IV.1 – Introduction

Les spectres des ions de type hydrogénoïde (i .e. ions à un électron) incluant les raies satellites associées sont d'une importance fondamentale pour l'étude de la physique des ions fortement ionisés ainsi que pour leur interprétation en tant que diagnostic potentiel des conditions de température et de densité des plasmas émissifs[1].

Dans ce mémoire, nous nous intéressons aux raies de résonance Ly- α_1 (2p ²P_{3/2} \rightarrow 1s ²S_{1/2}), Ly- α_2 (2p ²P_{1/2} \rightarrow 1s ²S_{1/2}) et à la raie interdite M1(2s ²S_{1/2} \rightarrow 1s ²S_{1/2}) émises par les ions hydrogénoïdes et aux raies satellites de recombinaison diélectronique dues aux transitions de type $2l2l' \rightarrow 1s2l''$ émises par les ions héliumoïdes. Nous avons cherché à calculer le rapport des intensités des raies satellites de recombinaison diélectronique dans l'ion Ca¹⁸⁺ sur celles des raies Ly- α_1 , Ly- α_2 et M1 émises par les ions hydrogénoïdes Ca¹⁹⁺, qui apparaissent dans le domaine de longueur d'onde 3.017–3.080 Å en fonction de la température électronique T_e de plasma émissif variant de 5 ×10⁶ à 35 ×10⁶ K.

Les raies satellites dues aux transitions $2l2l' \rightarrow 1s2l''$ sont issues des états autoionisants doublement excités situés au dessus de la limite de première ionisation de l'ion héliumoïde. Les niveaux 2l2l' ne peuvent pas être peuplés efficacement par excitation par impact d'électrons à partir du niveau fondamental $1s^{2} {}^{1}S_{0}$ car cela implique une double excitation collisionnelle, ce qui est très rare. L'excitation des niveaux 2l2l' à partir des états excités 1s2lne devient importante que lorsque la densité d'électrons dans le plasma est très élevée (dépassant $\approx 10^{21}$ cm⁻³). Pour cette raison, dans les plasmas à basses densités qui nous intéressent ici les raies satellites d'ions hydrogènoïdes sont produites essentiellement par le processus de recombinaison diélectronique [1].

Dans notre cas de plasma chaud et peu dense où la température est très élevée de l'ordre de 5×10^6 à 35×10^6 K, les processus atomiques les plus dominants sont la recombinaison diélectronique et le processus d'excitation collisionnelle à partir du niveau fondamental 1s ${}^2S_{1/2}$ vers les quinze niveaux de nombre quantique n = 2, 3 et 4 de l'ion Ca¹⁹⁺. L'excitation collisionnelle vers les niveaux de nombre quantique n = 3 et 4 permet de tenir

compte des cascades radiatives issus de ces niveaux n = 3 et n = 4 dans les populations de chacun des trois niveaux de n = 2. On a aussi inclus la recombinaison radiative des ions nus Ca²⁰⁺ comme processus supplémentaire contribuant à l'intensité des raies Ly- α_1 , Ly- α_2 et M1.

IV.2 – Cascades radiatives

Un niveau excité peut être peuplé par excitation collisionnelle à partir du niveau fondamental soit directement ou indirectement via des transitions radiatives spontanées à partir des niveaux d'énergies supérieures. Par exemple, la figure ci-dessous montre que le niveau $2p^2P_{1/2}$ est peuplé par excitation collisionnelle directe à partir du niveau fondamental 1s ${}^2S_{1/2}$ et par désexcitation radiative spontanée à partir des niveaux n = 3 et 4 qui sont eux-mêmes peuplés par excitation collisionnelle à partir du niveau fondamental.

Figure 2 : Diagramme présentant les trois raies $Ly\alpha_1$, $Ly\alpha_2$ et M1.

Le niveau 2s ${}^{2}S_{1/2}$ se situe légèrement au-dessus du niveau 2p ${}^{2}P_{1/2}$ avec une séparation due au déplacement de Lamb alors que le niveau 2p ${}^{2}P_{3/2}$ est situé bien au-dessus avec une séparation due à l'interaction spin-orbite. Dans des conditions de faibles densités, le niveau 2s ${}^{2}S_{1/2}$ se désexcite de préférence vers le fondamental par une transition dipôlaire magnétique avec la probabilité *A* (M1), et il n'y a pas de transfert collisionnel vers les niveaux ${}^{2}P$. Lorsque la densité s'élève au-dessus d'une valeur critique, le transfert collisionnel s'installe et devient de plus en plus important. La valeur critique est déterminée par la compétition des processus collisionnels dans *n* = 2 avec le taux de désexcitation total de 2s ${}^{2}S_{1/2}$ vers le fondamental [1].

IV.3 – Intensité relative des raies de résonance

L'intensité de la raie de résonance Ly- α_1 due à la transition du niveau supérieur 2p ${}^2P_{3/2}$ vers le niveau inferieur 1s ${}^2S_{1/2}$ dans l'ion Ca¹⁹⁺ est exprimée en unité de eV cm⁻³ s⁻¹ comme:

$$I(2p^{2}P_{3/2} \to 1s^{2}S_{1/2}) = N(2p^{2}P_{3/2})A(2p^{2}P_{3/2} \to 1s^{2}S_{1/2})hv$$
 (IV-1)

où $N(2p {}^{2}P_{3/2})$ désigne la densité de l'ion Ca¹⁹⁺ dans le niveau supérieur 2p ${}^{2}P_{3/2}$ (en cm⁻³), $A(2p {}^{2}P_{3/2} \rightarrow 1s {}^{2}S_{1/2})$ est la probabilité de transition spontanée du niveau $2p {}^{2}P_{3/2}$ vers le niveau $1s {}^{2}S_{1/2}$ (en s⁻¹), et hv est l'énergie du photon émis lors de la transition (en eV) [2-4]. Cette équation est valable dans le cas où le plasma est supposé optiquement mince, ce qui signifie que le transfert radiatif est négligeable. Cette supposition constitue une bonne approximation pour les plasmas que nous considérons.

L'équation (IV-1) peut être réécrite comme :

$$I_{Ly\alpha_1} = N(1s^2 S_{1/2}) n_e C_{tot} (1s^2 S_{1/2} \rightarrow 2p^2 P_{3/2}) + N(Ca^{20+}) n_e C_{RR} (2p^2 P_{3/2})$$
(IV-2)

où $N(1s {}^{2}S_{1/2})$ est la densité de l'ion Ca¹⁹⁺ dans le niveau fondamental 1s ${}^{2}S_{1/2}$ (en cm⁻³), $C_{tot}(1s {}^{2}S_{1/2} \rightarrow 2p {}^{2}P_{3/2})$ est le coefficient de taux d'excitation total (cm³s⁻¹), N (Ca²⁰⁺) est la densité de l'ion nu de calcium, et $C_{RR}(2p {}^{2}P_{3/2})$ est le coefficient de taux de recombinaison radiative vers le niveau supérieur $2p {}^{2}P_{3/2}$.

L'équation (IV-2) devient :

$$I_{Ly-\alpha_1} = n_e N(Ca^{19+}) \left[C_{tot} \left(1s^2 S_{1/2} \rightarrow 2p^2 P_{3/2} \right) + \frac{N(Ca^{20+})}{N(Ca^{19+})} C_{RR} \left(2p^2 P_{3/2} \right) \right]$$
(IV-3)

où $N(Ca^{20+})/N(Ca^{19+})$ est le rapport d'abondance des ions Ca^{20+} par rapport aux ions Ca^{19+} à l'équilibre d'ionisation. Ce rapport est déterminé par :

$$\frac{N(Ca^{20+})}{N(Ca^{19+})} = \frac{S_i}{C_{RR}}$$

où S_i est le coefficient de taux d'ionisation des ions hydrogénoîdes Ca^{20+} et C_{RR} représente le coefficient de taux total de recombinaison radiative des ions nus. L'équation (*IV*-3) est aussi valable pour la raie de résonance $Ly - \alpha_2$ $(2p \, {}^2P_{1/2} \rightarrow 1s \, {}^2S_{1/2})$ et la raie interdite $M1(2s \, {}^2S_{1/2} \rightarrow 1s \, {}^2S_{1/2})$. Il suffit alors de remplacer $2p \, {}^2P_{3/2}$ par $2p \, {}^2P_{1/2}$ pour Ly $- \alpha_2$ et par $2s \, {}^2S_{1/2}$ pour M1.

IV.4 – Données atomiques

Pour obtenir de manière efficace l'intensité des raies Ly- α et M1 nous avons besoin de connaître avec précision le coefficient de taux d'excitation collisionnelle à partir de l'état fondamental vers les niveaux n = 2 2s ${}^{2}S_{1/2}$, 2p ${}^{2}P_{1/2}$ et 2p ${}^{2}P_{3/2}$ directement et via les cascades radiatives et en tenant compte également de la contribution de l'excitation résonnante.

On a effectué les calculs des coefficients de taux d'excitation directe des ions hydrogénoïdes Ca¹⁹⁺ à partir du niveau fondamental 1s ${}^{2}S_{1/2}$ vers les différents niveaux n = 2, 3 et 4 pour plusieurs valeurs de la température électronique T_{e} . Ces coefficients de taux sont calculés en utilisant des données de forces de collision que nous avons obtenues avec le code FAC (Flexible Atomic Code) développé par Gu en 2003. L'intégration sur l'énergie des forces de collision à partir de la formule (II–13) du chapitre 2 (faisant intervenir la distribution d'énergie de Maxwell) a été réalisée numériquement au moyen de **Mathematica**.

Le tableau 1 présente nos résultats des coefficients de taux d'excitation à partir du niveau fondamental vers chacun des 15 niveaux de nombre quantique principal n = 2, 3 et 4, pour dix valeurs de la température T_e allant de 5×10⁶ à 3.5×10⁷ K.

Calculs de rapports d'int	tensité des raies
---------------------------	-------------------

Excitation			$T_{\rm e} (10^6{\rm K})$		
$(i \rightarrow j)$	5.0	8.0	10.0	12.0	15.0
$1s {}^2S_{1/2} \rightarrow 2p {}^2P_{1/2}$	3.68 [-16]	1.06 [-14]	3.19 [-14]	6.56 [-14]	1.34 [-13]
$1s^{2}S_{1/2} \rightarrow 2s^{2}S_{1/2}$	2.57 [-16]	7.25 [-15]	2.14 [-14]	4.32 [-14]	8.59 [-14]
$1s {}^2S_{1/2} \rightarrow 2p {}^2P_{3/2}$	7.09 [-16]	2.06 [-14]	6.19 [-14]	1.28 [-13]	2.60 [-13]
$1s {}^2S_{1/2} \rightarrow 3p {}^2P_{1/2}$	1.30 [-17]	7.20 [-16]	2.69 [-15]	6.31 [-15]	1.47 [-14]
$1s {}^2S_{1/2} \rightarrow 3s {}^2S_{1/2}$	9.17 [-18]	5.00 [-16]	1.83 [-15]	4.29 [-15]	9.83 [-15]
$1s {}^{2}S_{1/2} \rightarrow 3d {}^{2}D_{3/2}$	2.33 [-18]	1.21 [–16]	4.36 [-16]	1.00 [-15]	2.24 [-15]
$1s {}^2S_{1/2} \rightarrow 3p {}^2P_{3/2}$	2.56 [-17]	1.42 [-15]	5.25 [-15]	1.24 [-14]	2.90 [-14]
$1s {}^2S_{1/2} \rightarrow 3d {}^2D_{5/2}$	3.44 [-18]	1.80 [–16]	6.45 [-16]	1.48 [-15]	3.32 [-15]
$1s \ ^2S_{1/2} \rightarrow 4p \ ^2P_{1/2}$	2.65 [-18]	1.84 [–16]	7.35 [–16]	1.82 [-15]	4.47 [-15]
$1s \ ^2S_{1/2} \rightarrow 4s \ ^2S_{1/2}$	1.88[-18]	1.29 [–16]	5.10 [-16]	1.25 [-15]	3.02 [-15]
$1s \ ^2S_{1/2} \rightarrow 4d \ ^2D_{3/2}$	6.36[-19]	4.17 [-17]	1.61 [–16]	3.89 [-16]	9.17 [-16]
$1s \ ^2S_{1/2} \rightarrow 4p \ ^2P_{3/2}$	5.23 [-18]	3.63 [-16]	1.45 [-15]	3.61 [-15]	8.84 [-15]
$1s {}^2S_{1/2} \rightarrow 4d {}^2D_{5/2}$	9.43 [-19]	6.19 [-17]	2.39 [-16]	5.77 [-16]	1.36 [-15]
$1s^{2}S_{1/2} \rightarrow 4f^{2}F_{5/2}$	4.01 [-20]	2.52 [-18]	9.46 [-18]	2.22 [-17]	5.06 [-17]
$1s^{2}S_{1/2} \rightarrow 4f^{2}F_{7/2}$	5.30 [-20]	3.32 [-18]	1.25 [-17]	2.94 [-17]	6.68 [-17]

Calculs ae rapports a intensite of	des	raies
------------------------------------	-----	-------

			$T_{\rm e} (10^6{\rm K})$		
Excitation $(i \rightarrow j)$	18.0	22.0	26.0	30.0	35.0
$1s {}^2S_{1/2} \rightarrow 2p {}^2P_{1/2}$	2.13 [-13]	3.23 [-13]	4.30 [-13]	5.28 [-13]	6.38 [-13]
$1s {}^2S_{1/2} \rightarrow 2s {}^2S_{1/2}$	1.33 [-13]	1.96 [-13]	2.53 [-13]	3.02 [-13]	3.53 [-13]
$1s {}^2S_{1/2} \rightarrow 2p {}^2P_{3/2}$	4.15 [-13]	6.31 [-13]	8.39 [-13]	1.03 [-12]	1.25 [-12]
$1s {}^2S_{1/2} \rightarrow 3p {}^2P_{1/2}$	2.56 [-14]	4.21 [-14]	5.90 [-14]	7.52 [-14]	9.39 [-14]
$1s {}^2S_{1/2} \rightarrow 3s {}^2S_{1/2}$	1.68 [-14]	2.69 [-14]	3.68 [-14]	4.59 [-14]	5.58 [-14]
$1s \ ^2S_{1/2} \rightarrow 3d \ ^2D_{3/2}$	3.78 [-15]	5.96 [-15]	8.07 [-15]	9.99 [-15]	1.21 [-14]
$1s \ ^2S_{1/2} \rightarrow 3p \ ^2P_{3/2}$	5.06 [-14]	8.31 [-14]	1.16 [-13]	1.48 [-13]	1.85 [-13]
$1s \ ^2S_{1/2} \rightarrow 3d \ ^2D_{5/2}$	5.59 [-15]	8.83 [-15]	1.19 [-14]	1.48 [-14]	1.79 [-14]
$1s \ ^2S_{1/2} \rightarrow 4p \ ^2P_{1/2}$	8.03 [-15]	1.35 [-14]	1.93 [-14]	2.50 [-14]	3.15 [-14]
$1s \ ^2S_{1/2} \rightarrow 4s \ ^2S_{1/2}$	5.35 [-15]	8.83 [-15]	1.23 [-14]	1.56 [-14]	1.92 [-14]
$1s \ ^2S_{1/2} \rightarrow 4d \ ^2D_{3/2}$	1.59[-15]	2.58 [-15]	3.56 [-15]	4.47 [-15]	5.47 [-15]
$1s \ ^2S_{1/2} \rightarrow 4p \ ^2P_{3/2}$	1.59 [-14]	2.68 [-14]	3.83 [-14]	4.95 [-14]	6. 25 [-14]
$1s \ ^2S_{1/2} \rightarrow 4d \ ^2D_{5/2}$	2.36 [-15]	3.83 [-15]	5.29 [-15]	6.63 [-15]	8.12 [-15]
$1s^{2}S_{1/2} \rightarrow 4f^{2}F_{5/2}$	8.50 [-17]	1.33 [-16]	1.76 [–16]	2.14 [-16]	2.53 [-16]
$1s^{2}S_{1/2} \rightarrow 4f^{2}F_{7/2}$	1.12 [-16]	1.75 [-16]	2.33 [-16]	2.83 [-16]	3.34 [-16]

Tableau 1 : Coefficients de taux d'excitation directe des ions hydrogénoïdes Ca ¹⁹⁺ à partir du
niveau fondamental 1s ${}^{2}S_{1/2}$ vers les différents niveaux de nombre quantique principal $n = 2, 3$
et 4 pour les dix valeurs de température, exprimés en unité de cm ³ /s.

Nous rappelons que nous nous intéressons aux trois raies issues des niveaux n = 2, c'est-à-dire les raies Ly- α_1 , Ly- α_2 et M1. Pour pouvoir calculer de manière précise les intensités de ces raies, il faut tenir compte des cascades radiatives provenant des niveaux supérieurs n = 3 et n = 4 vers n = 2. Pour cela, il est nécessaire de déterminer les rapports de branchement pour la désexcitation radiative de chacun des niveaux n = 3 et n = 4 vers les niveaux inférieurs. Nous avons construit un programme **Fortran** permettant de déterminer ces rapports de branchement. Les données des probabilités de transition radiative qui ont été utilisées dans ce programme Fortran sont reportées dans l'annexe A. Nous obtenons les résultats des rapports de branchement à partir des niveaux n = 3 et 4 vers n = 2 et à partir des niveaux n = 4 vers n = 3 qui consignés dans les tableaux 2 et 3, respectivement.

De \ vers	$2p {}^{2}P_{1/2}$	$2s {}^{2}S_{1/2}$	$2p {}^{2}P_{3/2}$
$3p^{2}P_{1/2}$		0.121	
$3s {}^{2}S_{1/2}$	0.324		0.676
$3d^{2}D_{3/2}$	0.832		0.164
$3p {}^{2}P_{3/2}$		0.117	
$3d^{2}D_{5/2}$			0.997
$4p {}^{2}P_{1/2}$		0.121	
$4s^{2}S_{1/2}$	0.190		0.394
$4d^{2}D_{3/2}$	0.622		0.122
$4p^{2}P_{3/2}$		0.118	
4d ² D _{5/2}			0.742

Tableau 2 : Rapports de branchement pour les transitions radiatives vers les différents niveaux n = 2 à partir des niveaux supérieurs n = 3 et n = 4.

De \ vers	$3p^{2}P_{1/2}$	$3s {}^{2}S_{1/2}$	3d ² D _{3/2}	$3p^{2}P_{3/2}$	3d ² D _{5/2}
$4p {}^{2}P_{1/2}$		0.038	0.005		
$4s {}^{2}S_{1/2}$	0.135			0.280	
$4d^{2}D_{3/2}$	0.209			0.042	
$4p {}^{2}P_{3/2}$		0.037			0.004
4d ² D _{5/2}				0.253	
$4f^{2}F_{5/2}$			0.934		0.066
$4f^{2}F_{7/2}$					1.000

Calculs de rapports d'intensité des raies

Tableau 3 : Rapports de branchement pour les transitions radiatives vers les différentsniveaux n = 3 à partir des niveaux supérieurs n = 4.

Le programme Fortran susmentionné que nous avons développé, permet aussi de calculer la contribution des cascades radiatives aux coefficients de taux d'excitation de chacun des trois niveaux n = 2, en utilisant les coefficients de taux d'excitation directe listés dans le tableau 1 et les valeurs des rapports de branchement données dans les tableaux 2 et 3. Ce programme détermine également les coefficients de taux effectif d'excitation C_{eff} en sommant la contribution directe C_{dir} et la contribution des cascades C_{cas} conformément à la relation :

$$C_{eff}(i \rightarrow j) = C_{dir}(i \rightarrow j) + C_{cas}(i \rightarrow j)$$

La contribution des cascades est calculée à partir de la relation :

$$C_{cas}(i \rightarrow j) = \sum_{n=3,n=4} C_{dir} (i \rightarrow n) \beta(n \rightarrow j)$$

où $\beta(n \rightarrow j)$ représente le rapport de branchement du niveau supérieur *n* vers le niveau inférieur *j*. En fait, dans la relation précédente, nous avons tenu compte des cascades

alimentant les niveaux n = 2 à partir des niveaux n = 3 eux-mêmes alimentés par des cascades venant des niveaux n = 4.

Figure 3 : Les coefficients de taux effectif d'excitation en fonction de la température électronique pour les trois raies Ly- α_1 (ligne bleue), Ly- α_2 (ligne rouge) et M1 (ligne noire).

Nous avons tracé sur la figure 3 les variations des coefficients de taux effectif d'excitation pour chacune des trois raies $n = 2 \rightarrow n = 1$ de Ca¹⁹⁺ en fonction de la température électronique. On remarque d'après cette figure que les coefficients de taux effectif d'excitation (directe plus les contributions venant des cascades) pour les trois raies augmentent quand la température croît dans le domaine considéré. Notons que si la température continue à croître au-delà de 35×10^6 K, les coefficients de taux effectif d'excitation pour les trois raies Ly- α_1 , Ly- α_2 et M1 passent par un maximum puis ils diminuent. Il est bien vu que le coefficient de taux effectif d'excitation de la raie Ly- α_1 est le plus important, il est pratiquement deux fois plus grand que celui de la raie Ly- α_2 du fait du facteur 2 entre les poids statistiques des niveaux supérieurs de ces raies. Les niveaux supérieurs des raies Ly- α_1 et Ly- α_2 sont peuplés essentiellement par excitation collisionnelle directe à partir du niveau fondamental 1s ${}^{1}S_{1/2}$, les cascades radiatives venant des niveaux supérieurs fournissent une contribution qui ne dépasse pas 10%.

On a construit un autre programme Fortran qui permet de calculer la contribution de l'excitation résonnante. Les données des probabilités d'autoionisation et de transition radiative qui entrent dans ces calculs sont reportées dans l'annexe B. Nous rappelons que la relation qui donne le coefficient de taux d'excitation résonance était présentée dans le chapitre II par l'équation (II – 27).

Nous exposons dans le tableau 4 les coefficients de taux d'excitation directe, par cascades, résonnante et totale des ions hydrogénoïdes Ca^{19+} à partir du niveau fondamental 1s ${}^{2}S_{1/2}$ vers les différents niveaux n = 2 pour toutes les valeurs considérées de T_{e} , sachant que la relation qui donne le coefficient de taux d'excitation totale est :

$$C_{Tot} = C_{eff}(i \rightarrow j) + \alpha_{Res}(i \rightarrow j)$$

<i>Calculs de rapports d'inte</i>	ensité des	raies
-----------------------------------	------------	-------

Excitation	$T_{\rm e} (10^6{\rm K})$					
		5.0	8.0	10.0	12.0	15.0
	C _{dir}	3.68 [-16]	1.06 [-14]	3.19 [-14]	6.56 [-14]	1.34 [-13]
$1s \ ^2S_{1/2} \rightarrow 2p \ ^2P_{1/2}$	C _{cas}	5.80 [-18]	3.22 [-16]	1.19 [-15]	2.79 [-15]	6.41 [-15]
	α_{Res}	2.13 [-17]	4.44 [-16]	1.10 [-15]	1.93 [-15]	3.17 [-15]
	C_{Tot}	3.95 [-16]	1.14 [-14]	3.42 [-14]	7.03 [-14]	1.43 [-13]
	C _{dir}	2.57 [-16]	7.25 [-15]	2.14 [-14]	4.32 [-14]	8.59 [-14]
$1s \ ^2S_{1/2} \rightarrow 2s \ ^2S_{1/2}$	C _{cas}	5.65 [-18]	3.28 [-16]	1.24 [-15]	2.95 [-15]	6.97 [-15]
	α_{Res}	2.02 [-17]	4.20 [-16]	1.05 [-15]	1.83 [-15]	3.00 [-15]
	C_{Tot}	2.83 [-16]	8.00 [-15]	2.37 [-14]	4.80 [-14]	9.59 [-14]
	C _{dir}	7.09 [-16]	2.06 [-14]	6.19 [-14]	1.28 [-13]	2.60 [-13]
$1s {}^2S_{1/2} \rightarrow 2p {}^2P_{3/2}$	C _{cas}	1.18 [-17]	6.57 [-16]	2.42 [-15]	5.68 [-15]	1.31 [-14]
	α_{Res}	3.67 [-17]	7.66 [-16]	1.91 [-15]	3.33 [-15]	5.48 [-15]
	C_{Tot}	7.57 [-16]	2.20 [-14]	6.62 [-14]	1.37 [-13]	2.78 [-13]

Calculs de rapports d'inter	isité des	raies
-----------------------------	-----------	-------

Excitation	$T_{\rm e} (10^6 {\rm K})$					
		18.0	22.0	26.0	30.0	35.0
	C _{dir}	2.13 [-13]	3.23 [-13]	4.30 [-13]	5.28 [-13]	6.38 [-13]
$1s \ ^2S_{1/2} \rightarrow 2p \ ^2P_{1/2}$	C _{cas}	1.09 [-14]	1.76 [-14]	2.41 [-14]	3.01 [-14]	3.67 [-14]
	α_{Res}	4.19 [-15]	5.13 [-15]	5.66 [-15]	5.90 [-15]	5.94 [-15]
	C_{Tot}	2.28 [-13]	3.45 [-13]	4.59 [-13]	5.64 [-13]	6.81 [-13]
	C _{dir}	1.33 [-13]	1.96 [-13]	2.53 [-13]	3.02 [-13]	3.53 [-13]
$1s {}^2S_{1/2} \rightarrow 2s {}^2S_{1/2}$	C _{cas}	1.22 [-14]	2.02 [-14]	2.84 [-14]	3.64 [-14]	4.55 [-14]
	α_{Res}	3.97 [-15]	4.86 [-15]	5.36 [-15]	5.59 [-15]	5.62 [-15]
	C_{Tot}	1.49 [-13]	2.21 [-13]	2.87 [-13]	3.44 [-13]	4.04 [-13]
	C _{dir}	4.15 [-13]	6.31 [-13]	8.39 [-13]	1.03 [-12]	1.25 [-12]
$1s \ ^2S_{1/2} \rightarrow 2p \ ^2P_{3/2}$	C _{cas}	2.24 [-14]	3.59 [-14]	4.91 [-14]	6.13 [-14]	7.47 [-14]
	α_{Res}	7.26 [-15]	8.89 [-15]	9.81 [-15]	1.02 [-14]	1.03 [-14]
	C _{Tot}	4.45 [-13]	6.76 [-13]	8.98 [-13]	1.10 [-12]	1.33 [-12]

Tableau 4 : Coefficients de taux d'excitation directe C_{dir} , par cascades C_{cas} , résonnante α_{Res} et totale C_{Tot} des ions hydrogénoïdes Ca¹⁹⁺ à partir du niveau fondamental 1s ${}^{2}S_{1/2}$ vers les différents niveaux n = 2 pour les dix valeurs de T_{e} .

En fait, les niveaux supérieurs des raies Ly- α_1 , Ly- α_2 et M1 peuvent être aussi peuplés par le processus de la recombinaison radiative(RR) des ions nu Ca²⁰⁺. Pour inclure cette contribution de peuplement nous avons pris les valeurs du coefficient de taux de recombinaison radiative (C_{RR}) pour chacun des niveaux 2p ²P_{3/2}, 2p ²p_{1/2} et 2s ²S_{1/2} trouvées dans l'article de Blanchet et *al* [1]. Puis, nous avons utilisé une méthode d'interpolation à l'aide de Mathematica pour déterminer les valeurs de C_{RR} aux dix températures que nous avons sélectionnées. Nous avons également effectué des calculs du rapport d'abondance des ions $N(\text{Ca}^{20+})/N(\text{Ca}^{19+})$ dont la connaissance est nécessaire pour tenir compte de la contribution du processus de la recombinaison radiative. Ce rapport d'abondance a été déterminé grâce au code FLYCHK utilisé en-ligne (www-amdis.iaea.org/FLYCHK), mais nous avons été amenés à réaliser une interpolation des valeurs fournies par FLYCHK aux dix températures que nous avons sélectionnées.

Dans les tableaux 5a, 5b et 5c, nous donnons les valeurs du coefficient de taux total d'excitation C_{IE} (excitation par impact d'électrons des ions Ca^{19+}) qui ont déjà été listées dans le tableau 4, les valeurs du rapport d'abondance $N(Ca^{20+})/N(Ca^{19+})$, les valeurs du coefficient de taux de recombinaison radiative C_{RR} , ainsi que les valeurs du coefficient de taux de production des raies Ly- α_1 , Ly- α_2 et M1, respectivement. Ce coefficient de taux de production est exprimé comme :

$$C(Ly\alpha_{1}) = C_{IE}(2p^{2}P_{3/2}) + \frac{N(Ca^{20+})}{N(Ca^{19+})} \times C_{RR}(2p^{2}P_{3/2})$$

$$C(Ly\alpha_{2}) = C_{IE}(2p^{2}P_{1/2}) + \frac{N(Ca^{20+})}{N(Ca^{19+})} \times C_{RR}(2p^{2}P_{1/2})$$

$$C(M1) = C_{IE}(2s^{2}S_{1/2}) + \frac{N(Ca^{20+})}{N(Ca^{19+})} \times C_{RR}(2s^{2}S_{1/2})$$

<i>Calculs de rapports d'int</i>	ensité des raies
----------------------------------	------------------

$T_{\rm e} (10^6{\rm K})$	$\begin{array}{c} C_{IE} (2p \ ^{2}P_{3/2}) \\ (cm^{3}s^{-1}) \end{array}$	$\frac{N(Ca^{20+})}{N(Ca^{19+})}$	$\frac{C_{RR} (2p^{2}P_{3/2})}{(cm^{3}s^{-1})}$	$\begin{array}{c} C(Ly\alpha_1) \\ (cm^3 s^{-1}) \end{array}$
5.0	7.57 [–16]	3.84 [-6]	1.76 [-12]	7.64 [–16]
8.0	2.20 [-14]	1.21 [-4]	1.19 [-12]	2.21 [-14]
10.0	6.62 [-14]	8.05 [-4]	9.67 [-13]	6.70 [-14]
12.0	1.37 [-13]	2.85 [-3]	8.15 [-13]	1.39 [-13]
15.0	2.78 [-13]	1.06 [-2]	6.59 [-13]	2.85 [-13]
18.0	4.45 [-13]	2.27 [-2]	5.52 [-13]	4.57 [-13]
22.0	6.76 [-13]	6.34 [-2]	4.54 [-13]	7.05 [-13]
26.0	8.98 [-13]	1.12 [-1]	3.83 [-13]	9.41 [-13]
30.0	1.10 [-12]	1.94 [-1]	3.32 [-13]	1.16 [-12]
35.0	1.33 [-12]	3.13 [-1]	2.84 [-13]	1.42 [-12]

Tableau 5 a : Valeurs de coefficient de taux total d'excitation C_{IE} , de rapport d'abondance des ions nus et hydrogénoïdes $N(Ca^{20+}) / N(Ca^{19+})$, de coefficient de taux de recombinaison radiative C_{RR} , et de coefficient de taux de production de la raie Ly- α_1 .

$T_{\rm e}(10^6{\rm K})$	$\begin{array}{c} C_{IE} (2p \ ^2P_{1/2}) \\ (cm^3 s^{-1}) \end{array}$	$\frac{N(\operatorname{Ca}^{20+})}{N(\operatorname{Ca}^{19+})}$	$\frac{C_{RR} (2p^{2}P_{1/2})}{(cm^{3}s^{-1})}$	$C(Ly\alpha_2)$ (cm^3s^{-1})
5.0	3.95 [-16]	3.84 [-6]	8.55 [-13]	3.98 [-16]
8.0	1.14 [-14]	1.21 [-4]	5.92 [-13]	1.15 [-14]
10.0	3.42 [-14]	8.05 [-4]	4.81 [-13]	3.46 [-14]
12.0	7.03 [-14]	2.85 [-3]	4.05 [-13]	7.14 [-14]
15.0	1.43 [-13]	1.06 [-2]	3.27 [-13]	1.46 [-13]
18.0	2.28 [-13]	2.27 [-2]	2.74 [-13]	2.34 [-13]
22.0	3.45 [-13]	6.34 [-2]	2.25 [-13]	3.59 [-13]
26.0	4.59 [-13]	1.12 [-1]	1.90 [-13]	4.80 [-13]
30.0	5.64 [-13]	1.94 [-1]	1.65 [-13]	5.96 [-13]
35.0	6.81 [-13]	3.13 [-1]	1.41 [-13]	7.25 [-13]

Calculs de rapports d'intensité des raies

Tableau 5 b : Valeurs de coefficient de taux total d'excitation C_{IE} , de rapport d'abondance des ions nus et hydrogénoïdes $N(Ca^{20+}) / N(Ca^{19+})$, de coefficient de taux de recombinaison radiative C_{RR} , et de coefficient de taux de production de la raie Ly- α_2 .

$T_{\rm e} (10^6{\rm K})$	$C_{IE}(2s^{2}S_{1/2})$ (cm ³ s ⁻¹)	$\frac{N(Ca^{20+})}{N(Ca^{19+})}$	$\frac{C_{RR}(2s^{2}S_{1/2})}{(cm^{3}s^{-1})}$	C(M1) (cm ³ s ⁻¹)
5.0	2.83 [-16]	3.84 [-6]	4.80 [-14]	2.83 [-16]
8.0	8.00 [-15]	1.21 [-4]	1.94 [-14]	8.00 [-15]
10.0	2.37 [-14]	8.05 [-4]	1.58 [-14]	2.37 [-14]
12.0	4.80 [-14]	2.85 [-3]	1.34 [-14]	4.80 [-14]
15.0	9.59 [-14]	1.06 [-2]	1.06 [-14]	9.60 [-14]
18.0	1.49 [-13]	2.27 [-2]	8.89 [-15]	1.49 [-13]
22.0	2.21 [-13]	6.34 [-2]	7.23 [-15]	2.21 [-13]
26.0	2.87 [-13]	1.12 [-1]	6.04 [-15]	2.88 [-13]
30.0	3.44 [-13]	1.94 [-1]	5.19 [-15]	3.45 [-13]
35.0	4.04 [-13]	3.13 [-1]	4.36 [-15]	4.05 [-13]

Calculs de rapports d'intensité des raies

Tableau 5 c : Valeurs de coefficient de taux total d'excitation C_{IE} , de rapport d'abondance des ions nus et hydrogénoïdes $N(Ca^{20+}) / N(Ca^{19+})$, de coefficient de taux de recombinaison radiative C_{RR} , et de coefficient de taux de production de la raie M1.

Après avoir présenté toutes les données atomiques nécessaires aux calculs des intensités des raies Ly- α_1 , Ly- α_2 et M1 des ions de calcium Ca¹⁹⁺, nous focalisons maintenant sur les données atomiques concernant les raies satellites diélectroniques émises par les ions Ca¹⁸⁺. Nous montrons dans le tableau 5 les données des probabilités d'autoionisation et de transition radiative qui interviennent dans les calculs du facteur atomique F_2 des six raies notées Q, T, K, J, B, A, dues aux transitions de type $2s2p \rightarrow 1s2s$ ou $2p^2 \rightarrow 1s2p$, qui sont parmi les plus importantes. Nous avons déterminé ces données en utilisant le code FAC. Pour des raisons de comparaison, nous avons aussi inclus dans le tableau 5 les valeurs du facteur atomique F_2 tirées de la référence [1] pour toutes les raies considérées.

Transitions	ε (keV)	A_a (s ⁻¹)	$A_r(\mathbf{s}^{-1})$	$\sum A_r (\mathbf{s}^{-1})$	$F_2 (s^{-1})$	$F_2 (s^{-1})$ (1985)
$2s2p^{3}P_{2} \rightarrow 1s2s$ $^{3}S_{1} \text{ rate } Q$	2.810	1.32 [13]	9.08 [13]	9.10 [13]	2.87 [13]	3.11 [13]
$2s2p {}^{1}P_{1} \rightarrow 1s2s$ ${}^{1}S_{0} \text{ rate } T$	2.840	1.93 [14]	8.87 [13]	8.98 [13]	9.08 [13]	9.33 [13]
$2p^{2} {}^{1}D_{2} \rightarrow 1s2p$ ${}^{3}P_{2} raie K$	2.842	3.14 [14]	1.45 [13]	1.78 [14]	2.31 [13]	2.44 [13]
$2p^{2} {}^{1}D_{2} \rightarrow 1s2p$ ${}^{1}P_{1} rate J$	2.842	3.14 [14]	1.63 [14]	1.78 [14]	2.60 [14]	2.75 [14]
$2p^2 {}^{3}P_2 \rightarrow 1s2p {}^{3}P_1$ raie B	2.830	3.60 [13]	4.91 [13]	1.81 [14]	2.04 [13]	2.19 [13]
$2p^{2} {}^{3}P_{2} \rightarrow 1s2p {}^{3}P_{2}$ raie A	2.830	3.60 [13]	1.22 [14]	1.81 [14]	5.06 [13]	5.46 [13]

Calculs de rapports d'intensité des raies

Tableau 6 : Energies de l'électron capturé ε , probabilités d'autoionisation A_a et de transition radiative A_r associées à chacune des six raies satellites diélectroniques. Nous montrons également la somme des probabilités radiatives $\sum A_r$, ainsi que les valeurs du facteur atomique F_2 des raies calculées par nos soins et celles tirées de la référence [1].

On peut remarquer à partir du tableau 6 que les valeurs du facteur atomique F_2 que nous avons calculées sont assez proches de celles obtenues dans la référence [1]. On peut aussi noter que la raie J possède la plus grande valeur de F_2 et donc c'est celle qui est la plus intense parmi les six raies satellites. Ensuite vient la raie T puis la raie A.

D'après ce qui a été vu dans le chapitre III, l'intensité d'une raie satellite diélectronique dépend non seulement de F_2 mais aussi du facteur F_1 qui dépend lui-même de la température T_e (cf. équation(III – 16)). Ce dernier facteur F_1 est calculé au moyen du logiciel Mathematica.

IV.5 – Résultats et discussions

Finalement, après avoir exposé dans les tableaux 5 et 6 l'ensemble des données atomiques requises aussi bien pour les raies de résonance des ions Ca^{19+} que pour les raies satellites diélectroniques émises par des ions Ca^{18+} , nous donnons dans les tableaux 7 et 8 les

résultats du rapport de l'intensité de chacune des trois raies satellites diélectroniques *J*, *T* et *A* (qui sont les plus intenses) sur celle de la raie Ly- α_1 et sur celle des raies superposées Ly- α_2 et M1, respectivement, pour toutes les valeurs considérées de température. Ces résultats numériques ont été obtenus en se basant sur la relation donnant le rapport d'intensité qui a été donnée par l'équation (III – 16) du chapitre III et en effectuant les calculs à l'aide du logiciel Mathematica.

$T_{\rm e} (10^6{\rm K})$	$\frac{I_J}{I_{\rm Ly-\alpha_1}}$	$\frac{I_T}{I_{\rm Ly-\alpha_1}}$	$\frac{I_A}{I_{\rm Ly-\alpha_1}}$
5.0	8.621	3.021	1.721
8.0	1.746	0. 611	0.345
10.0	0.940	0.328	0.185
12.0	0.597	0.208	0.117
15.0	0.361	0. 126	0.070
18.0	0.247	0.086	0.048
22.0	0.165	0.057	0.032
26.0	0.121	0.042	0.023
30.0	0.094	0.032	0.018
35.0	0.071	0.025	0.014

Tableau 7 : Rapport de l'intensité de chacune des trois raies satellites diélectroniques J, T et A sur celle de la raie Ly- α_1 pour toutes les valeurs considérées de la température électronique.

<i>Calculs de rapports d'inte</i>	ensité des	raies
-----------------------------------	------------	-------

$T_{\rm e} (10^6{\rm K})$	$\frac{I_J}{I_{\rm Ly-\alpha_2} + I_{\rm M1}}$	$\frac{I_T}{I_{Ly-\alpha_2} + I_{M1}}$	$\frac{I_A}{I_{\rm Ly-\alpha_2} + I_{\rm M1}}$
5.0	16.00	5.610	3.160
8.0	3.248	1.140	0.640
10.0	1.762	0.620	0.350
12.0	1.126	0.393	0.221
15.0	0.683	0.238	0.134
18.0	0.468	0.163	0.091
22.0	0.312	0.110	0.061
26.0	0.231	0.081	0.045
30.0	0.178	0.062	0.034
35.0	0.136	0.047	0.026

Tableau 8 : Rapport de l'intensité de chacune des trois raies satellites diélectroniques J, T etA sur celle des raies superposées Ly- α_2 et M1 pour toutes les valeurs considérées de latempérature électronique.

Nous avons également reporté nos résultats des rapports d'intensité dans les figures 4 et 5, où nous montrons les variations des rapports d'intensité en fonction de la température électronique T_e du plasma émissif.

Chapitre IV

Figure 4 : Rapport de l'intensité de chacune des trois raies satellites diélectroniques *J*, *T* et *A* sur celle de la raie Ly- α_1 en fonction de la température électronique.

Chapitre IV

Figure 5 : Rapport de l'intensité de chacune des trois raies satellites diélectroniques *J*, *T* et *A* sur celle des raies superposées Ly- α_2 et M1 en fonction de la température électronique.

Comme prévu, on observe à partir des figures 4 et 5 que les rapports d'intensité des raies considérées sont sensibles à la température électronique, ce qui leur confère un outil efficace de diagnostic de la température. A titre d'exemple, le rapport d'intensité J/Ly- α_1 varie de presque 8.62 à 0.07 lorsque la température augmente de 5 à 35×10^6 K, soit une variation de deux ordres de grandeur. Dans la limite des basses températures électroniques T_e (5×10^6 à 10^7 K) on remarque que la décroissance de tous les rapports d'intensité est nettement plus rapide. La diminution sensible des rapports d'intensité des raies considérées lorsque la température électronique augmente peut s'expliquer par la différence des processus atomiques qui contribuent à la formation des raies satellites diélectroniques d'une part et des raies de résonance d'autre part. Plus précisément, les raies satellites J, T et A sont produites par des électrons libres ayant une énergie voisine de 2.84 keV (phénomène résonant) tandis que les

raies de résonance Ly- α_1 et Ly- α_2 sont produites par des électrons ayant une énergie au moins égale à 4.1 keV. Lorsque T_e augmente, il est évident que le nombre d'électrons capables de contribuer à la formation des raies Ly- α_1 et Ly- α_2 (c'est-à-dire des électrons possédant une énergie supérieure à 4.1 keV) devient de plus en plus important et par conséquent l'intensité des raies Ly- α_1 et Ly- α_2 augmente beaucoup plus vite que celles des raies satellites diélectroniques et donc le rapport d'intensité diminue sensiblement.

Nous signalons enfin après comparaison entre les deux figures 4 et 5 que les valeurs des rapports d'intensité de chacune des trois raies satellites diélectroniques J, T et A sur la raie Ly- α_1 représentent environ 50% des valeurs des rapports d'intensité de ces trois raies J, T et A sur la raie sur la raie combinée Ly- α_2 et M1.

IV.6 – Applications aux diagnostics des éruptions solaires

De nombreuses observations des raies satellites sont actuellement disponibles à partir aussi bien de sources de laboratoire (Doschek 1975, Presnyakov 1976, Boiko *et al.* 1978), que de plasmas astrophysiques. Les observations astrophysiques concernent actuellement divers objets cosmiques, notamment la couronne solaire et des couronnes stellaires, des restes de supernovae et des étoiles binaires X. Ces observations ont été rendues possibles grâce à l'envoi dans l'espace d'observatoires sophistiqués tels que Soho, XMM-Newton et Chandra, équipés de spectromètres sensibles de haute résolution spectrale et angulaire [5,6].

Les raies satellites diélectroniques observées dans le domaine des rayons X-mous des spectres d'éruptions solaires sont émises principalement après la phase impulsive des éruptions par des plasmas chauds quasi-thermiques. La plupart des raies satellites observées sont dues à des transitions dans les ions lithiumoïdes (c'est-à-dire recombinaison diélectronique des ions héliumoïdes). Peu d'observations ont été effectuées dans le cas des raies satellites dues à des transitions dans les ions héliumoïdes (c'est-à-dire recombinaison diélectronique des ions héliumoïdes).

En guise d'applications de nos calculs, nous avons tenté de diagnostiquer la température électronique de plasmas d'éruptions solaires à partir des spectres qui ont été enregistrées par l'un des spectromètres de l'expérience SOLFLEX (SOLar FLarE X-rays) embarqué en 1979 à bord de l'engin spatial P78 conçu par Naval Research Laboratory de

l'US Air Force [7]. Les détails de l'expérience SOLFLEX sont décrits dans l'article de Feldman *et al.* [8].

Nous reproduisons dans les figures (6a) et (6b) les spectres de l'ion Ca XX (c'est-àdire Ca¹⁹⁺) enregistrées le 27 avril 1979 dans le domaine de longueur d'onde 3.010–3.055 Å, à des instants différents lors du déclin d'une éruption solaire : à 06 :50,7 HRS UT et à 06 :52,0 HRS UT. Les raies Ly- α_1 , Ly- α_2 et quelques raies satellites diélectroniques de l'ion Ca XIX (c'est-à-dire Ca¹⁸⁺), dont la raie *J*, apparaissent clairement dans les deux spectres.

Figure 6 a : Spectre d'éruption solaire recueilli le 27/04/1979 à 06 :50,7 HRS UT juste après la phase impulsive, dans l'intervalle de longueur d'onde entre 3.01Å et 3.055Å, montrant les raies de résonance de l'ion hydrogénoïde de calcium CaXX et des raies satellites de l'ion héliumoïde CaXIX.

Figure 6 b : Spectre d'éruption solaire recueilli le 27/04/1979 à 06 :52,0 HRS UT durant la phase de décroissance, dans l'intervalle de longueur d'onde entre 3.01Å et 3.055Å, montrant les raies de résonance de l'ion hydrogénoïde de calcium CaXX et des raies satellites de l'ion héliumoïde CaXIX .

Nous avons mesuré, à partir de ces deux spectres, le rapport de l'intensité de la raie satellite J sur celle de la raie Ly $-\alpha_1$, et nous avons obtenue les valeurs suivantes : $\frac{I_J}{I_{Ly-\alpha_1}} =$ 0.157 pour le spectre (a) et $\frac{I_J}{I_{Ly-\alpha_1}} =$ 0.17 pour le spectre (b). D'après nos calculs sur la variation de ce rapport d'intensité en fonction de la température électronique T_e , représentés sur la figure 4 de ce chapitre, nous avons déduit comme valeurs de T_e : $T_e = 22.9 \times 10^6$ K pour le spectre (a) (instant 06 :50,7 HRS UT de l'éruption solaire) et $T_e = 22.0 \times 10^6$ K pour le spectre (b) (instant 06 :52,0 HRS UT de l'éruption solaire). Nous signalons que nos résultats de T_e sont proches des résultats obtenus par Blanchet *et al* [1] qui sont $T_e = 23.95 \times 10^6$ K pour le spectre (a) et $T_e = 22.31 \times 10^6$ K pour le spectre (b). Nous analysons un autre spectre d'éruption solaire présenté sur la figure 7, enregistré le 25/03/1979 à 18^h:09,54 dans l'intervalle de longueur d'onde entre 3.0 Å et 3.05 Å par le spectromètre SOLFLEX de P78, montrant clairement les raies de résonance de l'ion hydrogénoïde de calcium CaXX et des raies satellites avoisinantes de l'ion héliumoïde CaXIX [7]. Nous avons mesuré, à partir de ce spectre, le rapport de l'intensité de la raie satellite *J* sur celle des raies superposé $Ly-\alpha_2$ et M1, et nous avons obtenu la valeur suivante : $\frac{I_J}{I_{Ly-\alpha_2+I_{M1}}} = 0.33$. Pour déterminer la température électronique du plasma d'éruption solaire observé par SOLFLEX, nous utilisons nos calculs du rapport d'intensité $I_J/(I_{Ly-\alpha_2} + I_{M1})$ en fonction de la température électronique T_e , montrés sur la figure 5 de ce chapitre. Nous avons déduit comme valeur de T_e : $T_e = 22.0 \times 10^6$ K (instant 18^h :09,54 de l'éruption solaire). Nous n'avons pas connaissance de l'existence de résultat de T_e fourni dans la littérature et par conséquent, nous n'avons pas pu comparer la valeur que nous avons obtenue.

Figure 7 : Spectre d'éruption solaire recueilli le 25/03/1979 à 18^h :09,54 dans l'intervalle de longueur d'onde entre 3.0 Å et 3.05 Å, montrant les raies de résonance de l'ion hydrogénoïde de calcium CaXX et des raies satellites de l'ion héliumoïde CaXIX, dont la raie *J*.