

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE ABOU-BEKR BELKAID - TLEMCEN

MEMOIRE

Présenté à

FACULTE DES SCIENCES – DEPARTEMENT DE CHIMIE

Pour l'obtention du diplôme de :

MASTER

Filière: **Chimie** Option: Chimie Théorique et Modélisation

Par :

Mr FEKIH Ahmed

Sur le thème

Etude théorique des réactions de substitutions nucléophiles

Soutenu publiquement le 19 Juin 2017 à Tlemcen devant le jury composé de :

Mr MEKELLECHE Sidi Mohamed Mme CHEMOURI Hafida Mme BENCHOUK Wafaa

Professeur Maître de Conférences B Maître de Conférences A

Université de Tlemcen ESSA-Tlemcen Université de Tlemcen

Président Examinateur Encadreur

Laboratoire de Thermodynamique Appliquée et Modélisation Moléculaire (LATA2M), N° 53 BP 119, 13000 Tlemcen - Algérie

A la mémoire de ma chère maman.

Les yeux mouillés, mes pensées sont pour toi. Là où tu es, sois fière de ton petit. Repose en paix.

- A mon père longue vie à toi.
- A ma sœur et à mes frères.
- A mon frère et sa petite famille.
- A mes oncles et à mes tantes.
- A mes collègues de laboratoire.
- A tout mes amies.

A tous ceux qui me sont chers

--- REMERCIEMENTS ---

Le travail présenté dans ce mémoire a été réalisé au laboratoire de recherche « Thermodynamique Appliquée et Modélisation Moléculaire LATA2M » domicilié à l'Université Abou-Bekr Belkaïd de Tlemcen. J'exprime mes vifs remerciements à Mme Pr. L. NEGADI Directrice de ce laboratoire pour sa contribution matérielle à la réalisation de ce travail.

Je tiens à exprimer toute ma reconnaissance à Mme W. KAZI TANI – BENCHOUK, Maitre de Conférences A à l'Université A. Belkaïd de Tlemcen, pour m'avoir guidé durant mon travail avec une disponibilité permanente et m'avoir fait bénéficier de ces connaissances en chimie théorique et computationnelle.

J'exprime ma profonde et respectueuse gratitude à Monsieur S. M. MEKELLECHE Professeur à l'Université A. Belkaïd de Tlemcen, coordinateur de l'équipe de formation « master chimie théorique et modélisation moléculaire » qui m'avoir fait bénéficier de ses connaissances en chimie quantique et qui m'a fait l'honneur d'accepter de présider le jury de ce mémoire.

Je tiens à adresser mes vifs remerciements et l'expression de mon profond respect à Mme H. CHEMOURI, Maitre de Conférences B à l'Université A. Belkaïd de Tlemcen, pour l'honneur qu'elle nous a fait en acceptant d'examiner notre travail.

J'adresse mes sincères remerciements à tous les collègues de laboratoires de recherche « Thermodynamique Appliquée et Modélisation Moléculaire ». Enfin, je remercie tous ceux qui ont contribué de prés ou de loin à la réalisation de ce travail.

--- SOMMAIRE ----

INTRODUCTION GENERALE	1
Références	5

CHAPITRE I : METHODES DE CALCULS QUANTO-CHIMIQUES

Introduction	6
I.1. Méthode de Hartree-Fock-Roothaan	7
a) Approximation de Hartree (<i>champ moyen</i>)	7
b) Méthode de Hartree et de Fock (<i>déterminant de Slater</i>)	7
c) Méthode de Hartree, de Fock et de Roothaan (<i>OM-CLOA</i>)	8
I.2. Théorie DFT (<i>Density fonctionnel theory</i>)	9
a) Introduction (<i>théorème</i> de Hohenberg et Kohn)	9
b) Équation de <i>Kohn</i> et <i>Sham</i>	10
c) Terme d'échange-corrélation	11
d) Fonctionnelle hybride B3LYP	12
e) Fonctionnelle M06-2x	13
Références du chapitre I	14

CHAPITRE II : APPROCHES THEORIQUES DE LA REACTIVITE CHIMIQUE

Introduction	
II.1. Concepts chimiques et indices de réactivité dérivant de la DFT conceptuelle	15
II.1.1. Indices globaux dérivant de la DFT conceptuelle	15
a) Potentiel chimique électronique	16
b) Dureté globale et mollesse globale	16
c) Indice d'électrophilie globale	17
II.1.2. Indices locaux de réactivité dérivant de la DFT conceptuelle	17
a) Indices de Fukui	17
b) Electrophilie locale	18
II.2. Fonction de Parr	18

II.3. Surface d'énergie potentielle SEP	19
II.3.1. Définition	19
II.3.2. Matrice hessienne	19
II.3.3. Points caractéristiques d'une SEP	21
-	

II.3.4. Chemin d'énergie minimum et coordonnée de réaction II.3.5. Etat de transition TS	21 21
II.4. Théorie de l'état de transition TST II.4.1. Énergie d'activation et équation d'Arrhenius	22 22
II.4.2. Prédiction de la vitesse de réaction par la TST	23
II.4.3 Coordonnées vibrationnelles normales et la fréquence imaginaire	24
Références du chapitre II	27

CHAPITRE III : RESULTATS ET DISCUSSIONS

III.1. Application I: Etude théorique du mécanisme et de la régiosélectivité de la substitution	
l'ammoniac	29
1.Introduction	29
2. Méthodologie des calculs	31
3. Résultats et discussion	32
3.1. Prédiction de la régiosélectivité en utilisant les indices de réactivité	32
3.2. Analyse de la surface d'énergie potentielle 3.2.1. Etude de SNAr de la pyridine Py-F avec NH3 (réaction # 1) en phase	35
gazeuse et en présence du solvant	35
3.2.2. Etude de SNAr de la pyridine Py-Cl avec NH ₃ (réaction # 2) en phase gazeuse et en présence du solvant	45
Références de l'application I	53
III.2. Application II: Etude théorique de la régiosélectivité de la SNAr des di/tri/tetra, Fluoro- et Chloro- pyridines basée sur les indices.	54
	51
1. Introduction	54
2. Méthodologie des calculs	55
3. Résultats et discussion	55
Références de l'application II	64
CONCLUSION GENERALE	65

LISTE DES ABREVIATIONS

SnAr	Substitution Nucléphile Aromatique				
$S_{\rm N}1$	Substitution Nucléphile unimoléculaire 1				
$S_{\rm N}2$	Substitution Nucléphile bimoléculaire 2				
CR	Coordonnée de la réaction				
B3LYP	Becke 3-Parameter Lee-Yang-Parr				
CLOA	Combinaison Linéaire d'Orbitales Atomiques				
DFT	Density Functional Theory				
FMO	Frontier Molecular Orbital				
GGA	Generalized Gradient Approximation Gaussian				
GTO	Gaussian Type Orbital				
HF	Hartree-Fock				
HOMO	Highest Occupied Molecular Orbital				
H-K Hohenberg et Kohn					
IRC Intrinsic Reaction Coordinate					
K-S Kohn et Sham					
LDA	Local Density Approximation				
LSDA	Local Spin Density Approximation				
LUMO	Lowest Unoccupied Molecular Orbital				
OA	Orbitale Atomique				
OM	Orbitale Moléculaire				
SCF	Self Consistent Field				
STO	Slater Type Orbital				
SEP	Surface d'énergie potentielle				
TS	Transition State				
TST	Transition State Theory				
NPA	Natural Population Analysis				
SCRF	Self-Consistent Reaction Field				
IN	Intermédiaire				
Py-F	Perfluropyridine				
Py-Cl	Perchloropyridine				
Nu	nucléophile				

Introduction Générale

Les mécanismes réactionnels de la substitution nucléophile S_N sur le carbone ont fait l'objet d'études particulièrement approfondis de la part des chimistes organiciens [1] et théoriciens [2]. Les réactions de S_N peuvent avoir lieu sur différentes combinaisons d'espèce chimiques chargées ou non. Pour mieux comprendre les mécanismes des réactions de ce type, Ingold et al. [3] ont défini les cas extrêmes. Ces cas extrêmes sont

- Substitution Nucléophile unimoléculaire (SN1), mécanisme d'ionisation.
- Substitution Nucléophile bimoléculaire (SN2), mécanisme de déplacement direct.

Le mécanisme d'ionisation [1a] pour la S_N1 comporte une dissociation hétérolytique du produit initial – cinétiquement déterminante – donnant un carbocation tricoordiné (2) (appelé également ion carbonium ou ion carbénium) et le groupe sortant. Cette dissociation est suivi de la combinaison rapide d'un carbocation fortement électrophile avec une base de Lewis (nucléophile) présentée dans le milieu.

Le mécanisme de déplacement direct $S_N 2$ [1a] est un mécanisme concerté, sans intermédiaire, qui fait intervenir un seul état de transition cinétiquement déterminant. Selon ce mécanisme, le réactif est attaqué par un nucléophile à partir du côté opposé du groupe sortant, et l'établissement d'une liaison s'effectue en même temps que la rupture de la liaison entre l'atome de carbone et le groupe sortant. Le nucléophile et le groupe sortant sont tous les deux coordonnés au carbone central dans l'état de transition.

Aucun des principaux mécanismes de S_N sur les composés saturés n'est applicable aux cycles aromatiques [1]. Une réaction par approche dorsale de type S_N2 est exclue en raison de la géométrie du cycle benzénique. Le lobe arrière de l'orbitale *sp*² est orienté vers le centre de cycle. Un mécanisme S_N1 serait très coûteux en énergie parce qu'un cation situé directement sur un cycle benzénique est très instable. C'est encore une conséquence de la géométrie et de l'hybridation des atomes de carbone aromatiques. Un carbocation doit être localisé dans une orbitale *sp*²; cette orbitale étant perpendiculaire au système π , il n'y a pas de stabilisation possible venant des électrons π [1].

1

Le mécanisme des réactions de substitution nucléophile aromatique (S_NAr) a beaucoup suscité l'intérêt des chimistes expérimentateurs [1,4] et théoriciens [5]. Il existe plusieurs mécanismes possibles pour la S_NAr [1,4]. On peut citer entre autre le mécanisme d'élimination-addition ainsi que le mécanisme d'addition-élimination.

Le mécanisme d'élimination-addition met en jeu un intermédiaire fortement instable, appelé déhydrobenzène ou benzyne [6]. Une caractéristique de ce mécanisme est le schéma de substitution du produit final. Le nucléophile entrant ne se fixe pas toujours au niveau du carbone porteur du groupe sortant [1a].

Le mécanisme d'addition-élimination [7], utilise l'une des orbitales π^* vacants comme point initial d'attaque du nucléophile. Ce qui permet la liaison du nucléophile au cycle aromatique sans déplacement des substituants existants. Si l'attaque a lieu à la position occupée par un groupe partant potentiel, la substitution nette peut se produire par une seconde étape dans laquelle le groupe partant est expulsé.

Les produits intermédiaires d'addition sont fréquemment détectables par spectroscopie et peuvent parfois être isolés [8]. Ils sont appelés complexes de *Meisenheimer*.

L'influence exercée par les substituants déjà placés sur le cycle sur les réactions de SNAr est un domaine des relations entre structure et réactivité. La classification des substituants en *activateurs* et en *désactivateurs* apparut clairement dès les premières études [9].

On a commencé à comprendre l'origine de ces effets des substituants avec le développement des connaissances sur les interactions électroniques et les théories quantiques de la réactivité chimique. En effet, plusieurs travaux relatifs à la prédiction théorique de la régiosélectivité dans les réactions de SNAr peuvent être trouvés dans la littérature [10].

La famille des pyridines, composés azotés hétéroaromatiques, est réactive vis-à-vis de la substitution nucléophile sur les positions C-2 et C-4 [1a,4]. L'atome d'azote sert à activer le cycle pour l'attaque nucléophile. Ce type de réaction de substitution est particulièrement important en chimie des pyrimidines.

Les trois chapitres de ce manuscrit sont présentés comme suit :

- Les méthodes de la chimie quantique à savoir la méthode de Hartree/Fock/Roothaan et méthodes DFT sont présentés dans le premier chapitre.
- Le deuxième chapitre est consacré à la présentation des différentes théories utilisées pour l'étude de la réactivité et la sélectivité, à savoir, les indices de réactivité dérivant de la DFT conceptuelle, indices basés sur les fonctions de Parr et la théorie de l'état de transition TST.
- Le troisième chapitre est consacré à la présentation des résultats obtenus pour les deux applications concernant l'étude théorique des réactions de SNAr :

<u>Application 1</u>. Etude théorique du mécanisme et de la régiosélectivité de la substitution nucléophile aromatique du perfluoropyridine et perchloropyridine avec l'ammoniac

<u>Application 2</u>. Etude théorique basée sur les indices de réactivité de la S_NAr des di/tri/tetra, Fluoro- et Chloro- pyridines

 Les principales conclusions et les perspectives plausibles de ce travail sont données à la fin du manuscrit.

Références :

[1] (a) C. Sundberg, chimie organique avancée, De boeck, **1996**. (b) J. March, Advanced Organic Chemistry, 2nd ed., de boeck, New York, **1984**.

- [2] S.Yoshida, K. Igawa, and K. Tomooka, J. Am. Chem. Soc. 134, 2012, 19358–19361
- [3] C. K. Ingold, Structure and Mechanism in Organic Chemistry, second Eddition, Cornell University Press, Ithaca, New York, 1969.
- [4] F. Terrier, Modern Nucleophilic AromaticSubstitution 2013 WileyGermany

[5] (a) Glukhovtsev, M. N.; Bach, R. D.; Laiter, S. *J. Org. Chem. 62*, **1997**, 4036–4046, (b)
Fernandez, I.; Frenking, G.; Uggerud, E. *J. Org. Chem. 75*, **2010**, 2971–2980. (c) Renfrew,
A. H. M.; Taylor, J. A.; Whitmore, J. M. J.; Williams, A. *J. Chem. Soc., Perkin Trans. 2* **1993**, No. 10, 1703–1704.

[6] R. W. Hoffinann, Dehydrobenzene and Cycloalkynes, Academic Press, New York, **1967**.

[7] C. F. Bernasconi, H. Zollinger, Organic Series One, Vol. 3, ed., ButteIWorths, London 1973; 1. A. Zoltewicz, Top. Curr. Chem. ,1975, 59-33; 1. Miller. Aromatic Nucleophilic Substitution, Elsevier, Amsterdam, 1968.

- [8] E. Buncel, R. L. Sobczak, R. G. Suhr, J. A. Vahner, J. Org. Chem. 39, 1974, 1839.
- [9] J.F. Bunnett and R.E. Zahler Aromatic Nucleophilic Substitution Reaction University of Washington, Seattle, Washington. **1951**.
- [10] (a) F. A. Bulat, E.Chamorro, P.Fuentealba, A. Toro-Labbe, J.Phys. Chem. 108, 2004, 342–349. (b) R. K. Roy, S.Krishnamurti, P. Geerlings, S. Pal, J. Phys. Chem. 102, 1998, 3746–3755. (c) C. Morell, A. Grand, A. Toro-Labbe, J. Phys. Chem. 109, 2005, 205–212. (d) M. Liljenberg, T. Brinck, B.Herschend, T Rein, S. Tomasi, and M. Svensson, J. Org. Chem. 77, 2012, 3262–3269. (e) M. Liljenberga, T. Brinckb,, B. Herschendc, T. Rein, G. Rockwell, M.Svenssond, Tetrahedron Letters 52, 2011, 3150–3153. (f) J.H. Stenlid, and T. Brinck, J. Org. Chem.2017.

Chapitre I

METHODES DE CALCULS QUANTO-CHIMIQUE

Introduction

En mécanique quantique, l'état d'une molécule qui comporte N noyaux et n électrons est décrit par une fonction d'onde ψ satisfaisant l'équation de Schrödinger (équation 1) [1]. Les fonctions ψ sont les fonctions propres et E sont les valeurs propres de l'hamiltonien H.

$$H \Psi = E \Psi \tag{1}$$

Pour cette molécule, l'hamiltonien H total, est défini par les 5 termes suivants :

- 1. Terme cinétique des électrons : $H_{1} = -\frac{\hbar^{2}}{2m_{e}}\sum_{i}^{n}\Delta_{i}$ 2. Terme cinétique des noyaux : $H_{2} = -\frac{\hbar^{2}}{2M_{K}}\sum_{K}^{N}\Delta_{K}$ 3. Terme de répulsions électrons -électrons : $H_{3} = +\sum_{i \neq j}^{n} \frac{e^{2}}{r_{e}}$
- 4. Terme de répulsions noyaux-noyaux : $H_4 = +\sum_{K > L}^{N} \frac{Z_K Z_L e^2}{r_{rr}}$
- 5. Terme d'attractions électrons-noyaux : $H_{5} = -\sum_{k=1}^{N} \sum_{i=1}^{n} \frac{Z_{k}e^{2}}{R_{k}}$

$$H = H_1 + H_2 + H_3 + H_4 + H_5$$
(2)

L'hamiltonien H peut se réduire à la forme suivante :

$$H = -\frac{\hbar^2}{2m_e} \sum_{i=1}^n \Delta_i - \sum_{K=1}^N \sum_{i=1}^n \frac{Z_K e^2}{R_{Ki}} + \sum_{i>j}^n \frac{e^2}{r_{ij}}$$
(3)

C'est la conséquence de l'approximation des noyaux fixes proposé par Born et Oppenheimer [2]. L'hamiltonien H est séparer en hamiltonien électronique et hamiltonien nucléaire.

1. Méthode de Hartree-Fock-Roothaan

a) Approximation de Hartree (champ mayen)

En 1927, Hartree [3] a proposé l'approximation du champ moyen. Celle-ci consiste à : « L'interaction de chaque électron e⁻(i) avec les autres électrons e⁻(j) avec (j) \neq (i) est remplacée par l'interaction de électron e⁻(i) avec un champ moyen créé par le reste des électrons ». Pour cela, on écrire l'équation suivante :

$$\sum_{j=1}^{n} \frac{e^2}{r_j} \cong \overline{U}(i) \tag{4}$$

L'approximation de Hartree permet d'écrire l'hamiltonien total (équation 3) comme la somme d'hamiltonien monoélectronique.

$$H = -\frac{\hbar^2}{2m_e} \sum_{i=1}^n \Delta_i - \sum_{K=1}^n \sum_{i=1}^n \frac{Z_K e^2}{R_{Ki}} + \sum_{i=1}^n \overline{U}(i)$$
$$H = \sum_{i=1}^n h^c(i) + \sum_{i=1}^n \overline{U}(i)$$
$$H = \sum_{i=1}^n \overline{h^c}(i)$$
(5)

Donc d'après le théorème des électrons indépendants on aura

The second s

$$E_{iot}(1,2,...,n) = \sum_{i=1}^{n} e(i)$$

$$\Psi_{iot}(1,2,...,n) = \prod_{i=1}^{n} \psi(i)$$
(6)

b) Méthode de Hartree et de Fock (*déterminant de Slater*)

La fonction d'onde polyélectronique de Hartree (équation 4)

- > Ne vérifie pas le principe d'indiscernabilité des électrons
- Ne vérifie pas le principe d'exclusion de Pauli.

Fock [4] a proposé d'écrire la fonction d'onde totale Ψ sous forme d'un déterminant de Slater [5] afin de tenir compte de ces deux principes.

$$\Psi_{T}(1,2,..n) = \frac{1}{\sqrt{n!}} \begin{vmatrix} \psi_{1}(1)\alpha(1)....\psi_{1}(n)\alpha(n) \\ \psi_{1}(1)\beta(1)....\psi_{1}(n)\beta(n) \\ \psi_{2}(1)\alpha(1)....\psi_{n}(n)\alpha(n) \\ \psi_{m}(1)\alpha(1)....\psi_{m}(n)\alpha(n) \\ \psi_{m}(1)\beta(1)....\psi_{m}(n)\alpha(n) \end{vmatrix}$$
(7)

c) Méthode de Hartree, de Fock et de Roothaan (OM-CLOA)

Dans cette méthode, Roothaan [6] a exprimé les orbitales moléculaire OM Ψ_k par une combinaison linéaire des orbitales atomiques OA φ_r .

$$\Psi_k = \sum_{r=1}^N C_{kr} \varphi_r \tag{8}$$

Avec C_{kr} sont les coefficients à faire varier et N étant le nombre d'OA combinées. En utilisant ma méthode de variation :

- En exprime l'énergie totale de la molécule en fonction des coefficients.
- En minimise le système séculaire suivant :

$$\sum_{r=1}^{N} C_{kr} \left(F_{rs} - \varepsilon_{k} S_{rs} \right) = 0 \qquad s = 1, 2, \dots N$$

$$\left\{ \begin{array}{l} F_{rs} = h_{rs}^{c} + \sum_{p=1}^{n} \sum_{q=1}^{n} P_{pq} \left\{ 2 \left\langle rs \mid pq \right\rangle - \left\langle rq \mid ps \right\rangle \right\} \\ S_{rs} = \int \varphi_{r}(i) \varphi_{s}(i) d\tau_{i} \\ h_{rs}^{c} = \int \varphi_{r}^{*}(i) h^{c} \phi_{s}(i) d\tau_{i} \end{array} \right.$$

$$(10)$$

Où r, s, p et q symbolisent les OA. Le termes $\langle rs | pq \rangle$ représente l'intégrale biélectroniques coulombiènne et $\langle rq | ps \rangle$ représente l'intégrale biélectroniques d'échange. L'intégrale de recouvrement est représentée par Srs.

2. Théorie DFT (Density Fonctionnel Theory)

L'objectif principal de la théorie de la fonctionnelle de densité (DFT) est de remplacer la fonction d'onde polyélectronique qui dépend de 4N variables par la densité électronique ρ qui dépend que de trois variables seulement [7].

Hohenberg et Kohn (H-K) ont établi une relation fonctionnelle entre l'énergie de l'état fondamental à sa densité électronique.

• Premier théorème (H-K)

Enoncé : « Pour une molécule à l'état fondamental, l'énergie, la fonction d'onde et les autres propriétés sont déterminé uniquement par la densité électronique $\rho_0(x,y,z) \approx [8]$

On note que l'hamiltonien électronique est comme:

$$H = -\frac{1}{2} \sum_{i}^{n} \Delta_{i} + \sum_{i > j}^{n} \frac{1}{r_{ij}} + \sum_{i}^{n} v(r_{i})$$
(11)

 $v(r_i)$ est une énergie potentielle d'attraction entre l'électron (i) et tout le noyaux.

$$v(\mathbf{r}_{i}) = -\sum_{\alpha} \frac{Z_{\alpha} e^{2}}{r_{i\alpha}}$$
(12)

Les noyaux sont des charges externes par rapport au système réel. Par conséquent $v(r_i)$ représente le potentiel externe exercé par les noyaux sur les électrons (i).

La somme des densités électroniques ponctuelle $\rho_0(\mathbf{r})$ est égal au nombre d'électron n.

$$\int \rho_0(\mathbf{r}) \, \mathrm{d}\mathbf{r} = \mathbf{n} \tag{13}$$

L'expression de l'hamiltonien peut s'écrire comme

$$H = T + V_{ne} + V_{ee}$$

Par conséquent on aura l'énergie comme,

$$E_{0}\left[\rho_{0}\right] = V_{ne}\left[\rho_{0}\right] + T\left[\rho_{0}\right] + V_{ee}\left[\rho_{0}\right]$$
(14)
$$Avec \quad V_{ne}\left[\rho_{0}\right] = \int \rho_{0}(r)v(r)dr$$
(15)

Cependant on obtient :

$$E_0\left[\rho\right] = \int \rho_0\left(r\right) v(r) dr + F\left[\rho_0\right]$$
(16)

Le premier théorème de (H-K) permettra de calculer l'énergie E_0 et les autres propriétés si on peut construire la fonctionnelle $F[\rho_0]$

$$F\left[\rho_{0}\right] = T\left[\rho_{0}\right] + V_{ee}\left[\rho_{0}\right] \qquad \text{(fonctionnelle inconnue)} \tag{17}$$

• Deuxième théorème de (H-K)

Enoncé : « Pour n'importe quelles densité électronique d'essai $\tilde{\rho}(\mathbf{r})$ qui satisfait les relations $\tilde{\rho}(\mathbf{r}) \ge 0$ et $\int \tilde{\rho}(\mathbf{r}) d\mathbf{r} = \mathbf{n}$, on aura la relation suivante $E_0 \le E[\tilde{\rho}]$ (18)

La question qu'on peut se poser est : quelle est la meilleure densité ? la meilleure densité est celle qui donne l'énergie minimum. Une densité d'essai $\tilde{\rho}(\mathbf{r}) \neq \rho_0(r)$ ne peut donner une énergie inférieure.

b) Équation de *Kohn* et *Sham* (K-S)

La méthode de (K-S) représente une méthode pratique pour déterminer l'énergie comme fonctionnelle de la densité [9]. Dans cette méthode, on considère deux systèmes : système réelle (molécule réelle) et système fictif (système de référence noté s) En 1965, Kohn et Sham ont élaboré une méthode pratique pour trouver l'énergie E₀ à partir de la densité ρ_0 . Ils ont considéré un système fictif de référence, noté s, constitué par les n électrons non interagissants. Le système de référence est choisi de telle façon à avoir :

$$\rho_{\rm s}(r) = \rho_0(\mathbf{r}) \tag{19}$$

l'hamiltonien de système de référence peut s'écrit comme

$$\hat{H}_{s} = \sum_{i=1}^{n} \left[-\frac{1}{2\nabla_{i}^{2}} + v_{s}(r_{i}) \right] = \sum_{i=1}^{n} h_{i}^{KS}$$
(20)

$$\mathbf{h}_{i}^{KS} = -1/2\nabla_{i}^{2} + \mathbf{v}_{s}(\mathbf{r}_{i})$$
(21)

Par conséquent, les équations de Kohn et Sham, pour l'électron i, peuvent s'écrire comme suit :

$$h_i^{KS} \theta_i^{KS} = \varepsilon_i^{KS} \theta_i^{KS}$$
(22)

 θ_i^{KS} représente les orbitales de Kohn et Sham de l'électron i.

c) Terme d'échange-corrélation

Soit ΔT la différence de l'énergie cinétique entre des électrons du système réel
 T[ρ] et des électrons du système de référence *T_s*[ρ]

$$\Delta T = T[\rho] - T_s[\rho] \tag{23}$$

• Soit ΔV_{ee} la différence entre la vraie répulsion électron-électron $V_{ee}[\rho]$ et la répulsion coulombienne entre deux distributions de charge ponctuelle $1/2 \iint \frac{\rho(r_1)\rho(r_2)}{r_{12}} dr_1 dr_2$ tel que $\Delta V_{ee} = V_{ee}[\rho] - 1/2 \iint \frac{\rho(r_1)\rho(r_2)}{r_{12}} dr_1 dr_2$ (24)

L'énergie s'écrit alors :

$$E_{v}[\rho] = \int \rho(r)v(r)dr + T_{s}[\rho] + \frac{1}{2} \iint \frac{\rho(r_{1})\rho(r_{2})}{r_{12}}dr_{1}dr_{2} + \Delta T[\rho] + \Delta V_{ee}[\rho]$$
(25)

La fonctionnelle d'énergie d'échange- corrélation est définie comme suit :

$$E_{xx}[\rho] = \Delta T[\rho] + \Delta V_{xx}[\rho]$$
⁽²⁶⁾

Le terme V_{xc} représente la différence principale entre les différentes fonctonelles en DFT. Il est défini comme

$$v_{xc}(r) = \frac{\partial E_{xc}[\rho(r)]}{\partial \rho(r)}$$
(27)

Plusieurs approximations ont été proposées calculer le potentiel d'échange-corrélation

 V_{xc} . On cite par exemple :

- LDA: approximation de la densité locale.
- Méthode Xα.
- LSDA: approximation de la densité de spin locale.
- ➢ GGA : approximation du Gradient Généralisé.

d) Fonctionnelle hybride B3LYP

La fonctionnelle hybride B3LYP (B pour Becke ; 3 pour trois paramètres d'ajustement « a_0 ; a_x et a » ; L pour Lee ; Y pour Yang et P pour Parr) consiste à une hybridation de plusieurs fonctionnelles de différentes méthodes comme le montre l'expression suivante :

$$E_{xc}^{B3LYP} = (1 - a_0 - a_x)E_x^{LSDA} + a_0E_x^{exact} + a_xE_x^{B88} + (1 - a_c)E_c^{VWN} + a_cE_c^{LYP}$$
(28)

Les valeurs des trois paramètres d'ajustement sont [10]:

 $a_0~=0.20$; $a_{\rm x}=0.72$; $a_{\rm c}=0.81$

e) Fonctionnelle M06-2x

En 2005, Y. Zhao [11] ont proposé des nouvelles fonctionnelle d'échange et corrélation avec une précision élevée pour les composés métalliques et non métalliques, la cinétique et les interactions non covalentes, par exemple la fonctionnelle M05 (noté M pour le *Minnesota,* un état du Midwest des États-Unis et 05 pour l'année 2005). En 2007, Y. Zhao et D. G. Truhlar [12] ont proposés deux nouvelles fonctionnelles M06 et M06-2X. La fonctionnelle M06 est paramétrisée pour les métaux de transition et les non-métaux. La fonctionnelle M06-2X utilise un double échange non local (2X), et elle n'est paramétrisée que pour les non-métaux.

Les fonctionnelles M06 et M06-2X dépendent de trois variables :

- La densité de spin ($\rho\sigma$),
- Le gradient de densité de spin réduit ($x\sigma$) :

$$x_{\sigma} = \frac{\left|\nabla\rho_{\sigma}\right|}{\rho_{\sigma}^{4/3}} \quad \sigma = \alpha, \beta$$
(29)

• La densité d'énergie cinétique de spin $(\tau \sigma)$:

$$\tau = \frac{1}{2} \sum_{i}^{occup} \left| \nabla \psi_{i\sigma} \right|^2$$
(30)

Les méthodes M06 et M06-2X traitent la corrélation de spin opposé et de spin parallèle différemment. L'énergie de corrélation totale pour la méthode M06 est donnée par

$$E_c = E_c^{\alpha\beta} + E_c^{\alpha\alpha} + E_c^{\beta\beta}$$
(31)

Les fonctionelles M06-2x et M05-2x sont des méthodes recommandées pour les calculs thermochimie, l'étude de la cinétique et les interactions non covalent [12].

Références du chapitre I :

- [1] E. Schrödinger, Ann. Phys. Leipzig., 76, **1926**, 361.
- [2] M. Born et J. R. Oppenheimer, Ann. Phys., 84, 1927, 457.
- [3] V. Minkine, B. Simkine, R. Minaev, Théorie de la structure moléculaire, Edition Mir, Moscou, 1982.
- [4] V. Fock, Z. Physik., 61, **1930**, 126.
- [5] J. C Slater, Phys. Rev., 34, **1929**, 1293; 38, **1931**, 38.
- [6] C. C. Roothaan, Rev. Mod. Phys., 23, 1951, 69.
- [7] (a) R. G. Parr and W. Yang «Density Functional Theory», Oxford University Press, 1989;
 - (b) L. J. Bartolotti and K. Flurchick, Rev. Comput. Chem., 7, 1996, 187;
 - (c) St-Amant. Rev. Comput. Chem., 7, 1996, 217;
 - (d) T. Ziegler. Chem. Rev., 91, **1991**, 651;
 - (e) E. J. Baerends et O. V. Gritsenko. J. Phys. Chem., 101, 1997, 5383.
- [8] P. Hohenberg and W. Kohn, Phys. Rev., 136, 1964, B846.
- [9] W. Khon and L. J. Sham, Phys. Rev., 140, **1965**, A1133.
- [10] A. D. Becke, J. Chem. Phys., 98, **1993**, 5648.
- [11] Y. Zhao, N.E. Schultz, and D. G. Truhlara, J. Chem. Phys, 123, 2005, 161103
- [12] Y. Zhao and D. G. Truhlar, *J. Phys. Chem.*, 110, **2006**, 5121-29.
- [13] J. C. Slater, J. Chem. Phys., 36, **1930**, 57.
- [14] S. F. Boys, Proc. Roy. Soc., A200, **1950**, 542.
- [15] A. V. Marenich, C. J. Cramer and D. G. Truhlar, *J. Phys. Chem. B.*, 113 ,2009, 6378.

Chapitre II

Approches Théoriques de la Réactivité Chimique

Introduction

Pour étudier les processus d'intérêt chimique, la chimie théorique, computationnelle, combine les méthodes mathématiques avec les lois fondamentales de la physique. Le comportement d'une molécule ou d'un atome est souvent caractérisé par quelques paramètres, indices, pour prédire la réactivité chimique. Les théories quantiques de la réactivité chimique peuvent être divisées en deux catégories :

1- Les méthodes statiques: la réactivité est exprimée par indices caractérisant la molécule à
l'état isolé. On peut citer par exemple :

- ✓ Théorie des orbitales moléculaires frontières FMO (*Frontier Molecular Orbital*) [1].
- ✓ Principe HSAB global (*Hard and Soft Acids and Bases*) [2].
- ✓ Indices de réactivité dérivant de la DFT conceptuelle [3].

2- Les méthodes dynamiques: la réactivité est exprimée par des indices caractérisant la molécule en état d'interaction avec d'autres molécules. On peut citer par exemple :

✓ La théorie de l'état de transition (TST) [4,5].

II.1. Concepts chimiques et indices de réactivité

II.1.1 Indices globaux dérivant de la DFT conceptuelle

La DFT, théorie de la fonctionnelle de densité, constitue une vraie source de concepts chimiques comme μ (potentiel chimique électronique), η (dureté), ω (électrophilie), N (nucléophilie), ...etc. La DFT est fondée sur le principe variationel. En effet, l'énergie d'un système est une fonctionnelle de la densité électronique.

$$E = E[\rho] \tag{1}$$

En tenant compte de la contrainte suivante (voir équation 2), on minimise l'énergie *E* pour obtenir la densité optimale:

$$\int \rho(r) dr = n \tag{2}$$

Ensuite, cette contrainte est introduite via la méthode de multiplicateur de Lagrange. En se basant sur la méthode de variations on obtient la condition variationnelle suivante :

$$\delta\left\{E[\rho(r)] - \mu\left[\int \rho(r)dr - N\right]\right\} = 0$$
(3)

Avec μ représente le multiplicateur de Lagrange, on a

$$\mu = \nu(r) + \frac{\delta F_{Hk}}{\delta \rho} \tag{4}$$

Le terme v(r) exprime le potentiel externe. La quantité F_{Hk} représente la fonctionnelle de Hohenberg et Kohn contenant les opérateurs de l'énergie cinétique des électrons et des répulsions interélectroniques [6].

a) Potentiel chimique électronique (μ)

Selon Parr [7] et Pearson [8], le multiplicateur de Lagrange μ (voir équation 4) peut être défini comme le *potentiel chimique électronique*. Cette définition est exactement la même déduite par Pearson.

$$\mu = \left(\frac{\partial E}{\partial N}\right)_{\nu} \tag{5}$$

Le potentiel chimique électronique μ mesure la tendance des électrons à s'échapper d'une molécule. Cette quantité peut être calculée [7,9] à partir des énergies des orbitales moléculaires frontières ϵ HOMO et ϵ LUMO comme suit :

$$\mu = \left(\varepsilon_{\text{HOMD}} + \varepsilon_{\text{LUMD}}\right)/2 \tag{6}$$

b) Dureté globale et mollesse globale (η)

La première dérivée partielle du potentiel chimique électronique μ par rapport aux nombre d'électrons total N est définie comme la *dureté* globale η du système [9]. La dureté exprime la résistance d'un système au changement de son nombre d'électrons.

$$\eta = \left(\frac{\partial \mu}{\partial N}\right)_{\nu(r)} = \left(\frac{\partial^2 E}{\partial N^2}\right)_{\nu(r)}$$
(7)

La dureté globale η peut être calculée à partir des énergies εномо et ειυмо comme suit:

$$\eta = \left(\varepsilon_{\text{LUMO}} - \varepsilon_{\text{HOMO}}\right) \tag{8}$$

c) Indice d'électrophilie globale (ω)

L'électrophilie globale ω [10] est défini comme la stabilisation énergétique due au transfert de charge :

$$\omega = \frac{\mu^2}{2\eta} \tag{9}$$

II.1.2. Indices locaux de réactivité dérivant de la DFT conceptuelle

Le principe des acides et bases durs et mous, HSAB (*Hard and Soft Acids and Bases*), appliqué dans un sens <u>global</u> nous permet de calculer pour une molécule μ (potentiel chimique électronique), η (dureté globale), ω (électrophilie), ...etc. Ces indices caractérisent le système moléculaire à l'état isolé. Par ailleurs, les chimistes s'intéressent à la réactivité chimique c'est à dire aux interactions entre molécules. Cependant, pour étudier les interactions entre molécules, des chercheurs [11-13] ont appliqué le principe HSAB pour des atomes (sens local).

a) Indices de Fukui (f_k)

La première dérivée de $\rho(\mathbf{r})$ (densité électronique) d'un système par rapport à N (nombre d'électrons) à un potentiel externe v(r) constant est définie comme la *fonction de Fukui* (f_k) correspondant au site k d'une molécule. Cette fonction [14] est définie comme :

$$f_{k} = \left[\frac{\partial \rho(r)}{\partial N}\right]_{\nu(r)}$$
(10)

Yang et Mortier [15] ont proposé une forme condensée de ces fonctions. Par exemple, pour une attaque nucléophile, l'indice de fukui électrophilique f_k^+ est définie comme:

$$f_k^+ = \left[q_k(N+1) - q_k(N)\right]$$
(11)

Avec $q_k(N)$ représente la population électronique de l'atome k dans la molécule neutre et $q_k(N+1)$ représente la population électronique de l'atome k dans la molécule anionique. Pour les réactions contrôlées par les frontières, Il a été montré [16] qu'une grande valeur de l'indice de Fukui f_k signifie une grande réactivité du site.

b) Electrophilie locale (\mathcal{O}_k^{\dagger})

Le site le plus électrophile est caractérisé par une grande valeur de l'indice ω_k^f [17]. Cet indice est défini comme le produit de ω (indice d'éléctrophilie globale) et f_k^+ (indice de fukui électrophilique).

$$\omega_k^f = \omega f_k^+ \tag{12}$$

II.1.3 Fonction de Parr électrophilique P_k^+

Sur la base de plusieurs études consacrées aux changements de densité d'électrons le long de la formation de liaison C-C dans les réactions polaires, Domingo et al. [18] ont proposé la fonction de Parr électrophilique $P^+(r)$, qui est donnée par l'équation suivante,

$$P^{+}(r) = \rho_{s}^{ra}(r)$$
 pour une attaque nucléophile (13)

Où ρ_S^{ra} (r) est la densité de spin atomique ASD (*atomic spin density*) de l'anion radical. Chaque ASD condensé aux différents atomes de l'anion radical fournit des fonctions locales électrophiles de Parr P_k^+ de la molécule neutre. L'indice d'électrophilie local ω_k^p a été défini comme suit:

$$\omega_k^p = \omega P_k^+ \tag{14}$$

II.2. Surface d'énergie potentielle (SEP)

II.2.1 Définition

La cinétique chimique est l'étude de la réaction chimique envisagée sous son aspect dynamique. L'intérêt de la cinétique chimique est double. En premier lieu, la cinétique présente un intérêt pratique immédiat. La connaissance des équations d'évolution temporelle d'un système chimique permet de prévoir la durée nécessaire à sa transformation dans des conditions données. En second lieu, la cinétique constitue pour le chimiste l'une des méthodes les plus générales pour obtenir des informations sur les *mécanismes* de la transformation d'un système chimique dans le cadre du modèle de la réaction chimique [19].

En général, pour une réaction chimique où on a des réactifs, des produits ou éventuels intermédiaires, il est préférable d'introduire une surface (diagramme multidimensionnel) qui représente la variation d'énergie de ce système en fonction des coordonnées des atomes impliqués dans la réaction.

Le chemin d'une réaction chimique est déterminé par la fonction d'énergie potentielle des mouvements des noyaux E(q) tel que q sont les coordonnées des N noyaux des réactifs. Pour obtenir la SEP, il faut résoudre l'équation de Schrödinger d'un très grand nombre de configurations nucléaires pour les (3N-6) variables de vibration. Chose qui est pratiquement impossible pour les molécules à plusieurs atomes [20].

La courbe présentée dans la figure 1 [21] ci-dessous représente la variation de la surface d'énergie potentielle en fonction de la coordonnée de réaction :

La figure 1 présente plusieurs et différents types de points critiques au sens topologique du terme. Pour caractériser et déterminer la nature de ces points sur la courbe, il faut calculer les (3N-6)² dérivées secondes de l'énergie potentielle par rapport aux coordonnés de la molécule. En d'autre terme, il faut déterminer la matrice hesienne.

II.2.2. Matrice hessienne

Un hessien d'une fonction f est une matrice symétrique des dérivées secondes de f par rapport aux variables X notée H tel que

	$\partial^2 f$	$\partial^2 \mathbf{f}$	$\partial^2 \mathbf{f}$	
	$\partial \mathbf{x}_1^2$	$\partial x_1 \partial x_2$	$\frac{\partial \mathbf{x}_1 \partial \mathbf{x}_n}{\partial \mathbf{x}_1 \partial \mathbf{x}_n}$	
	$\partial^2 \mathbf{f}$	$\partial^2 \mathbf{f}$	$\partial^2 \mathbf{f}$	
Η	$\partial \mathbf{X}_{2} \partial \mathbf{X}_{1}$	$\partial \mathbf{x}_{2}^{2}$	$\partial \mathbf{x}_2 \partial \mathbf{x}_n$	
40				
	$\partial^2 f$	$\partial^2 \mathbf{f}$	$\dots \underline{\partial^2 \mathbf{f}}$	
	$\partial \mathbf{X}_{n} \partial \mathbf{X}_{1}$	$\partial X_n \partial X_2$	$\partial \mathbf{x}_{n}^{2}$	

(15)

On note que chaque élément i, j de H est H_{ij}

$$\mathbf{H}_{ij} = \partial^2 \mathbf{f}(\mathbf{x}) / \partial \mathbf{x}_i \partial \mathbf{x}_j \tag{16}$$

II.2.3. Points caractéristiques d'une SEP

La matrice hessienne est utilisée pour la caractérisation des points sur la SEP. La figure 2 [22] illustre différentes nature des points stationnaires. Les minimums, globaux ou locaux, correspondent à des géométries stables du système moléculaire. Les points représentatifs des réactifs, des produits et des intermédiaires réactionnels correspondent à des minimums de la SEP.

Figure 2.

II.2.4. Chemin d'énergie minimum et coordonnée de réaction

Il existe une infinité de chemins sur la SEP permettant de relier les points représentatifs des réactifs et les points représentatifs des produits. Tous ces chemins sont appelés <u>chemins de réaction</u>. La coordonnée de réaction représente les géométries des molécules le long du chemin de réaction.

II.2.5. Etat de transition TS (*transition state*)

Le maximum d'énergie potentielle selon les chemins d'énergie minimum correspond à un point de selle d'ordre 1 de la SEP. Il correspond à un maximum d'énergie potentielle selon la coordonnée de réaction, et à un minimum d'énergie selon les 3N-7 autres coordonnées. Ce point représente un *état de transition*. Un état de transition possède une et une seule

fréquence imaginaire de vibration. Un point de selle d'ordre n (n \ge 2) possède n fréquences imaginaires et n'est pas un état de transition.

II.3. Théorie de l'état de transition TST (*Transition State Theory*)

La théorie de l'état de transition TST a été proposée par H. Eyring et par M. G. Evans et M. Polanyi [4,5,23,24]. La TST est la plus importante théorie à partir de laquelle on peut comprendre la dynamique et le mécanisme d'une réaction chimique [4,5,23]. Pour les chimistes, elle est connue comme la TST (*transition state theory*), *théorie du complexe activé*, *TST classique* [4,5,24]. La courbe présentée dans la figure ci-dessous [21] représente la variation de la SEP en fonction de la coordonnée de réaction.

Figure 2. Illustration schématique du chemin de la réaction

II.3.1. Énergie d'activation et équation d'Arrhenius

Différente relations ont été proposées pour expliquer la dépendance en température de la constante de vitesse d'une réaction. L'expression généralement retenue est la relation établie par Arrhénius [25]. En utilisant les travaux de Boltzmann, Arrhénius exprime la constante de vitesse d'une réaction chimique sous forme différentielle :

$$\frac{d\ln k}{dT} = \frac{E_a}{RT^2}$$

Dans le quelle :

E^{*a*} est appelée l'énergie molaire d'activation.

R est la constante des gaz parfaits.

T la température absolue en K.

Si l'énergie molaire d'activation E_a est indépendante de la température, alors la relation (16) s'intègre en :

$$k = A \exp\left(-\frac{E_a}{RT}\right) \tag{18}$$

II.3.2. Prédiction de la vitesse de réaction par la TST

L'objectif de la TST [26-28] est de donner une expression mathématique pour les constantes de vitesse des réactions élémentaires. Elle est basée sur les hypothèses suivantes:

- Il existe une surface située au niveau de TS divisant la surface d'énergie potentielle entre la région des réactifs et la région des produits. Les trajectoires traversant cette surface en provenance de la région des réactifs vers la région des produits ne peuvent conduire qu'à la formation des produits.
- Même lorsque les réactifs et les produits ne sont pas à l'équilibre chimique, les réactifs sont en équilibre avec le TS.
- Les molécules de réactifs sont à l'équilibre thermique dans leurs régions.
- La réaction chimique est électroniquement adiabatique, et ceci même au voisinage de l'état de transition.

(17)

Dans ces conditions, la constante de vitesse *k* est donnée par l'équation d'Eyring :

$$k = \frac{k_{B}T}{h} \exp\left(\frac{\Delta^{z}S}{R}\right) \exp\left(\frac{\Delta^{z}H}{RT}\right) = \frac{k_{B}T}{h} \exp\left(\frac{\Delta^{z}G}{RT}\right)$$
(19)

Avec

 k_B : constante de Boltzmann,

- *h* : constante de Planck,
- R : constante des gaz parfaits,

T : température,

 ΔS^{\neq} : entropie libre d'activation

 ΔH^{\neq} : enthalpie d'activation

 ΔG^{\neq} : enthalpie libre d'activation

Les valeurs d'activation des grandeurs thermodynamiques correspondent à leurs variations molaires pour aller des réactifs aux TS.

II.3.3 Coordonnées vibrationnelles normales et la fréquence imaginaire :

En utilisant le développement de Taylor de deuxième ordre, l'énergie potentielle U peut s'écrire comme :

$$U(x) \approx U(x_0) + \left(\frac{dU}{dx}\right)^t (x - x_0) + \frac{1}{2} (x - x_0)^t \left(\frac{d^2 U}{dx^2}\right) (x - x_0)$$
(20)

Avec x₀ représente un point stationnaire. Donc la première dérivée s'annule et l'équation (20) deviendra

$$U(\Delta x) = \frac{1}{2} \Delta x' F \Delta x$$
(21)

On note que F représente une matrice de $3N_{atomes} \times 3N_{atomes}$ contenant les deuxièmes dérivées de l'énergie. Elle est donnée dans l'équation (15).

Par ailleurs, l'équation nucléaire de Schrödinger pour un système de N_{atome} est donnée par l'équation (22)

$$\left[-\sum_{i=1}^{3N_{atom}} \left(\frac{1}{2m_i} \frac{\partial^2}{\partial x_i^2}\right) + \frac{1}{2} \Delta x^t F \Delta x\right] \Psi_{nuc} = E_{nuc} \Psi_{nuc}$$
(22)

La diagonalisation de la matrice F ce fait par plusieurs étape dans les programmes de modélisation moléculaire. En effet, la diagonalisation produit ainsi les valeurs propres (*eigenvalues*) ε_i et les vecteurs propres (*eigenvectors*) q_i .

Dans ce système de coordonnée *x*, *y*, *z* on aura un autre système de coordonnée q qui représentent *les coordonnées vibrationnelles normales*. L'équation Schrödinger (22) deviendra alors dans ce nouveau sytème de coordonnée

$$\sum_{i=1}^{3N_{\text{nuc}}} [\mathbf{h}_i(q_i)] \Psi_{\text{nuc}} = \mathbf{E}_{\text{nuc}} \Psi_{\text{nuc}}$$
(24)

L'équation (22) de dimension 3N peut être séparée pour avoir 3N équations de Schrödinger. On remarque l'équation (24) représente une fonction d'un *oscillateur harmonique standard*, en coordonnées q.

Les solutions des équations (24) donneront les fréquences vibrationnelles comme indiqué dans l'équation (25)

$$\nu_i = \frac{1}{2\pi} \sqrt{\varepsilon_i}$$
(25)

On remarque la fréquence pour la vibration le long du vecteur propre pour la valeur propre *négative* sera *imaginaire*, comme c'est la racine carrée d'un nombre négatif (équation (25)). Ce vecteur propre suit la direction de la descente principale de l'état de transition TS vers les réactifs et les produits.

Le calcul des fréquences vibrationnelles a permis de classifier un point stationnaire sur la SEP trouvée par une méthode d'optimisation de géométrie comme un minimum local (toutes les fréquences vibrationnelles sont réelles) et comme un point de selle d'ordre n (n fréquences imaginaires).
Références du chapitre II :

- K. Fukui, *Theory of Orientation and Stereoselection*, Springer-Verlag Berlin Heidelberg New York, 1975.
- [2] (a) R. G. Pearson, *J. Am. Chem. Soc.* 85, **1963**, 3533.;
 (b) R. G. Pearson, "*Chemical Hardness*", Wiley-VCH, Weinheim **1997**
- [3] P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev., 103, 2003, 1793.;
- [4] H.Eyring, M. Polanyi, J. Phys, Chem, 12, 1931, 279.
- [5] Eyring H., J. Chem. Phys., 3, 1935, 107.
- [6] R. G. Parr, R. A. Donelly, M. Levy, W. E. Palk. J. Chem. Phys., 68,1978, 3801.
- [7] R. G. Parr, W. Wang, Density Theory for atoms and Molecules, Oxford University Press: Oxford, (1989).
- [8] R. G. Pearson, J. Songstad, J. Am. Chem. Soc., 89,1967, 1827.
- [9] R. G. Pearson, J. Songstad, J. Am. Chem. Soc., 89, 1967, 1827.
- [10] R G. Parr, L V .Szentpaly, S Liu, J. Am.Chem. Soc., 121, **1999**, 1922.
- [11] P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev., 103, 2003, 1793.
- [12] P. Geerlings, F. De Proft, Int. J. Mol. Sci., 3, 2002, 276.
- [13] A. K. Chandra, M. T. Nguyen, Int. J. Mol. Sci., 3, **2002**, 310.
- [14] R. G. Parr, W. Yang, J. Am. Chem. Soc., 106, 1984, 4049.
- [15] W. Yang, W. J. Mortier, J. Am. Chem. Soc., 108, **1986**, 5708.
- [16] P. K. Chattaraj, S. Nath, A. B. Sannigrahi, J. Phys. Chem., 98, 1994, 9143.
- [17] (a) L.R. Domingo, M.J. Aurell, P. Perez, R. Contreras, Tetrahedron, 58 ,2002, 4417
 (b) P. Perez, L.R. Domingo, A.J. Aurell, R. Contreras, Tetrahedron, 59,2003, 3117;
 (c) P. Pérez, L.R. Domingo, A. Aizman, R. Contreras, « The electrophilicty index in organic chemistry. In Theoretical Aspects of Chemical Reactivity", Toro-Labbé, A. Ed. Elsevier Science: Oxford, Vol. 19,2007, pp 139.
- [18] L. R.Domingo, P.Pérez, J. A. Sáez. *RSC Adv.*3, **2013**, 1486–1494.
- [19] B. Fosset, J.-B. Baudin, F. Lahitète, *Chimie tout-en-un*, Dunod, Paris, **2013**.
- [20] I. N. Levine, Quantum Chemistry, Fifth Edition, Prentice-Hall, 2000.

- [21] (a) F. Jensen; Introduction to Computational Chemistry, first Edition, Wiley, 1999;
 (b) F. Jensen; Introduction to Computational Chemistry, Second Edition, Wiley, 2007.
- [22] J.B. Foresman, E. Frisch, *Exploring chemisty with Electronic Stucture Mehtods*, *Gaussian 03* (Gaussian, Inc., Wallingford, CT, 2003).
- [23] H. Eyring, S.H. Lin, S.M. Lin, Basic chimical kinetics, John Wiley & Sons, 1980.
- [24] M. G. Evans et M. Polanyi, "Some applications of the transition state method to the calculation of reaction velocities, especially in solution", Trans. Faraday Soc., 31, 1935, 875.
- [25] S. Arrhenius, Z. *Phys. Chem.*, **1889**, *4*, 226, "Selected Readings in Chemical Kinetics", M. H.Back, K. J. Laidler, Eds. Pergamon: Oxford, **1967**.
- [26] D. G. Truhlar, B. C. Garrett et S. J. Klippenstein, "Current status of Transition-State Theory", J.Phys. Chem. 100,1996, 12771.
- [27] E. Wigner, "The transition state method", Trans. Faraday Soc., 34,1938, 29-41.
- [28] K. J. Laidler, "Theories of chemical reaction rates", McGraw-Hill series in advanced chemistry, McGraw-Hill Inc., 1969.

Chapitre III

Applications,

Résultats et discussions

APPLICATION I

Etude théorique du mécanisme et de la régiosélectivité de la substitution nucléophile aromatique du perfluoropyridine et perchloropyridine avec l'ammoniac

1. Introduction

Expérimentalement, Chambers et al . [1] ont étudiée l'influence de l'azote sur le cycle aromatique. Ils ont constaté que la substitution nucléophile aromatique (S_NAr) de perfluropyridine (**Py-F**) avec le nucléophile ammoniac (**Nu**) (réaction #1) donne exclusivement (100%) le 2,3,5,6-tetrafluoropyridin-4-amine (**P1**), le régioisomère para (position 4) (voir schéma 1).

Schéma 1. S_N Ar de perfluropyridine Py-F avec l'ammoniac Nu (réaction #1).

Expérimentalement, Flowers et al. [2] ont synthétisé différentes réactions de perchloropyridine (**Py-Cl**). Ils ont trouvé que la S_NAr de (**Py-Cl**) avec l'ammoniac (**Nu**) (réaction # 2) donne le 2,3,5,6-tetrachloropyridin-4-amine (**P1**), le régioisomère para (position 4) comme produit majoritaire de la réaction (voir schéma 2).

Schéma 2. S_N Ar de perchloropyridine Py-Cl avec l' ammoniac Nu (réaction #2).

2. Méthodologie des calculs

- Les géométries d'équilibre ont été optimisées au niveau de calcul B3LYP/6-31G(d,p) en utilisant le programme Gaussian 09W [3] et visualisées avec GaussView [4].
- Les états de transition (TSs), ont été localisés au niveau B3LYP/6-31G(d,p).
 Leur existence a été confirmée par la présence d'une seule fréquence imaginaire dans la matrice hessienne.
- Le calcul IRC [5] a été effectué afin de montrer que le TS est bien relié aux deux minima réactifs, ou éventuel intermédiaire, et produits.
- L'effet du solvant a été pris en compte par une optimisation des géométries en utilisant le modèle SMD (Density-based Solvation Model) de Truhlar [6]. Étant donné que la réaction #1 a été effectuée dans l'eau et la réaction #2 dans l'éthanol, nous avons pris la valeur de ε (78.3553 et 24.8520 respectivement) comme constante diélectrique du milieu.
- Le groupe du Truhlar a proposé certaines fonctionnelles, telles que la M06-2X [7], pour les calculs thermodynamiques. Par conséquent, les géométries d'équilibre ont été ré-optimisées au niveau de calcul M06-2X/6-31G(d,p) pour les calculs thermochimie. Les enthalpies, entropies et énergies libres ont été calculées avec les formules dérivant de la thermodynamique statistique standard [8] et les fréquences de vibration calculées au même niveau ont été pondérées par un facteur de 0,96.
- Les populations électroniques atomiques ont été calculées en utilisant l'analyse de population de Mulliken (MPA) [9] et naturelle (NPA) [10]. Les indices de réactivité dérivant de la DFT conceptuelle ont été calculés en utilisant les formules (11) et (12) (voir chapitre1).
- Les indices de Parr correspondant à l'attaque nucléophile pour les deux réactions (réaction#1 et réaction#2) ont été calculé en utilisant les formules (13) et (14) avec la méthode B3Lyp/6-31G(d,p).

3. Résultats et discussion

3.1. Prédiction de la régiosélectivité en utilisant les indices de réactivité

Dans le tableau 1, nous avons reporté les énergies HOMO, LUMO, potentiels chimiques électroniques, μ , duretés chimiques, η , et électrophilie globale, ω , exprimés en eV pour l'ammoniac Nu et la pyridine Py-F et Py-Cl . La différence d'électrophilie $\Delta \omega$ qui définie la polarité d'une réaction est donné dans ce tableau.

Tableau 1.

Réactifs	HOMO (u.a)	LUMO (u.a)	μ(eV)	η (eV)	ω (eV)	$\Delta\omega$ (eV)
Nu	-0.25317	0.07985	-2.36	9.06	0.31	_
Py-F	-0.27316	-0.05359	-4.44	5.97	1.65	1.34
Py-Cl	-0.27168	-0.07498	-4.71	5.35	2.08	1.77

Les indices de réactivité globaux (voir tableau 1) montre que :

- La pyridine Py-F et Py-Cl se comportent comme des électrophiles vis-à-vis le nucléophile ammoniac NH₃. En effet, l'indice d'électrophilie globale (Py-F, ω= 1.65 eV et Py-Cl, ω=2.08 eV) est plus élevé que celui de l'ammoniac (ω=0.31 eV).
- ► La pyridine Py-Cl est plus électrophile que Py-F (ω =2.08 > 1.65 ev) donc la réaction # 2 est plus polaire que la réaction #1 ($\Delta\omega$ =1.77 > 1.34 eV). Par conséquent la S_NAr de la Py-Cl avec l'ammoniac Nu sera plus rapide que la S_NAr de la Py-F avec ce nucléophile. En effet, les calculs des barrières d'activation (voir paragraphe 3.2) vérifient bien ces conclusions.

Les indices d'électrophilie local ω_k^f calculés avec les fonctions de Fukui électrophiliques f_k^+ sont définis par les équations (11 et 12) respectivement dans le chapitre 2 de ce manuscrit. Ces quantités ont été calculées avec les analyses de population de Mulliken (MPA) et naturelle (NPA). Les valeurs sont données dans le tableau 2.

	Atome	MPA		NPA	
Réactifs		f_k^+ ω_k^f		f_k^+	\mathcal{O}_k^f
	C2	0.09537	0.19	0.09537	0.16
Pv-F	C3	0.06145	0.12	0 .06145	0.10
1 y 1	C4	0.20846	0.27	0.20846	0.34
	C2	0.04611	0.05	0.04611	0.10
P_{T} -C1	C3	0.02911	0.02	0.02911	0.06
	C4	0.16479	0.16	0.16479	0.34

Tableau 2. Indices de Fukui f_k^+ et él ectrophilie local ω_k^f pour les atomes C2, C3 et C4 des réactifs *Py-F* et *Py-Cl.*

L'analyse du tableau 2 montre qu'avec les deux populations MPA et NPA et pour les deux réactifs (Py-F et Py-Cl), l'atome C4 est le site le plus électrophile de la pyridine. En effet, l'atome C4 possède la valeur la plus élevée de \mathcal{O}_k^f . Par conséquent la SNAr du nucléophile NH₃ est orientée vers la position *para* de la Py-F et Py-Cl. Ceci est en accord avec les résultats obtenus expérimentalement pour la réaction # 1 [1] et la réaction # 2 [2].

Les indices d'électrophilie locale \mathcal{O}_k^p calculés avec les fonctions de Parr électrophiliques P_k^+ sont définis par les équations (13 et 14) respectivement dans le chapitre 2 de ce manuscrit. Les valeurs sont données dans le tableau 3.

Les densités de spin des atomes (C2, C3, C4 et C6) des anions radical et les valeurs d'électrophile local P_k^+ des réactifs Py-F et Py-Cl sont représentés dans la figure 1.

Réactifs	Atome	P_k^+	ω_k^{p}			
	C2	0.121	0.200			
Py-F	С3	-0.022	-0.036			
	C4	0.466	0.770			
	C2	0.083	0.172			
Py-Cl	С3	0.008	0.017			
	C4	0.488	1.016			

Tableau 3. Fonction de Parr P_k^+ et électrophilie local ω_k^p pour les atomes C2, C3 et C4 des réactifs *Py-F* et *Py-Cl.*

La figure 1 et l'analyse du tableau 3 montrent que l'atome C4 est le site le plus électrophile de la pyridine possédant ainsi la valeur la plus élevée de \mathcal{O}_k^p pour les deux réactifs (Py-F et Py-Cl). Par conséquent la S_NAr de l'ammoniac est orientée vers la position *para* de la Py-F (réaction # 1) et Py-Cl (réaction # 2). Cela est en parfait accord avec les contestations expérimentales [1,2].

3.2. Analyse de la surface d'énergie potentielle

Pour comprendre le mécanisme et mettre en évidence la régiosélectivité (position *para*) de la SNAr de Py-F (réaction # 1) et Py-Cl (réaction # 2) avec le nucléophile Nu ammoniac nous avons appliqués la théorie de l'état de transition.

3.2.1. Etude de SNAr de la pyridine Py-F avec NH3 (réaction # 1) en phase gazeuse et en présence du solvant :

Afin d'expliquer la substitution du fluor porté par le carbone C4 par le nucléophile NH₃ c'est-à-dire l'orientation *para* observées expérimentalement, trois chemin régiosélective (*ortho/meta/para*) ont été élaboré pour la réaction #1 (voir schéma 3).

Schéma 3. SNAr de Py-F avec NH3 en phase gazeuse.

Dans le tableau 4, nous avons reporté les énergies des réactifs Py-F et NH₃, des états de transition TS1, TS2 et TS3 et des produits P1, P2, P3 et HF en phase gazeuse.

Tableau 4. Energies totales B3LYP/6-31G(d,p) (E, u.a.) et relative (ΔE , Kcal/mol) en phase gazeuse des points stationnaires des trois chemins régioisomériques de la S_NAr de PY-F avec NH3.

	E (u.a.)	ΔE (Kcal/mol)
Py-F	-744.430048	
NH3	-56.5577686	
TS1	-800.9348282	33.3
TS2	-800.9255674	39.1
TS3	-800.9323153	34.8
P1	-700.5767675	-10.3*
P2	-700.5721186	-7.4*
P3	-700.5684683	-5.1*
HF	-100.4274616	

*différences d'énergies des produits (P+HF) et réactifs

- Le schéma représentant la surface d'énergie potentielle (SEP), correspondant aux trois orientations *ortho/meta/para* est schématisé dans la figure 2.
- Le calcul IRC a été effectué et la courbe correspondant E=f(CR) est donnée dans la figure 3.

Figure 2. Les profils d'énergie en phase gazeuse pour la SNAr de Py-F et NH3.

*Figure 3. IRC pour le chemin régiosélective para de la réaction de S*_N*Ar en phase gazeuse de Py-F avec NH*₃*.*

L'analyse de la SEP et la courbe IRC montrent que :

- ✓ Les énergies d'activation correspondant aux trois chemins régiosélective sont : 33.3 kcal/mol pour le *para*, 39.1 kcal/mol pour le *meta* et 34.8 kcal/mol pour l'*ortho*. Le TS1 (chemin *para*) est situé à 5.8 kcal/mol au-dessous de TS2 (chemin *meta*) et à 1.5 kcal/mol au-dessous de TS3 (chemin *ortho*).
- ✓ La formation des produits (P1+HF), (P2+HF) et (P3+HF) est exothermique par 10.3, 7.4 et 5.1 kcal/mol respectivement.
- ✓ L'optimisation de la dernière structure obtenue en direction des réactifs nous a donné une structure de mené énergie que la somme des énergies des deux réactifs (E(Py-F) + E(NH₃)).
- ✓ L'optimisation de la dernière structure obtenue en direction des produits nous a donné une structure de mené énergie que la somme des énergies des deux produits (E(P) + E(HF)).

Les structures de TS1 (para), TS2 (meta) et TS3 (ortho) sont présentés dans la figure 4.

Figure 4. Structures B3LYP/6-31G(d,p) des TSs impliquées dans la S_NAr de Py-F avec NH₃. Les distances sont données en Å.

Conclusion

Le mécanisme et la régiosélectivité de la réaction #1 (S_NAr de Py-F avec NH₃) en phase gazeuse ont été étudiés en utilisant la méthode DFT au niveau B3LYP/6-31G(d,p). Le calcul des énergies d'activation, l'analyse de la SEP et le calcul IRC montrent que cette substitution aromatique suit un mécanisme addition-élimination en une seule étape sans le passage par un intermédiaire stable, complexe de Meisenheimer, via le processus <u>para</u> (position 4) observée expérimentalement.

Etant donné que cette réaction S_NAr de Py-F avec NH₃ est effectuée dans un mélange de deux solvant, nous avons effectués des calculs en présence de l'eau (ϵ =78.3553) et le dioxane (ϵ =24.8520). Les résultats obtenus ont les mêmes tendances. La polarité du solvant n'a pas d'influence sur la régiosélectivité ni sur le mécanisme de cette S_NAr . Dans ce qui suit, nous avons reportés les résultats pour un seul type de solvant qui est l'eau.

Afin d'expliquer l'effet de solvant, eau, de cette réaction de S_NAr, les trois chemin régiosélective (*ortho/meta/para*) ont été illustré dans le schéma 3.

Schéma 4. SNAr de Py-F avec NH3 en présence du solvant.

Le tableau 5 présente les énergies B3LYP/6-31G(d,p) et M06-2x/6-31G(d,p) des six états de transition TS1-I, TS2-I, TS3-T, TS1-II, TS2-II et TS3-II, des intermédiares IN1, IN2 et IN3 ainsi pour les produits P1, P2 et P3 et HF en présence du solvant.

Tableaau 5. Energies totales B3LYP/6-31G(d,p) et M06-2x 6-31G(d,p) (E, u.a.) et relative (ΔE , Kcal/mol) en présence du solvant des points stationnaires des trois chemins régioisomériques de la S_NAr de PY-F avec NH3.

	B3LYP/6-31G(d,p)		M06-2X/6	-31G(d,p)
	E (u.a)	ΔE (kcal/mol)	E (u.a)	ΔE (kcal/mol)
Py-F	-744.4295331	—	-744.1793982	
NH ₃	-56.5634317		-56.52775713	
TS1-I	-800.9729591	12.6	-800.6940019	8.3
TS2-I	-800.9568730	22.6	-800.6778812	18.4
TS3-I	-800.9677297	15.8	-800.6892916	11.2
IN1	-800.9766823	10.2	-800.7021352	3.2
IN2	-800.9581498	21.8	-800.6791878	17.5
IN3	-800.9692800	14.9	-800.6928956	8.9
TS1-II	-800.9661539	16.8	-800.6815045	16.1
TS2-II	-800.957894		-800.6746911	20.4
TS3-II	-800.9609512	20.1	-800.6762415	19.4
P1	-700.58425290	-15.6	-700.3404601	-19.8
P2	-700.57854835	-12.0	-700.3348608	-16.3
P3	-700.57376370	-9.0	-700.3293665	-12.9
HF	-100.43356690		-100.3982794	

- Le schéma représentant la SEP correspondant aux trois chemins régiosélective ortho/meta/para en présence du solvant est schématisé dans la figure 5.
- Le calcul IRC en présence de l'eau et pour les deux étapes du processus élémentaires a été effectué et les courbes correspondants E=f(CR) sont données dans la figure 6.

Figure 5. Les profils d'énergie dans l'eau pour la SNAr de Py-F et NH3.

*Figure 6. IRC pour le chemin régiosélective para de la réaction de S*_N*Ar de Py-F avec NH*₃ *dans l'eau.*

L'analyse de la SEP (voir figure 5) et les courbes IRC (voir figures 6) montrent que :

- La première remarque qu'on peut la faire pour ces résultats est que l'inclusion du solvant à changer le mécanisme de la S_NAr de Py-F avec NH₃. On passe du mécanisme en une seule étape dans la phase gazeuse à un mécanisme en deux étapes en présence du solvant.
- La première étape (étape I) est caractérisé par une "addition du nucléophile " sur la pyridine suivi par la deuxième étape. Cette dernière (étape II) est caractérisé par une "élimination de HF " de la pyridine. Le passage de l'addition vers l'élimination nécessite la localisation d'un intermédiaire stable IN, complexe de *Meisenheimer*. (voir figures 6).
- L'étape II est l'étape déterminante de la cinétique de cette réaction #1.
- Les énergies d'activation correspondant aux trois chemins régiosélective pour l'étape II sont : 16.8 kcal/mol pour le *para*, 22.0 kcal/mol pour le *meta* et 21.1 kcal/mol pour l'*ortho*. Le TS1.II (chemin *para*) est situé à 5.2 kcal/mol au-dessous de TS2-II (chemin *meta*) et à 3.3 kcal/mol au-dessous de TS3-II (chemin *ortho*).
- ✓ La formation des produits (P1+HF), (P2+HF) et (P3+HF) est exothermique par 15.6, 12.0 et 9.0 kcal/mol respectivement.
- ✓ Les mêmes tendances obtenus avec la méthodes M06-2x/6-31G(d,p).

Les géométries B3LYP/6-31G(d,p) des six états de transition TS1-I, TS2-I, TS3-T, TS1-II, TS2-II et TS3-II, des intermédiares IN1, IN2 et IN3 en présence du solvant.

Figure 6. Structures B3LYP/6-31G(d,p) des TSs impliquées dans la S_NAr de Py-F avec NH₃ dans l'eau. Les distances sont données en Å.

Les énergies libres dans l'eau pour les trois chemins réactionnels ont été calculées au niveau M06-2x/6-31G(d,p). Les résultats sont résumés dans le tableau 6.

	H (u.a)	$\Delta H(Kcal/mol)$	S(u.a)	$\Delta S(Kcal/mol)$	G(u.a)	$\Delta G(\text{Kcal/mol})$	
Py-F	-744.12222		0.090055		-744.16501		
NH3	-56 .49081		0.045982		-56.51265		
TS1-I	-800.59840	9.2	0.102207	-0.03383	-800.64696	19.3	
TS2-I	-800.58261	19.1	0.10147	-0.034567	-800.63082	29.4	
TS3-I	-800.59395	12.0	0.1024	-0.033637	-800.64260	22.0	
IN1	-800.60420	5.5	0.100947	-0.03509	-800.65216	16.0	
IN2	-800.58228	19.3	0.102034	-0.034003	-800.63076	29.4	
IN3	-800.59519	11.2	0.102036	-0.034001	-800.64367	21.3	
TS1-II	-800.58518	17.5	0.103266	-0.032771	-800.63425	27.2	
TS2-II	-800.57449	24.2	0.100551	-0.035486	-800.62226	34.8	
TS3-II	-800.57970	20.9	0.100946	-0.035091	-800.62766	31.4	
P1	-700.25911	-20.1	0.09427	-0.00026	-700.30390	-20.1*	
P2	-700.25348	-16.6	0.094048	-0.000482	-700.29816	-16.5*	
P3	-700.24792	-13.1	0.093717	-0.000813	-700.29245	-12.9*	
HF	-100 38601		0.041507		-100 40574	_	

Tableau 6. Données thermodynamiques, dans l'eau et à 25 °C, pour la réaction S_NAr de Py-F et NH₃.

L'analyse de tableau 6 montre bien que les calculs thermochimique favorisent eux le chemin régiosélective *para* après l'inclusion de l'effet de solvant. La deuxième étape d'addition' est l'étape déterminante de cette réaction. L'énergie libre d'activation de TS1-II (*para*) est situé à 7.6 kcal/mol au dessous de TS2-II (*meta*) et à 4.2 kcal/mol au dessous de TS3-II (*ortho*).

Conclusion

Le mécanisme et la régiosélectivité de la réaction #1 (S_NAr de Py-F avec NH₃) en solution ont été étudiés en utilisant la méthode DFT au niveau B3LYP/6-31G(d,p) et M06-2x/6-31G(d,p). Le calcul des énergies d'activation, l'analyse de la SEP et le calcul IRC montrent que cette substitution aromatique suit un mécanisme en deux étapes. L'addition du nucléophile, passage par un intermédiaire stable ensuite l'élimination de la molécule HF via le processus <u>para</u> (position 4) observé expérimentalement.

3.2.2. Etude de S_NAr de la pyridine Py-Cl avec NH₃ (réaction # 2) en phase gazeuse et en présence du solvant :

Le schéma 5 présente les trois chemin régiosélective (*ortho/meta/para*) pour la réaction # 2, la SNAr de la perchloropyridine (Py-Cl) avec l'ammoniac NH₃ (Nu) en phase gazeuse et en présence du solvant.

Schéma 5. SNAr de Py-Cl avec NH3 en phase gazeuse et en présence du solvant.

Dans le tableau 7, nous avons reporté les énergies des réactifs Py-Cl et NH₃, des états de transition TS1, TS2 et TS3 et des produits P1, P2, P3 et HF en phase gazeuse.

Tableau 7. Energies totales B3LYP/6-31G(d,p) (E, u.a.) et relative (ΔE , Kcal/mol) en phase gazeuse des points stationnaires des trois chemins régioisomériques de la SNAr de PY-Cl avec NH3.

	E (u.a)	ΔE (kcal/mol)
Py-Cl	-2546.240062	
NH₃	-56.55776863	
TS1	-2602.758494	24.7
TS2	-2602.749632	30.3
TS3	-2602.759172	24.3
P1	-2142.02518	-17.7
P2	-2142.020363	-14.6
P3	-2142.022871	-16.2
HCL	-460.8007767	

La figure 7 présente la SEP correspondant aux trois orientations *ortho/meta/para*. Le calcul IRC pour le chemin favorisé (TS3) a été effectué et la courbe correspondant E=f(CR) est donnée dans la figure 8.

Figure 7. Les profils d'énergie en phase gazeuse pour la SNAr de Py-F et NH3.

*Figure 8. IRC pour le chemin régiosélective ortho de la réaction de S*_N*Ar en phase gazeuse de Py-Cl avec NH*₃*.*

L'analyse de la SEP et la courbe IRC montrent que :

- ✓ Les énergies d'activation correspondant aux trois chemins régiosélective sont : 24.7 kcal/mol pour le *para*, 30.3 kcal/mol pour le *meta* et 24.3 kcal/mol pour l'*ortho*. Le TS3 (chemin *ortho*) est situé à 0.4 kcal/mol au-dessous de TS1 (chemin *para*) et à 6.0 kcal/mol au-dessous de TS2 (chemin *meta*).
- ✓ La formation des produits (P1+HCl), (P2+HCl) et (P3+HCl) est exothermique par 17.7, 14.6 et 16.2 kcal/mol respectivement.
- ✓ L'optimisation de la dernière structure obtenue en direction des réactifs nous a donné une structure de mené énergie que la somme des énergies des deux réactifs (E(Py-Cl) + E(NH₃)).
- ✓ L'optimisation de la dernière structure obtenue en direction des produits nous a donné une structure de mené énergie que la somme des énergies des deux produits (E(P) + E(HCl)).

Les géométries B3LYP/6-31 G(d,p) de TS1 (para), TS2 (meta) et TS3 (ortho) sont présentés dans la figure 9.

Figure 9. Structures B3LYP/6-31G(d,p) des TSs impliquées dans la S_NAr de Py-Cl avec NH₃ en phase gazeuse. Les distances sont données en Å.

Conclusion

Le mécanisme et la régiosélectivité de la réaction #2 (SNAr de Py-Cl avec NH₃) en phase gazeuse ont été étudiés en utilisant la méthode DFT/B3LYP/6-31G(d,p). Le calcul des énergies d'activation, l'analyse de la SEP montrent que le chemin régiosélective ortho est favorisé théoriquement. Ceci est en contradiction avec les résultats expérimentaux. Le calcul IRC montre que cette SNAr un mécanisme en une seule étape sans le passage par le complexe de Meisenheimer.

Par la suite, nous avons étudiés cette réaction en présence du solvant éthanol. Le tableau 8 présente les énergies B3LYP/6-31G(d,p) des trois TSs (TS1, TS2, et TS3) ainsi pour les produits P1, P2 et P3 et HCl en présence du solvant.

	E (u.a)	ΔE (kcal/mol)
Py-Cl	-2546.249261	
NH₃	-56.5640988	
TS1	-2602.788507	15.6
TS2	-2602.778916	21.6
TS3	-2602.787789	16.1
P1	-2142.039483	-20.7
P2	-2142.033826	-17.1
P3	-2142.037121	-19.2
HCL	-460.8067955	

Tableau 8. Energies totales B3LYP/6-31 g(d,p) (E, u.a.) et relative (ΔE , Kcal/mol) en présence du solvant des points stationnaires des trois chemins régioisomériques de la S_NAr de PY-Cl avec NH3.

 La figure 10 représente la SEP correspondant aux trois orientations. Le calcul IRC en présence de l'éthanol a été donnée dans la figure 11.

Figure 10. Les profils d'énergie dans l'éthanol pour la SNAr de Py-Cl et NH3.

*Figure 11. IRC pour le chemin régiosélective para de la réaction de S*_N*Ar de Py-Cl avec NH*³ *dans l'éthanol.*

Les géométries B3LYP/6-31 G(d,p) de TS1 (chemin *para*), TS2 (chemin *meta*) et TS3 (chemin *ortho*) sont présentés dans la figure12.

Figure 12. Structures B3LYP/6-31G(d,p) des TSs impliquées dans la S_NAr de Py-Cl avec NH₃ en présence du solvant. Les distances sont données en Å.

L'analyse de la SEP (voir figure 10) et la courbe IRC (voir figure 11) montrent que :

- ✓ Les énergies d'activation dans l'éthanol correspondant aux trois chemins régiosélective sont : 15.6 kcal/mol pour le *para*, 21.6 kcal/mol pour le *meta* et 16.1 kcal/mol pour l'*ortho*. Le TS1 (chemin *para*) est situé à 6.0 kcal/mol au-dessous de TS2 (chemin *meta*) et à 0.5 kcal/mol au-dessous de TS3 (chemin *ortho*).
- ✓ En présence du solvant, la formation des produits (P1+HCl), (P2+HCl) et (P3+HCl) est exothermique par 20.7, 17.1 et 19.2 kcal/mol respectivement.
- ✓ Dans le solvant, l'optimisation de la dernière structure obtenue par la courbe IRC en direction des réactifs nous a donné une structure de même énergie que la somme des énergies des deux réactifs (E(Py-Cl) + E(NH₃)).
- ✓ L'optimisation de la dernière structure obtenue en direction des produits en présence du solvant, nous a donné une structure de même énergie que la somme des énergies des deux produits (E(P) + E(HCl)).

Les énergies libres calculées avec la méthode M06-2x/6-31G(d) dans l'éthanol pour les trois chemins réactionnels ont été calculées. Les résultats sont résumés dans le tableau 9.

	H (u.a)	∆H (Kcal/mol)	S(u.a)	∆S (Kcal/mol)	G(u.a)	∆G (Kcal/mol)
Pyridine	-2545.9598		0.103549		-2546.0090	
NH3	-56.4914		0.045982		-56.5133	
TS1	-2602.4322	11.9	0.113226	-22.8	-2602.4860	22.8
TS2	-2602.4215	18.7	0.113415	-22.7	-2602.4753	29.5
TS3	-2602.4306	12.9	0.11472	-21.8	-2602.4851	23.3
P1	-2141.7279	-20.9	0.105531	0.4	-2141.7781	-21.1
P2	-2141.7220	-17.3	0.102747	-1.4	-2141.7709	-16.6
P3	-2141.7261	-19.8	0.103505	-0.9	-2141.7753	-19.4
HCL	-460.7567		0.044606		-460.7779	

Tableau 9. Données thermodynamiques M06-2x/6-31G(d), dans l'éthanol et à 25 °C, pour la réaction S_NAr de Py-Cl et NH₃.

L'analyse du tableau 2 montre qu'après l'inclusion de l'effet de solvant, le chemin régiosélective *para* est le plus favorisé. En effet, l'énergie libre d'activation de TS1 (*para*) est situé à 6.7 kcal/mol au dessous de TS2 (*meta*) et à 0.5 kcal/mol au dessous de TS3 (*ortho*).

Conclusion

Le mécanisme et la régiosélectivité de la réaction #2 (S_NAr de Py-Cl avec NH₃) en présence du solvant, éthanol, ont été étudiés avec la méthode DFT/B3LYP/6-31G(d,p). L'inclusion de l'effet de solvant échange la régiosélectivité de cette S_NAr. En effet, le calcul des énergies d'activation, l'analyse de la SEP dans l'éthanol montrent que le chemin régiosélective para est favorisé cinétiquement et thermodynamiquement. Ceci est en accord avec les résultats expérimentaux. Le calcul IRC montre que cette S_NAr suit un mécanisme en une seule étape sans le passage par un intermédiaire stable.

Références de l'application I

- R. D. Chambers, P. A. Martin, J. S Waterhouse, D. L. H. Williams, *J. Fluorine Chem.*, 20, 1982, 507–514.
- [2] W.T. Flowers, R.N. Hazeldine, S.A. Majid, Tetrahedron Lett., 26, 1967, 2503–2505.
- [3] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009.
- [4] M. J. Frisch, A. B. Nielsm, A. J. Holder, Gaussview user manual, gaussian Inc., Pittsburgh, 2008.
- [5] (a) M. Head-Gordon, J.A. Pople, J. Chem. Phys., 89, **1988**, 5777;
 - (b) C. Gonzalez, H.B. Schlegel, J. Phys. Chem., 94, **1990**, 5523;
 - (c) C. Gonzalez, H.B. Schlegel, J. Chem. Phys., 95,1991, 5853
- [6] (a) A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 113 ,2009, 6378;
 (b) R. F. Ribeiro, A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 115, 2011, 14556.
- [7] Y. Zhao and D. G. Truhlar, J. Phys. Chem., 110, 2006, 5121-29.
- [8] W.J. Hehre, L. Radom, P.v. R. Schleyer, J. Pople A. Ab initio Molecular Orbital Theory.ed.; Wiley: New York, 1986.
- [9] R. S. Mulliken, J. Chem. Phys. 23, **1955**, 1833.
- [10] A.E. Reed, F. Weinhold, J. Chem. Phys., 78, 1983, 4066.

<u>APPLICATION II</u>

Etude théorique de la régiosélectivité de la S_NAr des di/tri/tetra, Fluoroet Chloro- pyridines basée sur les indices.

1. Introduction

Experimentalement Schlosser et al. [1] ont étudiée la substitution nucléophile aromatique d'une di/tri/tetra fluoropyridine (**1-3**) et di/tri/tetra chloropyridine (**4-6**). L'attaque du nucléophile hydrazine (N₂H₄) aura lieu sur le carbone C4 (position 4). Ils ont étudiée également l'effet de substituant trialkylsilyle (CH₃)₃Si porté sur le carbone C5 sur cette réaction S_NAr. Les expérimentateurs ont remarqués que la substitution aura lieu sur le carbone C2 (position 2) (voir schéma 1).

schéma 1

2. Méthodologie des calculs

Les géométries d'équilibre ont été optimisées au niveau de calcul B3LYP [2] en utilisant la base standard 6-31G(d) [3] en utilisant le programme G09 [4]. Les populations électroniques atomiques ont été calculés en utilisant l'analyse de population de Mulliken (MPA) [5] et naturelle (NPA) [6]. Les indices de réactivité basé sur les concepts de la DFT ainsi que les indices de Parr [7] ont été calculé en utilisant les formules données dans le chapitre 2.

3. Résultats et discussion

Les 12 molécules (**1-12**) utilisés dans cette application sont données dans le schéma 2. La numérotation des atomes est donnée rien pour la première molécule 1.

Dans le tableau 1, nous avons reporté les énergies HOMO, LUMO et les valeurs des potentiels chimiques électroniques, μ , des duretés chimiques, η , et des indice d'électrophilie globale, ω exprimés en eV.

Schéma 2

	HOMO (eV)	LUMO (eV)	μ(eV)	η (eV)	ω (eV)
1	-0.27241	-0.03413	-0.15327	0.23828	1.34
2	-0.27401	-0.03571	-0.15486	0.2383	1.37
3	-0.27128	-0.04586	-0.15857	0.22542	1.52
4	-0.26295	-0.02943	-0.14619	0.23352	1.59
5	-0.26402	-0.03252	-0.14827	0.2315	1.78
6	-0.2622	-0.04208	-0.15214	0.22012	1.93
7	-0.26295	-0.02943	-0.14619	0.23352	1.24
8	-0.26402	-0.03252	-0.14827	0.2315	1.29
9	-0.2622	-0.04208	-0.15214	0.22012	1.43
10	-0.26533	-0.04671	-0.15602	0.21862	1.51
11	-0.2672	-0.05594	-0.16157	0.21126	1.68
12	-0.2645	-0.06326	-0.16388	0.20124	1.81

Tableau 1.

L'analyse du tableau 1 montre que

- Les indices de réactivité globaux montrent que la dérivé pyridine 6 est la molécule la plus électrophile (ω=1.93 eV). Tandis que la pyridine 7 est la moins électrophile (ω=1.24 eV).
- L'inclusion du groupement trialkylsilyle en position 5 (7-9) pour les molécules fluoré (1-3) diminuent l'électrophilie.
- Même constatations pour les molécules chloré (**4-6**), l'inclusion du groupement trialkylsilyle (**10-12**) diminuent l'électrophilie.

Les fonctions de *Fukui* pour une attaque nucléophile f_k^+ et les indices d'électrophilie locale ω_k^f calculés avec ces fonctions, en utilisant MPA et NPA pour les différentes positions (C2, C3, C4 et C6) sont donnés le tableau 2 pour les molécules (1-6) et dans le tableau 3 des molécules (7-12).

	A 4	NPA		MPA		
	Atome	f_k^+	\mathcal{O}_k^f	f_k^+	\mathcal{O}_k^f	
1	C2	0.011	0.015	0.063	0.085	
	C4	0.133	0.178	0.100	0.134	
	C2	0.086	0.117	0.100	0.137	
2	C4	0.216	0.297	0.139	0.191	
	C6	0.086	0.117	0.100	0.137	
	C2	0.154	0.235	0.150	0.228 ??	
3	C3	0.021	0.032	0.052	0.080	
	C4	0.200	0.303	0.145	0.221	
	C6	0.033	0.050	0.072	0.109	
	C2	0.029	0.046	0.018	0.028	
4	C4	0.164	0.260	0.072	0.115	
	C2	0.056	0.099	0.030	0.053	
5	C4	0.164	0.292	0.070	0.125	
	C6	0.056	0.099	0.030	0.053	
	C2	0.057	0.110	0.031	0.060	
6	C3	0.021	0.041	0.009	0.017	
	C4	0.164	0.317	0.074	0.142	
	C6	0.045	0.087	0.024	0.047	

Tableau 2.

Conclusion: L'analyse du tableau 2 montre que pour la population NPA les indices d'électrophilie locale ω_k^f sont élevés pour l'atome **4** pour les molécules (**1-6**). Ceci montre que la S_NAr aura lieu à la position 4. Ce qui confirme les résultats expérimentaux. L'analyse MPA révèle les mêmes constatations en accord avec l'expérience, sauf pour la molécule **3** qui favorise une S_NAr à la position 2.

Tableau 3.

	Atome	NPA		MPA	
		f_k^+	ω_k^f	f_k^+	ω_k^f
7	C2	0.055	0.068	0.080	0.100
	C4	0.022	0.027	0.042	0.052
	C2	0.185	0.239	0.145	0.187
8	C4	0.113	0.145	0.079	0.102
	C6	0.012	0.015	0.052	0.067
	C2	0.178	0.255	0.153	0.219
9	C3	-0.393	-0.562	0.038	0.054
	C4	0.141	0.202	0.105	0.151
	C6	0.002	0.003	0.048	0.068
10	C2	0.109	0.164	0.056	0.085
	C4	0.137	0.207 ??	0.062	0.094 ??
	C2	0.139	0.234	0.071	0.120
11	C4	0.105	0.176	0.046	0.077
	C6	-0.019	-0.031	-0.003	-0.005
	C2	0.131	0.237	0.068	0.123
12	C3	-0.022	-0.039	-0.017	-0.030
	C4	0.109	0.197	0.050	0.091
	C6	-0.023	-0.041	-0.005	-0.009

Conclusion: L'inclusion du groupement (CH₃)₃Si a orienter la S_NAr vers la position **2**. En effet, les indices \mathcal{O}_k^f calculés par les deux populations NPA et MPA sont élevés pour l'atome **2** des molécules (**7-9** et **11-12**). Ceci confirme les résultats expérimentaux. On remarque que ces indices favorisent la position **4** pour la molécule **10** pour les deux analyses.

Les fonctions de Parr électrophilique P_k^+ et les indices d'électrophilie locale ω_k^p calculés avec ces fonctions pour les différentes positions (C2, C3, C4 et C6) sont donnés le tableau 4 pour les molécules (**1-6**) et dans le tableau 5 des molécules (**7-12**).

 P_k^+ ω_k^p Atome 1 C2 -0.064 -0.086 C4 0.276 0.369 C2 0.124 0.170 2 C4 0.531 0.727 **C6** 0.124 0.170 C2 0.284 0.431 3 C3 -0.124 -0.188 C4 0.464 0.705 C6 -0.012 -0.019 4 C2 0.015 0.025 C4 0.471 0.749 C2 0.097 0.173 5 **C4** 0.483 0.860 C6 0.097 0.173 C2 0.104 0.200 6 C3 -0.017 -0.033 **C4** 0.485 0.935 C6 0.077 0.149

Tableau 4.

Conclusion: L'analyse du tableau 4 montre que les indices d'électrophilie locale ω_k^p sont élevés pour l'atome **4** pour les molécules (**1-6**). Ceci montre que la S_NAr aura lieu à la position 4. Ce qui confirme les résultats expérimentaux.

Tableau 5.

	Atome	P_k^+	ω_k^{p}
7	C2	0.095	0.118
	C4	-0.003	-0.003
	C2	0.436	0.563
8	C4	0.298	0.384
	C6	-0.007	-0.009
	C2	0.394	0.564
9	C3	-0.145	-0.207
	C4	0.357	0.511
	C6	-0.042	-0.059
10	C2	0.279	0.422
	C4	0.429	0.648 ??
	C2	0.380	0.638
11	C4	0.340	0.570
	C6	-0.069	-0.115
	C2	0.357	0.647
12	C3	-0.139	-0.252
	C4	0.357	0.647
	C6	-0.075	-0.135

Conclusion : Les indices \mathcal{O}_k^p calculés sont élevés pour l'atome **2** des molécules (**7-9** et **11-12**). Donc, l'inclusion du groupement (CH₃)₃Si a orienter la S_NAr vers la position **2**. Ceci confirme les résultats expérimentaux. On remarque que ces indices favorisent <u>aussi</u> la position **4** pour la molécule **10** avec l'analyse des deux population NPA et MPA.

Figure 2.

Références de l'application II

- [1] M. Schlosser, T. Rausis, C. Bobbio, Org. Lett., 7, 2005.
- [2] (a) A. D. J. Becke, Chem. Phys. 98, 1993, 5648;
 (b) C. Lee,; W. Yang,; R. G. Parr, Phys. Rev. B 37, 1988, 785.
- [3] W. J.; Hehre, L.; Radom, P. v. R.Schleyer, J. A. Pople,; Ab Initio Molecular Orbital Theory; Wiley: New York, NY, 1986.
- [4] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, **2009**.
- [5] R. S. Mulliken, J. Chem Phys 23, **1955**, 1833.
- [6] A.E. Reed, F. Weinhold, J. Chem. Phys., 78, ,1983, 4066.
- [7] L. R. Domingo, P.Pérez, J. A. Sáez. *RSC Adv.* 3, 2013, 1486–1494.

Conclusion Générale

Pour ce mémoire, nous avons étudié théoriquement quelques réactions de substitution nucléophile aromatique (S_NAr) des pyridines :

- <u>Application 1</u>: Substitution nucléophile aromatique du perfluropyridine et perchloropyridine avec l'ammoniac.
- <u>Application 2</u>: Substitution nucléophile aromatique du di/tri/tetrafluropyridine et di/tri/tetra chloropyridine avec l'hydrazine.

Dans l'application 1, nous avons étudié le mécanisme et la régiosélectivité de la S_NAr du perfluropyridine avec l'ammoniac (réaction #1) en phase gazeuse et en présence du solvant avec la méthode B3LYP/6-31G(d,p) et M06-2x/6-31G(d,p) en utilisant:

- les indices de réactivité dérivant de la DFT conceptuelle.
- les indices basés sur la fonction de Parr.
- le calcul des barrières d'activation,
- l'analyse de la surface d'énergie potentielle PES
- le calcul IRC

Les résultats obtenus confirment la régiosélectivité *para* observées expérimentalement. Les résultats montrent aussi que cette SNAr suit un mécanisme en

- <u>une seule étape</u> "*addition-élimination*" sans le passage par le complexe de Meisenheimer, un intermédiaire stable, en phase gazeuse.
- deux étapes "addition" du nucléophile suivie d'une "élimination" (départ du nucléofuge avec la localisation d'un intermédiaire stable), en présence de l'eau.

Dans cette application, nous avons étudiés également le mécanisme et la régiosélectivité de la réaction #2, SNAr de perchloropyridine avec NH₃ en phase gazeuse et dans l'éthanol en utilisant les mêmes méthodes. Les indices de réactivité, le calcul des énergies d'activation, l'analyse de la SEP montrent que le chemin régiosélective *ortho* est favorisé, ceci est en contradiction avec les résultats expérimentaux. L'inclusion du solvant favorise cinétiquement et thermodynamiquement le chemin régiosélective *para* observé expérimentalement. En phase gazeuse et en solution, la courbe IRC montre que cette SNAr suit un mécanisme en une seule étape sans le passage par un intermédiaire stable.

Dans l'application 2, nous avons mené une étude théorique pour comprendre la régiosélectivité de la SNAr du di/tri/tetra fluropyridine et di/tri/tetra chloropyridine avec l'hydrazine en phase gazeuse avec la méthode B3LYP/6-31G(d) en utilisant:

- les indices de réactivité dérivant de la DFT conceptuelle.
- les indices basés sur la fonction de Parr

Par la suite nous avons étudié l'effet de substituant trialkylsilyle (CH₃)₃Si portés sur le carbone C5 de cette pyridine. Les résultats qui sont en bon accord avec les résultats expérimentaux montrent que:

- La régiosélectivité para observé en absence du groupement (CH₃)₃Si.
- La régiosélectivité ortho observé en présence du groupement (CH₃)₃Si.

Comme perspectives plausibles à ce travail, nous envisageons

- d'étudier et comprendre le mécanisme de la réaction S_NAr du di/tri/tetra fluropyridine et di/tri/tetra chloropyridine avec l'hydrazine en phase gazeuse et en solution.
- d'étudier la régiosélectivité d'autres réactions de substitution nucléophile faisant intervenir d'autres électrophiles ou cycles aromatiques.
- d'approfondir l'étude de l'effet de solvant et l'effet de substituant sur le mécanisme d'une SNAr.
- d'utiliser autres indices de réactivité pour étudier la régiosélectivité.
- de prédire et rationaliser les sélectivités trouvées <u>théoriquement</u> avant d'étudier expérimentalement les réactions de substitution nucléophile aromatique.

<u>ملخص</u>

العمل المقدم في هذه المذكرة يهدف الدراسة النظرية لتفاعلات الاستبدال أليفة النواة : 1- دراسة نظرية لآلية وانتقائية موضع تفاعلات لاستبدال أليف النواة العطرية _{SN}Ar ل: (perfluoropyridine (Py-F ول: (Py-F) perchloropyridine مع الأمونيك 2- دراسه نظريه لاننعانيه الموضع لنفاعلات SNAr ل: أحادي/ثنائي/ثلاثي/رباعي الفلورو و الكلورو بيريدين قمنا بهذه الدراسة النظرية باستعمال مقاربات نظرية مختلفة و هي نظرية الحالة الانتقالية و DFT المبدئية. قمنا بهذه الدراسة النظرية باستعمال مقاربات نظرية مختلفة و هي نظرية الحالة الانتقالية و DFT المبدئية. قمنا باحسابات باستعمال برنامج (Gaussian 09) و بالطريقة **DFT/M06-2x/6-31G*) و TJB3LYP الكلمات المفتاحية: الاستبدال النكليوفيلي العطري العطري تلائيا الانتقائية الموضعية ; فعل مذيب ; DFT المفاهيمية ; الإلكتروفيلية العامة و الموضعية.

<u>Résumé</u>

Le travail présenté dans ce mémoire a pour objectif l'étude théorique des réactions de substitutions nucléophiles. 1- Etude théorique du mécanisme et de la régiosélectivité des réactions du substitution nucléophile aromatique S_NAr perfluoropyridine (Py-F) et perchloropyridine (Py-Cl) avec l'ammoniac.

2-Etude théorique de la régiosélectivité des réactions du SNAr des di/tri/tetra Fluoro- et Chloro- pyridine.

L'étude théorique à été menée à l'aide des méthodes quantiques DFT (B3LYP/6-31G(d,p), M06-2x/6-31G(d,p) et B3LYP/6-31G(d)) en utilisant le programme *Gaussian 09W*.

*Mots-clés : Substitution Nucléophile aromatique S*_N*Ar ; Mécanisme réactionnel ; Régiosélectivité ; Effet de solvant DFT conceptuelle ; Nucléophilies globale et locale.*

<u>Abstract</u>

The work presented in this thesis aims at the theoretical study of the reactions of nucleophilic substitutions. 1- Theoretical study of the mechanism and regioselectivity of the reactions of the aromatic nucleophilic

substitution SNAr perfluoropyridine (Py-F) and perchloropyridine (Py-Cl) with ammonia.

2-Theoretical study of the regioselectivity of the SNAr reactions of di / tri / tetra Fluoro- and Chloro-pyridine. The theoretical study was carried out using quantum DFT methods (B3LYP / 6-31G (d, p), M06-2x / 6-31G (d, p) and B3LYP / 6-31G (d) Using the Gaussian 09W program.

Keywords: Substitution Aromatic nucleophile SNAr; Reaction mechanism; Regioselectivity; *Solvent effect;* Conceptual DFT; Nucleophilia global and local.