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Chapter 1. Introduction- Green chemistry challenge

Over the years, because of fast growth of population and industrial activities, we have increa-
singly polluted our waters. Conventional water treatment processes become indequate with
the identification of new contaminants in the water. To overcome these challenges, a particu-
lar emphasis is accorded to the implementation of environmentally, eco-friendly and less-energy
technologies for waste water treatment processes. In order to provide a sustainable development
and to avoid the negative impacts on our environment, green chesmistry science and technology
offers economically alternatives for chemical water treatments. These techniques are carried out
by adding organic polymers instead of inorganic coagulants in order to meet the green treat-
ment goals by taking into account the protection of public health and the environment and
combining maximum efficiency with minimal toxicity.

Figure 1.1 – Green chemistry. (www.faiteslepleindavenir.com)

Different types of waste water treatment exist around the world, they vary according to the
types of contaminants present in the water. In this work, we focus our attention on stabilized
colloidal suspensions that show no sedimentation rate despite the existence of density variation
between the two phases. The conventional methods of solid-liquid separation for urban waste
process water treatment cannot be used directly on stabilized colloids suspensions. These anio-
nic particles of sizes varying between 10−11 and 10−9 m, are small enough to stay suspended
for a long period of time. Actually, colloids have a surface activity which has an appreciable
influence on the properties of the aggregate. This phenomena governs the stability of colloidal
suspensions which results from the balance between the attractive energies of Van der Waals,
which favor aggregation, and the electrostatic repulsion energies. In order to destabilize these
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colloids, we should promote their agglomeration by reducing their electrostatic repulsion ener-
gies. Two mechanisms are mainly involved: coagulation and floculation which are carried out
by choosing alternative substances with low volatility. These processes employ substances that
are weakly toxic for humans and without consequences for the environment. These mechanisms
depend on the aggregation rate between particles and are modelised by the Monte Carlo me-
thod for solving Smoluchowski’s coagulation equation, a population equilibrium equation which
describes in statistical chemical physics the agglomeration. The Smoluchowski equation is of
universal use in the fields of Colloid chemistry, Aerosol dynamics and Nanotechnology Science.
It is to say that the collision rate per unit length is due to the Brownian motion and the par-
ticle agglomeration rate depends on the particles contact probability and the effectiveness of
the latter. Numerical resolution of the Smoluchowski equation is obtained employing the Monte
Carlo technique and its alternatives methods.

In this work, we solve the Smoluchovsky equations and study the number concentration of
coagulated particles, which decreases with the growth of th particle size. Finaly, we compare
our numerical results to the analytical solutions and we show that the method seems to be
more accurate approximating the first moment.

Chapter 1. Introduction- Green chemistry challenge
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Chapter 2. Colloids

Colloids are particles of sizes varying between 10−2 and 1 µm and are generally negatively
charged. Actually, colloids have a surface activity which has an appreciable influence on the
properties of the aggregate. This phenomena governs the stability of colloidal suspensions which
results from the balance between the attractive energies of Van der Waals, which favor aggre-
gation, and the electrostatic repulsion energies.

The nature of colloids is related to their origins and mechanisms that contribute to their forma-
tion. In general, the different types of colloids are hardly present in the pure state in the media
but rather associated with compounds to form particles of colloidal size. The most easily found
form are those from soil such as Ox iron and/or aluminum hydroxides and aluminosilicates.
High molecular weight organic matter, bio-colloids and bacteria are also found. Due to the
spreading of waste or fertilizers, there is also a possibility to find colloids of carbonated and
phosphatic nature. As mentioned above, the removal of these colloids strongly depends on their
surface charge properties and sizes. Colloids can also be classified as electronegative and hydro-
philic, such as organic macromolecules, humic or non-humic substances and/or electropositive
and hydrophobic such as metal oxides and clay minerals.

2.1 Double layer theory

Figure 2.1 – Colloid. (hmf.enseeiht.fr)

In fact, the colloid moves in the solution with part of its electric double-layer repulsion. The
first layer is fixed to the colloid surface and the second is more diffuse. The potential difference
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2.2. Colloid characteristics

between the first layer and the solution is called the zeta potential which governs the displace-
ment of the colloids and their mutual interaction. To destabilize the suspension and promote
the agglomeration of the colloids, it is necessary to reduce the zeta potential so that the Van
der Waals forces become dominant again. This kind of aggregation is known as coagulation.
This destabilization is achieved by coagulation polymers of Low Molecular Weight with a high
cationic charge in order to neutralize the negative charges of the colloids.

After colloidal suspensions have been destabilized, flocculants polymers are frequently used be-
cause of their very High Molecular Weight, i.e. high degree of monomer polymerization. These
flocculants are extremely effective in bonding the micro-flocs formed during coagulation by
using long polymer chains. The polymer chain in solution is partially adsorbed on a particle
beyond its double layer and when other particles are close enough, the elongate chain is adsor-
bed on its surface and creates bridging between the two particles. Various theories explain this
phenomenon [1] :

Helmoltz theory : The neutrality of the whole (the surface of the colloid and the positive
particles called ions) is realized when the latter comes into full contact with the surface of the
colloid (fixed layer).

Gouy-Chapman theory : The neutralization can be obtained at a greater distance, this
is done when the colloid is unequally surrounded by a layer of positive ions (diffuse layer).

Stern’s theory : Stern took into consideration the previous theories and discovered the
double layer formation theory. The first remains with the particle which causes a rapid decrease,
and the second is more diffuse which explains the slow decrease of the potential.

2.2 Colloid characteristics

2.2.1 Thermodynamic potential

called also the Nernst potential. It lies on the colloidal surface.

We have :

∆Gr = ∆G̊r +RT lnQ

∆Gr is The standard free reaction enthalpy.

where Q is the reaction quotient.

Since

∆G̊r = −nf∆E

We obtain :

−nf∆E = −nf∆E̊ +RT lnQ

11



Chapter 2. Colloids

The factor RT/f often appears in electrochemistry its value is 2.5693. 10−2 J.C−1

Then dividing the two membranes by the following term −nf , we obtain the Nernst equation :

∆E = ∆E̊ − RT

nf
lnQ.

Nernst’s equation allows us to predict the variation of electromotive force with concentration
and pressure.

2.2.2 Zeta potentiel

The Zeta potential is also called the electrokinetic potential. Its measurement is carried out
at the limit between the part of the solution which moves during the displacement of the par-
ticle and the part of the solution which changes direction independently of the particle, this
plane is called the shear plane.

Water contains suspended solids, impurities we would like to dispose of. Due to the repulsive
forces that the colloids exert between them, these particles are stable enough to stay suspended
which makes the sedimentation operation and the coagulation floculation mechanisms impos-
sible to realize. In this context, we should promote the reducing of the repulsion forces between
particles aiming to neutralize the negative charges of colloids by the addition of coagulants with
cations, which decreases the potential until it becomes negligible.

The optimal dose is the cause for which the Zeta potential becomes zero (which is the purpose
of our work), the opting for an optimal dosage is done by monitoring the potential Zeta de-
pending on the rate of coagulant, we can choose the best coagulant by doing a test of several
coagulant to know which one is the most good.

Z = kµme/ε

where

• k is the function of the diameter of the particle,

• µ is the dynamic viscosity (Pa. S),

• me is the electrophoretic mobility (µ.s−1.v−1),

• ε is the dielectric constant of the medium. Here is the measuring device "Zetameter".

12



2.2. Colloid characteristics

Figure 2.2 – Zetameter. (lavallab.com)

Two main forces which occurre when two particles come into contact:

The attractive force of Van Der Waals: The origin of attraction between a temporary
dipole and the corresponding induced dipoles are due to the Van Der Waals forces, which is
explained in the London theory. The Van Der Waals forces can take different forms and take
the order of 1/r7, which explains the speed of decrease related to the distance.

The electrostatic repulsion force: Due to the Coulomb’s law, the Coulombic force depends
on the dielectric constant of the medium, i. e. more the solvent is polar, more the force is weaker.

Figure 2.3 – Coulomb’s law.

13



Chapter 2. Colloids

Figure 2.4 – The relation between the Van Der Waals and the electrostatic forces.

where

• EB is the potential derived from the electrostatic repulsion force,

• EA is the potential derived from the attractive force of Van Der Waals,

• E is the resulting potential,

• l is the energy barrier.

In general, the efficiency of a polymer depends on the molecular chain length, because more
the chain is longer more the probability of creating bridging is greater. Two mechanisms are
mainly involved: coagulation and floculation. The presence of very small diameter particles
such as colloids, is responsible of the color and turbidity of the surface water. Their removal
is not possible via settling because of their low sedimentation rate. Coagulation can neutralize
their electrostatic charges repulsions to allow their aggregation by destabilizing it. Flocculation
works on their agglomeration in aggregates removed by decantation and/or fit.

14



2.3. Coagulation

Figure 2.5 – The coagulation flocculation process. (slideplayer.com)

Colloids have very important characteristics. Their surface/volume ratio results from the ad-
sorption properties of the ions present in the water. This explain the existence of electrically
charged surface, often charged negatively, creating inter-colloidal repulsion forces. Flocculation
is due to the aggregation process or macromolecules adsorbed simultaneously on two or more
particles, establishing between them a set of bridges. When aggregation is carried out following
the presence of oppositely charged polymer particles, neutralization of the surface charge ob-
tained after adsorption can not be neglected. Aggregation is the result of the joint action of
the two previous phenomena. Bridging comes from the critical arrangement of the adsorption
rate and reconformation of the polymer at the interface and the effective particle collision rate.

We are considering in our study two phenomena: coagulation and flocculation.

2.3 Coagulation
Coagulation is the set of physico-chemical phenomena by which certain constituents of very
small sizes called colloidal particles of a stable suspension groups together to obtain a more
impactful mass. We can find it in several domains like the formation of large structures at
astronomical scales (galaxies), we can also mention the planets and the stars by accretion in
astrophysics. Coagulation can also be called aggregation, coalescence or nucleation [2].

2.3.1 Principle of coagulation

There are two steps to the aggregation process:

• Firstly, the addition of a so-called "coagulant" reagent causes the decrease or even the
cancellation of the stability of the colloidal suspensions.

• Secondly, after destabilization, the particles come into contact with each other following
mechanical agitation (in the process of water treatment). The difference in electrical charge
between the particle and the solution causes an ionic layer.
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Chapter 2. Colloids

From a thermodynamic point of view, the DLVO theory [17] can define the interaction between
an attraction energy that comes from the Van Der Waals forces and another repulsive energy
from the ionic double layers surrounding the particles.

2.3.2 Coagulation mechanism

Coagulation aims to cancel the Zeta potential in order to ensure a decreasing of the attractions
forces, the thing that most trouble the coagulation phenomenon. This is achieved when the
attractive forces of Van der Waals become dominant. Therefore the increase of the electrolyte
concentration becomes an essential stage since it is the operation which compresse the double
ionic layer.

Among the coagulants most often used are: Aluminum Sulphate, Sodium Alumina,Ferrous
Sulphate, Chlorine, Ferric Sulphate, Ozone, etc.

2.4 Flocculation
Flocculation appears in astrophysics (stellar fragmentation), in chemistry (the degradation of
large chains of polymers), the flocculation of DNA in biology and many other areas [2].

The second step in the clarification of water is flocculation, it is divided into two phenomena [3]:

• Peri-kinetic Flocculation: related to the thermal agitation mostly related to the Brownian
diffusion. It favorise the formation of micro-flocs.

• Ortho-kinetic flocculation: related to the dissipated energy aiming to the formation of
big flocs. The probability of particle encounter is connected. The stirring speed acts on the
probability of particles encounter, but it is not possible to increase it excessively. Indeed, if it
is too high, the formed flocs undergo a mechanical shear causing their destruction and they
seldom reform themselves. Flocculation is therefore favored by a fairly low stirring speed which
gently causes the flocks to meet.

2.4.1 Principle of flocculation

After the particles destabilization has been performed, the colloidal particles agglomerate with
each other. The difference in stirring speed causes an increase in the probability of particles
encounter.

2.4.2 Flocculants

The floc formed by the agglomeration of several colloids may not be large enough to decant
or to dehydrate at the desired rate. The use of a flocculant is then necessary. It collects all
the floc particles in a net, building a bridge from one surface to another and binding each
particle to form large clusters [23]. The time between additions of coagulant and flocculant is
crucial. Indeed, a flocculant is generally effective only when the coagulation phase is complete.

16



2.5. Parameters influencing coagulation and flocculation

To choose flocculants, we consider the size, cohesion and settling speed of the flocs.

As for coagulants, the treatment rate to be implemented is given by a flocculation test. We
employ [8]:

• Mineral polymers such as activated silica (SiO2), generally associated with aluminum sul-
phate in cold water.

• Natural polymers extracted from animal or vegetable substances : starches, alginates (ob-
tained from marine algae).

• More recently synthesized polymers have significantly changed the performance of floccu-
lation. They often lead to a much lower volume of sludge.

2.5 Parameters influencing coagulation and flocculation
We consider six important parameters that influence the coagulation-flocculation mechanisms
studied [23]:

2.5.1 Temperature

The temperature has an appreciable influence on the viscosity of the solution, which is why
raising or lowering the temperature prevents the operation.

2.5.2 Agitation

The operation begins with a rapid stirring at the beginning which promotes the dispersion and
homogenization of the water, even if intense agitation can prevent the agitation of the particles.
Then we move to slow agitation, it allows us to cause contact between the particles to form
decanter flocs.

2.5.3 PH

PH is one of the most influential parameters in the coagulation process, and the same goes
for flocculation. It is very difficult to determine the optimum pH value for coagulation and
flocculation processes, since they include different phenomena in different pH ranges. The best
thing to do would be to find a compromise between coagulation pH (acid) and pH of flocculation
(basic).

2.5.4 The nature of colloids

The characteristics of the colloids in terms of charge and the ability to interact with other
similar particles (electronegativity) play a very important role in coagulation.
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Chapter 2. Colloids

2.5.5 Coagulant

Our choice of coagulant can influence either positively or negatively the treatment of water.
Two main types of coagulants:

• Minerals such Asiron or Aluminum salts.

• Organic such as Polyamine, PolyDADMAC, ...

In our work we focus on the PolyDADMAC [22] which was studied and prepared for the first
time by Pr. George Bulter. Because of its solubility in water, it was very useful in contrast to
other polysynthetics. Its structure was determined in 2002 by the NMR studies. PolyDADMAC
is used in waste water treatment as a primary organic coagulant that neutralize the negative
charges of colloids and reduce the volume of sludge compared to inorganic coagulants. It has
a great effect on coagulation and flocculation of organic and inorganic particles such as clay,
bacteria and viruses. The organic polymer removes naturally occurring organic materials such as
humic acids at a high concentration, reducing the number of disinfection byproduct precursors
and color.

2.5.6 Color

The particles that cause the color of water are usually larger than those causing turbidity, they
have a diameter greater than 3.5 nm, while the colloids diameter that causes turbidity are very
small.

2.6 Brownian motion
Robert Brown was the first researcher who observed the Brownian movement in 1827, Brown’s
observation of pollen grains under the microscope, shows that particles move in a bizarre way,
grains eject small particles into the water, the astonishing thing is that these particles do not
stop moving and move in all directions as if something jump them. Brown has redone the same
experience on different types of particles and realize that these molecules moved due to a certain
thermal agitation [15].

From the grains observation, Brown noticed that these particles do not follow a strategy which
means that the Brownian movement is irregular and unpredictable. He also noticed that it is
not possible to concentrate on a single particle or molecule and really knowing its way because
of its rapidity and random displacement, Brown rearked also that as long as the temperature
of the medium is higher, the viscosity is low and the particle size is small, the variation of
the movement is more significant and will never be negligible. From these observation, it was
clear that this movement was the result of molecules shocks with the particle.

Thermal agitation is the microscopic phenomenon that describes the movement of particles
relative to each other, it also describes the heat storage of particles, this stall is defined itself in
the form of molecular stirring. Now lets take particles that meet with molecules, we can directly
see that during the molecules displacement, the collision operation begins immediately with the
particles. This leads us to the amount of motion that will be introduced by the molecule itself
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2.6. Brownian motion

when it exerts a force on the paticule with each collision. While another random force will be
applied to the particle in its direction and amplitude, this happens after each collision. Moreo-
ver, the viscosity of the fluid causes an indefinite to this particle which itself causes a stop to
their move [14] [24].

The amplitude of the Brownian motion has an inverse relationship with the size of the particle.
In fact the increase in particle size causes numerous collisions with molecules, as well as an
increase in particle masses, which leads to a shock that causes a small displacement. The
addition of these two variations leads to a poor displacement for large particles. A statisti-
cal property which explains this phenomenon is called the law of large numbers, it states
that if the number of random shocks increases, the sum of shocks converges to zero, the reason
why it is not possible to see this phenomenon or this movement on a macroscopic scale [18] [24].

2.6.1 The model of Einstein (1905)

In 1905, Einstein provided a quantitative description of the Brownian motion. His predictions
were then experimentally verified by Jean Perrin a few years later. The mean quadratic displa-
cement described above, corresponds to a diffusion process, i.e if a particle is at the position
x = 0 initially, it will be after a time t at a position x [19]:

〈x2〉 = 2DT,

where 〈x2〉 represents the mean quadratic displacement (the brackets indicate the mean value
of x2 when repeating the experiment several times), and D is a diffusion coefficient.

Einstein has established an expression of the diffusion coefficient that holds for spherical radius
particles R:

D =
kBT

6πηR
,

where

• kB is a constant (Boltzmann constant).

• T is the temperature.

• η is the the viscosity of the liquid.

• R the particle radius.

In this formula, we can see that the mean quadratic displacement increases with temperature
and decreases with particle size, in agreement with the previous statistical arguments. The
expression of the diffusion coefficient is particularly interesting because it also involves the vis-
cosity of the liquid. 6πηR is actually the coefficient of friction of the particles in the liquid.
Thus, in the diffusion process, the thermal fluctuations (kBT ) of the molecules increase the dif-
fusion, whereas the friction, which tends to slow down and stop the particles after they under
go a random force decreases it [19].
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Chapter 2. Colloids

2.6.2 The model of Langevin (1908)

Langevin was interested in the mechanical approach that allows him to better manipulate
this phenomenon, therefore he proposed a method that allows to preserve it. In fact, instead
of treating all the equations, we can simply employ the law applied to the average values of
speed and acceleration. Langevin was able to make a balance of the average force which are
exerted on a particle. In the first place he spook of a force ~F , which following collisions with
atoms or particles, fluctuations of the trajectories are translated by it. The temp duration of
these fluctuations is really short compared to the duration that the Brownian movement does
[20]. We note that the average value of ~F is zero under homogeneous and isotropic conditions.
Moreover if the time duration between two instants t1 and t2 is smaller than the time scale of the
fluctuations, then the values of ~F at these two moments will be independent random variables,
which leads us to say that the average magnitudes < F (t) > and < x(t) > are correlated:

< x(t)F (t) >=< x(t) >< F (t) > .

Another force has been studied is the friction force of a fluid is given by: −mγ~v. It reflects the
dissipation due to friction.

Equipped with this balance of forces, we can therefore put Langevin’s equation: md~v/dt +
mγ~v = ~F, neglecting of gravity.
The quadratic value is < v2(t) >= kT/m, in a one-dimensional model, with k, the Boltzmann
constant, taking into account that the particle is in thermal equilibrium with its environment.

The solution of the Langevin equation is given by:

< d(x2(t)/2)/dt >=< d(x2(0)/2)/dt > ∗ exp−γt) + kT/mγ

By examining this solution and integrating it with time, we deduce at least two things:

• For t tending towards 0, that is to say for the small times before the interval of the shocks,
between the molecules of liquid and the particle, we will have a ballistic case, which corresponds
to a classical solution of trajectory, with < x2(t) > tending to 2(v0 ∗ t).

• For t large in front of the shock interval, < x2(t) > tends to 2(kT/mγ)t. Here we recognize
the diffusion coefficient D, already encountered in Einstein’s model.
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Chapter 3. Smoluchowski equations

For a given polymer, bridging mainly depends on two parameters : the number of sites available
for adsorption on the colloids surface and the rate of polymers agglomeration. One can consider
that the probability of two polymer chains fusion is proportional to their lengths sum [13].

The beginning of the classical understanding of colloidal aggregation stem from the work of
Smoluchowski on coagulation processes in colloids, a population equilibrium equation which
describes in statistical chemical physics the agglomeration which follows from the assumption
that the collisions are binary and that fluctuations in density are sufficiently small so that the
collisions occur at random, i.e. the evolution of the temperature of the coagulation particle
density of size i at time t.

The Smoluchowski equation is of universal use in the fields of Colloid chemistry, Aerosol dy-
namics and Nanotechnology Science. It is to say that the collision rate per unit length is due
to the Brownian motion and the particle agglomeration rate depends on the particles contact
probability and the effectiveness of the latter. Numerical resolution of the Smoluchowski equa-
tion is obtained employing the Monte Carlo technique and its alternatives methods.

The Smoluchowski’s equations are given by [11]:

∂c

∂t
(i, t) =

1

2

i−1∑
j=1

K(i− j, j)c(i− j, t)c(j, t)−
∞∑
j=1

K(i, j)c(i, t)c(j, t), i ∈ N∗, t ≥ 0, (3.1)

K(i, j) = i+ j and c(i, 0) = ci(0) =


1 if i = 1,

0 else .

System (3.1) is deduced for a set of particles 1, 2, 3,... or any other whole mass at time t, where
c(i,t) denotes the number of polymers of length i at time t. Two particles of length i and j
merge into a single particle of length (i + j), their probability of fusion is K (i, j) which is the
coagulation Kernel and it is proportional to the density of these two particles. Physically, we
assume that the number and total length of the polymers are finite and that K(i, j) is nonnega-
tive and symmetric. The first term on the right-hand side represents the rate of agglomeration
of polymers of length k by agglomeration of any polymers pair of length i and j, such that i+j
= k. The second term accounts for the loss of polymers of length k by agglomeration with any
other polymers chains. The variance of c(i, t) is given by the melting of particles of lengths
i and j and by the disappearance of particles of sizes (i + j) following a fusion with another
particle.

Moreover, the coalescence (i, j) −→ (i + j) has the same probabilitiy as the coalescence
(j, i) −→ (i + j), therefore The average number of coalescence (i, j) −→ (i + j) per unit
of time and volume [2] is given by K(i, j)c(i, t)c(j, t).
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3.1. Coagulation kernel

Rather than approximating the density, we shall approximate the mass density which satisfises
the following equation:

∂c̃

∂(t)
(i, t) =

1

2

i−1∑
j=1

K̃(i− j, j)c̃(i− j, t)c̃(j, t)−
∞∑
j=1

K̃(i, j)c̃(i, t)c̃(j, t), i ∈ N∗, t ≥ 0, (3.2)

c̃(i, 0) = c̃i(0)

where

c̃(i, t) := ic(i, t) and K̃(i, j) :=
K(i, j)

j

An analytical solution is given by [7] [11]:

c(i, t) = e−t
ii−1

i!
(1− e−t)i−1e−i(1−e−t), i ∈ N∗, t ≥ 0

3.1 Coagulation kernel
In 1928, Müller proposes a differential integral equation of the Smoluchowski equation which
is known under the Smoluchowski’s continuous coagulation equation:

∂c(i, t)

∂t
=

1

2

∫ i

0

K(i− j, j)c(i− j, t)c(j, t)dj −
∫ ∞
0

K(i, j)c(i, t)(j, t)dj (3.3)

where

• c(i, t)dj is the particle number whose volume is between i and i + dj at time t.

• K(i, j) is the collision kernel for two particles of volumes i and j.

In the free molecular regime, the collision kernel was derived from the gas kenetic theory [12]:

K(i, j) = B1(
1

i
+

1

j
)1/2(i1/3 + j1/3)

where

• B1 = (
3

4π
)1/6(6kbT/ρ)1/2.

• kb is the Boltzmann constant.

• T is the gas temperature.

• ρ is the mass density of particules.
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Chapter 3. Smoluchowski equations

In a dilute gas-phase, the collision kernel take the following equation:

K =

√
πkBT

2
(

1

m(i)
+

1

m(j)
)1/2(d(i) + d(j))2

In the specific dimension of the Clusters, as in diffusion-limited aggregation:

K =
2kBT

3η
(i1/l1 + j1/l2)(i−1/l1 + j−1/l2)

In the reaction-limited aggregation:

K =
2kBT

3η

(ij)γ

W
(i1/l1 + j1/l2)(i−1/l1 + j−1/l2)

where

• l1, l2 is the Fractal dimension of the clusters.

• W is the Fuchs stability ratio.

• η is the continuous phase viscosity.

• γ is the exposent of the product kernel.

An analytical solution exist only when the Kernel coagulation is represented in this three forms:

• K = 1 is the constant kernel.

• K = i+j is the additive kernel.

• K = ij is the multiplicative kernel.

3.2 Moments
In 2008, Yu et al proposed the Taylor expansion method of moments that has been used in
different studies because of its simplicity and reliable accuracy, a new variable has been find
following studies of the asymptotic behavior of ordinary differential equations [5].

g =
m0m2

m2
1

where m0 m1 and m2 are the three first moments.

The zeroth moment m0 represents the particle number concentration, which decreases with the
growth of th particle size. The first moment m1 remains constant and the second moment m2

is usually used as an index to characterize the total light scattered, wich increases with the
growth of particle’s size and polydisperity [6].
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3.3. Introduction to the Monte Carlo methods

The Taylor expension method of moments is introduces in solving (3.1) with the closure model
for the k-th moment [5].

mk = (
uk−2k2

2
− uk−2k

2
)m2 + (−uk−1k2 + 2uk−1k)m1 + (uk + uk

k2

2
− 3uk

k

2
)m0 (3.4)

where u is the Taylor expansion point, defined to be m1/m0.

In this work, we compute the analytical solution up to time T=2 for different time steps varying

from ∆t =
T

100
to ∆t =

T

1000
and for several particle numbers varying fromN = 104 toN = 105

and we compare the exact moments to the approximate moment of order 0 which corresponds
to the number concentration of coagulated particles which decreases with the growth of the
particle size :

M0,N(t) =
∑N

k=1

1

iN,n(k)
and M2,N(t) =

∑N
k=1 iN,n(k)

to the exact moments of order 0 and 2 over the interval [0,T]:

Mp(t) =
∞∑
i=1

ipc(i, t) =
∞∑
i=1

ip−1c̆(i, t)

where M0(t) = e−t and M2(t) = e2t.

3.3 Introduction to the Monte Carlo methods
Monte Carlo simulation is a method of estimating a numerical quantity that uses random num-
bers. It is always difficult to know who among the researchers Von Neumann, Ulam, Fermi and
Metropolis has named it in reference to gambling in casinos during the Manhattan project that
produced the first atomic bomb during the Second World War [1].

The Monte Carlo methods designate any method of calculating probabilistic techniques, using
random processes in order to find solutions to numerical value calculation problems. Moreover,
it gives a statistical support. Monte Carlo simulation has the dual advantage of being simple
to use and can be applied to a very wide range of problems. It is used in finance to determine
when to raise an option on a financial asset, in insurance to assess the amount of a premium,
in biology to study intra and intercellular dynamics, in nuclear physics to know the probability
that a particle crosses a screen, in telecommunications to determine the quality of service, or
generally to determine a system’s reliability, availability or average time to failure. However, it
is necessary to pose the problem, to model it so that the quantity to be sought will be expressed
as the expectation of a random variable X, denoted E(X) [4].

A random variable is the result of a random experiment employed to estimate a purely deter-
ministic quantity, for example a surface or an integral, by artificially constructing a random
variable to be reduced to the calculation of an average. The use of this methods covers all areas
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Chapter 3. Smoluchowski equations

of physics, mathematics, molecular and genetic biology as well as finance.

Monte Carlo is less accurate than the known integration methods such as the Simpson, Rom-
berg and trapezium method. Since the Monte Carlo method is based on the principle of the
random number generator, it decreases the precision of calculation while it’s really powerful in
calculating multiple integrals.

3.3.1 Strong law of large numbers

We call sample mean or empirical mean the statistic written Xn defined by [15]:

X̄n =
1

n

n∑
i=1

Xi (3.5)

represents the empirical average or average of the sample.

Theoreme 3.1. The empirical average X̄n of a sequence of identically distributed independent
random variables (Xn)n, has a values in Rd , d ∈ N. It is almost convergent in L1 towards the
common expectation of Xi when n −→∞. We also note that it is integrable, i. e:

P

(
1

n

∞∑
i=1

Xi −→ E(Xn)

)
= 1.

3.3.2 Principle of the MC method

By using iid realizations of a law easy to simulate, we consider an integrable function compared
to the Lebesgue’s measure on [a, b] g : [a, b] −→ R and we calculate the following integral ([15],
[21]):

I =

∫
[a,b]

g(x)dx.

Since X is a random variable of density fx, we write I in the form of an expectation:

I = E(g(x)) :=

∫
R
g(x)fxdx

with fx(x) =
1

b− a
1[a,b](x).

The idea is to produce a sample (x1, x2, .., xn), X’s law on [a, b], then calculate a new estimator
of :

G = E(g(X))

which is the Monte Carlo estimator.

From the empirical averag,e one can build the Monte Carlo estimator:

gn =
1

n

n∑
i=1

g(xi)
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3.3. Introduction to the Monte Carlo methods

For n big enough, we obtain:
1

n

n∑
i=1

g(xi) ' E(g(X)).

3.3.3 Error and convergence

The notion of error remains indispensable in mathematics. In fact, this tool allows us to study
the accuracy of a method and to control tolerances and limits. Therfore, we define the notion
of interval of confidence [3].

For the same variable X and the same draw X1, X2, ... , Xn, ... , the error of the Monte Carlo
estimator n is defined by the following quantity [15] [9]:

εn = E(X)− 1

n
(X1 +X2 + ...+Xn)

The asymptotic behavior of this error is well described by the central limit theorem which
determines the law of

√
nεn for n large enough.

Theoreme 3.2. Central limit theorem. Let us consider a sequence of identically distributed
independent random variables of finite expectation E(X1) < +∞ and positive variance Finite
σ2. Let’s put Sn = X1 +X2 + ...+Xn, so:

Sn − nE(X1)

σ
√
n
→L
n→∞ ℵ

where ℵ is a reduced centric Gaussian random variable.
By a simple calculation, we show :

√
n

σ
εn =

√
n

σ
[E(X)− 1

n
Sn] =

√
n

σ
E(X)− 1

σ
√
n
Sn = −Sn − nE(X)

σ
√
n

Since the Gaussian variables are symmetrical and by the previous theorem, we get:
√
n

σ
εn ℵ(0, 1).

3.3.4 Confidence interval

In the previous section, we saw that the variable
√
nεnN converges asymptotically to a Gaussian

centered reduced, i. e for all Borelian A, we have [3]:

P(

√
n

σ
εn ∈ A)→n→∞

∫
A

1√
2π

exp
x2

2 dx

Moreover for A = [-a, a], we obtain:

lim
n→∞

P(−a <
√
n

σ
εn < a) =

∫ a

−a

1√
2π

exp
x2

2 dx

that is to say:

→L
n→∞
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lim
n→∞

P(−a σ√
n
< εn < a

σ√
n

) =

∫ a

−a

1√
2π

exp
x2

2 dx

From here, we easily conclude that, for a large enough n, the variable εn follows a centered

Gaussian law of variance
σ2

n
.

It is impossible to limit the error by using the previous theorem, since the variable εn is Gaussian
of support infinite R. The preceding remark allows us to construct intervals of confidence for
the error estimation while doing the following way:

P (−a σ√
n
< εn < a

σ√
n

) = P(|εn| < a
σ√
n

)

For instance for a = 1.96 and by the quantile of the normal law, we have:

P(|εn| < 1.96
σ

n
) ∼ P(| ℵ |< 1.96

σ√
n

) = 0.95

So, with a probability of 95, we get asymptotically:

|εn| < 1.96
σ√
n

The variance σ2 intervenes in the increase of the error, it is therefore crucial to provide an
estimator, which is easily done by the same draws X1, X2, ···, Xn, ··· of the variable X. The
usual estimator σ̂2

n of the variance is given by the following formula:

σ̂2
n =

1

n− 1

n∑
i=1

(X − X̄n)2

where X̄n is the empirical estimator of the mean and because of the independence in the sample,
the estimator σ̂2

n is written:

σ̂2
n =

n

n− 1
(
1

n

n∑
i=1

(X
2 − X̄2

n)

Regarding the properties of the new estimator, we can easily show that it converges to the va-
riance when E(X2) < +∞ i.e lim

n→∞
σ̂2
n = σ2, and σ̂2

n is an unbiased estimator. When E(σ̂2
n) = σ2

n.

Gathering all the previous results, we arrive at an approximate confidence interval for the error
by replacing σ with σ2

n and we will have:

I =

[
− 1.96

σ̂2
n√
n
, 1.96

σ̂2
n√
n

]
Therefore considering a probability of 0.97, the expectation E(X) belongs to the following
interval:

Ic =

[
X̄n − 1.96

σ̂2
n√
n
, X̄n + 1.96

σ̂2
n√
n

]
.
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Chapter 4. Numerical simulation and discussion

In this work more than 400 numerical simulations were carried out for various time steps varying
between ∆t = 1/100 and ∆t = 1/1000 and for different numbers of particules varying between
N = 104 and N = 105. These following simulation are the 20th smalest error on moment of
order 0, their moment and exact moment of order 0.

4.1 Case of N = 10000 particles

nt M0,N M0,N exact Error on M0,N

1/500 0.13262 0.13534 0.00271820
1/600 0.13631 0.13534 0.00097699
1/700 0.13629 0.13534 0.00095177
1/800 0.13581 0.13534 0.00047547
1/900 0.13576 0.13534 0.00042086
1/1000 0.13388 0.13534 0.00145430

Table 4.1 – Variation of the moment of order 0 and the exact moment of order 0 with the
error corresponding to N = 10000 for ∆t varying between ∆t = 1/500 to ∆t = 1/1000.

According to the numerical results presented in Table 4.1, we chose the most representative
values of the error moments of order 0, in the case of N = 10000 particles for the time steps
varying between ∆t = 1/400 and ∆t = 1/900.

Figure 4.1 – Comparison between analytical and numerical moment of order 0 (left) and the
error on moment of order 0 corresponding to N = 10000 for ∆t = 1/400.
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4.2. Case of N = 20000 particles

Figure 4.2 – Comparison between analytical and numerical moment of order 0 (left) and the
error on moment of order 0 corresponding to N = 10000 for ∆t = 1/900.

4.2 Case of N = 20000 particles

nt M0,N M0,N exact Error on M0,N

1/500 0.13588 0.13534 0.00544620
1/600 0.13446 0.13534 0.00087946
1/700 0.13490 0.13534 0.00043296
1/800 0.13040 0.13534 0.00129780
1/900 0.13531 0.13534 0.00003001
1/1000 0.13522 0.13534 0.00011716

Table 4.2 – Variation of the moment of order 0 and the exact moment of order 0 with the
error corresponding to N = 20000 for ∆t varying between ∆t = 1/500 to ∆t = 1/1000.

According to the numerical results presented in Table 4.2, we chose the most representative
values of the error moments of order 0, in the case of N = 20000 particles for the time steps
varying between ∆t = 1/900 and ∆t = 1/1000.
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Figure 4.3 – Comparison between analytical and numerical moment of order 0 (left) and the
error on moment of order 0 corresponding to N = 20000 for ∆t = 1/900.

Figure 4.4 – Comparison between analytical and numerical moment of order 0 (left) and the
error on moment of order 0 corresponding to N = 20000 for ∆t = 1/1000.
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4.3. Case of N = 30000 particles

4.3 Case of N = 30000 particles

nt M0,N M0,N exact Error on M0,N

1/500 0.13517 0.13534 0.00016810
1/600 0.13589 0.13534 0.00055008
1/700 0.13562 0.13534 0.00028020
1/800 0.13555 0.13534 0.00021587
1/900 0.13548 0.13534 0.00014087
1/1000 0.13395 0.13534 0.00138390

Table 4.3 – Variation of the moment of order 0 and the exact moment of order 0 with the
error corresponding to N = 30000 for ∆t varying between ∆t = 1/500 to ∆t = 1/1000.

According to the numerical results presented in Table 4.3, we chose the most representative
values of the error moments of order 0, in the case of N = 30000 particles for the time steps
varying between ∆t = 1/500 and ∆t = 1/900.

Figure 4.5 – Comparison between analytical and numerical moment of order 0 (left) and the
error on moment of order 0 corresponding to N = 30000 for ∆t = 1/500.
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Figure 4.6 – Comparison between analytical and numerical moment of order 0 (left) and the
error on moment of order 0 corresponding to N = 30000 for ∆t = 1/900.

4.4 Case of N = 40000 particles

nt M0,N M0,N exact Error on M0,N

1/500 0.13501 0.13534 0.00032070
1/600 0.13607 0.13534 0.00073461
1/700 0.13672 0.13534 0.00138340
1/800 0.13679 0.13534 0.00145320
1/900 0.13705 0.13534 0.00171890
1/1000 0.13695 0.13534 0.00161370

Table 4.4 – Variation of the moment of order 0 and the exact moment of order 0 with the
error corresponding to N = 40000 for ∆t varying between ∆t = 1/500 to ∆t = 1/1000.

According to the numerical results presented in Table 4.4, we chose the most representative
values of the error moments of order 0, in the case of N = 40000 particles for the time steps
varying between ∆t = 1/200 and ∆t = 1/400.
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4.4. Case of N = 40000 particles

Figure 4.7 – Comparison between analytical and numerical moment of order 0 (left) and the
error on moment of order 0 corresponding to N = 40000 for ∆t = 1/200.

Figure 4.8 – Comparison between analytical and numerical moment of order 0 (left) and the
error on moment of order 0 corresponding to N = 40000 for ∆t = 1/400.
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4.5 Case of N = 50000 particles

nt M0,N M0,N exact Error on M0,N

1/500 0.13625 0.13534 0.00091515
1/600 0.13657 0.13534 0.00123390
1/700 0.13637 0.13534 0.00103780
1/800 0.13608 0.13534 0.00074684
1/900 0.13588 0.13534 0.00054478
1/1000 0.13657 0.13534 0.00123660

Table 4.5 – Variation of the moment of order 0 and the exact moment of order 0 with the
error corresponding to N = 50000 for ∆t varying between ∆t = 1/500 to ∆t = 1/1000.

According to the numerical results presented in Table 4.5, we chose the most representative
values of the error moments of order 0, in the case of N = 50000 particles for the time steps
∆t = 1/900.

Figure 4.9 – Comparison between analytical and numerical moment of order 0 (left) and the
error on moment of order 0 corresponding to N = 50000 for ∆t = 1/900.
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4.6 Case of N = 60000 particles

nt M0,N M0,N exact Error on M0,N

1/500 0.13607 0.13534 0.00073337
1/600 0.13585 0.13534 0.00051664
1/700 0.13470 0.13534 0.00063904
1/800 0.13596 0.13534 0.00062229
1/900 0.13507 0.13534 0.00026736
1/1000 0.13443 0.13534 0.00090481

Table 4.6 – Variation of the moment of order 0 and the exact moment of order 0 with the
error corresponding to N = 60000 for ∆t varying between ∆t = 1/500 to ∆t = 1/1000.

According to the numerical results presented in Table 4.6, we chose the most representative
values of the error moments of order 0, in the case of N = 60000 particles for the time steps
∆t = 1/900.

Figure 4.10 – Comparison between analytical and numerical moment of order 0 (left) and the
error on moment of order 0 corresponding to N = 60000 for ∆t = 1/900.
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4.7 Case of N = 70000 particles

nt M0,N M0,N exact Error on M0,N

1/500 0.13365 0.13534 0.00168100
1/600 0.13535 0.13534 0.00001492
1/700 0.13608 0.13534 0.00074707
1/800 0.13565 0.13534 0.00031883
1/900 0.13689 0.13534 0.00155370
1/1000 0.13600 0.13534 0.00066006

Table 4.7 – Variation of the moment of order 0 and the exact moment of order 0 with the
error corresponding to N = 70000 for ∆t varying between ∆t = 1/500 to ∆t = 1/1000.

According to the numerical results presented in Table 4.7, we chose the most representative
values of the error moments of order 0, in the case of N = 10000 particles for the time steps
varying between ∆t = 1/300 and ∆t = 1/800.

Figure 4.11 – Comparison between analytical and numerical moment of order 0 (left) and the
error on moment of order 0 corresponding to N = 70000 for ∆t = 1/300.
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4.7. Case of N = 70000 particles

Figure 4.12 – Comparison between analytical and numerical moment of order 0 (left) and the
error on moment of order 0 corresponding to N = 70000 for ∆t = 1/600.

Figure 4.13 – Comparison between analytical and numerical moment of order 0 (left) and the
error on moment of order 0 corresponding to N = 70000 for ∆t = 1/800.
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4.8 Case of N = 80000 particles

nt M0,N M0,N exact Error on M0,N

1/500 0.13498 0.13534 0.00035911
1/600 0.13605 0.13534 0.00071821
1/700 0.13573 0.13534 0.00039756
1/800 0.13605 0.13534 0.00071434
1/900 0.13628 0.13534 0.00094227
1/1000 0.13468 0.13534 0.00065255

Table 4.8 – Variation of the moment of order 0 and the exact moment of order 0 with the
error corresponding to N = 80000 for ∆t varying between ∆t = 1/500 to ∆t = 1/1000.

According to the numerical results presented in Table 4.8, we chose the most representative
values of the error moments of order 0, in the case of N = 80000 particles for the time steps
varying between ∆t = 1/400 and ∆t = 1/700.

Figure 4.14 – Comparison between analytical and numerical moment of order 0 (left) and the
error on moment of order 0 corresponding to N = 80000 for ∆t = 1/400.
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4.8. Case of N = 80000 particles

Figure 4.15 – Comparison between analytical and numerical moment of order 0 (left) and the
error on moment of order 0 corresponding to N = 80000 for ∆t = 1/500.

Figure 4.16 – Comparison between analytical and numerical moment of order 0 (left) and the
error on moment of order 0 corresponding to N = 80000 for ∆t = 1/700.
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4.9 Case of N = 90000 particles

nt M0,N M0,N exact Error on M0,N

1/500 0.13599 0.13534 0.00065943
1/600 0.13477 0.13534 0.00056633
1/700 0.13483 0.13534 0.00050770
1/800 0.13519 0.13534 0.00014123
1/900 0.13514 0.13534 0.00019237
1/1000 0.13536 0.13534 0.00002918

Table 4.9 – Variation of the moment of order 0 and the exact moment of order 0 with the
error corresponding to N = 90000 for ∆t varying between ∆t = 1/500 to ∆t = 1/1000.

According to the numerical results presented inTable 4.9, we chose the most representative
values of the error moments of order 0, in the case of N = 90000 particles for the time steps
varying between ∆t = 1/800 and ∆t = 1/1000.

Figure 4.17 – Comparison between analytical and numerical moment of order 0 (left) and the
error on moment of order 0 corresponding to N = 90000 for ∆t = 1/800.
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4.9. Case of N = 90000 particles

Figure 4.18 – Comparison between analytical and numerical moment of order 0 (left) and the
error on moment of order 0 corresponding to N = 90000 for ∆t = 1/900.

Figure 4.19 – Comparison between analytical and numerical moment of order 0 (left) and the
error on moment of order 0 corresponding to N = 90000 for ∆t = 1/1000.
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4.10 Case of N = 10000 particles

nt M0,N M0,N exact Error on M0,N

1/500 0.13434 0.13534 0.00099828
1/600 0.13451 0.13534 0.00082986
1/700 0.13385 0.13534 0.00148040
1/800 0.13425 0.13534 0.00108500
1/900 0.13439 0.13534 0.00094474
1/1000 0.13456 0.13534 0.00077086

Table 4.10 – Variation of the moment of order 0 and the exact moment of order 0 with the
error corresponding to N = 105 for ∆t varying between ∆t = 1/500 to ∆t = 1/1000.

According to the numerical results presented in Table 4.10, we chose the most representative
values of the error moments of order 0, in the case of N = 10000 particles for the time steps
∆t = 1/300.

Figure 4.20 – Comparison between analytical and numerical moment of order 0 (left) and the
error on moment of order 0 corresponding to N = 100000 for ∆t = 1/300.

The following simulations shows the validity of the Smoluchowski theory approach with
comparing results of computer.
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Conclusion 
 

     In this work, we have analysed an approach for solving Smoluchowski’s coagulation 
equation using the Monte Carlo method in order to simulate the aggregation of polymers 
employed in the waste water process treatment. Our study provides numerical evidence that 
the numerical method seems to be accurate approximating the zeroth moment representing the 
particle number concentration, which decreases with the growth of the particle size. We have 
shown that the time step influence the error on moment in such a manner that considering a 
certain number of particles, more the time step decreases, more the error on moments of order 
0 decreases.  

Among the various perspectives of this work, we cite the aerosol physics coalescence 
problems. In fact, Atmospheric aerosols are solid or liquids particles suspended in atmosphere 
and has a profound effect on our lives. It affects global climate and personal health. Aerosol 
particles vary in size, concentration and distribution in space and time. The aerosol 
concentration in atmosphere is variable due to the heterogeneity of chemical compositions 
and sources, interactions with clouds and solar and tell-uric radiation. One of the essential 
problems of aerosol physics is coalescence due to microphysical transformation processes. 
The droplet rate growth with coalescence governed by the collection efficiency. Two drops of 
fusion are forming a composite. If the average distance between the drops is less than a 
threshold value or a coalescence limit, the compound drop will touch a neighboring drop. 
Other coalescence follows if the drops are close enough between them. Coalescences can thus 
be chained. We intend to study the evolution of the numerical concentration as a function of 
the particle size, better known under the coagulation rate.  

Another goal consiste of correcting the second order moment which is the total light scattered 
which increases with the growth of the particle size and polydisperity. 
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ABSTRACT 
     Over the years, because of fast growth of population and industrial activities, we have 
increasingly polluted our waters. Conventional water treatment processes become indequate 
with the identification of new contaminants in the water. To overcome these challenges, a 
particular emphasis is accorded to the implementation of environmentally, eco-friendly and 
less-energy technologies for water treatment processes. In this context, we investigate wether 
new chemical treatments employing organic polymers are efficient enough to provide green 
solutions for waste water recycling. We focus our attention on stabilized colloidal suspensions 
that show no sedimentation rate. In order to destabilize these colloids, two mechanisms are 
mainly involved: coagulation and floculation. These mechanisms depend on the aggregation 
rate between particles modelised by the Smoluchowski's coagulation equation. In this paper, 
we study the number concentration of coagulated particles and we show more the time step 
decreases, more the error on moments of order 0 decreases for a certain number of particles. 

Keywords: Polymers, colloids, simulation, Smoluchowski equations, Monte Carlo method. 

  صـخـلـم
مع تحدید الملوث الجدید . على مر السنین وبسب النمو السریع للكثافة السكانیة والأنشطة الصناعیة، قمنا بتلویث میاھنا     

للتغلب على ھذه التحدیات، یتم التركیز بشكل خاص على . متوفرة في الماء أصبحت عملیات المعالجة التقلیدیة للمیاه غیر
في ھذا السیاق نحن بصدد التحقیق فیما إذا كانت . تنفیذ تقنیات صدیقة للبیئة تستھلك طاقة أقل في عملیات معالجة المیاه

یقة للبیئة لإعادة تدویر المیاه المعالجة الكیمیائیة الجدیدة باستخدام البولیمرات العضویة فعالة بما یكفي لتوفیر حلول صد
من أجل زعزعة ھذه الغرویات . نركز انتباھنا على تعلیق الغرویة المستقرة التي لا تظھر أي معدل ترسیب. المستعملة

تعتمد ھذه الآلیات على معدل التجمیع بین الجزیئات التي تم تصمیمھا بمعادلة . ھناك آلیتان رئیسیتان ز التخثر والترویب
في ھده المذكرة، ندرس تركیز عدد الجسیمات المتخثرة، ونبین أنھ كلما انخفضت وتیرة الزمن، . سمولشوسكيالتخثر 

  .لعدد معین من الجسیمات 0انخفضت معھا نسبة الخطأ في لحظات الترتیب 

 .البولیمرات، الغرویات، المحاكاة، معادلات سمولشوسكي، طریقة مونت كارلو :كلمات مفتاحیة

RÉSUMÉ 
     Au fil des années, en raison de la croissance rapide de la population et des activités 
industrielles, nous avons de plus en plus pollué nos eaux. Les procédés classiques de 
traitement des eaux usées deviennent inadéquats avec l'identification de nouveaux 
contaminants dans l'eau. Pour surmonter ces défis, un accent particulier est mis sur la mise en 
œuvre de technologies respectueuses de l'environnement, et moins énergivores pour les 
procédés de traitement de l'eau. Dans ce contexte, nous étudions si de nouveaux traitements 
chimiques utilisant des polymères organiques sont suffisamment efficaces pour fournir des 
solutions écologiques pour le recyclage des eaux usées. Nous concentrons notre attention sur 
les suspensions colloïdales stabilisées qui ne montrent aucun taux de sédimentation. Afin de 
déstabiliser ces colloïdes, deux mécanismes sont principalement impliqués : la coagulation et 
la floculation. Ces mécanismes dépendent du taux d'agrégation entre les particules modélisées 
par l'équation de coagulation de Smoluchowski. Dans ce mémoire, nous étudions la 
concentration en nombre de particules coagulées et nous montrons que plus le pas de temps 
diminue, plus l'erreur sur les moments d'ordre 0 diminue pour un certain nombre de particules. 

Mots-clés :Polymères, colloïdes, simulation, équations de Smoluchowski, méthode de Monte 
Carlo. 


