République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

> Université Aboubakr Belkaid Tlemcen Faculté de Technologie Département de Génie Civil



Mémoire pour l'Obtention du Diplôme de Master en Génie Civil Option : Construction Métallique.

Thème :

## INFLUENCES DES DÉFAUTS D'ALIGNEMENT ET DE VERTICALITÉ DES POTEAUX SUR LA RÉPONSE D'UNE STRUCTURE

## Présenté le 12 juin 2016 par :

BENSARI YASSINE HOULALA MOHAMMED EL AMIN

#### Devant le jury composé de :

Dr. MATALLAH.M Mr. CHERIF. Z.E.A Dr.BOURABAH.I Dr. MISSOUM.A Président Examinateur Examinatrice Encadrant

## Dédicace

Le dédie ce travail à mes chers parents qui, de tout le temps, mobilisent tous leurs efforts matériels et moraux en vue de ma réussite.

Aucune dédicace ne serait exprimée à leur juste valeur, mon profond respect et ma gratitude pour tous les efforts que vous avez fournis pour moi.

Aux personnes qui m'ont toujours aimé, supporté, conseillé, poussé à m'améliorer, dont le mérite, les sacrifices et les qualités humaines, ont fait de moi ce que je suis aujourd'hui et m'ont permis de vivre ce jour.

Al'ensemble de la promotion Construction Métallique 2016

Bensarí Yassíne

## Dédícace

C'est grâce à ALLAH seul que j'ai pu achever ce travail.

Avec un énorme plaisir, un cœur ouvert et une immense joie, que je dédie mon travail à mes très chers, respectueux et magnifique parents qui m'ont soutenu tout au long de ma vie ainsi qu'à mes frères et mes amis, et en particulier à mon binôme BENSARI YASSINE et à tous mes professeurs et à toutes les personnes qui m'ont encouragé ou aidé tout au long de mes études.

A toutes la promotion de génie civil 2016.

Houlala Med El Amíne

## Remercíements

- Tout d'abord, nous remercions Dieu, notre créateur de nous avoir donné la force, la volonté et le courage afin d'accomplir ce travail modeste.
- Nous adressons un grand remerciement à notre encadrant et chef de département de génie civil Dr. MISSOUM ABDELGHANI qui a proposé le thème de ce mémoire, pour ses conseils et ses dirigés du début à la fin de ce travail.
- Nous remercions également tous les professeurs, intervenants et toutes les personnes qui par leurs paroles, leurs écrits, leurs conseils et leurs critiques ont guidé nos réflexions et ont accepté de nous rencontrer et répondre à nos questions durant cette période.
- Merci aussi à l'équipe topographique pour leur disponibilité et l'attention qu'ils ont eu à notre égard tout le long des études du projet.
- Nous souhaitons exprimer notre gratitude à messieurs les membres du jury pour l'honneur qu'ils nous ont fait en acceptant de siéger à notre soutenance.
- Au Dr. MATALLAH.M pour nous avoir fait l'honneur de présider le jury de ce mémoire.
- Au Dr. BOURABAH.I et Monsieur CHERIF.Z.E.A auquel nous exprimons toute notre gratitude pour avoir accepté de juger ce travail.
- Enfin, nous adressons nos plus sincères remerciements à tous nos proches et amis, qui nous ont toujours soutenu et encouragé au cours de la réalisation de ce mémoire.

Merci à toutes et à tous

#### Résumé

Nous nous intéressons dans ce mémoire de fin d'étude à l'influence des défauts d'alignement et de verticalités des poteaux sur la réponse d'une structure.

Le projet se divise en deux majeures parties. Dans la première se succèdent les chapitres sur l'étude de la structure, dans laquelle nous trouvons une présentation de l'ouvrage suivi de l'évaluation des charges et surcharge climatiques selon le règlement « RNV2013 », le prédimensionnement des éléments secondaires, puis une étude sismique. Vient ensuite le dimensionnement des éléments structuraux selon le règlement « CCM97 » ainsi que l'étude et la vérification des assemblages et le calcul des fondations.

Dans la seconde partie, nous avons étudié les poteaux avec défauts extérieurs et intérieurs (déplacement imposé) et leurs influences sur l'ensemble de la structure.

Mot clés : Dimensionnement, Construction métallique, Acier, Hall industriel, résistance, instabilité, défauts géométriques.

#### Abstract

We are interested in this final work study the influence of alignment defects and verticality of the column on the response of a structure.

The project is divided into two major parts. In the first one successive chapters on the study of the structure, in which we find a presentation of the structure followed by assessment loads and climate according to Regulation overload «RNV2013 » pre- sizing of secondary elements, and a seismic study. Then comes the design of structural elements according to the Algerians code «CCM97 » and the study and the verification of assemblies and the calculation of foundations.

In the second part, we studied the columns with external and internal defects' (imposed displacements) and their influence on the whole structure.

**Keywords**: Design, Steel structure, steel, industrial hall, Resistance, Instability, geometrical defects.

#### ملخص

في هذه المذكرة لنهاية الدر اسات, نهتم إلي در اسة تأثير العيوب الهندسية العمودية للأعمدة علي إستجابة الهيكل.

المشروع ينقسم إلى قسمين أساسيين. في القسم الأول يتوالي دراسة الهيكل الذي من خلاله نجد تقديم المبني متبوع بتقديم الأحمال و التحميلات الزائدة وف قال لونظام RNV 2013 , قبل قياس الأبعاد للمواد الثانوية ثم دراسة أثر الزلازل علي الهيكل ثم يأتي من بعد التقييم للمواد الأساسية التشكيلية وف قاله لونظام CCM 97 ,وما معها من دراسة و مراجعة التجميع الهندسي ودراسة الأساسات.

في الجزء الثاني , نقوم بدر اسة الأعمدة بالعيوب الخارجية و الداخلية (تغيير موقعها المفروض) و تأثير ها على الشكل العام.

**مفاتيح البحث :** وضع الأبعاد ,بناء حديدي , الصلب أو الحديد ,موقع صناعي ,المقاومة ,غير الثباتي , العيوب هندسية .

# TABLE DES MATIERES

| INTRODUCTION                                                                 | . 13       |
|------------------------------------------------------------------------------|------------|
| CHAPITRE 1 : DESCRIPTION DU PROJET                                           | . 14       |
| Introduction                                                                 | 14         |
| 1.1 Présentation du projet                                                   | . 14       |
| 1.2 Données concernant le site du projet                                     | . 15       |
| 1.3 Règlements utilisés                                                      | . 16       |
| 1.4 Logiciels utilisés                                                       | . 16       |
| 1.5 Matériaux utilisés                                                       | . 16       |
| Acier                                                                        | . 16       |
| Béton                                                                        | . 16       |
| CHAPITRE 2 : CHARGES ET SURCHARGES                                           | . 17       |
| 2.1 Introduction                                                             | 17         |
| 2.1 Infoduction                                                              | . 17       |
| 2.2 Charge permanente                                                        | . 17<br>17 |
| 2.5 Surenarges d'explorations                                                | 17         |
| 2.4 1 Effet de la neige                                                      | . 18       |
| 2.4.2 L'effet du vent                                                        | . 19       |
| 2.4.3 L'effet du frottement                                                  | . 30       |
| CHAPITRE 3 · CALCUL DES ELEMENTS SECONDAIRES                                 | 31         |
|                                                                              | 1          |
| 3.1 Calcul des chéneaux                                                      | .31        |
| 3.1.1 Introduction                                                           | . 31       |
| 3.1.2 Dimensionnement des cheneaux                                           | 22         |
| 3.2 Calcul des pappes de la couverture                                       | . 52<br>27 |
| 3.3.1 Charges à prendre en considération                                     | . 32<br>33 |
| 3.3.2 Espacement entre pannes                                                |            |
| 3 3 3 Dimensionnement des nannes                                             | 34         |
| 3 3 4 Conditions de flèche à l'ELS                                           | 36         |
| 3.3.5 Condition de flèche avec poids propre inclus                           | . 37       |
| 3.3.6 Classe du profilé IPE140                                               | . 37       |
| 3.3.7 Vérification des contraintes                                           | . 38       |
| 3.3.8 Résistance de la panne au déversement                                  | . 39       |
| 3.3.9 Résistance au voilement par cisaillement                               | . 40       |
| 3.3.10 Stabilité au flambement de la semelle comprimée dans le plan de l'âme | . 40       |
| 3.4 Calcul des liernes                                                       | . 40       |
| 3.4.1 Dimensionnement des liernes                                            | 41         |
| 3.4.1 Dimensionnement des liernes                                            | 42         |
| 3.5 Calcul de l'échantignole                                                 | . 42       |
| 3.5.1 Dimensionnement de l'échantignole                                      | . 42       |
| 3.5.2 Boulon d'attache                                                       | . 43       |
| 3.5.3 Cordon de soudure                                                      | . 45       |
| 3.6 Calcul des potelets                                                      | . 46       |
| 5.0.1 Calcul des charges et surcharges revenant au potelet le plus chargé    | . 46       |
| 3.0.2 Dimensionnement au poteiet                                             | .4/        |

| 3.6.3 Incidence de l'effort normal                                         | 47       |
|----------------------------------------------------------------------------|----------|
| 3.6.4 Vérification des contraintes                                         | 48       |
| 3.6.5 Resistance a la compression et flexion                               | 48       |
| 3.6.6 Resistance au vollement par cisallement                              | 50       |
| 5.6.7 Stabilité au francement de la semene comprimée dans le plan de l'ame | 30       |
| CHAPITRE 4 : ETUDE SISMIQUE DE LA STRUCTURE                                | 52       |
| 4.1 Introduction                                                           | 52       |
| 4.2 Principe de la méthode de calcul                                       | 52       |
| 4.3 Spectre de réponse de calcul                                           | 52       |
| 4.4 Analyse dynamique de la structure                                      | 54       |
| 4.5 Modélisation de la structure                                           | 54       |
| 4.6 Analyse modale                                                         | 55       |
| 4.7 Vérification de la structure                                           | 56       |
| 4.7.1 Verification de la periode fondamentale de la structure              | 50       |
| 4.7.2 Verification de la force sistingue à la base                         | 30<br>50 |
| 4.7.5 Verification des deplacements                                        |          |
| CHAPITRE 5 : DIMENSIONNEMENT DES ELEMENTS STRUCTURAUX                      | 59       |
| 5.1 Introduction                                                           | 59       |
| 5.2 Justification de la traverse IPE 360                                   | 59       |
| 5.2.1 Charges réparties sur la traverse                                    | 59       |
| 5.2.2 Caractéristiques de la traverse IPE 360                              | 59       |
| 5.2.3 Efforts sollicitant                                                  | 59       |
| 5.2.4 Classe de la section transversale                                    | 60       |
| 5.2.5 Vérification de la flèche                                            | 60       |
| 5.2.6 Conditions de résistance                                             | 60       |
| 5.2. / Verification au deversement                                         | 61       |
| 5.3 1 Correctéristiques du poteou HEA220                                   | 02       |
| 5.3.2 Efforts sollicitant                                                  | 02       |
| 5.3.3 Classe de la section transversale                                    | 63       |
| 5.3.4 Conditions de résistance                                             | 63       |
| 5.4 Justification des poutres au vent                                      | 65       |
| 5.4.1 Les éléments comprimés                                               | 65       |
| 5.4.2 Les éléments tractés                                                 | 66       |
| 5.5 Justification des stabilités                                           | 67       |
| 5.5.1 Les éléments comprimés                                               | 67       |
| 5.5.2 Les éléments tractés                                                 | 68       |
| CHAPITRE 6 : CALCUL DES ASSEMBLAGES                                        | 70       |
| 6.1 Introduction                                                           | 70       |
| 6.2 Principaux modes d'assemblages                                         | 70       |
| 6.3 Classification des assemblages                                         | 70       |
| 6 4 Classes des boulons                                                    |          |
| 6.5 Calcul des assemblages                                                 |          |
| 6.5.1 Assemblage poteau – traverse (HEA 220 – IPE 360)                     |          |
| 6.5.2 Assemblage traverse – traverse (IPE 360 – IPE 360)                   |          |
| 6.5.3 Assemblage de pieds de poteau                                        |          |
|                                                                            | 01       |
| UNATIME / : EIUDE DE L INFKASIKUUIUKE                                      | ð1       |

| 7.1 Calcul des fondations                                                  | . 81 |
|----------------------------------------------------------------------------|------|
| 7.1.1 Introduction                                                         | . 81 |
| 7.1.2 Charges à prendre en considération                                   | . 81 |
| 7.1.3 Dimensionnement des semelles pour les poteaux en HEA 220             | . 82 |
| 7.1.4 Dimensionnement des semelles pour les potelets en IPE 240            | . 86 |
| 7.2 Calcul des longrines                                                   | . 86 |
| 7.2.1 Introduction                                                         | . 86 |
| 7.2.2 Dimensionnement des longrines                                        | . 86 |
| 7.2.3 Calcul du ferraillage                                                | . 87 |
| 7.2.4 Condition de non fragilité                                           | . 87 |
| 7.2.5 Calcul des armatures transversales                                   | . 88 |
| 7.2.6 Calcul d'espacement des cadres                                       | . 88 |
| CHAPITRE 8 : DEFAUTS D'ALIGNEMENT                                          | . 89 |
| 8.1 Imperfections géométriques                                             | . 89 |
| 8.2 Disposition des poteaux                                                | . 89 |
| 8.3 Récapitulatif des résultats de la structure saine (sans défauts)       | . 90 |
| 8.4 Récapitulatif des résultats de la structure existante avec ses défauts | . 90 |
| 8.5 Justification du poteau (HEA 220) avec les nouvelles sollicitations    | . 93 |
| 8.5.1 Caractéristiques du poteau (HEA220)                                  | . 93 |
| 8.5.2 Efforts sollicitant                                                  | . 93 |
| 8.5.3 Classe de la section transversale                                    | . 93 |
| 8.5.4 Conditions de résistance                                             | . 93 |
| 8.6 Structure avec des défauts simulés                                     | . 96 |
| 8.6.1 Premier cas : (portique 2 uniquement)                                | . 96 |
| 8.6.2 Deuxième cas : (portique 1 + portique 2 + portique 3)                | . 97 |
| 8.6.3 Troisième cas : (portique 1 – portique 2)                            | . 98 |
| 8.7 Comparaison et analyse des différents cas                              | . 99 |
| CONCLUSION1                                                                | 101  |
| ANNEXES                                                                    |      |

REFERENCES BIBLIOGRAPHIQUES

## LISTE DES NOTATIONS

## **Majuscules latines**

- A : Section brute d'une pièce.
- Anet : Section nette d'une pièce.
- Aw: Section de l'âme.
- Av: Aire de cisaillement.
- Ct: Coefficient de topographie.
- Cr: Coefficient de rugosité.
- C<sub>p,net</sub>: Coefficient de pression nette.
- Ce: Coefficient d'exposition.
- Cd: Coefficient dynamique.
- E : Module d'élasticité longitudinale de l'acier (E= $2.1 \ 10^5 \text{ MPa}$ ).
- F: Force en générale.
- G : Module d'élasticité transversale de l'acier (G=81000 MPa).
- G : Charge permanente.
- I : Moment d'inertie.
- Kt: Facteur de terrain.
- L : Longueur.
- M : Moment de flexion.
- Msd: Moment fléchissant sollicitant.
- MRd : Moment résistant par unité de longueur dans la plaque d'assise.
- Mpi: Moment plastique.
- Mb,Rd : Moment de la résistance au déversement .
- Npl,Rd : Effort normal de la résistance plastique de la section transversale brute.
- Nb,Rd : Effort normal d'un élément comprimé au flambement.
- Nsd: Effort normal sollicitant.
- Nt sd : Effort normal de traction.
- Ncsd : Effort normal de compression.
- N<sub>c,Rd</sub> : Valeur de calcul de la résistance de la section transversale à la compression.
- Q : surcharge d'exploitation.
- R : Coefficient de comportement de la structure.
- *S* : La charge de la neige.
- *Vsd* : Valeur de calcul de l'effort tranchant.
- V<sub>réf</sub> : Vitesse de référence du vent.

W<sub>pl</sub>: Module de résistance plastique.

W : Poids de la structure.

## **Minuscules latines**

f : La flèche.

- f<sub>y</sub> : Limite d'élasticité.
- h : Hauteur d'une pièce.
- L: Longueur d'une pièce (Poutre, Poteau).
- L<sub>f</sub>: Longueur de flambement.
- t : Épaisseur d'une pièce.
- t<sub>f</sub> : Épaisseur d'une semelle de poutre.
- t<sub>w</sub> : Épaisseur de l'âme de poutre.
- z : Hauteur au-dessus du sol.
- $z_0$ : Paramètre de rugosité.
- z<sub>eq :</sub> Hauteur équivalente.

## **Minuscules grecques**

- $\chi$  : coefficient de réduction pour le mode de flambement approprié.
- $\beta_w$ : Facteur de corrélation.
- үм: Coefficient de sécurité.
- $\lambda$  : Élancement.
- $\lambda_{LT}$ : Élancement de déversement.
- $\alpha$  : Facteur d'imperfection.
- $\tau$ : Contrainte limite de cisaillement en élasticité.
- $\varepsilon$ : Coefficient de réduction élastique de l'acier.
- $\sigma_a$ : Contrainte de l'acier.
- $\sigma_b$ : Contrainte du béton.
- $\xi$ : Pourcentage d'amortissement critique.
- $\eta$ : Facteur de correction d'amortissement.
- δek: Déplacement dû aux forces sismiques.
- $\mu$  : coefficient de forme de la charge de neige.

# LISTE DES FIGURES

| Figure 1.1 : Vue en 3D de la structure                                                                           | 14            |
|------------------------------------------------------------------------------------------------------------------|---------------|
| Figure 1.2 : Localisation du site du projet                                                                      | 15            |
| Figure 1.3 : Localisation de la structure                                                                        | 15            |
| Figure 2.1 : Cas de charges ponctuelles des pannes                                                               | 17            |
| Figure 2.2 : Coefficient de forme – toitures à versant multiples                                                 | 18            |
| Figure 2.3 : La géométrie de la structure                                                                        | 19            |
| Figure 2.4 : Vent sur la paroi verticale du pignon                                                               | 22            |
| Figure 2.5 : Vent sur la paroi verticale du long pan                                                             | 23            |
| Figure 2.6 : Vent sur la toiture du pignon                                                                       | 23            |
| Figure 2.7 : Légende pour les toitures à versant multiples                                                       | 24            |
| Figure 2.8 : Vent sur la toiture du long pan                                                                     | 24            |
| Figure 2.9 : Répartition de pressions du vent sur la paroi verticale direction VI et V3 pour $C_{1} = +0.8$      | 25            |
| Figure 2.10 : Répartition de pressions du vent sur la paroi verticale direction V1 et V3 pour $C_{-1} = -0.5$    | 23<br>:<br>25 |
| Figure 2.11 : Répartition de pressions du vent sur la paroi verticale direction V2 et V4 pour<br>$C_{-i} = +0.8$ | 23<br>:<br>26 |
| Figure 2.12 : Répartition de pressions du vent sur la paroi verticale direction V2 et V4 pour $C_{ni} = -0.5$    | 20<br>26      |
| Figure 2.13 : Répartition de pressions du vent sur la toiture direction V1 et V3 pour<br>$C_{pi} = +0.8$         | 27            |
| Figure 2.14 : Répartition de pressions du vent sur la toiture direction V1 et V3 pour $C_{pi} = -0.5$            | .27           |
| Figure 2.15 : Répartition de pressions du vent sur la toiture direction V2 et V4 pour $C_{pi} = +0.8$            | 28            |
| Figure 2.16 : Répartition de pressions du vent sur la toiture direction V2 et V4 pour $C_{pi} = -0.5$            | 28            |
| Figure 3.1 : Chéneau d'eau et sa coupe transversale                                                              | 31            |
| Figure 3.2 : Moignon cylindrique                                                                                 | 32            |
| Figure 3.3 : Tôle nervurée type TN40                                                                             | 32            |
| Figure 3.4 : Cas de l'effet de neige                                                                             | 33            |
| Figure 3.5 : Cas de l'effet du vent                                                                              | 33            |
| Figure 3.6 : Diagramme des moments fléchissant au niveau de la couverture                                        | 34            |
| Figure 3.7 : Composition des charges sur la panne                                                                | 35            |
| Figure 3.8 : Répartition de la charge suivant l'axe y-y                                                          | 35            |
| Figure 3.9 : Répartition de la charge suivant l'axe z-z                                                          | 35            |
| Figure 3.10 : Coupe transversale des liernes                                                                     | 41            |
| Figure 3.11 : Répartition de la charge suivant l'axe y-y                                                         | 41            |
| Figure 3.12 : Position des liernes                                                                               | 41            |
| Figure 3.13 : Schéma d'une échantignole                                                                          | 42            |
| Figure 3.14 : Echantignolle                                                                                      | .45           |
| Figure 3.15 : Cordon de soudure                                                                                  | 45            |
| Figure 4.1 : Spectre de réponse de la structure                                                                  | 55            |
|                                                                                                                  |               |

| Figure 4.2 : Nouvelle conception de la structure                   |    |
|--------------------------------------------------------------------|----|
| Figure 6.1 : Vue en 3D de l'assemblage poteau – traverse           | 71 |
| Figure 6.2 : Détail d'assemblage poteau – traverse                 | 71 |
| Figure 6.3 : Vue en 3D de l'assemblage traverse – traverse         | 74 |
| Figure 6.4 : Détail d'assemblage traverse – traverse               | 74 |
| Figure 6.5 : Vue en 3D de l'assemblage de pieds de poteau          | 79 |
| Figure 6.6 : Détail d'assemblage de pieds de poteau                | 79 |
| Figure 7.1 : Diagramme des contraintes agissant sur les fondations |    |
| Figure 7.2 : Ferraillage des semelles d'angles                     |    |
| Figure 7.3 : Ferraillage des semelles intermédiaires               | 85 |
| Figure 7.4 : Ferraillage des semelles centrales                    |    |
| Figure 7.5 : Ferraillage des semelles des potelets                 |    |
| Figure 8.1 : Numérotation des poteaux                              | 89 |
| Figure 8.2 : Levé planimétrique de la structure existante          |    |
| Figure 8.3 : Récapitulatif des défauts d'alignements des poteaux   |    |
| Figure 8.4 : Représentation du premier cas simulé                  | 96 |
| Figure 8.5 : Représentation du deuxième cas simulé                 | 97 |
| Figure 8.6 : Représentation du troisième cas simulé                | 98 |

# LISTE DES TABLEAUX

| Tableau 1.1 : Règlements techniques utilisés                                                                                              | . 16 |
|-------------------------------------------------------------------------------------------------------------------------------------------|------|
| Tableau 2.1 : Pression du vent sur la paroi verticale direction V1/V3                                                                     | . 29 |
| Tableau 2.2 : Pression du vent sur la paroi verticale direction V2/V4                                                                     | . 29 |
| Tableau 2.3 : Pression du vent sur la toiture direction V1/V3                                                                             | . 29 |
| Tableau 2.4 : Pression du vent sur la toiture direction V2/V4                                                                             | . 29 |
| Tableau 3.1 : Caractéristiques du profilé IPE 140                                                                                         | . 36 |
| Tableau 3.2 : Caractéristiques du profilé IPE 240                                                                                         | . 47 |
| Tableau 4.1 : Facteur de qualité                                                                                                          | . 53 |
| Tableau 4.2 : Eléments structuraux constituant la structure                                                                               | . 54 |
| Tableau 4.3 : Résultante des forces sismique à la base                                                                                    | . 57 |
| Tableau 4.4 : Déplacements relatifs dans le sens (x-x)                                                                                    | . 58 |
| Tableau 4.5 : Déplacements relatifs dans le sens (y-y)                                                                                    | . 58 |
| Tableau 5.1 : Caractéristiques du profilé IPE 360                                                                                         | . 59 |
| Tableau 5.2 : Caractéristiques du profilé HEA 220                                                                                         | . 62 |
| Tableau 6.1 : Classe des boulons                                                                                                          | . 70 |
| Tableau 7.1 : Charges appliquées sur les fondations                                                                                       | . 81 |
| Tableau 7.2 : Récapitulatif des résultats des semelles d'angles                                                                           | . 84 |
| Tableau 7.3 : Récapitulatif des résultats des semelles intermédiaires                                                                     | . 84 |
| Tableau 7.4 : Récapitulatif des résultats des semelles centrales                                                                          | . 85 |
| Tableau 7.5 : Récapitulatif des résultats des semelles des potelets                                                                       | . 86 |
| Tableau 8.1 : Les efforts des poteaux de la structure saine (sans défauts)                                                                | . 90 |
| Tableau 8.2 : Les efforts des poteaux de la structure avec défauts                                                                        | . 92 |
| Tableau 8.3 : Comparaison des efforts les plus défavorables                                                                               | . 92 |
| Tableau 8.4 Caractéristiques du profilé HEA 220                                                                                           | . 93 |
| Tableau 8.5 : Récapitulatif des efforts et vérification des profilés obtenus pour le premierCas simulé par utilisation du logiciel Robot  | . 96 |
| Tableau 8.6 : Récapitulatif des efforts et vérification des profilés obtenus pour le deuxièmeCas simulé par utilisation du logiciel Robot | . 97 |
| Tableau 8.7 : Récapitulatif des efforts et vérification des profilés obtenus pour le troisième                                            | 00   |
| Cas simule par utilisation du logiciel Kobot                                                                                              | . 98 |

#### **INTRODUCTION**

Les études théoriques donnent la charge critique des structures considérées comme parfaites (c'est-à-dire des poutres bien droites et de section constante, des plaques uniformément planes, etc...). Les structures réelles, notamment en charpente métallique sont cependant loin de cette perfection et présentent des défauts de géométrie (variation locale de l'épaisseur, ovalisation, distance entre la ligne neutre théorique et réelle, discontinuité au droit des soudures, etc...

Ces défauts influencent la charge critique. Certaines structures sont particulièrement sensibles à la présence d'un défaut de forme ou d'alignement.

Les codes et règles de calcul tel que le CCM 97 ou l'EC3 proposent quelques recommandations. Cependant, ces derniers ne fournissent pas assez d'informations pour un calcul performant.

Dans ce mémoire nous allons procéder au dimensionnement d'un hall métallique existant, en suite par un levé topographique de précision nous allons essayer de refaire ce calcul tout en tenant compte des défauts géométriques existants.

La réalisation de cette étude nécessitera le travail théorique qui portera sur les chapitres suivants :

- Le premier chapitre comporte une présentation du projet.
- Dans le deuxième chapitre, le calcul des charges et surcharges d'après le D.T.R B.C -2.2 et le RNV/version2013.
- Dans le troisième chapitre, le calcul des éléments secondaires (les chéneaux, les pannes, les liernes, l'échantignole et les potelets).
- Dans le quatrième chapitre, la vérification de la structure sous l'effet du séisme selon le règlement (RPA 99-Version 2003).
- Dans le cinquième chapitre, l'étude et le comportement des poteaux, des traverses ainsi que celles des contreventements par rapport aux phénomènes d'instabilité (flambement et déversement).
- Dans le sixième chapitre, le calcul des assemblages.
- Dans le septième chapitre, l'étude infrastructure.
- Dans le huitième chapitre, les défauts d'alignement et de verticalité des poteaux et leurs incidences.

Nous terminons par une conclusion générale et perspective.

## **CHAPITRE 1 : PRESENTATION DU PROJET**

## **1.1 INTRODUCTION**

Ce projet consiste à se concentrer en premier lieu sur l'étude et le dimensionnement d'une structure de type hall métallique avec ses données géométriques proposées dans la phase étude. Puis en second lieu, à se déplacer sur chantier et reprendre cette même structure avec ses défauts géométriques issus d'un relevé topographique tels que les défauts d'inclinaison et d'alignement des poteaux, et voir l'incidence de ces défauts sur sa réponse.

## **1.2 DESCRIPTION DU PROJET**

Ce hall métallique est destiné pour stockage et est implanté sur une surface de 266,76 m<sup>2</sup>.

Les données géométriques de l'ouvrage sont :

- Longueur totale : 22,8 m
- Largeur totale : 11,7 m
- Hauteur totale : 7 m
- Pente des quatre versants : 10,1°
- Nombre de portique : 3



Figure 1.1 : Vue en 3D de la structure

## **1.3 DONNEES CONCERNANT LE SITE DU PROJET**

La structure se situe à la zone industrielle de chetouane dans la wilaya de Tlemcen, qui est une zone de faible sismicité classée dans la zone I.



Figure 1.2 : Localisation du site du projet



Figure 1.3 : Localisation de la structure

## **1.4 REGLEMENTS UTILISES**

Les règlements techniques utilisés dans cette étude sont :

| Type de règlement | Intitulé                                                          |
|-------------------|-------------------------------------------------------------------|
| D.T.R - B.C - 2.2 | Charges permanentes et charges d'exploitations                    |
| RNV 2013          | Règlement neige et vent version 2013                              |
| CCM 97            | Conception et calcul des structures en acier                      |
| RPA99-V2003       | Règles parasismiques Algériennes version 2003                     |
| EUROCODE 3        | Calcul des structures en acier                                    |
| BAEL 91           | Béton armé aux états limites                                      |
| CBA 93            | Règles de conception et de calcul des structures en<br>béton armé |

#### **Tableau 1.1 :** Règlements techniques utilisés

### **1.5 LOGICIELS UTILISES**

- RDM 6
- Autodesk Robot structural analysis 2014
- Autocad 2008

## **1.6 MATERIAUX UTILISES**

#### 1.6.1 Acier

L'acier est un matériau caractérisé par sa bonne résistance à la traction et à la compression.

- Résistance à la traction : fu = 360 MPa
- Limite élastique : fy = 235 MPa
- Module de Young : E = 210000 MPa
- Coefficient de poisson : v = 0,3

## 1.6.2 Béton

Le béton de propreté est dosé à  $150 \text{ kg/m}^3$ 

Le béton utilisé est dosé à 350 kg/m<sup>3</sup> dont les caractéristique sont les suivant :

- Résistance à la compression à 28 jours : fc28 = 25 MPa
- Résistance à la traction : ft28 = 0,6+0,06 fc28 = 2,1 MPa
- Poids volumique :  $\rho = 2500 \text{ daN/m}^3$
- Module d'élasticité : E =14000 MPa

## **CHAPITRE 2 : CHARGES ET SURCHARGES**

### **2.1 INTRODUCTION**

Dans ce chapitre, nous allons définir les différentes charges agissantes sur notre structure, qui se résument dans l'action des charges permanentes et d'exploitations des effets climatiques, ainsi que du séisme. Ces charges ont une grande influence sur la stabilité de l'ouvrage. Pour cela, une étude approfondie doit être élaborée pour la détermination de ces différentes actions.

## **2.2 LES CHARGES PERMANENTES**

La charge permanente comprend non seulement le poids propre des éléments structuraux et secondaires, mais ainsi le poids des éléments incorporés aux éléments porteurs tels que : la couverture, le bardage et autres.

| $\triangleright$ | Bardage : en maçonnerie                 | $2,60 \text{ kN/m}^2$ |
|------------------|-----------------------------------------|-----------------------|
| $\triangleright$ | Toiture : en tôle nervurée de type TN40 | 0,11 kN/m²            |

## 2.3 LES SURCHARGES D'EXPLOITATION

Les charges d'exploitation sont celles qui résultent de l'usage des locaux par opposition au poids des ouvrages qui constituent des locaux, ou à celui des équipements fixes. Elles correspondent au mobilier, au matériel, aux matières en dépôt et aux personnes et pour un mode normal d'occupation. Dans notre cas on admet une charge d'exploitation statique de 3.5 KN/m<sup>2</sup> dans la zone de dépôts d'après le (D.T.R - B.C - 2.2) [1].

Pour la couverture sur charpente, les charges d'entretien sont conventionnellement assimilées à deux charges concentrées de 1KN appliquées au 1/3 et 2/3 des portées.



Figure 2.1 : Cas de charges ponctuelles des pannes

## 2.4 LES CHARGES CLIMATIQUES

Dans cette partie, on s'intéresse aux effets climatiques pour le but de déterminer les différentes sollicitations produites par les charges du vent et de la neige, agissant sur l'ensemble de l'ouvrage.

Cette étude sera réalisée conformément au règlement neige et vent (RNV/version2013) [2].

### 2.4.1 Effet de la neige

La neige n'a qu'un effet vertical, les valeurs des surcharges sont en fonction de :

- La région
- L'altitude

L'accumulation de la neige sur la toiture produit une surcharge qu'il faut prendre en compte pour les vérifications des éléments de la structure.

## 2.4.1.1 Calcul de la charge de la neige

La charge caractéristique de neige S par unité de surface en projection horizontale de toitures ou de toute autre surface soumise a l'accumulation de la neige s'obtient par la formule suivante :

S =  $\mu$ . Sκ [kN/m<sup>2</sup>]

Où :

- S $\kappa$  en (kN/m<sup>2</sup>) est la charge de neige sur le sol.
- $\mu$  est un coefficient d'ajustement des charges, en fonction de la forme de la toiture, appelé coefficient de forme.

## a. Calcul de la charge de neige sur le sol Sĸ

La charge caractéristique de neige sur le sol Sk par unité de surface est en fonction de la localisation géographique et de l'altitude du lieu considéré.

Notre projet se situe à la zone industrielle chetouane dans la wilaya de Tlemcen classe I zone A. l'altitude du site par rapport au niveau de la mer est à H=600 m.

Zone A 
$$\rightarrow$$
  $S_{K} = \frac{0,07H+15}{100}$   
 $\rightarrow$   $S_{K} = \frac{0,07(600)+15}{100}$   
 $\rightarrow$   $S_{K} = 0,57 \text{ kN/m}^{2}$ 

## b. Coefficient de forme de toiture µ

Dans notre cas, on a une toiture à versant multiples où :



Figure 2.2 : Coefficient de forme-toitures à versant multiples



Donc : 
$$S_1 = \mu_1$$
. Sk = 0,8 × 0,57 = 0,456 kN/m<sup>2</sup>

$$S_2 = \mu_2 \cdot S\kappa = 1,069 \times 0,57 = 0,609 \text{ kN/m}^2$$

#### 2.4.2 L'effet du vent

L'action du vent étant la sollicitation la plus importante des surcharges appliquées, relativement aux autres surcharges, et a une grande influence sur la stabilité de la structure. Les actions du vent appliquées aux parois dépendent de :

- La direction.
- L'intensité.
- La région.
- Le site d'implantation.
- La forme géométrique et la surface des ouvertures de la structure.

#### a. Les données relatives au site

Notre projet se situe à la zone industrielle de CHETOUANE dans la wilaya de TLEMCEN.

- $\blacktriangleright$  Le site est plat Ct(z) = 1
- Catégorie du terrain III :

 $\begin{array}{l} \mathrm{Kt} = 0,215 \quad \mathrm{Facteur} \ \mathrm{du} \ \mathrm{terrain} \\ Z_0 = 0,3 \ m \ \mathrm{Paramètre} \ \mathrm{de} \ \mathrm{rugosit} \\ \mathrm{Zmin} = 5 \ \mathrm{m} \quad \mathrm{hauteur} \ \mathrm{minimale} \\ \epsilon = 0,61 \quad \mathrm{coefficient} \ \mathrm{utilis} \\ \mathrm{e} \ \mathrm{pour} \ \mathrm{le} \ \mathrm{calcul} \ \mathrm{du} \\ \mathrm{coefficient} \ \mathrm{Cd} \end{array}$ 

La zone du vent est la zone II (Tlemcen)

\_\_\_\_\_

→ La pression dynamique de référence est :  $q_{ref} = 435 \text{ N/m}^2 = 0,435 \text{ kN/m}^2$ 



Figure 2.3 : Géométrie de la structure

#### b. Calcul de la pression due au vent

La pression du vent est donnée par la formule suivante :

$$qj = C_d \cdot q_p(Z_e) \cdot (Cp_e - Cp_i)$$

Où :

- C<sub>d</sub> : Coefficient dynamique.
- $q_p(Z_e)$ : Pression dynamique de pointe.
- Cp<sub>e</sub> : Coefficients de pressions extérieures.
- Cp<sub>i</sub> : Coefficients de pressions intérieures.

#### b.1 Détermination du coefficient dynamique C<sub>d</sub>

 $C_d = 1$  h = 7 m < 15 m

#### b.2 détermination de la pression dynamique de pointe $q_p(Z_e)$

La pression dynamique de pointe  $q_p(Z_e)$ , à la hauteur de référence  $Z_e$  est donnée par :

$$q_p(Z_e) = q_{ref} \times C_e(Z_e)$$

Où :

q<sub>ref</sub> (en N/m<sup>2</sup>) est la pression dynamique de référence.

C<sub>e</sub> est le coefficient d'exposition au vent.

 $\mathbf{\mathbf{\dot{v}}} \mathbf{q}_{ref}$ ?

Dans notre cas la structure se situe à la zone industrielle de chetouane dans la wilaya de Tlemcen, zone II.

$$\Rightarrow$$
 q<sub>ref =</sub> 435 N/m<sup>2</sup>

 $\mathbf{*} \mathbf{C}_{\mathbf{e}}$ ?

 $C_e(Z)$  est donné par :

$$C_{e}(Z) = C_{t}^{2}(Z) \times C_{r}^{2}(Z) \times [1 + 7I_{v}(Z)]$$

Où:

C<sub>r</sub> est le coefficient de rugosité.

 $C_t$  est le coefficient de topographie.

 $I_V(Z)$  est l'intensité de la turbulence.

Z (en m) est la hauteur considérée.

 $C_t(Z) = 1$  (site plat).

 $C_r(Z)$  : le coefficient de rugosité

Le coefficient de rugosité  $C_r(Z)$  traduit l'influence de la rugosité et de la hauteur sur la vitesse moyenne du vent. Il est définit par loi logarithmique (logarithme népérien) :

$$\begin{cases} C_r(Z) = K_t \times Ln\left(\frac{Z}{Z0}\right) & \text{pour } Z_{min} \leq Z \leq 200m \\ C_r(Z) = K_t \times Ln\left(\frac{Zmin}{Z0}\right) & \text{pour } Z < Z_{min} \end{cases}$$

Où :

Kt est le facteur du terrain.

 $Z_0$  (en m) est le paramètre de rugosité.

 $Z_{\min}(en m)$  est la hauteur minimale.

Z (en m) est la hauteur considérée.

On calculera :

- Pour Z = 7m (Toiture).
- Pour Z = 3m (Paroi verticale à mi-hauteur).

$$\begin{cases} C_r(7) = 0,215 \times Ln\left(\frac{7}{0.3}\right) & \text{pour } Z_{min} = 5m \leq Z = 7m \leq 200m \\ C_r(3) = 0,215 \times Ln\left(\frac{5}{0.3}\right) & \text{pour } Z = 3m < Z_{min} = 5m \\ \end{cases} \\ \begin{cases} C_r(7) = 0,677 \\ C_r(3) = 0,605 \\ I_v(Z) : \text{Intensité de turbulence} \end{cases}$$

L'intensité de turbulence est définie comme étant l'écart type de la turbulence devisée par la vitesse moyenne du vent et elle est donnée par :

$$\begin{cases} I_V(Z) = \frac{1}{C_t(Z) \times Ln\left(\frac{Z}{Z_0}\right)} & \text{pour } Z > Z_{\min} \\ I_V(Z) = \frac{1}{C_t(Z) \times Ln\left(\frac{Z\min}{Z_0}\right)} & \text{pour } Z \le Z_{\min} \\ C_t(Z) = 1 \text{ (site plat)} & \Phi < 0.05 \\ I_V(Z) = \frac{1}{1 \times Ln\left(\frac{7}{0.3}\right)} = 0.317 & \text{pour } Z > Z_{\min} \\ I_V(Z) = \frac{1}{1 \times Ln\left(\frac{5}{0.3}\right)} = 0.355 & \text{pour } Z \le Z_{\min} \end{cases}$$

Alors le coefficient d'exposition est égale à :

- Pour la toiture :
  - $C_e(7) = (1)^2 \times (0,677)^2 \times [1 + 7 \times (0,317)]$ C <sub>e</sub>(7) = 1,475
- Pour la paroi verticale :

 $C_{e}(3) = (1)^{2} \times (0,605)^{2} \times [1 + 7 \times (0,355)]$  $C_{e}(3) = 1,276$ 

Donc  $q_p(Z)$  est égale à :

• Pour la toiture :

 $q_p(7) = 435 \times 1,475$ 

- $q_p(7) = 641,625 \text{ N/m}^2$
- Pour la paroi verticale :

 $q_p(3) = 435 \times 1,276$ 

 $q_p(3)=555,06 \text{ N/m}^2$ 

## b.3 Coefficient de pression extérieure

Les coefficients de pression extérieur  $C_{pe}$  sont définis pour des surfaces chargées de 1 m<sup>2</sup> et 10 m<sup>2</sup>, auxquelles correspondent les coefficients de pression notés respectivement  $C_{pe,1}$  et  $C_{pe,10}$ 

 $C_{pe}$  s'obtient à partir des formules suivantes :

$$\begin{split} C_{pe} &= C_{pe,1} & \text{si}: \quad S \leq 1 m^2 \\ C_{pe} &= C_{pe,1} + (C_{pe,10} - C_{pe,1}) \times \log_{10} (s) & \text{si}: \quad 1 m^2 < S < 10 m^2 \\ C_{pe} &= C_{pe,10} & \text{si}: \quad S \geq 10 m^2 \end{split}$$

Où :

S désigne la surface chargée de paroi considérée (en m<sup>2</sup>)

Pour notre cas :  $S \ge 10 \text{ m}^2 \longrightarrow C_{pe} = C_{pe,10}$ 

## • Pour la paroi verticale

➢ Vent sur pignon

b = 11,70 m d = 22,8m h = 6m e = min (b,2h)  $\longrightarrow$  e = min (11,70; 2×6) = 11,70 m



Figure 2.4 : Vent sur la paroi verticale du pignon



Figure 2.5 : Vent sur la paroi verticale du long pan

#### • Pour la toiture

Pour un vent dont la direction est parallèle aux génératrices, les coefficients de pression de chaque versant s'obtiennent en utilisant les valeurs des toitures à un versant pour :  $\theta = 90^{\circ} et \theta = 0^{\circ}$  (RNV2013) [2].

Vent sur pignon

$$\theta = 90^{\circ} \qquad \alpha = 10,1$$
  

$$b = 5,70 \text{ m} \qquad d = 22,8 \text{ m} \qquad h = 7\text{ m}$$
  

$$e = \min(5,70; 14) = 5,70 \text{ m}$$
  

$$b = 5,70 \text{ m}$$
  

$$I = -0,6$$
  

$$H = -0,7$$
  

$$I = -0,6$$
  

$$H = -0,7$$
  

$$I = -0,6$$
  

$$I = -0,7$$
  

$$I = -0,6$$
  

$$I = -0,7$$
  

$$I = -0,6$$
  

$$I = -0,7$$
  

$$I = -0,8$$
  

$$I = -0,7$$
  

$$I = -0,7$$
  

$$I = -0,8$$
  

$$I = -0,8$$
  

$$I = -0,7$$
  

$$I = -0,8$$
  

$$I$$

Figure 2.6 : Vent sur la toiture du pignon

### ➢ Vent sur long pan

Pour un vent dont la direction est perpendiculaire aux génératrices, on prendra les valeurs de  $C_{pe}$  des toitures à deux versants.



Figure 2.7 : Légende pour les toitures à versant multiples



Figure 2.8 : Vent sur la toiture du long pan

#### b.4 Coefficient de pression intérieure

 $C_{pi}=+0.8 \qquad \ et \qquad C_{pi}{=}-0.5$ 

Finalement, les pressions dues au vent sont égales :

• pour la parois verticale  $qj=C_d \cdot q_p(Z=3) \cdot (Cp_e - Cp_i)$  (N/m<sup>2</sup>)

> Vent sur pignon Pour  $C_{pi} = +0.8 \longrightarrow qj = 1 \times 555,06 \times (Cp_e - 0.8)$ 



Figure 2.9 : Répartition de pressions du vent sur la paroi verticale direction V1 et V3 pour  $C_{pi} = +0.8$ 



Figure 2.10 : Répartition de pressions du vent sur la paroi verticale direction V1 et V3 pour  $C_{pi}$  = -0,5



Figure 2.11 : Répartition de pressions du vent sur la paroi verticale direction V2 et V4 pour  $C_{pi} = +0.8$ 



Figure 2.12 : Répartition de pressions du vent sur la paroi verticale direction V2 et V4 pour  $C_{pi}$  = -0,5

• Pour la toiture  $qj=C_d \cdot q_p(Z=7) (Cp_e-Cp_i)$  (N/m<sup>2</sup>)

Vent sur pignon



Figure 2.13 : Répartition de pressions du vent sur la toiture direction V1 et V3 pour  $C_{pi} = +0.8$ 

Pour 
$$C_{pi}$$
= -0,5 \_\_\_\_\_ qj= 1.(641,625).( $C_{pe}$ +0.5)



Figure 2.14 : Répartition de pressions du vent sur la toiture direction V1 et V3 pour  $C_{pi} = -0.5$ 

 $\geq$ 

Vent sur long pan

Pour  $C_{pi} = +0.8$  $qj=1.(641,625).(C_{pe}-0,8)$ 5,7m e/4 F 3,5m -1347,41 Н b=22,8m G 15,8m -802,03 -1154,92 F -1347,41 e/4 3,5m 1,4m 4,3m e/10

Figure 2.15 : Répartition de pressions du vent sur la toiture direction V2 et V4 pour  $C_{pi} = +0.8$ 



Figure 2.16 : Répartition de pressions du vent sur la toiture direction V2 et V4 pour  $C_{pi} = -0.5$ 

## • Pour la paroi verticale

Vent sur pignon

| Zone | Cd | <b>q</b> dyn    | Cpe  | C <sub>pi1</sub> | <b>q</b> j1(N/m <sup>2</sup> ) | C <sub>pi2</sub> | <b>q</b> j2(N/m <sup>2</sup> ) |
|------|----|-----------------|------|------------------|--------------------------------|------------------|--------------------------------|
| Α    | 1  | 555,06          | -1   | 0,8              | -999,11                        | 0,5              | -277,53                        |
| В    | 1  | 555,06          | -0,8 | 0,8              | -888,10                        | 0,5              | -166,52                        |
| С    | 1  | 555 <i>,</i> 06 | -0,5 | 0,8              | -721,58                        | 0,5              | 0                              |
| D    | 1  | 555 <i>,</i> 06 | +0,8 | 0,8              | 0                              | 0,5              | 721,58                         |
| E    | 1  | 555,06          | -0,3 | 0,8              | -610,57                        | 0,5              | 111,01                         |

Tableau 2.1 : Pression du vent sur la paroi verticale direction V1/V3

 $\blacktriangleright$  Vent sur long pan

| Zone | Cd | <b>q</b> <sub>dyn</sub> | Cpe  | C <sub>pi1</sub> | <b>q</b> j1(N/m <sup>2</sup> ) | C <sub>pi2</sub> | <b>q</b> j2(N/m <sup>2</sup> ) |
|------|----|-------------------------|------|------------------|--------------------------------|------------------|--------------------------------|
| A'   | 1  | 555,06                  | -1   | 0,8              | -999,11                        | -0,5             | -277,53                        |
| B'   | 1  | 555,06                  | -0,8 | 0,8              | -888,10                        | -0,5             | -166,52                        |
| D    | 1  | 555,06                  | +0,8 | 0,8              | 0                              | -0,5             | 721,58                         |
| Ε    | 1  | 555,06                  | -0,3 | 0,8              | -610,57                        | -0,5             | 111.01                         |

**Tableau 2.2 :** Pression du vent sur la paroi verticale direction V2/V4

### • Pour la toiture

#### ➢ Vent sur pignon

| Zone             | Cd | <b>q</b> <sub>dyn</sub> | C <sub>pe</sub> | C <sub>pi1</sub> | <b>q</b> j1(N/m <sup>2</sup> ) | C <sub>pi2</sub> | <b>q</b> j2(N/m <sup>2</sup> ) |
|------------------|----|-------------------------|-----------------|------------------|--------------------------------|------------------|--------------------------------|
| Ι                | 1  | 641,625                 | -0,6            | 0,8              | -898,27                        | -0,5             | -64,16                         |
| Н                | 1  | 641,625                 | -0,7            | 0,8              | 962,44                         | -0,5             | -128,32                        |
| G                | 1  | 641,625                 | -1,87           | 0,8              | -1713,14                       | -0,5             | -879,03                        |
| F <sub>sup</sub> | 1  | 641,625                 | -2,25           | 0,8              | -1956,96                       | -0,5             | -1122,84                       |
| Finf             | 1  | 641,625                 | -1,85           | 0,8              | -1700,31                       | -0,5             | -866,19                        |

Tableau 2.3 : Pression du vent sur la toiture direction V1/V3

➢ Vent sur long pan

| Zone             | Cd | <b>q</b> <sub>dyn</sub> | Cpe   | C <sub>pi1</sub> | <b>q</b> j1(N/m <sup>2</sup> ) | C <sub>pi2</sub> | <b>q</b> j2(N/m <sup>2</sup> ) |
|------------------|----|-------------------------|-------|------------------|--------------------------------|------------------|--------------------------------|
| Н                | 1  | 641,625                 | -0,45 | 0,8              | -802,03                        | -0,5             | 32,08                          |
| G                | 1  | 641,625                 | -1    | 0,8              | -1154,92                       | -0,5             | -320,81                        |
| F <sub>sup</sub> | 1  | 641,625                 | -1,3  | 0,8              | -1347,41                       | -0,5             | -513,30                        |
| Finf             | 1  | 641,625                 | -1,3  | 0,8              | -1347,41                       | -0,5             | -513,30                        |

Tableau 2.4 : Pression du vent sur la toiture direction V2/V4

## 2.4.3 Effet du frottement

Les effets du frottement du vent sur la surface peuvent être négligés lorsque l'aire totale de toutes les surfaces parallèles au vent est inferieure ou égale à 4 fois l'aire totale de toutes les surfaces extérieures perpendiculaire au vent.

Vent sur pignon :  $S1+S3 \le 4 (S2+S4)$   $(22,8 \times 7) \times 2 \le 4(11,70 \times 7 \times 2)$   $319,2 \le 655,2$ Condition vérifée Vent sur long pan  $S2+S4 \le 4 (S1+S3)$   $(11,70 \times 14) \le 4 (22,8 \times 7 \times 2)$   $163,8 \le 1276,8$ Condition vérifée

## **CHAPITRE 3 : CALCUL DES ELEMENTS SECONDAIRES**

## **3.1 CALCUL DES CHENEAUX**

#### **3.1.1 Introduction**

Le chéneau représente un conduit servant à recueillir les eaux de pluie à la base des toitures et à les diriger vers les tuyaux de descente.



Figure 3.1 : chéneau d'eau et sa coupe transversale

#### **3.1.2** Dimensionnement des chéneaux

La forme des chéneaux est trapézoïdale. La section du chéneau sera déterminée comme suite :

$$\frac{s}{s} \ge \frac{63}{\sqrt{\frac{s}{d}p}}$$

Avec : s : Section transversale du chêneau en cm<sup>2</sup>.

S : Surface couverte du chêneau en m<sup>2</sup>.

- d : Périmètre de la section mouillée du chêneau en cm.
- p : Pente du chêneau.

#### 3.1.2.1 Chéneau de rive

#### a. Calcul de la surface couverte du chéneau

On suppose que la pente des chéneaux à exécuter est p = 2 mm/m (2%)

S : la surface en plan des combles desservis en m<sup>2</sup>.

$$S = 5,79 \times 11,7 = 67,74 \text{ m}^2$$

On tire la section nécessaire des chéneaux à partir de [l'abaque P 261 calcul pratique des structures métallique]. Suivant les abaques, la section transversale du chéneau  $s = 130 \text{ cm}^2$  (voir Annexe B.1).

#### b. Calcul du diamètre des descentes des eaux pluviales

Le chéneau est de type moignon cylindrique, sans trop plein.



Figure 3.2 : Moignon cylindrique

A partir de l'abaque page 262 [l'abaque P261 calcul pratique des structures métallique] Voir (Annexe B.2). On tire le diamètre minimal du tuyau de descente d'eau : d = 12,5 cm

### 3.1.2.2 Chéneau intermédiaire

p = 2 mm/m (2%)  $S = 67,74 \times 2 = 135,48 \text{ m}^2$ Suivant les abaques :  $\begin{cases} s = 200 \text{ cm}^2 \text{ Voir (Annexe B. 1)} \\ d = 15,5 \text{ cm Voir (Annexe B. 2)} \end{cases}$ 

## **3.2 CARACTERISTIQUES DE LA COUVERTURE**

La couverture est en tôle nervurée type TN40 d'épaisseur  $10/10^{eme}$ , de longueur 6 m et de largeur 0,726 m.



Figure 3.3 : Tôle nervurée type TN40

- Poids propre de la tôle TN40 :  $PP = 0,11 \text{ kN/m^2}$ .
- Limite de rupture  $fu = 360 \text{ N/mm}^2$ .
- Contrainte élastique  $fy = 235 \text{ N/mm}^2$ .
- Flèche admissible fmax = 1/200.
- Module de résistance w = 9,24 cm<sup>3</sup>.
- Moment d'inertie I =  $27,21 \text{ cm}^4/\text{m}$ .

## **3.3 CALCUL DES PANNES DE LA COUVERTURE**

Les pannes sont des poutres le plus souvent en I ou U permettant de supporter la toiture. Elles sont fixées par échantignolles sur les fermes (portiques), auxquelles elles transmettent les charges de la toiture. Leur dimensionnement se fait en flexion déviée sous l'effet du poids propre de la couverture, des actions climatiques et la surcharge d'entretien. Elles sont disposées perpendiculairement aux traverses des portiques et sont calculées suivant le "CCM97" [3].

### 3.3.1 Charges à prendre en considération

- Charges permanentes (poids propre de la tôle nervurée type TN40) :  $G = 0,11 \text{ kN/m}^2$
- Charge d'entretient :  $Q = 1 \text{ kN/m}^2$
- Action de la neige :  $S = (0,609 \cos 10,1^{\circ}) = 0,6 \text{ kN/m}^2$
- Action du vent :  $W = -1,95 \text{ kN/m}^2$





Figure 3.4 : Cas de l'effet de la neige



## 3.3.2 Espacement entre pannes

L'espacement entre pannes est déterminé en fonction de la portée admissible de la couverture. La couverture est d'une longueur de 5,79 m, et posée sur 6 appuis ce qui donne un espacement moyen de 1,05m.

## a- Combinaison des charges et actions

✓ 
$$q1 = 1,35 \text{ G} + 1,5 \text{ Q} = (1,35 \times 0,11 \times 1,05) + (1,5 \times 1 \times 1,05) = 1,73 \text{ kN/m}$$
  
✓  $q2 = 1,35 \text{ G} + 1,5 \text{ S} = (1,35 \times 0,11 \times 1,05) + (1,5 \times 0,6 \times 1,05) = 1,1 \text{ kN/m}$   
✓  $q3 = 1,35 \text{ G} + 1,5 \text{ W} = (1,35 \times 0,11 \times 1,05) + (1,5 \times (-1,95) \times 1,05) = -2,91 \text{ kN/m}$   
 $\triangleright q = \max(q1, q2, q3) = 2,91 \text{ kN/m}$ 

**b-** Verification de l'espacement

 $\sigma = \frac{Mmax}{W} \le fy \qquad \longrightarrow Mmax \le fy \times W$ 

## b-1 Calcul du moment maximum pour une poutre sur 6 appuis simples

Le moment maximum est déterminé suivant les formulaires de la RDM par le logiciel RDM 6. Le diagramme résultant des moments fléchissant est présenté ciaprès :



Figure 3.6 : Diagramme des moments fléchissant au niveau de la couverture

\* M max =  $0,117 \text{ gl}^2$ 

♦ l = 1,05 m (l'espacement entre chaque panne)

$$0,117ql^{2} \le y \times w \qquad \longrightarrow l \le \sqrt{\frac{fy \times w}{0,117q}}$$
$$l \le \sqrt{\frac{235 \times 9,24 \times 10^{-3}}{0,117 \times 2,91}}$$
$$l \le 2,52 \text{ m}$$
$$l = 1,05 \text{ m} \le 2,52 \text{ m}$$
Condition vérifiée

## **3.3.3 Dimensionnement des pannes**

- $G = 0.11 \times 1.05 = 0.11 \text{ kN/m}$
- $Q_{entr} = 1 \times 1,05 = 1,05 \text{ kN/m}$
- $S = 0.6 \times 1.05 = 0.63 \text{ kN/m}$
- W =  $-1,95 \times 1,05 = -2,05 \text{ kN/m}$

# a. Combinaison des charges

## À L'ELU

- ✓  $q1 = 1,35 \text{ G} + 1,5 \text{ Q} = (1,35 \times 0,11 \times 1,05) + (1,5 \times 1 \times 1,05) = 1,73 \text{ kN/m}$
- ✓  $q^2 = 1,35 \text{ G} + 1,5 \text{ S} = (1,35 \times 0,11 \times 1,05) + (1,5 \times 0,6 \times 1,05) = 1,1 \text{ kN/m}$
- ✓  $q3 = 1,35 \text{ G} + 1,5 \text{ W} = (1,35 \times 0,11 \times 1,05) + (1,5 \times (-1,95) \times 1,05) = -2,91 \text{ kN/m}$ 
  - ▶ q = max (q1, q2, q3) = 2,91 kN/m
- ✓  $qy = q \sin \alpha = 2,91 \sin (10,1^{\circ}) = 0,51 \text{ kN/m}$
- ✓  $qz = q \cos \alpha = 2,91 \cos (10,1^{\circ}) = 2,86 \text{ kN/m}$

## À L'ELS

✓ 
$$qs1 = G + Q_{entr} = 0,11 + 1,05 = 1,16 \text{ kN/m}$$

- ✓ qs2 = G+S = 0.11 + 0.63 = 0.74 kN/m
- ✓ qs3 = G + W = 0,11 + (-2,05) = -1,94 kN/m
   ➢ q = max (qs1, qs2, qs3) = 1,94 kN/m
- ✓  $qsy = q \sin \alpha = 1,94 \sin (10,1^{\circ}) = 0,34 \text{ kN/m}$
- ✓  $qsz = q \cos \alpha = 1,94 \cos (10,1^{\circ}) = 1,91 \text{ kN/m}$



Figure 3.7 : Composition des charges sur la pannes

#### b. Calcul des moments sollicitant à l'ELU

L'espacement entre deux traverses est de 5,85 m. Les vérifications suivantes sont imposées par le **CCM 97 :** 

Plan (y-y)

$$\begin{split} M_{z,sd} &= qy \frac{|z^2|}{8} = 0,51 \frac{(5,85)^2}{8} \\ M_{z,sd} &= 2,18 \text{ KN.m} \\ Wplz &\geq \frac{M_{z,sd} \times \gamma m_0}{f_y} \\ Wplz &\geq \frac{2,18 \times 1,1 \times 10^3}{235} \\ Wplz &\geq 10,2 \text{ cm}^3 \\ Plan (z-z) \\ M_{Y,sd} &= qz \frac{|y^2|}{8} = 2,86 \frac{(2,925)^2}{8} \\ M_{Y,sd} &= 3,06 \text{ KN.m} \\ Wply &\geq \frac{M_{Y,sd} \times \gamma m_0}{f_y} \\ Wply &\geq \frac{3,06 \times 1,1 \times 10^3}{235} \\ Wply &\geq 14,32 \text{ KN.m} \end{split}$$



**Figure 3.8 :** Répartition de la charge suivant l'axe y-y



**Figure 3.9 :** Répartition de la charge suivant l'axe z-z

### **3.3.4 Condition de flèche à l'ELS**

Plan (y-y)

Plan (z-z)

$$\begin{cases} \delta = 0.415 \times \frac{5 \times qsy \times (Lz)^4}{384 \times E \times Iz} \\ \delta_{max} = \frac{Lz}{200} = \frac{585}{200} = 2.92 \text{ cm} \end{cases}$$
  
$$\delta \leq \delta_{max} \qquad \longleftarrow \qquad \delta = 0.415 \times \frac{5 \times qsy \times (Lz)^4}{384 \times E \times Iz} \leq \delta_{max}$$
  
$$= Iz \geq 0.415 \times \frac{5 \times qsy \times (Lz)^4}{384 \times E \times \delta_{max}}$$
  
$$Iz \geq 0.415 \times \frac{5 \times 0.34 \times 10^{+1} \times (585)^4}{384 \times 2.1 \times 10^7 \times 2.92}$$
  
$$Iz \geq 35.09 \text{ cm}^4$$

## Choix du profilé

Le profilé qui satisfait les deux conditions à l'ELU et l'ELS est un IPE 140 présentant les caractéristiques suivantes :

| profilé | Section | Dimensions |    |                |                | Caractéristiques |        |                  |                  |
|---------|---------|------------|----|----------------|----------------|------------------|--------|------------------|------------------|
|         | А       | h          | b  | t <sub>f</sub> | t <sub>w</sub> | Iy               | Iz     | W <sub>ply</sub> | W <sub>plz</sub> |
|         | $cm^2$  | mm         | mm | mm             | mm             | $cm^4$           | $cm^4$ | cm <sup>3</sup>  | cm <sup>3</sup>  |
|         |         |            |    |                |                |                  |        |                  |                  |
| IPE 140 | 16,4    | 140        | 73 | 6,9            | 4,7            | 541,2            | 44,92  | 88,34            | 19,25            |

**Tableau 3.1 :** Caractéristiques du profilé IPE 140
# 3.3.5 Condition de flèche avec poids propre inclus

✓ 
$$q1 = G + Q = (0,11 \times 1,05 + 0,129) + (1 \times 1,05) = 1,29 \text{ kN/m}$$
  
✓  $q2 = G + S = (0,11 \times 1,05 + 0,129) + (0,6 \times 1,05) = 0,87 \text{ kN/m}$   
✓  $q3 = G + W = (0,11 \times 1,05 + 0,129) + (-1,95 \times 1,05) = -1,8 \text{ kN/m}$   
➢  $q = \max(q1, q2, q3) = 1,8 \text{ kN/m}$ 

✓ 
$$qy = q \sin \alpha = 1,8 \sin (10,1^\circ) = 0,31 \text{ kN/m}$$

✓  $qz = q \cos \alpha = 1.8 \cos (10.1^{\circ}) = 1.77 \text{ kN/m}$ 

Plan (y-y)

$$\begin{cases} \delta = \frac{5 \times qz \times (Ly)^4}{384 \times E \times Iy} = \frac{5 \times 1,77 \times 10^{+1} \times (585)^4}{384 \times 2,1 \times 10^7 \times 541,2} = 2,37 \text{ cm} \\ \delta_{\text{max}} = \frac{Ly}{200} = \frac{585}{200} = 2,92 \text{ cm} \end{cases}$$

$$\delta = 2,37 \text{ cm} \leq \delta_{\text{max}} = 2,92 \text{ cm}$$

**Condition vérifiée** 

Plan (z-z)

$$\begin{cases} \delta = 0,415 \times \frac{5 \times qy \times (Lz)^4}{384 \times E \times Iz} = 0,415 \times \frac{5 \times 0,31 \times 10^{+1} \times (585)^4}{384 \times 2,1 \times 10^7 \times 44,92} = 2,08 \text{ cm} \\ \delta_{max} = \frac{Lz}{200} = \frac{585}{200} = 2,92 \text{ cm} \end{cases}$$

$$\delta = 2,08 \text{ cm} \le \delta_{\text{max}} = 2,92 \text{ cm}$$
 Condition vérifiée

# 3.3.6 Classe du profilé IPE140

# a. Classe de l'âme fléchie

$$\frac{d}{t_w} \le 72 \epsilon \qquad \text{avec}: \ d = 112,2 \text{ mm}; \ tw = 4,7 \text{ mm}; \ \epsilon = \sqrt{\frac{235}{fy}}$$

$$\frac{112,2}{4,7} \le 72 \sqrt{\frac{235}{235}} \longrightarrow 23,87 < 72 \longrightarrow 1' \text{ are est de classe 1}$$

#### b. Classe de la semelle comprimée

$$\frac{c}{t_{f}} \le 10 \epsilon \qquad \text{avec}: c = \frac{b}{2} = 36,5 \text{ mm}; t_{f} = 6,9 \text{ mm}; \epsilon = \sqrt{\frac{235}{fy}}$$

$$\frac{36,5}{6,9} \le 10 \sqrt{\frac{235}{235}} \qquad \longrightarrow \qquad 5,29 < 10 \qquad \longrightarrow \qquad \text{la semelle est de classe 1}$$

#### 3.3.7 Vérification des contraintes

Les pannes sont posées inclinées d'un angle  $\alpha$  et de ce fait fonctionnent en flexion biaxiale (déviée).

$$\left(\frac{M_{y,sd}}{M_{Ny,Rd}}\right)^{\alpha} + \left(\frac{M_{z,sd}}{M_{Nz,Rd}}\right)^{\beta} \leq 1$$

Pour un profilé laminé en I :

$$\begin{cases} \alpha = 2\\ \beta = 5n \text{ avec: } n = \frac{N_{sd}}{N_{pl,Rd}} \text{ mais } \beta \ge 1 \end{cases}$$

 $N_{sd} = 0$  (pas d'efforts horizontaux)  $\longrightarrow n = 0$ donc on prend :  $\alpha = 2$ ;  $\beta = 1$ 

$$\begin{cases} n = \frac{N_{sd}}{N_{pl,Rd}} \text{ avec } N_{sd} = 0 \quad \text{donc} \quad n = 0\\ a = \frac{A - (2b \times t_f)}{A} = \frac{16,4 \times 10^2 - (2 \times 73 \times 6,9)}{16,4 \times 10^2} = 0,38 \end{cases}$$

$$n \le a \longrightarrow M_{Nz,Rd} \le M_{plz,Rd} = W_{plz} \frac{y}{\gamma_{m0}}$$

 $W_{plz} = 19,25 \text{ cm}^3$  (Tableau des sections pour le profilé IPE140)

$$M_{Nz,Rd} = 19,25 \times 10^{-6} \times \frac{235 \times 10^3}{1,1} = 4,11 \text{ kN.m}$$
$$M_{Ny,Rd} = M_{ply,Rd} \times \left[\frac{1-n}{1-0,5a}\right] = W_{ply} \times \frac{fy}{\gamma_{m0}} \times \left[\frac{1-n}{1-0,5a}\right]$$
$$M_{Ny,Rd} = 88,34 \times \frac{235 \times 10^{-3}}{1,1} \times \left[\frac{1}{1-0,5 \times (0,38)}\right]$$

 $M_{Ny,Rd} = 23,3 \text{ kN.m}$ 

✓ q1 = 1,35 G + 1,5 Q = 1,35 [(0,11 × 1,05) + 0,129] + [1,5 × (1 × 1,05)] = 1,9 kN/m  
✓ q2 = 1,35 G + 1,5 S = 1,35 [(0,11 × 1,05) + 0,129] + [1,5 × (0,6 × 1,05)] = 1,27kN/m  
✓ q3 = 1,35 G + 1,5 W = 1,35 [(0,11 × 1,05) + 0,129] + [1,5 × (-1,95 × 1,05)] = -2,74 kN/m  

$$\triangleright$$
 q<sub>u</sub> = max (q1, q2, q3) = 2,74 kN/m

✓ 
$$q_{uy} = q_u \sin \alpha = 2,74 \sin (10,1^\circ) = 0,48 \text{ kN/m}$$
  
✓  $q_{uz} = q_u \cos \alpha = 2,74 \cos (10,1^\circ) = 2,69 \text{ kN/m}$   
 $\begin{cases} M_{y,sd} = q_{uz} \frac{ly^2}{8} = 2,69 \times \frac{(2,925)^2}{8} = 2,88 \text{ kN/m} \\ M_{z,sd} = q_{uy} \frac{lz^2}{8} = 0,48 \times \frac{(5,85)^2}{8} = 2,05 \text{ kN/m} \end{cases}$ 

AN;

$$\left(\frac{2,88}{23,3}\right)^2 + \left(\frac{2,05}{4,11}\right)^1 = 0,51 \le 1$$
 Condition vérifiée

Donc les pannes en IPE140 vérifient les contraintes de la flexion déviée.

#### 3.3.8 Résistance de la panne au déversement

Le déversement est un phénomène d'instabilité qui se manifeste par une déformation latérale des parties comprimées de la section de la panne sous l'action du vent en soulèvement.

Le moment résistant de déversement est donné par la relation suivante :

$$M_{sd} \le M_{b,Rd} = \chi_{LT} \times \beta_w \times W_{ply} \times \frac{fy}{\gamma_{m1}}$$

Avec :  $\beta_w = 1$  (pour les sections transversales de classe 1)

$$\chi_{LT} = \frac{1}{\phi_{LT} + [\phi_{LT}^2 - \overline{\lambda_{LT}^2}]^{0.5}} \qquad \chi_{LT} \le 1$$
  
$$\phi_{LT} = 0.5 [1 + \alpha_{LT} (\overline{\lambda_{LT}} - 0.2) + \lambda_{LT}^2]$$

$$\begin{split} \alpha_{LT} &= 0,21 \\ \hline \overline{\lambda_{LT}} &= \left[ \beta_w \times W_{ply} \times \frac{fy}{M_{cr}} \right]^{0.5} = \left[ \frac{\lambda_{LT}}{\lambda_1} \right] (\beta_w)^{0.5} \\ \lambda_1 &= \pi \left[ \frac{E}{[y]} \right]^{0.5} = 93,3 \varepsilon \qquad \text{avec} : \varepsilon = \sqrt{\frac{235}{fy}} = \sqrt{\frac{235}{235}} = 1 \\ \lambda_1 &= 93,3 \times (1) = 93,3 \text{ N/mm}^2 \\ M_{cr} &= C \times \frac{\pi^2 \times E \times I_z}{L_y^{-2}} \times \left[ \frac{I_w}{I_z} + \frac{L^2 \times G \times I_1}{\pi^2 \times E \times I_z} \right]^{0.5} \\ C_1 &= 1,132 \text{ (cas d'une charge uniformément répartie)} \\ G &= \frac{E}{2 \times (1+\upsilon)} \quad \text{avec} : \quad \left\{ \begin{array}{c} E = 21 \times 10^6 \text{ N/cm}^2 \\ \upsilon = 0,3 \text{ (coefficient de poisson)} \end{array} \right. \\ G &= \frac{21 \times 10^6}{2 \times (1+\upsilon)^3} = 8,08 \times 10^6 \text{ N/cm}^2 \\ M_{cr} &= 1,132 \times \frac{\pi^2 \times 21 \times 10^6 \times 44,92}{(585)^2} \times \left[ \frac{1,98 \times 10^3}{44,92} + \frac{(585)^2 \times 8,08 \times 10^6 \times 2,45}{\pi^2 \times 21 \times 10^6 \times 44,92} \right]^{0.5} \\ M_{cr} &= 855518,52 \text{ N.cm} \\ \hline \lambda_{LT} &= \left[ \beta_w \times W_{ply} \times \frac{fy}{M_{cr}} \right]^{0.5} = \left[ 1 \times 88,34 \times \frac{235 \times 10^2}{855518,52} \right]^{0.5} \\ \hline \lambda_{LT} &= 0,5 \left[ 1 + \alpha_{LT} \left( \overline{\lambda_{LT}} - 0,2 \right) + \lambda_{LT}^2 \right] \\ \Phi_{LT} &= 0,5 \left[ 1 + 0,21 \left( 1,56 - 0,2 \right) + 1,56^2 \right] \\ \Phi_{LT} &= 1,86 \\ \text{donc} : \qquad \chi_{LT} &= \frac{1}{1,86 + \left[ 1,86^2 - 1,56^2 \right]^{0.5}} = 0,35 \le 1 \\ M_{b,Rd} &= \chi_{LT} \times \beta_w \times W_{ply} \times \frac{fy}{\gamma_{m1}} \\ M_{b,Rd} &= 0,35 \times 1 \times 88,34 \times \frac{235 \times 10^2}{1,1} \end{split}$$

 $M_{b.Rd} = 660542,27 \text{ N. cm}^2 = 6,6 \text{ kN.m}$ 

 $M_{sd} = 2,88 \text{ kN.m} \le M_{h.Rd} = 6,6 \text{ kN.m}$  Condition vérifiée

#### 3.3.9 Résistance au voilement par cisaillement

si 
$$\frac{d}{t_w} \le 69 \varepsilon \rightarrow il$$
 n'est pas nécessaire de vérifier le voilement par cisaillement.

$$\varepsilon = \sqrt{\frac{235}{fy}} = 1$$

On a :  $\frac{d}{t_w} = \frac{112,2}{4,7} = 23,87 \le 69 \varepsilon = 69$ 

Donc il n y a pas lieu de vérifier le voilement par cisaillement

#### 3.3.10 Stabilité au flambement de la semelle comprimée dans le plan de l'âme

La stabilité au flambement est assurée si la condition suivante est vérifiée :

$$\frac{d}{t_{w}} \leq K \times \frac{E}{f_{yt}} \times \sqrt{\frac{Aw}{Af_{c}}}$$

Avec :  $A_w = t_w \times (h-2 t_f) = 593,14 \text{ mm}^2$  (l'aire de l'âme)

Afc = b ×  $t_f = 73 \times 6.9 = 503.7 \text{ mm}^2$  (l'aire de la semelle comprimée)

 $f_{yt} = 235 \text{ N/mm}^2$  (limite d'élasticité de la semelle comprimée)

 $E = 21. 10^4 N / mm^2$  (module d'élasticité)

K = Coefficient pris égal à 0,3 (semelle de classe 1)

$$\begin{cases} \frac{d}{t_w} = 23,87\\ K \times \frac{E}{f_{yt}} \times \sqrt{\frac{Aw}{Af_c}} = 0,3 \times \frac{21 \times 10^4}{235} \times \sqrt{\frac{593,14}{503,7}} = 290,91 \end{cases}$$

 $23,87 \le 290,91$  Condition vérifiée

### Conclusion

La section en IPE 140 assure une bonne résistance vis-à-vis des différents cas d'instabilité. Donc elle est convenable pour les pannes de notre structure.

### **3.4 CALCUL DES LIERNES**

Les liernes sont des tirants qui fonctionnent en traction. Elles sont généralement formées de barres rondes ou de petites cornières. Leur rôle principal est d'éviter la déformation latérale des pannes.



Figure 3.10 Coupe transversale des liernes

#### 3.4.1 Dimensionnement des liernes des pannes

Dans le plan (y-y), on considère les pannes sur 3 appuis dont l'appui central est un appui élastique.



Figure 3.11 Répartition de la charge suivant l'axe y-y

La réaction au droit de cet appui est : R =  $1,25 \times q_y \times L_y$ Avec : q = 1,35 G + 1,5Q

q = 1,35 [(0,11 × 1,05) + 0,129] + [1,5 × (1 × 1,05)] = 1,9 kN/m q<sub>v</sub> = q sin  $\alpha$  = 1,9 sin (10,1°) = 0,33 kN/m

Donc :  $R = 1,25 \times 0,33 \times 2,925 = 1,20 \text{ kN}$ 

On a 6 pannes par versant donc les efforts dans les tronçons de liernes sont de  $L_1$  à  $L_5$  et sont

les suivant :

Effort de traction dans le tronçon de lierne L1 prévenante de la panne sablière

$$T1 = \frac{R}{2} = \frac{1,20}{2} = 0,6 \text{ kN}$$

Effort de traction dans le tronçon de lierne L2

T2 = R + T1 = 1,20 + 0,6 = 1,8 kN

Effort de traction dans le tronçon de lierne L3

T3 = R + T2 = 1,2 + 1,8 = 3 kN

Effort de traction dans le tronçon de lierne L4

T4 = R + T3 = 1,2 + 3 = 4,2 kN

Effort de traction dans le tronçon de lierne L5

2 T5 cos 
$$\theta$$
 = T4  
arctg  $\theta$  =  $\frac{1,05}{2,925}$  = 19,75°  
 $\rightarrow$  T5 =  $\frac{T5}{2 \cos \theta} = \frac{4,2}{2 \cos 19,75} = 2,23$  kN

# Panne faitière



### Panne sablière

Figure 3.12 Position des liernes

#### 3.4.2 Dimensionnement des liernes

Pour le dimensionnement des liernes tendus, les règles du CCM97 imposent la vérification suivante :

$$N_{sd} \leq N_{pl,Rd}$$

Avec : N<sub>sd</sub> : Effort normal sollicitant

$$N_{sd=T_{max}} = 4,2 \text{ kN}$$

N<sub>pl,Rd</sub> : Effort normal résistant

$$N_{pl,Rd} = A_s \times \left(\frac{f_y}{\gamma_{m0}}\right)$$

$$N_{sd} \leq A_s \times \left(\frac{f_y}{\gamma_{m0}}\right) \Rightarrow A_s \geq \frac{N_{sd} \times \gamma_{m0}}{f_y}$$

$$\Rightarrow A_s \geq \frac{4,2 \times 1,1}{235 \times 10^{-3}}$$

$$\Rightarrow A_s \geq 19,66 \text{ mm}^2$$

$$\Rightarrow A_s \min = 19,66 \text{ mm}^2$$

$$A_s \min = \frac{\pi \times \sigma_{min}^2}{4} \Rightarrow \sigma_{min}^2 = \frac{4 \times A_s \min}{\pi} = \frac{4 \times 19,66}{\pi} = 25,05 \text{ mm}^2$$

$$\Rightarrow \sigma_{min}^2 = 0,25 \text{ cm}^2$$

$$\Rightarrow \sigma_{min} = 0,5 \text{ cm}$$

**Conclusion :** on choisira donc un diamètre de  $\phi$ 10 pour les liernes des pannes.

# **3.5 CALCUL DE L'ECHANTIGNOLE**

L'échantignole est un dispositif de fixation permettant d'attacher les pannes aux traverses, le principal effort de résistance de l'échantignolle est le moment de renversement dû au chargement surtout sous l'action de soulèvement du vent.

### 3.5.1 Dimensionnement de l'échantignole

#### a. L'excentrement

L'excentrement « t » est limité par la condition suivante :

$$2 \times \left(\frac{b_f}{2}\right) \ll t \ll 3 \times \left(\frac{b_f}{2}\right)$$

Pour un IPE140 :

$$\begin{cases} b_{f} = 73 \text{ mm} \\ h = 140 \text{ mm} \end{cases} \Rightarrow 73 \text{mm} \ll t \ll 109,5 \text{ mm}$$

Donc on prend : t = 90 mm = 9 cm



Figure 3.13 : Schéma d'une échantignolle

# b. Calcul du moment de renversement M<sub>r</sub>

M<sub>r</sub> sera déterminé par rapport à la section d'encastrement

$$\begin{split} M_{\rm r} &= F_{\rm y} \times t + F_{\rm z} \times \frac{h}{2} \\ \bullet & F_{\rm y} = [1,35 \; G_{\rm y} + \; 1,5 \; W] \times \frac{1}{2} \\ \bullet & F_{\rm z} = [1,35 \; G_{\rm z}] \times \frac{1}{2} \\ \begin{cases} G_{\rm y} &= {\rm G} \cos \alpha = [(0,11 \; \times \; 1,05) + \; 0,129] \cos 10,1 = \; 0,24 \; {\rm kN/m} \\ G_{\rm z} &= {\rm G} \sin \alpha = \; [(0,11 \; \times \; 1,05) + \; 0,129] \sin 10,1 = \; 0,042 \; {\rm kN/m} \\ \Rightarrow F_{\rm y} &= [1,35 \; \times \; (0,24 - \; 1,5 \; \times \; 1,95)] \times \frac{1}{2} = -1,81 \; {\rm kN} \\ \Rightarrow F_{\rm z} = (1,35 \; \times \; 0,042) \times \frac{1}{2} = 0,028 \; {\rm kN} \\ Donc : \qquad M_{\rm r} &= (-1,81) \; \times \; 0,09 \; + \; 0,028 \; \times \; \left( \frac{0,14}{2} \right) \\ M_{\rm r} &= -0,16 \; {\rm kN.m} \end{split}$$

c. Module de résistance de l'échantignole

W = 
$$\frac{I}{V}$$
 avec : 
$$\begin{cases} I = \frac{L \times e^3}{12} \\ V = \frac{e}{2} \end{cases} \Rightarrow W = \frac{L \times e^2}{6} \end{cases}$$

d. Calcul de l'épaisseur de l'échantignole « e »

$$\frac{M_{\rm r}}{W} \ll f_{\rm y} \longleftrightarrow \frac{6 \times M_{\rm r}}{L \times e^2} \ll f_{\rm y} \rightarrow e_{min} = \sqrt{\frac{6 \times M_{\rm r}}{L \times f_{\rm y}}} = \sqrt{\frac{6 \times 0.16}{0.17 \times 235 \times 10^3}}$$
  
avec :  
$$L = b = 170 \text{ mm}$$
$$\rightarrow e_{\rm min} = 0.004 \text{ cm} = 0.04 \text{ mm}$$

On prend une échantignole d'épaisseur e = 10 mm

### **3.5.2 Boulon d'attache**

Le boulon d'attache est sollicité par deux efforts combinés de traction et de cisaillement. Il sera dimensionné de telle façon à satisfaire la condition suivante :

$$\frac{F_{v,sd}}{F_{v,Rd}} + \frac{F_{t,sd}}{1.4 F_{t,Rd}} \ll 1$$

Avec :

✓  $F_{v,sd}$  : Effort de cisaillement

✓  $F_{t,Rd}$  : Effort de traction

 $F_{v,sd}$  &  $F_{t,sd}$  représentent  $F_y$  et  $F_z$  respectivement qui sont déjà calculés

- ✓  $F_{v,Rd}$  : Résistance de calcul au cisaillement par boulon
- ✓  $F_{t,Rd}$  : Résistance de calcul à la traction par boulon

Prenons un boulon de classe 4.6 de caractéristiques suivantes :

$$F_{ub} = 400 \text{ N/mm}^2$$

$$\gamma_{Mb} = \begin{cases} 1,25 & \text{boulon sollicité en cisaillement} \\ 1,5 & \text{boulon sollicité en traction} \end{cases}$$

 $F_{v,Rd}\ \&\ F_{t,Rd}$  sont données en fonction de l'aire de la section résistance  $\ A_s$  du boulon

$$F_{v,Rd} = \frac{0.5 \times F_{ub} \times A_s}{\gamma_{Mb}} = \frac{0.5 \times 0.4 \times A_s}{1.25} = 0.16 A_s$$

$$F_{t,Rd} = \frac{0.9 \times F_{ub} \times A_s}{\gamma_{Mb}} = \frac{0.9 \times 0.4 \times A_s}{1.5} = 0.24 A_s$$

$$\frac{F_{v,Rd}}{F_{v,Rd}} + \frac{F_{t,sd}}{1.4 F_{t,Rd}} \ll 1 \leftrightarrow \frac{1.31}{0.16 A_s} + \frac{0.026}{1.4 \times 0.24 A_s} \ll 1$$

$$\frac{0.444}{0.074 A_s} \ll 1 \Rightarrow A_s = 6 \text{ mm}^2$$

On prend un boulon de diamètre  $\phi$ 12 d'une section résistante A<sub>s</sub> = 84,3 mm<sup>2</sup> pour la précision. Le règlement CCM97 impose d'autres vérifications qui sont :

# ➢ 1<sup>ere</sup> Vérification

$$\frac{F_{v,sd}}{F_{v,Rd}} = \frac{1,31}{0,16 A_s} \le 1 \leftrightarrow \frac{1,31}{0,16 \times 84,3} = 0,1 < 1$$
 Condition vérifiée

## ➢ 2<sup>eme</sup> Vérification

$$\frac{F_{v,sd}}{F_{b,Rd}} \le 1$$

Avec :

• F<sub>b,Rd</sub> : (Résistance à la pression diamétrale)

$$\begin{split} F_{b,Rd} &= \frac{2,5 \, \times \, \alpha \, \times \, f_u \, \times \, d \, \times t}{\gamma_{Mb}} \\ \alpha &= \min\left(\frac{f_{ub}}{f_u} \, , 1\right) = \min\left(\frac{400}{360} \, , 1\right) = 1 \end{split}$$

- d : Diamètre du boulon  $\phi 12$
- t : Epaisseur de l'échantignole t = 10 mm

$$\begin{split} F_{b,Rd} &= \frac{2,5 \times 1 \times 360 \times 0,012 \times 0,01}{1,25} = 86,4 \text{ KN} \\ \frac{F_{v,sd}}{F_{b,Rd}} &= \frac{1,31}{86,4} = 0,015 \leq 1 \end{split}$$
 Condition vérifiée

# ➢ 3<sup>eme</sup> Vérification

$$\frac{F_{t,sd}}{B_{p,Rd}} \le 1$$

Avec :

B<sub>p,Rd</sub> : Résistance de calcul au cisaillement par poinçonnement de la tête du boulon ou de l'écrou

$$B_{p,Rd} = \frac{0.6 \times \pi \times d_m \times t_p \times f_u}{\gamma_{Mb}}$$

t<sub>p</sub>: Epaisseur de la plaque sous la tête du boulon ou de l'écrou

$$t_p = t_w (IPE140) = 4,7 mm$$

d<sub>m</sub> : diamètre moyen de la tête du boulon de l'écrou (M12)

$$d_{\rm m} = 12 \text{ mm}$$
$$B_{\rm p,Rd} = \frac{0.6 \times \pi \times 0.012 \times 4.7 \times 10^{-3} \times 360 \times 10^3}{1.25}$$

$$\begin{split} B_{p,Rd} &= 30,62 \text{ KN} \\ \frac{F_{t,sd}}{B_{p,Rd}} &= \frac{0,028}{30,62} = 0,0009 \leq 1 \end{split} \qquad \textbf{Condition vérifiée} \end{split}$$

**Conclusion :** Les conditions imposées par le CCM97 sont vérifiées pour le boulon M12

### 3.5.3 Cordon de soudure





### Figure 3.15 : Cordon de soudure

### \* Vérification de la soudure

$$\sqrt{{\sigma_{\perp}}^2 + 3 \big({\tau_{\perp}}^2 + {\tau_{/\!\!/}}^2\big)} \le \frac{f_y}{B_w \times \gamma_{M_w}}$$

Pour 
$$t_{max} \le 17 \ mm$$
  $\longrightarrow a_{min} = 4 \ mm$   
 $\sigma_{\perp} = \frac{F_{v,sd}}{2 \times (b+l) \times a} = \frac{1,81 \times 10^3}{2 \times (10 + 170) \times 4} = 1,26 \ N/mm^2$   
 $\tau_{\parallel} = \frac{F_{t,sd}}{2 \times (b \times a)} = \frac{0,028 \times 10^3}{2 \times (10 \times 4)} = 0,35 \ N/mm^2$ 

$$\tau_{\perp} = \frac{M_{\rm G}}{\rm b.\,(2 \times l) \times a}$$

Avec :

$$\begin{split} M_{G} &= F_{v,sd} \times (b+c) + F_{t,sd} \times \left(\frac{h}{2}\right) \\ M_{G} &= 1,81 \times 10^{3} \times (10+80) + 0,028 \times 10^{3} \times \left(\frac{140}{2}\right) \\ M_{G} &= 164860 \text{ N. mm} \\ \tau_{\perp} &= \frac{164860}{10 \times (2 \times 160) \times 4} = 12,87 \text{ N/mm}^{2} \\ \sqrt{\sigma_{\perp}^{2} + 3(\tau_{\perp}^{2} + \tau_{\parallel}^{2})} \leq \frac{f_{y}}{B_{w} \times \gamma_{M_{w}}} \\ \end{split}$$
Avec :  
•  $f_{y} = 360 \text{N/mm}^{2}$   
•  $B_{w} = 0,8$   
•  $\gamma_{M_{w}} = 1,25$   
 $\sqrt{(1,26)^{2} + 3 \times (12,87^{2} + 0,35^{2})} \leq \frac{360}{0,8 \times 1,25}$ 

Condition vérifiée

Conclusion : Le cordon de soudure d'épaisseur 4 mm est suffisant

# **3.6 CALCUL DES POTELETS**

Les potelets sont le plus souvent des profilés en **I** ou **H** destinés à rigidifier la structure et à résister aux efforts horizontaux du vent. Leurs caractéristiques varient en fonction de la nature du bardage (en maçonnerie ou en tôle ondulée) et de la hauteur de la construction. Ils sont considérés comme articulés dans les deux extrémités.

### 3.6.1 Calcul des charges et surcharges revenant au potelet le plus chargé

- a. Charge permanente G (poids propre)
- Poids du bardage (en maçonnerie) : 2,6 kN/m<sup>2</sup>
- Poids du potelet : 0,307 kN/m<sup>2</sup>
- Longueur du potelet le plus chargé : 6,59 m
- L'entre axe des potelets :

G = poids propre du potelet + poids propre du bardage

 $G = (0,307 \times 6,59) + (0,26 \times 6,59 \times 4,015) = 8,9 \text{ kN}$ 

# b. Surcharges climatiques du vent W1

- Action du vent sur le pignon (0,72158 kN/m<sup>2</sup>)

 $W = 0,72158 \times 4,015 = 2,9 \text{ kN/ml}$ 



### 3.6.2 Dimensionnement du potelet

On choisit la section du profilé dans les tableaux des sections ayant au moins la valeur de ly supérieure ou égale à la valeur trouvée. Ce qui correspond à un profilé **IPE 240.** 

| profilé | Section         |     | Dime | ensions        |                |                 | Caractéristiques |                  |                  |  |
|---------|-----------------|-----|------|----------------|----------------|-----------------|------------------|------------------|------------------|--|
|         | А               | h   | В    | t <sub>f</sub> | t <sub>w</sub> | Iy              | Iz               | W <sub>ply</sub> | W <sub>plz</sub> |  |
|         | cm <sup>2</sup> | mm  | Mm   | mm             | mm             | $\mathrm{cm}^4$ | $cm^4$           | cm <sup>3</sup>  | cm <sup>3</sup>  |  |
| IPE 240 | 39,1            | 240 | 120  | 9,8            | 6,2            | 3892            | 283,6            | 366,6            | 73,92            |  |

Tableau 3.2 : Caractéristiques du profilé IPE 240

# b. Classe du profilé IPE 240

### \* Classe de l'âme fléchie

$$\frac{d}{t_w} \le 72 \epsilon \quad \text{avec}: d = 190,4 \text{ mm}; tw = 6,2 \text{ mm}; \epsilon = \sqrt{\frac{235}{fy}}$$

$$\frac{190,4}{6,2} \le 72 \sqrt{\frac{235}{235}} \longrightarrow 30,7 < 72 \longrightarrow 1^\circ \text{ame est de classe 1}$$

$$\stackrel{\bullet}{\bullet} \text{ Classe de la semelle comprimée}$$

$$\frac{c}{t_f} \le 10 \epsilon \quad \text{avec}: c = \frac{b}{2} = 60 \text{ mm}; t_f = 9,8 \text{ mm}; \epsilon = \sqrt{\frac{235}{fy}}$$

$$\frac{60}{9,8} \le 10 \sqrt{\frac{235}{235}} \longrightarrow 6,12 < 10 \longrightarrow \text{la semelle est de classe}$$

### 3.6.3 Incidence de l'effort normal

$$N_{sd} \le \min(0.25N_{pl,rd}, 0.5 \frac{A_w \times f_y}{\gamma_{M0}})$$

 $N_{sd} = 1,35 \text{ G} = 1,35 \times 8,9 = 12,015 \text{ kN}$  (effort normal sollicitant)

1

$$N_{pl,rd} = \frac{A \times f_y}{\gamma_{M0}} = \frac{3910 \times 235}{1,1} = 835,32 \text{ kN (effort normal plastique résistant)}$$

$$A_w = A - 2b \times t_f = 3910 - [(2 \times 120) \times 9,8] = 1558 \text{ mm}^2$$

$$N_{sd} = 12,015 \text{ kN} \le \min (208,83; 332,84) = 208,83 \text{ kN} \quad \text{Condition vérifiée}$$

### 3.6.4 Vérification des contraintes

Les potelets sont soumis à la flexion composée, il faut donc vérifier que :

$$M_{sd} \leq M_{N,Rd}$$

Avec :

- M<sub>sd</sub> : Moment sollicitant  $M_{sd} = \frac{Q \times l^2}{8} = \frac{1.5 \times 2.9 \times 6.59^2}{8} = 23.61 \text{ kN. m}$
- M<sub>N,Rd</sub> : Moment de résistance plastique réduit par la prise en compte de l'effort axial

$$M_{N,Rd} = \frac{M_{ply,Rd} \times (1-n)}{(1-0.5a)}$$

Avec : 
$$\begin{cases} M_{ply,Rd} = \frac{w_{ply,Rd} \times f_y}{\gamma_{M0}} = \frac{366600 \times 235}{1,1} = 78,31 \text{ kN. m} \\ n = \frac{N_{sd}}{N_{pl,Rd}} = \frac{12,015}{835,32} = 0,014 \\ a = \frac{A - (2b \times t_f)}{A} = \frac{3910 - (2 \times 120 \times 9,8)}{3910} = 0,4 \end{cases}$$

Donc :

$$M_{N,Rd} = \frac{78,31 \times (1-0,014)}{1-(0,5 \times 0,4)} = 96,52 \text{ kN.m}$$

$$M_{sd} = 23,61 \text{ KN. } m \le M_{N,Rd} = 96,52 \text{ kN.m}$$
 Condition vérifiée

#### 3.6.5 Résistance à la compression et flexion

$$\frac{N_{sd}}{\chi_Z \cdot \frac{A \cdot f_y}{\gamma_{M_1}}} + \frac{k_{LT} \cdot M_{.sd}}{\chi_{LT} \cdot \frac{W_{pl.y} \cdot f_y}{\gamma_{M_1}}} \le 1$$

Avec :

- $k_{LT} = 1 \frac{\mu_{LT}.N_{sd}}{\chi_Z.A.f_y}$  mais  $k_{LT} \le 1;$
- $\mu_{LT} = 0.15. \overline{\lambda_Z}. \beta_{M.LT} 0.15 \text{ mais } \mu_{LT} \le 0.9;$
- $\beta_{M.LT} = 1,80$
- $\gamma_{M_1} = 1,1$
- $\chi$  : coefficient de reduction
- $\overline{\lambda_Z}$ : élancement réduit

$$\bar{\lambda} = \left(\frac{\lambda}{\lambda_1}\right) \cdot \sqrt{\beta_A} = \frac{\lambda}{93,9\varepsilon}$$

 λ : Elancement pour le mode de flambement considéré calculé à la base des caractéristiques de la section brute

$$\begin{cases} \frac{h}{b} = \frac{240}{120} = 2 > 1,2 \\ t_{f} = 9,8 \text{ mm} < 40 \text{ mm} \end{cases} \xrightarrow{\rightarrow} \begin{cases} \text{axe de flambement } \rightarrow \begin{cases} (y-y) \\ (z-z) \\ \text{courbe de flambement } \rightarrow \begin{cases} a \\ b \end{cases} \end{cases}$$

 $\underline{Plan}(z-z)$ :

Axe (z-z) 
$$\rightarrow$$
 courbe (b)  $\rightarrow \alpha = 0.34$ 

$$\lambda_{Z} = \frac{L_{f}}{L_{z}} = \frac{L}{L_{z}} = \frac{659}{2,69} = 244,98$$

$$\rightarrow \bar{\lambda}_{Z} = \frac{\lambda_{z}}{93.9\epsilon} = \frac{244,98}{93,9} = 2,6$$

$$\chi_{Z} = \frac{1}{\left(\Phi_{Z} + \sqrt{\Phi_{Z}^{2} - \overline{\lambda_{Z}}^{2}}\right)} \leq 1$$

$$\Phi_{Z} = 0,5 \left[1 + \alpha \left(\overline{\lambda_{Z}} - 0,2\right) + \lambda_{Z}^{2}\right]$$

$$\Phi_{Z} = 0,5 \left[1 + 0,34 \left(2,6 - 0,2\right) + 2,6^{2}\right] = 4,29$$

$$\chi_{Z} = \frac{1}{\left(4,29 + \sqrt{4,29^{2} - 2,6^{2}}\right)} = 0,13$$

Donc :

$$\begin{split} \mu_{LT} &= (0,15 \times 2,6 \times 1,80) - 0,15 = 0,55 < 0,9 \\ k_{LT} &= 1 - \frac{(0,55) \times (12,015)}{0,13 \times 3910 \times 235 \times 10^{-3}} = 0,94 < 1,5 \\ \overline{\lambda_{LT}} &= \left[ \beta_{w} \times W_{ply} \times \frac{Fy}{M_{cr}} \right]^{0,5} = \left[ \frac{\lambda_{LT}}{\lambda_{1}} \right] \times (\beta_{w})^{0,5} \end{split}$$

Avec :

 $\beta_w = 1$  (pour les sections transversales de classe 1).

 $M_{cr}$ : Moment critique élastique de déversement donné par la formule suivante :

$$M_{cr} = C \times \frac{\pi^2 \times E \times I_z}{L_y^2} \times \left[\frac{I_W}{I_Z} + \frac{L^2 \times G \times I_t}{\pi^2 \times E \times I_z}\right]^{0.5}$$

Avec :

• 
$$C_1 = 1,132$$
 (charge uniformément répartie)

• 
$$G = \frac{E}{2 \times (1-\upsilon)} \rightarrow \begin{cases} E = 21 \times 10^{6} \text{ N/cm}^{2} \\ \upsilon = 0,3 \text{ (coefficient de poisson)} \end{cases}$$
$$G = \frac{21 \times 10^{6}}{2 \times (1+0,3)} = 8,08 \times 10^{6} \text{ N/cm}^{2}$$

•  $I_t$ : Moment d'inertiede torsion ( $I_t = 12,88 \text{ cm}^4$ )

- $I_W$ : Moment d'inertie de gauchissement ( $I_W = 37,39 \times 10^3 \text{ cm}^6$ ) •
- I<sub>Z</sub> : Moment d'inertie de flexion suivant l'axe de faible inertie  $(I_{z} = 283,6 \text{cm}^{4})$

$$M_{cr} = 1,132 \times \frac{\pi^2 \times 21 \times 10^6 \times 283,6}{(659)^2} \times \left[\frac{37,39 \times 10^3}{283,6} + \frac{(659)^2 \times 8,08 \times 10^6 \times 12,88}{\pi^2 \times 21 \times 10^6 \times 283,6}\right]^{0,5}$$

$$M_{cr} = 4595677,48 \text{ N.cm}$$

$$\overline{\lambda_{LT}} = \left[1 \times 366,6 \times \frac{235 \times 10^2}{4595677,48}\right]^{0,5} = 1,37$$

$$\chi_{LT} = \frac{1}{\phi_{LT} + \left[\phi_{LT}^2 - \overline{\lambda_{LT}^2}\right]^{0,5}} \leq 1$$

$$\phi_{LT} = 0,5 \left[1 + \alpha_{LT} \left(\overline{\lambda_{LT}} - 0,2\right) + \lambda_{LT}^2\right]$$

$$\alpha_{LT} = 0,21 \text{ (pour les profilés laminés)}$$

$$\phi_{LT} = 0,5 \left[1 + 0,21 \left(1,37 - 0,2\right) + (1,37)^2\right] = 1,56$$
Donc :  $\chi_{LT} = \frac{1}{1,56 + \left[1,56^2 - 1,37^2\right]^{0,5}} = 0,43 < 1$ 
D'où :
$$\frac{12,015}{283,6} + \frac{0,94 \times 23,61 \times 10^6}{283,6} = 0.61 < 1$$

$$\frac{12,015}{0,13 \times \frac{3910 \times 235}{1,1}} + \frac{0,94 \times 23,61 \times 10^{\circ}}{0,43 \times \frac{366,6 \times 10^{3} \times 235}{1,1}} = 0,61 < 1$$

#### **Condition vérifiée**

#### 3.6.6 Résistance au voilement par cisaillement

Si 
$$\frac{d}{t_w} \le 69 \varepsilon \rightarrow \text{ il n'est pas nécessaire de vérifier le voilement par cisaillement.}$$
  
 $\varepsilon = \sqrt{\frac{235}{fy}} = 1$   
On a:  $\frac{d}{t_w} = \frac{190.4}{6.2} = 30.71 \le 69 \varepsilon = 69$ 

Donc il n y a pas lieu de vérifier le voilement par cisaillement

### 3.6.7 Stabilité au flambement de la semelle comprimée dans le plan de l'âme

$$\frac{d}{t_w} \leq K \frac{E}{F_{yt}} \sqrt{\frac{A_w}{Af_c}}$$

Avec :

D

- $A_w = t_w \times d = 6,2 \times 190,4 = 1180,48 \text{ mm}^2$ • A<sub>w</sub> : Aire de l'âme
- Af<sub>c</sub>: Aire de la semelle comprimée Af<sub>c</sub> =  $b_f \times t_f = 120 \times 9.8 = 1176 \text{mm}^2$
- F<sub>vt</sub>: Limite d<sup>'</sup>élasticité de la semelle comprimée
- K : Coefficient pris égal à 0,3 pour une semelle de classe 1

K 
$$\frac{E}{F_{yt}}\sqrt{\frac{A_w}{Af_c}} = 0.3 \times \frac{21 \times 10^4}{235} \times \sqrt{\frac{1180.48}{1176}} = 268,59$$

$$\frac{d}{t_w} = \frac{190,4}{6,2} = 30,71$$
$$\frac{d}{t_w} = 30,71 \le K \frac{E}{F_{yt}} \sqrt{\frac{A_w}{Af_c}} = 268,59$$
Condition vérifiée

# **CHAPITRE 4 : ETUDE SISMIQUE DE LA STRUCTURE**

## **4.1 INTRODUCTION**

Les actions sismiques sur un bâtiment sont des actions dynamiques complexes.

Elles se manifestent par des mouvements essentiellement horizontaux imposés aux fondations. Les constructions résistent à ces mouvements par des forces d'inertie dues à leur masse qui s'opposent aux mouvements. Ce qui entraîne bien entendu des efforts dans les structures.

Le but de l'étude sismique est la détermination des efforts induits et leurs distributions dans le système de stabilité.

Ce présent chapitre est consacré à la détermination de ces différents efforts que la structure est susceptible de subir. Il est nécessaire de faire appel à l'une des trois méthodes de calcul préconisées par le « Règlement Parasismique Algérien (RPA 99-Version 2003) » [6].

- Méthode statique équivalente.
- Méthode d'analyse modale spectrale (spectre de réponse).
- Méthode d'analyse dynamique par accélérogrammes.

Notre choix s'est porté sur la méthode d'analyse modale spectrale.

#### - Conditions d'application

La méthode d'analyse modale spectrale peut être utilisée dans tous les cas, et en particulier, dans le cas où la méthode statique équivalente n'est pas permise.

### **4.2 PRINCIPE DE LA METHODE DE CALCUL**

Dans cette méthode, il est recherché pour chaque mode de vibration, le maximum des effets engendrés dans la structure par les forces sismiques représentées par un spectre de réponse de calcul. Ces effets sont par la suite combinés pour obtenir la réponse de la structure.

# **4.3 SPECTRE DE REPONSE DE CALCUL**

L'action sismique est représentée par le spectre de calcul suivant :

$$\frac{S_a}{g} = \begin{cases} 1,25 \text{ A} \left(1 + \frac{T}{T_1} \left(2,5 \eta \frac{Q}{R} - 1\right)\right) & 0 \le T \le T_1 \\ 2,5 \eta (1,25 \text{ A}) \left(\frac{Q}{R}\right) & T_1 \le T \le T_2 \\ 2,5 \eta (1,25 \text{ A}) \left(\frac{Q}{R}\right) \left(\frac{T_2}{T}\right)^{\frac{2}{3}} & T_2 \le T \le 3.0 \text{ s} \\ 2,5 \eta (1,25 \text{ A}) \left(\frac{T_2}{3}\right)^{\frac{2}{3}} \left(\frac{3}{T}\right)^{\frac{5}{3}} \left(\frac{Q}{R}\right) & T > 3.0 \text{ s} \end{cases}$$

Page | 52

Avec :

• A : Coefficient d'accélération de zone donné suivant la zone sismique et le groupe d'usage du bâtiment

Tlemcen (zone I)  $\rightarrow$  sismicité faible (tableau 4.1 RP199V2003)

 $\Rightarrow$  A = 0,10

Classification d'ouvrage : Groupe 1B (ouvrage de grande importance)

•  $\eta$  : facteur de correction d'amortissement donné par la formule suivante :

$$\eta = \sqrt{\frac{7}{2+\epsilon}} \ge 0,7$$

Où :  $\varepsilon$  (%) est le pourcentage d'amortissement critique en fonction du matériau constitutif, du type de structure et de l'importance des remplissages.

Pour l'acier dense  $\rightarrow \varepsilon = 5\% \rightarrow \eta = 1$  d'après le tableau 4.2 (RPA99V2003)

- R : Coefficient de comportement global de la structure donné par le tableau 4.3 (RPA99 V2003) en fonction du système de contreventement
   On a des ossatures contreventées par palées triangulées en X R = 4
- Q : Facteur de qualité de la structure qui est fonction de :
  - La redondance et la géométrie des éléments qui la constituent.
  - La régularité en plan et en élévation.
  - La qualité du contrôle de la construction.

La valeur de Q est déterminée par la formule suivante :

$$Q = 1 + \sum_{1}^{6} p_q$$

 $O\hat{u}$ :  $p_q$  est la pénalité à retenir selon le critère de qualité q « est satisfait ou non » d'après le tableau 4.4 (RPA99V2003)

| Critère Q                                             | Observation | pq   |
|-------------------------------------------------------|-------------|------|
| Conditions minimales sur les files de contreventement | Non observé | 0,05 |
| Redondance en plan                                    | Non observé | 0,05 |
| Régularité en plan                                    | Observé     | 0    |
| Régularité en élévation                               | Observé     | 0    |
| Contrôle de la qualité des matériaux                  | Non observé | 0,05 |
| Contrôle de la qualité de l'exécution                 | Non observé | 0,10 |

 $\sum_{1}^{6} p_q = 0,25$   $\longrightarrow$   $Q = 1 + \sum_{1}^{6} p_q = 1,25$ 

• T<sub>1</sub>, T<sub>2</sub> : Périodes caractéristiques associées à la catégorie du site d'après <u>le</u> <u>tableau 4.7</u> (RPA99V2003)

Site meuble S3  $T_1 = 0,15 \text{ s}$  $T_2 = 0,50 \text{ s}$ 

# **4.4 ANALYSE DYNAMIQUE DE LA STRUCTURE**

Elle permet de déterminer les efforts et les déplacements maximums d'une structure lors d'un séisme par l'étude de son comportement en vibrations libres non amorties en tenant compte de ces caractéristiques dynamiques propres.

### **4.5 MODELISATION DE LA STRUCTURE**

Dans notre cas, on a fait appel pour la modélisation de notre structure a un logiciel de calcul « ROBOT STRUCURAL ANALYSIS ». Ce dernier est un logiciel de calcul et de conception des structures d'ingénieries, particulièrement adapté aux bâtiments et ouvrages de génie civil. Il permet en un même environnement la saisie graphique des ouvrages de BTP avec une bibliothèque d'éléments autorisant l'approche du comportement de ce type de structure. Il offre de nombreuses possibilités d'analyse des effets statiques et dynamiques avec des compléments de conception et de vérification des structures en béton armé et de charpente métallique.

### \* Etapes de la modélisation de la structure

- 1. Opter pour un système d'unités (kN et m).
- 2. Définition de la géométrie de base.
- 3. Définition des matériaux.
- 4. Définition des sections (après plusieurs simulations).

| Elements De La Structure                   | Profilès     |
|--------------------------------------------|--------------|
| Les pannes                                 | IPE 140      |
| Les pannes sablières                       | HEA 140      |
| Les traverses                              | IPE 360      |
| Les poteaux                                | HEA 220      |
| Les potelets                               | IPE 240      |
| Les contreventements de palée de stabilité | 2L90× 90 × 9 |
| Les contreventements de poutre au vent     | 2L70× 70 × 7 |

**Tableau 4.2 :** Eléments structuraux constituant la structure

- 5. Affecter à chaque élément les sections déjà prédéfinies.
- 6. Définition des charges à appliquer.
- 7. Introduction du spectre de réponse.
- 8. Définition des combinaisons de charges.
- 9. Définition des conditions aux limites.
- 10. Lancer l'analyse de la structure.

# **4.6 ANALYSE MODALE**

L'analyse modale spectrale désigne la méthode de calcul des effets maximaux d'un séisme sur une structure, elle est caractérisée par une sollicitation sismique décrite sous forme d'un spectre de réponse.

Ce type d'analyse peut être appliqué à tout types de structure avec des résultats plus exacts et souvent satisfaisants à condition d'avoir fait une bonne modélisation. Le spectre est caractérisé par les données suivantes :

- Zone sismique I (Tlemcen)
- Groupe d'usage 1B (ouvrages de grande importance)
- Site meuble (S3).
- Facteur de qualité Q = 1,25
- Coefficient de comportement R = 4
- Pourcentage d'amortissement  $\varepsilon = 5\%$



Figure 4.1 : Spectre de réponse de la structure.

| Données:                        |           |                       |      |        |
|---------------------------------|-----------|-----------------------|------|--------|
| Zone                            | 1         | - I                   |      |        |
| Usage                           | 1         | 1B                    |      |        |
| Assise                          | 1         | S3                    |      |        |
| Coefficient de qualité          | 1         | 1.                    | 250  |        |
| Coefficient de comportement     | 1         | 4.                    | 000  |        |
| Amortissement                   | :         | Х                     | =    | 5.00 % |
| Paramètres du spectre:          |           |                       |      |        |
| Correction de l'amortissement : | η = [7/(2 | +ξ)] <sup>0,5</sup> = | 1.0  | 000    |
| A = 0.100                       |           |                       |      |        |
| $T_1 = 0.150$                   |           | T <sub>2</sub> =      | 0.50 | 0      |
|                                 |           |                       |      |        |

# \* Nombre de modes à considérer

D'après le RPA99V2003 (article 4.3.4 –a), les structures représentées par des modèles plans dans deux directions orthogonales, le nombre des modes des vibrations à retenir dans chacune des deux directions de l'excitation doit être tel que :

- La somme des masses modales effectives pour les modes retenus soit égale à 90% au moins de la masse totale de la structure.
- Ou que tous les modes ayant une masse modale effective supérieure à 5% de la masse totale de la structure soient retenus pour la détermination de la réponse totale de la structure.

Le minimum de modes à retenir est de 3 dans chaque direction considérée.

# **4.7 VERIFICATION DE LA STRUCTURE**

# 4.7.1 Vérification de la période fondamentale de la structure

La valeur de la période fondamentale « T » de la structure peut être estimée à partir des formules empiriques ou calculée par des méthodes analytiques ou numériques.

La formule empirique à utiliser est la suivante :

$$T = C_t \times h_N^{3/4}$$

Avec :

C<sub>t</sub>: Coefficient donnée en fonction du système de contreventement, du type de remplissage.

> Pour des portiques autostables en béton armé ou en acier avec remplissage en

maçonnerie  $\longrightarrow$  C<sub>t</sub> = 0,050 (tableau 4.6 RPA99V2003)

 $h_{\text{N}}$  : Hauteur mesurée en mètres à partir de la base de la structure jusqu'au dernier niveau (N).

$$h_N = 7m$$

D'où :

$$T = 0.050 \times (7)^{\frac{3}{4}}$$
  
T = 0.215 s T + 30% T = 0.279 s

La valeur de T calculée par le logiciel T = 0,28 s ne doit pas dépasser celle estimée à partir de la formule empirique.

Donc : 0,28 s < 0,279 s Condition vérifiée

# 4.7.2 Vérification de la force sismique à la base

La résultante des forces sismiques à la base « Vt » obtenue par combinaison des valeurs modales ne doit pas être inférieure à 80 % de la résultante des forces sismiques déterminée par la méthode statique équivalente « V » pour une valeur de la période fondamentale donnée par la formule empirique appropriée.

$$V_{\rm t} > 0.8 V$$

Suite à l'application du spectre de calcul dans les deux sens de la structure, les résultats calculés sont comme suit :

- Effort sismique dans le sens (X) : 48,15 kN
- Effort sismique dans le sens (Y) : 111,69 kN

La force sismique totale V est donnée par la formule suivante :

$$V = \frac{A \times D \times Q}{R} \times W$$

Avec :

A : Coefficient d'accélération de zone (A= 0,10)

D : Facteur d'amplification dynamique moyen

$$D = \begin{cases} 2,5 \eta & 0 \le T \le T_2 \\ 2,5 \eta \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3,0 \text{ s} \\ 2,5 \eta \left(\frac{T_2}{3}\right)^{2/3} \left(\frac{3}{T}\right)^{5/3} & T \ge 3,0 \text{ s} \end{cases}$$

Dans notre cas : D = 2,5  $\eta \left(\frac{T_2}{T}\right)^{2/3}$   $\Rightarrow D = 2,5.(1).\left(\frac{0.5}{0.45}\right)^{2/3}$  $\Rightarrow D = 2,68$ 

Q : Facteur de qualité (Q = 1,25)

R : Coefficient de comportement global de la structure en fonction du système de contreventement  $\left(R=4\right)$ 

W : Le poids total de la structure calculé par ROBOT (W = 372,513 KN)

Donc :

$$V = \frac{0,10 \times 2,68 \times 1,25}{4} \times 372,513$$

$$V = 31,2 \text{ KN}$$

|                | V <sub>t</sub> (KN) | V(KN) | 80% V(KN) | $V_t > 80\% V$ |
|----------------|---------------------|-------|-----------|----------------|
| V <sub>x</sub> | 48,15               | 31,2  | 24,96     | Vérifiée       |
| Vy             | 111,69              | 31,2  | 24,96     | Vérifiée       |

 Tableau 4.3 : Résultante des forces sismique à la base

# 4.7.3 Vérification des déplacements

Le déplacement horizontal à chaque niveau « K » est calculé comme suit :

$$\delta_{\rm K}={\rm R}\times\delta_{\rm eK}$$

Avec :

R : Coefficient de comportement.

 $\delta_{eK}$  : Déplacement dû aux forces sismiques.

Les déplacements latéraux ne doivent pas dépasser 1% de la hauteur de l'étage

| Niveau  | $\delta_{eK}(KN)$ | R | $\delta_{K}(KN)$ | 1% $h_k$ (cm) | Condition |
|---------|-------------------|---|------------------|---------------|-----------|
| Toiture | 0,8               | 4 | 3,2              | 6             | Vérifiée  |

Tableau 4.4 : Déplacements relatifs dans le sens (x-x)

| Niveau  | $\delta_{eK}(KN)$ | R | $\delta_{\mathrm{K}}\left(\mathrm{KN} ight)$ | 1% $m{h}_k$ (cm) | Condition |
|---------|-------------------|---|----------------------------------------------|------------------|-----------|
| Toiture | 1,3               | 4 | 5,2                                          | 6                | Vérifiée  |

 Tableau 4.5 : Déplacements relatifs dans le sens (y-y)

**Remarque :** La conception des ossatures métalliques est souvent « flexible », ce qui peut s'accompagner sous séisme d'une instabilité de forme, alors que la capacité de résistance n'est pas épuisée. Afin de limiter ces déformations, on s'est amené à raidir les structures élancées par l'ajout des potelets et contreventements de stabilité appropriés (voir la figure ci-dessous)



Figure 4.2 : Nouvelle conception de la structure

# CHAPITRE 5 : DIMMENSIONNEMENT DES ELEMENTS STRUCTURAUX

# **5.1 INTRODUCTION**

Le calcul d'une structure exige que sous toutes les combinaisons d'actions possibles Définies règlementairement, la stabilité statique soit assurée, tant globalement au niveau de la structure, qu'individuellement au niveau de chaque élément.

Les actions développent diverses sollicitations, qui génèrent des contraintes au sein du matériau et des déformations des éléments. Il s'agit donc, afin de garantir le degré de sécurité souhaité et de vérifier que les contraintes et les déformations restent au delà des limites admissibles.

Et pour cela on va étudier dans ce chapitre deux types de comportement caractéristiques, dénommés phénomènes d'instabilité qui sont :

- Le flambement : qui affecte les barres simplement comprimées (flambement simple) ou comprimées et fléchies (flambement flexion).
- Le déversement : qui affecte les semelles comprimées des pièces fléchies.

Le calcul des différents éléments structuraux est fait selon le règlement "CCM97" [3].

# **5.2 JUSTIFICATION DE LA TRAVERSE (IPE 360)**

# **5.2.1 Charges réparties sur la traverse**

- Poids de la tôle nervurée type TN40.
- Poids des pannes.
- Poids propre de la traverse estimée.
- Charge d'entretien.

### 5.2.2 Caractéristiques de la traverse (IPE 360)

Les caractéristiques de la traverse IPE 360 sont résumées dans le tableau ci-dessous :

| profilé | Section |     | Dimensions |                |                | Caractéristiques |        |                  |                  |
|---------|---------|-----|------------|----------------|----------------|------------------|--------|------------------|------------------|
|         | А       | h   | b          | t <sub>f</sub> | t <sub>w</sub> | Iy               | Iz     | W <sub>ply</sub> | W <sub>plz</sub> |
|         | $cm^2$  | mm  | mm         | mm             | mm             | cm <sup>4</sup>  | $cm^4$ | cm <sup>3</sup>  | cm <sup>3</sup>  |
| IPE 360 | 72,7    | 360 | 170        | 12,7           | 8              | 16270            | 1043   | 1019             | 191,1            |

Tableau 5.1 Caractéristiques du profilé IPE 360

### **5.2.3 Efforts sollicitant**

Les efforts sollicitant les plus défavorables sont pris des résultats obtenus après introduction des données et passage du logiciel **ROBOT.** 

•  $M_{sd} = 152,16 \text{ kN.m}$ 

♦ 
$$V_{sd} = 81,04 \text{ kN}$$

\*  $N_{sd} = 119,15 \text{ kN}$ 

# 5.2.4 Classe de la section transversale

# 5.2.4.1 Classe de l'âme

$$\frac{d}{t_{w}} \le 72 \epsilon \quad \text{avec}: \quad d = 298,6 \text{ mm}; \text{ tw} = 8 \text{ mm}; \epsilon = \sqrt{\frac{235}{235}} = 1$$

$$\frac{298,6}{8} \le 72 \sqrt{\frac{235}{235}} \longrightarrow 37,325 < 72 \qquad \text{l'âme est de classe 1}$$

# 5.2.4.2 Classe de la semelle

$$\frac{c}{t_{f}} \le 10 \epsilon \quad \text{avec}: \quad c = \frac{b}{2} = \frac{170}{2} = 85 \text{ mm}; t_{f} = 12,7 \text{ mm}; \epsilon = \sqrt{\frac{235}{255}} = 1$$

$$\frac{85}{12,7} \le 10 \sqrt{\frac{235}{235}} \longrightarrow 6,69 < 10 \quad \text{la semelle est de classe 1}$$

# 5.2.5 Vérification de la flèche

- ✤ Poids de la couverture : 0,11 kN/m²
- Poids propre de la panne :  $10,4 \times 10^{-2}$  kN/m
- Poids propre de la traverse :  $57,1 \times 10^{-2}$  kN/m
- ✤ Espacement entre les traverses : 5,85m
- Nombre des pannes : 6

$$G = (0,11 \times 5,85) + (10,4 \times 10^{-2} \times 6) + (57,1 \times 10^{-2})$$
  
G = 1,838 KN/m  
G + Q = 1,838 + 5,85 = 7,688 kN/m

$$\begin{cases} \delta = \frac{5 \times qs \times L^4}{384 \times E \times Iy} = \frac{5 \times 7,688 \times 10^1 \times (579)^4}{384 \times 2,1 \times 10^7 \times 16270} = 0,329 \text{ cm} \\ \delta_{\text{max}} = \frac{L}{200} = \frac{579}{200} = 2,895 \text{ cm} \end{cases}$$

 $\delta = 0,329 \text{ cm} < \delta_{\text{max}} = 2,895 \text{ cm}$ 

Condition vérifiée

# 5.2.6 Conditions de résistance (moment fléchissant+effort axial+effort tranchant)

# 5.2.6.1 Cisaillement

Il faut également vérifier que : 
$$V_{sd} \le 50\% V_{pl,Rd}$$
  
Avec :  $V_{pl,Rd} = \frac{0.58 \times A_v \times f_y}{\gamma_{M0}}$   
 $A_v = A - 2bt_f + (t_w + 2r)t_f \rightarrow \text{pour les profilés laminés en I ou H}$   
 $A_v = 7270 - (2 \times 170 \times 12,7) + (8 + 2 \times (18)) \times 12,7 = 3510,8 \text{ mm}^2$ 

Donc : 
$$V_{pl,Rd} = \frac{0.58 \times 3510.8 \times 235 \times 10^{-3}}{1.1} = 435,02 \text{ kN}$$

Alors :

$$V_{sd} = 81,04 \text{ KN} < 50\% V_{pl,Rd} = 217,51 \text{ kN}$$
 Condition vérifiée

La valeur de  $V_{sd}$  ne dépasse pas 50% de la résistance plastique de calcul au cisaillement  $V_{pl,Rd}$ , donc il n'est pas nécessaire de prendre en compte son effet.

#### 5.2.6.2 Flexion composée

$$\left(\frac{M_{sd}}{M_{pl,Rd}}\right)^{1} + \left(\frac{N_{sd}}{N_{pl,Rd}}\right)^{2} \le 1$$

Avec :

$$M_{pl,Rd} = \frac{W_{ply} \times f_y}{\gamma_{M0}} = \frac{1019 \times 235 \times 10^{-3}}{1.1} = 217,69 \text{ kN.m}$$

$$N_{pl,Rd} = \frac{A \times f_y}{\gamma_{M0}} = \frac{7270 \times 235 \times 10^{-3}}{1.1} = 1553,14 \text{ kN}$$

$$\left(\frac{152,16}{217,69}\right)^1 + \left(\frac{119,15}{1553,14}\right)^2 = 0,7 \le 1$$
Condition vérifiée

#### 5.2.7 Vérification au déversement

$$M_{sd} \leq M_{b,Rd} = \chi_{LT} \times \beta_w \times W_{ply} \times \frac{Fy}{\gamma_{m1}}$$

Avec :

- $\beta_w = 1$  (pour les sections transversales de classe 1).
- $\chi_{LT}$  est le facteur de réduction pour le déversement.
- Fy = 235 N/mm<sup>2</sup>

• 
$$\gamma_{m1} = 1,1$$
  
 $\overline{\lambda_{LT}} = \left[\beta_w \times W_{ply} \times \frac{Fy}{M_{cr}}\right]^{0,5}$ 

 $M_{cr}$ : Moment critique élastique de déversement donné par la formule suivante :

$$M_{cr} = C_1 \times \frac{\pi^2 \times E \times I_z}{L_y^2} \times \left[\frac{I_W}{I_Z} + \frac{L^2 \times G \times I_t}{\pi^2 \times E \times I_z}\right]^{0,5}$$

Avec :

• 
$$C_1 = 1,132$$
  
•  $G = \frac{E}{2 \times (1-v)} \longrightarrow \begin{cases} E = 21 \times 10^6 \text{ N/cm}^2 \\ v = 0,3 \text{ (coefficient de poisson)} \end{cases}$   
 $G = \frac{21 \times 10^6}{2 \times (1+0,3)} = 8,08 \times 10^6 \text{ N/cm}^2$ 

- $I_t$ : Moment d'inertiede torsion ( $I_t = 37,32 \text{ cm}^4$ )
- $I_W$ : Moment d'inertie de gauchissement ( $I_W = 313.6 \times 10^3 \text{ cm}^6$ )

•  $I_Z$  : Moment d'inertie de flexion suivant l'axe de faible inertie ( $I_Z = 1043 \text{ cm}^4$ )

$$\begin{split} \mathsf{M}_{\rm cr} &= 1,132 \times \frac{\pi^2 \times 21 \times 10^6 \times 1043}{(579)^2} \times \left[\frac{313,6 \times 10^3}{1043} + \frac{(579)^2 \times 8,08 \times 10^6 \times 37,32}{\pi^2 \times 21 \times 10^6 \times 1043}\right]^{0.5} \\ \mathsf{M}_{\rm cr} &= 20218705,55 \, \text{N.cm} \\ \overline{\lambda_{LT}} &= \left[1 \times 1019 \times \frac{235 \times 10^2}{20218705,55}\right]^{0.5} = 1,088 \\ \chi_{LT} &= \frac{1}{\phi_{LT} + [\phi_{LT}^2 - \overline{\lambda_{LT}^2}]^{0.5}} \leq 1 \\ \phi_{LT} &= 0,5 \left[1 + \alpha_{LT} \left(\overline{\lambda_{LT}} - 0,2\right) + \lambda_{LT}^2\right] \\ \alpha_{LT} &= 0,5 \left[1 + 0,21 \left(1,088 - 0,2\right) + (1,088)^2\right] = 2,37 \\ \text{Donc} : \chi_{LT} &= \frac{1}{2,37 + [2,37^2 - 1,088^2]^{0.5}} = 0,22 < 1 \\ \\ \mathsf{M}_{b,\mathrm{Rd}} &= \chi_{\mathrm{LT}} \times \beta_{\mathrm{W}} \times W_{\mathrm{ply}} \times \frac{\mathrm{Fy}}{\mathrm{Y_{m1}}} \\ \\ \mathsf{M}_{b,\mathrm{Rd}} &= 4789300 \, \mathrm{N.cm} = 478,93 \, \mathrm{kN.m} \\ \\ \mathsf{M}_{\mathrm{sd}} &= 152,16 \, \mathrm{KN.m} < \mathrm{M}_{\mathrm{b,\mathrm{Rd}}} = 478,93 \, \mathrm{kN.m} \end{split}$$

Conclusion : La section choisie résiste.

# 5.3 JUSTIFICATION DU POTEAU (HEA 220)

# 5.3.1 Caractéristiques du poteau (HEA 220)

Les caractéristiques de la traverse HEA 220 sont résumées dans le tableau ci-dessous :

| profilé    | Section         | Dimensions |     |                |                | Caractéristiques |                 |                 |                  |
|------------|-----------------|------------|-----|----------------|----------------|------------------|-----------------|-----------------|------------------|
|            | А               | h          | b   | t <sub>f</sub> | t <sub>w</sub> | Iy               | Iz              | $W_{ply}$       | W <sub>plz</sub> |
|            | cm <sup>2</sup> | mm         | mm  | mm             | mm             | $\mathrm{cm}^4$  | $\mathrm{cm}^4$ | cm <sup>3</sup> | cm <sup>3</sup>  |
| HEA<br>220 | 64,3            | 210        | 220 | 11             | 7              | 5410             | 1955            | 568,5           | 270,6            |

**Tableau 5.2** Caractéristiques du profilé HEA 220

#### **5.3.2 Efforts sollicitant :**

- $M_{sd} = 62,78 \text{ kN.m}$
- $V_{sd} = 31,09 \text{ kN}$
- \*  $N_{sd} = 291,65 \text{ kN}$

## 5.3.3 Classe de la section transversale :

# 5.3.3.1 Classe de l'âme :

$$\frac{d}{t_w} \le 33 \varepsilon \quad \text{avec}: \quad d = 152 \text{ mm}; \quad \text{tw} = 7 \text{ mm}; \quad \varepsilon = \sqrt{\frac{235}{fy}} = 1$$

$$\frac{152}{7} \le 33 \sqrt{\frac{235}{235}} \longrightarrow 21,77 < 33 \qquad \text{L'âme est de classe 1}$$

## 5.3.3.2 Classe de la semelle :

$$\frac{c}{t_{f}} \le 10 \epsilon \quad \text{avec}: \quad c = \frac{b}{2} = \frac{220}{2} = 110 \text{ mm} \ ; \ t_{f} = 11 \text{ mm} \ ; \ \epsilon = \sqrt{\frac{235}{255}} = 1$$

$$\frac{110}{11} \le 10 \sqrt{\frac{235}{235}} \longrightarrow 10 \le 10 \qquad \text{La semelle est de classe 1}$$

# 5.3.4 Conditions de résistance

### 5.3.4.1 Cisaillement

Il faut également vérifier que :  $V_{sd} \le 50\% V_{pl,Rd}$ 

Avec : 
$$V_{pl,Rd} = \frac{0.58 \times A_v \times f_y}{\gamma_{M0}}$$
  
 $A_v = A - 2bt_f + (t_w + 2r)t_f \rightarrow \text{pour les profilés laminés en I ou H}$   
 $A_v = 6430 - (2 \times 220 \times 11) + (7 + 2 \times (18)) \times 11 = 2063 \text{ mm}^2$ 

Donc : 
$$V_{pl,Rd} = \frac{0.58 \times 2063 \times 235 \times 10^{-5}}{1.1} = 255,62 \text{ kN}$$

Alors :

$$V_{sd} = 31,09 \text{ KN} < 50\% V_{pl,Rd} = 255,62 \text{ kN}$$
 Condition vérifiée

La valeur de  $V_{sd}$  ne dépasse pas 50% de la résistance plastique de calcul au cisaillement  $V_{pl,Rd}$ , donc il n'est pas nécessaire de prendre en compte son effet.

### 5.3.4.2 Résistance à la compression et flexion

$$\frac{N_{sd}}{\chi_Z \cdot \frac{A.f_y}{\gamma_{M_1}}} + \frac{k_{LT} \cdot M_{.sd}}{\chi_{LT} \cdot \frac{W_{pl.y} \cdot f_y}{\gamma_{M_1}}} \le 1$$

Avec :

• 
$$k_{LT} = 1 - \frac{\mu_{LT}.N_{sd}}{\chi_Z.A.f_y}$$
 mais  $k_{LT} \le 1;$ 

•  $\mu_{LT} = 0.15. \overline{\lambda_Z}. \beta_{M.LT} - 0.15 \text{ mais } \mu_{LT} \le 0.9;$ 

- $\beta_{M.LT} = 1,80$
- $\gamma_{M_1} = 1,1$
- $\chi$  : coefficient de reduction
- $\overline{\lambda_Z}$ : élancement réduit

$$\bar{\lambda} = \left(\frac{\lambda}{\lambda_1}\right) \cdot \sqrt{\beta_A} = \frac{\lambda}{93,9\varepsilon}$$

 λ : Elancement pour le mode de flambement considéré calculé à la base des caractéristiques de la section brute

$$\begin{cases} \frac{h}{b} = \frac{210}{220} = 0.95 < 1.2 \\ t_f = 11 \text{ mm} < 100 \text{ mm} \end{cases} \rightarrow \begin{cases} \text{axe de flambement } \rightarrow \begin{cases} (y - y) \\ (z - z) \end{cases} \\ \text{courbe de flambement } \rightarrow \begin{cases} b \\ c \end{cases} \end{cases}$$

 $\underline{Plan}(z-z)$ :

Axe (z-z) 
$$\rightarrow$$
 courbe (c)  $\rightarrow \alpha = 0,49$ 

$$\lambda_{\rm Z} = \frac{L_{\rm f}}{i_{\rm z}} = \frac{L_{1,41}}{i_{\rm z}} = \frac{600/1,41}{5,51} = 77,23$$
$$\rightarrow \ \overline{\lambda}_{\rm Z} = \frac{\lambda_{\rm z}}{93.9\epsilon} = \frac{77,23}{93,9} = 0,82$$

$$\chi_{Z} = \frac{1}{\left(\phi_{Z} + \sqrt{\phi_{Z}^{2} - \overline{\lambda_{Z}}^{2}}\right)} \le 1$$

$$\begin{aligned} \varphi_Z &= 0.5 \left[ 1 + \alpha \left( \overline{\lambda_Z} - 0.2 \right) + \overline{\lambda_Z}^2 \right] \\ \varphi_Z &= 0.5 \left[ 1 + 0.49 \left( 0.82 - 0.2 \right) + 0.82^2 \right] = 0.99 \\ \chi_Z &= \frac{1}{\left( 0.99 + \sqrt{0.99^2 - 0.82^2} \right)} = 0.64 \end{aligned}$$

Donc :

$$\mu_{LT} = (0,15 \times 0,82 \times 1,80) - 0,15 = 0,07 < 0,9$$
  

$$k_{LT} = 1 - \frac{(0,07) \times (291,65)}{0,64 \times 6430 \times 235 \times 10^{-3}} = 0,02 < 1,5$$
  

$$\overline{\lambda_{LT}} = \left[\beta_{w} \times W_{ply} \times \frac{Fy}{M_{cr}}\right]^{0,5} = \left[\frac{\lambda_{LT}}{\lambda_{1}}\right] \times (\beta_{w})^{0,5}$$

Avec :

 $\beta_w = 1$  (pour les sections transversales de classe 1).

 $M_{cr}$ : Moment critique élastique de déversement donné par la formule suivante :

$$M_{cr} = c_1 \times \frac{\pi^2 \times E \times I_z}{L_y^2} \times \left[\frac{I_W}{I_Z} + \frac{L^2 \times G \times I_t}{\pi^2 \times E \times I_z}\right]^{0,5}$$

Avec :

•  $c_1 = 1,132$  (charge uniformément répartie)

• 
$$G = \frac{E}{2 \times (1 - \upsilon)} \rightarrow \begin{cases} E = 21 \times 10^{6} \text{ N/cm}^{2} \\ \upsilon = 0,3 \text{ (coefficient de poisson)} \end{cases}$$
$$G = \frac{21 \times 10^{6}}{2 \times (1 + 0,3)} = 8,08 \times 10^{6} \text{ N/cm}^{2}$$

•  $I_t$ : Moment d'inertiede torsion ( $I_t = 28,46 \text{ cm}^4$ )

- $I_W$ : Moment d'inertie de gauchissement ( $I_W = 193,3 \times 10^3 \text{ cm}^6$ )
- I<sub>Z</sub> : Moment d'inertie de flexion suivant l'axe de faible inertie (I<sub>Z</sub> = 1955 cm<sup>4</sup>)

$$M_{cr} = 1,132 \times \frac{\pi^2 \times 21 \times 10^6 \times 1955}{(600)^2} \times \left[\frac{193,3 \times 10^3}{1955} + \frac{(600)^2 \times 8,08 \times 10^6 \times 28,46}{\pi^2 \times 21 \times 10^6 \times 1955}\right]^{0,5}$$

$$M_{cr} = 22185085,54 \text{ N.cm}$$

$$\overline{\lambda_{LT}} = \left[1 \times 568,5 \times \frac{235 \times 10^2}{22185085,54}\right]^{0,5} = 0,6$$

$$\chi_{LT} = \frac{1}{\phi_{LT} + [\phi_{LT}^2 - \overline{\lambda_{LT}}^2]^{0,5}} \le 1$$

$$\phi_{LT} = 0,5 \left[1 + \alpha_{LT} \left(\overline{\lambda_{LT}} - 0,2\right) + \overline{\lambda_{LT}}^2\right]$$

$$\alpha_{LT} = 0,21 \text{ (pour les profilés laminés)}$$

$$\phi_{LT} = 0,5 \left[1 + 0,21 \left(0,6 - 0,2\right) + (0,6)^2\right] = 0,72$$

Donc :  $\chi_{LT} = \frac{1}{0,72 + [0,72^2 - 0,6^2]^{0,5}} = 0,89 < 1$ 

D'où :

$$\frac{291,65}{0,64 \times \frac{6430 \times 235}{1,1}} + \frac{0,02 \times 62,78 \times 10^6}{0,89 \times \frac{568,5 \times 10^3 \times 235}{1,1}} = 0,01 < 1$$

**Condition vérifiée** 

Conclusion : La section choisie résiste.

# 5.4 JUSTIFICATION DES POUTRES AU VENT

On choisit une double cornière en  $2 \times L70 \times 70 \times 7$ , et on vérifie sa résistance:

$$N_{c,sd} \le N_{c,Rd}$$

Avec :

 $N_{c,sd} = 45,02 \text{ KN}$ 

# 5.4.1 Les éléments comprimés :

### 5.4.1.1 Vérification au flambement

$$N_{c,Rd} = \chi \times \beta_A \times A \times \frac{Fy}{\gamma_{m1}}$$

Avec :

- $\beta_A = 1$  (pour les sections transversales de classe 1)
- $\gamma_{m1} = 1,1$

- $\chi$ : Coefficient de réduction qui dépend de  $\overline{\lambda}$
- $\bar{\lambda}$ : Elancement réduit

$$\bar{\lambda} = \left(\frac{\lambda}{\lambda_1}\right) \cdot \sqrt{\beta_A} = \frac{\lambda}{93,9\varepsilon}$$

 λ : Elancement pour le mode de flambement considéré calculé à la base des caractéristiques de la section brute

$$\begin{cases} \frac{h}{b} = \frac{70}{70} = 1 < 1,2 \\ t_{f} = 7 \text{ mm} < 100 \text{ mm} \end{cases} \rightarrow \begin{cases} \text{axe de flambement } \rightarrow \begin{cases} (y-y) \\ (z-z) \\ \text{courbe de flambement } \rightarrow \begin{cases} b \\ c \end{cases} \end{cases}$$

<u>Plan (y - y):</u>

Axe (y-y) 
$$\rightarrow$$
 courbe (b)  $\rightarrow \alpha = 0.34$   
 $\lambda_y = \frac{L_f}{i_y} = \frac{1}{i_y} = \frac{786}{4.24} = 185.37$ 

$$\rightarrow \bar{\lambda}_{y} = \frac{\lambda_{y}}{93.9\epsilon} = \frac{185,37}{93,9} = 1,98$$

 $\underline{Plan}(z-z)$ :

Axe (z-z) 
$$\rightarrow$$
 courbe (c)  $\rightarrow \alpha = 0,49$   
 $\lambda_y = \frac{L_f}{i_z} = \frac{1}{i_z} = \frac{786}{4,24} = 185,37$   
 $\rightarrow \overline{\lambda}_y = \frac{\lambda_z}{93.9\varepsilon} = \frac{185,37}{93,9} = 1,98$ 

$$\bar{\lambda} = \max(\bar{\lambda}_{y}, \bar{\lambda}_{z}) = 1,98$$

 $\chi$  est déterminé en fonction de  $\overline{\lambda}$  et la courbe de flambement

Courbe (c) 
$$\rightarrow \chi = 0,2141$$

D'où :

$$N_{c,Rd} = 0,2141 \times 1 \times (2 \times 940) \times \frac{235 \times 10^{-3}}{1.1} = 85,99 \text{ kN}$$

 $N_{c.sd} = 45,02 \text{ KN} < N_{c,Rd} = 85,99 \text{ kN}$ 

**Condition vérifiée** 

#### 5.4.1.2 Résistance plastique de la section brute

$$\begin{split} N_{pl,Rd} = & \frac{A \times f_y}{\gamma_{m\,1}} = \frac{(2 \times 940) \times 235 \times 10^{-3}}{1.1} = 401,63 \text{ KN} \\ N_{c,sd} = & 45,02 \text{ kN} < N_{pl,Rd} = 401,63 \text{ kN} \end{split}$$
 Condition vérifiée

#### 5.4.2 Les éléments tractés

Il faut vérifier que :  $N_{t,sd} \le N_{t,Rd} = \min(N_{pl,Rd}; N_{net,Rd}; N_{u,Rd})$ 

 $N_{t,sd} = 43,76$  KN (Calculé par logiciel)

#### 5.4.2.1 Résistance ultime

 $N_{u,Rd} = 0.9 \times \frac{A_{net} \times f_u}{\gamma_{m2}}$ Avec :  $A_{net} = 1626 \text{ mm}^2$ D'où :

$$N_{u,Rd} = 0.9 \frac{A_{net} \times f_u}{\gamma_{m2}} = 0.9 \frac{1626 \times 360 \times 10^{-3}}{1.25} = 563.14 \text{ kN}$$

#### 5.4.2.2 Résistance plastique de calcul de la section nette

 $N_{net,Rd} = \frac{A_{net} \times f_y}{\gamma_{m\,1}} = \frac{1626 \times 235 \times 10^{-3}}{1,1} = 347,37 \text{ kN}$ 

### 5.4.2.3 Résistance plastique de calcul de la section brute

$$N_{pl,Rd} = \frac{A \times f_y}{\gamma_{m1}} = \frac{(2 \times 940) \times 235 \times 10^{-3}}{1,1} = 401,63 \text{ kN}$$

#### 5.4.2.4 Vérification

$$Min(N_{pl,Rd} ; N_{net,Rd} ; N_{u,Rd}) = 347,37 \text{ KN} \ge N_{t,sd} = 43,76 \text{ kN}$$

#### **Condition vérifiée**

# **5.5 JUSTIFICATION DES STABILITES**

On choisit une double cornière en  $2 \times L90 \times 90 \times 9$ , et on vérifie sa résistance:

$$N_{c,sd} \leq N_{c,Rd}$$

Avec :

 $N_{c,sd} = 117,74 \text{ kN}$ 

### 5.5.1 Les éléments comprimés :

### 5.5.1.1 Vérification au flambement

$$N_{c,Rd} = \chi \times \beta_A \times A \times \frac{Fy}{\gamma_{m1}}$$

Avec :

- $\beta_A = 1$  (pour les sections transversales de classe 1)
- $\gamma_{m1} = 1,1$
- $\chi$  : Coefficient de réduction qui dépend de  $\overline{\lambda}$
- $\bar{\lambda}$ : Elancement réduit

$$\bar{\lambda} = \left(\frac{\lambda}{\lambda_1}\right) \cdot \sqrt{\beta_A} = \frac{\lambda}{93,9\varepsilon}$$

 λ : Elancement pour le mode de flambement considéré calculé à la base des caractéristiques de la section brute

$$\begin{cases} \frac{h}{b} = \frac{90}{90} = 1 < 1,2 \\ t_{f} = 9 \text{ mm} < 100 \text{ mm} \end{cases} \xrightarrow{\rightarrow} \begin{cases} \text{axe de flambement } \rightarrow \begin{cases} (y-y) \\ (z-z) \\ \text{courbe de flambement } \rightarrow \begin{cases} b \\ c \end{cases} \end{cases}$$

$$\frac{\text{Plan}(y-y):}{\text{Axe }(y-y) \rightarrow \text{courbe }(b) \rightarrow \alpha = 0,34}$$
$$\lambda_y = \frac{L_f}{i_y} = \frac{1}{i_y} = \frac{838}{5,46} = 153,48$$
$$\rightarrow \overline{\lambda}_y = \frac{\lambda_y}{93.9\epsilon} = \frac{153,48}{93,9} = 1,64$$
$$\frac{\text{Plan}(z-z):}{\text{Axe }(z-z) \rightarrow \text{courbe }(c) \rightarrow \alpha = 0,49}$$
$$\lambda_y = \frac{L_f}{i_z} = \frac{1}{i_z} = \frac{838}{5,46} = 153,48$$
$$\rightarrow \overline{\lambda}_y = \frac{\lambda_z}{93.9\epsilon} = \frac{153,48}{93,9} = 1,64$$
$$\overline{\lambda} = \max(\overline{\lambda}_y, \overline{\lambda}_z) = 1,64$$

 $\chi$  est déterminé en fonction de  $\overline{\lambda}$  et la courbe de flambement

Courbe (c) 
$$\rightarrow \chi = 0,282$$

D'où :

$$N_{c,Rd} = 0,282 \times 1 \times (2 \times 1550) \times \frac{235 \times 10^{-3}}{1.1} = 186,76 \text{ kN}$$

$$N_{c,sd} = 117,74 \text{ kN} < N_{c,Rd} = 186,76 \text{ kN}$$
 Condition vérifiée

### 5.5.1.2 Résistance plastique de la section brute

$$\begin{split} N_{pl,Rd} = & \frac{A \times f_y}{\gamma_{m\,1}} = \frac{(2 \times 1550) \times 235 \times 10^{-3}}{1,1} = 662,27 \ \text{kN} \\ N_{c,sd} = & 117,74 \ \text{kN} \ < N_{pl,Rd} = 662,27 \ \text{kN} \end{split}$$
 Condition vérifiée

#### 5.5.2 Les éléments tractés

Il faut vérifier que :  $N_{t,sd} \le N_{t,Rd} = \min(N_{pl,Rd}; N_{net,Rd}; N_{u,Rd})$ 

 $N_{t,sd} = 162,27$  kN (Calculé par logiciel)

# 5.5.2.1 Résistance ultime

 $N_{u,Rd} = 0.9 \times \frac{A_{net} \times f_u}{\gamma_{m2}}$ Avec :  $A_{net} = 2636 \text{ mm}^2$ 

D'où :

$$N_{u,Rd} = 0.9 \frac{A_{net} \times f_u}{\gamma_{m2}} = 0.9 \frac{2636 \times 360 \times 10^{-3}}{1.25} = 683.25 \text{ kN}$$

# 5.5.2.2 Résistance plastique de calcul de la section nette

$$N_{\text{net,Rd}} = \frac{A \times f_y}{\gamma_{m\,1}} = \frac{2636 \times 235 \times 10^{-3}}{1.1} = 563.14 \text{ kN}$$

# 5.5.2.3 Résistance plastique de calcul de la section brute

$$N_{pl,Rd} = \frac{A \times f_y}{\gamma_{m1}} = \frac{(2 \times 1550) \times 235 \times 10^{-3}}{1.1} = 662,27 \text{ kN}$$

# 5.5.2.4 Vérification

 $Min(N_{pl,Rd} \; ; \; N_{net,Rd} \; ; \; N_{u,Rd}) = 563,14 \; kN \; \geq N_{t,sd} = 162,27 \; kN$ 

**Condition vérifiée** 

# **CHAPITRE 6 : CALCUL DES ASSEMBLAGES**

# **6.1 INTRODUCTION**

La conception et le calcul des assemblages ont une importance équivalente à celle du dimensionnement des pièces constituant la structure. En effet, les assemblages constituent un dispositif qui permet de réunir et de solidariser les pièces entre elles, en assurant la transmission et la répartition des diverses sollicitations régnant dans les différents composants structurels. En cas de défaillance d'un assemblage, c'est bien le fonctionnement global de la structure qui est remis en cause.

# 6.2 LES PRINCIPAUX MODES D'ASSEMBLAGES

- Le rivetage.
- Le boulonnage.
- Le soudage.

# 6.3 CLASSIFICATION DES ASSEMBLAGES

Les assemblages peuvent êtres classés en fonction de :

- Leur rigidité.
- Leur résistance.

# 6.4 LES CLASSES DES BOULONS

| Valeurs de la limite d'élasticité $f_{yb}$ et de la résistance à la traction $f_{ub}$ des boulons |     |     |     |     |     |     |     |      |
|---------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|------|
| Classe                                                                                            | 4.6 | 4.8 | 5.6 | 5.8 | 6.6 | 6.8 | 8.8 | 10.9 |
| $f_{yb}$ (N/mm <sup>2</sup> )                                                                     | 240 | 320 | 300 | 400 | 360 | 480 | 640 | 900  |
| $f_{ub}$ (N/mm <sup>2</sup> )                                                                     | 400 | 400 | 500 | 500 | 600 | 600 | 800 | 1000 |

**Tableau 6.1** Classe des boulons

# 6.5 CALCUL DES ASSEMBLAGES

# 6.5.1 Assemblage poteau – traverse (HEA 220 – IPE 360)

Cette opération consiste à fixer par soudure une platine à l'extrémité d'une traverse pour permettre son assemblage à l'aile du poteau. Chacun de ces deux éléments, destinés à être solidariser l'un à l'autre.



Figure 6.1 Vue 3D de l'assemblage poteau – traverse



Figure 6.2 Détail d'assemblage poteau – traverse

# 6.5.1.1 Efforts sollicitant

Les efforts suivants sont calculés par le logiciel ROBOT

- ♦  $M_{sd} = 145,56 \text{ kN.m}$
- ♦  $V_{sd} = 77,05 \text{ kN}$
- ♦  $N_{sd} = 274,41 \text{ kN}$

# 6.5.1.2 Soudure de la platine

### a. Cordon de soudure

Epaisseur de la platine : ep = 20 mm

 $t_{platine} = 20 \text{ mm}$ 

t<sub>poutre (IPE 360)</sub> = 12,7 mm

 $t_{max} = t_{platine} = 20 \text{ mm} \rightarrow a_{min} = 5 \text{ mm}$  $a_{max} = 0.7 t_{min} = 0.7 \times 12.7 = 8.89 \text{mm}$  $a_{min} \le a \le a_{max} \leftrightarrow 5 \text{ mm} \le a \le 8.89 \text{ mm}$ On prend donc : a = 8 mm

#### b. Soudure de la semelle tendue

Il faut vérifier que : 
$$N_d \le \min(R_w; R_s)$$
  
 $N_d = \frac{M_{sd}}{h} + N_{sd} = \frac{145,56}{360} + 274,41 = 678,74 \text{ KN}$   
 $R_w = \frac{0.5 \times f_u \times a \times 1}{\gamma_{m1}} = \frac{0.5 \times 360 \times 10^{-3} \times 8 \times 592}{1,1} = 774,98 \text{ kN}$   
 $R_s = \frac{0.7 \times f_y \times a \sqrt{2} \times 1}{\gamma_{m1}}$   
Avec :  $l = 2 \times [b + b - 2r - t_w] = 2 \times [170 + 170 - 2(18 - 8]]$   
 $l = 592 \text{ mm}$   
Donc :  $R_s = \frac{0.7 \times 235 \times 10^{-3} \times 8\sqrt{2} \times 592}{1,1} = 1001,61 \text{ kN}$   
 $N_d = 678,74 \text{ kN} \le \min(774,98; 1001,61) = 774,98 \text{ kN}$  Condition vérifiée  
c. Soudure de l'âme  
Il faut vérifier que :  $V_{sd} \le R_s$   
 $R_s = \frac{0.7 \times f_y \times a \sqrt{2} \times 1}{\gamma_{m1}}$   
Avec :  $l = 2 \times h_i = 669,2 \text{ mm}$  (IPE360  $\rightarrow h_i = 334,6 \text{ mm}$ )  
Donc :  $R_s = \frac{0.7 \times 235 \times 10^{-3} \times 8\sqrt{2} \times 669,2}{11} = 1132,23 \text{ kN}$ 

 $V_{sd} = 77,05 \text{ kN} \le R_s = 1132,23 \text{ kN}$ 

**Condition vérifiée** 

### 6.5.1.3 Disposition constructive

### a. Le choix du diamètre des boulons

Pour des raisons pratiques, on évite toujours la mise en œuvre dans un même assemblage des boulons de diamètres différents ; le choix du diamètre se fera en déterminant leurs résistances tout en étant proportionnel à l'épaisseur des pièces assemblées comme suite :

| - | $t \le 10 \text{ mm}$                   | $\rightarrow$ | d = (12; 14) mm       |
|---|-----------------------------------------|---------------|-----------------------|
| - | $10 \text{ mm} \le t \le 25 \text{ mm}$ | $\rightarrow$ | d = (16 ; 20 ; 24) mm |
| - | t > 25 <i>mm</i>                        | $\rightarrow$ | d = (24 ; 27 ; 30) mm |

On a l'épaisseur de la platine t =  $20 \text{ mm} \rightarrow 10 \text{ mm} \le t \le 25 \text{ mm}$ Après plusieurs simulations, on a pris 2 files de 3 boulons de diamètre Ø 20 classe 8.8
#### b. Pince longitudinale

 $1,2d_0 \le e_1 \le 12t$ 

Avec :

- 
$$d_0 = 20 + 2 = 22 \text{ mm}$$
  
-  $t = 12,7 \text{ mm}$ 

$$26,4mm \le e_1 \le 152,4mm$$

On prend donc :  $e_1 = 80 \text{ mm}$ 

# c. Pince transversale

 $1,5d_0 \le e_2 \le 12t$ 

$$33 \text{ mm} \le e_2 \le 152,4 \text{ mm}$$

On prend donc :  $e_2 = 55 \text{ mm}$ 

#### d. Calcul des boulons sollicités en traction

Il faut vérifier que : 
$$M_{sd} \le M_R$$
  
 $T_R = 0.8 \times f_{ub} \times A_s = 0.8 \times 800 \times 10^{-3} \times 245$   
 $T_R = 156.8 \text{ KN}$   
 $M_R = 2 T_R \times (80 + 180 + 280) \times 10^{-3}$   
 $M_R = 2 \times 156.8 \times 540 \times 10^{-3}$   
 $M_R = 169.34 \text{ KN. m}$   
 $M_{sd} = 145.56 \text{ KN. m} < M_R = 169.34 \text{ KN. m}$  Condition vérifiée

. . .

#### e. Calcul des boulons sollicités au cisaillement

 $V_d \leq \frac{V_R}{V_{M1}}$ Il faut vérifier que :  $V_{R} = 0.6 \times f_{ub} \times A_{s} = 0.6 \times 800 \times 10^{-3} \times 245$  $V_{\rm R} = 117,6 \, \rm kN$  $V_d = \frac{V_{sd}}{6} = \frac{77,05}{6} = 12,84 \text{ kN}$  $V_d = 12,84 \text{ kn} < \frac{117,6}{1.25} = 94,08 \text{ kN}$ **Condition vérifiée** f. Vérification de la pression diamétrale

# $V_d \leq \frac{L_R}{\gamma_{M1}}$ Il faut vérifier que : $\frac{L_R}{\gamma_{M1}} = \frac{2.5}{1.25} \times f_u \times d \times a \times t = \frac{2.5}{1.25} \times 360 \times 20 \times 1 \times 11.5 \times 10^{-3} = 165.6 \text{ kN}$ Avec : $a = \min\left(\frac{e_1}{3 \times d_0}; \frac{p_1}{3 \times d_0} - 0, 25; 1\right) = 1$ $V_{d} = 12,84 \text{ kN} \le \frac{L_{R}}{\gamma_{M1}} = 165,6 \text{ kN}$ **Condition vérifiée**

#### 6.5.2 Assemblage traverse – traverse (IPE 360 – IPE 360)

Le principe de cet assemblage est de souder une platine en bout de traverse. Elle est percée symétriquement de part et d'autre de la poutre. Les mêmes perçages qui sont effectuées sur la platine soudée en bout de l'autre traverse, permettent de solidariser les deux éléments assemblés.



Figure 6.3 Vue 3D de l'assemblage traverse – traverse



♣

Figure 6.4 Détail d'assemblage traverse – traverse

# 6.5.2.1 Efforts sollicitant

Les efforts suivants sont calculés par le logiciel ROBOT

- ♦  $M_{sd} = 76,77 \text{ kN.m}$
- ♦  $V_{sd} = 73,39 \text{ kN}$
- ♦  $N_{sd} = 57,27 \text{ kN}$

#### 6.5.2.2 Soudure de la platine

#### a. Cordon de soudure

Epaisseur de la platine : ep = 20 mm

 $t_{platine} = 20 \text{ mm}$ 

 $t_{poutre (IPE 360)} = 12,7 \text{ mm}$   $t_{max} = t_{platine} = 20 \text{ mm} \rightarrow a_{min} = 5 \text{ mm}$   $a_{max} = 0,7 t_{min} = 0,7 \times 12,7 = 8,89 \text{ mm}$   $a_{min} \le a \le a_{max} \leftrightarrow 5 \text{ mm} \le a \le 8,89 \text{ mm}$ On prend donc : a = 8 mm

#### b. Soudure de la semelle tendue

Il faut vérifier que : 
$$N_d \le \min(R_w; R_s)$$
  
 $N_d = \frac{M_{sd}}{h} + N_{sd} = \frac{76,77}{360} + 57,27 = 57,48 \text{ kN}$   
 $R_w = \frac{0.5 \times f_u \times a \times 1}{\gamma_{m1}} = \frac{0.5 \times 360 \times 10^{-3} \times 8 \times 592}{1,1} = 774,98 \text{ kN}$   
 $R_s = \frac{0.7 \times f_y \times a \sqrt{2} \times 1}{\gamma_{m1}}$   
Avec :  $I = 2 \times [b + b - 2r - t_w] = 2 \times [170 + 170 - 2(18 - 8])$   
 $I = 592 \text{ mm}$   
Donc :  $R_s = \frac{0.7 \times 235 \times 10^{-3} \times 8\sqrt{2} \times 592}{1,1} = 1001,61 \text{ kN}$ 

 $N_d = 57,48 \text{ kN} \le \min(774,98; 1001,61) = 774,98 \text{ kN}$  Condition vérifiée

#### c. Soudure de l'âme

Il faut vérifier que :  $V_{sd} \le R_s$ 

$$R_{s} = \frac{0.7 \times f_{y} \times a\sqrt{2} \times 1}{\gamma_{m \, 1}}$$
Avec :  $l = 2 \times h_{i} = 669.2 \text{ mm} (IPE360 \rightarrow h_{i} = 334.6 \text{ mm})$ 
Donc :  $R_{s} = \frac{0.7 \times 235 \times 10^{-3} \times 8\sqrt{2} \times 669.2}{1.1} = 1132.23 \text{ kN}$ 

$$V_{sd} = 73.39 \text{ kN} \le R_{s} = 1132.23 \text{ kN}$$
Condition vérifiée

#### 6.5.2.3 Disposition constructive

#### a. Le choix du diamètre des boulons

Pour des raisons pratiques, on évite toujours la mise en œuvre dans un même assemblage des boulons de diamètres différents ; le choix du diamètre se fera en déterminant leurs résistances tout en étant proportionnel à l'épaisseur des pièces assemblées comme suite :

- $t \le 10 \text{ mm}$   $\longrightarrow$  d = (12; 14) mm
- 10 mm  $\leq$  t  $\leq$  25 mm  $\longrightarrow$  d = (16; 20; 24) mm
- 10 > 25 mm  $\longrightarrow$  d = (24; 27; 30) mm

On a l'épaisseur de la platine t =  $20 \text{ mm} \rightarrow 10 \text{ mm} \le t \le 25 \text{ mm}$ Après plusieurs simulations, on a pris 2 files de 3 boulons de diamètre Ø 20 classe 8.8

# b. Pince longitudinale

$$1,2d_0 \le e_1 \le 12t$$

Avec :

- 
$$d_0 = 20 + 2 = 22 \text{ mm}$$

- t = 12,7 mm
  - $26,4mm \le e_1 \le 152,4mm$

On prend donc :  $e_1 = 65 \text{ mm}$ 

c. Pince transversale

```
1,5d_0 \le e_2 \le 12t
```

$$33 \text{ mm} \le e_2 \le 152,4 \text{ mm}$$

On prend donc :  $e_2 = 40 \text{ mm}$ 

# d. Calcul des boulons sollicités en traction

Il faut vérifier que :  $M_{sd} \le M_R$   $T_R = 0.8 \times f_{ub} \times A_s = 0.8 \times 800 \times 10^{-3} \times 245$   $T_R = 156.8 \text{ kN}$   $M_R = 2 T_R \times (75 + 145 + 225 + 305) \times 10^{-3}$   $M_R = 2 \times 156.8 \times 750 \times 10^{-3}$   $M_R = 235.2 \text{ kN. m}$  $M_{sd} = 76.7 \text{ kN. m} < M_R = 235.2 \text{ kN. m}$ 

**Condition vérifiée** 

# e. Calcul des boulons sollicités au cisaillement

Il faut vérifier que : 
$$V_d \le \frac{V_R}{\gamma_{M1}}$$
  
 $V_R = 0.6 \times f_{ub} \times A_s = 0.6 \times 800 \times 10^{-3} \times 245$   
 $V_R = 117.6 \text{ kN}$   
 $V_d = \frac{V_{sd}}{8} = \frac{73.39}{8} = 9.17 \text{ kN}$   
 $V_d = 9.17 \text{ kN} < \frac{117.6}{1.25} = 94.08 \text{ kN}$  Condition vérifiée

# f. Vérification de la pression diamétrale

Il faut vérifier que :  $V_d \leq \frac{L_R}{\gamma_{M1}}$ 

$$\frac{L_R}{\gamma_{M1}} = \frac{2.5}{1.25} \times f_u \times d \times a \times t = \frac{2.5}{1.25} \times 360 \times 20 \times 1 \times 11.5 \times 10^{-3} = 165.6 \text{ kN}$$
Avec :  $a = \min\left(\frac{e_1}{3 \times d_0}; \frac{p_1}{3 \times d_0} - 0.25; 1\right) = 1$ 

$$V_d = 9.17 \text{ kN} < \frac{L_R}{\gamma_{M1}} = 165.6 \text{ kN}$$
Condition vérifiée

#### 6.5.3 Assemblage pieds de poteau

D'une manière générale, Pour maintenir sans danger le pied du poteau au sol, ce dernier est solidement encastré à la semelle par utilisation d'un ensemble d'éléments : une plaque d'assise, un scellement rempli de mortier de calage, des boulons d'ancrage, une fondation en béton, une bêche de cisaillement en I, une plaque de positionnement/nivellement en acier, une cavité à remplir de mortier après avoir positionné le poteau, une armature de fondation. Ce dispositif permet de contrecarrer l'effort vertical de compression et de soulèvement induit par la détermination de toutes les combinaisons possibles de cas de charges et de déterminer avec précision le moment fléchissant et de choisir l'option la plus défavorable.

#### 6.5.3.1 Dimensionnement de la plaque d'assise

#### a. Estimation de l'aire de la plaque d'assise

Une estimation de l'aire requise de la plaque d'assise est donnée par la plus grande des valeurs suivante :

$$N_{sd} = 33,4767 \text{ kN}$$

$$A_{C0} = \frac{1}{h \times b} \left(\frac{N_{sd}}{f_c}\right)^2 \qquad ; \qquad A_{C0} = \frac{1}{210 \times 220} \left(\frac{33476,7}{16,7}\right)^2 = 86,97 \text{ mm}^2$$

$$A_{C0} = \frac{N_{sd}}{f_c} \qquad ; \qquad A_{C0} = \frac{33476,7}{16,7} = 2004,59 \text{ mm}^2$$

Avec : (h,b) les dimensions du poteau

\_ \_ . \_ . \_ . . .

Les dimensions en plan adéquates pour la plaque d'assise sont choisies comme suite :

 $b_b > b + 2t_f = 220 + 2 \times (11) = 242 \text{ mm}$   $h_b > h + 2t_f = 210 + 2 \times (11) = 232 \text{mm}$ On prend donc :  $b_b = 460 \text{ mm}$ 

$$h_{\rm b} = 450 \, {\rm mm}$$

#### b. Cordons de soudure

La plaque d'assise est destinée à maintenir solidement le poteau à l'armature de fondation. Pour cela elle est soudée par le biais d'un cordon de soudure à la base du poteau sur tout le contour de la section transversale du profilé.

Semelle :  $a_s = 0.7 \times t_f = 0.7 \times 11 = 7.7 \text{ mm} \rightarrow \text{On prend } a_s = 10 \text{ mm}$ Ame :  $a_a = 0.7 \times t_w = 0.7 \times 7 = 4.9 \text{ mm} \rightarrow \text{On prend } a_a = 10 \text{ mm}$ 

- La plaque d'assise en acier de nuance (Fe 360) :  $f_v = 235 \text{N/mm}^2$
- Fondation en béton de classe C25/30 :  $f_{cK} = 25 \text{ N/mm}^2$
- Coefficients partiels de sécurité : Acier :  $\gamma_{M0} = 1,1$  ;  $\gamma_{M2} = 1,25$

Béton :  $\gamma_c = 1,5$ 

• Résistance du béton à la compression :  $f_c = (\alpha \times f_{cK}) / \gamma_c$ D'où :  $\alpha = 1$ 

La résistance de calcul du béton devient :  $f_c = (1 \times 25) / 1,5 = 16,7 \text{ N/mm}^2$ 

• Résistance de calcul a l'écrasement du matériau de scellement :

$$F_{jd} = \alpha \times \beta_j \times f_c$$

La valeur du coefficient du matériau de scellement est :  $\beta_j = 2/3$ Les dimensions de la fondation étant inconnues. on prend alors  $\alpha = 1,5$ 

$$F_{id} = 1.5 \times 2/3 \times 16.7 = 16.7 \text{ N/mm}^2$$

# c. L'épaisseur de la plaque

$$t \ge u \times \sqrt{\frac{3\sigma}{\sigma_{e}}} \quad \text{avec} \ \left\{ \sigma = \frac{N_{sd}}{a \times b} = \frac{120 \text{ mm}}{\frac{3347,67}{460 \times 450}} = 0,016 \text{ daN/m}^2 \right\}$$
  
Donc : t \ge 120 \times  $\sqrt{\frac{3 \times (0,016)}{24}} = 5,36 \text{ mm}$ 

L'épaisseur est faible et pour des raisons pratiques on opte pour une épaisseur

t = 20 mm

# 6.5.3.2 Vérification de la contrainte de compression sur la semelle

$$\sigma < \overline{\sigma}_{b}$$
  
Béton dosé à 350 kg/m<sup>3</sup>  $\rightarrow \overline{\sigma}_{b} = 80 \text{daN/cm}^{2}$   
$$\sigma = \frac{N_{sd}}{a \times b} = \frac{3347,67}{45 \times 46} = 1,62 \text{ daN/cm}^{2} < \overline{\sigma}_{b} = 80 \text{ daN/cm}^{2}$$
 Condition vérifiée

# 6.5.3.3 Vérification des tiges d'ancrages

# a. Choix du diamètre des boulons

L'effort admissible par tige est donné par la formule suivante :

$$N_{\alpha} = 0.1 \times \left(1 + \frac{7g_{c}}{1000}\right) \times \frac{\phi}{\left(1 + \frac{\phi}{d_{1}}\right)^{2}} \left(20\phi + 19.2\phi + 7\phi\right) \geq \frac{N}{6}$$

Avec :

- $g_c = 350 \text{ kg/m}^3$  (dosage du béton)
- $r = 3\phi$
- $l_1 = 20\varphi$
- $l_2 = 2\varphi$
- d<sub>1</sub>: La distance la plus petite de l'axe de la tige à une paroi du massif en béton (d<sub>1</sub> = 60mm)

$$\rightarrow 0,1 \times \left(1 + \frac{7 \times 350}{1000}\right) \times \frac{\varphi}{\left(1 + \frac{\varphi}{60}\right)^2} \left(20\varphi + 19,2\varphi + 7\varphi\right) \ge \frac{N}{6} = \frac{33476,7}{6}$$

D'où l'on tire :  $14,51\varphi^2 - 178,54\varphi - 5579,45 \ge 0$ 

$$\varphi^2 - 12,3 \varphi - 384,52 \ge 0$$

 $\sqrt{\Delta} = 41, 1 \Rightarrow \phi \ge 26,7 \text{ mm}$ 

 $t > 25m \rightarrow d = (24, 27; 30)mm$ 

On choisit alors 6 tiges de  $\phi = 27$ mm classe 4.6



Figure 6.5 Vue 3D de l'assemblage de pieds de poteau





Figure 6.6 Détail d'assemblage pieds de poteau

# b. Pince longitudinale e<sub>1</sub>

$$1,2 d_0 \le e_1 \le 12t$$

Avec :

- $d_0 = 27 + 2 = 29 \text{ mm}$
- t = 11 mm

34,8 mm  $\leq e_1 \leq 132$  mm Alors on prend :  $e_1 = 60$  mm

# c. Pince transversal e<sub>2</sub>

 $\begin{array}{ll} 1,5 \ d_0 \ \leq \ e_2 \leq 12t \\ \\ 43,5 \ mm \leq \ e_2 \leq 132 \ mm \\ \\ \ Alors \ on \ prend : e_2 = 60 \ mm \end{array}$ 

# 6.5.3.4 Condition d'équilibre du B.A.E.L

$$\frac{N}{6} \leq F_A = \pi \times \tau_{su} \times \ \emptyset \times l_1$$

Avec :

-  $\emptyset$  : Coefficient de scellement droit ( $\emptyset_s = 1$  rond lisse)

# **CHAPITRE 7 : ETUDE DE L'INFRASTRUCTURE**

# 7.1 CALCUL DES FONDATIONS

#### 7.1.1 Introduction

Les fondations d'un ouvrage sont les éléments de la structure assurant la transmission des charges de cette structure sur le sol:

- Charges permanentes.
- Charges d'exploitations.
- Charges climatiques.

Le choix du type de fondation dépend du :

- Type d'ouvrage à construire.
- La capacité portante admissible du terrain.
- La facilité de réalisation.

Mais on se limitera dans notre projet sur le choix du type de fondation essentiellement à la contrainte admissible du sol et sa nature. La capacité portante du sol est de 1,8 bars.

On choisit des semelles isolées comme type de fondation utilisé dans notre projet.

Chaque semelle est soumise à :

- Un effort normal.
- Un moment de flexion.



Figure 7.1 Diagramme des contraintes agissant sur les fondations

# 7.1.2 Charges à prendre en considération

Les charges à prendre en considération sont représentées dans le tableau ci-dessous :

|                         | N <sub>sd</sub> ELU (kN) | N <sub>sd</sub> ELS (kN) |
|-------------------------|--------------------------|--------------------------|
| Semelles d'angles       | 46,87                    | 31,41                    |
| Semelles intermédiaires | 40,95                    | 27,5                     |
| Semelles centrales      | 62,92                    | 43,24                    |
| Semelle des potelets    | 19,26                    | 12,95                    |

Tableau 7.1 : Charges appliquées sur les fondations

# 7.1.3 Dimensionnement des semelles pour les poteaux en HEA 2207.1.3.1 Semelles d'angle

 $\begin{array}{l} a \ \geq a + 2t_{f} = 210 + 2 \times (11) = 232 \ mm \\ b \ \geq b + 2t_{f} = 220 + 2 \times (11) = 242 \ mm \\ On \ prend : \begin{cases} a = 450 \ mm \\ b = 460 \ mm \end{cases}$ 

$$\frac{A}{B} = \frac{a}{b} \rightarrow \begin{cases} A = B \frac{a}{b} \\ B = A \frac{b}{a} \end{cases}$$
$$\overline{\sigma_{sol}} = \frac{N_s}{A \times B} \rightarrow A \times B \ge \frac{N_s}{\overline{\sigma_{sol}}}$$
$$\Rightarrow A \ge \sqrt{\frac{a}{b} \times \frac{N_s}{\overline{\sigma_{sol}}}} \qquad \Rightarrow \qquad A \ge \sqrt{\frac{0.45}{0.46} \times \frac{31.41}{180}} \qquad \Rightarrow A \ge 0.41 \text{ m}$$
$$\Rightarrow B \ge \sqrt{\frac{b}{a} \times \frac{N_s}{\overline{\sigma_{sol}}}} \qquad \Rightarrow \qquad B \ge \sqrt{\frac{0.46}{0.45} \times \frac{31.41}{180}} \qquad \Rightarrow B \ge 0.42 \text{ m}$$

Donc on prend une semelle carrée de dimensions  $(1 \times 1)m^2$ .

# a. Détermination de d et h

$$\frac{B-b}{4} \le d \le A - a$$

$$\Rightarrow \quad \frac{1-0,46}{4} \le d \le 1 - 0,45$$

$$\Rightarrow \quad 0,135 \text{ m} \le d \le 0,55 \text{ m}$$
On prend : d = 40 cm

Ce qui donne : h = d + 5 = 45 cm

#### b. Vérification des contraintes

$$\begin{split} \sigma_{sol} &\leq \overline{\sigma_{sol}} \\ \sigma_{sol} &= \frac{N_s}{s} = \frac{31,41}{1 \times 1} = 31,41 \text{ kN/m}^2 \\ \sigma_{sol} &= 31,41 \frac{\text{kN}}{\text{m}^2} < \overline{\sigma_{sol}} = 180 \frac{\text{kN}}{\text{m}^2} = 1,8 \text{ bars} \end{split}$$
 Condition vérifiée

#### c. Détermination du ferraillage

- Ferraillage parallèle à A
  - > A l'ELU (Avec la méthode des bielles)

$$\mathbf{A}_{\mathbf{u}} = \frac{\mathbf{N}_{\mathbf{u}} \times (\mathbf{A} - \mathbf{a})}{8 \times \mathbf{d} \times \sigma_{st}}$$

Avec : 
$$\sigma_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1,15} = 347,82 \text{ MPA}$$
  
 $N_u = 46,87 \text{ KN} \text{ (calculé par Robot)}$   
 $A_u = \frac{46,87 \times 10^3 \times (1000 - 450)}{8 \times 400 \times 347,82} = 23,16 \text{ mm}^2 = 0,231 \text{ cm}^2$ 

A l'ELS (Avec la méthode des bielles)

$$A_{u} = \frac{N_{s} \times (A-a)}{8 \times d \times \overline{\sigma_{sol}}}$$
  
Avec :  $\overline{\sigma_{sol}} = \min\left(\frac{2}{3} \text{ fe ; } 110\sqrt{n \times f_{c28}}\right) = 201,63 \text{ MPa}$   
 $N_{s} = 31,41 \text{ kN} \text{ (calculé par Robot)}$   
 $A_{u} = \frac{31,41 \times 10^{3} \times (1000 - 450)}{8 \times 400 \times 201,63} = 26,77 \text{ mm}^{2} = 0,267 \text{ cm}^{2}$ 

#### • Ferraillage parallèle à B

> A l'ELU (Avec la méthode des bielles)

$$\mathbf{A}_{\mathbf{u}} = \frac{\mathbf{N}_{\mathbf{u}} \times (\mathbf{B} - \mathbf{b})}{8 \times \mathbf{d} \times \sigma_{st}}$$

Avec :  $\sigma_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1,15} = 347,82 \text{ MPA}$ 

 $N_u = 46,87$  kN (calculé par Robot)

$$A_{u} = \frac{46,87 \times 10^{3} \times (1000 - 460)}{8 \times 400 \times 347,82} = 22,74 \text{ mm}^{2} = 0,227 \text{ cm}^{2}$$

> A l'ELS (Avec la méthode des bielles)

$$A_{u} = \frac{N_{s} \times (B-b)}{8 \times d \times \overline{\sigma_{sol}}}$$
Avec :  $\overline{\sigma_{sol}} = \min\left(\frac{2}{3} \text{ fe ; } 110\sqrt{n \times f_{c28}}\right) = 201,63 \text{ MPa}$ 

$$N_{s} = 31,41 \text{ KN (calculé par Robot)}$$

$$A_{u} = \frac{31,41 \times 10^{3} \times (1000 - 460)}{8 \times 400 \times 201,63} = 26,29 \text{ mm}^{2} = 0,262 \text{ cm}^{2}$$

**Remarque :** Vue que la semelle de fondation est un massif, le ferraillage calculé reste toujours très faible et inferieur au ferraillage minimal. Donc on adapte un ferraillage minimum selon le RPA99/V2003 [6] ( $\emptyset$ 12) avec un espacement min = (15 ; 25) cm.

#### d. Calcul du nombre des barres

On a un espacement e = 15 cmEnrobage c = 3 cm  $n_a = \frac{A-2 \text{ (enrobage )}}{\text{espacement}} = \frac{100-2\times(3)}{15} = 6,27 \text{ cm}$   $n_b = \frac{B-2 \text{ (enrobage )}}{\text{espacement}} = \frac{100-2\times(3)}{15} = 6,27 \text{ cm}$ Donc on prend 7 barres de Ø12.

e. Calcul d'ancrage

$$l_{s} = \frac{\phi f_{e}}{4\overline{\tau_{s}}}$$
  
Avec :  $f_{t28} = 0.6 + 0.06 f_{c28} = 2.1$  MPa  
 $\overline{\tau_{s}} = 0.6 [\Psi^{2} \times f_{c28}] = 0.6 [1.5^{2} \times 2.1^{2}] = 2.835$  MPa  
 $l_{s} = \frac{12 \times 400}{4 \times 2.835} = 42.32$  cm  $> \frac{B}{4} = 25$  cm

Donc toutes les barres doivent êtres prolongées jusqu'aux extrémités et comportées des ancrages courbes (crochets).

# f. Détermination de la hauteur du patin « e »

```
e \ge max (6\emptyset + 6cm; 15 cm; 12\emptyset + 6cm)
```

$$e \ge max (13,2cm; 15 cm; 20,4 cm) \rightarrow on prend: e = 21 cm$$

|                      | Nmax<br>(kN) | Section (m <sup>2</sup> ) | $\frac{N}{S}$ (kN/m <sup>2</sup> ) | $\overline{\sigma_{adm}}$ (kN/m <sup>2</sup> ) | Ferraillage | $\frac{N}{S} < \overline{\sigma_{adm}}$ |
|----------------------|--------------|---------------------------|------------------------------------|------------------------------------------------|-------------|-----------------------------------------|
| Semelles<br>D'angles | 46,87        | 1×1                       | 46,87                              | 180                                            | 7 T12       | Condition<br>vérifiée                   |

Tableau 7.2 : Récapitulatif des résultats des semelles d'angles



Figure 7.2 Ferraillage des semelles d'angles

# 7.1.3.2 Semelles intermédiaires

Le calcul des semelles intermédiaires se fait comme dans la méthode précédente.

|                      | Nmax<br>(kN) | Section<br>(m <sup>2</sup> ) | $\frac{N}{S}$ (kN/m <sup>2</sup> ) | $\overline{\sigma_{adm}}$ (kN/m <sup>2</sup> ) | Ferraillage | $\frac{N}{S} < \overline{\sigma_{adm}}$ |
|----------------------|--------------|------------------------------|------------------------------------|------------------------------------------------|-------------|-----------------------------------------|
| Semelles<br>D'angles | 40,95        | 0,8 × 0,8                    | 63,98                              | 180                                            | 6 T12       | Condition<br>vérifiée                   |

| Tableau 7.3 : Récapitulatif des résultats des semelles intermédia | ires |
|-------------------------------------------------------------------|------|
|-------------------------------------------------------------------|------|



Figure 7.3 Ferraillage des semelles intermédiaires

# 7.1.3.3 Semelles centrales

Le calcul des semelles intermédiaires se fait comme dans la méthode précédente.

|                      | Nmax<br>(kN) | Section<br>(m <sup>2</sup> ) | $\frac{\frac{N}{S}}{(kN/m^2)}$ | σ <sub>adm</sub><br>(kN/m²) | Ferraillage | $\frac{N}{S} < \overline{\sigma_{adm}}$ |
|----------------------|--------------|------------------------------|--------------------------------|-----------------------------|-------------|-----------------------------------------|
| Semelles<br>D'angles | 62,92        | $1 \times 1$                 | 62,92                          | 180                         | 7 T12       | Condition<br>vérifiée                   |

Tableau 7.4 : Récapitulatif des résultats des semelles centrales



Figure 7.4 Ferraillage des semelles centrales

#### 7.1.4 Dimensionnement des semelles pour les potelets en IPE 240

Le calcul des semelles intermédiaires se fait comme dans la méthode précédente.

 $\begin{array}{l} a \geq a + 2t_{f} = 120 + 2 \times (9,8) = 139,6 \mbox{ mm} \\ b \geq b + 2t_{f} = 240 + 2 \times (9,8) = 259,6 \mbox{ mm} \\ On \mbox{ prend}: \begin{cases} a = 220 \mbox{ mm} \\ b = 340 \mbox{ mm} \end{cases} \mbox{ (dimensions de la plaque d'assise)} \end{array}$ 

|                      | Nmax<br>(kN) | Section (m <sup>2</sup> ) | $\frac{N}{S}$ (kN/m <sup>2</sup> ) | $\frac{\overline{\sigma_{adm}}}{(KN/m^2)}$ | Ferraillage | $\frac{N}{S} < \overline{\sigma_{adm}}$ |
|----------------------|--------------|---------------------------|------------------------------------|--------------------------------------------|-------------|-----------------------------------------|
| Semelles<br>D'angles | 19,26        | 0,6× 0,6                  | 53,5                               | 180                                        | 4 T12       | Condition vérifiée                      |





Figure 7.5 Ferraillage des semelles des potelets

# 7.2 CALCUL DES LONGRINES

#### 7.2.1 Introduction

Les longrines sont des éléments d'infrastructure, qui ont pour rôle de relier les semelles entres elles. Elles sont sollicitées par un effort de traction.

# 7.2.2 Dimensionnement des longrines

Selon le RPA99 VERSION 2003 **[6]**, les dimensions minimales de la section transversale des longrines pour un site de catégorie S3 sont :  $(25 \text{ cm} \times 30 \text{ cm})$ 

# 7.2.3 Calcul du ferraillage

Les longrines doivent êtres calculées pour résister à la traction sous l'action d'une force égale à :

$$\mathbf{F} = \max\left[\frac{\mathbf{N}}{\alpha} ; 20 \text{ kN}\right]$$

Avec :

 $\alpha$  : Coefficient fonction de la zone sismique et de la catégorie de site considérée. Tlemcen (zone I) → sismicité faible Site meuble S3  $\Rightarrow \alpha = 15$ 

> A l'ELU  
$$\frac{N_u}{\alpha} = \frac{62,92}{15} = 4,19 \text{ kN}$$

> A l'ELS

$$\frac{N_s}{\alpha} = \frac{43,24}{15} = 2,88 \text{ kN}$$

$$F = \max\left[\frac{N_u}{\alpha}; \frac{N_s}{\alpha}; 20 \text{ kN}\right] = 20 \text{ kN}$$

 $A_{st} = \frac{F}{\sigma_{st}}$ 

- > A l'ELU  $A_{st} = \frac{N_u}{\sigma_{st}} = \frac{62,94}{347,82} = 0,18 \text{ cm}^2$
- > A l'ELS  $A_{st} = \frac{N_s}{\sigma_{st}} = \frac{43,24}{347,82} = 0,12 \text{ cm}^2$

Le RPA99 VERSION 2003 exige que le ferraillage minimum doit être de 0,6 % de la section avec des cadres dont l'espacement est inferieur au min (20 cm ; 15Ø).

 $A_{min} = 0.6\% (25 \times 30)$   $A_{min} = 4.5 \text{ cm}^2$ On prend donc  $A_{st}$  6T12 = 6.79 cm<sup>2</sup>

# 7.2.4 Condition de non fragilité

 $A_{st} \ge 0,23 \times b \times d \times \frac{f_{t28}}{f_e}$  $A_{st \min} = 0,23 \times 25 \times 30 \times \frac{2,1}{400}$ 

 $A_{st min} = 0,905 \text{ cm}^2$  $A_{st} = 6,79 \text{ cm}^2 > A_{st min} = 0,905 \text{ cm}^2$ 

**Condition vérifiée** 

# 7.2.5 Calcul des armatures transversales

$$\begin{split} & \emptyset_t \le \min\left(\frac{h}{35}; \emptyset_{min}; \frac{b}{10}\right) \\ & \emptyset_t \le \min\left(\frac{300}{35}; 12; \frac{250}{10}\right) \\ & \emptyset_t = \emptyset 8 \end{split}$$

# 7.2.6 Calcul d'espacement des cadres

Le RPA 99 [6] exige des cadres avec un espacement qui ne dépasser  $S_t \le (20 \text{ cm}; 15\emptyset_t)$  $S_t \le (20 \text{ cm}; 12 \text{ cm})$ On prend :  $S_t = 12 \text{ cm}$ 

# CHAPITRE 8 : DEFAUTS D'ALIGNEMENT ET DE VERTICALITE

# **8.1 IMPERFECTIONS GEOMETRIQUES**

D'une manière générale, les défauts géométriques des éléments structuraux d'un ouvrage peuvent probablement créer des problèmes en ce qui concerne le comportement mécanique de cette structure et par conséquent sur sa réponse à des sollicitations. Probablement, ces défauts qu'ils soient de fabrication ou de montage peuvent avoir des conséquences fâcheuses sur la résistance ou sur l'instabilité d'une structure métallique,.

En ce qui concerne les poteaux d'une structure métallique sollicités en compression et qui risquent de flamber sont susceptibles aux défauts géométriques (chose qui va être étudiée dans ce chapitre). En effet, toute excentricité du point d'application de la force de compression induit des effets secondaires d'instabilité qui réduisent la capacité portante de cet élément par rapport à celui d'un élément parfait.

# **8.2 DISPOSITION DES POTEAUX**

La disposition et la numérotation des poteaux de notre structure sont représentées dans la figure ci-dessous :



Figure 8.1 : Numérotation des poteaux

|          | N <sub>Sd</sub> (kN) | V <sub>Sd</sub> (kN) | M <sub>Sd</sub> (kN) |  |
|----------|----------------------|----------------------|----------------------|--|
| Poteau 1 | 19,54                | 13,95                | 16,34                |  |
| Poteau 2 | 34,38                | 12,8                 | 20,71                |  |
| Poteau 3 | 23,01                | 12,82                | 13,65                |  |
| Poteau 4 | 82,04                | 31,09                | 61                   |  |
| Poteau 5 | 291,65               | 0,9                  | 2,76                 |  |
| Poteau 6 | 81,28                | 21,11                | 62,78                |  |
| Poteau 7 | 97,44                | 3,75                 | 6,93                 |  |
| Poteau 8 | 100,94               | 10,13                | 19,17                |  |
| Poteau 9 | 22,81                | 9,11                 | 10,91                |  |

# 8.3 RECAPITULATIF DES RESULTATS DE LA STRUCTURE SAINE (SANS DEFAUTS)

**Tableau 8.1 :** Les efforts des poteaux de la structure saine (sans défauts)

# 8.4 RECAPITULATIF DES RESULTATS DE LA STRUCTURE EXISTANTE AVEC CES DEFAUTS

Nous nous sommes déplacés sur chantier pour effectuer un levé topographique de la structure existante qui a pour objectif de représenter avec exactitude sur un dessin, la projection de tous les points situés sur un terrain.



Figure 8.2 : Levé planimétrique de la structure existante



Figure 8.3 : Récapitulatif des défauts d'alignements des poteaux

Les valeurs limites recommandées de la flèche horizontale suivant le règlement CCM97 **[3]** sont :

$$\delta_{\max} = \frac{h}{125} = \frac{6000}{125} = 48 \text{ mm}$$

Où : h est la hauteur du poteau

On constate que les défauts d'inclinaison du poteau P2 ( $\delta_{max} = 65$ mm) et le poteau P4 ( $\delta_{max} = 65$ mm) dépassent les limites imposées par le règlement.

S'il y avait un contrôle rigoureux, le maitre d'œuvre revérifie ces défauts pour respecter les recommandations imposées par le règlement CCM97.

Les coordonnées des points relevés ont été introduites à nouveau dans l'outil de calcul (ROBOT) puis on a recalculé à nouveau notre structure ce qui a donné les efforts suivants :

|          | N <sub>Sd</sub> (kN) | V <sub>Sd</sub> (kN) | M <sub>Sd</sub> (kN) |
|----------|----------------------|----------------------|----------------------|
| Poteau 1 | 7,67                 | 6,27                 | 20,25                |
| Poteau 2 | 14,99                | 6,67                 | 21,12                |
| Poteau 3 | 9,38                 | 2,14                 | 11,15                |
| Poteau 4 | 69,92                | 44,39                | 64,61                |
| Poteau 5 | 19,95                | 0,21                 | 1,34                 |
| Poteau 6 | 39,41                | 60,89                | 95,55                |
| Poteau 7 | 15,11                | 2,15                 | 7,74                 |
| Poteau 8 | 178,89               | 30,25                | 120,6                |
| Poteau 9 | 9,54                 | 3,2                  | 11,79                |

Tableau 8.2 : Les efforts des poteaux de la structure avec défauts

|                                   | N <sub>Sd</sub> (kN) | V <sub>Sd</sub> (kN) | ${f M}_{ m Sd}(kN)$ |
|-----------------------------------|----------------------|----------------------|---------------------|
| Structure Saine<br>(Sans Défauts) | 291,65               | 31,09                | 62,78               |
| Structure (Avec Défauts)          | 178,89               | 60,89                | 120,60              |
| Pourcentage (%)                   | + 38,66              | + 95,85              | +92,09              |

Tableau 8.3 : Comparaison des efforts les plus défavorables

En analysant les résultats obtenus entres les sollicitations de la structure saine avec les sollicitations de la structure avec défauts, on remarque une diminution de l'effort de compression de **38,66%** par rapport à la structure saine, une augmentation de **95,85%** de l'effort tranchant et **92,09%** du moment fléchissant.

# 8.5 JUSTIFICATION DU POTEAU (HEA 220) AVEC LES NOUVELLES SOLLICITATIONS

### 8.5.1 Caractéristiques du poteau (HEA 220)

Les caractéristiques de la traverse HEA 220 sont résumées dans le tableau ci-dessous :

| profilé    | Section | Dimensions |     |                |                | Caractéristiques |        |                  |                 |
|------------|---------|------------|-----|----------------|----------------|------------------|--------|------------------|-----------------|
|            | А       | h          | b   | t <sub>f</sub> | t <sub>w</sub> | Iy               | Iz     | W <sub>ply</sub> | $W_{plz}$       |
|            | $cm^2$  | mm         | mm  | mm             | mm             | $\mathrm{cm}^4$  | $cm^4$ | cm <sup>3</sup>  | cm <sup>3</sup> |
| HEA<br>220 | 64,3    | 210        | 220 | 11             | 7              | 5410             | 1955   | 568,5            | 270,6           |

#### Tableau 8.4 Caractéristiques du profilé HEA 220

#### **8.5.2 Efforts sollicitant :**

- $M_{sd} = 120,60 \text{ kN.m}$
- $V_{sd} = 60,89 \text{ kN}$
- $N_{sd} = 178,89 \text{ kN}$

# **8.5.3** Classe de la section transversale :

# 8.5.3.1 Classe de l'âme :

 $\frac{d}{t_w} \le 33 \epsilon$  avec : d = 152 mm; tw = 7 mm;  $\epsilon = \sqrt{\frac{235}{fy}} = 1$ 

 $\frac{152}{7} \le 33 \sqrt{\frac{235}{235}} \longrightarrow 21,77 < 33 \qquad \text{L'âme est de classe 1}$ 

# 8.5.3.2 Classe de la semelle :

$$\frac{c}{t_{f}} \le 10 \epsilon \quad \text{avec}: \quad c = \frac{b}{2} = \frac{220}{2} = 110 \text{ mm}; \ t_{f} = 11 \text{ mm}; \ \epsilon = \sqrt{\frac{235}{255}} = 1$$

$$\frac{110}{11} \le 10 \sqrt{\frac{235}{235}} \longrightarrow 10 \le 10 \qquad \text{La semelle est de classe 1}$$

# 8.5.4 Conditions de résistance

# 8.5.4.1 Cisaillement

Il faut également vérifier que :  $V_{sd} \le 50\% V_{pl,Rd}$ 

Avec : 
$$V_{pl,Rd} = \frac{0.58 \times A_v \times f_y}{\gamma_{M0}}$$
  
 $A_v = A - 2bt_f + (t_w + 2r)t_f \rightarrow \text{pour les profilés laminés en I ou H}$   
 $A_v = 6430 - (2 \times 220 \times 11) + (7 + 2 \times (18)) \times 11 = 2063 \text{ mm}^2$   
Donc :  $V_{pl,Rd} = \frac{0.58 \times 2063 \times 235 \times 10^{-3}}{1.1} = 255,62 \text{ kN}$ 

Alors :

$$V_{sd} = 60,89 \text{ kN} < 50\% V_{pl,Rd} = 255,62 \text{ kN}$$
 Condition vérifiée

La valeur de  $V_{sd}$  ne dépasse pas 50% de la résistance plastique de calcul au cisaillement  $V_{pl,Rd}$ , donc il n'est pas nécessaire de prendre en compte son effet.

#### 8.5.4.2 Résistance à la compression et flexion

$$\frac{N_{sd}}{\chi_{Z} \cdot \frac{A \cdot f_{y}}{\gamma_{M_{1}}}} + \frac{k_{LT} \cdot M_{.sd}}{\chi_{LT} \cdot \frac{W_{pl.y} \cdot f_{y}}{\gamma_{M_{1}}}} \le 1$$

Avec :

- $k_{LT} = 1 \frac{\mu_{LT}.N_{sd}}{\chi_Z.A.f_y}$  mais  $k_{LT} \leq 1$ ;
- $\mu_{LT} = 0,15. \overline{\lambda_Z}. \beta_{M.LT} 0,15 \text{ mais } \mu_{LT} \le 0,9;$
- $\beta_{M.LT} = 1,80$
- $\gamma_{M_1} = 1,1$
- $\chi$  : coefficient de reduction
- $\overline{\lambda_Z}$ : élancement réduit

$$\bar{\lambda} = \left(\frac{\lambda}{\lambda_1}\right) \cdot \sqrt{\beta_A} = \frac{\lambda}{93,9\varepsilon}$$

λ : Elancement pour le mode de flambement considéré calculé à la base des caractéristiques de la section brute

$$\begin{cases} \frac{h}{b} = \frac{210}{220} = 0.95 < 1.2 \\ t_{f} = 11 \text{ mm} < 100 \text{ mm} \end{cases} \xrightarrow{\rightarrow} \begin{cases} \text{axe de flambement} \rightarrow \begin{cases} (y - y) \\ (z - z) \end{cases} \\ \text{courbe de flambement} \rightarrow \begin{cases} b \\ c \end{cases} \end{cases}$$

$$\underline{Plan}(z-z)$$
:

Axe (z-z)  $\rightarrow$  courbe (c)  $\rightarrow \alpha = 0,49$ 

$$\lambda_{Z} = \frac{L_{f}}{L_{z}} = \frac{L/1.41}{L_{z}} = \frac{600/1.41}{5.51} = 77,23$$

$$\rightarrow \overline{\lambda}_{Z} = \frac{\lambda_{Z}}{93.9\varepsilon} = \frac{77.23}{93.9} = 0.82$$

$$\chi_{Z} = \frac{1}{\left(\Phi_{Z} + \sqrt{\Phi_{Z}^{2} - \overline{\lambda_{Z}}^{2}}\right)} \leq 1$$

$$\Phi_{Z} = 0.5 \left[1 + \alpha \left(\overline{\lambda_{Z}} - 0.2\right) + \overline{\lambda_{Z}}^{2}\right]$$

$$\Phi_{Z} = 0.5 \left[1 + 0.49 \left(0.82 - 0.2\right) + 0.82^{2}\right] = 0.99$$

$$\chi_{Z} = \frac{1}{\left(0.99 + \sqrt{0.99^{2} - 0.82^{2}}\right)} = 0.64$$

Donc :

$$\mu_{LT} = (0,15 \times 0,82 \times 1,80) - 0,15 = 0,07 < 0,9$$
  

$$k_{LT} = 1 - \frac{(0,07) \times (291,65)}{0,64 \times 6430 \times 235 \times 10^{-3}} = 0,02 < 1,5$$
  

$$\overline{\lambda_{LT}} = \left[\beta_{w} \times W_{ply} \times \frac{Fy}{M_{cr}}\right]^{0,5} = \left[\frac{\lambda_{LT}}{\lambda_{1}}\right] \times (\beta_{w})^{0,5}$$

Avec :

 $\beta_w = 1$  (pour les sections transversales de classe 1).

 $M_{cr}$ : Moment critique élastique de déversement donné par la formule suivante :

$$M_{cr} = C_1 \times \frac{\pi^2 \times E \times I_z}{L_y^2} \times \left[\frac{I_W}{I_Z} + \frac{L^2 \times G \times I_t}{\pi^2 \times E \times I_z}\right]^{0,5}$$

Avec :

• 
$$C_1 = 1,132$$
 (charge uniformément répartie)  
•  $G = \frac{E}{2 \times (1-\upsilon)} \rightarrow \begin{cases} E = 21 \times 10^6 \text{ N/cm}^2 \\ \upsilon = 0,3 \text{ (coefficient de poisson)} \end{cases}$   
 $G = \frac{21 \times 10^6}{2 \times (1+0,3)} = 8,08 \times 10^6 \text{ N/cm}^2$ 

- $I_t$ : Moment d'inertiede torsion ( $I_t = 28,46 \text{ cm}^4$ )
- $I_W$ : Moment d'inertie de gauchissement ( $I_W = 193,3 \times 10^3 \text{ cm}^6$ )
- $I_Z$  : Moment d'inertie de flexion suivant l'axe de faible inertie

$$(I_{\rm Z} = 1955 \text{ cm}^4)$$

$$M_{cr} = 1,132 \times \frac{\pi^2 \times 21 \times 10^6 \times 1955}{(600)^2} \times \left[\frac{193,3 \times 10^3}{1955} + \frac{(600)^2 \times 8,08 \times 10^6 \times 28,46}{\pi^2 \times 21 \times 10^6 \times 1955}\right]^{0,5}$$

$$M_{cr} = 22185085,54$$
 N.cm

$$\overline{\lambda_{LT}} = \left[ 1 \times 568,5 \times \frac{235 \times 10^2}{22185085,54} \right]^{0.5} = 0,6$$
  

$$\chi_{LT} = \frac{1}{\phi_{LT} + \left[\phi_{LT}^2 - \overline{\lambda_{LT}}^2\right]^{0.5}} \le 1$$
  

$$\phi_{LT} = 0,5 \left[ 1 + \alpha_{LT} \left( \overline{\lambda_{LT}} - 0,2 \right) + \overline{\lambda_{LT}}^2 \right]$$
  

$$\alpha_{LT} = 0,21 \text{ (pour les profilés laminés)}$$
  

$$\phi_{LT} = 0,5 \left[ 1 + 0,21 \left( 0,6 - 0,2 \right) + (0,6)^2 \right] = 0,72$$
  
Donc :  $\chi_{LT} = \frac{1}{0,72 + [0,72^2 - 0,6^2]^{0.5}} = 0,89 < 1$ 

D'où :

$$\frac{178,89}{0,64 \times \frac{6430 \times 235}{1,1}} + \frac{0,02 \times 120,60 \times 10^6}{0,89 \times \frac{568,5 \times 10^3 \times 235}{1,1}} = 0,02 < 1$$

#### **Condition vérifiée**

**Conclusion :** On voit bien que malgré ces défauts de réalisation, la structure résiste bien aux nouvelles sollicitations.

# **8.6 STRUCTURE AVEC DES DEFAUTS SIMULES**

Dans cette partie, on va introduire des défauts géométriques tels que les défauts d'inclinaison vers l'intérieur ou vers l'extérieur, avec une valeur de flèche admissible  $\delta_{\text{max}} = \frac{h}{125} = \frac{6000}{125} = 48 \text{ mm}$  et voir leur incidences sur la réponse de la structure.

#### **8.6.1 Premier cas : (portique 2 uniquement)**



Figure 8.4 : Représentation du premier cas simulé

| N Max (KN) | M Max (KN.m) | V Max (kN) | Profilé      |
|------------|--------------|------------|--------------|
| 15,42      | 11,01        | 9,14       | HEA 220 (P1) |
| 29,57      | 20,81        | 17,34      | HEA 220 (P2) |
| 18,52      | 3,35         | 2,27       | HEA 220 (P3) |
| 78,46      | 62,68        | 18,85      | HEA 220 (P4) |
| 299,53     | 4,55         | 0,93       | HEA 220 (P5) |
| 76,07      | 60,19        | 16,38      | HEA 220 (P6) |
| 39,17      | 1,96         | 2,27       | HEA 220 (P7) |
| 7,52       | 19,19        | 16,57      | HEA 220 (P8) |
| 32,26      | 10,95        | 9,13       | HEA 220 (P9) |

| Résultats Messa | ges |         |           |       |       |       |               | Note de calcul  | Fermer                                  |
|-----------------|-----|---------|-----------|-------|-------|-------|---------------|-----------------|-----------------------------------------|
| Pièce           |     | Profil  | Matériau  | Lay   | Laz   | Ratio | Cas           |                 | Aide                                    |
| 1 POTEAUX_1     | OK  | HEA 220 | ACIER E28 | 32.72 | 76.20 | 0.05  | 9 1,35G+1,5V2 | T 1 1 1         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| 3 POTEAUX_3     | 0K  | HEA 220 | ACIER E28 | 32.72 | 76.20 | 0.31  | 9 1,35G+1,5V2 | laux de travail | -                                       |
| 5 POTEAUX_5     | 06  | HEA 220 | ACIER E28 | 32.72 | 76.20 | 0.17  | 9 1,35G+1,5V2 | Analyse         | Cartographie                            |
| 8 POTEAUX_8     | 0K  | HEA 220 | ACIER E28 | 32.72 | 76.20 | 0.17  | 9 1,35G+1,5V2 | Pointe de calou | 16                                      |
| 10 POTEAUX_10   | OK  | HEA 220 | ACIER E28 | 32.72 | 76.20 | 0.26  | 9 1,35G+1,5V2 | division: n     | = 7                                     |
| 12 POTEAUX_12   | 0K  | HEA 220 | ACIER E28 | 32.72 | 76.20 | 0.06  | 8 1,35G+1,5V1 | extrêmes: a     | ucun                                    |
| 29 POTEAUX_29   | 06  | HEA 220 | ACIER E28 | 32.72 | 76.20 | 0.43  | 9 1,35G+1,5V2 | additionnels: a | ucun                                    |
| 30 POTEAUX_30   | OK  | HEA 220 | ACIER E28 | 32.72 | 76.20 | 0.32  | 9 1,35G+1,5V2 |                 |                                         |
| 31 POTEAUX_31   | OK  | HEA 220 | ACIER E28 | 32.72 | 76.20 | 0.45  | 9 1.35G+1.5V2 |                 |                                         |

| Tableau 8.5 : Récapitulatif des efforts et vérification des profilés obtenus pour le premie |
|---------------------------------------------------------------------------------------------|
| cas simulé par utilisation du logiciel Robot                                                |

On observe que les dimensions des poteaux pour la structure avec défauts du double portique central n'ont pas changé par rapport à la structure saine.

# 8.6.2 Deuxième cas : (portique 1 + portique 2 + portique 3)



Figure 8.5 : Représentation du deuxième cas simulé

| N Max (KN) | M Max (KN.m) | V MAX (KN) | Profilé      |
|------------|--------------|------------|--------------|
| 20,28      | 60,8         | 24,63      | HEA 220 (P1) |
| 36,02      | 68,67        | 35,44      | HEA 220 (P2) |
| 19,98      | 60,14        | 17,38      | HEA 220 (P3) |
| 35,53      | 58,62        | 33,55      | HEA 220 (P4) |
| 320,35     | 29,41        | 7,02       | HEA 220 (P5) |
| 45,97      | 43,39        | 22,96      | HEA 220 (P6) |
| 31,31      | 60,05        | 17,34      | HEA 220 (P7) |
| 206,56     | 61           | 34,51      | HEA 220 (P8) |
| 34,58      | 60,64        | 24,59      | HEA 220 (P9) |

| Résultats Message | es |         |           |       |       |       |               | Note de calcul   | Fermer       |
|-------------------|----|---------|-----------|-------|-------|-------|---------------|------------------|--------------|
| Pièce             |    | Profil  | Matériau  | Lay   | Laz   | Ratio | Cas           | 9                | Aide         |
| 1 POTEAUX_1       | 0K | HEA 220 | ACIER E28 | 32.72 | 76.20 | 0.31  | 8 1,35G+1,5V1 | Taux de travail  |              |
| 2 POTEAUX_2       | 0K | HEA 220 | ACIER E28 | 32.72 | 76.20 | 0.57  | 9 1,35G+1,5V2 |                  |              |
| 3 POTEAUX_3       | 0K | HEA 220 | ACIER E28 | 32.72 | 76.20 | 0.40  | 8 1,35G+1,5V1 | Analyse          | Cartographie |
| 8 POTEAUX_8       | 0K | HEA 220 | ACIER E28 | 32.72 | 76.20 | 0.85  | 9 1,35G+1,5V2 | Pointe de calcul |              |
| 9 POTEAUX_9       | 0K | HEA 220 | ACIER E28 | 32.72 | 76.20 | 0.96  | 8 1,35G+1,5V1 | division: n      | = 7          |
| 10 POTEAUX_10     | 0K | HEA 220 | ACIER E28 | 32.72 | 76.20 | 0.87  | 9 1,35G+1,5V2 | extrêmes: au     | Joun         |
| 47 POTEAUX_47     | OK | HEA 220 | ACIER E28 | 32.72 | 76.20 | 0.88  | 9 1,35G+1,5V2 | additionnels: au | ucun         |
| 48 POTEAUX_48     | OK | HEA 220 | ACIER E28 | 32.72 | 76.20 | 0.82  | 9 1,35G+1,5V2 | 1                |              |
| 49 POTEAUX_49     | 0K | HEA 220 | ACIER E28 | 32.72 | 76.20 | 0.85  | 9 1,35G+1,5V2 |                  |              |

**Tableau 8.6 :** Récapitulatif des efforts et vérification des profilés obtenus pour le deuxième cas simulé par utilisation du logiciel Robot

On peut remarquer qu'il n'y a pas d'incidence des défauts géométriques dans les portiques sur le choix du profilé des poteaux.

# 8.6.3 Troisième cas : (portique 1 – portique 2)



Figure 8.6 : Représentation du troisième cas simulé

| N Max (KN) | M Max (KN.m) | V Max (KN) | Profilé      |
|------------|--------------|------------|--------------|
| 16,32      | 58,87        | 24,16      | HEA 220 (P1) |
| 19,76      | 80,54        | 39,38      | HEA 240 (P2) |
| 17,02      | 58,22        | 16,91      | HEA 220 (P3) |
| 60,04      | 61,89        | 16,89      | HEA 220 (P4) |
| 266,55     | 29,52        | 7,78       | HEA 220 (P5) |
| 49,1       | 35,14        | 9,49       | HEA 220 (P6) |
| 37,06      | 2,95         | 2,12       | HEA 220 (P7) |
| 147,41     | 24,25        | 14,11      | HEA 220 (P8) |
| 18,67      | 10,61        | 9          | HEA 220 (P9) |

| Résultats Message                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                         |                                                                                                               |                                                                                                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                               | Note de calcul                                                                                                                    | Fermer                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Pièce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Profil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Matériau                                                                                                                                                | Lay                                                                                                           | Laz                                                                                                | Ratio                                                                                                                         | Cas                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                   | Aide                                                                                |
| 1 POTEAUX_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HEA 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACIER E28                                                                                                                                               | 32.72                                                                                                         | 76.20                                                                                              | 0.16                                                                                                                          | 9 1,35G+1,5V2                                                                                                                                                                                                                                                                                                                                                                                 | Tour de trouvil                                                                                                                   | 1.000                                                                               |
| 3 POTEAUX_3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HEA 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACIER E28                                                                                                                                               | 32.72                                                                                                         | 76.20                                                                                              | 0.33                                                                                                                          | 9 1,35G+1,5V2                                                                                                                                                                                                                                                                                                                                                                                 | Taux de travail                                                                                                                   |                                                                                     |
| 5 POTEAUX_5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HEA 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACIER E28                                                                                                                                               | 32.72                                                                                                         | 76.20                                                                                              | 0.07                                                                                                                          | 9 1,35G+1,5V2                                                                                                                                                                                                                                                                                                                                                                                 | Analyse                                                                                                                           | Cartographie                                                                        |
| 15 POTEAUX_15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HEA 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACIER E28                                                                                                                                               | 32.72                                                                                                         | 76.20                                                                                              | 0.80                                                                                                                          | 9 1,35G+1,5V2                                                                                                                                                                                                                                                                                                                                                                                 | Points de calcu                                                                                                                   | d                                                                                   |
| 16 POTEAUX_16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HEA 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACIER E28                                                                                                                                               | 32.72                                                                                                         | 76.20                                                                                              | 1.11                                                                                                                          | 9 1,35G+1,5V2                                                                                                                                                                                                                                                                                                                                                                                 | division: n                                                                                                                       | = 7                                                                                 |
| 17 POTEAUX_17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HEA 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACIER E28                                                                                                                                               | 32.72                                                                                                         | 76.20                                                                                              | 0.82                                                                                                                          | 9 1,35G+1,5V2                                                                                                                                                                                                                                                                                                                                                                                 | extrêmes: a                                                                                                                       | ucun                                                                                |
| 22 POTEAUX_22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HEA 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACIER E28                                                                                                                                               | 32.72                                                                                                         | 76.20                                                                                              | 0.26                                                                                                                          | 8 1,35G+1,5V1                                                                                                                                                                                                                                                                                                                                                                                 | additionnels: a                                                                                                                   | ucun                                                                                |
| 23 POTEAUX_23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HEA 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACIER E28                                                                                                                                               | 32.72                                                                                                         | 76.20                                                                                              | 0.49                                                                                                                          | 9 1,35G+1,5V2                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |                                                                                     |
| 24 琥 -n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HEA 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACIER E28                                                                                                                                               | 32.72                                                                                                         | 76.20                                                                                              | 0.44                                                                                                                          | 8 1,35G+1,5V1                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   |                                                                                     |
| NF EN 1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-1:2005/NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A:2007/AC:200                                                                                                                                           | 09 - Véri                                                                                                     | fication                                                                                           | des pièc                                                                                                                      | es ( ELU ) 1 3 5 15                                                                                                                                                                                                                                                                                                                                                                           | 5A17 22A24                                                                                                                        |                                                                                     |
| NF EN 1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3-1:2005/NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A:2007/AC:200                                                                                                                                           | 09 - Véri                                                                                                     | fication                                                                                           | des pièc                                                                                                                      | es ( ELU ) 1 3 5 15                                                                                                                                                                                                                                                                                                                                                                           | 5A17 22A24                                                                                                                        | _ □                                                                                 |
| NF EN 1993<br>Résultats Message<br>Pièce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3-1:2005/NA<br>s<br>Profil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1:2007/AC:200                                                                                                                                           | 09 - Véri<br>Lay                                                                                              | fication                                                                                           | des pièc<br>Ratio                                                                                                             | es ( ELU ) 1 3 5 15<br>Cas                                                                                                                                                                                                                                                                                                                                                                    | 5A17 22A24                                                                                                                        | Fermer                                                                              |
| NF EN 1993<br>Résultats Message<br>Pièce<br>1 POTEAUX_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3-1:2005/NA<br>s<br>Profil<br>HEA 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X:2007/AC:200<br>Matériau<br>ACIER E28                                                                                                                  | 09 - Véri<br>Lay<br>32.72                                                                                     | fication<br>Laz<br>76.20                                                                           | des pièc<br>Ratio                                                                                                             | es ( ELU ) 1 3 5 15                                                                                                                                                                                                                                                                                                                                                                           | 5A17 22A24<br>Note de calcul                                                                                                      | - D<br>Fermer<br>Aide                                                               |
| NF EN 1993<br>Nésultats Message<br>Pièce<br>1 POTEAUX_1 0<br>3 POTEAUX_3 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8-1:2005/NA<br>s<br>Profil<br>6 HEA 220<br>6 HEA 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Matériau<br>ACIER E28<br>ACIER E28                                                                                                                      | 09 - Véri<br>Lay<br>32.72<br>32.72                                                                            | fication<br>Laz<br>76.20<br>76.20                                                                  | des pièc<br>Ratio<br>0.16<br>0.33                                                                                             | es ( ELU ) 1 3 5 15<br><u>Cas</u><br>9 1,35G+1,5V2<br>9 1,35G+1,5V2                                                                                                                                                                                                                                                                                                                           | 5A17 22A24<br>Note de calcul<br>Taux de travail                                                                                   | - D Fermer                                                                          |
| NF EN 1993<br>Sésuitats Message<br>Pièce<br>1 POTEAUX_1 6<br>3 POTEAUX_3 6<br>5 POTEAUX_5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-1:2005/NA<br>s<br>Profil<br>6 HEA 220<br>6 HEA 220<br>6 HEA 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Matériau<br>ACIER E28<br>ACIER E28<br>ACIER E28<br>ACIER E28                                                                                            | 09 - Vérit<br>Lay<br>32.72<br>32.72<br>32.72                                                                  | fication<br>Laz<br>76.20<br>76.20<br>76.20                                                         | des pièc<br>Ratio<br>0.16<br>0.33<br>0.07                                                                                     | es ( ELU ) 1 3 5 15<br>Cas<br>9 1,35G+1,5V2<br>9 1,35G+1,5V2<br>9 1,35G+1,5V2<br>9 1,35G+1,5V2                                                                                                                                                                                                                                                                                                | 5A17 22A24<br>Note de calcul<br>Taux de travail<br>Analyse                                                                        | - D<br>Fermer<br>Aide<br>Cartographie                                               |
| NF EN 1993<br>Résultats Message<br>Pièce<br>1 POTEAUX_1 [<br>3 POTEAUX_3 [<br>5 POTEAUX_5 [<br>15 POTEAUX_15 [<br>15 POTEAUX_15 [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-1:2005/NA<br>s<br>Profil<br>MEA 220<br>MEA 220<br>MEA 220<br>MEA 220<br>MEA 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Matériau<br>ACIER E28<br>ACIER E28<br>ACIER E28<br>ACIER E28<br>ACIER E28<br>ACIER E28                                                                  | 09 - Vérin<br>Lay<br>32.72<br>32.72<br>32.72<br>32.72<br>32.72                                                | fication<br>Laz<br>76.20<br>76.20<br>76.20<br>76.20<br>76.20                                       | Ratio           0.16           0.33           0.07           0.80                                                             | es ( ELU ) 1 3 5 15<br>Cas<br>9 1,35G+1,5V2<br>9 1,35G+1,5V2<br>9 1,35G+1,5V2<br>9 1,35G+1,5V2<br>9 1,35G+1,5V2                                                                                                                                                                                                                                                                               | 5A17 22A24<br>Note de calcul<br>Taux de travail<br>Analyse                                                                        | − □ Fermer<br>Aide                                                                  |
| NF EN 1993<br>Nésultats Message<br>Pièce<br>1 POTEAUX_1 (<br>3 POTEAUX_3 (<br>5 POTEAUX_5 (<br>15 POTEAUX_15 (<br>16 POTEAUX_16 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-1:2005/NA<br>s<br>Profil<br>E HEA 220<br>E HEA 220<br>E HEA 220<br>E HEA 220<br>E HEA 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Matériau<br>ACIER E28<br>ACIER E28<br>ACIER E28<br>ACIER E28<br>ACIER E28<br>ACIER E28<br>ACIER E28                                                     | D9 - Vérit<br>Lay<br>32.72<br>32.72<br>32.72<br>32.72<br>32.72<br>29.85                                       | fication<br>Laz<br>76.20<br>76.20<br>76.20<br>76.20<br>76.20<br>69.97                              | Ratio           0.16           0.33           0.07           0.80           0.85                                              | es ( ELU ) 1 3 5 15<br>Cas<br>9 1,35G+1,5V2<br>9 1,35G+1,5V2<br>9 1,35G+1,5V2<br>9 1,35G+1,5V2<br>9 1,35G+1,5V2<br>9 1,35G+1,5V2                                                                                                                                                                                                                                                              | 5A17 22A24<br>Note de calcul<br>Taux de travail<br>Analyse<br>Points de calcul<br>division: n                                     | − □ Fermer<br>Aide Cartographie                                                     |
| NF EN 1993<br>Résultats Message<br>Pièce<br>1 POTEAUX_1 (<br>3 POTEAUX_3 (<br>5 POTEAUX_5 (<br>15 POTEAUX_15 (<br>16 POTEAUX_16 (<br>17 POTEAUX_17 (<br>17 POTEAUX_17 (<br>16 POTEAUX_17 (<br>17 POTEAUX_17 (<br>17 POTEAUX_17 (<br>18 POTEAUX_17 (<br>19 POTEA           | 3-1:2005/NA<br>s<br>Profil<br>6 HEA 220<br>6 HEA 220<br>6 HEA 220<br>6 HEA 220<br>6 HEA 220<br>6 HEA 220<br>6 HEA 220<br>7 HEA 220 | Matériau<br>ACIER E28<br>ACIER E28<br>ACIER E28<br>ACIER E28<br>ACIER E28<br>ACIER E28<br>ACIER E28<br>ACIER E28                                        | D9 - Vérit<br>32.72<br>32.72<br>32.72<br>32.72<br>32.72<br>32.72<br>29.85<br>32.72                            | fication<br>76.20<br>76.20<br>76.20<br>76.20<br>76.20<br>69.97<br>76.20                            | Ratio<br>0.16<br>0.33<br>0.07<br>0.80<br>0.85<br>0.82                                                                         | Cas         9 1,35G+1,5V2                                                                                                                   | 5A17 22A24<br>Note de calcul<br>Taux de travail<br>Analyse<br>Points de calcul<br>division: n<br>extrêmes: ai                     | <ul> <li>Fermer</li> <li>Aide</li> <li>Cartographie</li> <li>7<br/>Journ</li> </ul> |
| NF EN 1993<br>Résultats Message<br>Pièce<br>1 POTEAUX_1 (<br>3 POTEAUX_3 (<br>5 POTEAUX_5 (<br>15 POTEAUX_15 (<br>16 POTEAUX_16 (<br>17 POTEAUX_17 (<br>22 POTEAUX_22 (<br>16 POTEAUX_22 (<br>17 POTEAUX_22 (<br>17 POTEAUX_22 (<br>18 POTEAUX_22 (<br>19 POTEA           | B-1:2005/NA<br><b>Profil</b><br>HEA 220<br>HEA 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Matériau<br>ACIER E28<br>ACIER E28<br>ACIER E28<br>ACIER E28<br>ACIER E28<br>ACIER E28<br>ACIER E28<br>ACIER E28<br>ACIER E28<br>ACIER E28              | D9 - Vérit<br>32.72<br>32.72<br>32.72<br>32.72<br>32.72<br>32.72<br>29.85<br>32.72<br>32.72<br>32.72          | fication<br>76.20<br>76.20<br>76.20<br>76.20<br>76.20<br>69.97<br>76.20<br>76.20<br>76.20          | Ratio           0.16           0.33           0.07           0.80           0.85           0.82                               | es (ELU) 1 3 5 15<br>9 1,35G+1,5V2<br>9 1,35G+1,5V2<br>9 1,35G+1,5V2<br>9 1,35G+1,5V2<br>9 1,35G+1,5V2<br>9 1,35G+1,5V2<br>9 1,35G+1,5V2<br>8 1,35G+1,5V1                                                                                                                                                                                                                                     | 5A17 22A24<br>Note de calcul<br>Taux de travail<br>Analyse<br>Points de calcul<br>division: n<br>extrêmes: au<br>additionnels: au | Fermer<br>Aide<br>Cartographie                                                      |
| NF EN 1993<br>Vésultats Message<br>Pièce<br>1 POTEAUX_1 (<br>3 POTEAUX_3 (<br>5 POTEAUX_5 (<br>15 POTEAUX_15 (<br>16 POTEAUX_16 (<br>17 POTEAUX_17 (<br>22 POTEAUX_22 (<br>23 POTEAUX_23 (<br>23 POTEAUX_23 (<br>24 POTEAUX_23 (<br>25 POTEAUX_23 (<br>26 POTEAUX_23 (<br>27 POTEAUX_23 (<br>28 POTEAUX_23 (<br>29 POTEAUX_23 (<br>29 POTEAUX_23 (<br>20 POTEAUX_3 | B-1:2005/NA<br><b>Profil</b><br>HEA 220<br>HEA 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Matériau<br>ACIER E28<br>ACIER E28 | D9 - Vérit<br>32.72<br>32.72<br>32.72<br>32.72<br>32.72<br>32.72<br>29.85<br>32.72<br>32.72<br>32.72<br>32.72 | fication<br>76.20<br>76.20<br>76.20<br>76.20<br>76.20<br>69.97<br>76.20<br>76.20<br>76.20<br>76.20 | Ratio           0.16           0.33           0.07           0.80           0.85           0.82           0.26           0.49 | Cas         91,35G+1,5V2         91,35G+1,5V1         91,35G+1,5V2 | 5A17 22A24<br>Note de calcul<br>Taux de travail<br>Analyse<br>Points de calcul<br>division: n<br>extrêmes: au<br>additionnels: au | Fermer<br>Aide<br>Cartographie                                                      |



Après analyse des résultats, on observe qu'uniquement le poteau n°02 qui doit reprendre les efforts et doit être un profilé de type HEA 240 au lieu d'un HEA 220 pour une structure sans défauts.

| Structure                                                                                     | Type de profilé |
|-----------------------------------------------------------------------------------------------|-----------------|
| Structure saine                                                                               | HEA 220         |
| Structure existante avec ces<br>défauts de montage                                            | HEA 220         |
| Premier cas simulé : poteaux du<br>portique central inclinés de 48mm                          | HEA 220         |
| Deuxième cas simulé : Poteaux<br>inclinés de 48mm                                             | HEA 220         |
| Troisième cas simulé : Poteaux du premier portique et du deuxième portique sont en opposition | HEA 240         |

# 8.7 COMPARAISON ET ANALYSE DES DIFFERENTS CAS

Ce qui sort de ce tableau est que quelque soit la structure (existante ou avec des défauts simulés par le règlement Algérien de la construction métallique), il n'y a pas une incidence considérable sur les efforts et par conséquent sur les dimensions des poteaux appart le dernier cas ou les défauts en opposition de deux portiques où cette fois-ci le poteau passe de HEA 220 à HEA 240. Ceci s'explique du fait que deux défauts opposés s'additionnent comme si c'était un portique avec un défaut amplifié deux fois.

# CONCLUSION

Cette étude nous a appris à utiliser à intégrer les connaissances acquisses lors de notre formation. Elle nous a permis de pré-dimensionner, calculer et vérifier des éléments d'une construction métallique tout en tenant compte des effets d'instabilité. Aussi nous avons mis à profit les connaissances apportées dans le cadre de la formation de Master Génie Civil et de mieux les intégrer dans un projet complet tout en mettant en application les différents règlements tels que le C.C.M. 97, le R.N.V 2013 et le R.P.A.99.

La modélisation de notre structure était la phase la plus difficile dans ce projet du fait qu'il fallait la faire à chaque fois que l'on introduit un défaut géométrique.

D'une manière générale, les défauts géométriques des éléments structuraux d'un ouvrage et plus particulièrement ceux affectant les poteaux créent des problèmes en ce qui concerne le comportement mécanique de cette structure et par conséquent sa réponse à des sollicitations. Ces défauts qu'ils soient de fabrication ou de montage peuvent avoir des conséquences fâcheuses sur la résistance ou l'instabilité d'une structure métallique, chose qui a été étudiée dans ce travail.

En ce qui concerne les poteaux d'une structure métallique sollicités en compression et qui risquent de flamber sont susceptibles aux défauts géométriques. En effet, toute excentricité du point d'application de la force de compression induit des effets secondaires d'instabilité qui réduisent la capacité portante de cet élément par rapport à celui d'un élément parfait.

Après avoir étudié notre structure métallique, nous avons recalculé cette même structure avec ces défauts de réalisation qui ont été relevé sur chantier. Après avoir réalisé un relevé topographique du squelette de la structure, on a déterminé les efforts dans les poteaux à nouveau.

Dans un dernier temps, on a simulé cette fois ci des défauts de conception ou de montage et voir leur incidence sur sa réponse (résistance et instabilité) en veillant à ce que ces défauts restent dans les limites du règlement Algérien.

Nous pouvons donc conclure que les défauts simulés (respectivement relevés après construction) à notre structure tout en restant dans les limites des normes augmentent les efforts dans les poteaux chose qui est évidente. Par contre cette augmentation n'a pas d'incidence sur le changement des profilés des poteaux.

Malgré ce surplus d'efforts, les poteaux qui ont été dimensionnés pour une structure sans défauts résistent bien à ces augmentations et restent stables.

En perspective, il serait aussi intéressant de voir l'incidence de défauts qui sont au delà de la norme. Aussi, voir l'influence des alignements des poteaux, leur rotation sur la résistance d'une structure. Et en fin, d'étudier l'incidence d'une instabilité d'un ou plusieurs éléments sur le comportement globale d'une structure métallique.

# Annexe A

# Chapitre 02 : Charges et surcharges

# A.1 Effet de la neige :



Figure 9 : Coefficients de forme – Toiture à versants multiples

| (α)angle du versant par rapport à<br>L'horizontale (en°) | $0^{\circ} \le \alpha \le 30^{\circ}$      | $30^\circ \le \alpha \le 60^\circ$      | $\alpha \le 60^{\circ}$ |
|----------------------------------------------------------|--------------------------------------------|-----------------------------------------|-------------------------|
| Coefficient $\mu_1$                                      | 0.8                                        | $0.8.\left(\frac{60-\alpha}{30}\right)$ | 0.0                     |
| Coefficient $\mu_2$                                      | $0.8 + 0.8 \left(\frac{\alpha}{30}\right)$ | 1.6                                     | -                       |

Tableau 3 : Coefficient de forme – Toiture à versants multiples

# A.2 Effet du vent :

| Zone | <b>q</b> <sub>rèf</sub> |
|------|-------------------------|
| I    | 375                     |
| Ш    | 435                     |
| Ш    | 500                     |
| IV   | 575                     |

Tableau 2.2 : la pression dynamique de référence

| Catégories de terrain                                                                                                                                                                                               | Kt    | Z <sub>0</sub><br>(m) | Zmin<br>(m) | 3    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|-------------|------|
| <b>0</b><br>Mer ou zone côtière exposée aux vents de mer                                                                                                                                                            | 0,156 | 0,03                  | 1           | 0,38 |
| <b>I</b><br>Lacs ou zone plate et horizontales à végétation<br>négligeable et libre de tous obstacles.                                                                                                              | 0,170 | 0,01                  | 1           | 0,44 |
| II<br>Zone à végétation basse telle que l'herbe, avec ou non<br>quelques obstacles isolés (arbres, bâtiments) séparés<br>les uns des autres d'au moins 20 fois leur hauteur                                         | 0,190 | 0,05                  | 2           | 0,52 |
| III<br>Zone à couverture végétale régulière ou des<br>bâtiments, ou avec des obstacles isolés séparés d'au<br>plus 20 fois leur hauteur (par exemple des villages, des<br>zones suburbaines des forets permanentes) | 0,215 | 0,3                   | 5           | 0,61 |
| IV<br>Zones dont au moins 15% de la surface est occupée<br>par des bâtiments de hauteur moyenne supérieure à<br>15 m                                                                                                | 0,234 | 1                     | 10          | 0,67 |

Tableau 2.4 : Définition des catégories de terrain

| Site                                                          | $C_t(Z)$ |
|---------------------------------------------------------------|----------|
| Site plat                                                     | 1        |
| Site aux alentours de vallées et oueds sans effet d'entonnoir | 1        |
| Site aux alentours de vallées et oueds avec effet d'entonnoir | 1,3      |
| Site aux alentours des plateaux                               | 1,15     |
| Site aux alentours des collines                               | 1,15     |
| Site montagneux                                               | 1,5      |

Tableau 2.5 : Valeurs de  $C_t(Z)$ 

# A.3 Force de frottement :

| Etat de surface                                                                     | Coefficient de frottement |
|-------------------------------------------------------------------------------------|---------------------------|
| Lisse (acier, béton lisse, ondulations<br>parallèles au vent, paroi enduite, etc.)  | 0,01                      |
| Rugueux (béton rugueux, paroi non enduite, etc.)                                    | 0,02                      |
| Très rugueux (ondulations perpendiculaires<br>au vent, nervures, plissements, etc.) | 0,04                      |

Tableau 2.8 : Valeurs des coefficients de frottement

| Type de parol                                                                                        | Schéma                                                                                                                                                                                                   | Ap ou Apj (en m2)                                                                                                                            |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Paroi verticale                                                                                      | $ \underbrace{ \begin{array}{c} \hline \\ Vent \end{array} }_{d} \underbrace{ \begin{bmatrix} j & f_{fr,j} \\ \hline \\ d \\ \hline \\ d \\ \hline \end{array} } \begin{bmatrix} h_{j} \end{bmatrix} h $ | $A_{p,j} = d \times h_j$ $A_{p} = d \times h$                                                                                                |
| Toiture plate ou<br>couverture                                                                       | d The                                                                                                                                                                                                    | $A_{\rho} = d \times b$                                                                                                                      |
| Toiture à deux<br>versants<br>Vent parallèle aux<br>génératrices                                     | Vent A C                                                                                                                                                                                                 | Atr = (longueur ABC<br>du développé) × d                                                                                                     |
| Toiture à versants<br>multiples - Toiture<br>en sheds<br>Vent parallèle aux<br>génératrices          | Vent ///                                                                                                                                                                                                 | A <sub>t</sub> = (somme des<br>longueurs des<br>développés de la<br>toiture) × d                                                             |
| Toiture à versants<br>multiples - Toiture<br>en sheds<br>Vent<br>perpendiculaire aux<br>génératrices | Vent A B                                                                                                                                                                                                 | Age = (longueur AB) ×<br>d<br>AB est la longueur<br>projetée en plan de la<br>toiture sans<br>considérer le premier<br>et le dernier versant |
| Toiture en forme de<br>voîte<br>Vent parallèle aux<br>génératrices                                   | Vent<br>A<br>A<br>B                                                                                                                                                                                      | $A_{fr} = (\text{longueur de} \ 1^{\circ} \text{arc AB}) \times d$                                                                           |

Tableau 2.9 : Aire de frottement  $A_{\rm fr}$ 

# Annexe B



**B1**:





# Annexe C

Chapitre 04 : Etude sismique

|        |      | Zone |      |
|--------|------|------|------|
| Groupe | I    | п    | ш    |
| 1A     | 0,12 | 0,25 | 0,35 |
| 1B     | 0,10 | 0,20 | 0,30 |
| 2      | 0,08 | 0,15 | 0,25 |
| 3      | 0,05 | 0,10 | 0,15 |

Tableau 4.1. : Coefficient d'accélération de zone A.

Tableau 4.2 : Valeurs de  $\xi$  (%)

|             | Portiques  |       | Voiles ou murs        |  |
|-------------|------------|-------|-----------------------|--|
| Remplissage | Béton armé | Acier | Béton armé/maçonnerie |  |
| Léger       | 6          | 4     | 10                    |  |
| Dense       | 7          | 5     | 1                     |  |

Tableau 4.7 : Valeurs de T1 et T2

| Site     | S1   | S2   | S3   | S4   |
|----------|------|------|------|------|
| T1 (sec) | 0,15 | 0,15 | 0,15 | 0,15 |
| T2 (sec) | 0,30 | 0,40 | 0,50 | 0,70 |

| Cat | Description du système de contreventement (voir chapitre III § 3.4) | Valeur de R |
|-----|---------------------------------------------------------------------|-------------|
| A   | <u>Béton armé</u>                                                   |             |
| 1a  | Portiques autostables sans remplissages en maçonnerie rigide        | 5           |
| 1b  | Portiques autostables avec remplissages en maçonnerie rigide        | 3,5         |
| 2   | Voiles porteurs                                                     | 3,5         |
| 3   | Noyau                                                               | 3,5         |
| 4a  | Mixte portiques/voiles avec interaction                             | 5           |
| 4b  | Portiques contreventés par des voiles                               | 4           |
| 5   | Console verticale à masses réparties                                | 2           |
| 6   | Pendule inverse                                                     | 2           |
| B   | Acier                                                               |             |
| 7   | Portiques autostables ductiles                                      | 6           |
| 8   | Portiques autostables ordinaires                                    | 4           |
| 9a  | Ossature contreventée par palées triangulées en X                   | 4           |
| 9b  | Ossature contreventée par palées triangulées en V                   | 3           |
| 10a | Mixte portiques/palées triangulées en X                             | 5           |
| 10b | Mixte portiques/palées triangulées en V                             | 4           |
| 11  | Portiques en console verticale                                      | 2           |
| Ē   | Maçonnerie                                                          |             |
| 12  | Ma connerie porteuse chaînée                                        | 2,5         |

# Tableau 4.3 : valeurs du coefficient de comportement R

#### Tableau 4.6 : valeurs du coefficient $C_T$

| Cas n° | Système de contreventement                                                                                                           | CT    |
|--------|--------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1      | Portiques autostables en béton armé sans remplissage en maçonnerie                                                                   | 0,075 |
| 2      | Portiques autostables en acier sans remplissage en maçonnerie                                                                        | 0,085 |
| 3      | Portiques autostables en béton armé ou en acier avec remplissage en maçonnerie                                                       | 0,050 |
| 4      | Contreventement assuré partiellement ou totalement par des voiles en<br>béton armé, des palées triangulées et des murs en maçonnerie | 0,050 |
## Annexe D

Chapitre 05 : Etude des assemblages

|                                      | M12 | M 16 | M 20 | M 24 | M 27 |  |  |
|--------------------------------------|-----|------|------|------|------|--|--|
| Diamètre tige<br>d (mm)              | 12  | 16   | 20   | 24   | 27   |  |  |
| Diamètre Trou<br>d (mm)              | 14  | 18   | 22   | 26   | 30   |  |  |
| Section Tige<br>A (mm <sup>2</sup> ) | 113 | 201  | 314  | 452  | 573  |  |  |
| Section<br>Résistance A,             | 84  | 157  | 245  | 353  | 459  |  |  |

## Caractéristique des boulons

| Boulons | Valeurs usuelles (mm) |    |    | Valeurs minimales (mm) |    |    |
|---------|-----------------------|----|----|------------------------|----|----|
|         | P1, P2                | e1 | e2 | P1, P2                 | eı | e2 |
| M 12    | 40                    | 25 | 20 | 35                     | 20 | 15 |
| M 16    | 50                    | 35 | 25 | 40                     | 25 | 20 |
| M 20    | 60                    | 40 | 30 | 45                     | 30 | 25 |
| M 24    | 70                    | 50 | 40 | 55                     | 35 | 30 |
| M 27    | 80                    | 55 | 45 | 65                     | 40 | 35 |

Tableau : entraxe des boulons et pinces

## **REFERENCES BIBLIOGRAPHIQUES**

[1] Charges permanente et charges d'exploitation (DTR B.C 2.2) ministère de l'habitat et de l'urbanisme (Algérie).

[2] Règlement neige et vent « version 2013 » (DTR C2-4.7) ministère de l'habitat, de l'urbanisme et de la ville.

[3] Règles de conception et de calcul des structures en acier « CCM 97 » ministère de l'habitat et de l'urbanisme (Algérie).

[4] Calcul des éléments résistants d'une construction métallique. DAHMANI Lahlou

**[5] Calcul des éléments de construction métallique selon l'eurocode 3.** DAHMANI Lahlou (2<sup>ème</sup> édition)

[6] Règles parasismiques algériennes « RPA 99 VERSION 2003 » ministère de l'habitat et de l'urbanisme.

[7] Règles techniques de conception et de calcul des ouvrages et des constructions en béton arme suivant la méthode des états limites « BAEL 91 » ministère de l'habitat et de l'urbanisme.

[8] A.Boutasta, Med.Bourdim (2012) : Etude et dimensionnement d'un bâtiment industriel à Arzew. Département de génie civil, faculté de technologie, université A.Belkaid, Tlemcen (Algérie).

[9] Med.Ouraghi, M.Dekhissi (2013) : Etude et dimensionnement d'un marché couvert à Maghnia.

[10] Med.H.benyelles, Ch.M.Benyelles (2013) : Etude et dimensionnement d'une piscine olympique à Sig. Département de génie civil, faculté de technologie, université A.Belkaid, Tlemcen (Algérie).

[11] M.Kerris, A.Benrabah (2015): Etude et dimensionnement d'un hall industriel de stockage en acier a deux nefs à Remchi.

[12] H.Mouna (2015) : Etude et dimensionnement d'une salle de sport à Amieur (Tlemcen).

**[13] I.Rahoui, Med.Ahmed Brahim (2015) :** Etude technico-économique de deux solutions d'un hangar métallique.

**[14] Med.Benzerjeb (2015) :** Influences des défauts d'alignements, de verticalités et d'orientation des poteaux sur la réponse d'une structure et leur impacte économique.