

Faculté de Technologie Département de Génie électrique et Electronique Laboratoire de Recherche de Génie Biomédical

MEMOIRE DE PROJET DE FIN D'ETUDES

Pour obtenir le Diplôme de

MASTER en GENIE BIOMEDICAL

Spécialité : Instrumentation biomédical

Présenté par : - Hammou houria

- Saidi Ismahene

Etude et réalisation d'une Chaine colorimétrique

Soutenu le 22 juin 2014 devant le Jury

Mr	B.Bouazza	MCA	Université de Tlemcen	Président
Mr	L.Hamza cherif	MCB	Université de Tlemcen	Examinateur
Mr	S.M.Debbal	PROF	Université de Tlemcen	Encadreur

Année universitaire 2013-2014

Remerciements

Nous remercions ALLAH le tout puissant de nous avoir aidé et donner la volonté de mener à terme ce présent travail.

Nous tenons aussi à présenter nos sincères remerciements à :

- Monsieur S.M DEBBAL pour ses conseils judicieux et son dévouement afin d'achever à bien ce mémoire.
- Monsieur B.BOUAZZA qui nous fait l'honneur d'accepter la présidence du jury de cette soutenance.
- Monsieur L.HAMZA CHERIF pour sa disponibilité d'examination du présent travail et de le juger.

Enfin à tous et au toutes qui nous ont aidés pour achever ce travail.

En outre nous le dédions :

- A nos chers parents en témoignage de leur amour, respect et gratitude que nous leur portons
- A mes très chers grands parents.
- A tous nos frères et sœurs Radia, Sofiane et Mohammed.
- A toute la famille SAIDI et HAMMOU.
- A toutes nos amies SOUMIA et DJAHIDA et ASMA
- À l'ensemble des étudiants de la promotion d'Instrumentation Biomedical (2013/2014) et en particulier ALI AHMED DIDI, BELAID BOUMEDIENE, HAMMOUDI YOUCEF, et à Mr Bechar Amine.
- A Mon cher mari et mes beaux-parents.

Liste des figures

Figure 1-1 : Définition d'un capteur	3
Figure 1-2 : constitution d'une chaîne de mesure classique	4
Figure 1-3 : Thermoélectricité et pyroélectricité	7
Figure 1-4 : Photoélectricité et effet Hall	8
Figure 1-5 : Caractéristiques statistiques d'un capteur	11
Figure 1-6 : Spectre électromagnétisme	12
Figure 2-1 : Symbole de la diode électroluminescente	15
Figure 2-2 : constitution de la diode électroluminescente	15
Figure 2-3 : Boitier de la LED	16
Figure 2-4: Injection des porteurs minoritaires dans une jonction PN	16
Figure 2-5 : Emission d'un photon lors de la recombinaison d'un électron et d'un trou	17
Figure 2-6 : montage fonctionnement de la LED	18
Figure 2-7 : Structure d'une photodiode	20
Figure 2-8 : Détection de lumière à l'aide d'une diode PN	20
Figure 2-9 : Diode PIN comme détecteur de lumière et diagramme d'énergie	22
Correspondant	
Figure 2-10 : symbole de la photodiode et la courbe de la résistance des éléments	24
En fonction de lumière	
Figure 3.1 : Amplification d'une tension	27
Figure 3.2 : schéma général d'un Amplificateur Opérationnel	28
Figure 3-3 : schéma d'un amplificateur idéal	28
Figure 3-4 : schéma d'un amplificateur réel	29
Figure 3-5 : Les caractéristiques de transfert	29
Figure 3-6 : Montage inverseur	30
Figure 3-7: Montage d'amplificateur non-inverseur	31
Figure 3-8 : Montage d'un amplificateur suiveur	32
Figure 3-9 : Amplificateur additionneur	33
Figure 3.10 : Montage d'un amplificateur soustracteur	34
Figure 3-11 : comparateur non- inverseur	35
Figure 3-12 : comparateur inverseur	36
Figure 3-13 : comparateur a 2 seuils non inverseur	37
Figure 3-14 : comparateur a 2 seuils inverseur	39
Figure 3-15 : comparateur a fenêtre	40
Figure 4-1 : Schéma synoptique d'une chaine colorimétrique	43
Figure 4-2 : circuit électrique d'une chaine colorimétrique	44
Figure 4-3 : schéma de régulateur de tension	45
Figure 4-4 : Photo du Régulateur de tension	45
Figure 4-5 : Schéma électrique du dispositif utilisé à capteur infrarouge	46
Figure 4-6 : Schéma du soustracteur-amplificateur 1	47
Figure 4-7: Photo de dispositif à Capteur infrarouge +Soustracteur 1	49
Figure 4-8 : Schéma de soustracteur-amplificateur 2	49
Figure 4-9 : Les plages fixées avec les potentiomètres	51
Figure 4-10 : Schéma de suiveur	52
Figure 4-11 : Schéma pratique du comparateur a fenêtre	53

Figure 4-12 : Fenêtre de sortie du comparateur	54
Figure 4-13 : Schéma des 4 comparateurs à fenêtre correspondant aux 4 couleurs	55
Figure 4-14 : Photo des 4 comparateurs à fenêtre utilisés et des potentiomètres	56
d'aiustement des seuils	

Liste des tableaux

Tableau 1-1 : Les caractéristiques des capteurs passifs	5
Tableau 1-2 : Les caractéristiques des capteurs actifs	6
Tableau 4-1: Les tensions obtenues pour chaque couleur	48
Tableau 4-2 : La mesure de chaque couleur à la sortie du soustracteur 2	50
Tableau 4-3 : table de vérité de la porte NOR	54
Tableau 4-4: Mesures obtenues en fonction de la teneur en sucre des solutions	57
Tableau 4-5: Mesures obtenues en fonction de la teneur en sel des solutions	58
Tableau 4-6: Mesures obtenues en fonction de la qualité d'eau	58

SOMMAIRE

Introduction	1
Chapitre 1 : Les capteurs	2
1-1 Introduction	3
1-2 Définition	3
1-2-1 La chaîne de mesure électronique	4
1-2-1-1 La chaîne de mesure analogique	5
1-2-1-2 La chaîne de mesure numérique	5
1-2-2 Types de grandeur physique	5
1-2-3 Classification des capteurs	5
1-2-3-1 Les capteurs passifs	5
1-2-3-2 Les capteurs actifs	6
1-2-4 Caractéristiques d'un capteur	8
1-2-4-1 Etendue de la mesure	8
1-2-4-2 Résolution	9
1-2-4-3 Caractéristique d'entrée-sortie d'un capteur	9
1-2-4-4 Sensibilité	10
1-2-4-5 Finesse	10
1-2-4-6 Linéarité	10
1-2-4-7 Caractéristiques statistiques d'un capteur	10
1-2-4-8 Rapidité	11
1-2-4-9 L'hystérésis	11
1-3- Capteurs infrarouge	12
1-3-1 L'infrarouge	12
1-3-2 Avantages et inconvénients de l'infrarouge	13
Chapitre 2 : Notions theoriques sur les composants optoélectroniques	14
2-1 Diode électroluminescente	15
2-1-1Définition	15
2-1-2 Principe des diodes électroluminescentes	16
2-1-3 Caractéristiques électriques	18
2-1-3-1 Point de fonctionnement et tension direct	18
2-1-3-2 Tension inverse (VR)	18
2-1-3-3 Courant direct en continu (IF)	19
2-1-4 Intérêt et inconvénient de la LED	19
2-2 La photodiode	19
2-2-1-Définition	19
2-2-2-Principe de fonctionnement de la photodiode PN	20
2.2.2 Principa de fanctionnement de la photodiode PIN	21

2-2-3-1 Principe et temps de réponse	21
2-2-4-Caractéristiques importantes d'une photodiode	22
2-3 Phototransistor	23
2-3-1 Fonctionnement	23
2-4 Photorésistance	24
2-4-1 Principe	24
2-4-2 Applications	25
CHAPITRE 3 : Les amplificateurs	26
3-1 Notion d'amplification	27
3-2 L'Amplificateur Linéaire	27
3-2-1 L'amplificateur idéal	28
3-2-2 L'amplificateur réel	28
3-3 Symboles	29
3-4 Caractéristique de transfert Vs = f (ϵ)	29
3-5 Les différents montages	30
3-5-1 Les ALI en Mode Linéaire	30
3-5-2 Les ALI En Mode Non Linéaire	34
CHAPITRE 4: Etude et réalisation d'une chaine colorimétrique	42
4-1 INTRODUCTION	43
4-2 Schéma synoptique de la chaine colorimétrique	43
4-3 Schéma électrique d'une chaine colorimétrique	44
4-4 Etude des differents étages de la chaine colorimétrique	45
4-4-1 Régulateur de tension	45
4-4-2 Dispositif utilisé à Capteur infrarouge	46
4-4-3 Soustracteur-amplificateur 1	47
4-4-4 Soustracteur-amplificateur 2	49
4-4-5 Suiveur	52
3-4-6 Comparateur a fenêtre	52
4-5 Autre applications	57
4-5-1 : Mesure de la teneur en sucre des solutions analysées	57
4-5-2 : Mesure de la teneur en sel des solutions analysées	58
4-5-3 : Mesure de la qualité d'eau	59
Conclution	60
Nomenclature	61
Bibliographie	62
Annexes	63

INTRODUCTION

Les objectifs escomptés par le biais de la réalisation d'une chaine colorimétrique sont les possibilités offertes par cette chaine dans la discrimination de diverse couleur de différentes solutions liquides.

Le dispositif électronique utilisé fait appel à des composants électroniques (photodiode, diode électroluminescente) par utilisation d'un système d'émission et réception d'un rayonnement optique dont la teneur en énergie (Donc son amplitude) va s'avérer être fonction des milieux traversés. Ceci peut s'expliquer par l'homogénéité du milieu analysé qui peut changer selon la couleur de la solution utilisée.

Cette même chaine peut être également utilisée à d'autres fins telles que la mesure de la teneur en sel ou sucre d'une solution ainsi que du contrôle de la qualité d'une eau minérale.

En effet c'est la tension de sortie de la chaîne qui est exploitée et qui va donner des valeurs fonction des concentrations (ou teneur) du sel, du sucre, de la qualité de l'eau et de la couleur des solutions utilisées et analysées.

CHAPITRE

Les capteurs

1-1 INTRODUCTION:

Lorsque l'on souhaite traduire une grandeur physique en une autre grandeur, on fait appel à ce que l'on nomme classiquement « capteur ». Son rôle est de donner une image interprétable d'un phénomène physique de manière à pouvoir l'intégrer dans un processus plus vaste.

1-2-DEFINITION: [1]

Les capteurs jouent un rôle très important dans des domaines multiples (physique, électronique, mécanique, etc...). Ils permettent en effet la mesure de phénomènes et tous nature agissant sur notre environnement et ceci en transformant ces grandeurs non électriques en grandeurs électriques.

Les capteurs sont définis comme étant des organes émettant des signaux à partir d'une mesure d'une grandeur physique.

Vu que les grandeurs physiques intéressant l'industrie sont nombreuses, le nombre de capteurs leur correspondant devient important .De ce fait, il existe une multitude de détecteurs différents ayant chacun un rôle très précis à remplir.

Afin de permettre le choix du capteur correspond à notre réalisation, on rappelle tout d'abord le principe de base qu'ils utilisent et leurs principales caractéristiques.

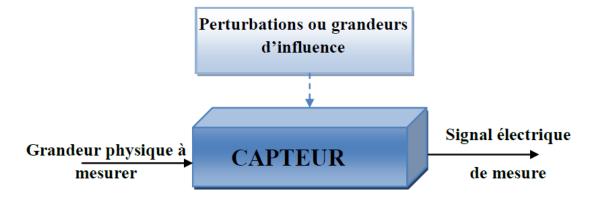


Figure 1-1: Définition d'un capteur

1-2-1 La chaîne de mesure électronique : [2]

Pour obtenir une image d'une grandeur physique, on fait appel à une chaîne de mesure qui peut faire intervenir plusieurs phénomènes différents.

Par exemple, la mesure d'un débit peut se faire en plusieurs étapes :

- * transformation du débit en une pression différentielle,
- * transformation de la pression différentielle en la déformation mécanique d'une membrane,
- * transformation de la déformation mécanique en une grandeur électrique (à l'aide d'un piézo-électrique) via un circuit électronique associé.

L'ensemble de ces étapes constitue la chaîne de mesure.

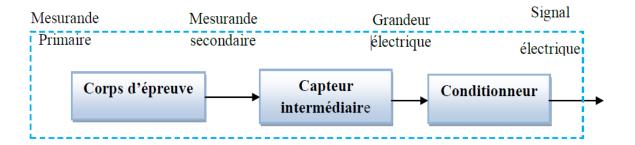


Figure 1-2 : constitution d'une chaîne de mesure classique

De manière classique la sortie d'une chaîne de mesure est du type électrique. Si la chaîne de mesure fait intervenir plusieurs transducteurs, on appelle corps d'épreuve celui en contact direct avec le mesurande.

Le dernier transducteur est associé à un conditionneur qui fournit la grandeur électrique de sortie de manière exploitable. Le choix de ce conditionneur est une étape importante dans le cadre de la chaîne de mesure car, associé au capteur, il détermine la nature finale du signal électrique et va influencer les performances de la mesure.

1-2-1-1 La chaîne de mesure analogique :

C'est l'ensemble de circuits assurant la tâche d'amplification, de linéarisation, de filtrage, de compensation thermique ou de traitement de bruit. Ce type de chaîne utilise la grandeur analogique dans son fonctionnement.

1-2-1-2 La chaîne de mesure numérique :

C'est l'ensemble de circuits assurant les tâches de conversion analogique numérique, d'échantillonnage, de filtrage numériques, etc... Ce type de chaîne utilise la grandeur numérique dans son fonctionnement et peuvent faire appel à des Capteurs intelligents (Smart sensors). Ce sont des capteurs qui renferment dans un même boîtier : le capteur, le conditionneur, le CAN et un microcontrôleur capable de communiquer avec d'autres dispositifs numériques (PC, automates, systèmes d'acquisition de données, ...).

1-2-2 Types de grandeur physique : [2]

On peut classer les grandeurs physiques en 6 familles, chaque capteur s'associant à l'une de ces 6 familles :

- Mécanique : déplacement, force, masse, débit etc...
- Thermique : température, capacité thermique, flux thermique etc...
- Electrique : courant, tension, charge, impédance, diélectrique etc...
- Magnétique : champ magnétique, perméabilité, moment magnétique etc...
- Radiatif : lumière visible, rayons X, micro-ondes etc...
- (Bio) Chimique : humidité, gaz, sucre, hormone etc...

1-2-3 Classification des capteurs : [3]

On classifie les capteurs en deux grandes familles en fonction de la caractéristique électrique de la grandeur de sortie. Cette classification influe sur le conditionneur qui lui est associé.

1-2-3-1 Les capteurs passifs :

Il s'agit généralement d'impédances (résistance, inductance, capacité) dont l'un des paramètres déterminants est sensible à la grandeur mesurée.

MESURANDE	EFFET UTILISE	MATERIAUX
	(Grandeur de sortie)	
Température	Résistivité	Métaux : Platine, nickel,
Très basse température	Constante diélectrique	cuivre, semi-conducteurs
		Verre
Flux de rayonnement	Résistivité	Semi-conducteurs
optique		
Déformation	Résistivité	Alliage de nickel, silicium
	Perméabilité magnétique	dopé
		Alliages ferromagnétiques
Position	Résistivité	Magnétorésistances :
		Bismuth, antimoine d'indium
Humidité	Résistivité	Constante diélectrique
Niveau	Constante diélectrique	Liquides isolants

Tableau 1-1: Les caractéristiques des capteurs passifs

1-2-3-2 Les capteurs actifs :

Fonctionnant en générateur, un capteur actif est généralement fondé dans son principe sur un effet physique qui assure la conversion en énergie électrique de la forme d'énergie propre à la grandeur physique à mesurer (énergie thermique, mécanique ou de rayonnement).

MESURANDE	EFFET UTILISE	GRANDEUR DE SORTIE
Température	Thermoélectricité	Tension
	(thermocouple)	
Flux de rayonnement	Photoémission	Charge
optique	Pyroélectricité	Courant
	Effet photovoltaïque	Tension
		Tension

		Effet	photo	
		électromagnétique		
Force,	pression,	Piézoélectricité		Charge
accélération				
Position		Effet Hall		Tension
Vitesse		Induction		Tension
		électromagnétique		

Tableau 1-2: Les caractéristiques des capteurs actifs

Précision sur les effets utilisés par les capteurs actifs :

- Thermoélectricité: c'est le principe de tout thermocouple. C'est un circuit constitué de deux conducteurs de nature chimique différente et dont les jonctions sont à des températures différentes T1 et T2.
 Il apparaît aux bornes de ce circuit une tension (force électromotrice) liée à la différence de température (T1-T2).
- ❖ Pyroélectricité : certains cristaux présentent une polarisation électrique proportionnelle à leur température. Ainsi, en absorbant un flux de rayonnement, le cristal pyroélectrique va s'échauffer et ainsi sa polarisation va se modifier entraînant une variation de tension détectable.

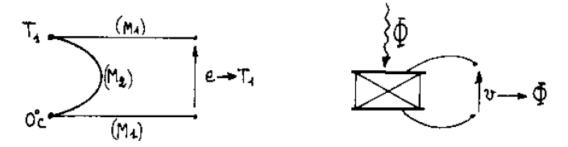


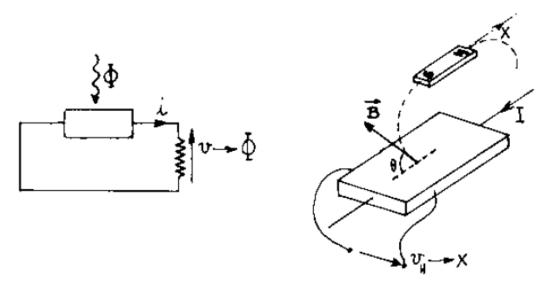
Figure 1-3: Thermoélectricité et pyroélectricité

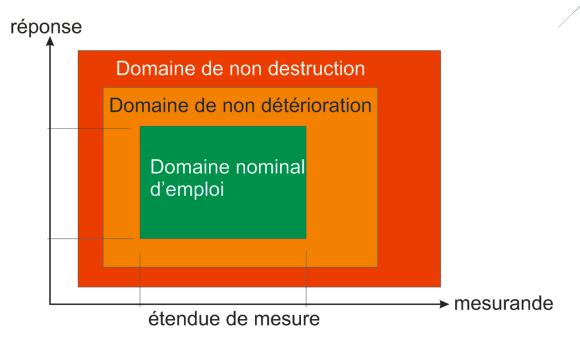
Piézoélectricité: l'application d'une force sur ce type de matériau engendre l'apparition de charges électriques crées par la déformation du matériau. C'est un phénomène réversible.

- ❖ Photoélectricité : sous l'influence d'un rayonnement lumineux, le matériau libère des charges électriques et celles-ci en fonction du rayonnement.
- ❖ Effet Hall : un semi-conducteur de type parallélépipède rectangle, placé dans une induction B et parcouru par un courant I, voit l'apparition, dans la direction perpendiculaire au courant et à l'induction, d'une différence de potentiel qui a pour expression :

$$U_{H} = K_{H}.I.B.\sin\theta$$

 K_H est fonction du matériau, θ est l'angle entre I et B.




Figure 1-4 : Photoélectricité et effet Hall

1-2-4 Caractéristiques d'un capteur :

De manière à classer les capteurs en fonction de leurs performances, on est amené à définir des paramètres qui permettent de les sélectionner en fonction de l'application.

1-2-4-1 Etendue de la mesure :

Elle définit la zone dans laquelle les caractéristiques du capteur sont assurées par rapport à des spécifications données.

Graphe 1-1: L'étendue de mesure

❖ Zone nominale d'emploi :

Zone dans laquelle le mesurande peut évoluer sans modification des caractéristiques du capteur.

Zone de non-détérioration :

Valeurs limites des grandeurs influençant le capteur (mesurande, température environnante, etc...) sans que les caractéristiques du capteur ne soient modifiées après annulation de surcharges éventuelles.

❖ Zone de non-destruction

Elle définit les limites garantissant la non-destruction du capteur mais dans laquelle il peut y avoir des modifications permanentes des caractéristiques du capteur.

1-2-4-2 Résolution:

Elle correspond à la plus petite variation du mesurande que le capteur est susceptible de déceler.

1-2-4-3 Caractéristique d'entrée-sortie d'un capteur :

Elle donne la relation d'évolution de la grandeur de sortie en fonction de la grandeur d'entrée. Elle ne donne pas d'informations sur les caractéristiques transitoires du capteur.

1-2-4-4 Sensibilité

Elle détermine l'évolution de la grandeur de sortie en fonction de la grandeur d'entrée en un point donné. C'est la pente de la tangente à la courbe issue de la caractéristique du capteur. Dans le cas d'un capteur linéaire, la sensibilité du capteur est constante.

Sensibilité =
$$\frac{d(Grandeur de sortie)}{d(mesurande)}\Big|_{Ptd'étude}$$
 (1.1)

1-2-4-5 Finesse

C'est la qualité exprimant l'aptitude d'un capteur à ne pas venir modifier par sa présence la grandeur à mesurer. Cela permet d'évaluer l'influence du capteur sur la mesure. On la définit non seulement vis à vis du capteur mais aussi vis à vis de l'environnement d'utilisation du capteur.

1-2-4-6 Linéarité:

Zone dans laquelle la sensibilité du capteur est indépendante de la valeur du mesurande.

Cette zone peut être définie à partir de la définition d'une droite obtenue comme approchant au mieux la caractéristique réelle du capteur, par exemple par la méthode des moindres carrés.

1-2-4-7 Caractéristiques statistiques d'un capteur :

Ces paramètres permettent de prendre en compte la notion d'erreurs accidentelles qui peuvent survenir sur un capteur.

Fidélité

Elle définit la qualité d'un capteur à délivrer une mesure répétitive sans erreurs. L'erreur de fidélité correspond à l'écart type obtenu sur une série de mesures correspondant à un mesurande constant.

Justesse

C'est l'aptitude d'un capteur à délivrer une réponse proche de la valeur vraie et ceci indépendamment de la notion de fidélité.

Précision

Elle définit l'écart en % que l'on peut obtenir entre la valeur réelle et la valeur obtenue en sortie du capteur. Ainsi un capteur précis aura à la fois une bonne fidélité et une bonne justesse.

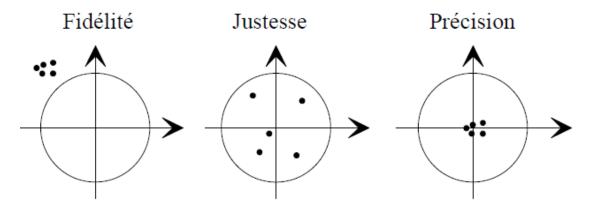
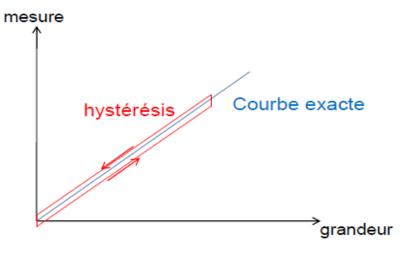


Figure 1-5 : Caractéristiques statistiques d'un capteur


1-2-4-8 Rapidité

Temps de réaction du capteur. La rapidité est liée à la bande passante.

1-2-4-9 L'hystérésis

Lorsque les courbes de transfert du capteur pour une variation croissante et décroissante de la grandeur physique ne sont pas identiques, on parle d'une erreur due à l'hystérésis du capteur.

Cette erreur est exprimée en pourcentage par rapport à l'étendue de mesure.

Graphe 1-2 : courbe d'Erreur d'hystérésis

1-3- Capteurs infrarouge: [4]

1-3-1 L'infrarouge:

Le rayonnement infrarouge n'est pas du domaine des ondes qu'on peut les capter avec une antenne, il n'est pas non plus celui de la lumière visible de ce fait il possède des caractéristiques particulières.

La technique de transmission de l'infrarouge n'est pas très récente. C'est grâce au développement des diodes électroluminescentes de puissance photodiode (PIN) et les phototransistors que l'on peut exploiter cette technique qui consiste à envoyer un rayonnement infrarouge non cohérent et de haute puissance en direction d'une photodiode.

L'infrarouge fait du spectre non visible de la lumière .Sa longueur d'onde se limite aux alentours de 750 mm.

Le spectre infrarouge se divise en 3 catégories :

IR: proche

IR: moyen

IR: lointain

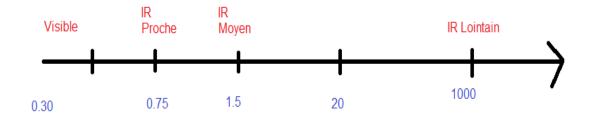


Figure 1-6 : Spectre électromagnétisme

L'œil humain à une bande passante limite ce qui rend le faisceau infrarouge invisible. L'infrarouge peut traverser les surfaces transparentes telles que les vitres mais sera arrête par les obstacles opaques. En plus, le faisceau infrarouge peut être réfléchi par un miroir et sa direction peut-être en présence d'obstacles opaques situés dans la voie de transmission.

L'infrarouge est un rayonnement calorifique qui bien entendu, n'est pas sensible en cas ou la source de « réaction » est constituée de diodes infrarouges.

1-3-2 Avantages et inconvénients de l'infrarouge :

Se composant exactement comme la lumière visible, les rayons infrarouges bénéficient des mêmes possibilités mais souffrent aussi des mémés limitations de propagation. Un faisceau d'infrarouge traversera évidemment sans grande atténuation la plupart des surfaces transparentes (vitre), mais sera arrêté par les obstacles opaques (cloisons), sauf si on peut ménager un trou qui peut fort bien être très petit.

Bien dirigé, un faisceau d'infrarouge peut se réfléchir sur un miroir, et donc contourner certains obstacles. Un faisceau pas trop étroit et suffisamment puissant est capable également de diffuser dans toute une pièce si on le dirige sur un mur de couleur claire : Il sera alors capté par tout récepteur non directif placé n' importe où dans la pièce.

CHAPITRE II

Notions theorique
sur les composants
optoélectroniques

2-1 Diode électroluminescente:

2-1-1 Définition : [4]

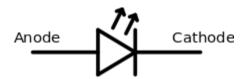


Figure 2-1 : Symbole de la diode électroluminescente

Une diode infrarouge est une diode électroluminescente qui émet de la lumière lorsqu'on lui applique un courant dans le sens directe ; Sous ses conditions les électrons sont injectés dans le matériau de type P.

Lorsque les électrons injectés se recombinent avec les porteurs majoritaires, au niveau de la jonction PN, de l'énergie et libérée se forme de photons. La direction d'émission est contrôlée par des surfaces réfléchissantes.

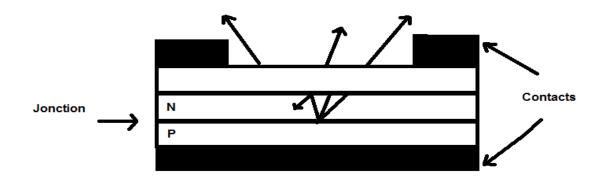


Figure 2-2 : constitution de la diode électroluminescente

Les LED IR ont la même présentation que les LED de couleur.

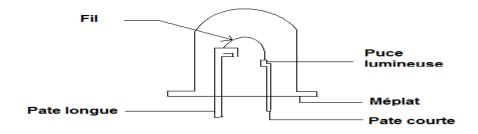


Figure 2-3: Boitier de la LED

2-1-2- Principe des diodes électroluminescentes : [5]

Considérons une jonction PN polarisée dans le sens direct et parcourue par un courant If.

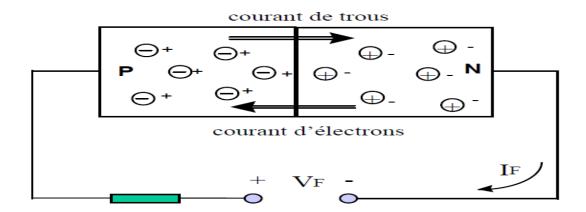


Figure 2-4: Injection des porteurs minoritaires dans une jonction PN.

A l'intérieur du matériau, il y a injection de trous dans la zone N et d'électrons dans la zone P : c'est le phénomène d'injection des porteurs minoritaires ; Un certain nombre de porteurs minoritaires se recombinent en libérant de l'énergie.

En effet, lorsqu'un électron libre rencontre un trou il le comble (c'est-à-dire une absence d'électron dans un atome, qui de ce fait est chargé positivement).

L'énergie de cet électron passe donc de la bande de conduction à la bande de valence du matériau P, libérant par conséquent une énergie égale à la différence entre ces deux bandes.

Chapitre II : Notions théorique sur les composants optoélectroniques

Une partie de cette énergie est libérée sous forme de lumière (photon) et le reste sous forme de chaleur.

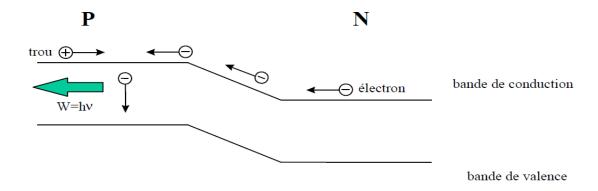


Figure 2-5 : Emission d'un photon lors de la recombinaison d'un électron et d'un trou.

On voit donc que la fréquence de la radiation émise est directement liée à la largeur de la bande interdite.

L'énergie d'un photon s'écrit :

$$W = hv$$

 ${f h}$: constante de Planck (6,6. 10-34 Js) et ${f v}$: Fréquence de la radiation émise (en Hz).

La longueur d'onde émise est donnée par la relation :

$$\lambda(A) \approx \frac{12370}{Eg} \tag{2.2}$$

 λ : Longueur d'onde de la radiation émise (en Angström)

Eg : largeur de la bande interdite (en eV).

2-1-3-Caractéristiques électriques :

2-1-3-1 Point de fonctionnement et tension direct :

Une LED se comporte électriquement comme une diode. Pour émettre elle doit être polarisée en direct.

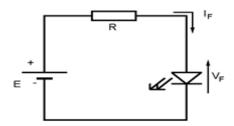
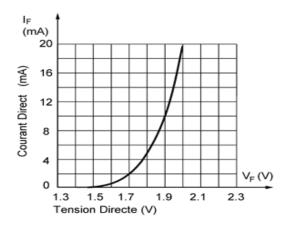



Figure 2-6: montage fonctionnement de la LED

La caractéristique $I_F(V_F)$ montre que la tension de conduction de la diode LED est environ 1,5 Volts à 2 V, pour un courant nominal I_F =20mA.

Graphe 2-1: Tension de conduction de la LED

Le courant traversant la LED détermine l'intensité lumineuse émise. Remarque : certaines diodes ont des tensions de construction de l'ordre de 3 Volts et plus.

2-1-3-2 Tension inverse (V_R):

Dans certains cas, on peut avoir besoin de polariser en inverse la LED.

La diode est alors éteinte : elle n'émet plus d'intensité lumineuse.

Mais la diode LED ne peut pas supporter des tensions inverses trop importantes. Les valeurs courantes se situent telles que V_R max = \pm 3V à 5V; au-delà de ces valeurs il y a endommagement ou destruction du composant.

2-1-3-3 Courant direct en continu (I_F):

Le courant direct (mA) est donné en règle générale pour une température ambiante (TA) de 25°C. C'est le courant permanent que peut supporter la diode. Comme un semi-conducteur chauffe (avec aggravement si TA > 25°C), il est recommandé de réduire l'intensité du courant.

2-1-4 Intérêt et inconvénient de la LED : [7]

- > Intérêt du LED :
- -Temps de réponse faible d'où la possibilité de modulation du flux émis jusqu'à des fréquences très élevées par commande de courant.
- -Spectre parfaitement défini et limité.
- -Fiabilité robuste.
 - > Inconvénient :
- -Flux relativement faible =10-2mw
- -Sensible à la température.

2-2 La photodiode:

2-2-1 Définition : [4]

Une photodiode est un composant semi-conducteur ayant la capacité de détecter un rayonnement du domaine optique et de le transformer en signal électrique.



Figure 2-7: Structure d'une photodiode

2-2-2 Principe de fonctionnement de la photodiode PN :

La photodiode PN est, comme son nom l'indique, une jonction p-n, généralement utilisée en polarisation inverse. Dans ce cas, les porteurs majoritaires sont bloqués par le champ électrique dans la zone de charge d'espace, et le courant résulte donc du passage des porteurs minoritaires à travers la jonction. Le courant est dans ce cas limité par le faible taux de génération de porteurs minoritaires dans le voisinage de jonction.

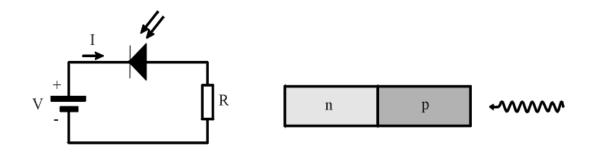


Figure 2-8 : Détection de lumière à l'aide d'une diode PN

Sous l'action de la lumière, des paires électron-trou peuvent être générées dans le semi-conducteur, si la longueur d'onde de la lumière est inférieure à

Chapitre II : Notions théorique sur les composants optoélectroniques

$$\lambda_c = \frac{hc}{E_g}$$

(2.3)

Ce qui correspond à une énergie de photons supérieure à la largeur de la bande interdite. Supposons qu'une paire électron-trou est ainsi générée dans la zone de charge d'espace. Sous l'action du champ électrique qui règne dans cette zone, le trou sera accéléré vers la zone P où il s'ajoute aux porteurs majoritaires et l'électron sera accéléré vers la zone N. Donc une séparation de la paire électron-trou et un courant dans le sens de N vers P, c'est-à-dire une augmentation du courant inverse dans la diode.

2-2-3 Principe de fonctionnement de la photodiode PIN :

2-2-3-1 Principe et temps de réponse :

Les diodes PIN sont les détecteurs les plus couramment utilisés avec les fibres optiques. Il s'agit d'un semi-conducteur intrinsèque pris en sandwich entre un semi-conducteur de type N et un semi-conducteur de type P.

La concentration de charges libres dans le semi-conducteur intrinsèque est très faible, ce qui lui procure une résistivité élevée.

Le champ électrique sera donc grand dans cette région de résistivité élevée, et faible dans les parties N et P, de résistivité plus faible.

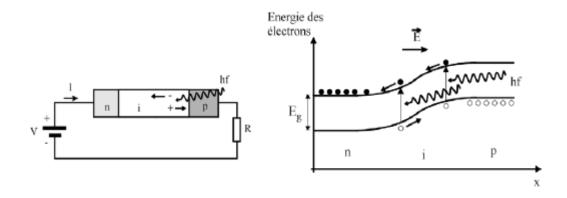


Figure 2-9 : Diode PIN comme détecteur de lumière et diagramme d'énergie correspondant.

Par rapport à la jonction p-n simple, la zone de champ électrique non nul a été élargie par rapport aux zones conductrices, ce qui augmente la probabilité d'absorption et donc de création de paires électron-trou dans cette région. Comme les paires électron-trou sont donc créées principalement dans la zone avec champ électrique, elles ne doivent pas diffuser avant d'être accélérées, et l'augmentation du courant est plus rapide.

2-2-4 Caractéristiques importantes d'une photodiode :

Si on fait varier la puissance optique reçue par le composant, on constate, lorsque la photodiode est polarisée en inverse, que le courant inverse qui la traverse va augmenter. L'évolution de ce courant en fonction du nombre de photons reçus par unité de temps ϕ_p peut être modélisée de la façon suivante :

$$I_p = q.\eta.\Phi_p + I_S \tag{2.4}$$

Où:

η : est le rendement quantique

Is : est le courant d'obscurité que l'on pourra négliger dans un premier temps.

Compte tenu des paramètres que nous avons relevés, si $^{
m V}$ est la fréquence des

photons reçus et h la constante de Plank $(h \approx 6.62.10^{-34}~J.s)$ on peut aussi écrire que :

$$I_p = q.\eta. \frac{P_{opt}}{h.\nu}$$
(2.5)

On peut également définir la sensibilité de la photodiode comme étant :

$$S = I_p / P_{opt}$$
(2.6)

2-3 Phototransistor: [6]

2-3-1 Fonctionnement:

Le phototransistor est la combinaison la plus simple d'une photodiode et de son amplificateur.

En dirigeant la lumière sur la jonction collecteur-base (qui est polarisée en inverse) on génère un courant base d'origine photonique qui est amplifié par le gain en courant b du transistor.

Si la base est accessible de l'extérieur une polarisation du transistor est possible, on a :

$$IE = (IP + IB) (\beta + 1)$$

$$(2.7)$$

IP: courant base d'origine photonique

IB: courant base extérieur

IE: courant émetteur

B : gain en courant du transistor

2-4 Photorésistance : [6]

2-4-1 Principe

Un rayonnement électromagnétique de longueur d'onde convenable (lumière) pénétrant au sein d'un cristal semi-conducteur entraîne une diminution notable de la résistance électrique du semi-conducteur.

Ce phénomène dépend largement :

- du semi-conducteur employé;
- de la longueur d'onde du rayonnement incident.

Le choix du sulfure de cadmium (CdS) comme semi-conducteur a pour but de réaliser des résistances variant fortement lorsqu'elles sont éclairées par un rayonnement visible (maximum de sensibilité dans le rouge).

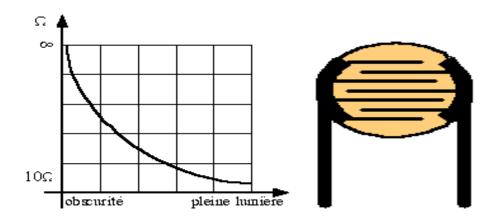


Figure 2-10 : symbole de la photodiode et la courbe de la résistance des éléments en fonction de lumière.

D'après le graphe les éléments ayant une résistance allant de quelques mégohms en obscurité à quelques centaines d'ohm pour des éclairements intenses.

2-4-2 Applications:

Les photorésistances sont utilisées pour la détection ou la mesure des éclairements aussi bien dans le spectre visible que dans l'infrarouge. Elles servent de capteurs dans beaucoup d'automatismes : sécurités, alarmes, etc.

CHAPITRE III

Les amplificateurs

Introduction:

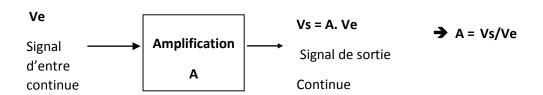
Un amplificateur de mesure est un dispositif électronique destiné au traitement de faibles signaux électriques ; On le trouve également dans la littérature sous le nom d'amplificateur d'instrumentation.

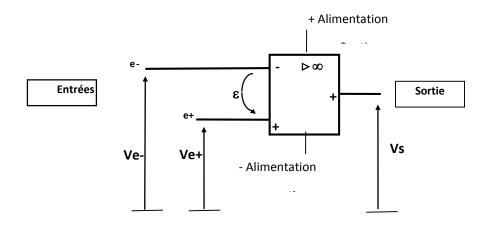
L'amplificateur de mesure est un élément essentiel dans la partie de conditionnement d'une chaîne d'acquisition : il permet le traitement de signaux issus de capteurs de mesure.

Il est généralement réalisé à partir d'un ou de plusieurs amplificateurs opérationnels (AOP), de telle manière qu'il améliore leurs caractéristiques intrinsèques : composante continue, dérive, bruit d'amplification, gain en boucle ouverte , taux de réjection du mode commun, impédance d'entrée.

3-1 Notion d'amplification :

On appelle amplificateur tout montage qui délivre à sa sortie un signal de même nature et de même fréquence que le signal appliqué à son entrée et dont l'amplitude et la phase peuvent être différentes.




Figure 3.1 : Amplification d'une tension

3-2 L'Amplificateur Linéaire : [8]

Un amplificateur linéaire est constitué d'un ensemble de composants électroniques, connectés les uns aux autres dans un même boîtier.

Il est aussi appelé Amplificateur Opérationnel (A.O.P) car ses premières applications ont été la réalisation d'opérations mathématiques.

Aujourd'hui, les domaines d'applications des amplificateurs linéaires intégrés sont étendus à tous les domaines de l'électronique.

e+ : entrée non inverseuse.

e - : entrée inverseuse.

ε: Tension différentielle.

▶: Symbole de l'amplification.

Figure 3.2 : schéma général d'un Amplificateur Opérationnel

L'amplificateur opérationnel

Amplifie la différence de potentiel
$$\epsilon = \textit{Ve+-Ve-}$$

$$\textit{Vs} = \textit{A.}~\epsilon$$

(3.1)

N'a pas de courant d'entrées le+ = le- = 0A

3-2-1_L'amplificateur idéal.

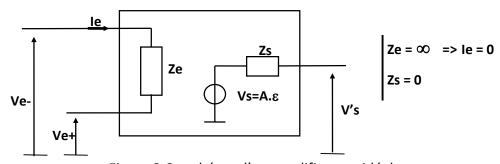
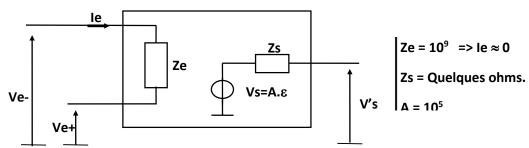
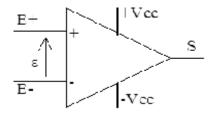
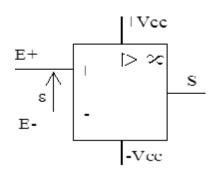


Figure 3-3 : schéma d'un amplificateur idéal

3-2-2 L'amplificateur réel.


Figure 3-4 : schéma d'un amplificateur réel

3-3 Symboles

Ancienne norme

Nouvelle norme

Signification des symboles

: Circuit amplificateur

: Coefficient amplification très grande

3-4 Caractéristique de transfert Vs = f (ϵ)

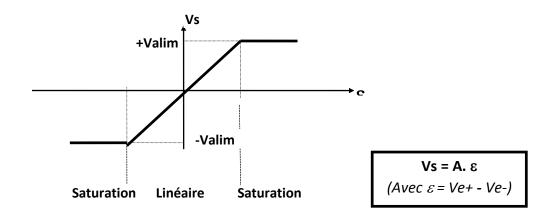


Figure 3-5 : Les caractéristiques de transfert

3-5 Les différents montages : [8]

Un ALI (Amplificateur Linéaire Intégré) ou appelé AOP (Ancien Nom) est un composant sous la forme d'un circuit intégré. C'est un amplificateur de tension. Il peut être utilisé en mode Linéaire ou en mode non linéaire.

3-5-1 Les ALI en Mode Linéaire

Amplificateur inverseur

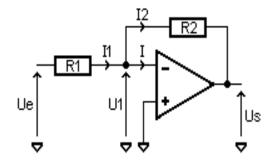


Figure 3-6: Montage inverseur

$$V_s = -\left(\frac{R_2}{R_1}\right)V_e \tag{3.2}$$

Calcul du gain :

Le gain de l'AO étant quasi-infini, la différence de potentiel entre les entrées doit donc être quasi-nulle ; L'entrée + étant reliée à la masse, le potentiel U1 de l'entrée - doit également être nul.

En appliquant la loi d'Ohm à l'entrée, on a :

$$(Ue - U1) = R1 \times I1$$
 soit $Ue = R1 \times I1$ puisque $U1 = 0$

En appliquant la loi d'Ohm à la sortie, on a :

$$(Us - U1) = -R2 \times I2$$
 soit $Us = -R2 \times I2$ puisque $U1 = 0$

Or d'après la loi des nœuds I1 = I + I2, mais le courant d'entrée I est quasi-nul,

Chapitre III: Les amplificateurs

ET I1 = I2

Donc:

$$G = Us/Ue = -R2/R1 \tag{3.3}$$

On constate que le gain est négatif, d'où le nom d'amplificateur inverseur

Calcul d'impédance d'entrée

Le courant d'entrée du montage (et non de l'AO) est donné d'après la loi d'Ohm par I1 = (Ue - U1) / R1, soit I1 = Ue / R1

L'impédance d'entrée Ze de ce montage est donc égale à R1.

❖ Amplificateur non-inverseur

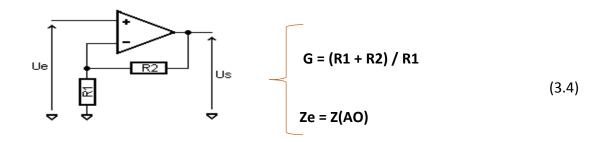


Figure 3-7: Montage d'amplificateur non-inverseur

Calcul du gain :

On a toujours une différence e de potentiel entre les entrées nulle puisque l'on considère l'AO parfait et son gain infini. Puisque la tension d'entrée est appliquée directement à l'entrée +, on se retrouve avec un simple diviseur de tension, et on a montré au cours précédent que l'on a alors : Ue / Us = R1 / (R1 + R2) soit G = (R1 + R2) / R1. (3.5)

Calcul d'impédance d'entrée :

La tension d'entrée étant appliquée directement à l'entrée non inverseuse, l'impédance d'entrée du montage est simplement égale à celle de l'AO, c'est pourquoi ce montage est plus avantageux que l'amplificateur inverseur sur ce point.

Amplificateur suiveur

Figure 3-8: Montage d'un amplificateur suiveur

Ce montage est une variante de l'amplificateur non inverseur, qui est utilisé comme tampon grâce à son impédance d'entrée très importante et sa faible impédance de sortie.

Calcul du gain :

On peut calculer le gain de ce montage de deux manières, en considérant que c'est un amplificateur non inverseur avec R1 infinie et R2 nulle, ce qui donne un gain de 1, ou la sortie étant reliée à l'entrée -, elles sont au même potentiel, et les deux entrées sont toujours aux même potentiel, donc la tension de sortie est égale à la tension d'entrée, le gain est de 1.

> Calcul d'impédance d'entrée :

L'impédance d'entrée est donc la même que celle du montage non inverseur, c'est à dire celle de l'AO.

Amplificateur additionneur

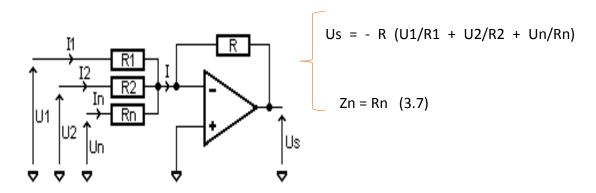


Figure 3-9: Amplificateur additionneur

L'amplificateur additionneur est lui une variante du montage inverseur, qui est utilisé comme son nom l'indique pour sommer des signaux en leur affectant un coefficient.

> Calcul de tension de sortie

On a toujours une différence de potentiel entre les entrées nulle, c'est à dire que les deux entrées sont à un potentiel nul.

Donc:
$$Us = -R \times (I1 + I2 + In)$$

Soit $Us = -R \times (U1/R1 + U2/R2 + Un/Rn)$ (3.8)

> Calcul d'impédance d'entrée

En raisonnant de la même manière que pour l'amplificateur inverseur, on retrouve Zn = Rn.

Amplificateur soustracteur (différentiel)

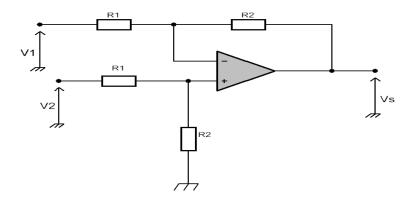
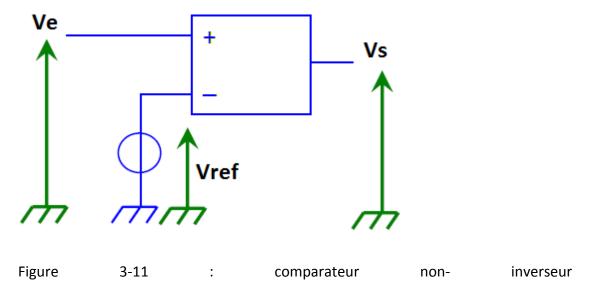


Figure 3.10: Montage d'un amplificateur soustracteur

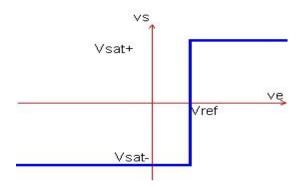
Le montage, sous sa forme classique, amplifie donc la différence des tensions d'entrée V1 et V2 par un gain R2/R1. Si l'on choisit R2=R1, la tension de sortie Vs est égale à la différence V2-V1.

$$V_s = \frac{R_2}{R_1} (V_2 - V_1) \tag{3.9}$$

3-5-2 Les ALI En Mode Non Linéaire [9]


Il existe plusieurs types de comparateurs : Comparateur Simple, Comparateur A 2 Seuils, Comparateur A Fenêtre.

Le Comparateur A Simple Seuil


Un comparateur à un seuil est très facile à réaliser. Il suffit juste d'un ALI et de connaître son seuil de basculement. Mais il faut tout d'abord savoir si le comparateur fonctionne en inverseur ou non-inverseur.

Le Comparateur Non Inverseur

Un comparateur non inverseur est un comparateur simple seuil composé d'un ALI uniquement.

Sur ce schéma on trouve l'ALI non inverseur car sa tension Ve est sur la patte (+). La tension Ve est la tension d'entrée qui est en amont, la tension Vs est la tension de sortie donc celle en aval, la tension Vref quant à elle est la tension qui fixe le basculement

Graphe 3-1: Vs en fonction de Ve du comparateur non-inverseur

Comme on le voit sur la courbe c'est à cette tension que le composant change d'état de -Vsat à +Vsat ou inversement. Les tensions Vsat + et - correspondent aux

tensions d'alimentation du circuit intégré soit +15V -15V ou +15V 0V. Dans ce cas la courbe s'arrête au 0 et Vsat-=0.

Le Comparateur Inverseur

Un comparateur inverseur fonctionne à l'inverse d'un non inverseur. C'est à dire que sa tension d'entrée est sur la patte - et sa tension Vref qui fixe le basculement est sur la patte +.

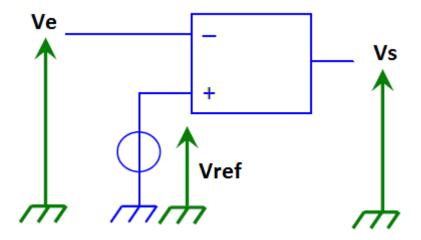
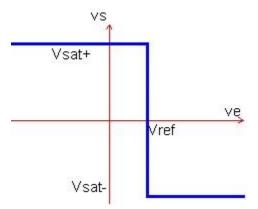



Figure 3-12: comparateur inverseur

Voyons maintenant sa courbe de fonctionnement. On voit bien que le comparateur fonctionne en inverse niveau haut puis niveau bas.

Graphe 3-2: Vs en fonction de Ve du comparateur inverseur

Celui-ci prend toujours les valeurs de Vsat+ et Vsat-.

Exemple Avec un Non Inverseur

Nous allons maintenant voir un exemple avec un ALI Non Inverseur. On applique une tension en entrée sur la patte Ve et une tension Vref de basculement fixe. Avec un Inverseur on aurait la courbe de sortie inverse de celle qu'on a.

Les Comparateurs A 2 Seuils

Un comparateur à un seuil, comme nous avons vu avant, c'est bien mais certains systèmes passeraient leur temps à basculer d'un état à un autre. Il faut donc créer un système qui ne bascule pas tout le temps même au moindre parasite. C'est là qu'intervient le comparateur à 2 seuils. Comme le comparateur simple il existe sous 2 formes le Non Inverseur et l'Inverseur.

Le Comparateur A 2 Seuils Non Inverseur

Un comparateur à 2 seuils ou à trigger est toujours composé d'un ALI mais avec 2 résistances, une entre la sortie et la patte + et l'autre en entrée.

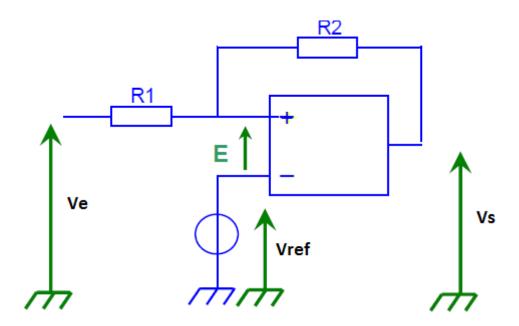
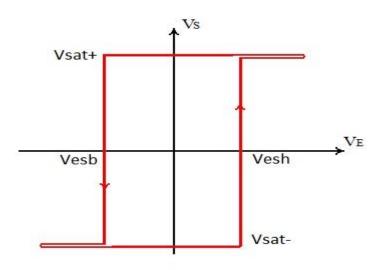



Figure 3-13: comparateur a 2 seuils non inverseur

On constate toujours que la tension d'entrée est sur la patte + (entrée noninverseuse) les résistances permettent de régler le cycle d'hystérésis (écart entre les 2 branches de la courbe).

Graphe 3-3: Vs en fonction de Ve du comparateur a 2 seuils non inverseur

Pour calculer les seuils de basculement, il faut utiliser la formule suivante :

$$Vesh = {Vref (R1+R2)-R1*Vsat-}/R2$$
(3.10)

 $Vesb = {Vref (R1+R2)-R1*Vsat+}/R2$

Le comparateur A 2 Seuils Inverseur

Comme pour un simple seuil le comparateur double seuils inverseur suit la même courbe sauf qu'elle a 2 branches. Les résistances R1 et R2 ne sont plus branchées sur la patte + mais sur la patte (-).

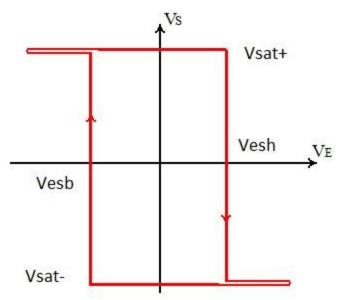



Figure 3-14: comparateur a 2 seuils inverseur

Sa courbe est donc l'inverse de la courbe d'un non inverseur

Graphe 3-4 : Vs en fonction de Ve du comparateur à 2 seuils inverseur

Pour calculer les seuils de basculement il faut utiliser la formule suivante :

$$Vesh = {Vref*R2+R1*Vsat+}/ {R1+R2}$$
 (3.11)

Vesb = {Vref*R2+R1*Vsat-}/ {R1+R2}

<u>Le Comparateur A fenêtre</u> [10]

Un comparateur à fenêtre fonctionne lui aussi en non linéaire mais il possède 2 ALI montés côte à côte. La fonction comparateur à fenêtre consiste à détecter si l'amplitude d'un signal est à l'intérieur ou à l'extérieur d'une « fenêtre » définie par un seuil haut et un seuil bas.

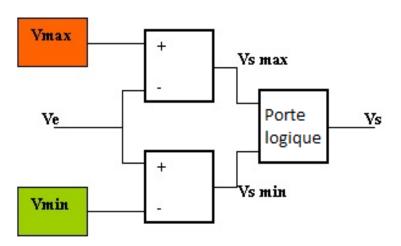
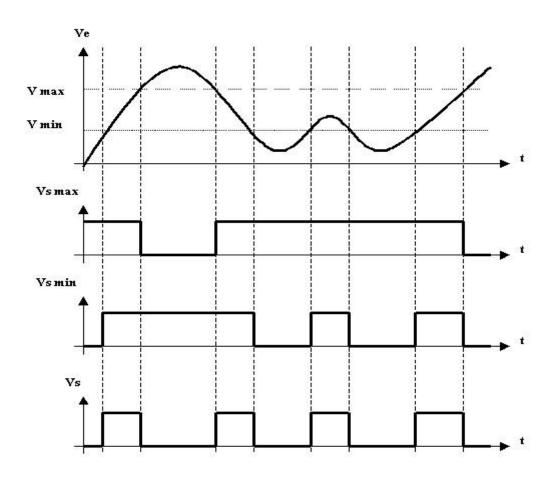



Figure 3-15 : comparateur a fenêtre

Graphe 3-5 : Exemple avec une fonction comparateur à fenêtre

CHAPITRE IX

Etude et réalisation d'une chaine colorimétrique

4-1 INTRODUCTION:

L'évolution des systèmes électroniques a connu un progrès important durant ces dernières années, cette évolution est devenue utilisable et applicable dans presque tous les domaines, de la technologie en particulier et de la science en général.

Cette évolution a permis l'amélioration de l'intelligence artificielle par utilisation de différentes techniques. L'une des applications les plus répandues c'est l'identification des caractéristiques chimiques d'une solution et la possibilité par suite de procéder à une certaine discrimination ; c'est le but effectivement de notre travail dans ce projet.

Dans ce chapitre on étudiera une chaine colorimétrique qui nous permettra la discrimination de différentes solutions et de faire la reconnaissance de la couleur et la composition chimique de chaque une d'entre elles. Cette chaine est basée sur les composants électroniques décrits dans les chapitres précédents ; On exploitant la technique d'un flux lumineux transmis après avoir traversé la cuve contenant une solution aqueuse.

4-2 Schéma synoptique de la chaine colorimétrique :

Le schéma bloc representent les differents fonctions de notre chaine colorimétrique est donné par la figure suivante.

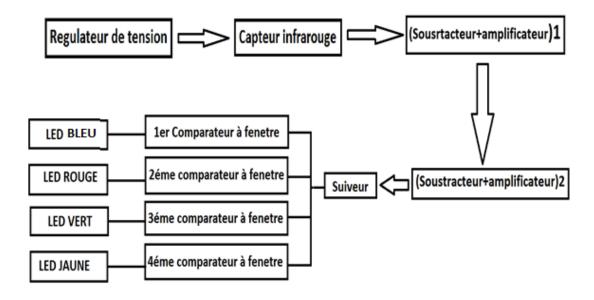


Figure 4-1 :Schéma synoptique d'une chaine colorimétrique

Chapitre VI : Etude et réalisation d'une chaine colorimétrie			rique		
	44				

4-4 Etude des differents étages de la chaine colorimétrique :

4-4-1 Régulateur de tension :

Le régulateur utilisé dans notre circuit est donné par la figure (4-3) suivante :

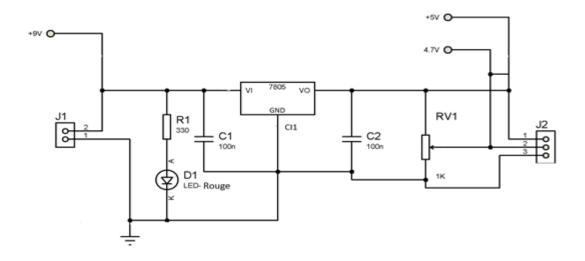


Figure 4-3 : schéma de régulateur de tension

Figure 4-4 : Photo du Régulateur de tension.

Du fait de la faible variation de la réponse de la photodiode (quelque microvolt), en fonction de la couleur d'une part et vu l'importance d'exploiter un flux lumineux cohérent incident de la LED d'autre part, pour avoir des conditions pratiques exploitables, il est donc important d'alimenter la chaine colorimétrique par une tension stable en utilisant un circuit à base d'un régulateur de tension de type LM7805 afin de générer 5V stable qui nous permettra de capter les tensions de sortie de nôtre chaîne correspondant aux différentes couleurs sans trop d'erreurs.

4-4-2 Dispositif utilisé à Capteur infrarouge :

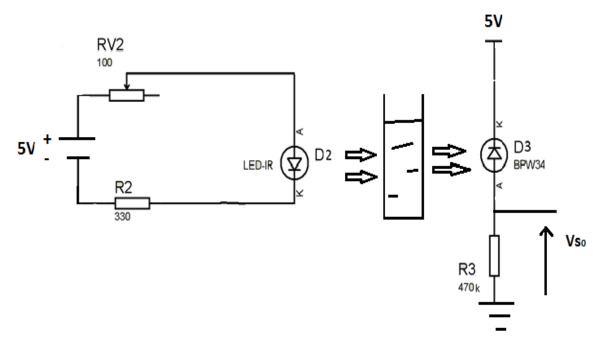


Figure 4-5 : Schéma électrique du dispositif utilisé à capteur infrarouge

Ce circuit est composé de trois parties principales :

-Partie émission :

Elle est constituée d'une LED infrarouge polarisé en direct alimenté par 5V régulier et stable reliée en série avec une résistance de 330 Ω (pour protection de la LED). Le tout représente le générateur du flux lumineux qui va éclairer la cuvette contenant une solution colorée.

-Partie réception :

Cette partie contient une photodiode de type BPW34 utilisé comme capteur sensible à la lumière infrarouge, polarisée on inverse et alimenté par 5V et relier à une résistance de 470 K Ω pour optimiser la mise en forme de la réponse obtenue par la photodiode en fonction du flux incident.

-Cuvette de solutions analysées :

Cette cuvette contenant la solution colorée à étudier est disposée en sandwich entre la partie d'émission et la partie de réception. Elle va recevoir un flux lumineux et transmettra à sa sortie une tension fonction des caractéristiques de la solution analysée.

4-4-3 Soustracteur-amplificateur 1:

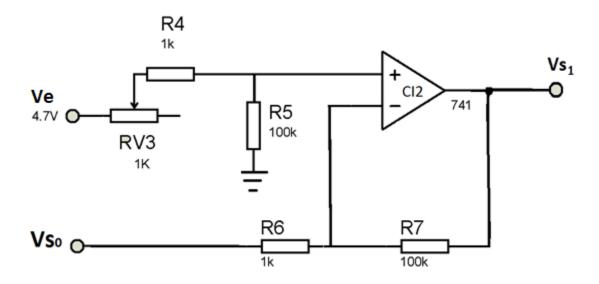


Figure 4-6: Schéma du soustracteur-amplificateur 1

Ce circuit va servir à éliminer la tension d'offset qui existe même en l'absence du mesurande. Il permettra également d'amplifier la tension de sortie qui est très faible. Ce circuit se présente sous forme d'un soustracteur à base d'amplificateur opérationnel le μ A741 qui permet d'avoir une tension de sortie nulle avant toute mesure et aussi de procéder à une amplification de cette tension lors des mesures (figure 4-5). Pour notre application nous avons utilisé un gain de 100.

Par l'application du théorème de *MILLEMAN* nous pouvons écrire les équations suivantes :

Chapitre VI: Etude et réalisation d'une chaine colorimétrique

$$e_{-} = \frac{\frac{V_{S1}}{R_7} + \frac{V_{s0}}{R_6}}{\frac{1}{R_7} + \frac{1}{R_6}}$$

(4.1)

$$e_{+}=rac{rac{V_{e}}{R_{4}}}{rac{1}{R_{4}}+rac{1}{R_{5}}}$$

(4.2)

On pose:

$$\begin{cases} e_{+} = e_{-} \\ R_{4} = R_{6} \end{cases} \longrightarrow V_{s1} = \frac{R_{7}}{R_{6}} (Ve - V_{s0}) \longrightarrow G_{diff} = \frac{V_{s1}}{Ve - V_{s0}} = \frac{R_{7}}{R_{6}} \\ R_{5} = R_{7} \qquad G_{diff} \approx 100 \qquad (4.3)$$

Vs1 est obtenue on faisant varier le potentiomètre afin de régler le zéro et cela avant de procéder à la mesure de la tension de sortie (tableau 4-1) :

Vert	Rouge	Bleu	Jaune
5.09 V	5.27 V	5.32 V	5.40 V

Tableau 4-1: Les tensions obtenues pour chaque couleur

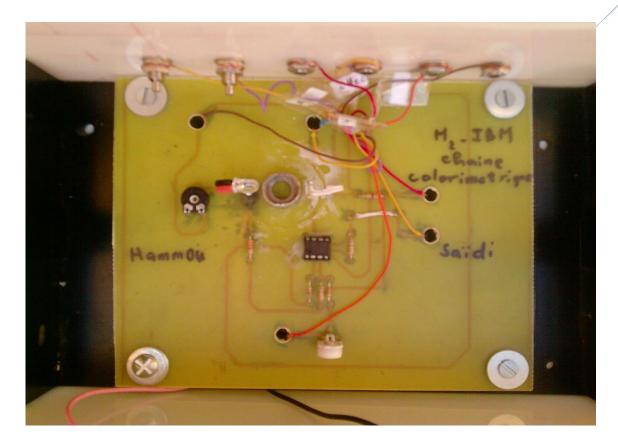


Figure 4-7 : Photo de dispositif à Capteur infrarouge +Soustracteur

4-4-4 Soustracteur-amplificateur 2:

Suivant les résultats obtenus (Tableau 4.1) il apparaît que la plage de variation de chaque couleur est encore étroite d'où la nécessité d'un deuxième soustracteur afin d'élargir l'intervalle de mesure afin de bien conditionner les plages pour une éventuelle discrimination des différentes couleurs et ceci par utilisation des comparateurs a fenêtre qu'on va détailler plus dans ce qui va suivre.

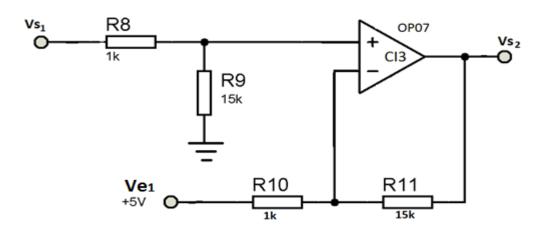


Figure 4-8 : Schéma de soustracteur-amplificateur 2

Nous avons adopté un gain de 15 afin de pouvoir travailler à l'intérieur de la fenêtre du comparateur.

$$e_{-} = \frac{\frac{V_{s2}}{R_{11}} + \frac{V_{e1}}{R_{10}}}{\frac{1}{R_{11}} + \frac{1}{R_{10}}}$$

(4.4)

$$e_{+} = \frac{\frac{V_{s1}}{R_{8}}}{\frac{1}{R_{8}} + \frac{1}{R_{9}}}$$

(4.5)

On pose:

$$\begin{cases} R_8 = R_{10} \\ R_{9=} R_{11} \end{cases} V_{s2} = \frac{R_{11}}{R_{10}} (V_{s1} - V_{e1}) \longrightarrow G_{diff2} = \frac{V_{s2}}{V_{s1} - V_{e1}} = \frac{R_{11}}{R_{10}}$$

$$G_{diff2} \approx 15$$
(4.6)

Sorties du soustracteur 2 servant à				
l'établissement des seuils	Vert	Rouge	Bleu	Jaune
Les tensions (V)	1.51	3.84	4.42	5.85

Tableau 4-2 : La mesure de chaque couleur à la sortie du soustracteur 2

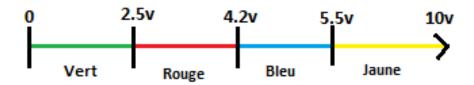


Figure 4-9: Les plages fixées avec les potentiomètres

Vérification par calcul:

> Pour la couleur verte :

$$e_{-} = \frac{\frac{V_{S2}}{R_{11}} + \frac{V_{e1}}{R_{10}}}{\frac{1}{R_{11}} + \frac{1}{R_{10}}} = \frac{V_{S2} + (15*Ve1)}{16}$$

Avec: Ve₁=5V

$$e_{+} = \frac{\frac{V_{S1}}{R_{8}}}{\frac{1}{R_{8}} + \frac{1}{R_{9}}} = \frac{15*V_{S1}}{16} = \frac{15*5.09}{16} = 4.77 \text{ v}$$

$$e_{-}=e_{+}$$
 \bigvee Vs₂ = 1.2 v (4.7)

Pour la couleur rouge :

$$e_{+} = \frac{\frac{V_{S1}}{R_{8}}}{\frac{1}{R_{8}} + \frac{1}{R_{9}}} = \frac{15 \times 5.27}{16} = 4.94 \text{ V}$$

$$e_{-} = e_{+} \qquad \qquad \bigvee V_{S2} = 3.9 \text{ V}$$
(4.8)

> Pour la couleur Bleu :

Pour la couleur jaune :

4-4-5 **Suiveur**:

Pour une meilleure adaptation d'impédance on prévoit d'utiliser un AOP TL081 en montage suiveur qui permet d'avoir cette adaptation d'impédance.

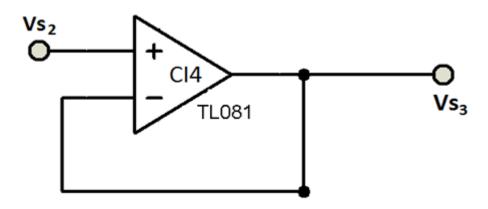


Figure 4-10 : Schéma de suiveur

3-4-6 Comparateur a fenêtre :

Comme nous nous somme basé sur l'étude d'une chaine colorimétrique à 4 couleurs il est indispensable d'utilisé 4 comparateurs a fenêtre a deux seuil qui permettra de délivrer une tension a l'état haut signifiant la présence de la couleur de la solution lorsque la tension utilisée est incluse dans la fenêtre du comparateur entre les deux tensions de seuils fixées pour chaque couleur. Cette discrimination de la couleur apparait au niveau des LED colorées.

Le schéma suivant nous montre le principe de fonctionnement d'un comparateur à fenêtre.

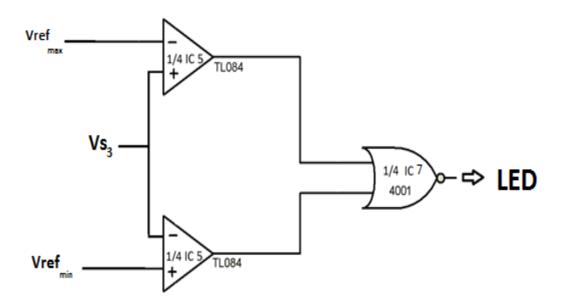


Figure 4-11 : Schéma pratique du comparateur a fenêtre

Cas du comparateur 1 :

Si:

 V_{s3} < $Vref_{max}$ donc la sortie du comparateur est à l'état bas.

 V_{s3} > $Vref_{max}$ donc la sortie du comparateur est à l'état haut.

Cas du comparateur 2 :

Si:

 V_{s3} < $Vref_{min}$ donc la sortie du comparateur est à l'état haut.

 V_{s3} > $Vref_{min}$ donc la sortie du comparateur est à l'état bas.

Et comme nous intéressons à des plages différentes pour chaque couleur comprise entre [$vref_{min}$, $vref_{max}$], la LED doit s'allumer dans cet intervalle.

C-à-dire on s'intéresse à l'état ou :

 V_{s3} < $Vref_{max}$ donc la sortie du comparateur est à l'état bas pour le comparateur 1

 V_{s3} > $Vref_{min}$ donc la sortie du comparateur est à l'état bas pour le comparateur 2

La LED ne s'allume que si : $Vref_{min} < V_{s3} < Vref_{max}$

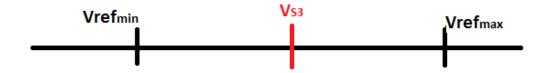


Figure 4-12 : Fenêtre de sortie du comparateur

D'où la nécessité d'utiliser une porte logique **NOR** car elle est à l'état haut que dans cette plage et par la suite elle délivre une tension pour que la LED s'allume et la table de vérité en dessous nous confirme ce raisonnement.

Α	В	NOR
0	0	1
0	1	0
1	0	0
1	1	0

Tableau 4-3 : table de vérité de la porte NOR

La figure suivant présente les 4 comparateurs ou les sorties des comparateur sont relieés au entrées des portes logique NOR dont les sorties sont chargées par des diodes électroluminescente.

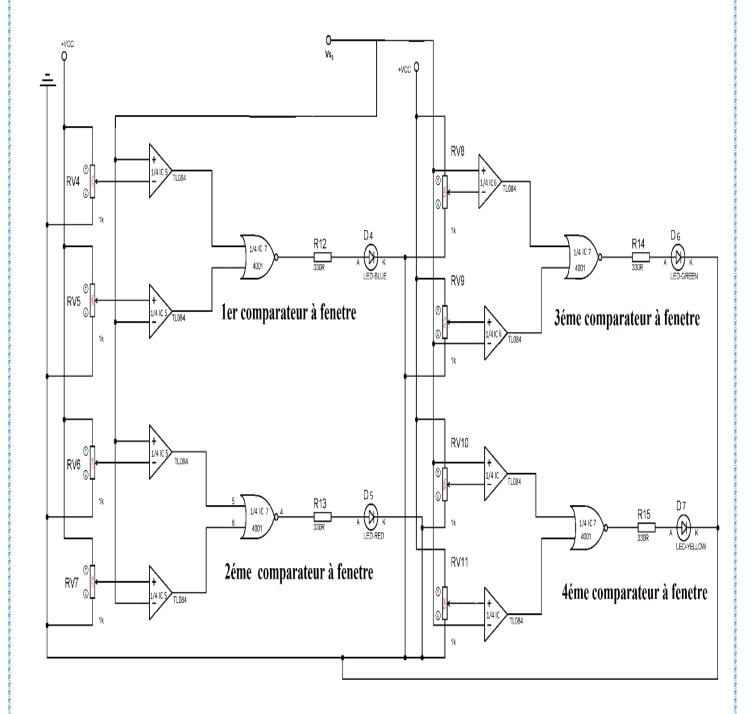


Figure 4-13 : Schéma des 4 comparateurs à fenêtre correspondant

aux 4 couleurs

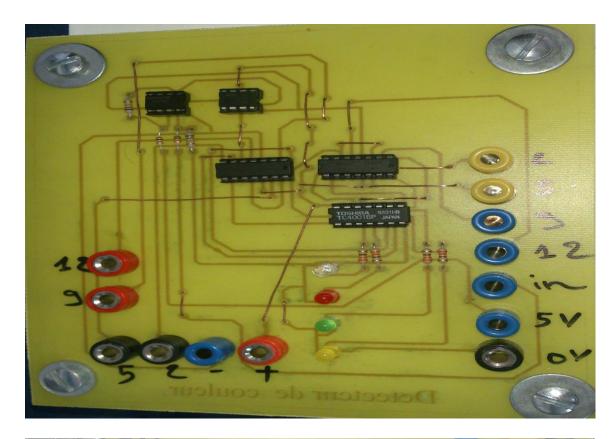
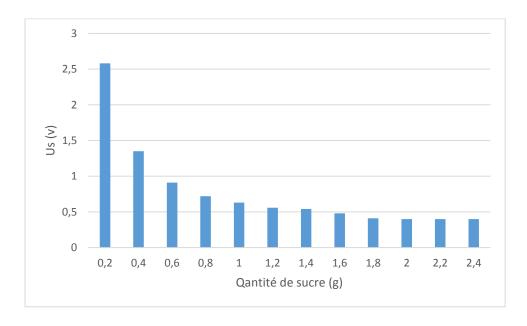


Figure 4-14 : Photo des 4 comparateurs à fenêtre utilisés et des potentiomètres d'ajustement des seuils


4-5 autre applications :

4-5-1 : Mesure de la teneur en sucre des solutions analysées :

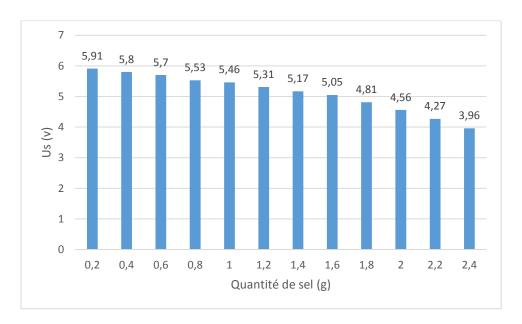
Les mesures obtenues en fonction des différentes doses des solutions sont données par le tableau suivant :

Quantité	0 ,2	0,4	0,6	0,8	1	1,2	1,4	1,6	1,8	2	2,2	2,4
de sucre												
Us(V)	2,58	1,35	0,91	0,72	0,63	0,56	0,54	0,48	0,41	0 ,40	0,40	0,40

Tableau 4-4: Mesures obtenues en fonction de la teneur en sucre des solutions Les mesures du tableau sont plus explicites par l'histogramme 4.1

Histogramme 4-1: Variation de la tension de sortie en fonction de la teneur en sucre

D'après cet histogramme concernant la teneur en sucre nous remarquons que la tension de sortie mesurée est fonction de la quantité de sucre. On remarque aussi qu'à partir de la quantité de sucre de 1.8g la tension de sortie mesurée parait se stabiliser. Ceci est dû certainement aux dimensions géométriques de la cuve utilisée ; une cuve plus grande pourrait solutionner ce problème et donc le système utilisé permettra de mieux suivre l'évolution de la quantité de sucre existant dans la solution analysée...


4-5-2 : Mesure de la teneur en sel des solutions analysées :

De même que pour la teneur en sucre nous avons également procéder à augmenter la dose du sel dans les solutions et de mesurer la tension de sortie. Les mesures obtenues sont regroupées dans le Tableau 4.5

Quantité de sel(g)	0 ,2	0,4	0,6	0,8	1	1,2	1,4	1,6	1,8	2	2,2	2,4
Us(V)	5,91	5,80	5,70	5,53	5,46	5,31	5,71	5,05	4,81	4,56	4,27	3,96

Tableau 4-5: Mesures obtenues en fonction de la teneur en sel des solutions

L'histogramme 4.2 donne un aperçu très clair de la variation de la tension de sortie en fonction de différentes doses du sel dans la solution analysée. On remarque également ici que cette tension est fonction de l'augmentation de la dose du sel.

Histogramme 4-2: Variation de la tension de sortie en fonction de la teneur en sel

4-5-3 : Mesure de la qualité d'eau :

Dans cette partie on se propose d'utiliser plusieurs types d'eau minérale et de mesurer la tension de sortie pour chacune d'entre-elle (tableau 4.6)

Eau	LALA KHADIDTA	MANSOURA	IFRI	AYRAS	SAIDA	ROBINET
Us (V)	6,15	5,87	5,64	5,43	5,31	5,18

6,4 6,15 6,2 6 5,87 5,8 5,64 Us(V) 5,6 5,43 5,4 5,31 5,18 5,2 5 4,8 4,6 LALA KHADIDJA MANSOURA IFRI **AYRIS** SAIDA ROBINET Qualité d'eau

Tableau 4-6: Mesures obtenues en fonction de la qualité d'eau

Histogramme 4-3 : Variation de la tension de sortie en fonction de la qualité d'eau

Sur la base des mesures du tableau 4.6 et de l'histogramme correspondant tracé on peut voir que c'est l'eau minérale « Lalla khadidja » qui se classe en premier du point de vue qualité et que l'eau du robinet vient à la toute dernière place.

Conclution

Les résultats obtenus par l'utilisation de notre chaine colorimétrique sont très satisfaisants du fait qui il a été possible pratiquement de déceler et de s'assurer de la couleur de diverses solutions liquides.

Un système d'affichage à base de comparateurs à fenêtre a aidé énormément dans la discrimination des couleurs de ces substances.

Un second travail a été abordé et qui consistait à utiliser la chaîne colorimétrique déjà conçue pour essayer de vérifier le lien existant entre la grandeur de sortie (tension) et la variation du sel (ou du sucre) considéré comme mesurande cette fois-ci. Les résultats obtenus ont été très satisfaisant vu que la tension de sortie de nôtre chaîne variait effectivement en fonction de la variation de la quantité du sel (ou du sucre) pouvant donc ainsi estimer et suivre la teneur de ces deux condiments.

Une troisième partie qui consistait à procéder à des mesures en utilisant différentes eaux minérales a également permis d'aboutir à des résultats des plus confortables. Il s'est avéré ainsi que l'eau minérale *Lalla Khadija* était à la tête des différentes eaux dans cette analyse de la qualité de l'eau ce qui concordait effectivement avec les données de la qualité d'eau minérale fournies par le service de contrôle de la wilaya de Tlemcen.

Un étalonnage a été au préalable opéré afin de mieux préparer la tension de sortie pour qu'elle soit efficacement et fidèlement mesurée et appréciée.

NOMENCLATURE

• Les résistances :

 $R1 = R2 = R12 = R13 = R14 = R15 = 330 \Omega$

 $R3 = 470 \text{ K}\Omega$

 $R4 = R6 = R8 = R10 = 1 K \Omega$

R5 = R7 = 100 K Ω

R9 = R11 = 15 K Ω

• Les résistances variables :

 $RV1 = RV3 = RV4 = RV5 = RV6 = RV7 = RV8 = RV9 = RV10 = RV11 = 1K \Omega$

 $RV2 = 100 \Omega$

• Les capacités :

C1 = C2 = 100 nF

• Les diodes :

D1: LED-ROUGE

D2: LED-IR

D3: BPW34

D4: LED-BLEU

D5: LED-ROUGE

D6: LED-VERT

D7: LED-JAUNE

• Les circuits intégrés :

CI1: LM7805

 $CI2: \mu A 741$

CI3: OP07

CI4: TL081

 $1/_4$ CI5 = $1/_4$ CI6 = TL084

 $\frac{1}{4}$ CI7 : 4001

: TL084

• Divers:

J1: Bornier 2 pattes.

J2: Bornier 3 pattes

Bibliographie

- [1] Mr Hadjoui Abdelkrim . « étude et réalisation d'une télécommande à infrarouge » (PFE) Dirigée par : Mme BOUAZZA. A (1997)
- [2] Olivier français. Capteur et électronique associée. ESIEE (2000)

http://www.esiee.fr/~francaio/enseignement/version_pdf/II_capteurs.pdf

- [3] Mr Bouzidi Ahmed. « Discrimination des métaux » (PFE) Dirigé par : Mr.SM. Debbal (2006/2007)
- [4] Mr.Belmir .M et Mr .Fellah. « A. étude et réalisation d'une Barrière infrarouge »
 - (PFE) Dirigé par : Mr. Kerai.S (2002/2003)
- [5] JOEL REDOUTEY. « Introduction au dispositif optoélectronique utilisé en Electronique de puissance ». Edition : centre de Marseille

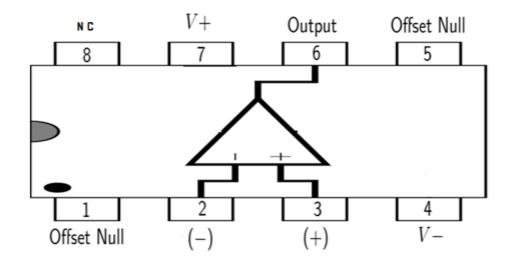
http://jredoutey.free.fr/Puissance/Dispositifs optoelectroniques.pdf

[6] Opto électronique - Académie de Nancy-Metz

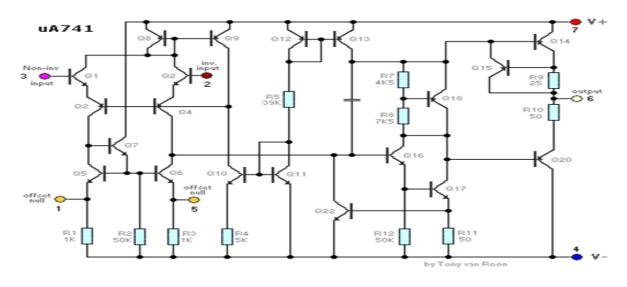
http://www.ac-nancy-metz.fr/presetab/loritz/pre_bac/ssi/cours/electronique/Optoelec/optoelec.htm

- [7] Mr.Sebbagh Mouhamed «étude et analyse des capteurs optoélectroniques, réalisation d'un émetteur récepteur IR» (PFE) dirigé par : Mr.Rahmoun .Fethi (1997/1998)
- [8] Anne LHERITIER. « Electronique mécanique supplément (page 206) ». Encyclopédie des sciences industrielles Quillet. 1986. Collection publiée par : CLAUDE BELLENAND
- [9] LUDOVIC LAMBIN. « L'amplificateur Opérationnel (cours) ».

http://www.lelectronique.com

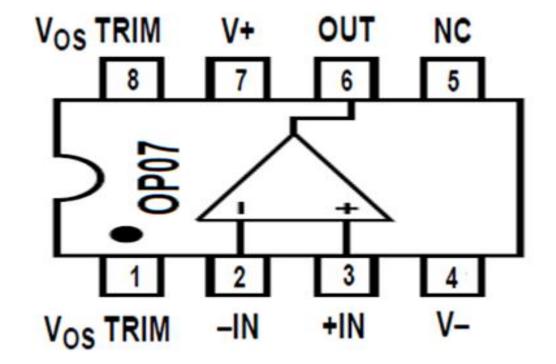

http://www.sen-bretagne.net/Documents/Lille-Epil/Cours/Analogique/AOP/Cours%20A.O.P/L%E2%

[10] « Chapitre 9 : Les ALI En Mode Non Linéaire»

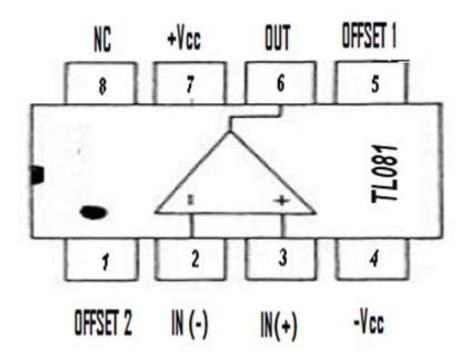

http://ashido.free.fr/Electronique_facile/Chapitre_9.php

ANNEXES

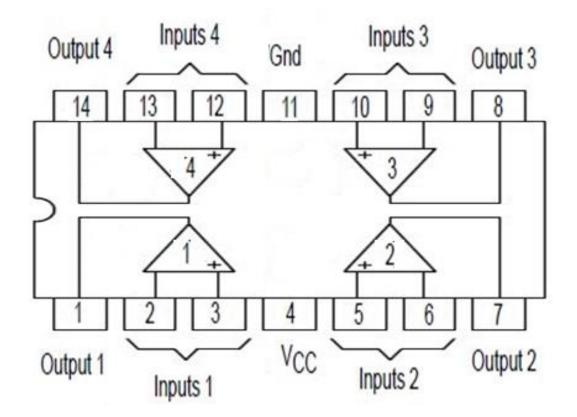
Annexe 1


BROCHAGE DU CIRCUIT μA 741

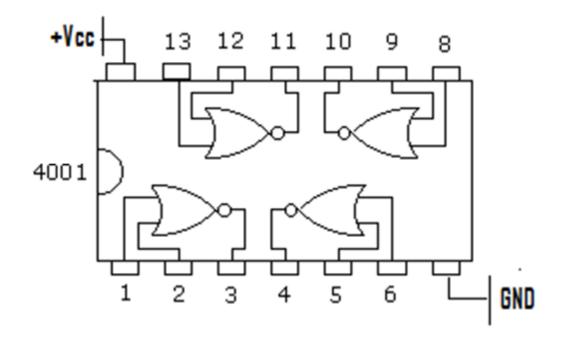
Structure interne du µA 741


Annexe 2

NC = NO CONNECT


BROCHAGE DU CIRCUIT OP07

Annexe 3

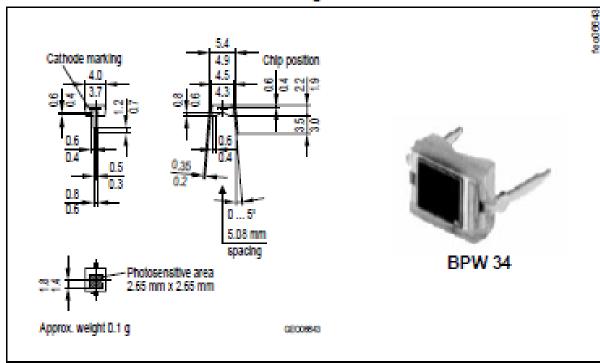


BROCHAGE DU CIRCUIT TL 81

Le TL 084 est constitué de 4 amplificateurs opérationnels de types TL081

ROCHAGE DU CIRCUIT TL 84

BROCHAGE DU CIRCUIT CMOS 4001


Silizium-PIN-Fotodiode

NEU: in SMT und als Reverse Gullwing

Silicon PIN Photodiode

NEW: in SMT and as Reverse Gullwing

BPW 34 BPW 34 S BPW 34 S (E9087)

Maße in mm, wenn nicht anders angegeben/Dimensions in mm, unless otherwise specified.

Wesentliche Merkmale

- Speziell geeignet für Anwendungen im Bereich von 400 nm bis 1100 nm
- Kurze Schaltzeit (typ. 20 ns)
- DIL-Plastikbauform mit hoher Packungsdichte
- BPW 34 S/(E9087): geeignet für Vapor-Phase Löten und IR-Reflow Löten (JEDEC level 4)

Anwendungen

- Lichtschranken für Gielch- und Wechsellichtbetrieb
- IR-Fernsteuerungen
- Industrieelektronik
- "Messen/Steuern/Regeln"

Features

- Especially suitable for applications from 400 nm to 1100 nm
- Short switching time (typ. 20 ns)
- DIL plastic package with high packing density
- BPW 34 S/(E9087): suitable for vapor-phase and IR-reflow soldering (JEDEC level 4)

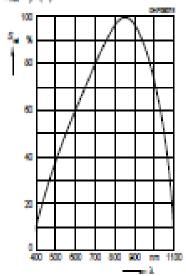
Applications

- PhotoInterrupters
- IR remote controls
- Industrial electronics
- For control and drive circuits

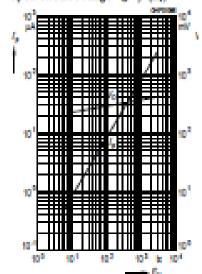
Maximum Ratings

Bezeichnung Description	Symbol Symbol	Wert Value	Einheit Unit
Betriebs- und Lagertemperatur Operating and storage temperature range	T_{op} : T_{stg}	- 40 + 85	°C
Sperrspannung Reverse voltage	$V_{\rm R}$	32	V
Verlustleistung, T _A = 25 °C Total power dissipation	P _{tot}	150	mW

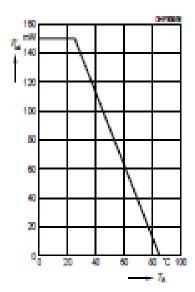
Kennwerte ($T_{\rm A}$ = 25 °C, Normlicht A, T = 2856 K) Characterístics ($T_{\rm A}$ = 25 °C, standard light A, T = 2856 K)


Bezeichnung Description	Symbol Symbol	Wert Value	Einheit Unit
Fotoempfindlichkeit, $V_{\rm R}$ = 5 V Spectral sensitivity	S	80 (≥ 50)	nA/Ix
Wellenlänge der max. Fotoempfindlichkeit Wavelength of max. sensitivity	λ _{5 max}	850	nm
Spektraler Bereich der Fotoempfindlichkeit S = 10 % von S_{max} Spectral range of sensitivity S = 10 % of S_{max}	λ	400 1100	nm
Bestrahlungsempfindliche Fläche Radiant sensitive area	A	7.00	mm ²
Abmessung der bestrahlungsempfindlichen Fläche Dimensions of radiant sensitive area	L×B L×W	2.65 × 2.65	mm×mm
Halbwinkel Half angle	φ	± 60	Grad deg.
Dunkelstrom, V_R = 10 V Dark current	$I_{\mathbb{R}}$	2 (≤ 30)	nA
Spektrale Fotoempfindlichkelt, λ = 850 nm Spectral sensitivity	S_{λ}	0.62	A/W
Quantenausbeute, λ = 850 nm Quantum yield	η	0.90	<u>Electrons</u> Photon
Leerlaufspannung, E_v = 1000 lx Open-circuit voltage	V _o	365 (≥ 300)	mV

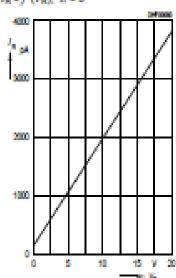
Characteristics ($T_{\rm A}$ = 25 °C, standard light A, T = 2856 K) (cont'd)


Bezeichnung Description	Symbol Symbol	Wert Value	Einheit Unit
Kurzschlußstrom, $E_{\rm v}$ = 1000 lx Short-circuit current	I _{sc}	80	Αц
Anstlegs- und Abfallzelt des Fotostromes Rise and fall time of the photocurrent $R_{\rm L}$ = 50 Ω ; $V_{\rm R}$ = 5 V; λ = 850 nm; $I_{\rm p}$ = 800 $\mu{\rm A}$	t, t	20	ns
Durchlaßspannung, $I_{\rm F}$ = 100 mA, E = 0 Forward voltage	V _F	1.3	V
Kapazítát, V_R = 0 V, f = 1 MHz, E = 0 Capacítance	C ₀	72	pF
Temperaturkoeffizient von V_{o} Temperature coefficient of V_{o}	TC _v	- 2.6	mV/K
Temperaturkoeffizient von $I_{\rm sc}$ Temperature coefficient of $I_{\rm sc}$	TC ₁	0.18	%/K
Rauschäquivalente Strahlungsleistung Noise equivalent power $V_{\rm R}$ = 10 V, λ = 850 nm	NEP	4.1 × 10 ⁻¹⁴	<u>₩</u> √Hz
Nachweisgrenze, $V_{\rm R}$ = 10 V, λ = 850 nm Defection limit	D'	6.6 × 10 ¹²	<u>cm · √Hz</u> W

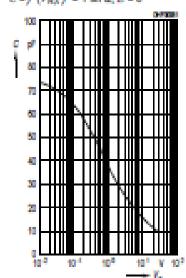
Relative spectral sensitivity


 $S_{\text{rel}} = f'(\lambda)$

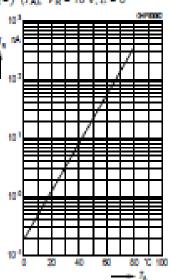
Photocurrent $I_p = f(E_v)$, $V_R = 5 \text{ V}$ Open-circuit voltage $V_D = f(E_v)$



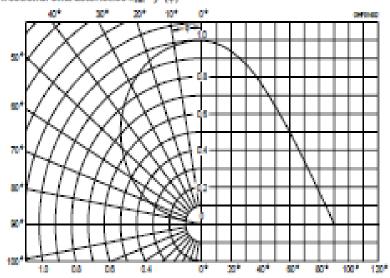
Total power dissipation $P_{tot} = f(T_A)$


Dark current

 $I_R = f(V_R), E = 0$


Capacitance

 $C = f(V_R), f = 1 \text{ MHz}, E = 0$



Dark current

 $I_R = f(T_A), V_R = 10 \text{ V}, E = 0$

Directional characteristics $S_{\text{tal}} = f(\phi)$

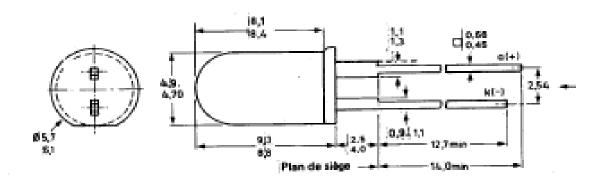
diode électroluminescente infrarouge

CQY 89 A

Diode électroluminescente au GaAs, en bolitier SOD-63 B2, diamètre 5 mm coloré en bleu très «--sombre.

Elle émet dans l'infrarouge quand elle est polarisée en direct.

Elle est destinée aux applications dans la commande à distance.


Elle est sélectionnée en deux classes d'intensité énergétique.

CARACTERISTIQUES PRINCIPALES						
Tension inverse	v _R	max	5	٧		
Courant direct en continu	lp.	max	130	mA		
Puissance totale dissipée à T _{amb} ≤25°C	Poort	max	215	m/W		
Intentité énergétique à Iç = 100 mA CQY89A-I	l _e	typ	15	mW/sr		
CQY89A-II	t _o	typ	22	mW/w		
Température de jonction	T_{j}	max	100	°C		
Longueur d'onde du pic d'émission	λp	typ	930	nm		
Angle d'émission à mi-intensité	0 10	typ	40	6		

DONNEES MECANIQUES

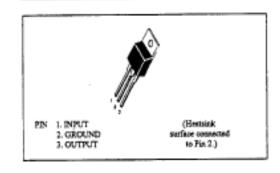
Dimensions en mm

BOITIER SOD63 B2

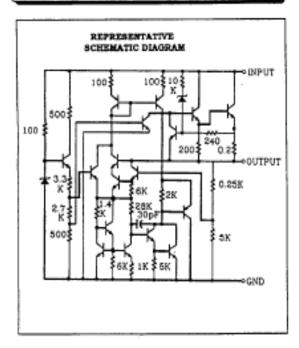
LM7800 Series 3-Terminal Fixed Voltage Regulators

THREE-TERMINAL POSITIVE VOLTAGE REGULATORS

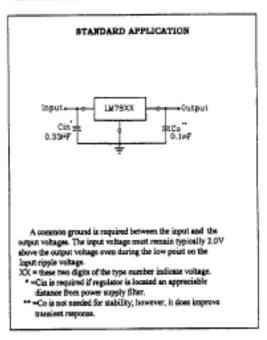
These voltage regulators are monolithic integrated circuits designed as fixed-voltage regulators for a wide variety of applications including local, oncard regulation. These regulators employ internal current limiting, thermal shutdown, and safe-area


FEATURES

- Output Current in Excess of 1.5 Ampere
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short-Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Output Voltage Offered in 2% Tolerance


compensation. With adequate heatsinking they can deliver output currents in excess of 1.5 ampere.

Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents.


PIN ARRANGEMENT

CIRCUIT SCHEMATIC

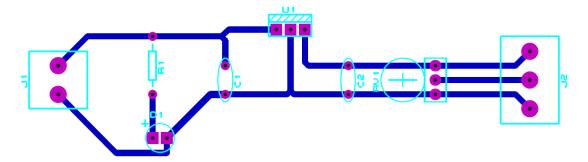
TYPICAL CONNECTING CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta=25t)

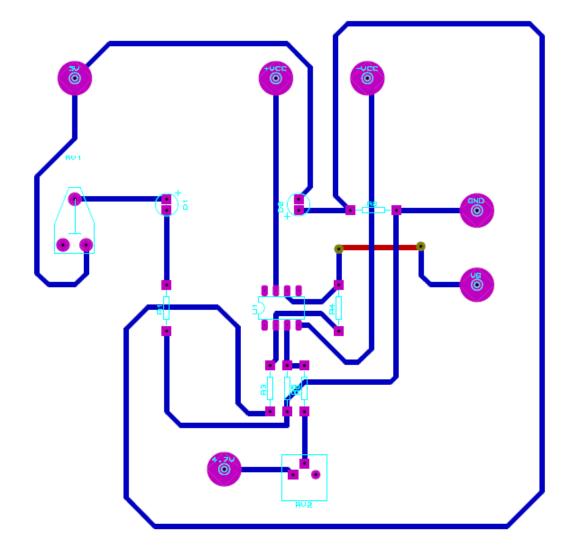
ltem	Symbol	LM7800 Series	Unit	
Input Voltage	Vin *	30	V	
Input Voltage	Vin **	40	V	
Power Dissipation	Po***	15	W	
Operating Ambient Temperature	Topr	-20 to +75	\mathcal{C}	
Operating Junction Temperature	Tj	-20 to +125	Ċ	
Storage Temperature	Tstg	-55 to +125	Ť	

Note: *LM7805 to LM7818

** LM7824


***Follow the derating curve

LM7805 ELECTRICAL CHARACTERISTICS


(Vin=10V, lout=500mA, $0\tau \le Tj \le 125\tau$, Cin=0.33 μ F, Cout=0.1 μ F; unless otherwise specified.)

ltem	Symbol	Test Conditions		min.	typ.	max.	unit
		Tj=25℃		4.90	5.0	5.10	V
Output Voltage	Vout	7V≤Vin≤20V, 5nA≤lout≤1.0A, Po≤15W		4,85		5.15	V
			7V4Vins25V	-	3	100	mV
Line Regulation	REGline	Tj=25℃	8VsVins12V	-	1	50	mV
			5mAslouts1.5A	-	13	100	mV
Load Regulation	REGload	Tj=25%	250mAslouts750mA	-	5	50	mV
Quiescent Current	Iq	Tj=25 °C, li	Tj=25℃, lout=0		4.2	8,0	mA
		7V≤Via≤2	7V≤Vin≤25V			1.3	mA
Quiescent Current Change	Δlq	5mAsTouts1.0A			***	0.5	mA
Output Noise Voltage	Vn	Ta=25 °C.	Ta=25°C, 10Hzsfs100KHz		40		_{p.} V
Ripple Rejection Ratio	RR	f=120f-iz		62	78	-	dB
Voltage Drop	Vdrop	lout=1.0A, Tj=25°c		-	2.0	-	V
Output Resistance	Rout	f=1KHz		**	17		mΩ
Output Short Circuit Current	los	Tj=25℃			750		mA
Peak Output Current	lo peak	Tj=25℃		-	2.2		A
Temperature Coefficient of Output Voltage	△ Vout/ △ Tj	lout=5mA, 0℃ ≤Tj≤125℃		-	-1.1	-	mV/⁴c

1/ Circuit imprimé du regulateur de tension

2/ Circuit imprimé du capteur infrarouge et soustracteur1.

3/ circuit imprimé des 4 comparateur à fenêtre +Soustracteur2+Suiveur

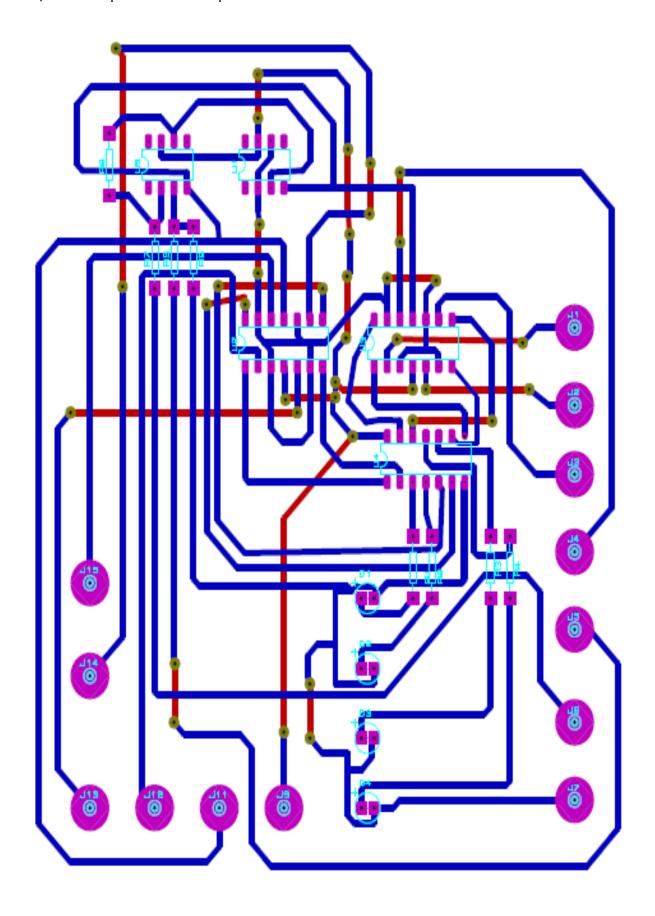


Photo de la chaine colorimétrique réalisée de notre progé de fin d'étude

Résumé

La colorimétrie est la science qui permet de déterminer les propriétés ou caractéristique d'un objet en fonction de sa couleur. Plus particulièrement, c'est la science de la couleur qui permet de quantifier c'est à dire de chiffrer la couleur d'un corps ou solution.

Différents systèmes électroniques sont ainsi développés pour la détection des grandeurs physiques.

Dans ce travail, qui en est fait consiste en une réalisation pratique une chaîne colorimétrique, on s'est intéressé à l'étude et la réalisation d'un dispositif permettant la détection et la mesure d'une tension, pouvant permettre de détecter la couleur d'une solution mise dans une cuvette d'analyse, et ceci par l'utilisation d'un système d'émission et de réception d'un rayon optique.

L'affichage se fait par des LED colorées pouvant facilement aidé à connaître le résultat de l'analyse.

Cette même chaine peut être également utilisée à d'autres fins telles que la mesure de la teneur en sel ou sucre d'une solution ainsi que du contrôle de la qualité d'une eau minérale. Les résultats obtenus ont pu démontrer la relation étroite qui existe entre le mesurande utilisé (teneur ou qualité de l'eau) et la tension de sortie mesurée.

Abstract

Colorimetry is the science that determines the properties or characteristics of an object based on its color. More specifically, it is the science of color to quantify i.e. encrypt the color of a body or solution.

Various electronic systems are well developed for the detection of physical quantities.

In this work, which makes a practical realization consists of a color channel, attention has been directed to the design and manufacture of a device for detecting and measuring a voltage, which may enable detection of color solution placed in a cuvette, and this by use of a transmitting and receiving an optical beam system. The display is make by colored LED can easily help to know the result of the analysis.

This same channel can be used also for other purposes such as measurement of the content of sugar or salt solution and the quality control of a mineral water. The results have demonstrated the close relationship between the measurand used (grade or quality of the water) and measured output voltage.