Free light chain test 1600 DA

Serum calcium 400 DA

A serum creatinine test 300 DA

A blood urea nitrogen (BUN) test 300 DA

Creatinine clearance test 300 DA

Beta-2 microglobulin (B2M) test 1200 DA

Bilirubin Test 2200 DA

Echo test 2000 DA

ECG 1500 DA

MRI Scan 18000 DA

Radiography 1500DA

CT scan 8000DA

Total 25300DA

Table 4.5: Diagnostic tests of MM & thier prices

Results of our experiments on MM dataset using the real prices are shown in
4.6.

MULTIPLE MYELOMA

Error rate Misclassification cost Budget Selected Features

0.21 0.02 1700/25300 DA 2

0.15 0.02 3300/25300 DA 3

Table 4.6: Results of Multiple myeloma using the real prices
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B2M

3

< 2.69

CBC

1
< 4.03

3
>= 4.03

>=
2.69

Free light chain

B2M

2
< 4.03

3
>= 4.03

< 0.5

CBC

3
< 83.5

1
>= 83.5

>=
0.5

Figure 4.2: The optimal trees of CostVimp using the real prices.

As we can see in figure 4.2, both trees have selected Beta-2 microglobulin
(B2M) and CBC tests to do the split, using the Free light chain test on the sec-
ond tree (below), makes it more accurate. Unlike the tree above that knows only
two classes, this experiment validate our previous note: the more variables we
use the more our classifier is accurate.

The most expensive tests are not usually the most informative neither the most
important ones and vice versa. From Experiment 1 and Experiment 2, we can say
that the use of: Beta-2 microglobulin (B2M), CBC, free light chain and albumin is
more than sufficient to distinguish MM stages, that means a total budget of 3800
DA instead of 25300 DA.

2.4 Comparaison results

In this section we are going to compare our model (Cost Vimp) with the Cost
Sensitive Classification Tree Algorithm (CSCART) [60], Cost sensitive decision
Tree Algorithm (CSC4.5) [63] on the MM real dataset using Tanagra platform 5.
Results are shown in Table 4.7

5https://eric.univ-lyon2.fr/ ricco/tanagra/fr/tanagra.html
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Methods CSCART CSC4.5 COSTVIMP

Missclassification cost 0.15 0.19 0.03

Confusion matrix

Stage 3 Stage2 Strage1 Stage 3 Stage2 Strage1 Stage 3 Stage2 Strage1

Stage3 44 0 0 42 0 2 41 0 3

Stage2 4 0 0 3 0 1 4 0 0

Stage1 4 0 0 4 0 0 1 0 3

Table 4.7: Results of CostVimp Vs CSCART & CSC4.5

As show in Table 4.7 the Cost Sensitive Classification Tree (CSCART) Algo-
rithm can recognize only one class (the most dominanted one in the dataset),
while the CSC4.5 can recogize 2 classes (stage 1 and 3) but show a heigher miss-
classification cost. Comparing to our model the Cost Vimp algorithm outperform
the two classifiers in terms of accuracy and cost.

3 Conclusion

In this chapter, we analyzed and discussed the performance of our model on ten
databases: nine from UCI machine learning and one detailed study case from the
real world: multiple myeloma dataset. Our model show promising results.
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Conclusion

In machine learning, the field of cost-sensitive learning is recognized as an active
domain of research that focuses on handling different types of costs. In the liter-
ature, a number of different approaches have been devised in order to deal with
different types of costs, such as the cost of tests and misclassification costs. A
number of academics have directed their efforts towards developing approaches
and classifiers that consider misclassification costs; however, the most suitable
cost-sensitive classifier for a given data set and problem remains unknown.

A number of the budgeted learning approaches and cost sensitive approaches
have been devised and introduced during the last decade; however, establish-
ing which are the most valuable is not simple, with no best method recognized
amongst the options. Accordingly, this study has aimed to make a compromise
between the cost of tests and misclassification cost by investigating the measure
importance variable generated by the RF algorithm as test costs.

In the area of health, costs are direct or indirectly present in the majority of
situations. A variety of financial or human costs can be associated with a specific
diagnostic test. The utilization of learning methods for the generation of diagnos-
tic or prognostic models, that are sensitive to several types of costs, is an impor-
tant step to transform the computer based process of knowledge acquisition into
a more natural process, with tendency to be similar with mental processes used
by medical doctors. On the other hand, these kinds of strategies can permit large
financial savings and benefits in health-related quality of life costs.

Hence this thesis has aimed to study the use of the measure importance vari-
able in a cost sensitive algorithm to establish a link between the used variables
(tests) and the total budget. As technologies became more expensive and bud-
gets are limited, it is even more rational to consider all the cost involved. A big
challenge is to have better healthcare using less money. Our proposed algorithm
showed good results in terms of accuracy, time of execution, misclassification cost
and total budget. A detailed case study on MM is given in the thesis.

This thesis focused on binary cost-sensitive classification problems. Never-
theless, not all cost-sensitive applications are two-class problems. Therefore, we
expect that an interesting line of future work should extend to multi-class prob-
lems. It is also interesting to evaluate our strategies, with new experiments in
other datasets, with real data and real costs.
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Résumé

De  nos  jours,  avoir  de  bons  soins  de  santé  en  utilisant  moins  d'argent  devient  un  défi,  car  les
technologies sont devenues de plus en plus coûteuses et les budgets sont limités. D'autre part, dans le
diagnostic médical, une fausse prédiction négative (une personne malade déclarée comme étant saine)
peut avoir des conséquences plus graves qu'une fausse prédiction positive et leur attribuer des coûts
égaux est inexacte.
Ce  projet  de  fin  d’études  contribue  à  la  fois  aux  apprentissages  budgétisés  et  aux  apprentissages
sensibles  au  coût  en  développant  un  modèle  capable  de  faire  un  compromis  entre  les  coûts  de
classification erronée et les coûts de test. Le modèle proposé est basé sur l'idée d'utiliser les mesures
d'importance de variables de la forêt aléatoire en tant que coûts de test et en choisissant l'arbre optimal
de la forêt développée en tant que stratégie de test. Notre modèle a été testé sur dix base de données :
neuf bases de données de UCI Machine Learning et une base de données du monde réel : le myélome
multiple ; collectée au Centre de Lutte Contre le Cancer (CLCC) de Tlemcen.
Mots clés :

Apprentissage sensible au coût, apprentissage budgétisé, forêts aléatoires, mesures d'importance des
variables, UCI Machine Learning, Myélome multiple.

Abstract

Nowdays,  having  a  good  healthcare  using  less  money  become  a  challenge,  as  technologies  became
more and more expensive and budgets are limited. On the other hand, in the medical diagnosis, a
false negative prediction (a sick person declared as healthy one) may have more serious consequences
than a false positive prediction and assigning them equal costs is probably incorrect.
This Master thesis makes contributions to both the fields of budgeted-learning and cost sensitive
learning in that it develops a model that can make a compromise between misclassification costs and
test costs at the same time.
The proposed model is based on the idea of using the variables importance measures of random forest
as test costs and choosing the optimal tree from the grown forest as test strategy. Our model has been
tested on nine UCI Machine Learning datasets and on a real-world database: multiple myeloma;
collected from the anti-cancer center of Tlemcen.

Keywords
Cost sensitive learning, budgeted learning, random forests, variables importance measures, UCI
Machine Learning Datasets, Multiple myeloma.

الملخص

الثمنباھظةالتقنیاتأصبحتحیثتحدیا،یمثلاقلأموالباستخدامجیدةصحیةرعایةعلىالحصولاصبحالحاضرالوقتفي

محدودة.المیزانیاتومتزایدبشكل

مناكثروخیمةجیدة)عواقببصحةعیتمتأنھیشخصمریض(شخصالخاطئالسلبيللتنبؤیكونقدطبيتشخیصفيأخرىناحیةمن

.غیر مضبوطمتساویة،الاثنینھذینتكالیفاعتباریكونأنالمحتملومنالخاطئ،الإیجابيالتنبؤ

بینالمفاضلةیحدثأنیمكننموذجتطویرخلالمنالتكلفةحیثمنالحساسوتعلمالمیزانیةفيالمدرجالتعلممنكلفيالأطروحةھذهتساھم

الاختباركالتكالیفالعشوائیةغاباتمتغیرأھمیةمقاییساستخدامفكرةعلىالمقترحالنموذجیعتمدالاختباروالتكالیفالخاطئتصنیفتكالیف
اختبار.جیةكاستراتیالمطورةللغاباتالمثلىو اختیار الشجرة

الحقیقي:العالمفيبیانیةوقاعدةUCI machine learningمنبیانیةقواعد:تسعبیاناتقواعد10علىنموذجنااختبارتم

بتلمسان.سرطانمكافحةمركزفيجمعھاتمالتيالمتعدديالنخاعالورم

المفتاحیة:الكلمات

المتعدديالنخاعالورممتغیراتأھمیةمقاییسالعشوائیة الغابةالمیزانیةفيالتعلمالتكلفة حیثمنحساسالتعلم
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