1^{ère} Partie :

Les propriétés structurales des semi-

conducteurs chalcopyrites

CuGaX₂(X=S, Se)

Propriétés structurales des composés CuGaX₂ (X=S, Se) :

L'étape la plus importante dans un calcul ab-initio est la détermination des propriétés structurales du matériau étudié. La connaissance de ces informations nous permet d'accéder par la suite à d'autres propriétés physiques (électroniques, optiques, ...)

Les matériaux CuGaX₂ (X = S, Se) se cristallisent dans la structure tétragonale de Chalcopyrite, avec le groupe d'espace I-42d (classé 122 dans le tableau international de la cristallographie).

Pour déterminer les propriétés structurales de l'équilibre statique tel que le paramètre du réseau a_0 , le paramètre interne u, le module de compressibilité B_0 et sa dérivée par rapport à la pression B', nous avons suivi les étapes ci-dessous :

Nous avons relaxé les atomes de nos matériaux en donnant au paramètre du réseau la valeur expérimentale.

L'étape suivante consiste à déterminer a_0 , V_0 , E_0 , B_0 et B'. Pour cela, nous avons calculé l'énergie totale Etot pour différentes valeurs du volume, puis ajuster par l'équation d'état de Murnaghan [3] :

$$E = [(B_0 * V)/(B'_0 * (B'_0 - 1))] * [B'_0 * (1 - (V_0/V)) + ((V_0/V)^A B'_0) - 1] + E_0 \dots (III.1)$$

Où V_0 est le volume d'équilibre statique de la maille primitive, E_0 l'énergie totale par maille primitive de l'état d'équilibre.

Le volume V_0 et l'énergie E_0 sont donnés par le minimum de la courbe *Etot* (*V*). Les Figures 3.4, 3.5 et 3.6 représente l'ajustement des points *Etot* (*V*) à l'aide de l'équation d'état de Murnaghan's (III.1) pour les composés CuGaSe₂ et CuGaS₂ respectivement.

L'ensemble des résultats des paramètres structuraux de l'état fondamental des composés CuGaS₂ et CuGaSe₂ est rassemblé dans les tableaux III.3 et III.4.

Figure III.1/a: l'ajustement des points E_{tot} (V) à l'aide de l'équation d'état de Murnaghan (III.1) pour le composé CuGaSe₂

$a_0(\mathrm{A}^\circ)$	5.6728
$V_0 (u.a)^3$	1231.9938
$E_0(Ry)$	-33838.6985
$B_0(\text{GPa})$	61.9402
B	4.1217

Tableau III.3/a: le paramètre du réseau minimal a_0 , le volume minimal V_0 , l'énergie minimale E_0 , le module de compressibilité minimal B_0 et sa dérivée B' du composé CuGaSe₂.

Figure III.2/a: l'ajustement des points E_{tot} (V) à l'aide de l'équation d'état de Murnaghan (III.1) pour le composé CuGaS₂

$a_0(A^\circ)$	5.3634
$V_0 (u.a)^3$	1041.2161
$E_0(Ry)$	-17590.488109
$B_0(\text{GPa})$	75.0179
B	4.7757

Tableau III.4/a: le paramètre du réseau minimal a_0 , le volume minimal V_0 , l'énergie minimale E_0 , le module de compressibilité minimal B_0 et sa dérivée B' du composé CuGaS₂

2- Optimisation c/a :

• Pour le composé CuGaSe₂ :

Figure III.3/a: l'énergie en fonction de c/a

La courbe est définie par l'équation suivante :

$$Y=A+B1.X+B2.X^{2}+B3.X^{3}+B4.X^{4}+B5.X^{5}$$

$$A = -33837.6948010557 \qquad B3 = -0.5381811446$$

$$B1 = -1.4060945325 \qquad B4 = +0.1719281962$$

$$B2 = +1.0054895033 \qquad B5 = -0.0205903759$$

La valeur de c/a_{min} est obtenue en mettant la dérivée de l'équation E=f(c/a) égale à 0.

c/a min =1.9761

Figure III.4/a: l'énergie en fonction de c/a

La courbe est définie par l'équation suivante :

$$Y=A+B1.X+B2.X^{2}+B3.X^{3}+B4.X^{4}+B5.X^{5}$$

$$A = -17597.1672817812 \qquad B3 = +9.4950457555$$

$$B1 = +18.2294547506 \qquad B4 = -2.3396239182$$

$$B2 = -18.9132664279 \qquad B5 = +0.2295575011$$

La valeur de c/a_{min} est obtenue en mettant la dérivée de l'équation E=f(c/a) égale à 0.

$c/a_{min} = 1.9750$

3- Optimisation min :

Nous avons activé l'option min implémentée dans le code wien2k, nous avons obtenu une nouvelle valeur du paramètre du réseau $a_0 = 5.6626$ A° à partir d'un nouveau volume minimal $V_0 = 1225.3252$ (a.u) ³ et $a_0 = 5.3616$ A° à partir du volume 1040,1233 (a.u) ³ pour les composés CuGaSe₂ et CuGaS₂ respectivement.

Figure III.5/a: l'ajustement des points E_{tot} (V) à l'aide de l'équation d'état de Murnaghan (III.1) pour le composé CuGaSe₂.

Figure III.6/a: l'ajustement des points E_{tot} (V) à l'aide de l'équation d'état de Murnaghan (III.1) pour le composé CuGaS₂.

Le résultat suivant que nous a donné cette option est les positions d'équilibre de nos matériaux qui sont comme suit :

	Cu	Ga	Se
	(0, 0,0)	(0.5, 0,0.25)	(0.2477865, 0.25, 0.125)
Positions	(0,0.5, 0.25)	(0.5, 0.5, 0)	(0.25, 0.7522135, 0.875)
			(0.7522135, 0.75, 0.125)
			(0.75, 0.2477865, 0.875)

Tableau III.5/a: les positions d'équilibre du composé CuGaSe₂.

	Cu	Ga	S
	(0, 0,0)	(0.5, 0,0.25)	(0.25183454, 0.25, 0.125)
Positions	(0,0.5, 0.25)	(0.5, 0.5, 0)	(0.25, 0.74816546, 0.875)
			(0.74816546, 0.75, 0.125)
			(0.75, 0.25183454, 0.875)

Tableau III.6/a: les positions d'équilibre du composé CuGaS₂.

4- Nouvelle optimisation c/a:

• Pour le composé CuGaSe₂ :

Figure III.7/a: l'énergie en fonction de c/a

La courbe est définie par l'équation suivante :

$$Y = A + B1.X + B2.X^{2} + B3.X^{3} + B4.X^{4} + B5.X^{5}$$

А	=	-33833,8875378068	B3 =	-5,0757192966

 $B1 = -10,8065005167 \qquad B4 = +1,281928753$

$$B2 = +10,2561465968 \qquad B5 = -0,1289999391$$

Figure III.8/a: l'énergie en fonction de c/a

La courbe est définie par l'équation suivante :

$$A = -17568,6481778394 \qquad B3 = -28,0574188184$$

$$B1 = -54,562836071 \qquad B4 = -7,150708256$$

$$B2 = 55,1486920187 B5 = -0,7269150737$$

Les résultats des propriétés structurales de notre travail se résument dans le tableau

G ()	CuGaSe ₂			
Structure	Notre calcul	exp.	Autre calcul	
$a_0 (A^\circ)$	5.6626	5.614 ^a	5.6704 ^b	
η=c/2a	0.989	0.982 ^a	0.993 ^b	
u	0.2557	0.25 ^a	0.2443 ^b	
B_0 (GPa)	61.940	76.6 ^c , 71 ^d	60.3 ^b	
B	4.128		4.8 ^b	
	Cu	Ga	Se	
	(0, 0,0)	(0.5, 0,0.25)	(0.2477865, 0.25, 0.125)	
Positions	(0,0.5, 0.25)	(0.5, 0.5, 0)	(0.25, 0.7522135, 0.875)	
			(0.7522135, 0.75, 0.125)	
			(0.75, 0.2477865, 0.875)	

suivant :

Tableau III.7/a: Paramètre du réseau d'équilibre a_0 , paramètre interne u, le module de compressibilité B_0 et sa dérivé B' et les positions d'équilibre des composés CuGaSe₂

Ct.mar.et.a.ma	CuGaS ₂			
Structure	Notre calcul	exp.	Autre calcul	
$a_0 (A^\circ)$	5.3616	5.349 ^e	5.3700 ^b	
η=c/2a	0.988	0.979 ^e	0.991 ^b	
u	0.2557	0.25 ^e	0.2491 ^b	
B_0 (GPa)	75.411	94 ^{d}	75.1 ^b	
B	4.805		4.8 ^b	
	Cu	Ga	S	
	(0, 0,0)	(0.5, 0,0.25)	(0.25183454, 0.25, 0.125)	
Positions	(0,0.5, 0.25)	(0.5, 0.5, 0)	(0.25, 0.74816546, 0.875)	
			(0.74816546, 0.75, 0.125)	
			(0.75, 0.25183454, 0.875)	

Tableau III.8/a:Paramètre du réseau d'équilibre a_0 , paramètre interne u, le module de compressibilité B_0 et sa dérivé B' et les positions d'équilibre des composés CuGaS₂

^a Réference [4]
^b Réference [5]
^c Réference [6,7]

^dRéference [8] ^eRéference [9]

5-Pourcentage d'erreurs :

• Pour le composé CuGaSe₂ :

		Pourcentag	ge d'erreur	
CuGaSe₂				
	$a_0 (A^\circ)$	η=c/2a	u	<i>B</i> ₀ (GPa)
Notre calcul	0.8582	0.7128	2.2291	23.6680
				14.6270
Autre calcul	0.9946	1.1077	2.33	27.0315
				17.7446

Tableau III.9/a: les pourcentages d'erreurs pour le composé CuGaSe₂

Pour le composé CuGaSe₂ nos résultats sont comparés aux valeurs expérimentales disponibles de L. Garbato et ses collaborateurs [4] qui ont mis en évidence un paramètre de réseau a_0 , un paramètre interne u, et η =c/2a égaux à 5.614,0.25 et 0.982 respectivement.

Théoriquement, ces valeurs ont été calculées par S-H. Wei et ses collaborateurs [5] égales à 5.6704 A°, 0.2443 et 0.993 avec des pourcentages d'erreurs égaux à 0.9946%, 2.33% et 1.1077% respectivement.

Alors que dans notre travail ces valeurs sont égales à 5.6626 A° , 0.2557 et 0.989 avec des pourcentages d'erreurs égaux à 0.8582%, 2.2291% et 0.7128% respectivement.

D'une autre part, notre valeur du module de compressibilité B_0 = 61.940 GPa est comparée aux valeurs expérimentales disponibles; la première de H.Neumann,la deuxième de B.Fernandez et ses collaborateurs [6,7et8] qui est égale à:76.6 et 71 GPa respectivement avec des pourcentages d'erreurs égaux à 23.6680% et 14.6270 % respectivement.

Théoriquement, cette valeur été calculée par S-H.Wei et ses collaborateurs [5] égale à 60.3 avec des pourcentages d'erreurs égaux à 27.0315% et 17.7446 % respectivement.

	Pourcentage d'erreur			
CuGaS ₂				
_	$a_0 (A^\circ)$	η=c/2a	u	<i>B</i> ₀ (GPa)
Notre calcul	0.2350	0.9109	2.2291	27.0371
				24.6502
Autre calcul	0.3910	1.2108	0.3613	27.5632
				25.1664

Tableau III.10/a: les pourcentages d'erreurs pour le composé CuGaSe₂

Pour le composé CuGaS₂ nos résultats sont comparés aux valeurs expérimentales disponibles de J. L. Shay et J. H. Wernick [9] qui ont mis en évidence un paramètre de réseau a_0 , un paramètre interne u, et η =c/2a égaux à 5.349A°, 0.25 et 0.979 respectivement.

Théoriquement, ces valeurs ont été calculées par S-H.Wei et ses collaborateurs [5] égales à 5.3700 A°, 0.2491 et 0.991 avec des pourcentages d'erreurs égaux à 0.3910%, 0.3613% et 1.2108% respectivement.

Alors que dans notre travail ces valeurs sont égales à 5.3616 A° , 0.2557 et 0.988 avec des pourcentages d'erreurs égaux à 0.2350%, 2.2291% et 0.9109% respectivement.

D'une autre part, notre valeur du module de compressibilité B_0 = 75.411 GPa est comparée à la valeur expérimentale disponible de B.Fernandez et ses collaborateurs [8] qui est égale à 94 GPa avec un pourcentage d'erreurs égal à 24.6502 %.

Théoriquement, cette valeur été calculée par S-H.Wei et ses collaborateurs [5] égale à 75.1 GPa avec des pourcentages d'erreurs égaux à 27.5632% et 25.1664 respectivement.

Bibliographie:

[1] P. Hohenberg and W. Kohn, Phys. Rev. B 136(1964).

[2] J. P. Perdew, S. Burke and M. Ernzerhof, Phys. Rev.Let.77 (1996) 3865.

[3] F. D. Murmaghan, Proc. Nat. Acad. Sci. USA. 30 (1944) 244.

[4] L. Garbato, F. Ledda, and R. Rucci, Prog. Cryst. Growth Charact. 15, 1(1987).

[5] S-H. Wei, S.Chen and X.G. Gong, Phys. Rev B 75, 205209(2007)

[6] H.Neumann, Phys. Status Solidi A 96, K121(1986).

[7] H.Neumann, Cryst.Res.Technol.18, 665(1983).

[8] B.Fernandez and S.M. Wasim, Phys. Status Solidi A 122,235 (1990)

[9] J. L. Shay et J. H. Wernick, Ternary Chalcopyrite Semiconductors: Growth,

Electronic Properties and Applications (Pergamon Press, Oxford, 1975)