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1. Introduction 

1.1. General context and objective 

 Materials are crucial in the development of civilization and the improvement of human 

life. As an example of these materials: boride layers, which offer excellent surface properties in 

terms of high hardness, increase the wear and corrosion resistance and stability of mechanical 

properties at high temperature [1-4]. The transition metal borides are important due to their 

considerable practical importance and fundamental interest in science, technology and industrial 

applications [5-8]. Iron borides (Fe2B and FeB) in particular are widely used as hard and 

protective coatings on steel surfaces for improved wear and corrosion resistance to the material 

[9, 10]. The coating is produced via the process of boriding, also called boronizing, which 

includes the deposition of boron and an additional heat treatment, for example, in the form of a 

thermochemical process [9] to form the borides. Boronizing  results are provided by the powder-

pack boronizing using Ekabor Ni powder, specially prepared for Ni-based alloys [11, 12]. The 

layers, produced on nickel, are characterized by a high hardness (about18 GPa) and thickness of 

100 μm [11]. Cobalt boride (CoB and Co2B) coatings are developed on the surface of a CoCrMo 

alloy using the powder-pack boriding process at temperatures between 1223 and 1273 K using 

different exposure times for each temperature[13]. Furthermore, magnetism of some borides 

plays a crucial role for the development of memories for mass storage, and in sensors to name a 

few; spintronics is an integration of the magnetic materials, to realize nanosized devices with 

better features. 

 Transition metal borides have large outstanding physical properties. The combination of 

metals with slight covalent-bond forming atoms like B often leads to materials, it does not have 
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only a high melting point, but also has a very low compressibility and high hardness compared 

with the pure metal [14]. In addition, transition metal borides possess other properties, such as 

good electrical-thermal conductivity, catalytic activity, and magnetic properties [15-19]. They are 

widely used for cutting tools and hard coatings [20, 21].  

 In recent decades, interest in borides increased, as well as, many useful applications have 

been found in nanomaterial science. It is well demonstrated that reverse micelles are good 

candidates for the production of nanoparticles [22], where  nano size cobalt boride particles are 

prepared [23]. Nanocrystalline nickel boride powders are successfully prepared by ball milling of 

the elemental components in Ref. [24]. Feng et al. [25] prepared the nanocrystalline Ni2B via a 

solvo-thermal method and Shi et al. [26] used an electro less deposition technique to synthesize 

nanocrystalline Ni–B coating, Ni2B and Ni3B are formed in layers during heat treatment. The 

manganese mono-boride is important due to potential spintronic applications [27]. The reported 

experimental magnetic moments give values of 1.83μB for MnB, 1.12 μB for FeB, and 0 μB for 

CoB [28]. 

Experiments under pressure provide a unique tool to characterize materials; high pressure has the 

advantage that the chemical bonding can be modified without changing the composition. 

Specifically, chemical substitution introduces disorder and local strain in the atomic lattice, while 

external pressure preserves the lattice homogeneity [29]. Furthermore, the presence and nature of 

unconventional magnetic phases of semi-borides (Fe2B and Co2B), and mono-borides (FeB and 

MnB) may be clarified by tuning them systematically with the help of an external parameter such 

as pressure, which will provide much information of structures concerning behavior under 

pressure. For example, magnetic collapse, either being a transition from ferromagnetic state to 

paramagnetic state, or from high spin (HS) state to low spin (LS) state, under pressure, is a 

widely observed phenomenon, and it is very interesting to study it. This character of magnetic 
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collapse is perhaps the earliest prediction of what may be called a ‘novel’ phase of magnetic 

metals near a quantum phase transition (QPT) has been magnetically mediated superconductivity. 

The emergence of superconductivity in the ferromagnetic state in the presence of strong first 

order QPT may be reconciled in a model proposed by Sandeman et al. [30].  

Modern experiments can reach hydrostatic pressure beyond 200 GPa [31]. The pressure changes 

at least the inter-atomic interaction. The itinerancy of the electrons will be changed accordingly. 

The improving experimental facilities enable us to extend our theoretical work to high pressures, 

to understand, and predict new phenomena. The main phenomenon I am going to address is the 

quantum magnetic phase transition at high pressures and the related effect on structure, magnetic, 

hardness and anisotropic elastic properties on the boride coating (semi and mono borides). These 

borides are isomorphic, i.e. it preserves the symmetry of both the lattice and the atomic sites. 

 Many experimental techniques have been developed to measure and discover new properties of 

materials such as X-rays [32], infrared spectroscopy [33], Berkovich Nano indentation[34]…etc. 

On the other hand, understanding of how materials behave like they do and why they differ in 

properties is possible with the electronic states understanding allowed by quantum mechanics. 

Electronic state of materials is fundamental to understand their macroscopic properties, such as 

thermal, electrical conductivity, structure, etc., people use a variety of quantum methods to 

predict these electronic states and, hence, material properties at the most fundamental level. 

 Quantum methods allow us to study transition states and unusual structures and 

conformations, which are difficult, if not impossible, to study experimentally. Ab initio methods 

are based entirely on quantum mechanics and basic physical constants. Other methods are called 

empirical or semi-empirical because they employ additional empirical parameters. Density 

functional theory (DFT) is among the most popular and useful Ab initio methods available in 
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condensed-matter physics. DFT was put on a safe theoretical stability by the two Hohenberg-

Kohn theorems [35].  

In order to show the effects of pressure on the structural, electronic, magnetic, hardness, 

anisotropic elastic and Debye temperature properties, I examined these structural properties at 0 

GPa and under pressure within GGA for the transition metal mono and semi-borides: TMB (TM= 

Mn, Fe, Co and Ni) and TM2B (TM= Fe, Co and Ni) compounds, Furthermore, the Fe-Mn-B 

systems are studied by calculate the ferromagnetic variation of transition metal mono boride by 

the method of virtual crystal approximation (VCA), based on density-functional theory (DFT) 

with generalized gradient approximation (GGA). The variations of ferromagnetism of Fe1-xMnxB 

alloys by the first-principle spin-polarized calculations are in agreement with the experimental 

results. All calculations are performed using the pseudo potential linearized augmented plane 

wave (PP-LAPW) method, which is implemented in the CASTEP software [36]. The results are 

compared with experimental and other theoretical results in the litterature. 

1.2.  Thesis structure  

 This thesis is divided into six Chapters. Following this introductory part (chapter 1), is 

Chapter 2, where I will present the crystallographic structure of borides, the different types of 

boriding, the physical characteristics of boride layers and  industrial applications. Chapter 3 is 

dedicated to the basic concepts of density functional theory (DFT) and introduced the concept 

and formalism of calculations used at the present work. Chapter 4 presents the results of our 

calculations for semi-borides TM2B. Chapter 5 is dedicated to our calculations results for mono-

borides TMB. Chapter 6 shows the results of calculations for Fe-Mn-B system. I close  my thesis,  

with a general conclusions and some perspectives. 
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2. Borides 

 Borides, carbides and nitrides are interesting class of compounds because they have a 

unique combination of different properties such as electronic, optical, elastic thermal and 

magnetic properties. They might be characterized by the following properties: metallic to 

insulating or superconducting, absorption/emission bands from UV (ultraviolet) to the visible, 

NIR (near infrared) region, low to high thermal conductivity, negative to positive thermal 

expansion, paramagnetic to ferromagnetic and soft to extreme hardness. In addition, they have 

high chemical and thermal stability [37]. Particularly, transition metal borides usually have good 

properties of large hardness, high melting point, and good wear resistance. They are widely used 

for coating and cutting tools. Since defects presented by metal alloys, such as corrosion, wear and 

contact fatigue, several studies have been conducted to improve the surface properties of these 

alloys. So surface treatments such as Boriding, Nitriding, Carburizing and Carbonitriding are 

applied to meet these requirements on an industrial scale.  

 Borides are classified as boron-rich or metal-rich. Borides which are formed with a metal 

to boron ratio equal or higher than four are in the class of metal-rich borides and borides with 

metal to boron ratio less than four are called as boron-rich borides. 

Several of the metal borides are ferromagnetic and in many ways their magnetic behavior 

resembles those of the transition series metals. Transition metals and boron form a large number 

of intermetallic compounds with chemical formulas TM2B, TMB, TMB2, TMB4, TMB6, TMB12 

[38]. These materials are known in many industrial areas as; superhard materials, electronic 

devices, and the discovery of superconductivity in MgB2 at 39K [39] has reinforced the 

importance of borides. These properties make them as a potential candidate for several 

applications. 



CHAPTER 2                                                                                           Borides 

8 

 The mono-borides occur with three structures: the orthorhombic CrB (Bf) and FeB (B27) 

and the tetragonal MoB type. The semi-borides have the tetragonal CuAl2 structure (C16). 

The mono-borides from (Cr, Mn)B to CoB and the half-borides from (Mn, Fe) 2B to (Co, Ni) 2B 

and are ferromagnetic (Figure 1), and have a magnetization versus composition curve analogous 

to the Slater-Pauling magnetization curve for the transition metals (Figure 1))[40]. 

In this chapter I present the crystal structure of the transition-metal semi-borides, mono-borides, 

and different types of boriding such as pack boriding, past boriding, liquid boriding, plasma 

boriding, gas boriding. I also present the characteristics of borided layers such as color, thickness, 

hardness. Then, I will show some advantages and disadvantages of boriding. Finally, I present 

some industrial applications of borided components. 

In this study, I treated two sets of borides of elements of the first transition series, which are 

mainly magnetic: the mono-borides  TMB (TM = Mn, Fe, Co, Ni) and semi-borides TM2B 

(TM=Fe, Co, Ni) (Figure 1).  
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Figure 1. Saturation magnetization based on the average atomic number:  

a) The Slater-Pauling curve (alloys); b) semi borides; c) mono-borides [40]. 

 

2.1. Crystallographic structure of semi-borides TM2B compounds 

The crystal structure of the transition-metal semi-borides described in this chapter is 

isomorphous to the A12Cu structure; space group 14/mcm. The tetragonal unit cell contains four 

molecular units. The atoms are found in the following special positions in the space group 

specified as: 
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As the symmetry of the crystal structure is basically tetragonal body centered, the 

remaining six atom positions can be calculated by adding (1/2, 1/2, 1/2). For all compounds 

investigated, u = 1/6.  

Figure 2 shows a projected view of the A12Cu structure along (by the left) b, a, and c axes. 

The boron atoms (small green balls) form a quadratic lattice (view along the c axis), which is 

repeated with a periodicity at 0, 0, 1/2. The metal transition atoms (large orange balls) form two 

layers:  

   B 0,0,1/4 0,0,3/4 

TM 
u, u+1/2,0 

u+1/2,-u, 0 

-u, 1/2 - u,0 

1/2 – u, u, ,0 

O 

Figure 2. Crystal structure of TM2B projecting onto the (100), (010) and 

(001) planes and the metal transition, boron atoms environment. 
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One at 0, 0, 1/4. (Dashed line) and one of 0, 0, 3/4. Each boron atom is therefore surrounded by 

eight transition metal atoms which are about 2.14 Å, apart, and two boron atoms at a distance of 

about 2.145 Å. Each transition-metal atom has 11 transition-metal neighbours: three at 2.4 Å, 

eight at 2.65 Å, and four boron atoms at 2.2 Å. 

Table 1gives the crystallographic data for TM2B compounds investigated. 

 

Table 1.  Crystallographic parameters for the tetragonal transition-metal semi-borides. TM-TM, TM-B and 

B-B are the distances between neighbouring atoms in Å; V (Å
3
) is the volume(per formula unit). 

Compound a c c/a TM-TM TM-B B-B V 

Fe 2B 5.109 4.249 0.83 2.44 2.18 2.12 27.73 

Co2B 5.016 4.220 0.84 2.42 2.15 2.11 26.54 

Ni2B 4.990 4.245 0.85 2.43 2.14 2.12 26.43 

 

2.2. Crystallographic structure of mono-borides TMB compounds 

 The structure of TMB, belongs to the orthorhombic lattice, B27 type, with space group  

Pnma( N° 62) and the structure contains four formula units per cell with atoms in the positions 

(Table 3). Figure 3. Illustrates the dispositions and separations of nearest neighbours in the 

structure, which is composed of layers at y(b axis) = 1/4, 3/4 containing TM and boron atoms. 
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 Table 2. Crystallographic parameters for the orthorhombic transition-metal mono-borides. 

Compound a (Å) b (Å) c (Å) 

MnB 

5.560
c
 

5.560
d
 

5.560
e
 

 

2.977
c
 

2.977
d
 

2.976
e
 

4.145
c
 

4.151
d
 

4.147
e
 

Fe B 

5.505
a
 

5.495
c
 

5.506
d
 

 

2.952
a
 

2.946
c
 

2.952
d
 

4.059
a
 

4.053
c
 

4.081
d
 

CoB 
5.254

b
 

5.253
c
 

3.314
b
 

3.043
c
 

3.956
b
 

3.956
c
 

NiB 
   

a
Ref.[41], b 

Ref. [42], 
c 
Ref. [16], 

d 
Ref. [43], 

e 
Ref. [44]. 

Table 3.  Fe and boron atoms environment in FeB compound
 
[41]. 

Atoms Number Distance Atoms Number Distance 

TM-TM 

2 

4 

2.628 

2,636 

TM-B 

2  

1 

1 

2,171 

2.184 

2.196 

TM-B 

1 

2 

2.157 

2,167 

B-B 2 1.783 
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Figure 3. Crystal structure of TMB projecting onto the (100), (010) and (001) planes, 

the metal transition; boron atoms environment and for a section perpendicular to the 

plane (010) showing the zigzag B-B chain. 

TM 

B 



CHAPTER 2                                                                                           Borides 

14 

 

According to the crystal structure of TMB, B atoms form zigzag chains are in the 

interstices surrounded by TM atoms, and the distance between two B atoms is 3.36Å, and the 

interaction between B atoms is slightly strong. The strong interaction between B atoms causes a 

2s-p hybridization and leads to strong covalent bonds. It is clearly shown that there exists an even 

stronger bond (zigzag chains) between the two B atoms. It is this strong covalent bond which 

makes the B atoms form linear zigzag chains in FeB.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Periodic table of the elements, transition metals are shown in light Green and 

the transition metals which are included in this study are represented by Yellow color 
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2.3. Boriding  

Boriding, also called boronizing, is the process by which boron is introduced to a metal or 

alloy. It is a type of surface hardening. In this process, boron atoms  diffuse into the surface of a 

metal component. This diffusion is a thermochemical diffusion, which takes place in the  

temperature range (800-1050 °C) for times ranging from 0.5 to 10 h using a borurant agent which 

releases boron in an atomic state [45]. The resulting surface contains the metallic boride layer 

about 20-300 µm thick with either a single-phase boride or a poly-phase boride layer. The parts 

of metal boronized are extremely wear resistant and will often last two to five times longer than 

components treated with conventional heat treatments [46]. 

2.4. Types of boriding  

 Pack boriding 2.4.1.

 Pack boriding is the most widely used process of all the types due to various reasons.  

Pack boriding is conducted using a source of boron in the solid state. Boron powder is used as the 

coating medium in pack boriding. This technique is the most preferred due to safety, the 

possibility to change the composition of the powder mixture. This process usually uses a powder 

boriding mixture that consists of boron yielding substance, activators and diluents and a container 

where it will happen the boriding. So, the material which will be borided is immersed in the 

container with the boron powder, then it is heated until determined temperature (900 ~ 1000 
0
C) 

and time. The boron is diffused to the metal forming the boride layer. The powder grants a boron 

layer quality and suitable for applications of small size [47].  

The samples are packed along with a Durborid fresh powder mixture in a closed cylindrical case 

as shown in Figure 5. a. This powder mixture has an average size of 30 μm as illustrated on 

Figure 5. b [48]. 
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 Past boriding 2.4.2.

 Paste boriding is considered to be a commercial process, while powder boriding is not a 

manufacturable process. In this process, a boriding paste of 55% B4C (grain size 200- 40μm) and 

45% cryolite [49], in a binding agent is brushed or sprayed over the entire or selected portions of 

parts, after drying, a layer of about 1-2 μm thickness is obtained. Then, these arts are placed in 

the furnace and heated in an inert or vacuum atmosphere. After the heat treatment and by blast 

cleaning, brushing or washing the paste is separated from the components.  

 Liquid boriding 2.4.3.

 Liquid boriding is grouped into electroless and electrolytic salt bath processes. Electroless 

method is carried out in a Borax-based melt at 900-950 
0
C to which of 30% of B4C is added. 

a) Schematic view of the stainless steel 

container for the pack-powder boriding treatment 

1: lid; 2: powder boriding medium 

3: sample; 4: container). 

b) The powder boriding 

medium 

(B4C + KBF4 + SiC). 

Figure 5. The pack-powder boriding treatment [48]. 

 



CHAPTER 2                                                                                           Borides 

17 

Another salt bath composition can be used. In electrolytic salt bath boriding, the metallic part 

acting as the cathode and a graphite anode are immersed in the electrolytic molten Borax at 950 

0
C. The fused salt bath decomposes into boric acid (B2O3), and sodium ions react with boric acid 

to liberate boron. These processes have several disadvantages such as difficulties to remove the 

excess salt, quality of the salt, environment [50].  

 Plasma boriding 2.4.4.

 Mixtures of B2H6-H2 or BCl3-H2-Ar may be used in the plasma boriding. The control of 

composition and depth of the borided layer is possible, but the use of a very toxic gas and 

difficulties of obtain good layer uniformity limit the diffusion of this technology [50]. 

 Gas boriding 2.4.5.

 Gas boriding is another type of boriding in which the boron source is in the gaseous 

phase. At high temperature boron gas diffuses into the metal and hard borides are formed. The 

boron source which is commonly used in gas boriding are boron chloride (BCl3), diborane 

(B2H6) etc. This is not one of the common and most widely used techniques of boriding because 

of toxicity. The problems with the explosion of the gas and the toxicity of boron limit the usage 

of the gas boriding technique. The BCl3-H2 gas mixture has previously been attempted to 

boronize steel, but the high concentration of BCl3 causes the corrosion of the substrate and 

results in poor adherent layers. To improve the technique, the dilute (1:15) BCl3-H2 gas mixture 

is commonly used at 700- 900 °C and under the pressure of about 67 kPa. This process can be 

used with titanium and its alloys [51]. 

2.5. Borided layer characteristics  

 The image of the specimen's surface before and after boriding heat treatment is illustrated 

in Figure 6. The sample surface is seen in dark grey color, which is a color of iron-boron 
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compound (FeB and Fe2B). The boride layer that occurred during the boriding process increased 

the roughness of specimen's surface. 

 

a) The specimen surface before boriding      b)  The specimen surface after boriding 

Figure 6. The image of AISI 304 specimen surface before and after boriding [52]. 

Many studies, have shown that the surface- boriding treatment can form FeB and Fe2B 

layers on the surface of a steel substrate (Figure 6). For a double phase boride layer, the near 

surface is the FeB phase and the Fe2B phase is between the FeB layer and the substrate [53]. This 

morphology is one characteristic property of the boride layer in steels and depends on the 

concentration of alloying elements as well as on the treatment temperature and time [54]. 

Commonly known, the relative concentration of boron should be high at the surface and it then 

decreases with distance. This behavior is a typical characteristic of a thermochemical treatment 

such as boriding [55].  
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Figure 7. SEM images of the cross-sections of low-carbon microalloyed steels boronized for 4 h 

at: a) 973 K, b) 1073 K, c) 1173 K, and d) 1273 K [56]. 

shows a graphical representation of the variation of a boride layer thickness with temperature 

obtained from optical and SEM (scanning electron microscope) photographs; it is easy to see that 

the thickness of the boride layer increases with increasing temperature [56]. In various previous 

studies, it has been pointed out that the thickness of a boride layer depends strongly on the 

boriding time, the chemical composition of the material to be boronized, the process temperature, 

and the techniques used, such as gas, liquid and pack boriding [57-61]. The hardness 

measurements carried out by means of the Vickers indentations from the surface to the interior of 

the specimen showed that the hardness of the boride layer is much higher than that of the matrix 

(Figure 8). This is a consequence of the presence of hard FeB and Fe2B phases as determined by 

different methods.  
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Figure 8: Boride layers thickness and Microhardness profiles[56]. 

2.6. Advantages and disadvantages of boriding 

 Advantages 

 High hardness and wear resistance retained in elevated temperatures. 

 Enhance chemical corrosion resistance against acids and molten metals. 

 The combination of a high surface hardness and a low surface coefficient of friction in 

boronized steel provides the outstanding of wear mechanisms, including adhesion, 

tribooxidation, abrasion, and surface fatigue. 

 Lubricant surface that prevents the metal of aqueous corrosion. 

 Increased fatigue life. 
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 Disadvantages 

 The process of boriding is inflexible and labor intensive. 

 The conventional thermochemical process for boriding is very slow. 

 The boride thickness cannot be well controlled because the thickness growth depends on 

the substrate composition and the consistency of boronized powder composition. 

 The partial removal of a layer for tolerance is only done by an expensive method. 

 It is mostly applied to components with a large cross sectional area. 

 The brittleness of the compound layer, especially the FeB phase. 

2.7. Industrial application  

 Borided parts have been used in a wide variety of industrial applications. The high 

hardness of borided materials make theme suited to resisting wear, particularly to that caused by 

abrasive particles. The hardness of boride layers on iron materials is about 1800 to 2100 HV and 

higher for alloyed alloys. Parts used in sliding wear situations have had their service life 

increased. Industrial application includes: extrusion screws, cylinders, textile nozzles, punching 

dies, stamping dies, molds for plastic and ceramic, die-casting molds pressing rollers, mandrels, 

hot forming dies …. Borided steel parts have been used for molten, nonferrous metals (Al, Zn, 

Sn). Boriding can increase the resistance of low alloy steel to acids. Borided austenitic steels are 

resistant to HCI acid. Large scale boriding is applied, on small drive gears for oil pump in a 

Volkswagen diesel engine, to increase resistance to adhesive wear [50].  
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3. Theoretical Framework, Concept and Formalism 

3.1. Theoretical framework 

 The term ab initio is taken from the first principles of Physics. It does not mean that we are 

solving the Schrödinger equation exactly, but   selecting a method that in principle with no inclusion 

of experimental data can lead to a reasonable approximation to the solution of the Schrödinger 

equation, and then selecting a basis set that will implement this method in a reasonable way [62]. Ab 

initio electronic structure methods have the advantage that they can be made to converge to the 

exact solution, when all approximations are sufficiently small in magnitude and when the finite set 

of basis functions tends toward the limit of a complete set.  

 In this case, using Density functional theory (DFT), which was originally found and 

developed by Kohn, Hohenberg, and Sham in the middle of the sixties, provides a modern tool to 

study the ground state properties of atoms, molecules, and solids. It is based on exact theorems, in 

particular, the Hohenberg-Kohn theorems. Kohn and Sham, later on, put this general theorem into a 

practical way where the problem can be solved by a single particle-like Hamiltonian with an 

approximated effective potential. The electronic structure calculations provide a quantitative way to 

discuss the phase stability at temperature T = 0, and are even extendable to T ≠ 0 with certain model 

assumptions. They also provide the microscopic explanation of phase transitions. Bonding 

characters, energy dispersions or topology of Fermi surfaces, etc. all can play a role in the different 

phase transitions. Magnetic properties are natural outputs of the calculations. 

 In the non-relativistic case, the magnetic moment is the difference between the populations 

of the spin up and spin down states. Electronic structure calculations also provide quantitative 

justification of the model considerations. For example, in the Stoner model, the density of states and 
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the Stoner parameter are available by DFT calculations. Thus the itinerant magnetism can be 

discussed in a more quantitative way. It has been shown that the local spin density approximation 

(LSDA) and its extension the general gradient approximation (GGA) are quite successful in 

understanding itinerant magnetism and structure trends in metals and intermetallic compounds.  

DFT within Born-Oppenheimer approximation can find the non-relativistic solution of the electronic 

Schrödinger equation : 

  EĤ  
                                       ( 3-1) 

 Where ψ is an N-body wave function, E denotes the energy of either the ground or an excited 

state of the system. H is the Hamiltonian, the total energy operator for a system, and is written as the 

sum of the kinetic energy of all the components of the system and the internal potential energy. Thus 

for the kinetic and potential energy in a system of M nuclei and N electrons (atomic unit): 
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 A common and very reasonable approximation used in the solution of Eq. 3.7 is the Born-

Oppenheimer Approximation (BOA), Since the nuclei are much heavier than electrons (the mass of 

a proton is about 1836 times the mass of an electron), the nuclei move much slower (about two order 

of magnitude slower) than the electrons. Therefore, we can separate the movement of nuclei and 

electrons. The last two terms can be removed from the total Hamiltonian to give the electronic 

Hamiltonian,
eĤ , since KNNV̂ , and 02

A  . 
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 The success of the BO approximation is due to the high ratio between nuclear and electronic 

masses, which we can separate the movement of electrons and nuclei. Now we can consider that the 

electrons are moving in a static external potential Vext (r) formed by the nuclei. The approximation is 

an important tool of quantum chemistry, even in the cases where the BO approximation breaks 

down, it is used as a point of departure for the computations for a wide range of ab initio methods, 

such as Hartree-Fock (HF), post-HF approaches and Density-functional theory (DFT), but we will 

restrict ourselves to the Density-functional theory, which the calculation is based on. 

 Density Functional Theory 3.1.1.

 Density functional theory (DFT) is a powerful, formally exact theory [63, 64]. DFT is widely 

used method in condensed matter physics, computational physics and quantum chemistry to describe 

properties of condensed matter systems, which include not only standard bulk materials, but also 

complex materials such as molecules, proteins, interfaces and nanoparticles. The principal feature of 

density functional method is that the many problems are solved directly for the charge density, n(r) 

rather than for the many-electron wave function ψ. This is a massive simplification, as we only need 

consider a function of three variables x, y and z rather than the 3N variable problem above.  
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Its basis is the well-known Hohenberg-Kohn (HK) theorem[35], which claims that all properties of a 

system can be considered to be unique functional of its ground state density. 

 The Hohenberg-Kohn (HK) Theorems 3.1.2.

 Prior to the work of Hohenberg and Kohn in 1964 the use of the electron density as a 

fundamental variable was thought of as a special approach. However, Hohenberg and Kohn showed 

that this method may enable the calculation of the exact ground-state energy. The Hohenberg and 

Kohn first theorem states that for any system of interacting particles in an external potential Vext (r), 

the density is uniquely determined (in other words, the external potential is a unique functional of 

the density). Thus the ground state particle density determines the full Hamiltonian. In principle, all 

the states, including ground and excited states of the many-body wave functions can be calculated. 

This means that the ground state particle density uniquely determines all properties of the system 

completely. 

The second theorem of HK states that there exists a universal functional F[n(r)] of the density, 

independent of the external potential Vext(r), such that the global minimum value of the energy 

functional   )]([)()()]([ rrr nFdrVnrnE ext
 is the exact ground state energy of the system and the 

exact ground state density n0(r) minimizes this functional. Thus the exact ground state energy and 

density are fully determined by the functional E[n(r)]. 

The universal functional F[n(r)]  written as   

 )]([)]([)]([ int rrr nEnTnF 
 ( 3-9) 

Where T[n(r)] is the kinetic energy and Eint[n(r)] is the interaction energy of the particles. 

According to the variational principle, for any wave function ψ′, the energy functional E[ψ′]: 
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According to the theorem I, ψ′ correspond to a ground state with particle density n′(r) and external 

potential V′ext(r), and then E [ψ′] is a functional of n′(r). According to the variational principle:  
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 By minimizing the total energy functional   )]([)()()]([ rrr nFdrVnrnE ext
  we can obtain 

the ground state energy )]([ 0 rnE  of the system with respect to variations in the density n(r). The HK 

theorems put particle density n(r) as the basic variable, it is still impossible to calculate any property 

of a system because the universal functional F [n(r)] is unknown. This difficulty was overcome by 

Kohn and Sham [65] in 1965. 

  The Kohn-Sham equations  3.1.3.

The Hohenberg-Kohn theorem offers no practical guide to the explicit construction of the 

F[n(r)] universal function. For this it is necessary to confront the complexities of the many-body 

problems. The KS equation is to replace the original many-body system by an auxiliary 

independent-particle system and assume that the two systems have exactly the same ground state 

density. Kohn and Sham (KS) addressed this problem in 1966, by introducing an auxiliary system 

containing N non interacting electrons in a background potential Veff (r), chosen such that the charge 

density in this auxiliary system is exactly the same as that in the full interacting system: 
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It is simple to calculate the kinetic energy of the non-interacting system of electrons where the 

electrons are in these states using 
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The true kinetic energy of the interacting system will of course differ from this, and the difference 

between this term and the exact result is treated separately. The total energy is given by 

   )]([)()()]([ rrrrr nFdVnnE ext
 ( 3-14)  

Then the universal functional F[n(r)] was rewritten as 

 )]([)]([)]([)]([ rrrr nEnEnTnF XCHs   ( 3-15) 

 Ts is the Kohn–Sham kinetic energy for non-interacting system and EH[n(r)] is the classic 

electrostatic (Hartree) energy of the electrons: 
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EXC[n(r)] contains the exchange and correlation energies and the correction to the kinetic energy. In 

order to obtain the ground state energy they minimize the energy of Eq. 3.17 (theorem 2), subject to 

the constraint the number of electrons N is conserved. 
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And the resulting equation is 
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Where μ is the chemical potential. 
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To find the ground-state density n0(r) for this non-interacting system we simply solve the one-

electron Schrödinger equations; 

 
)()()

2

1
( 2

rr iiiKSV       ( 3-22) 

Equations (3.15), (3.24), (3.25) together are the well-known KS equations, which must be solved 

self-consistently because VKS(r) depends on the density through the XC potential. 

 Magnetism in the Density Functional Theory 3.1.4.

  Approximations  3.1.5.

Both the Hohenberg-Kohn formulation as well as the approach by Kohn-Sham are formally 

exact and therefore allow an exact solution, provided that the functional Exc[n(r)] is exactly known. 

In practice this is never the case, which reveals the crucial point in density functional theory. Every 

calculatory approach in DFT stands and falls with the quality of the approximation for the unknown 

functional Exc [n(r)]. We will now review some of the common approximations made for Exc. 

3.1.5.1. Local Density Approximations (LDA).   

Local-density approximations (LDA) are a class of approximations to the exchange–

correlation (XC) energy functional that depend solely upon the value of the electronic density at 

each point in space (and not, for example, derivatives of the density or the Kohn–Sham orbitals). 

Many approaches can yield local approximations to the XC potential energy. However, 

overwhelmingly successful local approximations are those that have been derived from the 
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homogeneous electron gas (HEG) model. The total exchange-correlation functional EXC[n(r)] can be 

written as, 

  rrrr dnnnE hom

XC

LDA

XC ))(()()]([    
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The local spin density approximation (LSDA) [66] has two quantities, the spin-up and spin down 

charge densities, and it is a straightforward generalization of the LDA to include electron spin. 

  
 rrrrrr dnnnnnE hom
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XC ))(),(()()](),([   ( 3-24) 

3.1.5.2.  Generalized-Gradient Approximation (GGA) 

As the LDA approximates the energy of the true density of the energy of a local constant 

density, it neglects the inhomogeneities of the real charge density, which could be very different 

from the HEG (homogenous electronic gas). The XC energy of inhomogeneous charge density can 

be significantly different from the HEG results. An improvement to this can be made by considering 

the gradient of the electron density, the so-called Generalized Gradient Approximation (GGA). 

Symbolically, this can be written as: 
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GGA also reproduces the binding energies, atomic energies, bond lengths better than LSDA, 

Nevertheless, there still exist some system which cannot be described properly by GGA because of 

its semi-local nature. What is the worst that no systematic way has been developed to improve the 

functional for exchange and correlation. The problems are  severe in materials in which the electrons 
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tend to be localized and strongly interacting, such as transition metal nitrides and rare earth elements 

and compounds [67]. 

 Pseudo-potential 3.1.6.

In physics, a pseudo-potential (Figure 9) or effective potential is used as an approximation for 

the simplified description of complex systems. Using pseudo-potential in DFT calculations 

corresponds to simplify and accelerate the computational time. In this approach, only the effects of 

the valence electrons are explicitly covered in the calculation, contrary to the effects due to core 

electrons. The latter, strongly related to the atomic nucleus, are much localized. Therefore, they 

participate very little in the chemical bond and thus influence weakly the solid properties of interest. 

However, the potential created by the core electrons is strongly oscillating and generates significant 

costs in terms of computation time. The idea therefore of potential nickname is to replace the 

complex potential due to core electrons by an effective ionic potential that would have the same 

effect on the valence electrons. 

 

 

 

 

 

 

 

 

 

 Figure 9. Schematic illustration of pseudo-potential. 

Comparison of a wave function in the Coulomb potential of the 

nucleus (blue) to the one in the pseudo-potential (red). The real 

and the pseudo wave function and potentials match above a 

certain cutoff radius rc 
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3.2. Concept and formalism 

Magnetism, the phenomenon by which materials assert an attractive or repulsive force or 

influence on other materials, has been known for thousands of years. However, the underlying 

principles and mechanisms that explain the magnetic phenomenon are complex and subtle, and their 

understanding has eluded scientists until relatively recent times [68]. Magnetism plays a crucial role 

in the development of memories for mass storage, and in sensors to name a few, Spintronics is an 

integration of the magnetic material with semiconductor technology, to realize nanosized devices 

with better features like non-volatility, scaling, etc. 

I  will discuss in this part the origin of magnetism and the various phenomena of 

diamagnetism, paramagnetism, ferromagnetism, anti-ferromagnetism and ferrimagnetism. I 

presented the two basic theories of magnetism-localized moment theory (Heisenberg model) and 

itinerant electron theory (Stoner model). 

 Magnetism in materials 3.2.1.

There are two basic theories of magnetism, localized moment theory and itinerant electron 

theory. In localized moment theory, the valence electrons are attached to the atoms and cannot move 

about the crystal. The valence electrons contribute a magnetic moment, which is localized at the 

atom. In the itinerant electron magnetic theory, electrons responsible for magnetic effects are 

ionized from the atoms and are able to move through the crystal. There are materials for which one 

or the other model is a rather good approximation [69]. 

The non-integral values of magnetic moment per atom, the high values of specific electronic 

heat coefficient, which are not compatible with localized model, impose the use of the itinerant 

model in the case of transition metals and their alloys. But, this model cannot explain the 
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Curie-Weiss law observed for all ferromagnetic metals for T > TC, and the calculated value 

of Curie temperature is too big comparing to the experimental one, problems that are easily resolved 

by localized model [70]. 

It is very clear that d electrons should be treated as localized electrons in magnetic insulator 

compounds and as correlated itinerant electrons in transition metals. However, they are still in the 

stage of development and in many cases they cannot be separated from each other. For a deep 

understanding of magnetism in condensed matter there has been a trend to combine both models to 

develop a unified theory [71] .  

3.2.1.1.  Localized moments in solids 

The modern theory of magnetism has started with the concept of a local magnetic moment of 

a fixed size. Within this concept Langevin gave an explanation for the Curie law of magnetic 

susceptibility [72]. Subsequently Weiss introduced the notion of an interaction (molecular field) 

between the atomic magnetic moments to explain the spontaneous magnetic order in solids.  

Combining this new concept with the studies of Langevin, Weiss was able to explain the finite 

temperature properties of ferromagnetic 3d transition metals [73]. 

In 1928 Heisenberg attributed the origin of Weiss molecular field to the quantum mechanical 

exchange interaction between the magnetic moments and proposed a more general model [74]. The 

magnetic interaction between localized moments, the magnetic coupling, determines the behavior of 

a compound when placed in a magnetic field and may favor magnetic ordering. The magnetic 

coupling is usually described using the Heisenberg Hamiltonian:  
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( 3-26) 
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 Where J is the exchange integral, positive values of the Heisenberg coupling constant J corresponds 

to parallel spin orientation (ferromagnetic coupling), negative ones to antiparallel spin orientation 

(antiferromagnetic coupling). The i and j can be restricted to run over all nearest neighbors or next 

nearest neighbor pairs of magnetic moments on account of the fact that the magnetic interaction is 

weak and decreases exponentially with distance. A spin operator of this form was first deduced from 

the Heitler-London results by Dirac [75] and first extensively applied in the theory of magnetism by 

Van Vleck [76]. If the orbitals of two neighbor atoms present a sufficient space extension so that an 

overlap is possible, the correlation effects lead to a direct interaction between the atoms spins. This 

phenomenon is known as direct exchange. The direct exchange is characteristic for 3d intermetallic 

compounds, and represents the strong  interatomic interaction, being responsible for the magnetic 

order up to high temperatures. When magnetic orbitals of two neighboring atoms are too localized to 

overlap, as in the case for the 4f series, the exchange process can occur through conduction electrons 

if the system is metallic. This leads to an indirect  

exchange of RKKY type (Ruderman, Kittel, Kasuya, Yosida) [77-79]. If there are no conduction 

electrons, as in ceramics where magnetic atoms are separated by non-magnetic atoms like oxygen, 

the external electrons of the latter participate in covalent binding and mediate the exchange 

interaction. This is the superexchange interaction, which was introduced by Kramers [80] (1934) in 

an early attempt to explain the magnetic interaction in antiferromagnetic ionic solids. The three main 

exchange mechanisms between localized moments are presented in Figure 10. The Heisenberg 

model is actually justified when well-defined local atomic moments exist, like in the case of 

magnetic insulators and in the majority of rare-earth metals.  
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Figure 10. Schematic illustrations of possible coupling mechanisms between localized magnetic 

moments: (a) direct exchange between neighboring atoms, (b) superexchange mediated by non-

magnetic ions, and (c) indirect exchange mediated by the conduction electrons. 

3.2.1.2.  Itinerant-electron magnetism 

  Opposite to the localized model is the itinerant (or band) model which considers that the 

magnetic carrier are the so called Bloch electrons which are itinerant through the solid. One of the 

main reasons for this is that the atomic moments in Fe, Co and Ni are not multiples of the Bohr 

magneton but rather odd fraction of it.  

Bloch first discussed the possibility of ferromagnetism in an electron gas on the basis of Hartree-

Fock approximation [81]. Later Wigner pointed out the importance of electron electron interactions 

on the suppression of the occurrence of ferromagnetism in electron gas [82]. Thus the occurrence of 

ferromagnetism in transition metals is considered to be connected with the atomic character of 3d 

electrons and mainly intra-atomic exchange interactions. 
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The Stoner model [83] is the simplest model of itinerant-electron magnetism, which has mainly been 

used to account for the existence of ferromagnetism in itinerant systems. If the relative gain in the 

exchange interaction (the interaction of electrons via Pauli's exclusionary principle) is larger than the 

loss in kinetic energy, the spin up and spin down electron bands will split spontaneously. The 

instability of non-magnetic state with respect to formation of ferromagnetic order is given by the 

Stoner criterion which is defined by:  

 

where:  I is the intra-atomic exchange integral and N (EF) is the density of states at the Fermi level. 

The conditions favoring magnetic moments in metallic systems are obviously: a large value of the 

exchange energy, but also a large density of state at the Fermi level. In Figure 11 the density of 

states at Fermi level of d transition elements are presented. However, the Stoner theory fails to 

explain the Curie-Weiss magnetic susceptibility observed in almost all ferromagnets and the 

measured TC for 3d metals are too high in comparison to the observed ones. Improvements to the 

Stoner model have been made that take into account the effect of spin fluctuations in a self-

consistent renormalized (SCR) way [71]. These studies built a bridge between two extreme limits of 

models (localized and itinerant) and unified them into one picture. In particular, these new theories 

have been very successful in describing several properties of weak itinerant ferromagnets [84]. 
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In addition, I also relate the result of calculation to the Stoner model [85-88], which is used for 

explaining the mechanism of spontaneous spin polarization and the Slater–Pauling curve. The 

existence of a Slater–Pauling magnetization curve is well known in the transition metal compounds, 

specifically in the formula types TM2B and TMB, where TM belongs to the first row of transition 

metal [89-91]. With the half-d-band occupied in compounds, such a curve describing saturation 

magnetization decreases linearly with a slope of 1 by progressively adding valence electrons to 

higher split half-d-band orbital. Because of the independence of the curve from the crystal structure, 

Figure 11 a) the Stoner parameter, b) the density of states at Fermi level, 

c) the Stoner criterion 
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I can draw a single Slater–Pauling curve to predict the magnetization for different crystal structures 

of transition metal borides.  

The question I want to analyze then is whether the magnetization of Fe1-x MnxB is dependent on a 

Slater–Pauling magnetization curve. In order to fully understand the characteristics of Fe and Mn in 

Fe1-x MnxB, I treated the mixture of TM1 and TM2 as the singular TM in the boride compounds, TM 

as transition metals.  

 Abrupt phase transitions 3.2.2.

Phase transitions occur in all fields of the physical sciences and are crucial in engineering as 

well; abrupt changes from one state of matter to another are apparent everywhere we look, from the 

freezing of rivers to the steam rising up from the tea kettle. But why should it be only temperature 

and pressure that drive such abrupt transitions? In fact, quantum fluctuations can replace thermal 

fluctuations, a phase transition can occur even at zero temperature, and the concept of a phase 

transition turns out to be a lot more general than it is made out to be in elementary thermodynamics. 

Over the last twenty or so years the field of quantum phase transitions (QPTs) has seen steady 

growth. 

3.2.2.1.  Phase transition  

Under certain conditions (temperature, pressure, magnetic and electric fields or doping) a number of 

systems in nature undergo phase transitions, for example, of a gas to a liquid or a solid, 

ferromagnetic-paramagnetic transition; normal metal to a superconducting phase, etc. 

 These remarkable phenomena occur as a consequence of the inter-particle correlations. Their 

description is made with the help of the thermodynamics and the statistical physics.  

The thermodynamics provides a general framework for the description of phases and phase 

transitions (classical phase transitions). Within the thermodynamic approach the phase transition is 
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considered as an abrupt change of one phase into another caused by the variation of the parameters 

of the state like the temperature T, the pressure P, the magnetic field H, etc. Usually the 

thermodynamic systems are defined for fixed external conditions-temperature, volume V, etc.  

For a given set of fixed parameters there always exists a function called thermodynamic potential 

having a minimum in the states, for which the system is in a thermodynamic equilibrium. As an 

example I would like to mention the Gibbs potential Φ; it depends on intensive parameters like T, P, 

and H. In order to make an appropriate use of the introduced thermodynamic potentials I should 

apply to them the Gibbs stability conditions. This gives the opportunity to outline the main 

properties of the phase transitions and the phase diagrams.  

Depending on whether the phases can coexist in an equilibrium contact or their distinctions 

vanish as the transition point is approached, two different types of thermodynamic behavior may 

exist. The first one is referred to the first-order transitions while the latter usually characterizes the 

second-order phase transitions. The order and the main properties of the phase transition depend on 

the way, in which the exchange of the stability between the possible phases participating in it takes 

place. There is another important point for discussion-the so-called critical state. This is a 

homogeneous thermodynamic state occurring at the second-order   transition point, i.e., the critical 

point Tc where the phases are indistinguishable (Gibbs, 1876-1878; see Gibbs, 1948). On 

approaching the critical state the distinctive features of the phases gradually disappear and the phase 

transition is continuous; a special type of continuous transitions is the second-order phase transition.  

The phenomena taking place in a close vicinity of the critical points (or lines) are called 

critical phenomena. The critical behavior at (and near to) the critical point is a special subject of the 

"critical" thermodynamics. The "phases" in the critical state and in the near-to-critical states have 

almost equal stability. For example, let us consider paramagnetic to ferromagnetic transition, below 

the Curie point Tc the low-temperature (ferromagnetic) phase is stable.  
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It possesses a nonzero spontaneous magnetization M in a zero external magnetic field (H = 0). When 

the temperature approaches Tc from the low-temperature side the stability of the ferromagnetic 

phase is reduced and at Tc the high-temperature (T > Tc) paramagnetic (M = 0) phase becomes 

stable. The ordered (ferromagnetic) phase cannot exist above Tc either as stable or metastable state 

and this is a characteristic feature of the second-order phase transitions.  

Within the framework of the rational thermodynamics the possibility of the critical points to 

appear is related to the existence of nonanalytic singularities of the thermodynamic functions. For 

instance, the thermodynamic susceptibilities, i.e., the second derivatives of the thermodynamic 

potential Φ may exhibit at the transition point either simple discontinuities or power and logarithmic 

singularities.  

The thermodynamics itself allows all these possibilities but it does not answer to the question 

concerning which of them actually occur in real systems.  

Phase transitions occur when the thermodynamic free energy of a system is non-analytic for some 

choice of thermodynamic variables. This condition generally stems from the interactions of a large 

number of particles in a system, and does not appear in systems that are too small. It is important to 

note that phase transitions can occur and are defined for non-thermodynamic systems, where 

temperature is not a parameter. Examples include: quantum phase transitions, dynamic phase 

transitions, and topological (structural) phase transitions. In these types of systems other parameters 

take the place of temperature. 

3.2.2.2.  Quantum Phase Transitions 

In physics, a quantum phase transition (QPT) is a phase transition between different quantum 

phases (phases of matter at zero temperature). Quantum phase transitions can only be accessed by 

varying a physical parameter, such as magnetic field or pressure at absolute zero temperature.  
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The transition describes an abrupt change in the ground state of a many-body system due to its 

quantum fluctuations [92]. Classical phase transitions occur at a regime where quantum fluctuations 

do not play an important role, usually at high enough temperatures. 

In recent years the scientific interest has shifted towards two new fields, viz. non-equilibrium phase 

transitions and quantum phase transitions. 

The investigation of quantum phase transitions was pioneered by Hertz [93]. In recent years 

quantum phase transitions in electronic systems have gained particular attention since some of the 

most exciting discoveries in contemporary condensed matter physics, viz. the integer and fractional 

quantum Hall effects and high-temperature superconductivity are often attributed to quantum critical 

points [94-96]. There are now quite a number of excellent textbooks available on the physics of 

phase transitions and critical behavior [97, 98]. 

A continuous phase transition can usually be characterized by an order parameter, a concept 

first introduced by Lev Davidovich Landau (Fermi liquid theory) [99]. An order parameter is a 

thermodynamic quantity that is zero in one phase (the disordered) and non-zero and non-unique in 

the other (the ordered) phase. Very often the choice of an order parameter for a particular transition 

is obvious as, e.g., for the ferromagnetic transition where the total magnetization is an order 

parameter. Sometimes, however, finding an appropriate order parameter is a complicated problem 

by itself, e.g., for the disorder-driven localization-delocalization transition of non-interacting 

electrons. 
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The transition of the magnetic moment can be either a first order (a discontinuous transition) 

or a second order (a continuous transition). The free energy (E) landscape at T = 0 of first and 

second order phase transition is schematically illustrated in Figure 12. This different behavior when 

approaching the quantum phase transition can be of interest both experimentally and theoretically. 

The nature of unconventional magnetic phases of metals may be clarified by tuning them 

systematically with the help of an external parameter such as pressure or field. In this thesis, I 

present studies on the magnetic state of semi and mono borides TM2B (TM=Fe, Co, Ni) and TMB 

(TM=Mn, Fe, Co, Ni) at high pressure. This group, consisting of transition metals belongs to the 

class of so-called nearly or weakly ferromagnetic materials. Thus, are characterized by strongly 

enhanced spin fluctuations, their ground state is close to a ferromagnetic instability which makes 

them good candidates for actually reaching the ferromagnetic quantum phase transition in 

experiment by changing the chemical composition or applying pressure. 

Figure 12. Qualitative illustration of first order (1) and second order (2) transitions of the 

magnetic moment (m) under pressures, and their corresponding free energy (E), 

respectively, adapted from Pfleiderer [93]. 
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One of the most remarkable findings about the magnetic phase transition in TMxB (x=1, 2) are    at a 

certain pressure the magnetic moment of the ferromagnetic compounds shows a pronounced abrupt 

avalanche (first order as is the case experimentally for the transition in MnSi [100]) as is shown in 

Figure 12. This phenomenon was explained by Landau-Ginzburg-Wilson theory of the 

ferromagnetic quantum phase transition [101].  It will be quite interesting for the experimentalist to 

perform high pressure (tens of GPa) measurements, comparing the magnetic and transport properties 

in this series of compounds. It can help to reveal the analogies and differences in the QPT 

 Equation Of State Calculation 3.2.3.

Geometry optimization under applied hydrostatic pressure can be used to determine the bulk 

modulus of a material, B, and its pressure derivative, B'=dB/dP. The procedure involves calculating 

a theoretical equation of state, EOS, which describes the dependence of the cell volume on the 

external hydrostatic pressure. The methodology is very similar to the real experiment: the external 

pressure is fixed using the Minimizer tab on the Geometry Optimization dialog and the cell volume 

at that pressure is found by carrying out geometry optimization with CASTEP. 

The subsequent analysis of the P-V dataset is exactly the same as in experimental studies 

[102]. An analytical expression is chosen to describe the EOS and its parameters are fitted to the 

calculated data points. The most popular form of EOS is the third order Birch-Murnaghan equation 

[103]: 

where V0 is the equilibrium volume. A detailed comparative study of various analytical forms of 

EOS was performed by Cohen et al.[104]. 

 

 

( 33.28) 
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  Population analysis 3.2.4.

 Mulliken population analysis (MPA)[105] is a method for calculating partial atomic charges 

based on the population of linear combined atomic orbitals (LCAO) bases. This is implemented in 

CASTEP by Segall et al. [36] based on the method of Sanchez-Portal [106] which provides the link 

between methods using LCAO and those using plane waves. Owing to the difference of electro-

negativity between the TM and B atoms,  ionic bonds are formed where TM atoms donate some 

electrons to B atoms and thus become slightly positively charged. MPA method is applied to  

overlap population and charge calculations. I use the following relations to calculate the average 

bond length and the average overlap population:  

Here, L moy (AB) and �̅�𝐀𝐁 are the average bond length and the mean bond population, respectively; Ni 

is the total number of i bond in the cell and Li is the bond length of i type. These parameters will be 

used for the calculation of bond hardness.   

 Hardness 3.2.5.

 Hardness is a measure of the resistance of materials against permanent deformations. It is usually 

measured by traditional techniques such as in Brinell, Rockwell, Vickers, or Knoop [107] and 

Berkovich Nano indentation [34] ( Figure 15). Materials with high hardness are technologically 

important for cutting tools and wear resistant coatings. It has been recognized that the hardness of 

strongly covalent/ionic bonded crystals is associated directly with the bond strength [108-110].  

Nano-indentation is an instrumented hardness testing technique (also called depth sensing 

indentation), with precise indent location, high-resolution load control and displacement 

measurement [111] .  

 
𝐿moy(AB) =

∑ 𝐿𝑖𝑁𝑖𝑖

∑ 𝑁𝑖𝑖
        ,          𝑃u = �̅�𝐀𝐁 =

∑ 𝑛𝑖
𝐴𝐵𝑁𝑖𝑖

∑ 𝑁𝑖𝑖
  (3.29) 
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During indentation one can measure continuous load–displacement, and after indentation the 

modulus and hardness results can be calculated from the unloading portion of the experiment [112]. 

Nanoindentation probes a very small volume around the indenter and when combined with a fully 

characterized large grained polycrystalline material, a wide variety of crystal orientations can be 

probed, which provides information on the materials performance on the nano- and micro-scales. 

Increasingly, these tests are being used to improve our understanding of materials performance on 

these scales. 

T. B. Britton et al.[113] confirm that there are correlations between the orientations of the titanium 

crystals, specifically the declination angle, and both the elastic and the plastic behavior during 

nanoindentation. When the indentation load is applied parallel to the c-axis the material is both 

stiffer and harder. Variations in stiffness are due to the different positions of Ti atoms within the 

hexagonal lattice; as the material is indented, the load will be applied to different configurations of 

atoms and will resolve onto different combinations of atomic bonds. Zarkades & Lar 0son [114] 

demonstrated this variation as a function of orientation, by considering the anisotropy in the stiffness 

and compliance constants. 

Consequently, the  measured values of hardness of materials are very sensitive to many parameters 

including loading and unloading speed (Figure 13), applied load, indenter tips (Figure 14), 

anisotropy of materials, defects in the sample, method of measurement, temperature, etc. 

Additionally, for polycrystalline materials hardness is a function of grain size; in case of thin films 

and coatings, their hardness depends on the repulsive barrier for the movement of dislocations 

across the interface between two materials and the results may vary critically (by a factor of three) 

with the nature of the substrate [115-118]. Therefore, it seems that there are no available methods 

for determining the ‘‘absolute’’ hardness of a material.  
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Figure 13. Hardness-resistance to penetration of a hard indenter [117]. 

  

 

Figure 14. Schematics of indenter tips [117] 
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In this thesis, the hardness of TM–B and B–B bonds in each of compounds TMB and TM2B 

are evaluated and compared. The proposed analytical expressions have been used to determine the 

hardness from first-principles theory [119]. I consider the hardness of B-B and TM-B bonds only. 

The hardness of TM–TM bond, however, is not taken into consideration in this work, because the 

hardness of metallic bond is ill defined in this method. The strength of the bond per the unit volume 

can be characterized by average overlaps populations. For complex multi-bonding compounds, the 

hardness of the u type bond can be calculated as follows: 

 

 

Figure 15. Loads in the range of 10 to 300 mN were 

applied to the “pure” zone of the FeB layer at a distance 

of 10 μm from the surface [56]. 
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Hv
u is the hardness of u type bond; Ω is the cell volume, du is the bond length; Nb

v refers to the υ type 

bond density per cubic angstrom  and the sum is over the total number of υ type bonds in the cell; 

and P
u
 is overlap population of u type bond. I use Mulliken population analysis as implemented in 

CASTEP in order to estimate bond overlap population.  

Using ab-initio calculations and previous works of Gao et  al [120]; Zhang et al. showed that GGA 

PBE gives better values of bond hardness (H). It is find that GGA-PBE (USP) method can be 

effectively used to predict the H value [119]. 

 Elastic properties  3.2.6.

It is well known that elastic properties can reflect interatomic interactions and are related to some 

fundamental physical properties, such as thermal expansion, phonon spectra and equations of state 

[121].  

 

r

E




  

(3.31) 

 

 

 

 

 𝐻v
u(𝐺𝑃𝑎) = 740𝑃u(𝑣b

u)(−5/3) 

𝑣b
u =

(𝑑u)3Ω

∑ [(𝑑v)3𝑁b
v]v

 

𝐻 = ((𝐻Fe−B)𝑁u
(𝐻B−B)𝑁v

)1/(𝑁u+𝑁v) 

 (3.30) 
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3.2.6.1. Relationship stress-strain 

          Elasticity begins by defining two tensors of order 2: the stress tensor 
ji and the strain tensor 

ij
 which are both symmetrical, ie that 

jiji   and in theory of linear elasticity is assumed that 

there is a linear relationship between 
ji and 

ij
 given by (generalized Hooke's law): 

    

ijkl
C  is an 4 order tensor. The number of possible combinations of four indices ijkl is 34=81 

éléments called tensor elastic stiffness. This tensor defines the elastic constants of the material. 

By reason of symmetry of 
ij

  and 
kl
  and by applying the relation of Maxwell 

klij
C

ijkl
C   

[122], the items are reduced to 21 independent elements in the most general case. In addition, the 

symmetry of the crystalline solid substantially reduces this number. The constants
ijkl

C  are denoted 

by a new notation, namely


C , such as ij or kl indexes are abbreviated by replacing each pair of 

indices initially quadruplets by a single α or β index. Thus, the abbreviations are as follows: 

 
klijkl

C
ij

   
(3.32) 

Figure 16 Origin of linear elasticity 
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11 1          32   or 23                 4 

22   2          31   or 13             5 

33   3          21   or 12             6 

 

Example: 

C1111 = C11, C1112 =C16, C2232 =C24. 

The equation (),  in matrix form is:    

 

 

The number of independent coefficients 


C depends on the symmetry of the material. If the 

symmetry of the crystal is cubic it is reduced at 3, hexagonal crystal 5, 9 for an orthorhombic ... etc. 

 

 Table 4. The number of independent elastic constants for different crystalline structure 

with their point group[123]. 

Structure (with point group) Number of independent constants 

Triclinic 21 

Monoclic  13 

Orthorhombique  9 

Tetragonal (4,-4,4/m) 7 

Tetragonal (422,4mm,-4 2/m, 4/mmm) 6 

Hexagonal and rhomboedric (3,-3)  7 

Hexagonal et rhomboedric (32,3m,-32/m) 6 

Hexagonal (6,-6,6/m, 622,6mm,-62m,-

6/mmm) 

5 

Cubic  3 

 

 

















































































12

31

23

33

22

11

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

12

31

23

33

22

11

























CCCCCC

CCCCCC

CCCCCC

CCCCCC

CCCCCC

CCCCCC

 
(3.33) 



CHAPTER 3                    Theoretical Framework, Concept and Formalism                                                                               

51 

 

For TM2B with tetragonal structures, there are six independent elastic constants, C11, C12, C13, C33, 

C44, C66, because of C22 = C11, C23 =C13, C44 = C55 as a result of the crystal symmetry. 

 

                                                  

 Generally, the elastic constants C11 and C33 are very high, which indicates the high resistance to the 

axial compression in these directions.  Moreover, it is well known that the elastic constant C44 is the 

most significant parameter which indirectly determines the indentation hardness of a solid [124]. A 

large C44 implies a strong resistance to monoclinic shear in the (100) plane. Notably, the values of 

C11 (C66) are larger than that of C33 (C44); implying that the intra-layer chemical bonds are stronger 

than those between the layers.  

For TMB with orthorhombic structures, there are nine independent elastic constants, C11, C22, C12, 

C13, C23, C33, C44, C55 and C66 as a result of the crystal symmetry. 
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The mechanical stability criteria can be represented in a uniform manner for orthorhombic structure 

[125]: 

3.2.6.2. Elastic constants and stability criteria under pressure 

For tetragonal structure the elastic constants under pressure (P) are related to those under zero 

pressure, shown as follows [126]:  

 

The stability criteria of material under pressure are similar to those under zero pressure, just 

replacing Cij with C̃ij(i, j = 1, 2, 3, 4, 5, 6) [127]. The single crystal elastic coefficients (Cij) satisfy 

the stability criteria, which leads to the following restrictions on the elastic coefficients under 

isotropic pressure as follows:  

 

 Cii > 0(i = 1; 2; 3; 4; 5; 6),  

C11 + C22+  C33 2 +(C12+  C13 + C23) > 0, (C11 + C22 – 

2C12) > 0; (C11 + C33 – 2C13) > 0, (C22 + C33 – 2C23) > 0 

(3.36) 

 C̃ij = Cij (i = 1, 2, 3;  j = 4, 5, 6),  C̃ii = Cii − P(i = 1, 2, 3, 4, 5, 6),

C̃12 = C12 + P,  C̃13 = C13 + P, C̃23 = C23 + P,  C̃45   

= C45,  C̃46 = C46, C̃56 = C56 

(3.37) 

 �̃�𝑖𝑖 > 0, (i = 1, 2, 3, …  6), C̃11 + C̃33 − 2C̃13 > 0, 

(2 C̃11 + C̃33 + 2C̃12 + 4C̃13 > 0, ( C̃11 − C̃12) > 0. 
(3.38) 
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On the other hand, the mechanical stability for orthorhombic structure leads to restrictions on the 

elastic coefficients under isotropic pressure as follows: 

Where: Cij are the elements of elastic coefficient matrix 

3.2.6.3. Polycrystalline elastic modulus 

The arithmetic average of the Voigt and Reuss bounds is known as the Voigt-Reuss-Hill (VRH) 

average, which is regarded as the best estimate for the theoretical value of polycrystalline elastic 

modulus [128]: 

Where: BV (GV) and BR (GR) are the bulk modulus (shear modulus) in the Voigt and Reuss 

approximations respectively. 

The Young modulus and Poisson ratio can be computed from the formula [128]: 

A larger B/G value (>1.75) for a solid indicates ductile behavior while a smaller B/G value (<1.75) 

usually means brittle material. Similarly, Poisson ratio ν>0.26 corresponds for ductile compounds 

usually [129].  

  C̃ii = Cii − P > 0, (i = 1, 2, 3, 4, 5, 6), ( 𝐶11 + 𝐶22 − 2𝐶12 − 4𝑃) > 0 ,  

( 𝐶11 + 𝐶33 − 2𝐶13 − 4𝑃) > 0, ( 𝐶22 + 𝐶33 − 2𝐶23 − 4𝑃) > 0,

( 𝐶11 + 𝐶22 + 𝐶33 +  2𝐶12 + 2𝐶13 + 2𝐶23 + 3𝑃) > 0 

(3.39) 

 GH = (GR + GV)/2,  BH = (BR  BV)/2 
(3.40) 

 E = 9BG / (3B + G),  ν = (3B - 2G) / (6B+2G) 
(3.41) 
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  Elastic anisotropy 3.2.7.

It is known that elastic anisotropy correlates with anisotropic plastic deformation and behavior 

of micro cracks in the material. Hence it is important to study the elastic anisotropy in intermetallic 

structures in order to further understand these properties and improve their mechanical durability. 

Most of crystals exhibit elastic anisotropies to some extent, and several criteria have been developed 

to describe it. The elastic anisotropy of a crystal can be characterized by the universal anisotropic 

index A
U
 and by the indexes describing the behavior in shear and compression (AG and AB). The 

universal elastic anisotropy index A
U
 and indexes AG and AB for a crystal with any symmetry may 

be proposed as follows [130, 131]: 

For an isotropic crystal, all three factors must be one, while any value smaller or greater than one is 

a measure of the degree of elastic anisotropy possessed by the crystal. A
U
 = 0 corresponds to an 

isotropic crystal. The deviation of A
U
 from zero indicates the extent of single crystal anisotropy and 

accounts for both the shear and the bulk contributions unlike all other existing anisotropy measures. 

Thus, A
U
 represents a universal measure to quantify the single crystal elastic anisotropy. AB = AG = 

0 represents the elastic isotropy, while AB = AG = 1 means the maximum elastic anisotropy [132].  

The shear anisotropic factors provide measures of the degrees of anisotropy in atomic bonding in 

different crystallographic planes. 

The elastic anisotropy of a tetragonal crystal can be measured by two shear anisotropy factors 

(Zener ratios) [124]:    

 
𝐴𝑈 = 5

𝐺𝑉

𝐺𝑅
+

𝐵𝑉

𝐵𝑅
− 6 ≥ 0 (3.42) 

 
𝐴𝐺 =

𝐺𝑉 − 𝐺𝑅

𝐺𝑉 + 𝐺𝑅
100, 𝐴𝐵 =

𝐵𝑉 − 𝐵𝑅

𝐵𝑉 + 𝐵𝑅
100 (3.43) 
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For an orthorhombic crystal the three shear anisotropy factors (Zener ratios):  

1. The anisotropic factor for the {1 0 0} shear planes between (011) and (010) directions is define as: 

             

2. The anisotropic factor for the {0 1 0} shear planes between (101) and (001) directions is:  

and  

3. The anisotropic factor for the {0 0 1} shear planes between (110) and (010) directions is: 

The simplest way to illustrate the anisotropy of mechanical moduli is to plot them in the 

three-dimensional space as a function of direction. For tetragonal crystal class, the directional 

dependence of Young modulus (E) or bulk modulus (B) and torsion modulus can be written as [121, 

133]: 

 
A1 =

2C66

C11 − C12
= 𝐴2, A3 =

C44

C11 + C33 − 2C13
 (3.44) 

 
𝐴1 =

4𝐶44

𝐶11 + 𝐶33 − 2𝐶13
 (3.45) 

 
A2 =

4C55

C22 + C33 − 2C23
 (3.46) 

 
A3 =

4C66

C11 + C22 − 2C12
 (3.47) 

 1

𝐸
= 𝑆11(𝑙1

4 + 𝑙1
4) + (2𝑆13 + 𝑆44)(𝑙1

2𝑙3
2 + 𝑙2

2𝑙3
2) + 𝑆33𝑙3

4 + (2𝑆12 + 𝑆66)𝑙1
2𝑙2

2 (3.48) 
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For orthorhombic crystal system [133]: 

 

In the equations above, Sij represents the compliance matrix and l1, l2
 
and l3 are the direction 

cosines, which are given as l1=sinθcosφ,l2=sinθsinφand l3=cosφ in the spherical coordinates.  

 Acoustic sound velocities and Debye temperatures  3.2.8.

The phase velocities of pure transverse and longitudinal modes of the TMB and TM2B compounds 

can be calculated from the single crystal elastic constants following the procedure of Brugger [134]. 

The sound velocities are determined by the symmetry of the crystal and propagation direction. For 

example, the pure transverse and longitudinal modes can only be found in [001], [110] and [111] 

directions in a cubic crystal and the sound propagating modes in other directions are the quasi-

transverse or quasi-longitudinal waves. In the principal directions, the acoustic velocities for 

tetragonal system can be expressed by: 

 1

𝐵
= (𝑆11 + 𝑆12 + 𝑆13)(𝑙1

2 + 𝑙2
2) − (2𝑆13 − 𝑆33)𝑙3

2 (3.49) 

 1

𝑇
= 𝑆44 +

4(𝑆11 − 𝑆12 − 𝑆44)

2
(𝑙1

2𝑙2
2 + 𝑙2

2𝑙3
2 + 𝑙1

2𝑙2
2) (3.50) 

 1

𝐸
= (𝑆11 + 𝑆22 + 𝑆33)𝑙1

4 + (2𝑆12 + 𝑆66)𝑙1
2𝑙2

2 + (2𝑆23 + 𝑆44)𝑙2
2𝑙3

2

+ (2𝑆13 + 𝑆55)𝑙1
2𝑙3

2 

(3.51) 

 1

𝐵
= (𝑆11 + 𝑆12 + 𝑆13)𝑙1

2 + (𝑆12 + 𝑆22 + 𝑆23)𝑙2
2 + (𝑆13 + 𝑆23 + 𝑆33)𝑙3

2 (3.52) 

 
[100]𝑣𝑙 = [010]𝑣𝑙 = √𝐶11

𝜌⁄  ;   [001]𝑣𝑡1 = √𝐶44
𝜌⁄ ;  [010]𝑣𝑡2 = √𝐶66

𝜌⁄  

[001]𝑣𝑙 = √𝐶33
𝜌⁄  ;  [100]𝑣𝑡1 = [010]𝑣𝑡2 = √𝐶66

𝜌⁄  

(3.53) 
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For orthorhombic system can be expressed by: 

                  

Where: ρ is the compound density; vl is the longitudinal sound velocity; vt1 and vt2 refer the first 

transverse mode and the second transverse mode, respectively. The anisotropic properties of sound 

velocities indicate the elastic anisotropy in these crystals. For example, the C11, C22 and C33 

determine the longitudinal sound velocities along [100], [010] and [001] directions, respectively, 

and C44, C55 and C66 correspond to the transverse modes [135]. 

As a fundamental parameter for the materials’ thermodynamic properties, Debye temperature ΘD is 

related to specific heat, thermal expansion and elastic constants. The Debye temperature can be 

estimated from the average sound velocity by the following equation based on elastic constant 

evaluations [136]: 

 

[110]𝑣𝑙 = [010]𝑣𝑙 = √(𝐶11 + 𝐶12+2𝐶66)
2𝜌⁄  ;  [001]𝑣𝑡1 = √𝐶44

𝜌⁄ ; 

[11̅0]𝑣𝑡2 = √(𝐶11 − 𝐶12)
2𝜌⁄  

 
[100]𝑣𝑙 = √𝐶11

𝜌⁄  ;   [010]𝑣𝑡1 = √𝐶66
𝜌⁄ ;  [001]𝑣𝑡2 = √𝐶55

𝜌⁄  

[010]𝑣𝑙 = √𝐶22
𝜌⁄  ;  [100]𝑣𝑡1 = √𝐶66

𝜌⁄ , [001]𝑣𝑡2 = √𝐶44
𝜌⁄  

[001]𝑣𝑙 = √𝐶33
𝜌⁄  ;  [100]𝑣𝑡1 = √𝐶55

𝜌⁄ , [010]𝑣𝑡2 = √𝐶44
𝜌⁄  

(3.54) 

 
Θ𝐷 =

ℎ

𝑘
(
3𝑛𝑁𝐴

4𝜋𝑀
)

1
3 

𝑣𝑚 = [
1

3
(

1

𝑣𝑡
3 +

1

𝑣𝑙
3)]−

1
3 

(3.55) 
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Where: B and G are isothermal bulk modulus and shear modulus, respectively, vl is the longitudinal 

velocity and vt is the transverse sound velocity.  

 Disorder In Solids 3.2.9.

Many crystal structures possess static positional disorder. The crystal may either contain fewer 

atomic species than there are crystallographically equivalent sites to populate, or there might, for 

example, be statistical occupancy of a given crystallographic site by more than one type of atom in 

different unit cells. This positional disorder is typically manifested in site occupancy factors of less 

than unity for the average unit cell. 

Castep code allows us to model positional disorder by specifying atom occupancy and by defining 

mixture atoms. 

The vast majority of atoms will have occupancy of unity. However, in the case of an atom on 

a partially occupied interstitial position, it can specify an occupancy ranging from 0.0 to 1.0. 

Atom occupancies can be modified in the Properties Explorer. 

Atomic sites in a crystal can also be described in terms of a hybrid atom that consists of two or 

more element types. The relative concentrations can be set for any number of atoms, but the total 

concentration must not exceed 100%. The mixture atoms description is the most often used 

representation of solid solutions, metallic alloys, disordered minerals, etc. 

 

 

𝑣𝑡 = √
𝐺

𝜌
 , 𝑣𝑙 = √(𝐵 +

4𝐺
3 )

𝜌
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3.2.9.1. Disorder and first principles calculations 

There are a number of different approaches for dealing with disorder in first principles calculations: 

1. Virtual crystal approximation (VCA): this offers technically the simplest approach, allowing 

calculations on disordered systems to be carried out at the same cost as calculations for ordered 

structures. VCA ignores any possible short range order and assumes that on each potentially 

disordered site there is a virtual atom which interpolates between the behavior of the actual 

components. This approach neglects such effects as local distortions around atoms and cannot 

be expected to reproduce the finer details of the disordered structures very accurately.  

2. Using large ordered supercells followed by configurational averaging: this is a very expensive 

approach with limited applicability. For example, it is not possible to treat arbitrary and 

particularly small concentrations. 

3. Coherent potential approximation (CPA): this method approximates a configurationally 

random alloy with an effective medium that is determined self-consistently from the condition 

of stationary scattering. The CPA technique is used extensively with model  

Hamiltonians with well-known scattering properties or in the context of multiple scattering 

methods of band structure calculation (KKR, LMTO). CPA is not well suited to total energy 

calculations or geometry optimization tasks. 

4. "Computational alchemy": this method uses the perturbation theory to calculate the response to 

the difference between the true and VCA potentials. This approach is very demanding 

computationally, as are all linear response calculations. 

The basic ideas for the workable VCA implementation for DFT methods, in particular for the 

pseudopotential-based techniques, were set out by [137]. The main statement of the implementation 

of VCA with ultrasoft potentials can be expressed as: 
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Where the total external potential is generated as the sum of the nonlocal potentials of each atomic 

species, α, taken with the weights, w, of the component atoms in the mixture atom. This means that 

all the key components of the ultrasoft potentials, i.e., the local part, Vloc, and the D and Q matrices, 

are all weighted according to the site occupancies. 

3.3. Conclusions 

DFT calculations allow us to calculate many properties of crystalline solids with a lower cost 

such as electronic structure, magnetic moment, elastic constants. Furthermore, other properties can 

be calculated using semi-empirical formalism that uses DFT results. 

In this chapter I have discussed all properties which are dealt  in this thesis, starting by  

magnetism in materials through the phase transition, population analysis, hardness, elastic 

properties, elastic anisotropy, acoustic sound velocities and debye temperatures up to virtual crystal 

approximation (VCA) approache. 

 

 

 

 

 



 

  

 

 

 

 

 

 

 

  

CHAPTER 4: Semi-Borides TM2B (TM=Fe, Co, Ni) 

Under Pressure. 
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4. Structure, magnetic, hardness and anisotropic elastic properties of boride coating TM2B 

(TM=Fe, Co, Ni) under pressure.  

It is known that Fe2B and Co2B compounds are ferromagnetic with magnetic moment 1.96 

and 1.18 µB, whereas Ni2B curry no magnetic moment [138-140]. Meneses-Amadoretal et al. 

[141], used indentation for the mechanical characterization of Fe2B layers and found that their 

hardness ranged from 9 to14.2 GPa depending on boriding temperature and time. Furthermore, 

the mechanical properties of FeB and Fe2B layers are estimated by Berkovich Nano indentation 

on boride steels. Their measurements show  that hardness range between 14.5 GPa and 19 GPa 

for FeB and from 13 to 16.3 GPa for Fe2B depending on temperature and boriding time, the 

hardness of  CoB and Co2B range between 15 and 16 GPa respectively[1, 142-144]. The hardness 

of nickel borides is measured after different diffusion processes of boriding sing Knoop [11, 145] 

or Vickers methods [12, 146]. Ni2B  borides hardness of about 12.75 GPa [11] and measured by 

Nano indenter 17.98 GPa [147].  

Britton et al.[113] show that there are correlations between crystals anisotropy and both the 

elastic and the plastic behavior during Nano indentation.  The electronic and elastic properties of 

the semi borides X2B (X=Cr, Mn, Fe, Co, Ni, Mo, W) compounds have been investigated in 

detail [139, 148]. However, anisotropic elastic properties and pressure effects for these 

compounds have not been presented. They are able to provide much insight on structures 

concerning behavior under pressure. The understanding of borides as protective coatings on steel 

surfaces especially mechanical properties needs the knowledge of their elastic constants and 

polycrystalline elastic moduli.  

http://www.sciencedirect.com/science/article/pii/S0257897211007456
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In this chapter, I present first-principles calculations results for the structure, magnetic, hardness 

and anisotropic elastic properties of Fe2B, Co2B and Ni2B compounds under pressure in the range 

from 0 to 90 GPa, in order to predict the critical transition pressure from ferromagnetic (FM) to 

nonmagnetic states (NM). Furthermore, mechanical anisotropies in both cases are discussed by 

calculating different anisotropic properties indexes and factors. I plot the three dimensional (3D) 

surfaces and planar contours of bulk, Young and torsion moduli of TM2B (TM=Fe, Co and Ni) 

compounds along (100) and (001) crystallographic planes in order to reveal their elastic 

anisotropy. I demonstrate that all previous properties change strongly with increasing pressure.  

4.1. Structure aspects and calculation methods 

Boride TM2B ( Figure 17) belongs to the body-centered tetragonal Bravais lattice, with I4/mcm 

space group where the unit cell contains four equivalent TM atoms in the positions of point group 

mm and two equivalent B atoms in the positions of point group 42 [128]. The B atoms in TM2B 

are located between two layers of TM atoms in a distorted closely packed arrangement. 
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CASTEP code is used for the whole study, which uses the plane wave expansion method in 

reciprocal space [149]. Ultra-soft Vanderbilt pseudo-potentials are employed to represent the 

electrostatic interactions between valence electrons and ionic cores [150] which are used with the 

following valence electronic configurations Fe: 3d
6
4s

2
, Co: 3d

7
4s

2
, Ni: 3d

8
4s

2 
and B: 2s

2
2p

1
. 

Generalized gradient approximation PBE-GGA was used for exchange-correlation energy 

calculations [151]. The kinetic energy cut-off value is selected as 500eV, which is sufficient to 

obtain reliable results. Total energies are evaluated in the first irreducible Brillouin zone with the 

following Monk-horst–Pack grids [152]: (10 x10x 10) for all compounds.  

 The convergence criteria of total energy and structure optimization are set to fine quality with 

the energy tolerance of 10
-6

 eV/atom. BFGS (Broydene-Fletchere-Goldarbe-Shanno) 

optimization method was performed to obtain the equilibrium crystal structures of TM2B with 

maximum atom displacement and force set to 0.002 Å and 10
-4

 eV/Å. 

a b 

Figure 17. The crystal structure of TM2B illustrated by ball and stick model. 

 (a) View along c axis; (b) view along a axis; the big ball refers to B and the small 

ball refers to TM atom. 
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Structure, hardness and anisotropic elastic properties are calculated at O GPa and high 

pressure (above critical transition pressure for Fe2B and Co2B). 

The cohesive energy (Ecoh) of a material, (a useful fundamental property), is a measure of the 

relative binding forces. The stability of our compounds can be evaluated by calculating two 

energy parameters, cohesive energy Ecoh and formation energy Ef   defined as follows: 

 

 

 

Where: Ecoh (TM2B) is the cohesive energy of TM2B per unit formula; Ef (TM2B) is its formation 

energy; Ecoh (TM) is the cohesive energy of transition metal element per atom; Etotal (TM2B, Cell) 

is the total calculated energy of TM2B per conventional unit cell; Eiso (TM) is the total energy of  

an isolated TM atom and finally n refer to the number of unit formula TM2B in the conventional 

cell. The calculation method for Ecoh (TM2B) can also be used to evaluate the cohesive energy of 

pure elements B and TM. Eqs. (1) and (2) require negative values of Ecoh (TM2B) and Ef (TM2B) 

to refer to a thermodynamically stable structure. The crystal structures of TM2B studied in this 

thesis are built based on experimental results. 

  Structural properties and stability  4.1.1.

The calculated lattice parameters, unit cell volumes, bulk modulus, cohesive energy and the 

formation energy of pure elements and TM2B along with the available experimental and previous 

theoretical data for comparison, are shown in Table 5 and Table 6. These results show that the 

calculated structure parameters are in good agreement with the experimental values. At 

equilibrium, calculations show that Fe2B and Co2B compounds carry magnetic moment with 

 
𝐸𝑐𝑜ℎ(𝑇𝑀2𝐵) =

𝐸𝑡𝑜𝑡𝑎𝑙(𝑇𝑀2𝐵, 𝐶𝑒𝑙𝑙) − 2𝑛𝐸𝑖𝑠𝑜(𝑇𝑀) − 𝑛𝐸𝑖𝑠𝑜(𝐵)

𝑛
 ( 4.1-1) 

 𝐸𝑓(𝑇𝑀2𝐵) = 𝐸𝑐𝑜ℎ(𝑇𝑀2𝐵) − 2𝐸𝑐𝑜ℎ(𝑇𝑀) − 𝐸𝑐𝑜ℎ(𝐵) ( 4.1-2) 
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values 1.83 and 1.12 µB respectively, while Ni2B shows the paramagnetic behavior. The 

calculated magnetic moments of our compounds, at 0 GPa, are in good agreement with 

theoretical and experimental values (Table 6). These moments are smaller than the magnetic 

moments of pure elements Fe, Co and Ni which behave as weak ferromagnetic with a magnetic 

moment 2.217 μB for iron, while both cobalt and nickel behave as strong ferromagnetic with a 

magnetic moment: 1.753 μB and 0.616 μB, respectively [153, 154].  Indeed, when B atoms are 

inserted in TM crystals, the volume concentration of metallic TM–TM bonds decrease and are 

replaced by the newly formed covalent TM–B and B–B. The calculated values of cohesive 

energy of Fe2B, Co2B and Ni2B are, respectively, -18.92, -18.58 and -22.06eV per formula unit. 

Furthermore, the formation energies are -1.475, -0.98 and -1.068eV for Fe2B, Co2B and Ni2B 

respectively, indicating that all of these TM2B compounds are stable. 

 

 

 

Table 5. The calculated ground state properties of pure elements, Fe, Co, Ni and B with 

experimental and other theoretical works. 

Parameters Fe  Co Ni B 

Eiso -859.821 

(-855.913) 
a
 

   

-1037.55 

 

-1347.162 -70.501  

(-70.492) 
a
 

 
Etotal -865.315  

(865.335) 
a
 

-1043.113 -1354.431 -76.953 

(-76.875) 
a
 

Ecoh -5.494 

(-4.28) 
exp

 

(-9.422) 
a
 

-8.344 -7.2697 -6.452  

(-6.383) 
a 

 

volume 
11.775  

(11.82) 
exp

       

11.16 

(10.90)
b
 

11.04 

(10.87)
b
 

8.652 

(8.763) 
a
 

exp
Ref. [153].

 a 
Ref. [139], 

 b
Ref. [154]. 
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Table 6. The calculated ground state properties of TM2B. Experimental and theoretical values are 

listed in parentheses. Total cell energy E total (eV/f.u.), cell parameters (a, b, c in Ǻ), fractional 

coordinates  of TM and B atoms(x, y and z), volume V (Ǻ
3
), Bulk modulus (GPa), magnetic moment 

(µB/atom), cohesive energy Ecoh (eV/f.u.), formation energy Ef (eV/f.u). 

Parameters Fe2B Co2B Ni2B 

Etotal - 3618,115 -4328.344      -5573.764 

(a, b, c)  

 

5.012, 4.209 

(5.110, 4.240) 
exp

 

4.981, 4.289 

(5.015, 4.22) 
exp

 

4.988, 4.295 

(4.9910, 4.247) 
exp

 

TM (x,y,z) 

0.1666,  0.666,   0 

(0.1649, 0.6649, 0) 
exp 

0,1686, 0,6686, 0 

(0.168, 0.668, 0) 
exp

 

0.1686, 0,6686, 0 

(0.1677, 0.6677, 0) 
exp

 

B(x,y,z) 0, 0, 0.25
 

0, 0, 0.25 0, 0, 0.25 

V 52.87 53.22 53.66 

B 

244.59  

(249.7) 
d 

257.46  

(247.26)
d
 

 

262.88 

 (238.12)
d 

µB/atom 

1.83  

(1.62) 
exp2

,  (1.96) 
b
  

1.12 

(1.182)
b
 

0 

Ecoh -18.92, (-26.70) 
b
 -18.58(-24.14)

b
 

 

-22.06(-22.10)
b
 

 

Ef -1.475, (-1.475) 
b
, (-0.85) 

c
 -0,98(-1.022)

b
 -1,068(-1.18)

b
 

exp
Ref. [155], 

 b
Ref. [139], 

 c
Ref. [156]

 , d
Ref. [148]. 
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  Pressure effects.  4.1.2.

Usually, in order to induce some significant change in the structures, high pressures are 

needed for the study of materials. I applied increasing pressure on my three compounds and 

examined the corresponding magnetic moment for each compound. Figure 18 presents the 

evolution of the magnetic moment and the V/V0 ratio of Fe2B and Co2B with increasing pressure. 

As it can be seen in this figure, there is an abrupt transition from magnetic to nonmagnetic state 

which causes an extinction of the magnetic moment; the critical transition pressures are: 85 GPa 

for both Fe2B and Co2B.  

 

 

 

 

 

 

 

 

 

I applied increasing pressure on my compounds and examined the corresponding total energy, 

volume, lattice parameters, c/a ratio and magnetic moment for each compound. Figure 19 and 

Figure 20, presents the evolution of these parameters of Fe2B and Co2B compounds with 

increasing pressure, because they are ferromagnetic.  

It is obvious that the V/V0 decreases (Figure 18) with the increase of pressure, and the values of 

V/V0 for Fe2B and Co2B at a critical pressure (85 GPa) are 0.806 and 0.8137, respectively.  

Figure 18 Pressure dependence of of magnetic moment and the normalized volume 

V/V0 for Fe2B and Co2B. 
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Up to ≈ 84 GPa, TM2B compounds show a linear decrease in their lattice parameters and c/a ratio 

of similar magnitude. There is a discontinuous change in slope for the structure parameters 

between 84 GPa and 85 GPa for Fe2B and Co2B (Figure 18), this abrupt change of lattice 

parameters are linked with the magnetic state transition (FM to NM), and there are two changes 

of lattice parameters at the critical pressure: one with the decrease of a and the increase of c for 

Fe2B and the other, the increase of a and the decrease of c for Co2B.  

Near QPT (Figure 19), the abrupt changes of lattice parameters between 84 and 85 GPa are 

obvious. It can be seen that the parameter a of Fe2B has a tiny decrease between 84 and 85 GPa 

(1.2%), while the parameter c has a tiny increase (1.5%), which mean that the easy axes of 

magnetization for Fe2B are the direction <100>, <010>  and the hard axis is the direction <001>, 

this is confirmed experimentally by Edström et al. [157]. Contrary, the parameter, a of Co2B has 

a tiny increase between 84 and 85 GPa (0.4%), while the parameter c has a tiny decrease (1.3%), 

which mean that the easy axis of magnetization for Co2B is the direction <001>,  and the hard 

axes are the direction <100>, <010>, also, this is confirmed experimentally by Edström et a 

l[157]. Here, I can note that the percentage of relative change is due to value of the magnetic 

moment. 

From the comparison of Fe2B and Co2B calculation data, it is possible to assign the sudden 

change of c/a ratio at 85 GPa pressure to a magneto-elastic  transition, in Figure 19 and Figure 

20, where c/a ratio decrease (increase) with increasing pressure (decreasing volume). All the 

abrupt changes of parameters are due to the a pronounced abrupt collapse of the magnetic 

moment (first order quantum phase transitions) from FM to PM state, which causes an extinction 

of the magnetic moment and  a possible origin of this dependence is the magneto-volume effect 

[158]. 
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In order to show the dependence of pressure at 0 GPa (FM) and at a critical pressure (NM), I 

calculate the relative change of all parameters between the ferromagnetic and nonmagnetic states, 

they are obtained as: 

 
...,,,,, HBEEVX

X

XX

X

X
fcoh

FM

NMFM 





  
 4.1-3 

 

The calculated percentage change of volume at 0 GPa and at transition pressure of our 

compounds, show a volume compression of 20%, 17.74% and 19.2% for Fe2B, Co2B and Ni2B 

respectively, in applied pressure, which increase the bulk modulus of our compounds by 62%,  

60% and 57%.  

Figure 19 Pressure dependence of structure parameters and elastic constants for Fe2B. 
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The formation energy Ef, is calculated to check the probability of thermodynamic existence of 

TM2B under pressure. All formation energies are negative indicating that structures in two 

pressures conditions are thermodynamically stable. The formation energies of  TM2B at 0 GPa 

are less than TM2B under pressure by 82.14%, 98.23% and 97.4% for both Fe2B, Co2B and Ni2B 

respectively, implying that they have more thermodynamic stability without applied pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21 presents the density of states for spin-up and spin-down electrons of TM2B(TM=Fe, 

Co, Ni) at 0GPa and 85 GPa. 

The calculated magnetic moments of our compounds, at 0 GPa, are in good agreement 

with theoretical and experimental values from literature (Table 6).  

 Figure 20. Pressure dependence of structure parameters and elastic constants for Co2B. 
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As shown in Figure 21 the difference between the density of spin-up and spin-down 

electrons corresponds to the saturated magnetic moment, μsat, at T=0. Indeed, when B atoms are 

inserted in TM crystals, the volume concentration of metallic TM–TM bonds decrease and are 

replaced by the newly formed covalent TM–B and B–B.  

The magnitude of the magnetic moment is strongly related to the volume. Thus the values 

of equilibrium volume obtained in the magnetic case are larger than in NM case. A possible 

origin of this dependence is the magneto-volume effect [158]. Because the Pauli Exclusion 

Principle operates for parallel spins, the electron kinetic energy of the spin- polarized state is 

higher, and volume expansion relaxes the kinetic energy. Consequently the magnetic (high-spin) 

state has a larger volume than the non-magnetic state [159].  

The bulk modulus is increased from 0 to 62.4% for Fe2B and from 0 to 60% for Co2B. In 

the NM state the bulk modulus B is systematically larger than in the magnetic state. The low 

value of bulk modulus in the magnetic case points to a larger compressibility. This means that 

Fe2B and Co2B are “softer” when are magnetically ordered and “harder” when are not. The 

calculations are important to obtain the correct ground state properties of TM2B compounds due 

to the presence of magnetic elements Fe, Co and Ni. Total DOS at the Fermi level for Fe2B and 

Co2B increases under pressure by 50.6% and 22.8% and decrease by 17.4% for Ni2B(Figure 21.) 

respectively, this enhanced N(Ef) is derived entirely from the TM 3d states, with negligible 

contribution from the B 2p states. Following the above arguments I may predict the appearance 

of superconductivity in Fe2B and Co2B under pressure as is in the case of iron that undergoes a 

transition to superconducting phase above 30GPa when it loses its magnetic moment [160]. 
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Figure 21 The calculated total and partial DOS of TM2B, Left panel with spin polarization  

and right panel under pressure. Dashed line represents the Fermi level. 
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  Hardness 4.1.3.

Quite recently developed semi-empirical models used for preliminary theoretical estimation 

of intrinsic hardness. One of the first models has been proposed for the description of covalent 

crystals Based on the works of Gao et al. [120], the hardness of TM–B and B–B bonds in each of 

our three compounds TM2B are evaluated and compared. It is find that GGA-PBE (USP) method 

can be effectively used to predict the H value, and the proposed analytical expressions have been 

used to determine the hardness from first-principles theory [119]. I consider the hardness of B-B 

and TM-B bonds only. The hardness of TM–TM bond, however, is not taken into consideration 

in this work, because the hardness of metallic bond is ill defined in this method. The strength of 

the bond per the unit volume can be characterized by average overlap populations. For complex 

multi-bonding compounds, the hardness of the u type bond can be calculated ( relation  0 3.30).  

In Table 7; I use MPA  (3.29) to estimate the bond overlap population  

The longest TM–B bond length considered in this work is limited to 3.1Å because the 

interaction between TM atom and the second nearest neighbor B atom is assumed to be weaker 

than that between the nearest-neighbor boron atoms. 

The calculated bond length, population overlaps and the contribution of TM–B and B-B 

bonds to the hardness Hv in Fe2B, Co2B and Ni2B are listed in Table 7, with material hardness of 

our three compounds. The hardness of B–B bond Hu is significantly larger than TM–B bond in 

TM2B compounds because of the large bond overlap population. In the case of Fe2B the B–B 

bond is harder than the other B–B bond in Co2B and Ni2B because B–B bond has the shortest 

bond length in this compound and hence maximum overlap population. 
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The calculated hardness as follows: Fe2B (18.34 GPa),  Co2B (18.07 GPa) and Ni2B( 17.82 GPa) 

are in fairly good agreement with the experimental values of (16.2 ± 0.017 GPa) for Fe2B, (17.99  

GPa) for Co2B [142] and(17.98 GPa) for Ni2B[147].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Elastic properties under pressure  4.1.4.

There are six independent elastic constants for TM2B with tetragonal structures, C11, C12, C13, 

C33, C44, C66, because of C22 = C11, C23 =C13, C44 = C55 as a result of the crystal symmetry. The 

elastic constants of single crystalline TM2B compounds are presented in Table 8. Generally, the 

elastic constants C11 and C33 are very high, both at zero and at high pressure, which indicates the 

high resistance to the axial compression in these directions.  

Table 7. The predicted hardness of TM2B. Experimental and theoretical values are listed 

in parentheses. Different pairs of atoms (B–B, TM–B). Average  bond length of nearest-

neighbor atoms  d
u 

(A˚),  average overlap population of u type bond,  nearest-neighbor 

numbers  N
u
  for different pairs of atoms,  cell volume Ω (Ǻ

3
), volume of a bond of  u 

type 𝑣v
u, hardness of u type bond  H

u
 (GPa) and hardness H(GPa).  

Species Bond d
u
  p

u
 N

u
 Ω v𝑣

𝑢 H
u
                H 

Fe2B 

B-B 

Fe-B 

2.105 

2.144 

0.64 

0.15 

2 

32 105.76 

2.952 

3.121 

85.270 

16.658 

 

18.34 (18.2) 
a
 

(16.2±0.011) 
exp

 

Co2B 

B-B 

Co-B 

2.145 

2.140 

0.58 

0.15 

2 

32 

106.456 

3.152 

3.130 

63.83 

16.70 

 

18.07 (17.99) 
exp

 

Ni2B 

B-B 

Ni-B 

2.148 

2.144 

0.57 

0.15 

2 

32 

107.310 

3.173 

3.155 

62.04 

16.48 

 

17.82 (17.98) 
exp1

 

a 
Ref. [148], 

 exp 
Ref. [142],

 exp1
Ref. [147]. 
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 Moreover, it is well known that the elastic constant C44 is the most significant parameter 

which indirectly determines the indentation hardness of a solid [124]. A large C44 implies a 

strong resistance to monoclinic shear in the (100) plane. Fe2B has the highest C44 among our 

compounds which means its ability to resist shear distortion in the (100) plane is the strongest.  

The highest C44 for Fe2B than those for the other compounds means that its ability to resist shear 

distortion in the (100) plane is the strongest. The results in Table 8 indicate that TM2B have 

relatively strong anisotropic elastic constants resulting in the directional dependence of the 

moduli. Notably, the values of C11 (C66) are larger than that of C33 (C44) at 0 GPa and under 

pressure, implying that the intra-layer chemical bonds are stronger than those between the layers. 

Moreover the calculated percentage change in lattice parameters a and c between FM and NM 

cases are 6.8% and 7.34% for Fe2B, while for Co2B  are 5.15%  and 9.65%. The other 

compression moduli (C12 and C13) are significantly smaller for Fe2B, while for Co2B and Ni2B 

are significantly larger. They correspond to the intra and inter-layer moduli under bi-axial stress 

conditions.  

The stability criteria of material under pressure are similar to those under zero pressure, just 

replacing Cij with C̃ij(i, j = 1, 2, 3, 4, 5, 6) [127] where C̃ij  are given by relations  (3.37).  

The single crystal elastic coefficients (Cij) satisfy the stability criteria on the elastic coefficients 

under isotropic pressure given by (3.38). 

 

 

 

 

 



CHAPTER 4                                                         TM2B (TM=Fe, Co, Ni)                                                                               

78 

0

200

400

600

800

1000
 C

11

 C
33

 C
12

 C
13

 C
44

 C
66

C
ij
(G

p
a

)

85 GPa0 GPa 85 GPa 0 GPa 85 GPa 0 GPa

Fe
2
B Co

2
B Ni

2
B

Figure 22. Pressure dependence on the elastic constants 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

The arithmetic average of the Voigt and Reuss bounds is known as the Voigt-Reuss-Hill (VRH) 

average, which is regarded as the best estimate for the theoretical value of polycrystalline elastic 

modulus (3.40). The Young modulus and Poisson ratio can be computed from the formula  

(3.41). 

Table 8. The calculated full set elastic constants of TM2B (under 0 and a critical 

pressure, in GPa) with other theoretical works. 

Species 
Elastic constants 

C11 C33 C12 C13 C44 C66 

Fe2B (0 GPa)   
459.7 426.3 165.6 132.3 162.6 173.7 

413
b
 389

b
 154

b
 132

b
 148

b
 157

b
 

Fe2B (85 GPa) 

 

1010.4 839 541.3 488.4 298 288.4 

Co2B (0 GPa)   430 337.68 195.7 183 102.9 126.4 

417.7
a
 310.3

a
 207.2

a
 183.1

a
 103.9

a
 109.5

a
 

Co2B (85 GPa) 

 

892.2 887.2 552.1 493.3 242.1 227.8 

Ni2B (0 GPa)   
410.8 351.3 218 180.4 86.7 126.6 

397.2
a
 351.8

a
 191.2

a
 158.2

a
 79.6

a
 126.9

a
 

Ni2B (85 GPa)   864.68 906.29 523.46 447.5 225.46 284.23 
a
Ref. [148],

 b
Ref. [161] 
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A larger B/G value (>1.75) for a solid indicates the ductile behavior while a smaller B/G value 

(<1.75) usually means brittle material. Similarly, Poisson ratio ν>0.26 corresponds for ductile 

compounds usually [129]. At both 0 GPa and above critical pressure, B/G is larger than 1.75 and 

ν >0.26 for Co2B and Ni2B (Table 9), which indicate that they are ductile. The values of B/G and 

ν for Fe2B are 1.52 and 0.23, respectively at 0 GPa pressure which mean Fe2B is brittle. In 

contrast, at critical pressure Fe2B is ductile since B/G=2.48, ν=0.32. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Table 9.  The calculated bulk, Young (E) and shear modulus (G) (under 0 and critical 

pressure, in GPa), Poisson’s ratio (v), B/G ratio and the relative change (in %) for TM2B 

compounds. 

Species B E G v B/G ΔB/B ΔE/E ΔG/G Δ v/ v 

Δ (B/G)/ 

(B/G) 

Fe2B (0 GPa) 

244.6 

222.3a 

395.2 

355a 

160.5 

144a 

0.23 

0.23a 

1.524 

1.54a 

62.4 43.2 39 28.1 38.5 

Fe2B (85 GPa) 

 

651 695.4 263 0.32 2.48 

Co2B (0 GPa) 

257.46 

247.2b 

287,69 109.49 

89.7b 

0,31 2.35 

2.76b 

60 50.7 49.4 11.4 20.8 

Co2B (85 GPa) 

 

644.35 583,82 216.39 0,35 2.97 

Ni2B (0 GPa) 

262.88 

238.1b 

255,51 95.48 

105.4b 

0,34 2.75 

2.26b 57 58 58 0 -2 

Ni2B (85 GPa) 607.97 601.28  225.17 0.34 2.70 
     

aRef. [162],  bRef.[148]. 
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 Elastic anisotropy 4.1.5.

The mechanical anisotropy is characterized by calculating several different anisotropic 

indexes AU, AG and AB as defined in chapter 3 (3.42) and (3.43).  

The shear anisotropic factors provide measures of the degrees of anisotropy in atomic 

bonding in different crystallographic planes. 

The calculated values of anisotropic factors for semi- borides TM2B are shown in Table 10. 

For an isotropic crystal, all three factors must be one, while any value smaller or greater than one 

is a measure of the degree of elastic anisotropy possessed by the crystal.  

The elastic anisotropy of a tetragonal crystal can be measured by two shear anisotropy factors 

(Zener ratios)  (3.44).  

Obviously, the order in the universal elastic anisotropic index for the considered TM2B 

compounds is Ni2B > Co2B > Fe2B. The elastic modulus of Ni2B is strongly dependent on 

different directions and the calculated AG, AB and shear anisotropic factors (A1, A2 and A3) 

values support this conclusion, that means iron boride Fe2B has very small anisotropy (Au ≅ 0). 

Magnetic moment in Fe2B and Co2B has reduced the anisotropic factors A1 and A3 to 4% 

and 23.5% and to 19.4% and 16.1% respectively. For the universal anisotropic index AU is 

augmented when pressure is applied by 84.6% for Fe2B and 20% for Co2B. Notably, the values of 

C11 (C66) are larger than that of C33 (C44) at 0 GPa and under pressure for both compounds 

Fe2B and Co2B, moreover the calculated percentage change in lattice parameters a and c between 

FM and NM cases are 6.8% and 7.34% for Fe2B, while for Co2B  are 5.15%  and 9.65%. 
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Table 10. Polycrystalline elastic properties and Anisotropic factors of TM2B compounds. 

Species BV BR GV GR A1 A2 A3 Au AG AB 

Fe2B (0 GPa) 
245.11 

222.7
a
  

244.07 

221.8
a
 

160.82 

144.4
a
  

160.21 

143.6
a
 

1.18 

1.07
a 
 

1.18 

1.07
a
 

0.26 

1.23
a
 

0.02 

0.03
a
 

0.19 

0.28
a
  

0.21 

0.20
a
 

Fe2B (85 GPa) 655.09 646.32 266.31 260.30 1.23 1.23 0.34 0.13 1.14 0.67 

Co2B (0 GPa) 259.26 255.67 110.22 108.76 1.08 1.08 0.26 0.08 0.01 0.01 

Co2B (85 GPa) 644.69 644.00 218.47 214.31 1.34 1.34 0.31 0.10 0.01 0.00 

Ni2B (0 GPa) 265.19 260.56 96.76 94.21 1.31 1.31 0.22 0.15 0.01 0.01 

Ni2B (85 GPa) 608.06 607.88 228.17 222.17 1.67 1.67 0.26 0.14 1.33 0.01 

a
Ref. [162]. 

  Table 11. The calculated bulk, Young (E) and shear modulus (G) (under 0 and critical pressure, 

in GPa), Poisson’s ratio (v), B/G ratio and the relative change (in %) for TM2B compounds. 

Species B E G v B/G 

ΔB/B ΔE/E ΔG/G Δ v/ v Δ (B/G)/ 

(B/G) 

Fe2B (0 GPa) 244.6 

222.3a 

395.2 

355a 

160.5 

144a 

0.23 

0.23a 

1.524 

1.54a 

62.4 43.2 39 28.1 38.5 

Fe2B (85 GPa) 

 

651 695.4 263 0.32 2.48 

Co2B (0 GPa) 

257.46 

247.2b 

287,69 109.49 

89.7b 

0,31 2.35 

60 50.7 49.4 11.4 20.8 

Co2B (85 GPa) 

 

644.35 583,82 216.39 0,35 2.97 

Ni2B (0 GPa) 

262.88 

238.1b 

255,51 95.48 

105.4b 

0,34 2.75 

57 58 58 0 -2 

Ni2B (85 GPa) 607.97 601.28  225.17 0.34 2.70 
     

aRef.[162]. Ref.[148] 
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The previously calculated A
U
, AB, AG and A1, A2, A3 cannot describe the size and shape of 

anisotropy directly. To conduct a careful inspection of the changes of elastic modulus in all 

directions, drawing a three-dimensional graph for TM2B compounds is necessary, as shown in 

Figure 24, Figure 25 and Figure 26.  

From Eqs: (3.48), (3.49) and (3.50) the three-dimensional surface representations showing the 

variation of the Young,   bulk and torsion modulus are plotted in Figure 24, Figure 25 and Figure 

26, and the plane projections ((100) plane and (001) plane) of the directional dependences of the 

Young, bulk  and torsion modulus are given in Figure 27 for comparisons. It can be clearly seen 

that Fe2B exhibits a pronounced anisotropy (AB =0.67, AG = 1.14) under pressure, in contrast 

Co2B (AB =0.00, AG = 0.01) with the spherical nature in Figure 24 and Figure 25. Moreover, it is 

interesting to note that the directional bulk modulus along the c-axis is smaller than those along 

a= b-axes, which is consistent with the predicted elastic constants along different axes (Table 8). 
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 Thus, compared to the in-plane isotropy in (001) plane, a significant in-plane elastic 

anisotropy in (100) planes are revealed. It can be seen that the Young modulus anisotropy of 

Ni2B is stronger than in the other structures. 

The shear anisotropic factors provide measures of the degrees of anisotropy in atomic bonding in 

different crystallographic planes. 
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Figure 24. Illustration of directional dependent Young’s modulus of TM2B 

compounds: Left panel with 0 GPa pressure and right panel under pressure.  
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Figure 25. Illustration of directional dependent bulk modulus of TM2B compounds: 

Left panel with 0 GPa pressure and right panel under pressure. 
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Figure 26. Illustration of directional dependent torsion modulus of TM2B compounds: 

Left panel with 0 GPa pressure and right panel under pressure.  
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 Acoustic sound velocities and Debye temperatures  4.1.6.

In the principal directions, the acoustic velocities for a tetragonal system are related to elastic 

coefficients by relation in (3.53). 

The calculated densities, sound velocities and Debye temperatures at 0 GPa and critical pressure 

for TM2B compounds are presented in Table 12. It is obvious that Fe2B has large sound 

velocities, since its elastic constants (C11, C33, C44 and C66) are larger than the other compounds: 

Co2B and Ni2B. The anisotropic properties of sound velocities indicate the elastic anisotropy of 

these crystals. For example, the C11 and C33 determine the longitudinal sound velocities along 

100] and [001] directions, respectively, and C44 and C66 correspond to the transverse modes 

[135].  

Figure 27. The projection of Young, bulk and torsion moduli at 0 GPa and 

under pressure for different crystal planes for TM2B compounds. 
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As a fundamental parameter for the materials’ thermodynamic properties, Debye 

temperature ΘD is related to specific heat, thermal expansion and elastic constants. The Debye 

temperature can be estimated from the average sound velocity using equations  3.54 and 3.55  

based on elastic constant. The calculated Debye temperatures of our compounds are listed in 

Table 12. The elastic wave velocities of these compounds are relatively large, because our 

compounds have large mechanical moduli and large densities. For Debye temperatures the largest 

ΘD is 505 K (630K) for Fe2B while the lowest one is 396 K for Ni2B and the order of ΘD for 

TM2B compounds is: Fe2B > Co2B> Ni2B. It is well known that the ΘD is the inverse to 

molecular weight and can be used to characterize the strength of covalent bonds in the solids. 

Therefore, I conclude that the covalent bonds inFe2B are stronger than the other borides. Ni2B has 

the smallest ΘD which implies the strong metallic bonds among Ni atoms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12. The density (in g/cm
3
), anisotropic sound velocities (in m/s), average sound velocity (in 

m/s), Debye temperature (in K) and relative change (in % ) for the TM2B compounds.  

Species ρ vl Vt vm ΘD Δρ / ρ Δvl / vl Δvt / vt Δvm / vm ΔΘD/ΘD 

Fe2B (0 GPa) 7.69 

 

7722.4 

(6560.8)a  

4568.5 

(2802.9)a 

5060.7 

(3167.9)a 

505.8 

(456.3)a 20.2 24.2 12.5 13.5 19.8 

Fe2B (85 GPa) 9.64 10193.5 5223.2 5850.8 630.5 

Co2B (0 GPa) 7.64 7266.9 

(6759.6)a  

3785.7 

(3342.6)a 

4235.9 

(3752.2)a 

422.5 

(539.9)a 

22.7 25.2 19.1 19.5 24.8 

Co2B (85 GPa) 9.88 9717 4679.9 5261 562.3 

 

Ni2B (0 GPa) 7.58 7174.7 

(6887.3)a  

3549.1 

(3633.7)a 

3983.9 

(4062.5)a 

396.3 

(584.2)a 
23 25 26 26 31 

Ni2B (85 GPa) 9.82 9616.9 

 

4788.5 

 

5373.1 

 

573.8 

 

     

aRef.[148].  
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4.2.Conclusions 

Magnetic moment, hardness, elastic moduli, elastic anisotropy properties, and Debye 

temperatures of the TM2B (TM = Fe, Co and Ni) compounds at 0 GPa and high pressure are 

investigated and discussed from the first-principles calculations. The calculated ground-state 

parameters are in good agreement with the other available theoretical data and experiments 

values. The equilibrium structure and formation energy show that Fe2B and Co2B are 

energetically more stable at 0 GPa than at each critical pressure. Both Fe2B and Co2B have a 

magnetic transition when the pressure is about 85 GPa. The hardness, elastic constants, bulk, 

shear, Young’s modulus and acoustic velocities for Fe2B and Co2B compounds increase with the 

applied pressure. The increasing B/G and v of these compounds indicate that Fe2B and Co2B are 

ductile phases under high pressures. The TM2B compounds show a certain degree of mechanical 

anisotropy. The Debye temperatures increase with increasing pressure and Fe2B has a higher 

Debye temperature in two pressures 0 GPa and Critical pressure. The calculated sound velocities 

along [100] and [001] directions for TM2B under high pressure also imply the anisotropic. I 

believe that my findings  serve as guidance for experimental investigations 

 

 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5: Mono-Borides TMB (TM = Mn, Fe, Co) 

Under Pressure. 

http://www.sciencedirect.com/science/article/pii/S0257897211007456
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5. Hardness and anisotropic elastic properties of mono-boride   

TMB (TM=Mn, Fe, Co) under pressure. A first-principles study. 

 

Among the transition metal borides, manganese mono-boride is important due to potential 

spintronic applications [163].  Iron borides in particular are widely used as hard and protective 

coatings on steel surfaces for improved wear and corrosion resistance of the material [9, 10]. 

Nanosize cobalt boride particles are prepared in reverse micelles or in a di-phase system[164]. A 

review of different methods of Boriding and control parameters is exposed in chapter 2. 

The mechanical properties of FeB layers are estimated by Berkovich Nano indentation on 

boride steels; their measurements show that hardness range between 14.5 GPa and19 GPa for 

FeB depending on temperature and boriding time [165]. For CoB provides 15–16 GPa [143, 

144], Moreover, Campos et al. [1] obtained hardness values in a range of 25– 30 GPa with a 

maximum value of 5 μm from the free surface; regardless of the duration and boriding 

temperature. The hardness of nickel borides is measured for samples with different diffusion 

processes of boriding using Knoop [11, 145] or Vickers method [12, 146]. Ni-B  borides have a 

hardness around 12.75 GPa [11] and measured by Nano indenter 17.98 GPa [147].  

Britton et al.[113] show that there are correlations between the anisotropy of crystals, and 

both the elastic and the plastic behavior during Nano indentation.  The structure and magnetic 

properties of the 3d transition-metal mono-borides TM–B (TM=Mn, Fe, Co) under pressures, 

have been investigated in detail [166].  

http://www.sciencedirect.com/science/article/pii/S0257897211007456
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However, hardness, anisotropic elastic properties of these compounds have not been 

presented yet. They can be used to provide much insight of structural behavior under pressure, as 

protective coatings on metal surfaces.  

In this chapter, I use ab-initio calculation for the structure, magnetic, hardness and anisotropic 

elastic properties of MnB, FeB, CoB and NiB compounds under pressure ranging between 0 and 

145 GPa. I also determine the transition pressure at which the material loses its magnetic 

moment. Mechanical anisotropies in both cases (0 GPa and after transition pressure)  are 

discussed by calculating different anisotropic indexes and factors. I plot the three dimensional 

(3D) surfaces and planar contours of Young and bulk moduli of my  mono-borides at several 

crystallographic planes, ((100), (010) and (001)) to reveal their elastic anisotropy.  

5.1. Structure aspects and calculation methods 

The TM–B compounds (MnB, FeB, CoB and NiB ) crystallize in space group Pnma of the 

orthorhombic system with four units formula per cell. FeB prototype structure is presented in 

Figure 28. A characteristic of the structures is the presence of strong interaction between non-

metallic atoms in continuous zig zag like chains [166].  

 Total energy calculations are performed within density functional theory (DFT) [167] using 

CASTEP code [36] for the whole study which uses the plane wave expansion method 

in reciprocal space [149]. The Ultra-soft Vanderbilt pseudo-potentials are employed to represent 

the electrostatic interactions between valence electrons and ionic cores [150] which are used with 

the following valence electronic configurations Mn: 3d
5
4s

2
, 

 
Fe: 3d

6
4s

2
, Co: 3d

7
4s

2
, Ni: 3d

8
4s

2
  

and B: 2s
2
2p

1
. Generalized gradient approximation PBE-GGA was used for exchange-correlation 

energy calculations [151]. The kinetic energy cut-off value is selected as 500eV, which is 

sufficient to obtain the reliable results. 
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Total energies are evaluated in the first irreducible Brillouin zone with the following Monk-

horst–Pack grids [152]: (8 x10x 12) for all compounds. It is known that the ground states of MnB 

and FeB compounds are ferromagnetic [138-140].  

The convergence criteria of total energy and structure optimization are set to fine quality with 

the energy tolerance of 10
-6

 eV/atom. BFGS (Broydene-Fletchere-Goldarbe-Shanno) 

optimization method was performed to obtain the equilibrium crystal structures of TMB with 

maximum atom displacement and force set to 0.002 Å and 10
-4

 eV/Å. 

The stability of our compounds can be evaluated by calculating two energy parameters, 

cohesive energy Ecoh and formation energy Ef   defined as follows: 

 

 

Figure 28. The crystal structure of TMB illustrated by ball and stick model. 

The big ball refers to B and the small ball refers to TM atom. 
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 Structural properties and stability  5.1.1.

The calculated lattice parameters, unit cell volumes, bulk modulus, cohesive and the 

formation energies for pure metals and TMB along with the available experimental and previous 

theoretical data for comparison, are shown in Table 13 and Table 14. These results show that the 

calculated structure parameters are in good agreement with the experimental values. At 

equilibrium, calculations show that MnB and FeB compounds carry magnetic moment with 

values 1.83 and 1.12 µB respectively. Our calculations also show that the magnetic moments of 

both CoB and NiB compounds are very close to zero. The calculated magnetic moments of our 

compounds are in good agreement with theoretical and experimental values. These moments for 

FeB and MnB are larger than the magnetic moment of pure element Fe and Mn respectively. In 

fact Mn behave as paramagnetic, and pure  iron is ferromagnetic and curry smaller magnetic 

moment 2.217 μB than FeB [153]. 

The calculated values of cohesive energy of MnB, FeB, CoB and NiB are respectively, -

17.01, -13.153, -13.10 and -14.46 eV per unit formula. Furthermore, the formation energies are -

1.35, -1.207, -1.075 and -0.735 eV for MnB, FeB, CoB and NiB respectively, indicating that all 

of these TMB compounds are stable. Moreover the calculated percentage change in lattice 

parameters a, b and c between 0GPa and high pressure are 7.1%, 12.96%  and  8.4% for MnB, 

while for FeB  are 9.6%, 0.3% and 6.8%, which mean that the easy axis of magnetization for  

MnB is the direction <010> and the hard axes are the direction <100>, <001>.  

 
𝐸𝑐𝑜ℎ(𝑇𝑀𝐵) =

𝐸𝑡𝑜𝑡𝑎𝑙(𝑇𝑀𝐵, 𝐶𝑒𝑙𝑙) − 𝑛𝐸𝑖𝑠𝑜(𝑇𝑀) − 𝑛𝐸𝑖𝑠𝑜(𝐵)

𝑛
    (  5.1-1) 

 𝐸𝑓(𝑇𝑀𝐵) = 𝐸𝑐𝑜ℎ(𝑇𝑀𝐵) − 𝐸𝑐𝑜ℎ(𝑇𝑀) − 𝐸𝑐𝑜ℎ(𝐵) 
(  5.1-2) 
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However the easy axis of magnetization for FeB is the direction <100> and the hard axes are 

the direction <010>, <001>.  

 

 

 

 

 

 

 

 

 

Table 13. The calculated ground state properties of pure elements, Mn, Fe, Co, Ni and B. 

Experimental and theoretical (eV/f.u.), cohesive energy Ecoh (eV/f.u.) and volume V (Ǻ
3
). 

Ground state  

properties 

Mn Fe  Co Ni B 

Eiso -644.390 -859.821 

(-855.913) 
a
 

   

-1037.55 

 

-1347.162 -70.501  

(-70.492) 
a
 

 
Etotal -653.60 -865.315  

(865.335) 
a
 

 

 

-1043.113 -1354.431 -76.953 

(-76.875) 
a
 

Ecoh -9.21 -5.494 

(-4.28) 
exp

 

(-9.422) 
a
 

-8.344 -7.2697 -6.452  

(-6.383) 
a 

 V 11.09 

 

11.775  

(11.82) 
exp

       

11.16 

(10.90)
b
 

11.04 

(10.87)
b 

 

 

8.652 

(8.763) 
a
 

exp
Ref. [153], 

 a 
Ref. [139],

 b
Ref. [154].  
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Table 14. The calculated ground state properties of TMB. Experimental and theoretical values are 

listed in parentheses. Total cell energy E total (eV/f.u.), cell parameters (a, b, c in Ǻ), atomic 

positions for TM and B atoms (fractional coordinates), volume V (Ǻ
3
), Bulk modulus (GPa), 

magnetic moment (µB/atom), cohesive energy Ecoh (eV/f.u.), formation energy Ef (eV/f.u). 

Parameters MnB FeB CoB NiB 

Etotal -2927.6114 -3773.900   -4484.547 -5728.472 

(a, b, c)  

 

5.493, 2.992, 4.147 

(5.459, 2.984, 

4.126)
a
 

5.317, 2.950, 3.964 

(5.495, 2.946, 

4.053) 
b
 

5.206, 3.068, 3.927 

(5.503, 2.946, 

4.064)
exp1

 

5.535, 2.979,  

3.972 

 

TM (x,y,z) 

0.175   0.25   0.123 

 
0.178   0.25   0.122

 
0.177   0.25   0.126 

0.179   0.25   

0.117 

B(x,y,z) 0.033   0.25   0.614 

0.0348   0.25   

0.620
 

0.032   0.25   0.623 

0.0328   0.25  

0.614 

V 68.153 62.176 62.73 65.51 

B 261.90 

 

305.58 

 (286.6) 
a 

262.88 

(238.12)
d 

245.28 

µB/atom 1.93 

 

1,126 

(1.12) 
exp1

, (1.20) 
b
, 

 (0.95) 
exp2 

0 0 

Ecoh -17.01 -13.153 -13.10 -14.456 

Ef -1.35 -1.207 -1.075 -0.735 

exp
Ref. [155], 

a
Ref[168], 

 b
Ref. [139],

 c
Ref. [156] ,

exp1
 Ref[169]. 
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 Effect of pressure and magnetic moment on the structural properties.  5.1.2.

In this part of my work, I am interested in the variation of the magnetic moment with 

increasing pressure. I calculate the magnetic moment of my compounds FeB and MnB as a 

function of pressure. The results are presented in Figure 29. As can be noted, the magnetic 

moment of our materials slowly decreases with applied pressure and suddenly disappears at a 

specific pressure. The extinction of the magnetic moment in our compounds is characterized by a 

very precise critical value: 77 GPa for FeB and 143 GPa for MnB.  

 

 

 

 

 

 

 

 

 

 

The calculated percentage change of volume between 0 GPa and transition pressure of 

ferromagnetic compounds, show a volume compression of 26% and 15% for MnB and FeB 

respectively, with an  increase of the bulk modulus of our compounds by 67.8% and 50.5% 

(Figure 34).  

 

Figure 29 Dependance of magnetic moment vs pressure. 
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The formation energy Ef, is calculated to check the probability of thermodynamic 

existence of TMB under pressure excepted CoB and NiB. All formation energies are negative 

indicating that structures in two pressures conditions are thermodynamically stable (Table 14). 

The formation energies of TMB in magnetic state are less than TMB in NM case by 85.94%, and 

68.35% for both MnB and FeB respectively, implying that they have more thermodynamic 

stability FM case. 
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Figure 30 Pressure dependence of total energy, Volume and lattice  

parameters of: MnB (left panel) and  FeB (right panel). Dashed line 
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 Density of states and bond structure under pressure 5.1.3.

As I showed in Figure 31, the total DOS is dominated by the density of d electrons in the 

majority and minority bands of MnB and FeB. As the Fermi energy is pinned above the pure d 

states, both compounds behave as strong ferromagnets. Total DOS at the Fermi level for MnB 

and FeB increases under pressure by 48.8% and 21% for MnB and FeB (Figure 31) respectively, 

this enhanced N (Ef) is derived entirely from the TM 3d states, with a negligible contribution 

from the B 2p states. Following the above arguments I may be predict the appearance of 

superconductivity in MnB and FeB under pressure as is in the case of iron that undergoes a 

transition to superconducting phase above 30GPa when it loses its magnetic moment [160].  

The bulk modulus increased by 67.8% for MnB and 50.5% for FeB. In the NM state the 

bulk modulus B is systematically larger than  the magnetic state. The low value of bulk modulus 

in the magnetic case points to a larger compressibility. This means that MnB and FeB compounds 

are “softer” when are magnetically ordered and “harder” when are not.  
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Figure 31.  The calculated total and partial DOS of TMB at 0 GPa and a critical pressure. 

Dashed line represents the Fermi level. 
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Figure 32 depicts the electronic band structure of FeB at 0 and 77 GPa along the symmetry 

directions Γ-Z-T-Y-S-X-U-R for orthorhombic structure. For comparison, I gave the electronic 

band structure spin up and spin down (Figure 32). The valence band generated in the Ky direction 

(S –X, U –R,) and Kz (T –Y, Γ– Z, X–U) are narrower than those bands in the Kx (Y–S,) 

directions. This indicates that the principal bonding interactions lie along the y and z directions in 

the crystal, while the x direction is limited. Both the continuous zigzag chains of B atoms and the 

metal atom chains lie in the YZ plane of the crystal. It is clearly indicating that the B–B bonding 

chains are very important in the chemical stability of TM–B compounds. The conduction bands 

are less well characterized than the valence bands, but it is clear that they are also somewhat 

broadly in the y and z direction and are consistent with the known metallic nature of these 

compounds. 

At normal pressure (Figure 32) band structure of FeB shows that there is an overlapping of the 

valence band and the conduction band, confirming the metallic nature of iron boride under 

normal conditions. The bands just above the Fermi energy are due to the empty 3d states of TM 

elements (Mn and Fe). The band structure of FeB exhibits characteristic features similar to other 

mono-borides (MnB and NiB). It can see in Figure 32, the entire band structure is slowly shifted 

up in energy as pressure increases.  

 As pressure increases, the conduction band width increases because of the enhanced overlap 

of the wave function with the neighboring atoms. Visible changes are seen in the band structures 

along all symmetry line (Figure 32) since the electronic system is strongly coupled to the lattice 

under pressure. 

 

 



CHAPTER 5                                                        TMB (TM=Mn, Fe, Co)                                                                               

105 

 

 

 

  

Figure 32. The calculated band structures for FeB compound near Fermi level  

at 0 GPa and 77 GPa, sin up (left panel) and spin down(right panel). 
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  Hardness 5.1.4.

 Based on the semi-empirical approach of Gao et al. [120], the hardness of TM–B and B–B 

bonds in each of our three compounds TMB are evaluated and compared. Semi-empirical models 

and first principles calculations are widely used for theoretical search of hard materials [119]. I, 

only consider the hardness of B-B and TM-B bonds. The hardness of TM–TM bond, however, is 

not taken into consideration in this work, because the hardness of metallic bond is ill defined in 

this method. The strength of the bond per the unit volume can be characterized by average 

overlap populations. For complex multi-bonding compounds, the hardness of the u type bond is 

calculated using equation (3.30) . I use Mulliken population analysis as implemented in CASTEP 

in order to estimate the bond overlap population. 

The longest TM–B bond length considered in this work is limited to 3.1Å because the interaction 

between TM atom and the second nearest neighbor B atom is weaker than that between the near-

neighbor boron atoms.  

The calculated bond length, population overlap, contribution of TM–B and B-B bonds to the 

hardness H
v
 as well as material hardness of our four compounds are listed in Table 15. The 

hardness of B–B bond H
u 

is significantly larger than TM–B bond in TMB compounds because of 

the large bond overlap population. The value of B–B hardness in NiB is 54.92 GPa, which is 

harder than the other B–B bond in MnB, FeB and CoB because B–B bond has a large overlap 

population. 

The calculated hardness of MnB (20 GPa),  FeB (26.25 GPa), CoB (26.70 GPa) and NiB 

(25.71 GPa) are in fairly good agreement with the experimental values of (16.2 ± 0.017) GPa for 

MnB, (26.28  GPa) for FeB [142], and the maximum value of hardness (27 GPa) was obtained 

near-surface region at a distance of 8 μm in the CoB phase.  
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 Elastic properties under pressure 5.1.5.

 The calculated elastic constants for single crystal TMB compounds, at both 0GPa and high 

pressure pressures, are presented in Table 16.  

 

 

Table 15. The predicted hardness of TMB. Experimental and theoretical values are listed 

in parentheses. Different pairs of atoms (B–B, TM–B). Average  bond length of nearest-

neighbor atoms  d
u
(A˚),  average overlap population of u type bond,  nearest-neighbor 

numbers  N
u
  for different pairs of atoms,  cell volume Ω (Ǻ

3
), volume of a bond of  u 

type 𝑣v
u, hardness of u type bond  H

u
 (GPa) and hardness H(GPa).  

Species Bond d
u
  p

u
 N

u
 Ω v𝑣

𝑢 H
u
                H 

MnB 

B-B 

Mn-B 

2.390 

2.187 

0.765 

0.155 

4 

16 68.153 

   4.192 

3.212 

    

51.95 

16.41 

20.66 

(16.2 ± 0.017)
exp

 

 

FeB 

B-B 

Fe-B 

2.322 

2.121 

0.725 

0.175 

4 

16 62.176 

3.840 

2.926 

56.966 

21.629 

26.25 

(26.28) 
exp1 

(20.4±0.017) 
exp2

 

CoB 

B-B 

Co-B 

2.316 

2.115 

0.68 

0.185 

4 

16 

62.73 

3.876 

2.952 

52.62 

22.54 

26.70 

(27) 
exp3

 

NiB 

B-B 

Ni-B 

2.375 

2.164 

0.775 

0.173 

4 

16 

65.51 

4.08 

2.94 

54.92 

21.26 

25.705 

exp
Ref. [142], 

a
Ref. [148],  

exp1
Ref. [26],  

exp2
Ref. [147], 

exp3
Ref[170]. 
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Table 16. The calculated full set elastic constants of TMB (under 0 and critical pressure, in GPa) 

along with other available values.  

Species Elastic constants 

C11 C22 C33 C12 C13 C23 C44 C55 C66 

MnB (0 GPa)  
392.05 

414.4
a
 

510.74 

527.7
a
 

497.17 

504.8
a
 

181.33 

171.1
a
 

154.92 

147.5
a
 

148.61 

127.7
a
 

212.11 

215.8
a
 

167.69 

218.4
a
 

211.28 

175.8
a
 

MnB (143GPa) 1035 905 1300 745.2 667 560.76 442 203 561.21 

FeB (0 GPa) 

FeB (77 GPa) 

389.82 

373.7
b
 

438.36 

434.1
b
 

557.07 

503.4
b
 

286.85 

246
b
 

183.12 

184.4
b
 

239.76 

209.1
b
 

218.8 

207.4
b
 

132.25 

117.7
b
 

212.01 

193.7
b
 

718.5 752.6 993.9 583.2 350.1 492.4 296.4 243.3 354.4 

CoB (0 GPa)   411.46 481.97 620.61 239 279.21 275.12 206.23 144.53 157.85 

CoB (77 GPa)   891 914 1053 533,3 463.94 479.24 346.5 279.27 344.98 

NiB (0 GPa) 339.83 424.67 415.51 192.50 202.26 176.43 123.61 111.93 102.82 

NiB (77 GPa) 736.6 775.88 919.91 502.83 428.81 415.22 236.4 214.75 272.96 

a
Ref[168], 

b
Ref. [162].  

 

Generally, the elastic constants C11, C22 and C33 are very high, at both zero and high 

pressure, which indicates the high resistance to the axial compression in these directions.  

Moreover, it is shown in Table 16 that the elastic constants C11, C22 and C33 are larger than C44, 

C55 and C66, indicating that TMB are mechanically anisotropic and the shear deformation is easier 

to take place than other deformation forms. 

 It is well known that the elastic constant C44 is the most significant parameter which 

indirectly determines the indentation hardness of a solid [124]. A large C44 implies a strong 

resistance to monoclinic shear in the (100) plane. The highest C44 for FeB than those for the other 
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compounds means that its ability to resist shear distortion in the (100) plane is the strongest. The 

results in Table 16 indicate that TMB have relatively strong anisotropic elastic constants resulting 

in the directional dependence of the moduli. Notably, the values of C11 (C66) are relatively smaller 

than that of C33 (C44) at 0 GPa and under pressure, implying that the intra-layer chemical bonds 

are weaker than those between the layers.  

The other compression moduli (C12, C13 and C23) are significantly different; they 

correspond to the intra and inter-layer moduli under bi-axial stress conditions.  

The mechanical stability criteria can be represented in a uniform manner for orthorhombic 

structure ( the relation  (3.36)). On the other hand, the mechanical stability under isotropic 

pressure, leads to restrictions on the elastic coefficients using relation (3.39). 

 

 

 

 

 

 

 

 

The arithmetic average of the Voigt and Reuss bounds is known as the Voigt-Reuss-Hill 

(VRH) average, which is regarded as the best estimate for the theoretical value of the 
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Figure 33. Pressure dependence on the elastic constants. 
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polycrystalline elastic modulus  (3.40). The Young modulus and Poisson ratio can be computed 

from the formula (3.41). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 17.  Polycrystalline elastic properties and Anisotropic factors of TM-B system 

Species BV BR GV GR A1 A2 A3 Au AG AB 

MnB (0 GPa)  

 

263.30 260.5 179.22 172.45 
 

1.464 0.944 1.565 0,21 1,93 0,53 

MnB (143 GPa) 

 

824.88 801.02 327.69 236.63 1.766 0.749 4.993 1.95 16.14 1.47 

FeB (0 GPa)  

 

308.37 

    287.8a  

302.80 

284.6a 

155.66 

    148.5a  

125.47 

130.9a 

1.57 

1.63a 

1.04 

0.91a 

3.38 

2.45a 

1.22 

    0.68a 

10.74 

    5.85a 

0.91 

    0.62a 

FeB (77 GPa) 

 

621.69 612.49 260.17 190.38 1.17 1.28 4.65 1.85 15.49 0.75 

CoB (0 GPa) 344.52 330.27 149.77 140.56 1.742 1.047 1.520 0.37 3.17 2.11 

CoB (77 GPa) 645.6 644.37 286.25 271.5 
1.364 1.108 1.869 

0.27 2.64 0.10 

NiB (0 GPa) 245.38 245.20 110.66 108.95 0.08 0.78 0.04 1.409 0.919 1.084 

NiB (77 GPa) 569.57 568.3 217.2 202.07 1.184 0.993 2.154 0.38 3.61 0.11 

aRef. [162]. 
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. 

Poisson's ratio ν characterizes the stability of the crystal against shearing strain. For a 

typical metal, the value is supposed to be 0.33; for the ionic-covalent crystal, the value is situated 

between 0.2 and 0.3; the strong covalent crystal has even smaller Poisson's ratio, which is usually 

below 0.15 [171], the calculated Poisson's ratios of our compounds range between 0.23 and 0.32. 

This indicates the bond’s mixture character in these materials. It is also noted that the studied 

Poisson's ratios of MnB compound is smaller than other compounds. 

A larger B/G value (>1.75) for a solid indicates the ductile behavior while a smaller B/G 

value (<1.75) usually means brittle material. Similarly, Poisson ratio ν>0.26 corresponds usually 

for ductile compounds [129]. At both 0 GPa and the critical pressure, FeB, CoB and NiB are 

ductile (B/G>1.75 and ν >0.26), while MnB is brittle (B/G<1.75 and ν <0.26), see Table 18. 

 

Table 18.  The calculated bulk, Young (E) and shear modulus (G) of TM2B (under 0 and critical 

pressure, in GPa), Poisson’s ratio (v) and B/G ratio along with other available values. 

Species B E G v B/G ΔB/B ΔE/E ΔG/G Δ v/ v Δ (B/G)/(B/G) 

MnB (0 GPa) 261.90 

259.1a 

431.04 

450.2a 

175.84 

186a 

 

0.23 

0.21a 

1.49 

1.49a 

67.8 43.2 37.7 32.4 48.3 

MnB (143 GPa) 

 

812.95 758.70 282.16 0.34 

 

2.88 

 

FeB (0 GPa)  305.6 

286.6b 

365.7 

360.5b 

140.6 

139.7b 

0.30 

0.29b 

2.174 

2.05b 
50.5 35.6 37.6 11.8 21.2 

FeB (77 GPa) 

 

617.1 567.5 225.3 0.34 2.76 

CoB (0 GPa) 337.39 380.87 145.16 0.31 2.32 47.6 26.7 80.1 0 0 

CoB (77 GPa) 644.99 278.88 731.24 0.31 2.31      

           

NiB (0 GPa) 245.28 286.63 109.80 0.31 2.23 

 

56.8 26.8 80.39 8.8 17.7 

NiB ( 77 GPa) 568.94 209.64 560.11 0.34 2.71      

aRef[168], bRef. [162]. 
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 Elastic anisotropy 5.1.6.

Most crystals exhibit elastic anisotropy of varying degree. These effects are very important for 

the layered mono-borides; in particular, significant elastic anisotropy is related to the occurrence 

of microcracks in materials, and can be expressed by the universal anisotropic index A
U
 and by 

the indexes describing the behavior in shear and compression AG and AB, respectively, and may 

be proposed as follows  (3.42) and (3.43). Using equations (3.51) and (3.52), the three-

dimensional surface representations showing the variation of the Young,   and bulk modulus are 

plotted in Figure 35 and Figure 36. The plane projections ((100), (010) and (001) plans) of the 

directional dependences of the Young and bulk modulus are given in Figure 37 and Figure 38 for 

comparisons.  

The calculated values of anisotropic factors for mono- borides TMB are shown in Table 17. For 

an isotropic crystal, all three factors must be equal to unity, while any value deviation from 1 is a 

measure of the degree of elastic anisotropy in the crystal.  

The shear anisotropic factor for an orthorhombic crystal can be measured by three factors (Zener 

ratios):  

 The  anisotropic factor for the {1 0 0} shear planes between (011) and (010) directions as 

define in (3.45):                                    

 The anisotropic factor for the {0 1 0} shear planes between (101) and (001) directions 

is(3.46) and The anisotropic factor for the {0 0 1} shear planes between (110) and (010) 

directions is (3.47):   

The applied high pressure reduces the anisotropic factors A1 and A3 by 17% and 68.6% for 

MnB, while for FeB has the reduced anisotropic factors A2 (18.7%) and A3 (27.3%).  
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For the universal anisotropic index A
U
 is augmented when pressure is applied by 89.2% for 

MnB and 30% for FeB. 

 

 

 

 

 

 

 

 

 

 

 

For orthorhombic system the 3D figures of directional dependencies of the reciprocal of Young‘s 

and Bulk modulus for the TM-B binary compounds can be defined by  (3.51) and (3.52). The 

surface constructions of Young and bulk modulus of MnB, FeB, CoB and NiB compounds are 

shown in Figure 35 and Figure 36 . These surfaces have similar features. The projections of the 

mechanical moduli are plotted in Figure 37 and Figure 38. It can be clearly seen that TMB 

exhibits a pronounced anisotropy with the non-spherical nature (Figure 35 and Figure 36). Thus, 

Au=0.21(1.95) and Au=1.22(1.85) at 0 GPa (high pressure) for both MnB and FeB respectively, 

while for CoB (Au=0.37) and NiB (Au=1.41) (Table 17).  The obtained results for TM-B are 

plotted in Fig. 10, 11 and 12. The variation of Young  modulus in all planes and directions show 

that our compounds possess a minimum of Young modulus along [100] direction and a maximum 

along [001] direction.  
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Figure 34. The calculated relative change of parameters by the top: volume 

cohesive and formation energy, hardness, bulk, Young and shear modulus 
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As example FeB exhibits a minimum of E[100] = 195.45 GPa, a maximum of E[001] = 407.06 GPa 

and for E[010]= 201.81 GPa. Therefore, the ordering of Young's modulus as a function of the 

principal crystal tensile [u v w] for TM-B are:  

E [100] < E [010] < E [001]. Additionally, it is remarkable to note that the variation of bulk modulus 

with Bmin along [100] directions and Bmax along [010] directions, for the compounds MnB, FeB 

and CoB, but for NiB the minimum of B is along [100] directions and the maximum is along 

[001] direction, which is consistent with the predicted elastic constants along different axes  

( Table 16). 
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Figure 35. Illustration of directional dependent Young’s modulus of TMB compounds: 

With 0 GPa pressure and critical pressure.  
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Figure 36. Illustration of directional dependent bulk modulus of TMB compounds:  

With 0 GPa pressure and critical pressure. 
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Figure 37. The projection of Young moduli at several different  

crystal planes for TMB compounds. 
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 Figure 38. The projection of bulk moduli at several  

different crystal planes for TMB compounds. 
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 Acoustic sound velocities and Debye temperature 5.1.7.

The calculated densities, sound velocities and Debye temperatures at 0 GPa and high 

pressure for TMB compounds are shown in Table 19. The anisotropic properties of sound 

velocities indicate the elastic anisotropy in these crystals. For example, the C11, C22,  C33 

determines the longitudinal sound velocities along [100], [010] and [001] directions, respectively, 

the C44, C55 and C66 correspond to the transverse modes [135]. 

The Debye temperature can be estimated from the average sound velocity using equation 3.8.7-3 

based on elastic constants. 

Our compounds have large mechanical moduli and large densities, which causes relatively large 

elastic wave velocities. For Debye temperatures the largest ΘD is 671 K for MnB while the lowest 

one is 581.96 K for NiB and the order of ΘD for TMB compounds is: MnB > FeB> CoB> NiB. It 

is well known that the ΘD is the inverse to molecular weight and can be used to characterize the 

strength of covalent bonds in the solids. From Table 19, I conclude that the covalent bonds in 

MnB are stronger than the other borides. In the case of NiB, the smallest ΘD implies the strong 

metallic bonds among Ni atoms. 
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5.2.Conclusions 

The phase stability, magnetic moment, mechanical properties as well as Debye temperatures of 

the TMB (TM = Mn, Fe, Co and NiB) compounds are  investigated and discussed from the first-

principles calculations. The equilibrium structure and formation energy show that MnB and FeB 

are energetically more stable at 0 GPa than at each critical pressure. For both MnB and FeB, at a 

certain pressure (143 GPa for MnB and 77 GPa for FeB) a pronounced abrupt collapse of the 

magnetic moment (first order quantum phase transitions), this character might a sign of 

superconducting. The difference of the topology of DOS near the Fermi level is observed. The 

hardness, elastic constants, bulk, shear, Young’s modulus, acoustic velocities and Debye 

temperature for MnB and FeB compounds increase with the applied pressure. The calculated 

ground-state parameters are in good agreement with the other available theoretical data and 

  Table 19. The density (in g/cm
3
), anisotropic sound velocities (in m/s), average sound 

velocity (in m/s) and Debye temperature (in K) for the TM2B compounds.  

Species ρ vl Vt vm ΘD 
Δρ / ρ Δvl / 

vl 

Δvt / 

vt 

Δvm / 

vm 

ΔΘD/

ΘD 

MnB (0 GPa) 6.41 

 

8800 

  

5238 

 

5799 

 

671 

356
exp

 

 
26 25 8.24 9.6 18.23 

MnB (143 GPa) 

 

8.66 11718 

 

5708 

 

6413 

 

821 

FeB (0 GPa) 7.085 8342 

  

4455 

 

4976 

 

593 

 
19.3 18.4 12.06 12.47 18.5 

FeB (77 GPa) 

 

8.78 10223 

 

5066 

 

5686 

 

728 

CoB (0 GPa) 7.38 8482 

  

4435 

 

4961 

 

590 

669
exp

 

 

12.12 20.56 20.7 20.68 25.52 

CoB (77 GPa) 8.91 10678 5592 6255 792      

NiB (0 GPa) 7.05 7454 

 

3947 

 

4411 

 

582 

 

 

17.6 25.12 20.24 20.56 16.23 

NiB (77 GPa) 8.56 9955 4948 5553 695      
a
Ref.[148].

exp
Ref[172] 
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experiments values. The increasing B/G and v of these compounds indicate that MnB is ductile 

phases under high pressures. The TMB compounds show a certain degree of mechanical 

anisotropy. The Debye temperatures increase with increasing pressure and MnB has a higher 

Debye temperature at 0 GPa and Critical pressure. The calculated sound velocities along [100], 

[010] and [001] directions for TMB under high pressure also reveal the anisotropic nature of our 

compounds.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6: Physical properties of solid solution  

of Fe(1-X) Mn X B. 
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6. Ab initio calculations of structural, magnetic and anisotropic elastic 

properties of Fe (1-X) Mn X B. 

The properties of transition metal alloys and transition metal borides have been under intense 

study for decades [173, 174]. Among these properties, magnetization has been given special 

attention because of its applications in the electronics industry. Previous studies have provided us 

with insights on the role of d-orbital electrons in iron borides, indicating that the electrons are 

hybridized in a subtle way [175].  In addition, the magnetic properties are shown to be correlated 

with the electronic structure [176], as well as the long-range spin interaction [177]. Various 

transition metal alloy and transition metal boride materials have been studied, in both 

experimental analysis and theoretical calculations, for example, MnB [178], Fe(1-x)Bx [179, 180], 

Fex Mn(1-x) [181], FexB [128], Fe80-xMnxB20 [182] and Fe(1-x)Mnx)78B22 [183]. However, there is 

relatively little research done with the transition metal alloy borides Fe (1-x) Mn x B. Both FeB and 

MnB  have the same orthorhombic (Pnma) structure [163, 184], and it is interesting to investigate 

the profile of the change in magnetic properties of the material if some of the Mn atoms are 

replaced by Fe in MnB. 

In this chapter, I investigate the electronic structure and the anisotropic elastic properties of  

Fe (1-x) Mn xB alloys in the whole compositional range (0 ≤ x ≤ 1) at 0 GPa by first-principles 

calculations within the virtual crystal approximation VCA framework [185]. The VCA approach 

ignores any possible short range order and assumes that on each potentially disordered site there 

is a virtual atom which interpolates between the behaviors of the actual components.  
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This approach neglects the alloying effects as local distortions around atoms and cannot be 

expected to reproduce the finer details of the disordered structures very accurately. Despite this 

limitation, it often produces acceptable and useful results. The VCA allows calculations on 

disordered systems to be carried out at the same cost as calculations for ordered structures. For 

example, in the case of Fe0,5Mn0,5B alloys, the virtual transition metal atom will have atomic 

number 25.5. However, there are no data available in the literature about theoretical Cij on these 

solid solution alloys and are given only for single-crystals (FeB and MnB). Thus, these values are 

not directly comparable to elastic moduli deduced from experiments made on polycrystalline 

films and bulk materials. The lattice parameters and of the single-crystal elastic constants are 

determined and discussed. Furthermore, the anisotropic elastic constants and moduli at the 

polycrystalline scale are computed and plotted in the three dimensional (3D) surfaces and planar 

contours of Young and bulk moduli of Fe 1-x Mn xB compounds at several crystallographic 

planes, ((100), (010) and (001)) to reveal their elastic anisotropy. 

6.1.Method of calculation 

In order to calculate electronic structures, magnetic and anisotropic elastic properties of  

Fe1-xMnxB, I use the pseudo-potential plane wave (PPPW) method implemented by the CASTEP 

packages [36].  

For the method of virtual crystal approximation, the electron number used to calculate the density 

of state (DOS) and magnetism is the mean electron number of the linear combination of TM1 and 

TM2. In this approximation, the nuclear and valence charges of the TM atom are continuously 

altered from Mn= 25 to Fe = 26 to represent different cases in Fe1-x MnxB.  

The crystal structures of FeB and MnB calculated here refer to Bjurstroem’s experimental 

work [16], with the space group Pnma and  lattice parameters for FeB : a =5.317 Å, b = 2.95 Å 
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and c =3.964 Å; and for MnB a = 5.493 Å, b =2.992 Å and c =4.147 Å ( chapter 5). The lattice 

constants of Fe1-x MnxB are determined by the structure relaxation. The kinetic energy cut-off 

value was selected as 500eV, which is sufficient to obtain the reliable results. 

Total energies are evaluated in the first irreducible Brillouin zone with the following Monk-

horst–Pack grids [152]: (8 x12x 10) for all compounds. The fraction x in the method of virtual 

crystal approximation plays the role of mean electron number. For the treatment of the disordered 

ternary alloy, I used the virtual crystal approximation VCA, in which the alloy pseudo potentials 

are constructed within a first-principles VCA scheme. Elemental ionic pseudo potentials of FeB 

and MnB are combined to construct the virtual pseudo potential of the Fe1-x MnxB. 

 

The formation energy (Ef) of the Fe1-x MnxB alloys is determined as follows: 

In TM1 (1-x) TM2 xB, Z =Z1 (1- x) + Z2(x) is the average of electron number, where Z1 and Z2 

represent the electron number of TM1and TM2, respectively. 

  Structural properties and stability  6.1.1.

The ternary Fe1-xMnxB (x=0, 0.25, 0.5, 0.75 and 1) ferromagnetic alloys with space group Pnma 

(SG: 62) are studied in the orthorhombic phase.         Figure 39 shows the total magnetic moment 

of Fe1-xMnxB vs. fraction of Mn. The magnetic moments of FeB and MnB are about 1.12 and 

1.83µB/atom, respectively, which agree well with the previous studies.  

When the fraction of manganese (x) becomes larger, the magnetic moment gradually increases. 

As the fraction x increases from 0 to 1, the occupation of the minority state decreases (Figure 41). 

 VVCA = xVFeB + (1 − x)VMnB 
( 6.1-1) 

 𝐸f(𝑥) = 𝐸T(Fe1-x MnxB) − (1 − x)𝐸T(𝐹𝑒𝐵) − 𝑥𝐸T(𝑀𝑛𝐵) 
( 6.1-2) 
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The calculated formation and cohesive energies of Fe1-xMnxB (x=0, 0.25, 0.5, 0.75 and 1) 

are presented in Table 20. The formation energy is positive in the entire composition range from 

x=0.25 to x=0.75, which implies that orthorhombic (Fe1-xMnx) B solid solutions are not stable, 

and will decompose into FeB and MnB.  It has been shown that the mixing enthalpy of alloys can 

be represented as the sum of a negative contribution due to electron transitions during alloy 

formation and positive contribution due to the difference between the widths of the d-bands of the 

pure components [186].  

The optimized equilibrium lattice constant and bulk modulus of (Fe1-xMnx)B with GGA for 

various x concentrations are summarized in Table 20 and shown in Figure 40. It must be noted 

that the equilibrium lattice parameter is computed from the structural optimization, using the 

Broyden– Fletcher–Goldfarb–Shanno minimization [187-190]. Our calculated equilibrium lattice 

parameters  for (Fe1-xMnx)B, are in reasonable agreement with the experimental data [163, 172, 

191]. The computed lattice constant for (Fe1-xMnx)B  is plotted against Mn fraction in Figure 40. 

The deviation from the linear dependence is distinct. Also, the bulk modulus B of (Fe1-xMnx)B  is 

calculated using the stress–strain method, and by applying the Voigt–Reuss–Hill approximation, 

is plotted against Mn fraction in Figure 40. A comparison of the lattice constant and bulk 

modulus of these alloys shows that an increase in the earlier parameter is accompanied by a 

decrease in the later one. 
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Table 20. The calculated ground state properties of (Fe1-xMnx)B. Experimental  values are listed in parentheses. Total cell energy 

E total (eV/f.u.), cell parameters (a, b, c in Ǻ) volume V (Ǻ3), Bulk modulus (GPa), magnetic moment (MM in µB), cohesive energy 

Ecoh (eV/f.u.) and formation energy Ef (eV/f.u).  

Parameters 
X=0 X=0.25 X=0.5 X=0.75 X=1 

Etotal -3773.90   

 
-3511.63 -3305.60 -3093.16 -2927.61 

a  

b 

 c  

5.317 (5.495) exp1 

2.950 (2.946) exp1 

3.964(4.053) exp1 

5.510 (5.521) exp2  

2.986 (2.951) exp2 

4.052 (4.043) exp2 

5.483 (5.532) exp2 

2.982 (2.961) exp2 

4.077 (4.104) exp2 

5.517 (5.553) exp2 

2.989 (2.968) exp2 

4.122 (4.125) exp2 

5.493 (5.56) exp3  

2.992 (2.977) exp3  

4.147 (4.145) exp3  

V 62.176 
66.66 66.68 67.97 68.153 

MM 4.49 5.93 6.61 7.43 7.73 

Ecoh -13.153 -1.44 -3.79 -4.54 -17.01 

Ef -1.207 12.67 11.29 11.50 -1.35 

exp1[191],exp2[172] and  exp3[163] 
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       Figure 39.The calculated total magnetic moment, cohesive and formation energies  

as a function Mn content(x) at 0 GPa.  

Figure 40. The calculated lattice parameter and bulk modulus as a function Mn content(x).   
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  Density Of States   6.1.2.

 Total densities of state DOS for (Fe1-xMnx)B compounds are illustrated in Figure 41. 

The most obvious feature of (Fe1-xMnx)B compounds is the metallic character at the Fermi level. 

It can be seen that the total density of minority is shifted considerably from x = 0.0 to x = 1.0 

from the left to the right of Fermi level, which mean the difference between the density of spin-

up and spin-down increase and magnetic moment increased.  

  



CHAPTER 6                                                                      Fe (1-X) Mn X B                                                                               

130 

 

  

Figure 41. The calculated total and partial DOS of (Fe1-xMnx)B  

 Dashed line represents the Fermi level. 
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 Elastic properties  6.1.3.

The elastic constants of orthorhombic crystalline (Fe1-xMnx)B compounds are presented in 

Table 22. Generally, the elastic constants C11, C22 and C33 are very high, both at zero and critical 

pressure, which indicates the high resistance to the axial compression in these directions.  

Moreover, it is shown in Table 22 that the elastic constants C11, C22 and C33 are larger than C44, 

C55 and C66, indicating that (Fe1-xMnx)B are mechanically anisotropic and the shear deformation 

is easier to take place than other deformation forms. It is well known that the elastic constant C44 

is the most significant parameter which indirectly determining the indentation hardness of a solid 

[124]. A large C44 implies a strong resistance to monoclinic shear in the (100) plane. The highest 

C44 at 0 GPa for FeB(x=0) than those for the other compounds means that its ability to resist 

shear distortion in the (100) plane is the strongest.  

The results in Table 22 indicate that (Fe1-xMnx)B have relatively strong anisotropic elastic 

constants resulting in the directional dependence of the moduli. Notably, the values of C11 (C66) 

are relatively small than that of C33 (C44) at 0 GPa, implying that the intra-layer chemical bonds 

are weaker than those between the layers,  

Table 21. The stability of the (Fe1-xMnx)B mono-borides according to Stoner 

model. 

 
𝑁𝑇𝑀(𝐸𝐹) 𝐼𝑇𝑀 𝑁𝑇𝑀(𝐸𝐹) ∗ 𝐼𝑇𝑀 

X=0 8,02 0.46 3.69 

X=0.25 6,2 0,45 2,79 

X=0.5 5,1 0,44 3 

X=0.75 5,81 0,42 2.46 

X=1 6 0.41 2.46 
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The mechanical stability criteria at 0 GPa can be represented in a uniform manner for 

orthorhombic structure ( criteria: (3.36)).  

It is clear from Table 22 that all elastic constants are consistent with the restrictions of 

orthorhombic crystal, which reveals that all these (Fe1-xMnx)B compounds are mechanically 

stable.  

The elastic constant C11, C22 and C33 characterizes the x, y and z directions resistance to 

linear compression; while C44, C55 and C66 characterize the shear deformation. 

It is obvious that the calculated elastic constants C33 for (Fe1-xMnx)B compounds are larger 

than C22 and C11 at zero and critical pressure for the concentration(0.25, 0.5, 0.75 and 1) which 

indicates that these compounds are more incompressible under uniaxial stress along the z axis (c 

Table 22. The calculated full set elastic constants of (Fe1-xMnx)B along with other available values.  

Species Elastic constants 

C11 C22 C33 C12 C13 C23 C44 C55 C66 

MnB  
392.05 

414.4a 

510.74 

527.7a 

497.17 

504.8a 

181.33 

171.1a 

154.92 

147.5a 

148.61 

127.7a 

212.11 

215.8a 

167.69 

218.4a 

211.28 

175.8a 

Fe0.25Mn0.75B  359.25 462.46 478.41 159.16 126.96 121 205.63 157.76 201.06 

Fe0.5Mn0.5B  352 420 464.22 149.08 100 94.72 202.37 151.26 210.67 

Fe0.75Mn0.25B  347 377.4 474.7 139.5 92.6 111 203 155 179 

FeB  
389.82 

373.7b 

438.36 

434.1b 

557.07 

503.4b 

286.85 

246b 

183.12 

184.4b 

239.76 

209.1b 

218.8 

207.4b 

132.25 

117.7b 

212.01 

193.7b 

aRef[168], bRef[162]. 
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direction) than the x and y axes (a and b direction)(C33 > C22 > C11). While MnB (x=0) is 

stronger against compression in b direction at 0 GPa and z direction under critical pressure. 

Their elastic anisotropic nature can be explained by the ratios of C11/C22 and C11/C33.  

The C11/C22 and C11/C33 ratio = 1.0 means the same resistance to linear compression 

along the x, y and z axes. If C11/C22 and C11/C33 are larger than 1.0 for a crystal, the y and z 

axis are more compressible than the x axis; while the x axis is more compressible than the y and z 

axis with C11/C22 and C11/C33 smaller than 1.0. A larger deviation of C11/C22 and C11/C33 

ratio from 1.0 means the larger difference in linear compression along the x, y and z axes. 

Moreover The C44/C11, C55/C22 and C66/C22 ratio for all x concentration are lesser than 1.0 

which showing a weaker resistance to shear deformation compared with the resistance to the 

unidirectional compression.  

 

 

  

 

 

 

 

 

 

 

 

Figure 42.  Illustration of elastic constant’s as a function of 

Mn content of (Fe1-xMnx)B compounds. 
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The arithmetic average of the Voigt and Reuss bounds is known as the Voigt-Reuss-Hill (VRH) 

average, which is regarded as the best estimate for the theoretical value of polycrystalline elastic 

modulus eq:(3.40).                      

The Young modulus and Poisson ratio can be computed using relations (3.41). 

The calculated polycrystalline bulk modulus B, shear modulus according Voigt-Reuss-Hill 

approach, Young’s modulus E and Poisson’s ratio υ are tabulated in Table 23 and Table 24.  

(Fe1-xMnx)B at concentration (x=0) is ductile since B/G>1.75 and ν >0.26, while (Fe1-xMnx)B is 

brittle (B/G<1.75 and ν <0.26) at 0 GPa for the 0.25, 0.5, 0.75 and 1 concentrations. 

 

 

 

 

Table 23. Polycrystalline elastic properties and Anisotropic factors of Fe1-xMnxB compounds. 

Species BV BR GV GR A1 A2 A3 Au AG AB 

MnB  263.30 260.5 179.22 172.45 1.46 0.94 1.57 0.21 1.93 0.53 

Fe0.25Mn0.75B  207.26 205.60 163.18 155.6 1.41 0.90 1.60 0.25 2.38 0.40 

Fe0.5Mn0.5B  205.99 205.20 169.08 160.30 1.31 0.87 1.78 0.28 2.67 0.19 

Fe0.75Mn0.25B  235.14 232.52 172.76 165.83 1.28 0.98 1.61 0.22 2.05 0.56 

FeB  
308.37 

287.8
a
 

302.80 

284.6
a
 

155.66 

148.5
a
 

125.47 

130.9
a
 

1.57 

1.63
a
 

1.04 

0.91
a
 

3.38 

2.45
a
 

1.22 

0.68
a
 

10.74 

5.85
a
 

0.91 

0.62
a
 

a
Ref[162]. 
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 Elastic anisotropy 6.1.4.

The three-dimensional surface representations showing the variation of the Young,   and bulk 

modulus are plotted in Figure 43 and Figure 44. The plane projections ((100), (010) and (001) 

plane) of the directional dependences of the Young and bulk modulus are given in Figure 43 for 

comparisons.  

The calculated values of anisotropic factors for mono- borides (Fe1-xMnx)B are shown in 

Table 23. For an isotropic crystal, all three factors must be one, while any value smaller or 

greater than one is a measure of the degree of elastic anisotropy possessed by the crystal.  

The shear anisotropic factor for an orthorhombic crystal can be measured by three factors (Zener 

ratios)  (3.45), (3.46) and (3.47).  

Table 24. The calculated bulk, Young (E) and shear modulus (G) of Fe1-xMnxB ( in GPa), 

Poisson’s ratio (v) and B/G ratio along with other available values. 

Species B E G v B/G 

MnB  

261.90 

259.1
a
 

431.04 

450.2
a
 

175.84 

186
a
 

 

0.23 

0.21
a
 

1.49 

1.49
a
 

Fe0.25Mn0.75B   
206.43 380.29 

 

159.39 0.19 1.30 

Fe0.5Mn0.5B   205.60 389.95 164.69 0.18 1.25 

 

Fe0.75Mn0.25B  

233.83 409.14 169.30 0.21 1.38 

FeB 305.6 

286.6
b
 

365.7 

360.5
b
 

140.6 

139.7
b
 

0.30 

0.29
b
 

2.17 

a
Ref[168], 

b
Ref[162] 
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Here, I plot the Young modulus (E), and bulk modulus (B) in different directions using spherical 

coordinates for Fe1-xMnxB   compounds. For orthorhombic crystal class, the directional 

dependence of Young modulus (E) and bulk modulus (B) can be written as:  

For orthorhombic system [133] (3.51) and (3.52).  

For an isotropic system, 3D directional dependence would give rise to a spherical shape, while 

the deviation degree from spherical shape reflects the content of anisotropy. The surface 

constructions of Young and bulk modulus of Fe1-xMnxB compounds are shown in Figure 45 and 

Figure 46. The surface constructions of Young moduli and bulk modulus are respectively similar 

to each other. The projections of the mechanical moduli are plotted in Figure 45 and Figure 46. It 

can be clearly seen that Fe1-xMnxB exhibits a pronounced with the non-spherical nature. Thus, the 

calculated values of anisotropic factors (Au, AG and AB) for mono- borides (Fe1-xMnx)B are 

shown in Table 23, which are all some different to zero.  The variation of Young's modulus in all 

planes and directions shows that our compounds possess a minimum of Young’s modulus E, in 

[100] direction, and a maximum of E [001] direction. As example FeB exhibits a minimum of E 

[100] = 195.45GPa, a maximum of E [001] = 407.06GPa and for E [010]= 201.81GPa. Therefore, the 

ordering of Young's modulus as a function of the principal crystal tensile [u v w] for TM-B are:  

E [100] < E [010] < E [001].  
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Figure 43 Illustration of directional dependent Young’s modulus of (Fe1-xMnx)B compounds: 

With 0 GPa pressure critical pressure. 
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Figure 44. Illustration of directional dependent bulk modulus of (Fe1-xMnx)B 

compounds 
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Figure 45. The projection of Young modul at 0 GPa for different crystal 

planes for Fe1-xMnxB compounds. 
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Figure 46. The projection of Bulk modul at 0 GPa for different crystal 

planes for Fe1-xMnxB compounds. 
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 Acoustic sound velocities and Deby temperature 6.1.5.

The acoustic velocities for (Fe1-xMnx)B compounds in the principal directions can be 

expressed by (3.54).  

Where ρ is the density of (Fe1-xMnx)B compounds; vl is the longitudinal sound velocity; vt1 and 

vt2 refer the first transverse mode and the second transverse mode, respectively. The calculated 

densities, sound velocities and Debye temperatures for (Fe1-xMnx)B compounds are shown in 

Table 25. It is obvious that MnB compound has large sound velocities, because for two causes, 

the first one is that its density is lesser than the other structures and the other is due to the high 

magnetic moment. The anisotropic properties of sound velocities indicate the elastic anisotropy in 

these crystals. For example, the C11, C22,  C33 determine the longitudinal sound velocities along 

[100], [010] and [001] directions, respectively, the C44, C55 and C66 correspond to the transverse 

modes [135]. 

As a fundamental parameter for the materials’ thermodynamic properties, Debye temperature ΘD 

is related to specific heat, thermal expansion and elastic constants. The Debye temperature can be 

estimated from the average sound velocity by the following equation(3.55) based on elastic 

constant evaluations [136]. 

The elastic wave velocities of these compounds are relatively large, because our compounds have 

large mechanical moduli and large densities. For Debye temperatures the largest ΘD is 671 K for 

MnB (x=1), while the lowest one is 592.78 K for FeB(x=0). It is well known that the ΘD can be 

used to characterize the strength of covalent bonds in the solids. From Table 25, I conclude that 

the covalent bonds in MnB are stronger than the other borides. In the case of FeB, the smallest 

ΘD implies the strong metallic bonds among Fe atoms. 
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6.2. Conclusions 

The phase stability, magnetic moment, hardness, elastic moduli, elastic anisotropy properties, and 

Debye temperatures of the (Fe1-xMnx)B (X = 0, 0.25, 0.5, 0.75 and 1) compounds as a function of 

pressure are  investigated and discussed from the first-principles calculations. The equilibrium 

structure and formation energy show that (Fe1-xMnx)B (x=1) and x=0 are energetically more 

stable than the other concentration . The calculated ground-state parameters are in good 

agreement with the other available theoretical data and experiments values. The increasing B/G 

and v of these compounds indicate that are ductile phases under high pressures. The (Fe1-xMnx)B 

compounds show a certain degree of mechanical anisotropy.  

  Table 25. The density (in g/cm
3
), anisotropic sound velocities (in m/s), average sound velocity 

(in m/s) and Debye temperature (in K) for the (Fe1-xMnx)B   compounds.  

Species ρ vl vt vm ΘD 

MnB  6.41 8799.67 5237.57 5798.51 
671 

356
exp

 

(Fe0.25Mn0.75)B 

 
6.45 8059.37 4971.08 5483.87 

635.14 

645
exp

 

 

(Fe0.5Mn0.5)B 

 

6.6 8026.35 4995.30 5505.34 
641.76 

602
exp

 

(Fe0.75Mn0.25)B 

 
6.62 8331.89 5057.08 5587.98 

651.43 

562
exp

 

FeB  7.085 
8342.24 

7509
a
 

4454.74 

4489
a
 

4976.19 

4968
a
 

592.78 

740
a
 

403
exp

 

exp
Ref[172],

a
Ref[162] 
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 The calculated sound velocities along [100], [010] and [001] directions for (Fe1-xMnx)B imply 

the anisotropic.  
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7. General conclusions and outlook 

In this thesis three kinds of compounds are investigated by density functional calculations 

in generalized gradient spin density approximation. 

The first one is the tetragonal semi-borides TM2B (TM = Fe, Co and Ni) compounds where the 

phase stability, magnetic moment, hardness, elastic moduli, elastic anisotropy properties, and 

Debye temperatures are investigated and discussed from the first-principles calculations at 0 GPa 

and high pressure. The equilibrium structure and formation energy show that Fe2B and Co2B are 

energetically more stable at 0 GPa than at each critical pressure. Both Fe2B and Co2B have an 

abrupt magnetic collapse when the pressure is about 85 GPa. The hardness, elastic constants, 

bulk, shear, Young’s modulus, acoustic velocities and Debye temperature for Fe2B, Co2B and 

Ni2B compounds increase with the applied pressure. The calculated ground-state parameters are 

in good agreement with the other available theoretical data and experiments values. The 

increasing B/G and v of these compounds indicate that Fe2B and Co2B are ductile phases under 

high pressures. The TM2B compounds show a certain degree of mechanical anisotropy. The 

Debye temperatures increase with increasing pressure and Fe2B has a higher Debye temperature 

in two pressures 0 GPa and Critical pressure. The calculated sound velocities along [100] and 

[001] directions for TM2B under high pressure also imply the anisotropic.  

The second kind consists of the orthorhombic mono-borides TMB (TM = Mn, Fe, Co and NiB) 

compounds where also the phase stability, magnetic moment, hardness, elastic moduli, elastic 

anisotropy properties, and Debye temperatures are investigated and discussed from the first-

principles calculations as a function of pressure. The equilibrium structure and formation energy 
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show that MnB and FeB are energetically more stable at 0 GPa than at each critical pressure. 

Both MnB and FeB have a magnetic transition when the pressure is about 143 GPa and 77 GPa. 

The hardness, elastic constants, bulk, shear, Young’s modulus, acoustic velocities and Debye 

temperature for MnB and FeB compounds increase with the applied pressure. The calculated 

ground-state parameters are in good agreement with the other available theoretical data and 

experiments values. The increasing B/G and v of these compounds indicate that MnB is ductile 

phases under high pressures. The TMB compounds show a certain degree of mechanical 

anisotropy. The Debye temperatures increase with increasing pressure and MnB has a higher 

Debye temperature in two pressures 0 GPa and Critical pressure. The calculated sound velocities 

along [100], [010] and [001] directions for TMB under high pressure also imply the anisotropic.  

At last the Substitution of Fe by Mn in FeB or Mn by Fe in MnB: Fe1-xMnxB (X = 0, 0.25, 0.5, 

0.75 and 1) compounds are investigated and discussed from the first-principles calculations using 

Virtual Crystal Approximation (VCA), this offers technically the simplest approach, allowing 

calculations on disordered systems to be carried out at the same cost as calculations for ordered 

structures. The calculated ground-state parameters are in good agreement with the other available 

theoretical data and experiments values. The elastic constants, Young’s, bulk, shear, modulus, 

acoustic velocities and Debye temperature for (Fe1-xMnx)B compounds are calculated and 

discussed. Fe1-xMnxB at concentration (x=0) is ductile, while Fe1-xMnxB is brittle for the 

concentrations 0.25, 0.5, 0.75 and 1. The (Fe1-xMnx)B compounds show a certain degree of 

mechanical anisotropy.  

 The calculated sound velocities along [100], [010] and [001] directions for (Fe1-xMnx)B are 

anisotropic. My perspective is to complete my ab initio calculation by the experiments research 
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that lends further credibility  of research, and try to discover the superconductivity for transition 

metal borides under pressure. 
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I. CASTEP: Description and calculation principle 

I.1. Presentation of the CASTEP package 

CASTEP (Cambridge Serial Total Energy Package) is a software based on  quantum mechanics, 

specifically for solid-state materials science. It employs the density functional theory plane-wave 

pseudopotential method, with both formulations; norm conserving pseudopotential and ultra-soft 

(ultrasoft) pseudopotential, which allows us to perform first-principles quantum mechanics 

calculations that explore the properties of crystals. All  calculations presented in my manuscript 

were carried out using this package developed in 1988 by Payne et al.[36, 192]. It is an ab initio 

calculation code and is part of a set of numerical simulation software called Material Studio (MS) 

marketed by Accelrys ©. CASTEP uses the DFT to solve the Schrödinger equation. Direct 

energy minimization procedures are used to obtain, in a self-consistent manner, the electronic 

wave functions and the corresponding charge density. Only the Kohn-Sham orbitals whose vector 

G belongs to the irreducible part of the ZB are computed because the electron density can be 

constructed only from these states, with a symmetrization step which uses the matrices of the 

group space. A symmetrization step is also necessary for forces and stress. As a result, the 

electron density is explicitly symmetrized. The use of symmetry makes it possible to reduce the 

computation time significantly, especially for small meshes containing many points-k because 

CASTEP is effectively parallelized as a function of the k-points. As mentioned previously, 

CASTEP uses the Monkhorst-Pack method for sampling the Brillouin zone [152]. This method 

makes it possible to generate a uniform grid along the three axes of the reciprocal space. The 

symmetry of the system is used to reduce the number of k-points of the primitive cell. The forces 
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exerted on the atoms, the tensor of the stresses and consequently the atomic displacements and 

the variations of the parameters of the crystal lattice are always symmetrized. 

Furthermore, the vibrational properties ofsolids (phonon dispersion, total and projected density of 

phonon states, thermodynamic properties) can be calculated with CASTEP using either the linear 

response methodology or the finite displacements technique. 

The time required for a CASTEP calculation increases with the cube of the number of atoms in 

the system. As an example, which I have two systems tetragonal body centred (semi borides) and 

orthorhombic (orthorhombic), the time of calculation take several days for geometry optimization 

and properties calculation. 

I.2. SCF Electronic minimization technique in CASTEP 

In order to determine the electronic ground state of the studied systems, two SCF (Self-consistent 

field) algorithms are implemented in the CASTEP code: Density Mixing (DM)[193] and EDFT 

[194]. Although the DM algorithm is generally faster, Is not a variational algorithm and, 

therefore, it may be subject to convergence instabilities. The EDFT algorithm is variational but is 

generally slower, especially in the presence of empty bands. The choice of one or the other 

algorithm is governed by the convergence difficulties of CASTEP for a given system. 

In the DM algorithm, the sum of the electronic eigenvalues is minimized in the fixed potential 

instead of the self-consistent minimization of the total energy. The new electronic density 

obtained at the end of the minimization (ρout) is mixed with the initial density (ρin) and the 

process is repeated until the convergence is reached. In this scheme, CASTEP supports four 

mixing methods: linear mixing, Kerker mixing, Broyden mixing, and Pulay mixing in the 
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increasing order of robustness . The conjugate gradient-based approach is used to minimize the 

sum of eigenvalues. 

The CASTEP code also supports a more traditional scheme for electronic relaxation (All bands / 

EDFT), involving the minimization of total energy. The electronic wave functions are projected 

using a flat wave set and the expansion coefficients are varied so as to minimize the total energy. 

This minimization is performed using an all-bands method that allows simultaneous updating of 

all wave functions. The scheme uses a preconditioned conjugate gradient technique[195]. 

The main advantage of the density-mixing method is its robustness for metallic systems, 

especially for metal surfaces. The traditional technique of minimizing total energy could become 

unstable in a metal system with the elongated cell in one dimension, which is the typical 

configuration for supercell calculations on surfaces. The density-mixing technique converges 

both for insulating and metallic cases, and offers at least a factor of three in increasing the speed 

for medium-sized insulation. 

I.3. Geometry optimization with castep 

The optimization of equilibrium geometries is often the first step in the theoretical study of a 

molecule or a solid. The determination of the optimized structure of such a system requires the 

calculation and then the minimization of the forces (these forces are obtained from the Hellmann-

Feynman theorem[196, 197]), that apply to each of the atoms that constitute them. That means is 

based on reducing the magnitude of calculated forces and stresses until they become smaller than 

defined convergence tolerances. It is also possible to specify an external stress tensor to model 

the behavior of the system under tension, compression, shear, etc. In these cases the internalstress 

tensor is iterated until it becomes equal to the applied externalstress.. 
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In the CASTEP package, the optimization of the geometries is carried out in a self-consistent 

by an  algorithm named BFGS (Broyden, Fletcher, Goldfarb and Shannon), from the 

configuration chosen by the user to initialize the calculation.  By default, CASTEP uses the 

BFGS geometry optimization method. This method usually provides the fastest way of finding 

the lowest energy structure and this is the only scheme that supports cell optimization in 

CASTEP. The minimization is carried out in such a way that the overall minimum of energy is 

reached. Optimization of geometry is an indispensable procedure for accessing a molecular or 

crystalline structure and a static energy that are comparable to experimental values. Moreover, 

even if the structure chosen for the initialization is close to the experimental structure, an 

optimization of precise geometry is a prerequisite for the calculation of the vibrational properties 

of a system. 

I.4. Band structure and state density 

I.4.1. Electronic band structure 

The electronic tape structure of the solids reveals the eigenvalues associated with the 

conduction and valence bands along specific directions in the Brillouin zone of a particular 

crystal structure. One of the most important reasons for calculating the electronic band structure 

is to determine the band gap (energy gap), ie, the difference between the higher valence band 

energy values and the lower conduction band because This may give an idea of the potential uses 

for optical device applications. However, the energy gap calculated from the Kohn-Sham 

eigenvalues using the LDA and GGA methods is underestimated with respect to the energy gap 

obtained experimentally. In fact, it is a property where the GGA does not bring improvement 
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beyond LDA. Generally, the difference between the gap obtained using the pure DFT and the 

experimental gap is of the order of 50% to 100%. 

In order to determine the structure of electronic bands of such a material, a single-point 

energy calculation is first performed to determine the self-consistent density of the ground state. 

This fixes the form of the Kohn-Sham Hamiltonian, which is solved to give the corresponding 

Kohn-Sham eigenvalues. The eigenvalues are calculated at a greater number of k-points, along 

the specific directions in the Brillouin zone, than that used in the calculation of the energy.  

The eigenvalues obtained by solving the Kohn-Sham equations can be used to generate 

energy band structure diagrams and the density of electronic states. 

I.4.2. Density of electronic states 

A second tool for analyzing the results consists of the Total Density of States (TDOS) or Partial 

Density of States (PDOS) curves. The TDOS presents, in the form of a histogram, the number of 

monoelectronic states as a function of the energy. PDOSs are based on the Mulliken population 

analysis [105]  and are performed by projection of monoelectronic orbitals on a basis of atomic 

orbitals located around the different nuclei of the mesh. The PDOSs provide an approximate 

identification of the type of orbitals constituting each band, in terms of the orbitals (s, p, d, or f) 

of the atoms constituting the system. 

The density of states (DOS) counts the number of electronic states having a given energy. For a 

band n, the density of states 

I.5. Method of calculating elastic constants 

The CASTEP Elastic Constants task allows us to run a set of CASTEP calculations which 

provides all of the information necessary to obtain the full 6 × 6 tensor of elastic constants for a 
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3D periodic structure with any symmetry. CASTEP automatically generates the set of distorted 

structures that is required by symmetry to produce the fullset of elastic constants, then submits 

jobs for the idealstructure and for all the distorted structures. The actual calculation of elastic 

constants, based on the values of initialstrains and calculated stresses. The accuracy of the elastic 

constants, especially of the shear constants, depends strongly on the quality of the SCF 

calculation and in particular, on the quality of the Brillouin zone sampling and the degree of 

convergence of wavefunctions. Therefore, you should use the Fine setting for SCF tolerance and 

for kpoint sampling and a Fine derived FFT (Fast Fourier transforms) grid. It is not necessary to 

perform geometry optimization before calculating elastic constants, so you can generate C ij data 

for the experimentally observed structure. However, more consistent results are obtained if you 

perform full geometry optimization, including cell optimization and then calculate the elastic 

constants for the structure which corresponds to the theoretical ground state. 

I.6. Spin polarization 

Magnetic systems can be studied by carrying out spin-polarized DFT calculations with 

CASTEP. This setting is recommended for transition metal oxides, certain inorganic surface 

studies, and metallic systems containing magnetic elements (Fe, Co, Mn, Ni). 

Spin-polarized CASTEP calculations are normally carried out with a variable magnetic moment. 

The most commonly obtained solutions correspond to high spin and low spin states. The state 

generated by CASTEP depends on the initial magnetic configuration, since the solution is likely 

to converge to the nearest local minimum rather than to the global minimum. 

There are two ways of defining the initial magnetic configuration: either specify the total 

magnetic moment per unit cell, which gets uniformly distributed over the space, or provide 
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detailed information on the absolute values and direction (up or down) of the spins for each atom 

in the unit cell. The former method can be used for relatively simple systems where only two 

solutions are expected (magnetic and non-magnetic). The latter method, which specifies the spin 

state of the atoms in the system, is more general and gives much more flexibility. It is possible to 

set up ferromagnetic, ferrimagnetic, or antiferromagnetic calculations to get different starting spin 

arrangements. 
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a b s t r a c t

First-principles calculations are performed to study pressure effects on structure, magnetic and me-
chanical properties of FexB (x¼1, 2, 3) compounds using density functional theory (DFT) within GGA
approximation. The three structures are studied in the pressure range from 0 to 90 GPa, in order to
predict the critical transition pressure from magnetic to nonmagnetic states (NM) and a possibility of
superconductivity in this state was predicted. The density of states of FexB ferromagnetic compounds are
significantly modified with increasing pressure and at particular critical pressures, our compounds un-
dergo an abrupt loss of ferromagnetic character that cause mirror in upper and lowers half panels on
both spin channels. Furthermore, the relationship between crystal structure and material hardness of Fex
B is also investigated by calculating hardness of Fe–B and B–B bonds using Mulikan population analysis
and semi empirical hardness theory. This model proved effective in hardness prediction of metal borides
and agrees well with the experimental values. By the elastic stability criteria, it is predicted that FexB are
stable up to the selected pressures.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Physical properties of metal borides such as hardness, high
melting point, wear resistance, corrosion resistance, and ferro-
magnetism are important for both basic research and technological
applications [1–3]. Their notable mechanical properties are due to
the B–B covalent bonding associated with hybrid metal–nonmetal
bonding. Iron borides are metallic in nature and exhibit ferro-
magnetism. The thickness of iron boride layers in the thermo-che-
mical surface hardening process of steel depend on the chemical
composition of the boronizing environment, temperature and
duration of treatment. The obtained boride layer is either single-
phase (Fe2B only) or double-phase (FeB and Fe2B) [4]. A metastable
phase, Fe3B, appears in the formation of Fe2B [5]. Kneller et al. have
drawn the phase diagram B–Fe system [6]. Physical properties such
as structure parameters, hardness, Young modulus and fracture
toughness of iron boride layer that depend on process time and
temperature have been well investigated experimentally [7,8]. On
the other hand, Fe2B can also be prepared as bulk single crystals [9].
FeB was prepared in the form of nanoparticles by the chemical
reduction method for the improvement of the cycle stability of the

PuNi3- type hydrogen storage electrode [10–12].
Recently, Meneses-Amador et al. used indentation for the me-

chanical characterization of Fe2B layers and found that layer
hardness ranged from 9 to 14.2 GPa depending on boriding tem-
perature and time [7]. Furthermore, the mechanical properties of
FeB and Fe2B layers were estimated by Berkovich nano indentation
on boride steels. Their measurements showed that hardness ran-
ged between 14.5 GPa and 19 GPa for FeB and from 13 to 16.3 GPa
for Fe2B depending on temperature and boronizing time [8].

In this paper we calculate the density of states of FexB ferro-
magnetic compounds to evaluate the magnetic moment and also
used, ab-initio based Mullikan population analysis method [13] to
calculate the hardness of our three compounds FexB. In order to
predict the transition pressure between ferromagnetic and non-
magnetic states, we have increased pressure on these compounds
until the extinction of the magnetic moment and appear a higher
DOS at the Fermi level, which usually improves superconducting
properties. Also we calculate the relative change in volume, elastic
modulus, hardness and other parameters between the ferromag-
netic and nonmagnetic state.

Finally, we notice that pressure affects the structure, mechan-
ical and magnetic properties of iron borides, there spin-polarized
calculations are important to obtain the correct ground state
properties of FexB compounds. We demonstrate that the structure
properties and magnetic moment change strongly with increasing
pressure. At the end of results presentation, we show the pressure
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effect on the magnetic moment and all calculated parameters (see
Fig. 3) by the relative change of these parameters between the
ferromagnetic and nonmagnetic state.

We dedicate the last section to the most important conclusions
of this work.

2. Structure aspects and calculation methods

FeB and Fe3B belong to the orthorhombic space group Pnma
[14–17]. Both structures contain four formula per cell, Fig. 1. In
Fe3B, an isotype of Fe3C, iron atoms are distributed over two dis-
tinct lattice sites: the general Fe (I) sites (Wyckoff position 8d) and
the special Fe(II) sites (Wyckoff position 4c). On the other hand,
Fe2B belongs to the body-centered tetragonal Bravais lattice with
I4/mcm space group where contains four equivalent Fe atoms in
the positions of point group mm and two equivalent B atoms in
the positions of point group 42 [14]. The B atoms in Fe2B are lo-
cated between two layers of Fe atoms in a distorted closely packed
arrangement, as shown in Fig. 1. It is known that the ground states
of FexB compounds are ferromagnetic [18,19].

The total energy calculations were performed within density
functional theory (DFT) [20–23]. CASTEP code was employed for
the whole study uses the plane wave expansion method in re-
ciprocal space [24,25]. The ultrasoft Vanderbilt pseudopotentials
were employed to represent the electrostatic interactions between
valence electrons and ionic cores [26] which were used with the
following valence electron configurations Fe: 3d64s2 and B: 2s22p1.
Generalized gradient approximation PBE-GGA was used for ex-
change-correlation energy calculations [27]. Kinetic energy cut-off
value was set to 500 eV, which was sufficient to obtain the reliable
results.

Total energies were evaluated with the following Monkhorst–
Pack grids [28]: (6�10�8) for FeB, (10�10�10) for Fe2B and
(10�12�8) for Fe3B. The convergence criteria of total energy and
structure optimization were set to fine quality with the energy
tolerance of 10�6 eV/atom. BFGS (Broydene–Fletchere–Goldarbe–
Shanno) optimization method was used to obtain the equilibrium
crystal structures of FexB with maximum atom displacement and
force set to 0.002 Å and 0.001 eV/Å respectively. The crystal
structures of FexB studied in this paper were built based on ex-
perimental results.

In package code spin polarized indicates that the calculation
will be performed using different wave functions for different
spins. This is known as a ‘spin-polarized’ calculation. Use formal
spin as initial: indicates that the initial value for the number of
unpaired electrons for each atom will be taken from the formal
spin specified for each atom. This starting value will be subse-
quently optimized during the calculation.

The stability of our compounds can be evaluated by calculating
two energy parameters, cohesive energy Ecoh and formation en-
ergy Ef defined as follows:

( ) = ( )− ( )− ( )
( )E

E xnE nE
n

Fe B
Fe B, Cell Fe B

1coh x
total x iso iso

( ( )) = − ( ) − ( ) ( )E E xE EFe B Fe B Fe B 2f x coh x coh coh

where Ecoh(FexB) is the cohesive energy of FexB per formula; Ef(Fex
B) is its formation energy; Ecoh(Fe) is the cohesive energy of bcc-
iron per atom; Etotal (FexB, Cell) is the total calculated energy of Fex
B per conventional unit cell; Eiso(Fe) is the total energy of an iso-
lated Fe atom and finally n refers to the number of formula FexB in
the conventional cell. The calculation method for Ecoh(FexB) can
also be used to evaluate the cohesive energy of pure elemental B
and Fe. Eqs. (1) and (2) require negative values of Ecoh(FexB) and Ef
(FexB) in order to refer to a thermodynamically stable structure.

3. Results and discussion

3.1. Structure properties and stability

The calculated lattice parameters, unit cell volumes, bulk
modulus, cohesive energy and the formation energy for FexB along
with the available experimental and previous theoretical data for
comparison, are shown in Tables 1 and 2. These results show that
the calculated structure parameters are in good agreement with
the experimental values. The calculated values of cohesive energy
of FeB, Fe2B and Fe3B are respectively �13.13, �18.91 and
�24.36 eV per atom indicate that all of these FexB compounds are
stable. Furthermore, the cohesive energies decreases from FeB to
Fe3B, this is mainly caused by the increase in the volume con-
centration of Fe atoms.

3.2. Pressure effects

Usually, in order to induce some significant change in the
structures, high pressures are needed for the study of materials. By
increasing the pressure, there is a transfer from state magnetic to
nonmagnetic state which causes an extinction of the magnetic
moment; the theoretical critical (transition) pressure is estimated
to be 77 GPa, 85 GPa and 55 GPa for FeB, Fe2B and Fe3B respec-
tively, as shown Fig. 2. The critical pressure at which a ferromag-
netic material undergoes transition to a NM state is defined as Pc
¼�ΔE/ΔV where ΔE is the difference between NM and spin-
polarized (SP) equilibrium total energy by unit cell and ΔV is the
corresponding difference between NM and SP equilibrium

Fig. 1. FexB Structures: by the left FeB, Fe2B and Fe3B respectively.
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volumes. This definition of critical pressure (Pc) was first employed
by Mohn et al. in their work on magneto-elastic anomalies in Fe–
Ni Invar alloys [29] and NiFe3N and PdFe3N nitrides [30]. This
definition is also used in the study on magnetic transition of in-
termetallic bilayers and substituted iron nitrides [31–34].

The calculated changes of volume at 0 GPa and after transition
pressure of our three compounds are presented in Fig. 3. We note a
volume compression of 15%, 20% and 19% for FeB, Fe2B and Fe3B,
respectively in applied pressure, which increases the bulk mod-
ulus of our compounds by 47.7%, 62% and 61.8%.

The calculated magnetic moments of our compounds at 0 GPa

are in good agreement with previous theoretical and experimental
values [16,35,36] and range from 2.0 mB for Fe3B to 1.12 mB for FeB.
These moments are smaller than the magnetic moments of ele-
mental bcc ferromagnetic iron (2.22 mB) [37]. Indeed, when B
atoms are inserted in Fe crystals, the volume concentration of
metallic Fe–Fe bonds decreases and they replaced by newly
formed covalent Fe–B and B–B, bonds.

As to the mechanical properties, it is commonly accepted that
mechanical properties of 3d-metal borides are well described with
the help of GGA–PBE. However, there were some doubts whether
this is true also when treatinf magnetic moments. For this pur-
pose, we performed also LDA calculations of magnetic moments
and compared them with the experimental data. From the com-
parison (Table 3) one can clearly see that the GGA–PBE values
agree better with experimental data than the LDA values. This
comparison justifies the application of GGA–PBE approach also for
magnetic moments.

The formation energy Ef, was calculated to check the prob-
ability of thermodynamic existence of FexB under pressure. All
formation energies are negative indicating that all structures in
both pressure conditions are thermodynamically stable. The for-
mation energies of FexB in magnetic state are lower than FexB in
NM case by 4.7%, 3.9%, 7.1% from FexB, implying that the magnetic
state has higher thermodynamic stability.

Table 1
The calculated ground state properties of pure elements, Fe and B. Experimental
and theoretical values are listed in parentheses. Total energy of isolated atom Eiso
(eV/atom), total cell energy Etotal (eV/f.u.), cohesive energy Ecoh (eV/f.u.) and volume
V (Å3).

Ground state properties Fe B

Eiso �859.821 �70.501
(�855.913)a (�70.492)a

Etotal �865.315 �76.953
(865.335)a (�76.875)a

Ecoh �5.494 �6.452
(�4.28)exp (�6.383)a

(�9.422) 8.652
V 11.775 (8.763)a

(11.82)exp

a Ref. [63].
exp Ref. [37].

Table 2
The calculated ground state properties of FexB. Experimental and theoretical values
are listed in parentheses. Total cell energy Etotal (eV/f.u.), cell parameters (a, b, c in
Å), atomic positions for Fe and B atoms (fractional coordinates), volume V (Å3), Bulk
modulus (GPa), magnetic moment (mB/atom), cohesive energy Ecoh (eV/f.u.), for-
mation energy Ef (eV/f.u).

Parameters FeB Fe2B Fe3B

Etotal �3773.900 �3618.115 �10697.2989
(a, b, c) 5.317, 2.950,

3.964
5.0123, 4.209 5.336, 6.608, 4.354

(5.495, 2.946,
4.053)a

(5.110, 4.240)exp (5.397, 6.648,
4.368)a

Fe (x,y,z) 0.178 0.25 0.122 0.1666, 0.666, 0 0.1765 0.0560
0.3515
0.0216 0.250
0.8776
(0.1751, 0.0556,
0.3508)a

(0.0182, 0.25,
0.8832)a

B(x,y,z) 0.0348 0.25
0.620

0, 0, 0.25 0.8818, 0.25,
0.4258
(0.8812, 0.25,
0.4268)a

V 62.176 52.872 153.52 (156.70)a

B 305.58 (286.6)b 244.59 (249.7)c 210 (201.6)b

mB/atom 1,126 1.83 (1.96)a, (1.62)exp2 2.003 (2.17)a,
(2.08)b

(1.12)exp1, (1.20)a,
(0.95)exp2

Ecoh �13.153 �18.92 (�26.701)a �24.36
Ef �1.207 �1.475 (�1.475)a,

(�0.85)d
�1.427

a Ref. [63].
b Ref. [61].
c Ref. [58].
d Ref. [56].
exp1 Ref. [36].
exp2 Ref. [16].
exp Ref. [55].
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Fig. 2. Dependence of magnetic moment vs pressure for FexB.
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3.3. Magnetic moment

Fe behaves as weak ferromagnet with a magnetic moment of
2.217 μB [38]. The magnetic moments of iron atoms in our com-
pounds are somewhat different: 2.003 μB, 1.83 mB and 1.12 μB for
Fe3B, Fe2B and FeB, respectively. It turns out that iron atoms in
Fe3B carry a higher magnetic moment which leads to a shift in the
Slater–Pauling curve [39]. The calculated total and partial densities
of state DOS for FexB compounds are shown in Fig. 4.

Ferromagnetic behavior is dominated by Fe–Fe bonds and any
gain of the covalent Fe–B energy is accomplished by the loss of
exchange energy of Fe–Fe bonds [40]. The main ferromagnetic
moment of FexB compounds come from spin-polarization of 3d
electrons. According to the Stoner model, the magnetic phase
appears when the gain in the exchange energy is larger than the
loss in kinetic energy, and the condition of the existence of mag-
netism could be evaluated by the Stoner criterion: N (EF) I41,
where N (EF) is the non-spin-polarized partial density of states of
transition metal atoms at Fermi energy and I (0.46) is the ex-
change-correlation integral calculated by Janak [41]. Based on the
prediction of the Stoner model, FexB illustrates as spontaneous
criterion of spin-polarized state because N (EF) I41 are 4.61, 8.31,
and 11.06 for FeB, Fe2B and Fe3B respectively, much larger than the
limiting value of 1. Stoner criterion is not able to predict the sta-
bility of a phase. However, it may give us some hints on the
magnetic ground state of our compounds. Magnetic behavior of Fe
xB compounds is consistent with the Stoner criterion.

3.4. Density of states of FexB under pressure

In order to show the dependence of the magnetic moment on
the equilibrium volume, we have calculated the relative change of
volume, bulk modulus and hardness between the magnetic and
nonmagnetic states, they are obtained as:

∆ = − =
( )

X
X

X X
X

X V B H, , and
I

M NM

M

where XM and XNM are the calculated volume, bulk modulus and
hardness in the magnetic and non-magnetic state respectively.

The calculated relative compression in volume ranges from 0%
to 15% for FeB, from 0% to 20% for Fe2B and from 0% to 19% for Fe3B.
The magnitude of the magnetic moment is strongly related to the
volume. This origin of thus dependence is due to the magneto-
volume effect [42]. Because the Pauli Exclusion Principle operates
for parallel spins, the electron kinetic energy of the spin- polarized
state is higher, and volume expansion relaxes the kinetic energy.
Consequently the magnetic (high-spin) state has a larger volume
than the non-magnetic (low-spin) state [43]. In the NM state the
bulk modulus B is systematically larger than in the magnetic state
which increases from FeB to Fe3B, also due to the magnetic mo-
ment eliminated (see Fig. 2). The bulk modulus in the NM state

increases by 47.7%, 62% and 61.8% for FeB, Fe2B and Fe3B, respec-
tively. The low value of bulk modulus in the magnetic case points
to a larger compressibility. This means that the system is “softer”
when it is magnetically ordered and “harder” when it is not.

The total and partial DOS for these compounds, at ambient and
critical transition pressure, are shown in Fig. 3 (Left and right
panel). From these figures, it can be stated that FexB total density
of states at the Fermi level is predominantly due to the d electrons
of Fe atoms both at ambient and under high pressure. From SP DOS
Fig. 3 (Left panel) it can be seen that the energy shift between spin
up and spin down population is significant for Fe-d states, which
results in large magnetic moment values. The main peaks of Fe-d
states for majority and minority spins are located below and above
the Fermi level, respectively, and under increasing compression,
they start to move towards the Fermi level. The applied pressure
causes a visible reduction in the magnetic moments of FexB for all
materials. At approximately 77 GPa, 85 GPa and 55 GPa for FeB,
Fe2B and Fe3B, respectively, we note that the peaks in the majority
and minority DOS are the same. Thus, total DOS at the Fermi level
for FexB increases under pressure by 21%, 50% and 32.5% for FeB,
Fe2B and Fe3B, respectively. This enhanced N (EF) is derived en-
tirely from the Fe 3d states, with negligible contribution from the
B 2p states. Following the above arguments we may be predict the
appearance of superconductivity in FexB under pressure as is the
case of iron that undergoes a transition to superconducting phase
above 30 GPa when it loses its magnetic moment [44].

3.5. Population analysis

Mulliken population analysis (MPA) is a method for calculating
partial atomic charges based on the population of linear combined
atomic orbitals (LCAO) bases. This was implemented in CASTEP by
Segall et al. [45] based on the method of Sanchez-Portal [46]
which provides the link between methods using LCAO and those
using plane waves. Owing to the difference of electro-negativity
between the Fe and B atoms, the ionic bonds are formed where Fe
atoms donate some electrons to B atoms and thus become slightly
positively charged. MPA method is applied for the overlap popu-
lation and the charge calculations. We used the following relations
to calculate the average bond length and the average overlap po-
pulation:

( ) =
∑
∑ ( )

L
L N

N
AB

3
moy

i i i

i i

= ¯ =
∑

∑ ( )
nP

n N

N 4
u

AB
i i

AB
i

i i

Here, Lmoy(AB) and nAB are the average bond length and the mean
bond population, respectively; Ni is the total number of i bond in
the cell and Li is the bond length of i type. These parameters will
be used in Section 3.3 for the calculation of bond hardness.

The strongest covalent interaction is attributed to the B–B bond
in FeB and Fe2B with average calculated length of 2.322 Å and
2.105 Å respectively.

3.6. Hardness

Hardness is a measure of the resistance of materials against
permanent deformations. It is usually measured by traditional
techniques such as in Brinell, Rockwell, Vickers, or Knoop [47].
Materials with high hardness are technologically important for
cutting tools and wear resistant coatings. It has been recognized
that the hardness of strongly covalent/ionic bonded crystals is
associated directly with the bond strength [48–50]. Zhang et al.

Table 3
The calculated magnetic moment (mB/Fe) of FexB. Experimental and theoretical
values are listed in parentheses.

FeB Fe2B Fe3B
mB/Fe mB/Fe mB/Fe

Our calculations LSDA 0.945 1.198 0.015
GGA 1,126 1.83 2.003

Experiments (1.12)exp1 (1.96)a (2.08)b

(1.20)a (1.62)exp2 (2.17)a

a Ref. [63].
b Ref. [61].
exp1 Ref. [36].
exp2 Ref. [16].
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showed that GGA–PBE gives better values of bond hardness (H). It
was found that GGA–PBE (USP) method can be effectively used to
predict the H value [51].

In this paper, based on the previous works of Gao [52], the
hardness of Fe–B and B–B bonds in each of our three compounds
FexB are evaluated and compared. The proposed analytical ex-
pressions have been used to determine the hardness from first-
principles theory [51]. We will consider the hardness of B–B and
Fe–B bonds only. The hardness of Fe–Fe bond, however, is not

taken into consideration in this work, because the hardness of
metallic bond is ill defined in this method. The strength of the
bond per the unit volume can be characterized by average overlap
populations. For complex multi-bonding compounds, the hardness
of the u type bond can be calculated as follows:

( )( ) = (− )H P vGPa 740v
u u

b
u 5/3
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Fig. 4. The calculated total and partial DOS of FexB, Left panel with spin polarization and right panel under pressure. Dashed line represents the Fermi level.
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Hv
u is the hardness of u type bond; Ω is the cell volume, du is the

bond length; Nb
v refers to the υ type bond density per cubic ang-

strom and the sum is over the total number of υ type bonds in the
cell; and Pu is overlap population of u type bond. We use Mulliken
population analysis as implemented in CASTEP in order to esti-
mate bond overlap population.

The longest Fe–B bond length considered in this work was
limited to 3.1 Å because the interaction between Fe atom and the
second nearest neighbor B atom is assumed to be weaker than that
between the near-neighbor boron atoms.

The calculated bond length, population overlap, contribution of
Fe–B and B–B bonds to the hardness Hv in FeB, Fe2B and Fe3B are
listed in Table 4 with material hardness of our three compounds.
The hardness of B–B bond Hu is significantly larger than Fe–B bond
in FeB and Fe2B compounds because of the large bond overlap
population. In the case of Fe3B the Fe–B bond is harder than B–B
bond because B–B bond has the largest bond length in this com-
pound and smaller overlap population.

The calculated hardness of FeB (26.25 GPa) and Fe2B
(18.34 GPa) are in fairly good agreement with the experimental
values of (20.470.017 GPa) for Fe2B and (16.270.011 GPa) for FeB
[53]. The disagreement can be explained by the fact that

experimentally measured values of hardness of materials are very
sensitive to many parameters including loading and unloading
speed, applied load, anisotropy of materials, defects in the sample,
method of measurement, temperature, etc. Additionally, for poly-
crystalline materials, hardness is a function of grain size.

3.7. Elastic properties under pressure

As well known, elastic properties can reflect the interatomic
interactions and are related to some fundamental physical prop-
erties, such as, thermal expansion, phonon spectra and equations
of state [54–57]. The elastic constants of single crystal FexB com-
pounds are presented in Table 5. Generally, the elastic constants
along three principle axes (x, y and z) are very high, at zero and
under pressure Fig. 5, which indicates the high resistance to the
axial compression in these directions. However, the orders of
magnitude along the three axes are different. For orthorhombic
FeB and Fe3B, the order is C334C224C11. For tetragonal Fe2B the
orders is C114C33. Since the tetragonal structure can be regarded
as the special case of orthorhombic structure with an additional
condition of a¼b, the mechanical stability criteria can be re-
presented in a uniform manner for orthorhombic structure [58]:

( )> ( = ) + + + + + >C i C C C C C C0 1; 2; 3; 4; 5; 6 , 2 0ii 11 22 33 12 13 23

( + – ) > ( + − ) > ( + − ) >C C C C C C C C C2 0; 2 0, 2 011 22 12 11 33 13 22 33 23

The stability criteria of material under pressure are similar to
those under zero pressure, just replacing Cij with

( = = )
∼
C i j 1, 2,3, 4, 5, 6ij [59]. Thus the mechanical stability leads to
restrictions on the elastic coefficients under isotropic pressure as
follows:

( )= − > ( = ) + − − >
∼
C C P i C C C P0, 1, 2, 3, 4, 5, 6 , 2 4 0,ii ii 11 22 12

( ) ( )+ − − > + − − >C C C P C C C P2 4 0, 2 4 0,11 33 13 22 33 23

( )+ + + + + + >C C C C C C P2 2 2 3 011 22 33 12 13 23

For tetragonal the elastic constants under pressure (P) are re-
lated to those under zero pressure, shown as follows [60],

= ( = = ) = − ( = ) = +
∼ ∼ ∼
C C i j C C P i C C P1, 2, 3; 4, 5, 6 , 1, 2, 3, 4, 5, 6 , ,ij ij ii ii 12 12

= + = + = = =
∼ ∼ ∼ ∼ ∼
C C C C C C C C C CP, P, , , ,13 13 23 23 45 45 46 46 56 56

As for Fe2B in tetragonal structure, there are six independent
elastic constants, C11, C12, C13, C33, C44, C66, because of C22¼C11, C23
¼C13, C44¼C55 as a result of the crystal symmetry. The single
crystal elastic coefficients (Cij) satisfy the stability criteria, which,
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Fig. 5. Pressure dependence on the elastic constants.

Table 4
The predicted hardness of B–B and Fe–B bonds. Experimental and theoretical values are listed in parentheses. Different pairs of atoms (B–B, Fe–B). Average bond length of
nearest-neighbor atoms du(Å), average overlap population of u type bond, nearest-neighbor numbers Nu for different pairs of atoms, cell volume Ω (Å3), volume of a bond of
u type vv

u, hardness of u type bond Hu (GPa) and hardness H(GPa).

Species Bond du pu Nu Ω vv
u Hu H

FeB B–B 2.322 0.725 4 3.840 56.966 26.25
Fe–B 2.121 0.175 16 62.184 2.926 21.629 (26.28) exp1

(20.470.017) exp2

Fe2B B–B 2.105 0.7 2 2.952 85.270 18.34
Fe–B 2.144 0.15 32 105.76 3.121 16.658 (18.2) a

(16.270.011) exp2

Fe3B B–B 3.076 �0.08 2 153.555 12.25 – 17.35
Fe–B 2.124 0.32 32 4.798 17.35

exp1 Ref. [64]
exp2 Ref. [53]
a Ref. [59].
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leads to the following restrictions on the elastic coefficients under
isotropic pressure as follows [61]:

> ( = … ) + − >
∼ ∼ ∼ ∼
C i C C C0, 1, 2, 3, 6 , 2 0,ii 11 33 13

+ + + > ( − ) >
∼ ∼ ∼ ∼ ∼ ∼
C C C C C C2 4 0, 0.11 33 12 13 11 12

where: Cij’s are the elements of elastic coefficient matrix. The ar-
ithmetic average of the Voigt and Reuss bounds is known as the
Voigt–Reuss-Hill (VRH) average, which is regarded as the best
estimate for the theoretical value of polycrystalline elastic mod-
ulus [62]:

= ( + ) = ( )G G G B B B/2, /2H R V H R V

The Young modulus and Poisson's ratio can be computed based
on the above values by [63]:

= ( + ) = ( − ) ( + )E BG G v B G B G9 / 3 B , 3 2 / 6 2

The ratio of B/G can be used to estimate the ductility or brit-
tleness of materials, since a high (low) value is associated with
ductility (brittleness), and the critical value is about 1.75. Mean-
while, the Poisson's ratio when is larger (smaller) than 0.25 can be
also used to represent the ductility or brittleness of materials. The
calculated values for FexB compounds are presented in Table 6. It is
found that FeB and Fe3B can be classified as ductile since B/G is
larger than 1.75 and ν is larger than 0.25, while Fe2B, should be
classified as brittle.

4. Conclusions

First-principles total-energy plane-wave pseudo-potential cal-
culations were used to calculate the ground-state lattice para-
meters, cohesive energies, formation energies, bong length; elastic
modulus and hardness of FexB (x¼1, 2, 3) compounds. The cal-
culated results, using PBE exchange-correlation functional and
ultra-soft pseu-dopotential are credible at 0 GPa to obtain the
correct ground state properties of FexB because our results are in
good agreement with experimental data. Analysis of density of
states reveals spectacular phenomena under pressure. We observe
a transition from ferromagnetic to nonmagnetic states in the range
of 50–90 GPa.

Disappearance of ferromagnetic order decreases the volume of
the unit cell, increases the bulk modulus and also makes the solid
harder. Therefore, the magnetic order in FexB are sensitive to the
volume, which along with the calculated value of critical pressure,
indicates that those iron borides shows an Invar-like behavior.

The calculated hardness H from Fe–B and B–B bonds of FeB,
Fe2B and Fe3B are predicted from Mulliken populations using
GGA–PBE (USP) method. The calculated values of 26.25, 18.34 and
17.34 GPa for FexB in FM agree well with the previous study and
experimental Vickers hardness. It also implies that it can be an
effective tool in predicting the hardness of metal-borides. It is
evident that the hardness of B–B bond is significantly larger than
Fe–B bond in FeB and Fe2B compounds because of the large bond
overlap population. In the case of Fe3B, the Fe–B bond is harder
than B–B bond because B–B bond has large bond length in this
compound.
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Spin-polarization (SP) and pressure effects have been used to better clarify and understand anisotropic elastic properties of
Fe–B intermetallic compounds using the first-principles calculation with generalized gradient approximation (GGA) within the
plane-wave pseudopotential density functional theory. Elastic properties, including bulk, shear and Young’s moduli as well as
Poisson ratio were obtained by Voigt-Reuss-Hill approximation. All studied Fe–B compounds were mechanically stable. The
brittle and ductile properties were discussed using bulk to shear moduli ratio (B/G) of the studied structures in the pressure
range of 0 GPa to 90 GPa in order to predict the critical pressure of phase transition from ferromagnetic (FM) to nonmagnetic
(NM) state. Mechanical anisotropy in both cases was discussed by calculating different anisotropic indexes and factors. We have
plotted three-dimensional (3D) surfaces and planar contours of the bulk and Young’s moduli of FexB (x = 1, 2, 3) compounds
for some crystallographic planes, (1 0 0), (0 1 0) and (0 0 1), to reveal their elastic anisotropy. On the basis of anisotropic elastic
properties the easy and hard axes of magnetization for the three studied compounds were predicted.
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1. Introduction

In the past decades, the binary Fe–B alloy sys-
tem has been a subject of numerous experimen-
tal and theoretical studies concerning hardness,
melting point, wear resistance, corrosion resis-
tance, and ferromagnetism [1–3]. According to the
Fe–B equilibrium phase diagram, there are two
stable iron borides at ambient temperature: sin-
gle boride layer (Fe2B) or double (FeB and Fe2B)
layers [4]. The metastable phase, Fe3B, appears
during formation of Fe2B. The metastable o-Fe3B
phase has also been obtained in Fe–B glasses by
quenching and annealing [5]. These compounds
can be prepared using numerous equilibrium or
non-equilibrium methods, such as ball milling,
chemical vapor deposition (CVD), physical vapor
deposition (PVD), magnetic sputtering and thermal
chemical reactions. Fe2B can also be prepared as a
bulk single crystal [6]. FeB was prepared in a form

∗E-mail: ghahmed2012@gmail.com

of nanoparticles by chemical reduction method [7]
in order to improve the cycle stability of PuNi3-
type hydrogen storage electrodes [8, 9]. The prop-
erties depending on process time and temperature,
such as structure parameters, hardness, Young’s
modulus and fracture toughness of iron boride lay-
ers have been investigated experimentally [10]. The
electronic structure, stability and elastic constants
of the three FexB compounds were calculated in
the literature [11] using DFT. It was indicated that
pressure affects the structure, mechanical and mag-
netic properties of iron borides, and spin-polarized
calculations were important to obtain the cor-
rect ground state properties of FexB compounds.
We tried to demonstrate that the structure proper-
ties and magnetic moment change strongly with
pressure.

In this work, we performed the first principles
calculations of anisotropic elastic properties for the
three structures FexB (x = 1, 2, 3) at 0 GPa pressure
and at a critical pressure when a ferromagnetic ma-
terial undergoes transition to a nonmagnetic state

http://www.materialsscience.pwr.wroc.pl/
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(NM). Anisotropy index A and directional depen-
dences of bulk and Young’s moduli were investi-
gated. From the anisotropic elastic properties, the
easy and hard axes of magnetization of the three
compounds were predicted, which revealed that for
bcc Fe the highest density of atoms is in the 〈1 1 1〉
direction, and consequently 〈1 1 1〉 is the hard
magnetization axis. In contrast, the atom density is
the lowest in 〈1 0 0〉 direction, and consequently
〈1 0 0〉 is the easy magnetization axis. Certainly,
since bcc iron is a cubic crystal, all six cube edge
orientations 〈1 0 0〉, 〈0 1 0〉, 〈0 0 1〉, 〈1̄ 0 0〉, 〈0 1̄ 0〉
and 〈0 0 1̄〉 are in fact equivalent easy axes [12].

We hope that our study will provide a useful
guidance for future works on the Fe–B compounds.

Finally, we concluded that spin-polarization
and pressure are of significant importance in de-
termining the anisotropic elastic properties of iron
borides.

2. Structure aspects and calcula-
tion methods

FeB and Fe3B belong to an orthorhombic space
group Pnma (Fig. 1) [13–16]. Both structures con-
tain four formula units per cell. In Fe3B, the iso-
type of Fe3C, iron atoms are distributed over two
distinct lattice sites: the general Fe sites (Wyck-
off position 8d) and the special Fe sites (Wyckoff
position 4c). In contrast, Fe2B (Fig. 1) belongs to
the body-centered tetragonal Bravais lattice with
I4/mcm space group where the unit cell contains
four equivalent Fe atoms in the positions of point
group mm and two equivalent B atoms in the posi-
tions of point group 42 [11]. The B atoms in Fe2B
are located between two layers of Fe atoms in a dis-
torted, closely packed arrangement.

Total energy calculations were performed
within the density functional theory (DFT) [17].
CASTEP code was used in this study. The last uses
the plane wave in reciprocal space [18]. The ul-
trasoft Vanderbilt pseudopotentials were employed
to represent the electrostatic interactions between
valence electrons and ionic cores [19]. They were
used with the following valence electronic con-
figurations Fe: 3d64s2 and B: 2s22p1. Generalized

gradient approximation PBE-GGA was used for
exchange-correlation energy calculations [20]. The
kinetic energy cut-off value was selected as 500 eV,
which was sufficient to obtain reliable results.

Total energies were evaluated in the first
irreducible Brillouin zone with the following
Monkhorst-pack grids [21]: (6 × 10 × 8) for FeB,
(10 × 10 × 10) for Fe2B and (10 × 12 × 8) for Fe3B.
It is known that the ground states of several FexB
compounds are ferromagnetic [22].

Structural and elastic properties were calculated
for both FM and NM states in the three com-
pounds. The convergence criteria of total energy
and structure optimization were set to fine qual-
ity with the energy tolerance of 10−6 eV/atom.
BFGS (Broydene-Fletchere-Goldarbe-Shanno) op-
timization method was used to obtain the equi-
librium crystal structures of FexB with maximum
atom displacement and force set to 0.002 Å and
0.001 eV/Å.

The cohesive energy (Ecoh) of a material,
(which is a useful fundamental property), is a mea-
sure of the relative binding forces. The stability of
our compounds was evaluated by calculating two
energy parameters, cohesive energy Ecoh and for-
mation energy Ef defined as:

Ecoh(FexB) =
Etotal(FexB,Cell)− xnEiso(Fe)−nEiso(B)

n
(1)

E f (FexB) = Ecoh(FexB)− xEcoh(Fe)−Ecoh(B) (2)

where Ecoh (FexB) is the cohesive energy of FexB
per unit formula; Ef (FexB) is its formation energy;
Ecoh (Fe) is the cohesive energy of iron element per
atom; Etotal (FexB, Cell) is the total calculated en-
ergy of FexB per conventional unit cell; Eiso(Fe) is
the total energy of an isolated Fe atom and finally
n refers to the number of unit formula FexB in the
conventional cell. The calculation method for Ecoh
(FexB) can also be used to evaluate the cohesive
energy of pure elements B and Fe. Equation 1 and
equation 2 require negative values of Ecoh (FexB)
and Ef (FexB) to refer to a thermodynamically
stable structure. The crystal structures of FexB
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studied in this paper were built based on experi-
mental results.

3. Results and discussion
3.1. Structural properties and stability

The calculated lattice parameters, unit cell vol-
ume, bulk modulus, cohesive energy and the for-
mation energy for FexB along with the avail-
able experimental and previous theoretical data for
comparison have been discussed by Gueddouh et
al. [11]. The results show that the calculated struc-
ture parameters are in good agreement with the ex-
perimental values. The calculated values of cohe-
sive energies of FeB, Fe2B and Fe3B indicate that
all of the FexB compounds are stable. Furthermore,
the cohesive energies decrease from FeB to Fe3B,
which is mainly caused by the increase in the vol-
ume concentration of Fe atoms.

3.2. Pressure effects

In order to induce a significant change in a
structure, high pressure is usually needed to study
the material. By increasing the pressure, a trans-
fer from magnetic to nonmagnetic state occurs,
which causes an extinction of the magnetic mo-
ment; the critical (transition) pressure was esti-
mated as 77 GPa, 85 GPa and 55 GPa for FeB,
Fe2B and Fe3B, respectively, as shown in Fig. 2.
Usually, the critical pressure at which a ferromag-
netic material undergoes transition to a NM state
is defined as Pc = −∆E/∆V where ∆E is the dif-
ference between NM and spin-polarized (SP) equi-
librium total energy by unit cell and ∆V is the re-
spective difference between NM and SP equilib-
rium volumes. This definition of critical pressure
(Pc) was first employed by Mohn et al. [23, 24]
in their work on magneto-elastic anomalies in Fe–
Ni Invar alloys [23] and NiFe3N and PdFe3N ni-
trides [24]. This definition is also used in the study
on magnetic transition of intermetallic bilayers and
substituted iron nitrides [25].

The calculated percentage change of volume
at 0 GPa and at transition pressure for our three
compounds [11] showed a volume compression of
15 %, 20 % and 19 % for FeB, Fe2B and Fe3B,

respectively, at the applied pressure, which resulted
in an increase in the bulk modulus of our com-
pounds by 47.7 %, 62 % and 61.8 %.

The formation energy Ef was calculated to
check the probability of thermodynamic existence
of FexB under pressure. All formation energies are
negative indicating that all the structures in the two
pressure conditions are thermodynamically stable.
The formation energies of FexB in magnetic state
are less than those of FexB in NM state by 4.7 %,
3.9 %, 7.1 %, implying that FexB(FM) has better
thermodynamic stability.

The calculated magnetic moments of our com-
pounds at 0 GPa are in good agreement with
theoretical and experimental values [26] and are
2.003 µB, 1.83 µB and 1.12 µB for Fe3B, Fe2B and
FeB, respectively, which results from the differ-
ence between the density of spin-up and spin-down
electrons and corresponds to the saturated magnetic
moment, µsat, at T = 0, as shown Fig. 3. It appears
that Fe3B has the highest magnetic moment which
leads to a shift in the Slater-Pauling curve [27].
These moments are smaller than the magnetic mo-
ments of pure bcc ferromagnetic iron which be-
haves as a weak ferromagnetic with a magnetic
moment of 2.217 µB [28]. Indeed, when B atoms
are inserted in Fe crystal, the volume concentra-
tion of metallic Fe–Fe bonds decreases and they
are replaced by the newly formed covalent Fe–B
and B–B.

The magnitude of the magnetic moment is
strongly related to the volume. Thus, the values
of equilibrium volume obtained in the magnetic
state are larger than in NM state. A possible ori-
gin of this dependence is a magneto-volume ef-
fect [29]. Because the Pauli Exclusion Principle op-
erates for parallel spins, the electron kinetic energy
in the spin-polarized state is higher, and volume ex-
pansion relaxes the kinetic energy. Consequently,
the magnetic (high-spin) state has a larger volume
than the non-magnetic state [30]. However, the bulk
modulus decreases from FeB to Fe3B. Also due to
the pressure effect, the bulk modulus has increased
from 0 % to 47.7 % for FeB, from 0 % to 62 %
for Fe2B and from 0 % to 61.8 % for Fe3B. In the
NM state the bulk modulus B is in general larger
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Fig. 1. FexB structures: (a) FeB, (b) Fe2B and (c) Fe3B.

than in the magnetic state. The low value of bulk
modulus in the magnetic state points out to a
larger compressibility. This means that the system
is “softer” when it is magnetically ordered and
“harder” when it is not. The spin-polarization cal-
culations are important to obtain the correct ground
state properties of FexB ferromagnetic compounds.
The calculated magnetic moment as a function of
pressure is presented in Fig. 2. Total DOS at the
Fermi level for FexB increases under pressure by
21 %, 50 % and 32.5 % for FeB, Fe2B and Fe3B, re-
spectively (Fig. 3). This enhanced N (Ef) is derived
entirely from the Fe 3d states, with negligible con-
tribution from the B 2p states. Following the above
arguments we may predict that the appearance of
superconductivity in FexB under pressure is simi-
lar to the case of iron that undergoes a transition to
superconducting phase above 30 GPa when it loses
its magnetic moment [31]. It is easy to observe that
the magnetic moment decreases with increasing
pressure.

4. Elastic properties under pres-
sure

It is well known that elastic properties reflect
interatomic interactions and are related to some
fundamental physical properties, such as ther-
mal expansion, phonon spectra and equations of
state [32]. The elastic constants of single crystalline
FexB compounds are presented in Table 1. Gen-
erally, the elastic constants C11, C22 and C33 are

Fig. 2. Dependence of magnetic moment vs. pressure
for FexB [11].

very high, both at zero and critical pressure, which
indicates high resistance to the axial compression
in these directions. However, the magnitude orders
in three axes are different. For orthorhombic FeB
and Fe3B, the order is C33 > C22 > C11. For tetrag-
onal Fe2B the order is C11 > C33. Since the tetrago-
nal structure can be regarded as a special case of or-
thorhombic structure with an additional condition
of a = b, the mechanical stability criteria can be
represented in a uniform manner for orthorhombic
structure [33]:

Cii > 0 (i = 1;2;3;4;5;6) (3)
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Fig. 3. The calculated total DOS with spin polarization
and at critical pressure of FexB.

C11 +C22 +C33 +2(C12 +C13 +C23)> 0,

(C11 +C22−2C12)> 0;(C11 +C33−2C13)> 0
(4)

(C22 +C33−2C23)> 0 (5)

On the other hand, the mechanical stability
leads to restrictions on the elastic coefficients un-
der isotropic pressure as follows:

C̃ii =Cii−P > 0, (i = 1,2,3,4,5,6) (6)

(C11 +C22−2C12−4P)> 0 (7)

For tetragonal structure the elastic constants un-
der pressure P are related to those under zero pres-
sure, as follows [34]:

C̃i j =Ci j(i = 1,2,3; j = 4,5,6) (8)

C̃ii =Cii−P(i = 1,2,3,4,5,6) (9)

˜C12 =C12 +P (10)

˜C13 =C13 +P,
˜C23 =C23 +P,
˜C45 =C45,

˜C46 =C46 (11)

˜C56 =C56 (12)

The stability criteria of material under pressure
are similar to those under zero pressure, just replac-
ing Cij with C̃ij (i = j = 1, 2, 3, 4, 5, 6) [35]. As for
Fe2B in the tetragonal structure, there are six inde-
pendent elastic constants, C11, C12, C13, C33, C44,
C66, because C22 = C11, C23 = C13, C44 = C55 as
a result of the crystal symmetry. The single crystal
elastic coefficients (Cij) satisfy the stability crite-
ria, which leads to the following restrictions on the
elastic coefficients under isotropic pressure:

C̃ii > 0, (i = 1,2,3, . . .6), ˜C11 + ˜C33−2 ˜C13 > 0
(13)

2 ˜C11 + ˜C33 +2 ˜C12 +4 ˜C13 > 0 (14)

( ˜C11− ˜C12)> 0 (15)
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Cij are the elements of elastic coefficient matrix.
The arithmetic average of the Voigt and Reuss
bounds is known as the Voigt-Reuss-Hill (VRH)
average, which is regarded as the best estimate for
the theoretical value of polycrystalline elastic mod-
ulus [11]:

GH = (GR +GV )/2 (16)

BH = (BRBV )/2 (17)

The Young’s modulus and Poisson ratio can be
computed from the formula [11]:

E = 9BG/(3B+G) (18)

ν = (3B−2G)/(6B+2G) (19)

A larger B/G value (>1.75) for a solid indi-
cates ductile behavior while a smaller B/G value
(<1.75) usually means brittle material [36]. Simi-
larly, Poisson ratio ν> 0.26 relates to ductile com-
pounds usually [36]. At both pressures studied here
0 GPa and the critical pressure, B/G > 1.75 and ν
> 0.26 is larger than 0.26 for FeB and Fe3B (Ta-
ble 3), which indicates that FeB and Fe3B are duc-
tile. The values of B/G and ν for Fe2B are 1.52 and
0.23, respectively, at 0 GPa pressure which means
that Fe2B is brittle. In contrast, at critical pressure
Fe2B is ductile (B/G = 2.48, ν= 0.32).

5. Elastic anisotropy
It is known that elastic anisotropy correlates

with anisotropic plastic deformation and behavior
of microcracks in material. Hence, it is important
to study elastic anisotropy in intermetallics struc-
tures in order to further understand these proper-
ties and improve their mechanical durability. Most
of crystals exhibit elastic anisotropy to some ex-
tent, and several criteria have been developed to de-
scribe it. The elastic anisotropy of a crystal can be
characterized by the universal anisotropic index AU

and by the indexes describing the behavior in shear
and compression (AG and AB). The universal elas-
tic anisotropy index AU and indexes AG and AB for
a crystal with any symmetry may be proposed as
follows [37, 38]:

AU = 5
GV

GR
+

BV

BR
−6 6 0 (20)

AG =
GV −GR

GV +GR
×100 (21)

AB =
BV −BR

BV +BR
×100 (22)

where BV (GV) and BR (GR) are the bulk mod-
ulus (shear modulus) in the Voigt and Reuss ap-
proximations respectively. AU = 0 corresponds
to the isotropy of the crystal. The deviation of
AU from zero defines the extent of single crystal
anisotropy and accounts for both shear and bulk
contribution, unlike all other existing anisotropy
measures. Thus, AU represents a universal mea-
sure to quantify a single crystal elastic anisotropy.
AB = AG = 0 represents the elastic isotropic crys-
tal, while AB = AG = 1 means the maximum elas-
tic anisotropy [39]. From Table 2, it can be seen
that the mechanical anisotropy of FeB is stronger
than in other structures. In Fig. 5, we have outlined
the projections of Young’s modulus in (0 0 1), (0 1
0) and (1 0 0) crystal planes. We can clearly show
that the anisotropy of FeB is stronger than in Fe2B
and Fe3B in the three planes. The results are also
in good agreement with the calculated anisotropic
indexes in Table 2.

The shear anisotropic factors provide a mea-
sure of the degree of anisotropy in atomic bond-
ing in different crystallographic planes. The shear
anisotropic factor for an orthorhombic crystal
can be measured by three factors (Zener ratios)
[40–42]:

1. The shear anisotropic factor for the {1 0 0}
shear planes between 〈0 1 1〉 and 〈0 1 0〉
directions is defined as:

2. The anisotropic factor for the {0 1 0} shear
planes between 〈1 0 1〉 and 〈0 0 1〉 directions
is:

A2 =
4C55

C22 +C33−2C23
(23)

and
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Table 1. The calculated full set of elastic constants of FexB (GPa) [11].

Species
Elastic constants

C11 C22 C33 C12 C13 C23 C44 C55 C66

FeB (0 GPa) 389.82
373.7a

438.36
434.1a

557.07
503.4a

286.85
246a

183.12
184.4a

239.76
209.1a

218.8
207.4a

132.25
117.7a

212.01
193.7a

FeB (77 GPa) 718.5 752.6 993.9 583.2 350.1 492.4 296.4 243.3 354.4

Fe2B 459.7 426.3 165.6 132.3 162.6 173.7
(0 GPa) 413b 389b 154b 132b 148b 157b

Fe2B (85 GPa) 1010.4 839 541.3 488.4 298 288.4

Fe3B (0 GPa) 281.7
263.3a

337.5
302.7a

354
318.4a

126.7
133.5a

165.3
162.8a

182.2
178.6a

130.2
110.2a

118.7
101.2a

175.6
158.7a

Fe3B (55 GPa) 694 826 778.5 485.5 444.75 403.6 193.1 195.8 307.7
a[46], b[47]
Table 2. Polycrystalline elastic properties and anisotropy factors of Fe-B system.

Species BV BR GV GR A1 A2 A3 Au AG AB

FeB (0 GPa) 308.37
287.8a

302.80
284.6a

155.66
148.5a

125.47
130.9a

1.57
1.63a

1.04
0.91a

3.38
2.45a

1.22
0.68a

10.74
5.85a

0.91
0.62a

FeB (77 GPa) 621.69 612.49 260.17 190.38 1.17 1.28 4.65 1.85 15.49 0.75

Fe2B (0 GPa) 245.11
222.7a

244.07
221.8a

160.82
144.4a

160.21
143.6a

1.18
1.07a

1.18
1.07a

0.26
1.23a

0.02
0.03a

0.19
0.28a

0.21
0.20a

Fe2B (85 GPa) 655.09 646.32 266.31 260.30 1.23 1.23 0.34 0.13 1.14 0.67

Fe3B (0 GPa) 213.51
203.8a

207.55
199.5a

118.15
101.3a

107.50
90.6a

1.71
1.72a

1.45
1.53a

1.92
2.12a

0.52
0.61a

4.72
5.58a

1.41
1.07a

Fe3B (55 GPa) 551.81 550.01 203.62 186.77 1.33 0.98 2.24 0.45 4.31 0.16
a[46]

Table 3. The calculated bulk, Young’s (E) and shear modulus (G) of FexB (under 0 and critical pressure, in GPa),
Poisson’s ratio (v) and B/G ratio along with other available values.

Species B E G v B/G
FeB (0 GPa) 305.6

286.6a
365.7
360.5a

140.6
139.7a

0.30
0.29a

2.174
2.05a

FeB (77 GPa) 617.1 567.5 225.3 0.34 2.76

Fe2B (0 GPa) 244.6
222.3a

395.2
355a

160.5
144a

0.23
0.23a

1.52
1.54a

Fe2B (85 GPa) 651 695.4 263 0.32 2.48

Fe3B (0 GPa) 210
201.6a

285.3
248.5a

112
96a

0.27
0.3a

1.875
2.1a

Fe3B (55 GPa) 551 524 195.2 0.34 2.82
a[46]
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3. The anisotropic factor for the {0 0 1} shear
planes between 〈1 1 0〉 and 〈0 1 0〉 directions
is:

A3 =
4C66

C11 +C22−2C12
(24)

The calculated values of anisotropic factors for
iron borides are shown in Table 2. For an isotropic
crystal, all three factors must be one, while any
value smaller or greater than one is a measure of
degree of elastic anisotropy possessed by the crys-
tal. Our results thus indicate a very large shear
anisotropy on the (1 0 0) and (0 0 1) planes of
FeB and Fe3B due to the anomalously high C44 and
C66 relatively to C55. Thus, for Fe2B the large shear
anisotropy is on the (0 0 1) plane due to high C44
compared to C66.

Taking also into account the strength character-
istics of the studied compounds, which have low
values of G/B ratio (0.46 for FeB, 0.66 for Fe2B
and 0.53 for Fe3B), the ductility of the iron borides
is a very important advantage and therefore they are
intrinsically brittle.

The spin polarization and pressure increase the
anisotropic factors A1 by 25 % and 22 % for FeB
and Fe3B, respectively, and A2 by 32 % for Fe3B,
but reduce the anisotropic factors A3 by 37 % and
17 % for FeB and Fe3B, and A2 by 23 % for FeB,
which means that the direction of easy axis of mag-
netization is 〈1 0 0〉 for FeB (C11<C22<C33) and
the hard axes directions are 〈1 0 0〉 and 〈0 1 0〉
(Fig. 6a and Fig. 6d). For Fe3B the easy axis direc-
tion is 〈1 0 0〉 (C11<C22<C33) and the hard axes
directions are 〈0 1 0〉, 〈0 0 1〉 (Fig. 6c and Fig. 6f).

The anisotropy is only dependent on crystal
symmetry. The structure of the crystal has been
changed under spin polarized moment which var-
ied a, b and c. Therefore, the elastic anisotropy
is different because of the variations of the elastic
constants with magnetic moment.

The elastic anisotropy of a tetragonal crystal
can be measured by two shear anisotropy factors
(Zener ratios) [43]:

A1 =
2C66

C11−C12
= A2 (25)

A3 =
C44

C11 +C33−2C13
(26)

(A↑u ∼= 0)

Fe2B has very low anisotropy.
The spin polarization has reduced the

anisotropic factors A1 and A3 by 4 % and
30 % for Fe2B, which means that the direction of
easy axis of magnetization is 〈0 0 1〉 (C33<C11)
and the directions of hard axes of magnetizations
are 〈1 0 0〉, 〈0 1 0〉 ((C11 = C22) >C33).

The simplest way to illustrate the anisotropy
of mechanical moduli is to plot them in the three-
dimensional space as a function of direction. Here,
we have plotted the bulk modulus (B) and Young’s
modulus (E) in different directions using spherical
coordinates. For orthorhombic and tetragonal crys-
tal class, the directional dependence of bulk modu-
lus (B) or Young’s modulus (E) can be written as:

For an orthorhombic system [44]:

1
B
=(S11 +S12 +S13)l2

1 +(S12 +S22 +S23)l2
2

+(S13 +S23 +S33)l2
3 (27)

1
E

=(S11 +S22 +S33)l4
1 +(2S12 +S66)l2

1 l2
2

+(2S23 +S44)l3
2 l2

3 +(2S13 +S55)l2
1 l2

3 (28)

For a tetragonal system [44, 45]:

1
E

=S11(l4
1 + l4

1)+(2S13 +S44)(l2
1 l2

3 + l2
2 l2

3)

+S33l4
3 +(2S12 +S66)l2

1 l2
2 (29)

1
B
=(S11 +S12 +S13)(l2

1 l2
2)− (2S13−S33)l2

3 (30)

In the equations above, Sij represents the com-
pliance matrix and l1, l2 and l3 are the direc-
tion cosines, which are given as l1 = sinθ cosϕ,
l2 = sinθ sinϕ and l3 = cosϕ in the spherical co-
ordinates. The surface constructions of bulk and
Young’s modulus of FeB, Fe2B and Fe3B com-
pounds are shown in Fig. 4 and Fig. 6. The surface
constructions of the bulk and Young’s moduli are
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Fig. 4. Illustration of directional dependence of Young’s modulus of Fe-B compounds: the left panel at 0 GPa
pressure (a) FeB, (b) Fe2B and (c) Fe3B, and the right panel at critical pressure (d) FeB 77 GPa, (e) Fe2B
85 GPa and (f) Fe3B 55 GPa.
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Fig. 5. Projections of Young modulus for FexB compounds.
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Fig. 6. Illustration of directional dependence of bulk modulus of Fe-B compounds: Left panel at 0 GPa pressure
(a) FeB, (b) Fe2B and (c) Fe3B, and right panel at critical pressure (d) FeB 77 GPa, (e) Fe2B 85 GPa and
(f) Fe3B 55 GPa.
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Fig. 7. Projections of bulk modulus for FexB compounds.
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similar to each other. The anisotropy of Young’s
modulus shows strong directional dependence in
three crystals planes, (0 0 1), (1 0 0) and (0 1 0),
for FeB structure. The projections of the mechan-
ical moduli are plotted in Fig. 5 and Fig. 7. The
results indicate that for Fe2B the contours of bulk
modulus at (0 0 1) crystal plane is spherical, im-
plying that the bulk modulus of this phase is nearly
isotropic. In the same way, the Young’s modulus
shows an isotropy at (0 0 1), (1 0 0) and (0 1 0)
planes.

6. Conclusions

We have investigated the anisotropic elastic
properties of Fe–B compounds with the help of
first-principles calculations at two pressures: 0 GPa
and at a critical pressure for each compound.
The calculated elastic constants of all compounds
clearly indicate that they are mechanically stable.
Bulk modulus, shear modulus, Young’s modulus
and Poisson ratio have also been calculated and dis-
cussed. Disappearance of ferromagnetic order de-
creases the volume of the unit cell and increases the
bulk modulus and also makes the solid harder. The
calculated values of B/G and ν indicate that Fe2B is
ductile while FeB and Fe3B are brittle. The degree
of the elastic anisotropy for the considered Fe–B
compounds follows the order FeB > Fe3B > Fe2B.
We have predicted the easy and hard axes of mag-
netization for three compounds.
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ABSTRACT
In this paper, spin polarization and pressure effects on the structure,
magnetic and anisotropic elastic properties of the 3d transition-metal
mono-borides TMB (TM = Mn, Fe) have been investigated by using
generalized gradient approximation within the framework of density
functional theory. It seems that manganese in MnB carries a higher
magnetic moment (1.83 mB) than iron in FeB (1.12 mB). Applied pressure
ranges from 0 to 150 GPa, these ferromagnetic compounds show at a
certain pressure (143 GPa for MnB and 77 GPa for FeB) a pronounced
abrupt collapse of the magnetic moment (first-order quantum phase
transitions). Furthermore, elastic properties, including bulk, shear and
Young moduli as well as the Poisson ratio are obtained by Voigt–
Reuss–Hill approximation. By the elastic stability criteria, it is predicted
that MnB and FeB are stable up to the selected pressures. In both cases,
mechanical anisotropies are discussed by calculating different anisotropic
indexes and factors. The three-dimensional surfaces and planar contours
of Young, and bulk moduli of compounds are plotted, at several
crystallographic planes ((100), (010) and (001)) to reveal their elastic
anisotropy.

KEYWORDS
Transition-metal borides;
DFT; magnetic moment
collapse; pressure;
anisotropic elastic

1. Introduction

Boride layers offer excellent surface properties in terms of high hardness, increase the wear and
corrosion resistance and stability of mechanical properties at high [1–3] temperature. To
understand borides as protective coatings on steel surfaces, especially mechanical properties needed
the knowledge of their elastic constants, polycrystalline elastic moduli, and anisotropic elastic prop-
erties. Furthermore, the presence and nature of unconventional magnetic phases of mono-borides
may be clarified by tuning them systematically with the help of an external parameter such as
pressure.

Studied materials under pressure are able to provide much information on their behavior. For
example, magnetic collapse, either being transitioned from ferromagnetic state (FM) to non-mag-
netic state (NM), or from a high-spin state to low spin state, is a widely observed phenomenon.
Experiments, such as hyperfine field measurements [4], X-ray magnetic dichroism [5], nuclear for-
ward scattering [6], may have a direct or indirect access to this phenomenon. Theoretical calcula-
tions based on density functional theory (DFT) are generally adopted to explain and predict it [7]. It
was observed that the magnetic moment of MnB and FeB slowly decreases by applying pressure and
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abruptly drops to zero at a critical pressure (143 GPa for MnB and 77 GPa for FeB) indicating the
crystal transition from the ferromagnetic to non-magnetic state (first-order quantum phase transi-
tions (QPT)). This is accompanied by an abrupt change in the lattice parameters, volume and elastic
constants. This character of magnetic collapse is perhaps the earliest prediction of what may be
called a ‘novel’ phase of magnetic metals near a QPT.

The focus of the present paper is the study of the structure, magnetic and anisotropic elastic
properties of MnB and FeB compounds under pressure.

The specific feature of this investigation is the abrupt collapses of magnetic moment at a critical
pressure, which resulted in the transition from ferromagnetic (FM) to non-magnetic states (NM). In
these two states (FM and NM), structural and mechanical anisotropies are discussed by calculating
different anisotropic indexes and factors. Thus, I have plotted the three-dimensional (3D) surfaces
and planar contours of Young and bulk moduli of TMB (TM = Mn, Fe) compounds at several crys-
tallographic planes, ((100), (010) and (001)) to reveal their elastic anisotropy.

I attempt to prove that all previous properties change strongly with increasing pressure.
I hope my study could provide a useful guidance for future works on the mono-borides TMB

compounds.

2. Structural aspects and calculation methods

Both MnB and FeB crystallize with four formula units in the space group Pnma in the orthorhombic
structure FeB-type. One characteristic of these structures is the presence of strong atomic interaction
between non-metallic atoms in continuous zig-zag like chains [8] (Figure 1). Total energy calcula-
tions were performed within DFT [9] using CASTEP code [10] for the whole study, which uses the
plane wave expansion method in reciprocal space [11]. The ultra-soft Vanderbilt pseudo-potentials
were employed to represent the electrostatic interactions between valence electrons and ionic cores
[12] which were used with the following valence electronic configuration’s Mn: 3d54s2, Fe: 3d64s2

and B: 2s22p1. Generalized gradient approximation PBE-GGA was used for exchange–correlation
energy calculations [13]. The kinetic energy cut-off value was selected as 500 eV, which was suffi-
cient to obtain the reliable results.

Total energies were evaluated in the first irreducible Brillouin zone with the following
MonkHorst–Pack grids [14]: (8 £ 10 £ 12) for all compounds. It is known that the ground states of
MnB and FeB compounds are ferromagnetic [15–17].

Structure and anisotropic elastic properties are calculated for the both cases FM and NM. The
convergence criteria of total energy and structure optimization were set to find quality with the
energy tolerance of 10¡6 eV/atom. BFGS (Broydene–Fletchere–Goldarbe–Shanno) optimization
method was performed to get the equilibrium crystal structures of TMB with maximum atom dis-
placement and force set to 0.002 A

�
and 10¡4 eV/A

�
.

The cohesive energy (Ecoh) of a material (a useful fundamental property) is a measure of the rela-
tive binding forces. The stability of these compounds can be evaluated by calculating two energy
parameters, cohesive energy Ecoh and formation energy Ef defined as follows:

Ecoh TMBð Þ ¼ Etotal TMB;Cellð Þ � nEiso TMð Þ � nEiso Bð Þ
n

(1)

Ef ðTMBÞ ¼ EcohðTMBÞ � EcohðTMÞ � EcohðBÞ (2)

where Ecoh (TMB) is the cohesive energy of TMB per unit formula; Ef (TMB) is its formation energy;
Ecoh (TM) is the cohesive energy of the transition-metal element per atom; Etotal (TMB, Cell) is the
total calculated energy of TMB per conventional unit cell; Eiso (TM) is the total energy of an isolated
TM atom and finally n refers to the number of unit formula TMB in the conventional cell. The
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calculation method for Ecoh (TMB) can also be used to evaluate the cohesive energy of pure elements
B and TM. Equations (1) and (2) require negative values of Ecoh (TMB) and Ef (TMB) to refer to a
thermodynamically stable structure. The crystal structures of TMB studied in this paper are built
based on the experimental results.

Figure 1. Crystal structure of TMB projecting onto the (100), (010) and (001) planes, the metal transition; boron atoms environ-
ment and for a section perpendicular to the plane (010) showing the zig-zag B–B chain.

PHASE TRANSITIONS 3



3. Results and discussion

3.1. Structural properties and stability

The calculated lattice parameters, unit cell volumes, bulk modulus, cohesive and the formation
energy for pure transition-metals TM, boron and TMB, with available literature data (experimental
and theoretical), are shown in Tables 1 and 2. These results indicate that the calculated structure
parameters are in good agreement with the experimental values. At equilibrium spin polarization,
calculations show that MnB and FeB compounds carry magnetic moment with the values of 1.83
and 1.12 mB, respectively. The calculated value of cohesive energy is ¡17.01 eV for MnB and
¡13.153 eV per atom for FeB. Furthermore, the formation energies are ¡1.35 and ¡1.207 eV for
MnB and FeB, respectively, which indicated that both of these TMB compounds are stable.

3.2. Effect of pressure and magnetic moment on the structural properties

Usually, in order to induce some significant change in materials, high pressures are needed in the
study of materials. By increasing the pressure, we can see (Figure 2) that the magnetic moment
decreases as a linear regression and suddenly at a critical pressure an abrupt collapse of magnetic
moment (first-order QPT) occur; this critical pressure is estimated by 143 GPa for MnB and 77 GPa
for FeB. This definition of critical pressure (Pc) was first employed by Mohn et al. in their work.on
magneto-elastic anomalies in Fe–Ni invar alloys [22] and NiFe3N and PdFe3N nitrides [23]. This
definition is also used for the study of magnetic transition of intermetallic bilayers and substituted
iron nitrides [24]. It is obvious that the volume (energy) decreases (increases) with the increase of
pressure (Figure 3). At a critical pressure for both MnB and FeB compounds (Figure 3), there is a
discontinuous change in slope for the structure parameters. These abrupt changes are linked with
the magnetic state transition (FM to NM); these changes are even so-called isostructural phase tran-
sition [25]. In Figure 3, all the sudden changes of parameters are due to the pronounced abrupt col-
lapse of the magnetic moment (first-order QPT) from FM to NM state, which depends on the
magneto-volume (magneto-elastic) effect [26].

3.3. Density of states under pressure

The calculated magnetic moments of these compounds, at 0 GPa, are in good agreement with theo-
retical and experimental values. The magnetic moments values 1.83 and 1.12 mB for MnB and FeB
comes from the difference between the total density of spin-up and spin-down electrons d of Mn
and Fe, as shown in Figure 4. In the figure, the density of d electrons in the majority and minority
bands are looking like the total DOS of MnB and FeB. As the Fermi energy is pinned above the pure
d states, both compounds behave as strong ferromagnets. Indeed, when B atoms are inserted in TM

Table 1. The calculated ground state properties of pure elements, Mn, Fe and B. Experimen-
tal and theoretical (eV/f.u.), cohesive energy Ecoh (eV/f.u.) and volume V (Ǻ3).

Parameters Mn Fe B

Eiso ¡644.390 ¡859.821
(¡855.913)a

¡70.501
(¡70.492)a

Etotal ¡653.60 ¡865.315
(865.335)a

¡76.953
(¡76.875)a

Ecoh ¡9.21 ¡5.494
(¡4.28)exp

(¡9.422)a

¡6.452
(¡6.383)a

8.652
Volume 11.09

(11.10)b
11.775

(11.82)exp
(8.763)a

expRef. [18].
aRef. [16].
bRef. [19].
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crystals, the volume concentration of metallic TM–TM bonds decrease and are replaced by the
newly formed covalent TM–B and B–B bonds.

The magnitude of the magnetic moment is strongly related to the volume. Thus, the values of the
equilibrium volume obtained in the magnetic case are larger than in NM case. A possible origin of
this dependence is the magneto-volume effect [26]. Because the Pauli Exclusion Principle operates
in parallel spins, the electron kinetic energy of the spin-polarized state is higher, and volume expan-
sion relaxes the kinetic energy. Consequently, the magnetic (high-spin) state has a larger volume
than the non-magnetic state [8]. The bulk modulus was increased from 0% to 67.8% for MnB and
from 0% to 50.5% for FeB. In the NM state, the bulk modulus B is systematically larger than in the
FM state. The low value of bulk modulus in the magnetic case points to a larger compressibility.
This means that the system is ‘softer’ when it is magnetically ordered and ‘harder’ when it is not.
Total DOS at the Fermi level for both MnB and FeB increases under pressure by 48.8% and 21%,
respectively (Figure 4). This enhanced N (Ef) is derived entirely from the TM 3d states, with a negli-
gible contribution from the B 2p states.

Table 2. The calculated ground state properties of TMB. Experimental and theoretical values are listed
in parentheses. Total cell energy Etotal (eV/f.u.), cell parameters (a, b, c, in Ǻ), atomic positions of TM
and B atoms (fractional coordinates), volume V (Ǻ3), Bulk modulus (GPa), magnetic moment (mB/
atom), cohesive energy Ecoh (eV/f.u.) and formation energy Ef (eV/f.u).

Parameters MnB FeB

Etotal ¡2927.6114 ¡3773.900
(a, b, c) 5.493, 2.992, 4.147

(5.459, 2.984, 4.126)a
5.317, 2.950, 3.964
(5.495, 2.946, 4.053)b

TM (x,y,z) 0.175 0.25 0.123 0.178 0.25 0.122
B (x,y,z) 0.033 0.25 0.614 0.0348 0.25 0.620
V 68.153 62.176
B 261.90 305.58, (286.6)a

mB/atom 1.93 1,126
(1.12)exp

Ecoh ¡17.01 ¡13.153
Ef ¡1.35 ¡1.207
expRef. [20]
aRef. [21].
bRef. [16].

Figure 2. Dependance of magnetic moment vs. pressure.
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4. Elastic properties under pressure

It is well known that elastic properties can reflect interatomic interactions and are related to some
fundamental physical properties, such as thermal expansion, phonon spectra and equations of state
[27,28]. The elastic constants of single orthorhombic crystalline TMB compounds are presented in
Table 3. Generally, the elastic constants C11, C22 and C33 are very high, both at zero and critical pres-
sure, which indicates the high resistance to the axial compression in these directions. Moreover, it is
shown in Table 3 that the elastic constants C11, C22 and C33 are larger than C44, C55 and C66, indicat-
ing that TMB are mechanically anisotropic and the shear deformation is easier to take place than
other deformation forms. It is well known that the elastic constant C44 is the most significant param-
eter which indirectly determining the indentation hardness of a solid [29]. A large C44 implies a
strong resistance to monoclinic shear in the (100) plane. The highest C44 for FeB than those for the
other compounds means that its ability to resist shear distortion in the (100) plane is the strongest.

Figure 3. Pressure dependence of total energy for (a) MnB; (b) FeB, volume for (c) MnB; (d) FeB and lattice parameters for (e) MnB;
(f) FeB. Dashed line represents the critical pressures.

6 A. GUEDDOUH



The results in Table 3 indicate that TMB have relatively strong anisotropic elastic constants resulting
in the directional dependence of the moduli. Notably, the values of C11 (C66) are relatively smaller
than that of C33 (C44) at 0 GPa and under pressure, implying that the intra-layer chemical bonds are
weaker than those between the layers. Moreover, as shown in Figure 5, there are two changes of elas-
tic constants: one appears between 0 GPa and just before a critical pressure, with linear increase with
the increase of pressure, and the other one is the jump near a critical pressure; these are C11 (C66),
C22 (C55) and C33 (C44) for MnB and somewhat little bit for FeB. The increase (decrease) of the elas-
tic constants for both compounds is linked directly to abrupt changes of lattice parameters a, b
and c.

The calculated percentage change in lattice parameters a, b and c between FM and NM cases are
7.1%, 12.96% and 8.4% for MnB, while for FeB are 9.6%, 0.3% and 6.8%, which mean that the easy
axis of magnetization for MnB is the direction h010i, and the hard axes are the direction h100i,

Figure 4. The calculated total and partial DOS at 0 GPa for (a) MnB; (b) FeB and at a critical pressure for (c) MnB; (d) FeB. Dashed
line represents the Fermi level.

Table 3. The calculated full set elastic constants of TMB (under 0 and critical pressure, in GPa) along with other available values.

Elastic constants

Species C11 C22 C33 C12 C13 C23 C44 C55 C66
MnB (0 GPa) 392.05

414.4a
510.74
527.7a

497.17
504.8a

181.33
171.1a

154.92
147.5a

148.61
127.7a

212.11
215.8a

167.69
218.4a

211.28
175.8a

MnB (143 GPa) 1035 905 1300 745.2 667 560.76 442 203 561.21
FeB (0 GPa) 389.82

373.7b
438.36
434.1b

557.07
503.4b

286.85
246b

183.12
184.4b

239.76
209.1b

218.8
207.4b

132.25
117.7b

212.01
193.7b

FeB (77 GPa) 718.5 752.6 993.9 583.2 350.1 492.4 296.4 243.3 354.4
aRef. [21].
bRef. [30].
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h001i, which is agreed with J. Park et al. [31]. However, the easy axis of magnetization for FeB is the
direction h100i, and the hard axes are the direction h010i, h001i, by what we know that for bcc Fe
the highest density of atoms is in the h111i direction, and thus, h111i is the hard axis. In contrast,
the atom density is lower in h100i directions and therefore h100i is the easy axis. Of course, since
bcc iron is a cubic crystal, all six cube edge orientations h100i, h010i, h001i, h100i, h010i and h001i
are, in fact, equivalent easy axes [32]. The other compression moduli (C12, C13 and C23) are signifi-
cantly different; they correspond to the intra and inter-layer moduli under bi-axial stress conditions.

The mechanical stability criteria can be represented in a uniform manner for orthorhombic
structure [33]:

Cii > 0ði ¼ 1; 2; 3; 4; 5; 6Þ
C11 þ C22 þ C33 þ ðC12 þ C13 þ C23Þ> 0; ðC11 þ C22�2C12Þ> 0; ðC11 þ C33 � C13Þ> 0

ðC22 þ C33�2C23Þ> 0

(3)

Figure 5. Pressure dependence of elastic constants: C11, C22 and C33 for (a) MnB; (b) FeB, C44, C55 and C66 for (c) MnB; (d) FeB and
C12, C13 and C23 for (e) MnB; (f) FeB. Dashed line represents the critical pressures.
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On the other hand, the mechanical stability leads to restrictions on the elastic coefficients under
isotropic pressure as follows:

~Cii ¼ Cii � P> 0; i ¼ 1; 2; 3; 4; 5; 6ð Þ; C11 þ C22 � 2C12 � 4Pð Þ> 0; C11 þ C33 � 2C13 � 4Pð Þ> 0;

C22 þ C33 � 2C23 � 4Pð Þ> 0; C11 þ C22 þ C33 þ 2C12 þ 2C13 þ 2C23 þ 3Pð Þ> 0 (4)

where Cij are the elements of the elastic coefficient matrix.
In order to show the dependence of pressure at 0 GPa (FM) and at a critical pressure (NM), I

have plotted the elastic constants (Figure 6) at the two pressures.
We can see that all elastic constants have an obvious increase at a critical pressure.
The arithmetic average of the Voigt and Reuss bounds is known as the Voigt–Reuss–Hill average,

which is regarded as the best estimate of the theoretical value of the polycrystalline elastic modulus
[34]:

GH ¼ ðGR þ GVÞ 6 2;BH ¼ ðBRBVÞ 6 2 (5)

The Young modulus and Poisson ratio can be computed from the formula [34]:

E ¼ 9BG 6 ð3Bþ GÞ; n ¼ ð3B� 2GÞ 6 ð6Bþ 2GÞ (6)

Poisson’s ratio n; characterizes the stability of the crystal against the shearing strain. For a typical
metal, the value is supposed to be 0.33; for the ionic-covalent crystal, the value is situated between
0.2 and 0.3; the strong covalent crystal has even smaller Poisson’s ratio, which is usually below 0.15
[35]; the calculated Poisson’s ratio (0.23 and 0.32) indicates the mixture bonds in this crystal struc-
ture. It is also noted that the studied Poisson’s ratios of MnB compound are smaller than other
compounds.

A larger B/G value (>1.75) for a solid indicates the ductile behavior while a smaller B/G value
(<1.75) usually means brittle material. Similarly, Poisson ratio n > 0.26 corresponded for ductile
compounds usually [36]. At both pressures, 0 GPa and the critical pressure, FeB is ductile (B/G >

1.75 and n > 0.26), while MnB is brittle (B/G < 1.75 and n < 0.26).

Figure 6. Pressure dependence on the elastic constants.
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5. Elastic anisotropy

It is known that elastic anisotropy correlates with anisotropic plastic deformation and behavior of
micro-cracks in the material. Hence, it is important to study the elastic anisotropy in intermetallic
structures in order to further understand these properties and improve their mechanical durability.
Most of the crystals exhibit elastic anisotropies, to some extent, and several criteria have been devel-
oped to describe it. The elastic anisotropy of a crystal can be characterized by the universal aniso-
tropic index AU and by the indexes describing the behavior in shear and compression (AG and AB).
The universal elastic anisotropy index AU and indexes AG and AB for a crystal with any symmetry
may be proposed as follows [37,38]:

AU ¼ 5
GV

GR
þ BV

BR
� 6� 0 (7)

AG ¼ GV � GR

GV þ GR
100; AB ¼ BV � BR

BV þ BR
100 (8)

where BV (GV) and BR (GR) are the bulk modulus (shear modulus) in terms of the Voigt and the
Reuss approximations, respectively. AU = 0 corresponds to the isotropy of the crystal. The deviation
of AU from zero defines the extent of single crystal anisotropy and accounts for both the shear and
the bulk contributions, unlike all other existing anisotropy measures. Thus, AU represents a univer-
sal measure to quantify the single crystal elastic anisotropy. AB = AG = 0 represents the elastic isotro-
pic, while AB = AG = 1 means the maximum elastic anisotropy [39].

For an isotropic crystal, all three factors must be 1, while any value smaller or greater than 1 is a
measure of the degree of elastic anisotropy possessed by the crystal.

The shear anisotropic factor for an orthorhombic crystal can be measured by three factors (Zener
ratios):

(1) The anisotropic factor for the {1 0 0} shear planes between (011) and (010) directions is
defined as

A1 ¼ 4C44

C11 þ C33 � 2C13
(9)

(2) The anisotropic factor for the {0 1 0} shear planes between (101) and (001) directions is

A2 ¼ 4C55

C22 þ C33 � 2C23
(10)

and

(3) The anisotropic factor for the {0 0 1} shear planes between (110) and (010) directions is

A3 ¼ 4C66

C11 þ C22 � 2C12
(11)

The calculated values of anisotropic factors for mono-borides TMB at 0 GPa and at the critical
pressures are shown in Table 4. By a first principles study the pressure effect, between 0 GPa and a
critical pressure has reduced the anisotropic factors A1 and A3 by 17% and 68.6% for MnB, while
for FeB has reduced anisotropic factors A2 by 18.7% and A3 by 27.3%. For the universal anisotropic
index, AU is augmented when pressure is applied by 89.2% for MnB and 30% for FeB.

The simplest way to illustrate the anisotropy of mechanical moduli is to plot them in the 3D
space as a function of direction.
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For orthorhombic crystal class, the directional dependence of the Young modulus (E) and bulk
modulus (B) can be written as:

For orthorhombic system [40]

1
B
¼ S11 þ S12 þ S13ð Þ l21 þ S12 þ S22 þ S23ð Þl22 þ S13 þ S23 þ S33ð Þl23 (12)

1
E
¼ S11 þ S22 þ S33ð Þ l41 þ 2S12 þ S66ð Þl21 l22 þ 2S23 þ S44ð Þl22 l23 þ 2S13 þ S55ð Þl21l23 (13)

In the above-mentioned equations, Sij represents the compliance matrix and l1, l2 and l3 are the
direction cosines, which are given as l1 = sin u cos w, l2 = sin u sin ’ and l3 = cos ’ in the spherical
coordinates.

From Equations (13) and (14) the 3D surface representations showing the variation of the Young,
and bulk moduli are plotted in Figure 7. The plane projections ((100), (010) and (001) plans) of the
directional dependences of the Young and bulk moduli are given in Figure 8 for comparisons. The
surface constructions of Young moduli and bulk modulus are, respectively similar to each other. It
can be clearly seen that TMB exhibits a pronounced with the non-spherical nature (Figures 7 and
8). Thus, Au = 0.21(Au = 1.95) and Au = 1.22(Au = 1.85) at 0 GPa and at a critical pressure for both
MnB and FeB, respectively (see Table 4). The variation of Young's modulus E in all planes and direc-
tions shows that these compounds possess a minimum of E [100] direction and a maximum of E
[001] direction. Both MnB/FeB exhibit a minimum of E [100] = 304.68/195.45 GPa, a maximum of E
[001] = 422.08/407.06 GPa and for E [010] = 413.30/201.81 GPa. Therefore, the ordering of Young's
modulus as a function of the principal crystal tensile [u v w] for TM-B is E[100] < E[010] < E[001].
Additionally, it is remarkable to note that the variation of bulk modulus with B min along [100]
directions and B max along [010] directions for the compounds MnB and FeB which is consistent
with the predicted elastic constants along different axes (see Table 3).

6. Anisotropy of acoustic velocities

The phase velocities of pure transverse and longitudinal modes of the TM-B compounds can be cal-
culated from the single crystal elastic constants following the procedure of Brugger [41]. The sound
velocities are determined by the symmetry of the crystal and propagation direction. For example,
the pure transverse and longitudinal modes can only be found in [001], [110] and [111] directions
in a cubic crystal and the sound propagating modes in other directions are the quasi-transverse or
quasi-longitudinal waves. In the principal directions, the acoustic velocities for orthorhombic system
can be expressed by

100½ � vl ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C11

�
r

q
; 010½ � vt1 ¼

ffiffiffiffiffiffiffiffiffiffi
C66

�
r

q
; 001½ � vt2 ¼

ffiffiffiffiffiffiffiffiffiffi
C55

�
r

q

010½ � vl ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C22

�
r

q
; 100½ � vt1 ¼

ffiffiffiffiffiffiffiffiffiffi
C66

�
r

q
; 001½ � vt2 ¼

ffiffiffiffiffiffiffiffiffiffi
C44

�
r

q

001½ � vl ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
C33

�
r

q
; 100½ � vt1 ¼

ffiffiffiffiffiffiffiffiffiffi
C55

�
r

q
; 010½ � vt2 ¼

ffiffiffiffiffiffiffiffiffiffi
C44

�
r

q (14)

Table 4. Polycrystalline elastic properties and anisotropic factors of TM-B system (under 0 and critical pressure, in GPa).

Species BV BR GV GR A1 A2 A3 Au AG AB
MnB (0 GPa) 263.3 260.5 179.2 172.5 1.464 0.944 1.565 0.21 1.93 0.53
MnB (143 GPa) 824.8 801.0 327.7 236.6 1.766 0.749 4.993 1.95 16.14 1.47
FeB (0 GPa) 308.3

287.8a
302.8
284.6a

155.6
148.5a

125.5
130.9a

1.57
1.63a

1.04
0.91a

3.38
2.45a

1.22
0.68a

10.74
5.85a

0.91
0.62a

FeB (77 GPa) 621.6 612.5 260.17 190.4 1.17 1.28 4.65 1.85 15.49 0.75
a Ref. [30].
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where r is the density of TMB compounds; vl is the longitudinal sound velocity; vt1 and vt2 refer the
first transverse mode and the second transverse mode, respectively. The calculated densities, sound
velocities and Debye temperatures at 0 GPa and critical pressure for TMB compounds are shown in
Table 6. It is obvious that MnB has large sound velocities, because their density is lesser than FeB.

Figure 7. Illustration of directional dependent Young moduli: (a) MnB; (c) FeB at 0 GPa, and (b) MnB; (d) FeB at a critical pressure.
Bulk moduli: (e) MnB; (g) FeB at 0 GPa, and (f) MnB; (h) FeB at a critical pressure.
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The anisotropic properties of sound velocities indicate the elastic anisotropy in these crystals. For
example, the C11, C22 and C33 determine the longitudinal sound velocities along [100], [010] and
[001] directions, respectively; the C44, C55 and C66 correspond to the transverse modes [42].

Figure 8. The projection of Young moduli at several different crystal planes (a) MnB; (c) FeB at 0 GPa and (b) MnB; (d) FeB at a crit-
ical pressure. Bulk moduli at 0 GPa for (e) MnB; (g) FeB and at a critical pressure for (f) MnB; (h) FeB.
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As a fundamental parameter for the materials’ thermodynamic properties, Debye temperature
QD is related to specific heat, thermal expansion and elastic constants. The Debye temperature can
be estimated from the average sound velocity by the following equation based on elastic constant
evaluations [43]:

QD ¼ h
k
ð3nNA

4pM
Þ1 6 3

vm ¼ ½1
3

1
v3t

þ 1
v3l

� �
��
1
3

vt ¼
ffiffiffiffi
G
r

r
; vl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ 4G

3

� �

r

vuuut
(15)

where B and G are isothermal bulk modulus and shear modulus, respectively; vt1 is the longitudinal
velocity and vt is the transverse sound velocity. The elastic wave velocities of these compounds are
relatively large, because these compounds have large mechanical moduli and large densities. For
Debye temperatures, the largest QD is 671 K for MnB while the lowest one is 592.8 K for FeB and
the order of QD for TMB compounds is MnB > FeB. It is well known that the QD is the inverse to
molecular weight and can be used to characterize the strength of covalent bonds in the solids. From
Tables 6, I can conclude that the covalent bonds in MnB are stronger than the other borides.

In order to show the dependence of pressure at 0 GPa (FM) and at a critical pressure (NM), I
have calculated the relative change of all parameters between the magnetic and non-magnetic states
(Tables 5 and 6), they are obtained as

DX
X

¼ XFM � XNM

XFM
; X ¼ V ; Ecoh; Ef ; B; E; G; n andQD::: (16)

where V, Ecoh, Ef, B, E, G, ʋ Q are: the volume; cohesive energy; formation energy; bulk modulus,
Young modulus, shear modulus, Poisson ratio's and the Debye temperature, respectively.

Table 6. The density (in g/cm3), anisotropic sound velocities (in m/s), average sound velocity (in m/s), Debye temperature (in K)
and the calculated relative change of these parameters for the TMB compounds.

Species r vl vt vm QD Dr/r Dvl/vl Dvt/vt Dvm/vm DQD/QD

MnB (0 GPa) 6.41 8799.7 5237.57 5798.5 671 26 25 8.24 9.6 18.23
MnB (143 GPa) 8.66 11,718.2 5708.1 6412.8 820.6
FeB (0 GPa) 7.085 8342.2 4454.7 4976.2 592.8 19.3 18.4 12.06 12.47 18.5
FeB (77 GPa) 8.78 10,222.5 5065.6 5685.7 727.7
aRef. [44].

Table 5. The calculated bulk, Young (E) and shear modulus (G) of TMB (under 0 and a critical pressure, in GPa), Poisson's ratio (v)
and B/G ratio and the calculated relative change of these parameters along with other available values.

Species B E G v B/G DB/B DE/E DG/G D v/v D (B/G)/(B/G)

MnB (0 GPa) 261.90
259.1a

431.04
450.2a

175.84
186a

0.23
0.21a

1.49
1.49a

67.8 43.2 37.7 32.4 48.3

MnB (143 GPa) 812.95 758.70 282.16 0.34 2.88
FeB (0 GPa) 305.6

286.6b
365.7
360.5b

140.6
139.7b

0.30
0.29b

2.174
2.05b

50.5 35.6 37.6 11.8 21.2

FeB (77 GPa) 617.1 567.5 225.3 0.34 2.76
aRef. [21].
bRef. [30].
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The calculated percentage change of volume at 0 GPa and at a critical pressure of ferromagnetic
compounds show a volume compression by 26% and 15% for MnB and FeB, respectively, in applied
pressure, which increase the bulk modulus of these compounds by 67.8% and 50.5%

(Table 5). The formation energy Ef was calculated to check the probability of thermodynamic
existence of TMB under pressure. All formation energies are negative, indicating that structures in
two pressure conditions are thermodynamically stable (see Figure 9). The formation energy of TMB
in the magnetic state is less than TMB in NM case by 85.94% and 68.35% for both MnB and FeB,
respectively, implying that they have more thermodynamic stability in FM case.

7. Conclusions

The phase stability, magnetic moment, elastic moduli, elastic anisotropy properties and Debye tem-
peratures of the TMB (TM = Mn, Fe) compounds as a function of pressure are investigated and dis-
cussed from the first-principles calculations. The equilibrium structure and formation energy show
that MnB and FeB are energetically more stable at 0 GPa than at each critical pressure. Both MnB
and FeB have a magnetic transition when the pressure is about 143 and 77 GPa, respectively. The
elastic constants, bulk, shear, Young's modulus, acoustic velocities and Debye temperature for MnB
and FeB compounds increase under pressure. The calculated ground state parameters are in good
agreement with the other available theoretical data and experiment's values. The increasing B/G and
v of these compounds indicate that MnB is ductile phases under high pressures. The TMB com-
pounds show a certain degree of mechanical anisotropy. The Debye temperatures increase with
increasing pressure, and MnB has a higher Debye temperature in two pressures 0 GPa and at a criti-
cal pressure. The calculated sound velocities along [100], [010] and [001] directions for TMB under
high pressure also imply the anisotropic. I believe that my findings will serve as guidance for experi-
mental investigations.
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Figure 9. The calculated relative change of parameters by the top: volume cohesive and formation energy, bulk, Young and shear
moduli, Poisson's ratio and Debye temperature.
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 ملخص

 

التباينومرونةالصلابةالهيك ية،الإلكترونية،المغناطيسية، :خصائصسااسا ل الأ الحسابهوأطروحةالدكتوراههذههدف

 :البورونوشبهTMB (TM= Mn, Fe, Co, Ni)البورونلبعضالمركباتمنأحادي

الداليةإطارالحسابف أجريTM2B (TM= Fe, Co, Ni).  الكثافة الكموناتطريقةساتعمالبا نظرية مع(PP)أشباه

نتقاليةالكمّية.CASTEPالبرنامج ،المثبتف GGA)تقريبالتدرجالمعمم) يمكنالوصولإليهاإلاعنطريقلاالا 

الضغطتحتالدراساة .الصفرالمط قعنددرجةالحرارةأوالضغطالحقلالمغناطيس ،مثلف أحدالوساائطالفيزيائيةالتغيير

ا نتقالوالت تحتويع ىمعادنمغناطيسيةبينّتعندقيمضغطمعينّةع ىا نهيارمفاجئل عزمالمغناطيس )المركباتلهذه

تمت.هذهالصفةه عادةعلامةع ىموصلفائقل كهرباء منالدرجةالأولى(وكمّ  مقارنتهامعالنتائجالمتحصلع يها

وه التجريبية، البيانات   ف  النتائج مع  جيدّ ا تفاق الأسااسايةع ى جيّ .الحالة وصف ع ى الميكانيك ل حصول ل س وك  د

ومنخلالهادراساةخواصتباينالمرونةل مركباتCijتحتتأثيرالضغط،فقدقمنابحسابالثوابتالمرنة /دونالمركبات

واساتناداإلىتقريبCijاتالموجةالصوتيةف الاتجاهاتالرئيسيةالمدروساة،وتحققاساتقرارهاالميكانيك ،وتمتحديدسارع

ل مركباتالمدروساةلمتعددالب وراتوحدات-فويه الخصائصالمرونية المرونية)،الوساائطالفيزيائيةروسوهيل،اكتشفنا

القص يونغGمعامل معامل ،E   υوبواساون السطوح مخططات رسام تم حيث )(3D) المست ومخطط لمعامل(2D)و

 .الخصائصالمرونيةتباينمتعددةالمستويات،ل كشفعن معامليونغالانضغاطو

الكمونات،:الكلمات المفاتيح أشباه الدالية، الكثافة البورونوأحادينظرية شبه الا البورون، الكمّية، نتقالية نهيارالمفاجئالا 

الخصائصالمرونية.ل عزمالمغناطيس ،

Résumé: 

Le but de cette thèse de doctorat est le calcul ab initio des propriétés : structurales, électroniques, 

magnétiques, dureté, et anisotropie élastique de quelque mono borure: TMB (TM= Mn, Fe, Co, 

Ni) et semi borure: TM2B(TM= Fe, Co, Ni). Le calcul a été mené dans le cadre général de la 

théorie de la fonctionnelle de la densité (DFT) moyennant la méthode  pseudo potentiels (PP) 

avec l’approximation du gradient généralisé de Perdew-Burke-Ernzerhof (GGA-PBE), qui est  



   

b 

 

 

implanter dans le code de calcul CASTEP. Les transitions de phase quantique ne sont accessibles 

que par la variation d'un paramètre physique, tel que le champ magnétique ou une pression à la 

température de zéro absolu. L’étude, sous l’effet de la pression de ces borures qui contient des 

métaux de transition  ferromagnétiques montre à une certaine pression  une avalanche brusque 

prononcé du moment magnétique (phase de transition quantique du première ordre) ce caractère 

est généralement un signe d'un supraconducteur. Les résultats obtenus ont été commentés et 

comparés avec les données expérimentales disponibles. Un très bon accord a été trouvé entre les 

résultats calculés à l’état fondamentale et ceux issus de l’expérimentale. Pour une bonne 

description du comportement mécanique des matériaux considérés sans/sous l’effet de la 

pression, nous avons calculé d’abord leurs constantes élastiques en état monocristallin, i.e., les 

constantes élastiques anisotropes Cij. Les valeurs numériques obtenues pour les Cij ont été 

ensuite employées pour quantifier l’anisotropie élastique des systèmes étudiés, vérifier leurs 

stabilité mécanique et ainsi pour déterminer les vitesses d’ondes acoustiques suivant les 

directions principales. En utilisant toujours les valeurs des Cij et en se basant sur l’approximation 

de Voigt-Reuss-Hill, nous avons exploré les propriétés élastiques des composés étudiés en état 

polycristallin : les modules d’élasticité isotropes (module de compressibilité B, module de 

cisaillement G, module de Young E et rapport de poisson υ), Nous avons tracé les surfaces (3D) 

et les contours planes des modules (E et B à plusieurs plans cristallographiques, pour révéler leur 

anisotropie élastique. 

Mots clés:  DFT, Pseudo potentiels, Mono et Semi borures, Transitions de phase quantique,  

Effandrement brusque du moment magnétique, proprieties élastiques. 
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Abstract: 

The aim of this thesis is the ab initio calculation of the properties: structural, electronic, magnetic, 

hardness and elastic anisotropy of a single boride: TMB (TM = Mn, Fe, Co, Ni) and semi boride: 

TM2B (TM = Fe, Co, Ni). The calculation is conducted in the framework of the functional theory 

of density (DFT) through the pseudo potential method (PP) with the generalized gradient 

approximation of Perdew-Burke Ernzerhof (GGA-PBE), which is implanted in the CASTEP 

code. The quantum phase transitions are accessible only by the variation of a physical parameter, 

such as the magnetic field or pressure to the absolute zero temperature. The study, due to the 

pressure of these borides containing ferromagnetic transition metals shows at a certain pressure 

an abrupt avalanche of magnetic moment (first order quantum phase transition) this character is 

generally a sign of a superconductor. The results are discussed and compared with experimental 

data. A good agreement is find between the results in the fundamental state and those from the 

experimental. For a comprehensive description of the mechanical behavior of the considered 

without / with the effect of pressure, I first calculate their elastic constants of single crystal state, 

i.e., the anisotropic elastic constants Cij. The values obtained for the Cij are used to quantify 

elastic anisotropy of the systems studied, check their mechanical stability and thus to determine 

the acoustic wave velocities along the main directions. 

Keys words: DFT, Pseudo-potential, Semi and mono borides, quntum phase transition, magnetic 

moment collapse, Elastic properties. 
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