

PRÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE ABOUBAKR BELKAID

FACULTE DE TECHNOLOGIE

DEPARTEMENT DE GENIE CIVIL

OPTION : CONSTRUCTION METALLIQUE

MÉMOIRE DE 2^e ANNEE MASTÈRE :

2015-2016

THEME:

DEVRSEMENT DES POUTRES METALLIQUES A INERTIE VARIABLE

Étudiant (e) :

BAROUDI HABIBA

A soutenir le 27 sept.-16 devant le jury composé de :

Pr.MEGNOUNIF A : Président

Pr. BOUMECHERA N : Encadreur

Dr. MISSOUM A : Encadreur

Dr.DJAFOUR N :

Examinateur

Mlle.MEDJAHED A :

Examinateur

Dédicaces

Ce modeste travail est dédié à :

Mes très chers parents, source de mon inspiration,

Mes chers frères Mohammed, Boumadian, Abd elmadgid et sœurs Fatima, Nacéra, Yamina et ses fils Islam, Farouk, Amar et à toute ma famille BAROUDI.

Mes chères amies Soumia, Linda, Ghania, Djemaa, Mounia.

A toute la promotion 2015/2016

Asmaa

Remerciements

Au terme de mon travail de mémoire, je tiens à exprimer toute ma reconnaissance en premier mon Dieu ALLAH pour tout. Je remercie mes très chers parents qui m'ont guidé durant les moments les plus pénibles de ce long chemin, Ma mère qui m'a donné l'espoir d'exceller dans mes études, et mon père qui a sacrifié toute sa vie afin de me voir devenir ce que je suis, merci mes parents.

Je remercie sincèrement les directeurs de mémoire le professeur N.BOUMECHRA et le docteur A.MISSOUM pour ses aides et ses disponibilités.

Je remercie également le président et les membres de jury d'avoir accepté d'examiner mon travail.

Je remercie tous responsables de l'université et les enseignants de département génie civil.

Je remercie tous ma famille frères et sœurs et mes amis qui m'ont encouragé à réaliser ce travail.

À tous ceux qui ont contribué de prêt ou de loin a mené à terme ce travail.

Résumé

Les méthodes de calcul le moment résistant au déversement des poutres en acier à section variable ou constantes sont difficiles. A ce jour, plusieurs études et recherches sont en cours de réalisation par les laboratoires et les universités nationale et internationale pour trouver des méthodes de calcul à la résistance de ce phénomène d'instabilité. Dans ce mémoire, la méthode de calcul proposée est la méthode des différences finis, en utilisant le logiciel MatLab pour obtenir la valeur minimal de moment critique de déversement.

Abstract

The methods of calculation the moment resisting the lateral tortionel buckling of the steel beams with variable section or constants are difficult. To date, several studies and searches are in progress by laboratories and national and international universities to find methods of calculation in the resistance of this phenomenon of instability. In this report, the proposed method of calculation is the method of the differences finity, by using the MatLab software to obtain the value minimal of critical moment of pouring.

ملخص

إن طرق حساب عزم تشوه الدعامات المعدنية دات المساحات المتغيرة و الثابتة صعبة.في يومنا هدا تقام العديد من الدراسات و الأبحاث في مختبرات الجامعات الوطنية والدولية لايجاد طرق حساب مقاومة ظاهرة عدم توازن الدعامات المعدنية. في هذاالبحث, الطريقة المعتمدة في الحساب هو طريقة تقسيم العنصر الى اجزاء صغيرة باستخدام البرنامج الالكتروني Matlab بهدف الحصول على اصغر قيمة للعزم.

Notations

Caractéristiques géométriques

Coordonnées courantes d'un point
Coordonnées
Moment d'inertie d'une section par rapport à l'axe z-z
Moment d'inertie de torsion
Moment d'inertie de gauchissement
Module de flexion de la section transversal
Module élastique par rapport à l'axe y-y
Module plastique par rapport à l'axe y-y
Module élastique de la section efficace par rapport à l'axe y-y
Rayon de congé d'un profil en I ou en H
Epaisseur de la semelle de la poutre
Epaisseur de l'âme de la poutre
Largeur de la semelle de la poutre
hauteur de la section d'une poutre
Longueur
Caractéristiques mécaniques
Module d'élasticité
Module de glissement
Limite d'élasticité
Coefficients et grandeurs sans dimensions
Coefficient de réduction pour le déversement
Elancement réduit
Facteur d'imperfection pour le déversement

Déplacements et déformations

- u, v, w Déplacements de la poutre
- θ Angle de torsion

Sollicitations et contraintes

M _v	Moment fléchissant
WIy	Moment Hechissan

- $M_\eta,\,M_\zeta\quad\text{Moments fléchissant local}$
- M_{cr} Moment critique
- $M_{yEd} \qquad \mbox{Moment maximal à mi-portée}$
- M_{bRd} Moment de résistance au déversement

Tables des figures

Figure 1.1.Poutre parfaitement encastrée chargée verticalement à son extrémité libre 14
Figure 1.2.Cas fondamental du déversement 15
Figure 1.3.Cas fondamental du déversement
Figure 1.4.coupe d'une section en H
Figure 1.5.Point d'application de la charge 19
Figure 1.6. Poutre à hauteur d'âme variable
Figure 1.7. Définition de coefficient de charge pour la résistance caractéristique sur une poutre à hauteur d'âme variable
Figure 1.8. Définition de coefficient de charge critique pour le déversement élastique sur une poutre à hauteur d'âme variable
Figure 1.9. Poutre à hauteur d'âme et largeur de semelles variables
Figure 2.1.poutre à hauteur d'âme variable
Figure2.2. principe de la méthode des différences finis
Figure2.3.principe de la méthode des différences finis sur la poutre
Figure2.4.principe de la méthode des différences finis sur la poutre
Figure 3.1 : graphe de variation de moment critique une poutre à inertie constante
Figure 3.2 : L'influence de variation de la hauteur sur le moment critique
Figure 3.3 : poutre à hauteur d'âme variable.45
Figure 3.4 : L'influence de variation de la hauteur et les conditions aux limites sur le moment critique
Figure 3.5 : Charge concentrée appliquée sur une poutre à hauteur d'âme variable46
Figure 3.6 : L'influence de variation de la hauteur et les conditions aux limites sur le moment critique (cas d'une charge concentrée)
Figure 3.7 : Charge concentrée répartie sur une poutre à hauteur d'âme variable48
Figure 3.8 : L'influence de variation de la hauteur et les conditions aux limites sur le moment critique (cas d'une charge répartie)

Liste des tableaux

Tableau 1.1. Valeur de αLT pour le déversement
Tableau 3.1 : les dimensions de section de poutre PRS 41
Tableau 3.2 : La variation de moment critique dépendant le nombre des nœuds 42
Tableau 3.3 : les dimensions de section de poutre PRS 43
Tableau 3.4 : les valeurs de moment critique dépendant h_1/h_2
Tableau 3.5 : les valeurs de moment critique dépendant h_1/h_2 et les conditions aux limites 45
Tableau 3.6 : les valeurs de moment critique dépendant h_1/h_2 et les conditions aux limites (charge concentrée)
Tableau 3.7 : les valeurs de moment critique dépendant h1/h2 et les conditions aux limites(charge répartie)

Table des matières

Dédicaces	II
Remerciements	Ш
Résumé	IV
Notations	V
Table des figures	VI
Liste des tableaux	VII
Table des matières	VIII
Introduction générale	IX
Chapitre1 : Généralités sur le déversement des poutres à inerties constantes	12
1.1. Introduction	13
1.2. Définition	14
1.3. Déversement des poutres à inertie constantes :	14
1.3.1 Principe de déversement :(Modèle de l'étude est une poutre simple déversée en flexion pure)	14
1.3.2. Moment critique de déversement élastique	18
1.3.3. Les formules de l'Eurocode	19
1.4. Déversement des poutres à inertie variables	20
1.4.1. Les poutres en I à section variable	20
1.4.2. Méthode de conceptions proposées	21
1.4.2.1. Coefficient de charge pour la résistance caractéristique :	22
1.4.2.2. Coefficient de charge critique pour le déversement élastique	22
1.4.2.3. La résistance au déversement	24
1.4.2.4. Moment d'inertie d'une poutre à hauteur d'âme ou la largeur de semelles sont variables	25
1.5. Conclusion	26

variables	nerties 27
2.1. Introduction	
2.2. Méthode de calcul de moment critique	
2.2.1. Pourquoi cette méthode ?	29
2.2.2. Description du problème	
2.2.1.1. Définitions	
2.2.1.2. Principe de méthode	
2.2.3. Résolution l'équation de 4 ^e ordre par la méthode des déffirences finis	30
2.3. Le programme	
2.3.1. Description du modèle	
2.3.2. La programmation	
2.4. Commentaires	39
Chapitre3 : Etude paramétrique	40
3.1. Introduction :	40
3.2. La validation de programmation pour calculer le moment critique de déversement .	41
3.2. La validation de programmation pour calculer le moment critique de déversement .3.2.1. Géométries de section de la poutre	41 41
 3.2. La validation de programmation pour calculer le moment critique de déversement . 3.2.1. Géométries de section de la poutre 3.2.2. Calcul de moment critique de déversement 	41 41 41
 3.2. La validation de programmation pour calculer le moment critique de déversement . 3.2.1. Géométries de section de la poutre	41 41 41 42
 3.2. La validation de programmation pour calculer le moment critique de déversement . 3.2.1. Géométries de section de la poutre 3.2.2. Calcul de moment critique de déversement 3.2.3. Calcul de moment critique de déversement 3.3. L'effet de paramètre sur les résultats de moment critique 	41 41 41 42 43
 3.2. La validation de programmation pour calculer le moment critique de déversement . 3.2.1. Géométries de section de la poutre	41 41 42 42 43 43
 3.2. La validation de programmation pour calculer le moment critique de déversement . 3.2.1. Géométries de section de la poutre	41 41 42 42 43 43 44
 3.2. La validation de programmation pour calculer le moment critique de déversement . 3.2.1. Géométries de section de la poutre	41 41 42 43 43 43 44 50
 3.2. La validation de programmation pour calculer le moment critique de déversement . 3.2.1. Géométries de section de la poutre	41 41 42 42 43 43 44 50 52
 3.2. La validation de programmation pour calculer le moment critique de déversement . 3.2.1. Géométries de section de la poutre	41 41 42 43 43 43 43 44 50 52 53

Introduction générale

INTRODUCTION GENERALE

Le développement de la construction en acier, l'amélioration des matériaux utilisés et la complexité des structures que les ingénieurs d'aujourd'hui sont amenés à calculer et à construire ont conduit à utiliser des théories de mieux en mieux élaborées. Parmi les problèmes les plus importants qu'il est nécessaire de résoudre, ce sont ceux d'instabilité qui sont très certainement les plus complexes, et plus particulièrement les phénomènes de déversement latéral des poutres.

Le cas des poutres à âmes pleine et à section constante ne posent plus de difficulté majeure ce qui n'est pas le cas des poutres à inertie variable, qui, pour des raisons économiques et esthétiques, sont cependant de plus en plus utilisées aujourd'hui.

Dans cette étude, nous tentons de faire le point des connaissances actuelles dans ce domaine. Dans un deuxième temps, on essayera de répondre à la question : Quelle est la méthode de conception utilisée pour une poutre d'une section variable et comment calculer la valeur de moment critique de déversement ?

Nous allons établir un model numérique sur MatLab basé sur la méthode des différences finis afin de déterminer le moment critique de déversement d'une poutre à section variable

Notre travail est divisé en trois chapitres, une introduction générale et une conclusion.

Le premier chapitre présente des généralités sur le déversement des poutres à inertie constantes et variables. Le calcul du moment critique et les facteurs qui l'influencent seront abordés sur deux cas « cas des poutres à inertie constant et cas des poutres à section variable ».

Le deuxième chapitre qui est divisé en deux parties. Dans la première, on traitera de la méthode des différences finis puis en dans la deuxième, on développera un algorithme sur le déversement des poutres à section variable sous l'outil MatLab pour déterminer la valeur minimal de moment critique.

Dans le dernier chapitre cœur de ce mémoire, nous présentons une étude paramétrique sur la valeur minimale de moment critique sur trois cas « Moment aux extrémités inégaux, charge répartie et charge concentrée ».

Et en fin, une conclusion générale viendra achever ce travail.

Chapitre1 : Généralités sur le déversement des poutres

1.1. Introduction

Ce chapitre traite d'un phénomène complexe et instable qui est appelé **déversement** (des poutres en acier à inertie constante et variable.

Les formules de calcul de moment de la résistance au déversement sont suffisantes pour les poutres à section transversale constante, elles ne s'appliquent pas quand on traite les poutres à section variables comme le moment fléchissant n'est plus constant tout le long de la poutre.

Ce chapitre développe le calcul de moment critique et le moment de résistance au déversement pour les poutres d'une section variable.

Les objectifs principaux de ce chapitre sont :

- Comment on détermine le M_{cr} d'une poutre à inertie constante à partir le cas ou le schéma fondamentale de déversement ?
- Comment on détermine le M_{cr} de déversement des poutres à section variable ?

1.2. Définition

Les poutres constituées de profilés bi-symétrique (en I et H) non maintenus latéralement et soumises à une flexion par rapport à l'axe fort (y-y) de leur section transversale peuvent se déformer hors plan, cette situation est un phénomène d'instabilité connu sous le nom de « **déversement** ». le schéma suivant montre ce phénomène [1] :

Figure 1.1 : Poutre parfaitement encastrée chargée verticalement à son extrémité libre

Le déversement est un flambement de l'aile comprimée et présente des analogies certaines avec les phénomènes de flambement. [2]

1.3. Déversement des poutres à inerties constantes

1.3.1. Principe de déversement « Modèle de l'étude est une poutre simple en flexion pure » [3]

La poutre est caractérisée de la façon suivante :

- Section en I non déformable à double symétrie,
- Poutre parfaite (sans imperfections),
- Type d'appuis (appuis à fourches),
- \circ Inertie faible I_z de la section d'inertie fort I_y,
- Pour des petites déformations (sin $\theta \approx \theta$ et cos $\theta \approx 1$)

Figure 1.2 : Cas fondamental du déversement

Figure 1.3 : Cas fondamental du déversement

A partir de schéma précédent, on détermine :

• Les moments fléchissant M_{η} et M_{ζ} , avec $\sin\theta \approx \theta$ et $\cos\theta \approx 1$:

$$M_{\eta}=M_y*\cos\theta\approx M_y$$

 $M_{\zeta} = M_y^* \sin \theta \approx M_y^* \theta$

Et My: moment fléchissant vertical /x

o Les équations :

La poutre en flexion pure, donc :

La formule générale de calcul est : $y'' = \pm \frac{M(x)}{EI}$ (théorème de la ligne élastique « RDM ») [4]

$$y''^*EI=\pm M(x)$$

Alors :

Equation différentielle du déplacement w(x):

$$\mathrm{EI}_{\mathrm{y}}\frac{d^{2}w}{dx^{2}} + \mathrm{M}\mathrm{y} = 0$$

Equation différentielle du déplacement v(x) :

$$\mathrm{EI}_{z}\frac{d^{2}v}{dx^{2}} + \mathrm{M}y * \theta = 0$$

Equation différentielle de la rotation θ (*x*) :

Rotation de torsion autour de l'axe ζ ,on prend que :

$$T = My * \sin \frac{dv}{dx} \approx My * \frac{dv}{dx}$$

Le moment de torsion interne consiste une déformation (gauchissement) et une torsion uniforme

$$EI\omega \frac{d^{3}\theta}{dx^{3}} - GIt \frac{d\theta}{dx} + My \frac{dv}{dx} = 0$$

$$EI_{z} \frac{d^{2}v}{dx^{2}} + My * \theta = 0 \rightarrow \frac{d^{2}v}{dx^{2}} = -\frac{My*\theta}{EIz}$$

$$\frac{\partial}{\partial x} (EI\omega \frac{d^{3}\theta}{dx^{3}} - GIt \frac{d\theta}{dx} + My \frac{dv}{dx}) = EI\omega \frac{d^{4}\theta}{dx^{4}} - GIt \frac{d^{2}\theta}{dx^{2}} + My \frac{d^{2}v}{dx^{2}}$$

$$\rightarrow EI\omega \frac{d^{4}\theta}{dx^{4}} - GIt \frac{d^{2}\theta}{dx^{2}} + My \left(-\frac{My*\theta}{EIz}\right)$$

Les conditions aux limites :

$$\theta(0) = \theta(L) = \theta''(0) = \theta''(L) = 0$$

Donc l'équation générale peut être écrite comme :

$$\rightarrow \frac{d^4\theta}{dx^4} - \frac{GIt}{EI\omega}\frac{d^2\theta}{dx^2} - \frac{My^2 * \theta}{E^2Iz * I\omega} = 0$$

Par identification :

$$\lambda_{1} = \frac{GJ}{EI\omega}; \lambda_{2} = \frac{My^{2}}{E^{2}Iz*I\omega} [5]$$
$$\rightarrow \frac{d^{4}\theta}{dx^{4}} - \lambda_{1}\frac{d^{2}\theta}{dx^{2}} - \lambda_{2}\theta = 0$$

La solution générale :

$$\theta(x) = A_1 \cosh(\alpha x) + A_2 \sin h(\alpha x) + A_3 \sin(\beta x) + A_4(\beta x)$$

Les constants A₁, A₂, A₃, A₄ dépendent des conditions aux limites.

$$\alpha = \sqrt{\frac{\lambda_1 + \sqrt{\lambda_1^2 + 4\lambda_2}}{2}}; \beta = \sqrt{\frac{-\lambda_1 + \sqrt{\lambda_1^2 + 4\lambda_2}}{2}} [5]$$

On prend que: [M] est la matrice précédente

 $det[A] = (\alpha^2 + \beta^2) * \sin\alpha L * \sin\beta L = 0 [5]$

$$\sin\beta L = 0 \rightarrow \beta * L = n\pi \rightarrow \beta = \frac{n\pi}{L}$$

Donc :

$$\lambda_2 = \frac{\mathbf{n}^2 \pi^2}{\mathbf{L}^2} * \left[\frac{\mathbf{n}^2 \pi^2}{\mathbf{L}^2} + \lambda_1 \right]$$

On trouve :

$$M_y^2 = E^2 * I\omega * Iz * \frac{\pi^2}{L^2} * \left[\frac{\pi^2}{L^2} + \frac{GIt}{EI\omega}\right]$$
; avec n = 1

$$M_{y,cr} = \frac{\pi}{L} \sqrt{(E * Iz * G * It)} \sqrt{1 + \frac{\pi * E * I\omega}{L * G * It}}$$

1.3.2Moment critique de déversement élastique [4]

Cette formule d'une base empirique est plus généralisée pour étudier le déversement. Elle est basée sur des paramètres influençant le déversement :

- o La forme de section (la section peut être dissymétrique)
- Les conditions d'appuis.
- o Les contraintes résiduelles
- Le type de charges (répartie ou concentrée).
- o Les imperfections.
- Le niveau de point d'application.

$$Mcr = C_{1} \frac{\pi^{2} EIz}{(kL)^{2}} \left\{ \sqrt{\left[\left[\frac{k}{kw} \right]^{2} \frac{Iw}{Iz} + \frac{(kL)^{2} GIt}{\pi^{2} EIz} + (C_{2} zg - C_{3} zj)^{2} \right]} - (C_{2} zg - C_{3} zj) \right\} [6]$$

 $G = \frac{E}{2(1+\nu)}$

 I_z : le moment d'inertie autour de l'axe faible z-z

It: la constante de torsion uniforme :
$$I_t = \frac{1}{3}(2b*t_f^3 + (h-2t_f)*t_w^3)$$

pour des sections en I et H

I_w:le moment d'inertie de gauchissement : I_w = I_z $\frac{(h-tf^2)}{4}$ pour des sections en I et H

sections en I et H

 C_1, C_2, C_3 : sont des facteurs dépendent des conditions de charge et d'encastrement

k et kw sont des facteurs de longueur effective (0.5 pour une fixation parfaite, 0.7 pour encastrée/appuyée et 1 pour des appuis simples). On prend généralement 1 pour kw. Ces facteurs dépendent des conditions d'appuis. zg est l'excentrement entre le point d'application de la charge et le centre de cisaillement. z_g dépendent le niveau du point d'application de la charge.

Figure 1.4.coupe d'une section en H

Figure 1.5 : Point d'application de la charge

La plupart du temps, on peut simplifier cette expression la plupart du temps. Par exemple, pour un profilé doublement symétrique (I- ∞ H par exemple zj = 0)

1.3.3. Les formule de l'Eurocode

La résistance en flexion d'une section transversale s'obtient par :

$$\frac{M_{y,Ed}}{M_{b,Rd}} \le 1$$

Et $M_{b,Rd}$ est donné par :

$$M_{b,Rd} = \chi_{\rm LT} * \beta_{\rm w} * \rm Wy * \frac{fy}{\gamma_{\rm M_1}}$$

Et : W_y est en fonction de type de la classe :

 W_{y} = $W_{pl, y}$, pour une section transversale de classe 1 et 2.

 W_y = Wel, _y, pour une section transversale de classe 3.

 W_y = Weff,_y, pour une section transversale de classe 4.

La valeur de χ_{LT} pour l'élancement réduit λ_{LT} peut être déterminée par la formule suivante :

$$\chi_{LT} = \frac{1}{\phi_{LT} + \sqrt{\phi_{LT}^2 - \lambda_{LT}^2}} \le 1$$

Et : $\phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda_{LT}} - 0.2 \right) + \overline{\lambda_{LT}}^2 \right]$

 αLT : est le coefficient d'imperfection défini dans le tableau 1.1 [7]

Type d'élément	aLT
Profil ouvert formé à froid	0,34
Profil creux laminé formé à froid	0,34
Profil ouvert soudé	0,76
Autres cas pour lesquels aucun résultat d'essai n'est disponible	0,76

Tableau 1.1 : Valeur de α_{LT} pour le déversement

$$\overline{\lambda_{LT}} = \sqrt{\frac{Wy.fy}{Mcr}}$$

 M_{cr} : est calculé sur base des propriétés de la section transversale brute (pour la classe 4,on prend $I_t = 0$) et prenant en compte les conditions de chargement.

 \gg La valeur de χ_{LT} peut être directement tirée du graphe de la courbe de flambement.

Lorsque l'élancement réduit $\overline{\lambda_{LT}} \le 0.2$ ou pour $\frac{M_{y,Ed}}{Mcr} \le 0.04$, il n'est pas nécessaire de tenir en compte du déversement.

Le facteur f permet de prendre en compte l'influence de la distribution du moment sur le moment de résistance au déversement de la poutre :

$$f = 1 + 0.5(1 - kc)[1 - 2(\overline{\lambda_{LT}} - 0.8)^2] \le 1$$

Et χ_{LT} peut être modifié de la manière suivante :

$$\chi_{LT,mod} = \frac{\chi_{LT}}{f} \le 1$$

1.4. Déversement des poutres à inertie variables

1.4. 1.Les poutres en I à section variable

On trouve ce type des poutres dans la construction des bâtiments industriels et les ponts. Les poutres sont généralement des sections reconstituées soudées « PRS », ce qui facilite toute variation continue de la hauteur d'âme, de la largeur, de l'épaisseur des semelles et de l'âme. [2]

Figure 1.6 - Poutre à hauteur d'âme variable.

1.4.2. Méthode de conception proposée

La formule générale de l'élancement réduit pour les poutres à section transversale constante est :

$$\overline{\lambda}_{\rm LT} = \sqrt{\frac{Wy.fy}{Mcr}} = \sqrt{\frac{Wy.fy/\gamma M0}{Mcr}} = \sqrt{\frac{Mp,Rd}{Mcr}} [7] \text{ et } [8]$$

Avec : $\gamma_{M0}=1$

Cette formule aux dessus est suffisante pour les poutres prismatiques, elle peut être difficilement appliquée sur les poutres à inertie variable.

Pour résoudre ce problème : Braham, De Ville et Maquoi **[8]** ont proposé une formule plus générale pour l'élancement réduit :

$$\overline{\lambda}_{\text{LT}} = \sqrt{\frac{\mu_p}{\mu_{cr}}} [8]$$

 μ_p : 'Plastic multiplicator', multiplicateur plastique.

 μ_{cr} : 'Critical multiplicator', multiplicateur critique.

Ou :

$$\overline{\lambda}_{\text{LT}} = \sqrt{\frac{\alpha_{ult,k}}{\alpha_{cr,op}}} [2]$$

 $\alpha_{ult,k}$: Coefficient de charge pour la résistance caractéristique.

 $\alpha_{cr,op}$: Coefficient de charge critique pour le déversement élastique.

1.4.2. 1. Coefficient de charge pour la résistance caractéristique [2]

Le coefficient est défini comme le nombre par lequel le diagramme des moments doit être produit pour atteindre la capacité de flexion de la section la plus faible.

Ce coefficient peut être calculé par la recherche de la valeur minimale de $W_y \; f_y/M_{Ed}$ et de la façon suivante :

 $\alpha_{\text{ult,k}} = \min_i (\frac{W_y f_y}{M_{Ed,i}})$

Figure 1.7. Définition de coefficient de charge pour la résistance caractéristique sur une poutre à hauteur d'âme variable.

On doit vérifier : $\alpha_{ult,k} \ge 1$

1.4.2.1. Coefficient de charge critique pour le déversement élastique [2]

Le coefficient ($\alpha_{cr,op}$) est le nombre par lequel on doit multiplier le diagramme des moments pour atteindre l'instabilité élastique de déversement d'une poutre.

Figure 1.8. Définition de coefficient de charge critique pour le déversement élastique sur une poutre à hauteur d'âme variable.

Dans un premier temps, la méthode de calcul publiée dans le cas d'un moment fléchissant uniforme, les chercheurs ont adopté une approche simple qui consiste à adopter une hauteur moyenne de la poutre « égale à la moyenne des deux hauteurs d'extrémités » pour l'assimiler à une poutre à hauteur constante.

$$h_{av} = \frac{h_1 + h_2}{2} (*)[2]$$

Cette formule est valable pour les poutres en I mono-symétriques.

1.4.2.2. Calcul moment critique

• Moment critique « distribution de moment fléchissant uniforme » :

On remplace la formule citée en haut de h_{av} dans la formulation du moment critique uniforme :

$$M_{cr,u} = \frac{\pi^2 EI_Z}{2*L_{LT}^2} * (h_{av} + e) [9]$$

Avec :

L_{LT}: longueur de la poutre déversée

e : épaisseur de semelle« theicknesses of the flanges of the beam »

M_{cr,u}: Moment critique uniforme

• Moment critique (distribution de moment fléchissant non uniforme) :[10]

Le moment critique est obtenu par :

$$M_{cr} = Ø_{cr} * M_{cr,u}$$

Avec :

 $Ø_{cr}$: Multiplicateur critique.

La détermination du multiplicateur critique \emptyset_{cr} de la distribution du moments fléchissant dans la poutre est réalisée par la résolution du problème aux valeurs propres associés.

$$d\acute{e}t|K_{L} + \emptyset_{cr} * K_{G}(M)| = 0$$

K_L : matrice de rigidité linéaire

 K_G : matrice de rigidité géométrique (en fonction des moments de flexion M dans les éléments de poutre)

Dans des cas plus complexe, on utilise d'autres méthodes (éléments finis, différences finis...) ou des logiciels tel que LTBeam.

1.4.2.3. Résistance au déversement [2]

La vérification de résistance au déversement est déterminée par la relation suivante :

$$\frac{\chi_{op} * \alpha_{ult,k}}{\gamma_{M1}} \ge 1$$

 χ_{op} : Coefficient de réduction calculé pour l'élancement réduit $\overline{\lambda}_{LT}$.

Le coefficient de réduction se détermine comme étant la valeur minimale de l'expression :

$$\chi_{\rm op} = \min(\chi; \chi_{\rm LT}) \, [11]$$

Avec :

Pour le cas du flambement latéral, les équations des courbes de réduction sont données par :

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda_{op}}^2}} \le 1.0 \text{ et } \Phi = 0,5[1 + \alpha(\overline{\lambda_{op}} - 0.2) + \overline{\lambda_{op}}^2]$$
$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \overline{\lambda_{op}}^2}} \le 1 \text{ Et } : \emptyset_{LT} = 0,5\left[1 + \alpha_{LT}(\overline{\lambda}_{LT} - 0.2) + \overline{\lambda}_{LT}^2\right]$$

1.4.2.4. Moment d'inertie d'une poutre à hauteur d'âme ou la largeur de semelles variables [12]

Figure 1.9. Poutre à hauteur d'âme et largeur de semelles variables

Pour déterminer le moment d'inertie d'une poutre à section variable, les chercheurs ont développé une formule simple

$$I = I_0(\frac{z}{b_0})^n (**)$$

Avec :

n=1, 2, 3, 4

I₀: moment d'inertie pour la largeur de semelle

b₀, b₁ : largeur de semelle de deux extrémités de la poutre

$$z = b_0 - \frac{x}{L} * (b_0 - b_1)$$

Donc la formule finale :

$$I = I_0 [1 - \frac{x}{L} (1 - \frac{b_1}{b_0})]^n$$

Pour calcul la hauteur d'âme variable on utilise même calcul de « z ».

1.4. Conclusion

Le comportement d'une poutre à inertie constante dans le cas d'un déversement est un déplacement « translation » et une « rotation ». Le moment auquel le déversement se produit est le moment critique élastique.

La détermination du moment critique est influencée par plusieurs facteurs tel que la forme de la section, le type de chargement, des conditions d'appuis, ...

La résistance de calcul au déversement, $M_{b,Rd}$, d'un élément fléchi non maintenu latéralement est égale : la résistance plastique de la section multipliée par le coefficient de réduction χ_{LT} .

Les méthodes utilisées pour le calcul du moment critique des poutres à sections variables sont difficiles par rapport aux poutres à sections constantes. Des chercheurs ont posé des formules plus générales :

De l'élancement réduit,

$$\overline{\lambda}_{\text{LT}} = \sqrt{\frac{\alpha_{ult,k}}{\alpha_{cr,op}}}$$

Et de moment critique

$$M_{cr} = Ø_{cr} * M_{cr,u}$$

Chapitre 2 : Développement un algorithme pour le calcul du moment critique de déversement des poutres à inertie variable

2.1. Introduction

Ce chapitre concerne l'étude de déversement pour déterminer et développer le calcul de moment critique Mcr. Il est montré, pour les poutres à inertie variables.

Les objectifs principaux de ce chapitre sont :

La 1^{er} partie présente la résolution de l'équation différentielle de 4^e ordre par la méthode des différences finis .La 2^e partie présente les conditions aux limites pour déterminer le moment critique M_{cr} .La 3^e partie est dédié un modèle informatique pour simplifier le calcul de moment critique (programmation).

2.2. Méthode de calcul de moment critique :

Pour résoudre le problème de l'équation différentielle de 4^e de moment critique, on utilise la méthode de différences finis.

Considérons, par exemple, la poutre représentée sur la figure (2.1), elle est une section variable (l'hauteur d'âme est variable « $h_1 a h_2$ »).

Figure 2.1 - Poutre à hauteur d'âme variable

L'hauteur d'âme variable alors les inerties se sont variées donc les deux moments inégaux en ses extrémités.

Le problème posé, comment calculer le moment critique dans le cas de moment fléchissant variable ?

Pour calculer le moment critique on utilise la méthode des différences finis.

2.2.1. Pourquoi cette méthode ? [13]

2.2.1.1. Définitions :

La méthode des différences est une méthode d'approximation d'équations. Cela signifie que l'équation différentielle ordinaire ou aux dérivées partielles à résoudre est approchée par une équation plus facile à mettre en œuvre numériquement.

2.2.1.2. Principe de méthode :

La méthode consiste à diviser l'espace étudié [a ;b] en des pas de discrétisation « h »

Figure 2.2 - principe de la méthode des différences finis

Les différentes dérivées apparaissant dans l'équation d'ordre 4 sont ainsi discrétisées :

 $\frac{\partial \theta}{\partial x} = \frac{1}{2h} (\theta_{i+1} - \theta_{i-1})$

$$\frac{\partial^2 \theta}{\partial x^2} = \frac{1}{h^2} (\theta_{i+1} - 2\theta_{i+} \theta_{i-1})$$

$$\frac{\partial^3 \theta}{\partial x^3} = \frac{1}{2h^3} (\theta_{i+2} - \theta_{i+1} + \theta_{i-1} - \theta_{i-2})$$

$$\frac{\partial^4 \theta}{\partial x^4} = \frac{1}{h^4} (\theta_{i+2} - 4\theta_{i+1} + 6\theta_i - 4\theta_{i-1} + \theta_{i-2})$$

3.2.1.3. Conditions aux limites

Les conditions aux limites utilisées dépendents des conditions d'appuis : [4]

• Cas d'un appui double :

$$\theta_i = 0$$
;

 $\frac{\partial^2 \theta}{\partial x^2}(0)=0;$

 $\frac{\partial^2 \theta}{\partial x^2} = \frac{1}{h^2} (\theta_{i+1} - 2\theta_{i+} \theta_{i-1}) = 0 \quad \rightarrow \quad \theta_{i+1} = - \theta_{i-1};$

• Cas d'un encastrement :

 $\theta_i=0;$

$$\frac{\partial \theta}{\partial x} = \frac{1}{2h} (\theta_{i+1} - \theta_{i-1}) = 0 \rightarrow \theta_{i+1} = \theta_{i-1};$$

2.2.2. Description du problème

La résolution sur l'intervalle [a; b] (c'est-à-dire la longueur de la poutre) de l'équation différentielle du moment critique de 4^e ordre suivante :

$$\rightarrow EI\omega(x)\frac{\partial^{4}\theta}{\partial x^{4}} - GIt(x)\frac{\partial^{2}\theta}{\partial x^{2}} - \frac{My^{2}}{EIz(x)} * \theta + E\frac{\partial Iw(x)}{\partial x} * \frac{\partial^{3}\theta}{\partial x^{3}} - G\frac{\partial It(x)}{\partial x} * \frac{\partial\theta}{\partial x} = 0$$

Avec les conditions aux limites :

$$\theta_i = 0$$

$$\frac{\partial^2 \theta}{\partial x^2} (x = 0) = \frac{1}{h^2} (\theta_{i+1} - 2\theta_i + \theta_{i-1}) = 0 \quad \rightarrow \quad \theta_{i+1} = -\theta_{i-1};$$

2.2.3. Résolution d'une équation de 4^e ordre par la méthode des déffirences finis

1^{er} cas :

L'approximation de la dérivée à l'aide d'une différence centrée à l'ordre 4 :

$$EI\omega(x)\frac{1}{h^{4}}(\theta_{i+2} - 4\theta_{i+1} + 6\theta_{i} - 4\theta_{i-1} + \theta_{i-2}) - GIt(x) * \frac{1}{h^{2}}(\theta_{i+1} - 2\theta_{i} + \theta_{i-1}) - \frac{My^{2}}{EIz(x)} * \theta_{i} + E\frac{\partial Iw(x)}{\partial x} * \frac{1}{2h^{3}}(\theta_{i+2} - \theta_{i+1} + \theta_{i-1} - \theta_{i-2}) - G\frac{\partial It(x)}{\partial x} * \frac{1}{2h}(\theta_{i+1} - \theta_{i-1}) = 0$$

avec :

Le pas de discrétisation :

$$h = \frac{L}{n}$$

Moment d'inertie de flexion :

$$Iz = \frac{1}{12} [2 * tf * b^{3} + (H - 2 * tf) * tw^{3}] + 0.03 * r^{4} + 0.2146 * r^{2} * (tw + 0.4468 * r)^{2}$$

Moment d'inertie de torsion :

$$It = \frac{2}{3} * (b - 0.63tf) * tf^{3} + \frac{1}{3} * (H - 2 * tf) * tw^{3} + 2 * \left(\frac{tw}{tf}\right) * \left(0.145 + 0.1 * \frac{r}{tf}\right) * \left(\frac{\left(r + \frac{tw}{2}\right)^{2} + (r + tf)^{2} - r^{2}}{2 * r + tf}\right)^{4}$$

Moment d'inertie de gauchissement :

$$I\omega = \left(\frac{tf*b^3}{24}\right) * (H - tf)^2$$

La hauteur de la poutre est varie entre h_1 et h_2 donc la formule de calcul est :

$$H = h_1 + \frac{x}{L}(h_2 - h_1)$$

La dérivée de moment d'inertie de torsion :

$$\frac{\partial \operatorname{It}(\mathbf{x})}{\partial \mathbf{x}} = \frac{1}{3} * tw^3 * \left(\frac{h_2 - h_1}{L}\right)$$

La dérivée du moment d'inertie de gauchissement :

$$\frac{\partial Iw(x)}{\partial x} = \left(\frac{tf * b^3}{24}\right) * 2\left(\frac{h_2 - h_1}{L}\right) * \left(\left(\frac{h_2 - h_1}{L}\right)x + (h_1 - tf)\right)$$

Après réorganisation des éléments de l'équation, on a :

$$\theta_{i-2} \left(EI\omega(x_i) \frac{1}{h^4} - E \frac{\partial Iw(x_i)}{\partial x} * \frac{1}{2h^3} \right)$$

$$\begin{aligned} &+\theta_{i-1} \left(-4 * EI\omega(x_i) \frac{1}{h^4} - GIt(x_i) * \frac{1}{h^2} + E \frac{\partial Iw(x_i)}{\partial x} * \frac{1}{2h^3} + G \frac{\partial It(x_i)}{\partial x} * \frac{1}{2h} \right) \\ &+\theta_i \left(6 * EI\omega(x_i) \frac{1}{h^4} + 2 * GIt(x_i) * \frac{1}{h^2} - \frac{My^2}{EIz(x_i)} \right) \\ &+\theta_{i+1} \left(-4 * EI\omega(x_i) \frac{1}{h^4} - GIt(x_i) * \frac{1}{h^2} - E \frac{\partial Iw(x_i)}{\partial x} * \frac{1}{h^3} - G \frac{\partial It(x_i)}{\partial x} * \frac{1}{2h} \right) \\ &+\theta_{i+2} \left(EI\omega(x_i) \frac{1}{h^4} + E \frac{\partial Iw(x_i)}{\partial x} * \frac{1}{2h^3} \right) = 0 \end{aligned}$$

Cette équation peut être réécrite sous une forme plus simple en faisant intervenir les matrices A et B :

 $Pour: 0 \leq i \leq n$

$$\begin{aligned} A(i, i - 2) &= EI\omega(x_i) \frac{1}{h^4} - E \frac{\partial Iw(x_i)}{\partial x} * \frac{1}{2h^3} \\ A(i, i - 1) &= \left(-4 * EI\omega(x_i) \frac{1}{h^4} - GIt(x_i) * \frac{1}{h^2} + E \frac{\partial Iw(x_i)}{\partial x} * \frac{1}{2h^3} + G \frac{\partial It(x_i)}{\partial x} * \frac{1}{2h} \right) \\ A(i, i) &= \left(6 * EI\omega(x_i) \frac{1}{h^4} + 2 * GIt(x_i) * \frac{1}{h^2} \right) \\ A(i, i + 1) &= \left(-4 * EI\omega(x_i) \frac{1}{h^4} - GIt(x_i) * \frac{1}{h^2} - E \frac{\partial Iw(x_i)}{\partial x} * \frac{1}{h^3} - G \frac{\partial It(x_i)}{\partial x} * \frac{1}{2h} \right) \\ A(i, i + 2) &= \left(EI\omega(x_i) \frac{1}{h^4} + E \frac{\partial Iw(x_i)}{\partial x} * \frac{1}{2h^3} \right) \end{aligned}$$

D'où :

$$\begin{aligned} A(i, i-2)\theta_{i-2} &+ A(i, i-1)\theta_{i-1} + A(i, i)\theta_i + A(i, i+1)\theta_{i+1} + A(i, i+2)\theta_{i+2} + \\ B(i, i)\theta_i &= 0 \end{aligned}$$

On prend comme exemple de calcul 4 équations et i=1, 2, 3, 4 :

Figure 2.3 - Pincipe de la méthode des différences finis sur la poutre

Les conditions aux limites : (appuyée-appuyée)

$$\theta_0 = 0 \rightarrow \frac{d^2\theta_0}{dx^2} = \frac{1}{h^2}(\theta_{-1} + \theta_1) = 0 \rightarrow \underline{\theta_{-1} = -\theta_1}$$
$$\theta_5 = 0 \rightarrow \frac{d^2\theta_5}{dx^2} = \frac{1}{h^2}(\theta_6 + \theta_4) = 0 \rightarrow \underline{\theta_6 = -\theta_4}$$

$$ax^2 = n^2$$

La construction des matrices A et B :

Pour : i=1 ;2 ;3 ;4
i=1 : A(1, -1)
$$\theta_{-1}$$
 + A(1,0) θ_0 + A(1,1) θ_1 + A(1,2) θ_2 + A(1,3) θ_3 +
B(1,1) θ_1 = 0
i=2 : A(2,0) θ_0 + A(2,1) θ_1 + A(2,2) θ_2 + A(2,3) θ_3 + A(2,4) θ_4 + B(2,2) θ_2 = 0
i=3 :A(3,1) θ_1 + A(3,2) θ_2 + A(3,3) θ_3 + A(3,4) θ_4 + A(3,5) θ_5 + B(3,3) θ_3 = 0
i=4: A(4,2) θ_2 + A(4,3) θ_3 + A(4,4) θ_4 + A(4,5) θ_5 + A(4,6) θ_6 + B(4,4) θ_4 = 0
On applique les conditions aux limites sur les équations de M_{cr} précédentes :
i=1: (A(1,1) - A(1,-1)) θ_1 + A(1,2) θ_2 + A(1,3) θ_3 + B(1,1) θ_1 = 0
i=2 : A(2,1) θ_1 + A(2,2) θ_2 + A(2,3) θ_3 + A(2,4) θ_4 + B(2,2) θ_2 = 0
i=3 : A(3,1) θ_1 + A(3,2) θ_2 + A(3,3) θ_3 + A(3,4) θ_4 + B(3,3) θ_3 = 0
i=4 : A(4,2) θ_2 + A(4,3) θ_3 + (A(4,4) - A(4,6)) θ_4 + B(4,4) θ_4 = 0

Soit sous forme matricielle :

$$A = \left(\begin{array}{ccccc} (A(1,1) - A(1,-1)) & A(1,2) & A(1,3) & 0 \\ A(2,1) & A(2,2) & A(2,3) & A(2,4) \\ A(3,1) & A(3,2) & A(3,3) & A(3,4) \\ 0 & A(4,2) & A(4,3) & (A(4,4)A(4,6)) \end{array}\right)$$

	B(1,1)	0	0	0	
	0	B(2,2)	0	0	
B=	0	0	B(3,3)	0	
	0	0	0	B(4,4)	

Donc le système matriciel final :

$$([A]-λ [B])* {θ}= {0}$$

→ ([B]⁻¹*[A]- λ [I])* {θ}=0

Où : [A] et [B] sont des matrices et [I] est une matrice d'identité de (n*n) et λ la valeur propre (*Eigen Value*) solution recherché.

2^e cas :

L'approximation de la dérivée à l'aide d'une différence centrée à l'ordre 4 :

$$\begin{aligned} \frac{d^{4}\theta}{dx^{4}} &= \frac{1}{h^{4}} (\theta_{i+2} - 4\theta_{i+1} + 6\theta_{i} - 4\theta_{i-1} + \theta_{i-2}) \\ \frac{d^{2}\theta}{dx^{2}} &= \frac{1}{h^{2}} (\theta_{i+1} - 2\theta_{i} + \theta_{i-1}) \\ \frac{1}{h^{4}} (\theta_{i+2} - 4\theta_{i+1} + 6\theta_{i} - 4\theta_{i-1} + \theta_{i-2}) - \frac{GIt}{EI\omega} * \frac{1}{h^{2}} (\theta_{i+1} - 2\theta_{i} + \theta_{i-1}) - \frac{My^{2}}{E^{2}Iz * I\omega} * \\ \theta_{i} &= 0 \end{aligned}$$

On prend comme exemple de calcul 4 équations et i=2, 3, 4, 5 :

Figure 2.4 -Principe de la méthode des différences finis sur la poutre

Les conditions aux limites :

- $\theta_1 = 0$
- $\theta_6 = 0$

•
$$\frac{d^2\theta_1}{dx^2}(x=0)=0 \rightarrow \frac{1}{h^2}(\theta_2 - 2\theta_1 + \theta_0) = 0 \rightarrow \underline{\theta_0 = -\theta_2}$$

• $M_6=0$ $\frac{d^2\theta_6}{dx^2}=-\frac{M_6}{EI} \rightarrow \frac{d^2\theta_6}{dx^2} * EI = 0 \rightarrow \frac{1}{h^2}(\theta_7 - 2\theta_6 + \theta_5) = 0 \rightarrow \underline{\theta_7 = -\theta_5}$

On applique les conditions aux limites de Boundary sur l'équation de M_{cr} précédente :

$$i=2: \frac{1}{h^4} (5\theta_2 - 4\theta_3 + \theta_4) - \frac{GIt}{EI\omega} * \frac{1}{h^2} (-2\theta_2 + \theta_3) - \frac{My^2}{E^2 Iz * I\omega} * \theta_2 = 0$$

$$i=3: \frac{1}{h^4} (-4\theta_2 + 6\theta_3 - 4\theta_4 + \theta_5) - \frac{GIt}{EI\omega} * \frac{1}{h^2} (\theta_2 - 2\theta_3 + \theta_4) - \frac{My^2}{E^2 Iz * I\omega} * \theta_4 = 0$$

$$i=4:\frac{1}{h^4}(\theta_2 - 4\theta_3 + 6\theta_4 - 4\theta_5) - \frac{GIt}{EI\omega} * \frac{1}{h^2}(\theta_3 - 2\theta_4 + \theta_5) - \frac{My^2}{E^2Iz*I\omega} * \theta_5 = 0$$
$$i=5:\frac{1}{h^4}(\theta_3 - 4\theta_4 + 5\theta_5) - \frac{GIt}{EI\omega} * \frac{1}{h^2}(\theta_4 - 2\theta_5) - \frac{My^2}{E^2Iz*I\omega} * \theta_5 = 0$$

On obtient le système matriciel :

$$([C]-\lambda_1 [G]-\lambda_2[I])*\{\theta_i\}=0$$

Avec :

$$\lambda_1 = \frac{GIt}{EI\omega}; \lambda_2 = \frac{My^2}{E^2Iz*I\omega}$$

Chapitre 2 - Développement de l'algorithme pour le déversement des poutres à inerties variables

$$\begin{split} & \frac{1}{h^4} \begin{bmatrix} 5 & -4 & 1 & 0 \\ -4 & 6 & -4 & 1 \\ 1 & -4 & 6 & -4 \\ 0 & 1 & -4 & 5 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix} \cdot \lambda_1 \frac{1}{h^2} \begin{bmatrix} -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix} \cdot \lambda_2 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix} = 0 \end{split}$$

Donc :

$$\begin{cases} \frac{5}{h^4} + \lambda_1 \frac{2}{h^2} - \lambda^2 & -\frac{4}{h^4} - \lambda_1 \frac{1}{h^2} & \frac{1}{h^4} & 0 \\ -\frac{4}{h^4} - \lambda_1 \frac{1}{h^2} & \frac{6}{h^4} + \lambda_1 \frac{2}{h^2} - \lambda_2 & -\frac{4}{h^4} - \lambda_1 \frac{1}{h^2} & \frac{1}{h^4} \\ \frac{1}{h^4} & -\frac{4}{h^4} - \lambda_1 \frac{1}{h^2} & \frac{6}{h^4} + \lambda_1 \frac{2}{h^2} - \lambda_2 & -\frac{4}{h^4} - \lambda_1 \frac{1}{h^2} \\ 0 & \frac{1}{h^4} & -\frac{4}{h^4} - \lambda_1 \frac{1}{h^2} & \frac{6}{h^4} + \lambda_1 \frac{2}{h^2} - \lambda_2 & -\frac{4}{h^4} - \lambda_1 \frac{1}{h^2} \\ \end{cases}$$

$$\left\{ \begin{array}{c} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\}$$

On multiplie la matrice fois h⁴:

$$\left[\begin{array}{cccc} 5+\lambda_{1}2h^{2} & -4-\lambda_{1}h^{2} & 1 & 0 \\ -4-\lambda_{1}h^{2} & 6+\lambda_{1}2h^{2} & -4-\lambda_{1}h^{2} & 1 \\ 1 & -4-\lambda_{1}h^{2} & 6+\lambda_{1}2h^{2} & -4-\lambda_{1}h^{2} \\ 0 & 1 & -4-\lambda_{1}h^{2} & 5+\lambda_{1}2h^{2} \end{array} \right] \left\{ \begin{array}{c} \theta_{1} \\ \theta_{2} \\ \theta_{4} \\ \theta_{3} \end{array} \right\} \ -h^{4}\lambda_{2}*$$

~

ſ	1	0	0	0	$\left[\theta_{1} \right]$		0)
	0	1	0	0	θ_2		0	
	0	0	0	1	θ_4	(= {	0	ł
l	0	0	1	0	$\left[\theta_{3} \right]$		0	

On détermine la valeur de λ_2 par la résolution de système matriciel précédent par le calcul de déterminant

$$\det |\mathbf{A} - \mathbf{h}^4 \lambda_2 * \mathbf{I}| = 0$$

2.3. Programme

Remarque :

Dans ce programme, on a utilisé le 1^{er} cas de calcul.

3.3.1. Description du modèle

Le logiciel MatLab a été choisi pour faire une programmation pour calculer le moment critique de déversement d'une poutre en acier à inertie variable par la méthode de différences finis. Le modèle de l'étude est une poutre en I à hauteur d'âme variable, deux appuis à fourches et soumise à des moments inégaux en ses extrémités.

2.3.2. La programmation :[13]et [14]

clc; clear all;

format short e;

l=5000; % la longueur de la poutre

n=2000; % les nombres des noeuds h=l/n; % la taille de pas

% construction de la matrice A et B et le vecteur teta nm1=n-1; Ai=zeros(nm1,nm1+4); A=zeros(nm1,nm1); B=zeros(nm1,nm1);

% Données Section à étudier

bs=100; tf=8.5; tw=5.6; r=12; h1=200; h2=200; E=210000; G=81000; M0=1; % La matrice rigidité for i=1:nm1 xi=i*h; hxi=h1+((h2-h1)*xi/l);% Moment d'inertie par rapport à l'axe vertical(z) de la section $iz=((1/12)*((2*tf*bs^{3})+((hxi-(2*tf))*tw^{3})))+(0.03*r^{4})+(0.2146*r^{2}*(tw+0.4468*r)^{2});$ % Constante de torsion uniforme $it=(1/3)*(2*(bs*tf^3)+(hxi*tw^3)+(2*r^4));$ % Moment d'inertie sectoriel de la section ou moment d'inertie de % gauchissement iw=(tf*bs^3/24)*(hxi-tf)^2; % Dérivées des moments d'inertie précédentes $diz=((1/12)*(((h2-h1)/l)*tw^3));$ dit=(1/3)*(2*((h2-h1)/l)*tw^3); diw=(tf*bs^3/24)*(2*hxi*((h2-h1)/l)-(2*tf*(h2-h1)/l)); Aiim2= $E^{(iw/h^4)}-E^{(diw/(2*h^3))};$

 $Aiim1 = -4*E*(iw/h^4)-G*(it/h^2)+E*(diw/h^3)+G*(dit/(2*h));$

```
Aii=6*E*(iw/h^4)+2*G*(it/h^2);
```

```
Aiip1 = -4*E*(iw/h^{4})-G*(it/h^{2})-E*(diw/h^{3})-G*(dit/(2*h));
```

Aiip2= $E^{(iw/h^4)}+E^{(diw/(2*h^3))};$

j=i+2;

```
Ai(i,j-2)=Aiim2;
Ai(i,j-1)=Aiim1;
Ai(i,j)=Aii;
Ai(i,j+1)=Aiip1;
Ai(i,j+2)=Aiip2;
end;
```

```
% Conditions aux limtes
for i=1:nm1
for j=1:nm1
A(i,j)=Ai(i,j+2);
```

```
end;
end:
for i=3:n
  A(1,1)=Ai(1,3)+Ai(1,1);
  A(nm1,nm1) = Ai(nm1,nm1+2) - Ai(nm1,nm1+4);
end
% La matrice Charge
for i=1:nm1
  xi=i*h;
  hxi=h1+((h2-h1)*xi/l);
  iz=((1/12)*((2*tf*bs^3)+((hxi-(2*tf))*tw^3)))+(0.03*r^4)+(0.2146*r^2*(tw+0.4468*r)^2);
  B(i,i)=M0^{2}/(E*iz);
end
% Resolution de systeme
C=inv(B)*A;
M=sqrt(eig(C));
```

disp('Moment critique minimum de déversement : '); disp(M(1,1));

2.4. Conclusion

- La méthode des différences finis est utilisée pour déterminé le moment critique de déversement des poutres à section variables.
- Dans les deux cas de calcul on utilise une seule méthode et le même système matriciel.
- La déférence entre deux cas :
 - Dans le 1^{er} cas on a utilisé la dérivée du moment d'inertie dans l'équation de M_{cr}
 - On a travaillé par l'équation de moment critique de 1^{er} chapitre.
- Le principe de travail du ce programme est le calcule de hauteur variable en fonction de 'x'(La longueur de poutre).

Chapitre 3 : Etude paramétrique

3.1. Introduction

Après l'élaboration du modèle numérique « programmation MatLab »,on va valider ce model en étudiant l'influence des paramètres sur le résultat final. Pour cela, on étudiera l'influence des trois paramètres, à s'avoir :

- o Les conditions aux limites
- Les dimensions de section de la poutre
- Le type de charge

La comparaison est basée sur un seul type de résultat :

o Le moment critique

3.2. Validation du model numérique pour le calcul du moment critique de déversement

Afin de valider notre programme, nous nous intéressons dans un premier temps à une poutre à inertie constante. Nous allons calculer analytiquement son du moment critique que l'on comparera avec les résultats de notre model. Ceci nous renseignera sur la précision des calculs « « tolérance ».

3.2.1. Caractéristiques géométries de la section d'une poutre

La poutre d'une longueur de 37,5 m est un profilé reconstitué et soudée « PRS » d'une hauteur d'âme constante..

Type de section	h (mm)	b (mm)	tf (mm)	tw (mm)	
Dimensions de	1500	400	40	20	
la section	1500	400	40	20	

Tableau 3.1 - Dimensions de section de la poutre PRS

3.2.2. Calcul du moment critique de déversement :(exemple) [15]

On peut calculer le M_{cr} par la formule suivante :

$$M_{cr} = C_1 \frac{\pi^2 E I_z}{(k L)^2} \left\{ \sqrt{\left(\left(\frac{k}{k_w}\right)^2 \frac{I_w}{I_z} + \frac{(kL)^2 G I_t}{\pi^2 E I_z} + (C_2 z_g)^2 \right)} - C_2 z_g \right\}$$

E=210000 N/mm²

G=81000N/mm²

On prend que :

k = 1; $k_w = 1$

$$C_1 = 1,13$$
; $C_2 z_g = 0$

Ainsi :

Moment d'inertie par rapport à l'axe z-z : $I_z = 42761 \text{ cm}^4$

Inertie de torsion : $I_t = 1995,2 \text{ cm}^4$

Inertie de gauchissement : $I_w = 2,2787 * 10^8 \text{ cm}^6$

$$\frac{\pi^2 \text{E I}_z}{(\text{k L})^2} = \frac{\pi^2 \times 210000 \times 42761 \times 10^4}{37500^2} \times 10^{-3} = 630,238 \text{ kN}$$
$$M_{\text{cr}} = 1.13 \times 630,238 \times \left\{ \sqrt{\left(\frac{2,2787}{42761} \times 10^8 + \frac{37500^2 \times 81000 \times 1995}{\pi^2 \times 210000 \times 42761} \times 10^{-3} + \frac{10^{-3}}{\pi^2 \times 210000 \times 10^{-3}} \times 10^{-3} + \frac{10^{-3}}{\pi^2 \times 10^{-3}} \times 10^{-3} + \frac{10^{-$$

 $M_{cr} = 1141.61 \text{ kN. m}$

3.2.3. Calcul du moment critique de déversement :(modèle informatique)

On change le nombre des nœuds (n) de 5 à 100 et on déduit dans quel nombre des nœuds le moment critique reste constant

n	5	10	15	20	25	30	35
M _{cr}	1112,8	1128,9	1131,9	1132,9	1133,4	1133,7	1133,9

n	40	45	50	60	70	100
M _{cr}	1134	1134	1134,1	1134,2	1134,2	1134,3

Tableau 3.2 - Variation du moment critique en fonction du des nœuds

Figure 3.1 - Variation du moment critique une poutre à inertie constante

La convergence du moment critique commence à partir de n = 50 avec une tolérance de n = [50; 100] de 0,2.

3.3. Effet des paramètres sur le résultat du moment critique :

Dans cette étude, on étudie l'effet de deux paramètres suivants :

- $\circ \quad Le \ rapport \ h_1/h_2$
- o Les conditions aux limites

3.3.1. rapport h₁/h₂:

Dans cette étude on a varié la hauteur de la poutre et les autres dimensions restent constantes.

- o Les dimensions de la poutre IPE 200 mais on prend r = 0.
- o La hauteur d'âme est variée entre 200 à 1000 mm.
- Longueur de poutre est 37,5 m.

Type de section	h (mm)	b (mm)	tf (mm)	tw (mm)
Dimensions de section	200	100	8,5	5,6

Tableau 3.3- Dimensions de section de poutre PRS

h_2/h_1	1	1,5	2	2,5	3	3,5	4	4,5	5
M _{cr}	2,993	3,087	3,160	3,239	3,316	3,389	3,461	3,530	3,597

Les résultats sont présentés dans le tableau 3.3 et la figure 3.2 suivants :

Tableau 3.4 - Valeurs du moment critique dépendant h_1/h_2

Figure 3.2 - L'influence de variation de la hauteur sur le moment critique

On remarque une augmentation du Mcr dépendant de la variation de la hauteur de la poutre entre [200 ; 1000].

Remarque :

On prend « n = 50 » car dans l'étude de validation d'une poutre à inertie constante la stabilité du moment critique commence par le 50^e nœud.

3.3.2. Conditions aux limites :

3.3.2.1. Cas des moments aux extrémités :

On a travaillé avec même données de 3.3.1. mais la longueur de poutre est l = 20 m.

Figure 3.3 - Poutre à hauteur d'âme variable

Les résultats sont présentés dans le tableau 3.5 et la figure 3.4 suivants :

h ₂ /h ₁	1	1,5	2	2,5	3	3,5	4	4,5	5
Enc-enc	6,118	6,430	6,729	7,017	7,296	7,567	7,833	8,093	8,348
App-app	5,643	5,820	5,991	6,157	6,317	6,472	6,623	6,769	6,911
Enc-app	5,871	6,070	6,265	6,456	6,642	6,825	7,004	7,181	7,354
App-enc	5,871	6,151	6,416	6,668	6,910	7,143	7,367	7,585	7,796

Tableau 3.5 - Valeurs du moment critique dépendant h_1/h_2 et les conditions aux limites

Figure 3.4 - L'influence de variation de la hauteur et les conditions aux limites sur le moment critique (cas de moments aux extrémités).

On remarque une augmentation du Mcr, en fonction des des conditions aux limites. La plus grande valeur du Mcr est de cas d'une poutre encastrée-encastrée « Cas 1 ».

Dans le cas d'une poutre appuyée-encastrée, Le Mcr est inférieur au cas 1 et il est de l'ordre « 4,04 à 6,61 % ».

Dans le cas d'une poutre encastrée-appuyée, Le Mcr est inférieur au cas 1 et il est de l'ordre « 4,04 à 11,91 % ».

Dans le cas d'une poutre appuyée-appuyée, Le Mcr est inférieur au cas 1 et il est de l'ordre « 7,76 à 17,15 % ».

A partir de ces résultats le cas le plus défavorables est appuyée-appuyée

3.3.2.2. Cas d'une charge concentrée :

Dans ce cas, le modèle de l'étude est une poutre en I à hauteur d'âme variable soumise à une

charge concentrée. Le programme reste le même, mais, on a modifié l'expression de M0(x)

Figure 3.5- Charge concentrée appliquée sur une poutre à hauteur d'âme variable

La valeur du moment d'une charge concentrée est :

On pose : le moment fléchissant maximal M0 = 1.

Dans le cas d'une charge concentrée :

$$M_{0} = \frac{P * l}{4} \to M_{0} = 1 \to P = \frac{4}{l} \text{ et } R_{A} = \frac{P}{2} = \frac{2}{l}$$

Donc : $M_{0}(x) = \begin{cases} R_{A} * x & x \leq \frac{1}{2} \\ R_{A} * x - P * \left(x - \frac{1}{2}\right) & x > \frac{1}{2} \end{cases}$

L'expression finale :[16]

$$\mathbf{M}_{0} = \begin{cases} \frac{2}{1} * \mathbf{X} & \mathbf{X} \le \frac{1}{2} \\ \frac{2}{1} * \mathbf{X} - \frac{4}{1} * \left(\mathbf{X} - \frac{1}{2}\right) & \mathbf{X} > \frac{1}{2} \end{cases}$$

Dans les calculs, on a travailler avec les mêmes données que le cas « 3.3.1. » C-à-d, les dimmensions avec une longueur de poutre l = 20 m.

h ₂ /h1	1	1,5	2	2,5	3	3,5	4	4,5	5
Enc-enc	8,082	8,471	8,857	9,241	9,622	10,002	10,379	10,755	11,129
App-app	7,614	7,859	8,100	8,337	8,571	8,800	9,025	9,246	9,463
Enc-app	7,846	8,110	8,371	8,629	8,885	9,138	9,389	9,637	9,883
App-enc	7,846	8,213	8,576	8,935	9,289	9,640	9,986	10,329	10,669

Les résultats sont présentés dans le tableau 3.5 et la figure 3.6 suivants :

Tableau 3.6 - Valeurs du moment critique dépendant h_1/h_2 et des conditions aux limitespour une charge concentrée.

Figure 3.6 - L'influence de variation de la hauteur et des conditions aux limites sur le moment critique (cas d'une charge concentrée).

On remarque une variation de M_{cr} dépendante des conditions aux limites et la valeur la plus grande de Mcr est dans le cas encastrée-encastrée).

Dans le cas d'une poutre appuyée-encastrée, Le Mcr est inférieur au cas 1 et il est de l'ordre « 2,92 à 4,13 % ».

Dans le cas d'une poutre encastrée-appuyée, Le Mcr est inférieur au cas 1 et il est de l'ordre « 2,92 à 11,2 % ».

Dans le cas d'une poutre appuyée-appuyée, Le Mcr est inférieur au cas 1 et il est de l'ordre « 5,79 à 14,96 % ».

A partir de ces résultats le cas le plus défavorables est appuyée-appuyée

3.3.2.2. Cas d'une charge répartie :

Dans ce cas, le modèle de l'étude, est une poutre en I à hauteur d'âme variable soumise à une charge répartie. Le programme reste le même, mais, on a modifié l'expression de MO(x)

Figure 3.7 - Charge concentrée répartie sur une poutre à hauteur d'âme variable

La valeur du moment d'une charge répartie est :

On pose : le moment fléchissant maximal M0 = 1.

Dans le cas d'une charge répartie :

$$M_0 = q * \frac{l^2}{8} \rightarrow M_0 = 1 \rightarrow q * \frac{l^2}{8} = 1 \rightarrow q = \frac{8}{l^2} \text{ et } R_A = \frac{4}{l}$$

L'expression finale : [16]

$$M_0(x) = \frac{4}{l} * x - \frac{4}{l^2} * x^2$$

Dans les calculs, on a travaillé avec les mêmes données de 3.3.1. mais la longueur de poutre l = 20 m.

h ₂ /h ₁	1	1,5	2	2,5	3	3,5	4	4,5	5
Enc-enc	6,793	7,126	7,453	7,774	8,091	8,403	8,713	9,019	9,322
App-app	6,362	6,563	6,761	6,954	7,144	7,329	7,510	7,688	7,862
Enc-app	6,574	6,793	7,010	7,224	7,435	7,643	7,848	8,051	8,251
App-enc	6,574	6,884	7,186	7,482	7,772	8,056	8,334	8,608	8,878

Les résultats sont présentés dans le tableau 3.6 et la figure 3.8 suivants :

Tableau 3.7 - Valeurs du moment critique dépendant h_1/h_2 et les conditions aux limites (charge répartie).

Figure 3.8 - L'influence de variation de la hauteur et les conditions aux limites sur le moment critique (cas d'une charge répartie).

On remarque une variation de M_{cr} dépendante des conditions aux limites et la valeur la plus grande de Mcr est dans le cas encastrée-encastrée).

Dans le cas d'une poutre appuyée-encastrée, Le Mcr est inférieur au cas 1 et il est de l'ordre « 3,22 à 4,76 % ».

Dans le cas d'une poutre encastrée-appuyée, Le Mcr est inférieur au cas 1 et il est de l'ordre « 3,22 à 11,49% ».

Dans le cas d'une poutre appuyée-appuyée, Le Mcr est inférieur au cas 1 et il est de l'ordre « 6,34 à 15,66% ».

A partir de ces résultats le cas le plus défavorables est appuyée-appuyée.

3.4. Conclusion

- Pour chaque cas « moment aux extrémités, charge concentrée, charge répartie », le cas le plus défavorable du M_{cr,min} de conditions d'appuis est le cas d'une poutre appuyée-appuyée.
- Pour les conditions aux limites, le cas du moment « moment aux extrémités, charge concentrée, charge répartie » le plus défavorable du M_{cr,min} pour chaque condition d'appuis est le cas des moments inégaux aux extrémités.

Conclusion générale

CONCLUSION GENERALE

L'idée principale de ce travail était de faire le point sur les connaissances actuelles concernant le déversement latéral des poutres à inertie variable.

Dans un premier temps, nous avons présenté les définitions et les méthodes classiques pour déterminer l'expression de M_{cr} de déversement des poutres à sections constantes et variables, en tenant compte de certains facteurs tel que les conditions d'appuis, la forme de section et le type de charge.

En effet, la détermination de M_{cr} des poutres à inertie variables est difficile. La méthode de calcul adoptée pour résoudre le problème de calcul de M_{cr} de déversement des poutres à inertie variables est la méthode des différences finis.

Un model numérique à était conçu sur le logiciel MatLab afin de déterminer la valeur de moment critique de déversement des poutres à section variable. Après avoir varié les conditions aux limites et le type de charge, les résultats, c.-à-d., le Moment critique « M_{cr} » obtenus par notre modèle restent satisfaisants.

Effectivement dans notre étude paramétrique, nous avons trouvé une petite divergence entre les résultats de notre programme et les résultats d'exemple de calcul de M_{cr} d'une poutre à section constantes.

Au vu de l'étude faite, on peut conclure que les résultats obtenus dans l'étude paramétrique montrent que le cas le plus défavorable de $M_{cr,min}$ est le cas des moments inégaux aux extrémités.

Il est souhaitable de continuer ce travail en faisant intervenir d'autres paramètres et étudier leur influence sur le résultat obtenu du moment critique.

Annexes

Annexe A

<u>Remarque</u> : il faut adopter $k_z = 2,0$ et $k_w = 1,0$ pour les poutres en porte-à-faux !

Les conditions aux limites et valeurs approchées des coefficients d'encastrement d'une poutre

Chargement et conditions d'appui dans le plan principal de flexion	Diagramme des moments de flexion	Valeur de kg	Coefficient C1	Coefficient C2
	+1,0	1,0 0,5	1,00 1,05	
	+0.75	1,0 0,5	1,14 1,19	
	+0,50	1,0 0,5	1,31 1,37	
≥ ^M φM	+0,25	1,0 0,5	1,52 1,60	
Q Q	+0,0	1,0 0,5	1,77 1,86	
	-0,25	1,0 0,5	2,06 2,15	
	-0,50	1,0 0,5	2,35 2,42	
	-0,75	1,0 0,5	2,60 2,45	
	-1,0	1,0 0,5	2,60 2,45	
¥ <u>↑↓↓↓</u> ¥		1,0 0,5	1,13 0,97	0,46 0,30
$[]_{\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow}[]$		1,0 0,5	1,28 0,71	1,56 0,65
<u>∠</u> ∠		1,0 0,5	1,36 1,07	0,55 0,43
		1,0 0,5	1,56 0,94	1,27 0,71
		1,0 0,5	1,05 1,01	0,43 0,41
$\mathbb{I}_{f} \stackrel{\wedge}{\to} \stackrel{\vee}{\to} \stackrel{\to}{\to} \stackrel{\vee}{\to} \stackrel{\to}{\to} \to$		2,0	2,05	0,83
		2,0	1,28/α	0,43

Les valeurs de facteurs C₁et C₂

Annexe C

• Charge concentrée :

clc; clear all; format short e; l=20000; % la longuer de la poutre n=50; % les nombres des noeuds h=l/n; % la taille de pas % construction de la matrice A et B et le vecteur teta nm1=n-1; Ai=zeros(nm1,nm1+4); A=zeros(nm1,nm1); B=zeros(nm1,nm1);

% Données Section à étudier bs=100; tf=8.5; tw=5.6; r=0; h1=200; h2=200; E=210000; G=81000;

```
% La matrice rigidité
for i=1:nm1
xi=i*h;
hxi=h1+((h2-h1)*xi/l);
```

```
% Moment d'inertie par rapport à l'axe vertical(z) de la section
iz=((1/12)*((2*tf*bs^3)+((hxi-(2*tf))*tw^3)))+(0.03*r^4)+(0.2146*r^2*(tw+0.4468*r)^2);
```

% Constante de torsion uniforme it=(1/3)*(2*(bs*tf^3)+(hxi*tw^3)+(2*r^4));

% Moment d'inertie sectoriel de la section ou moment d'inertie de gauchissement $iw=(tf*bs^3/24)*(hxi-tf)^2;$

```
% Dérivées des moments d'inertie précédentes
diz=((1/12)*(((h2-h1)/l)*tw^3));
dit=(1/3)*(2*((h2-h1)/l)*tw^3);
diw=(tf*bs^3/24)*(2*hxi*((h2-h1)/l)-(2*tf*(h2-h1)/l));
Aiim2=E*(iw/h^4)-E*(diw/(2*h^3));
Aiim1=-4*E*(iw/h^4)-G*(it/h^2)+E*(diw/h^3)+G*(dit/(2*h));
Aii=6*E*(iw/h^4)+2*G*(it/h^2);
Aiip1=-4*E*(iw/h^4)-G*(it/h^2)-E*(diw/h^3)-G*(dit/(2*h));
```

```
Aiip2=E^{(iw/h^4)}+E^{(diw/(2*h^3))};
  j=i+2;
  Ai(i,j-2)=Aiim2;
  Ai(i,j-1)=Aiim1;
  Ai(i,j)=Aii;
  Ai(i,j+1)=Aiip1;
  Ai(i,j+2)=Aiip2;
end;
% Conditions aux limtes
for i=1:nm1
  for j=1:nm1
     A(i,j)=Ai(i,j+2);
  end;
end;
for i=3:n
  A(1,1)=Ai(1,3)-Ai(1,1);
  A(nm1,nm1) = Ai(nm1,nm1+2) + Ai(nm1,nm1+4);
end
% La matrice Charge
for i=1:nm1
  xi=i*h;
  hxi=h1+((h2-h1)*xi/l);
  iz=((1/12)*((2*tf*bs^3)+((hxi-(2*tf))*tw^3)))+(0.03*r^4)+(0.2146*r^2*(tw+0.4468*r)^2);
   if xi \le (l/2)
     MO(xi) = (2*xi)/l;
   end
   if xi>(1/2)
     MO(xi) = ((2*xi)/l) - ((4/l)*(xi-(l/2)));
end
  B(i,i)=MO(xi)^2/(E^*iz);
end
% Resolution de systeme
C=inv(B)*A;
M=sqrt(eig(C));
disp('Moment critique minimum de déversement (N.mm) : ');
disp(min(M));
disp('Moment critique minimum de déversement (kN.m) : ');
format short g;
```

disp(min(M)/1e6);

• Charge répartie :

clc; clear all; format short e;

l=20000; % la longuer de la poutren=50; % les nombres des noeudsh=l/n; % la taille de pas

% construction de la matrice A et B et le vecteur teta nm1=n-1; Ai=zeros(nm1,nm1+4); A=zeros(nm1,nm1); B=zeros(nm1,nm1);

% Données Section à étudier

bs=100; tf=8.5; tw=5.6; r=0; h1=200; h2=200; E=210000; G=81000;

% La matrice rigidité for i=1:nm1

xi=i*h; hxi=h1+((h2-h1)*xi/l);

% Moment d'inertie par rapport à l'axe vertical(z) de la section iz=((1/12)*((2*tf*bs^3)+((hxi-(2*tf))*tw^3)))+(0.03*r^4)+(0.2146*r^2*(tw+0.4468*r)^2);

% Constante de torsion uniforme it=(1/3)*(2*(bs*tf^3)+(hxi*tw^3)+(2*r^4));

% Moment d'inertie sectoriel de la section ou moment d'inertie de % gauchissement iw=(tf*bs^3/24)*(hxi-tf)^2;

% Dérivées des moments d'inertie précédentes diz=((1/12)*(((h2-h1)/l)*tw^3)); dit=(1/3)*(2*((h2-h1)/l)*tw^3); diw=(tf*bs^3/24)*(2*hxi*((h2-h1)/l)-(2*tf*(h2-h1)/l));

```
\begin{array}{l} \text{Aiim2}=\!\!E^{*}(iw/h^{4})\!-\!E^{*}(diw/(2^{*}h^{3}));\\ \text{Aiim1}=\!-\!4^{*}E^{*}(iw/h^{4})\!-\!G^{*}(it/h^{2})\!+\!E^{*}(diw/h^{3})\!+\!G^{*}(dit/(2^{*}h))\\ \text{Aii=6^{*}E^{*}(iw/h^{4})\!+\!2^{*}G^{*}(it/h^{2});\\ \text{Aiip1}=\!-\!4^{*}E^{*}(iw/h^{4})\!-\!G^{*}(it/h^{2})\!-\!E^{*}(diw/h^{3})\!-\!G^{*}(dit/(2^{*}h));\\ \text{Aiip2}=\!E^{*}(iw/h^{4})\!+\!E^{*}(diw/(2^{*}h^{3}));\\ \end{array}
```

j=i+2;Ai(i,j-2)=Aiim2; Ai(i,j-1)=Aiim1; Ai(i,j)=Aii; Ai(i,j+1)=Aiip1; Ai(i,j+2)=Aiip2;end; % Conditions aux limtes for i=1:nm1 for j=1:nm1 A(i,j)=Ai(i,j+2);end; end; for i=3:n A(1,1)=Ai(1,3)-Ai(1,1); A(nm1,nm1)=Ai(nm1,nm1+2)+Ai(nm1,nm1+4); end % La matrice Charge for i=1:nm1 xi=i*h; hxi=h1+((h2-h1)*xi/l); $iz=((1/12)*((2*tf*bs^3)+((hxi-(2*tf))*tw^3)))+(0.03*r^4)+(0.2146*r^2*(tw+0.4468*r)^2);$ M0(xi)=((4*xi)/l)-((4*xi^2)/l^2); $B(i,i)=MO(xi)^2/(E^*iz);$ end

% Resolution de systeme C=inv(B)*A; M=sqrt(eig(C));

disp('Moment critique minimum de déversement (N.mm) : '); disp(min(M)); disp('Moment critique minimum de déversement (kN.m) : '); format short g; disp(min(M)/1e6);

Références

Références :

[1] Ir. J. Dehard « Les élément fléchis », Institut HEMES GRAMME, pp. 5-8, 2009.

[2] « Déversement des poutres en acier », Collection CTICM.

[3] Manfred A. Hirt et Rolf Biz, « Construction Métallique » – Notions fondamentales et méthodes de dimensionnement, Ecole polytechnique fédérale de Lausanne. Vol. 10, pp. 391-408.

[4] Z. Harichane, « Résistances des matériaux RDM II », Université Hassiba Benboualide Chlef, pp. 31-32, Mars 2013.

[5] Theodore V et Galambos Andrea E et Surovek, "Structural stability of steel : concepts and applications for structural engineers", John Wiley and sons. Inc, pp. 236-289, 2008.

[6] V. Lemaire et A. Bureau, « Exemple : poutre sur appuis simples maintenue latéralement au niveau de point d'application de la charge », pp. 6, Avril 2005.

[7] Mr. Brozzeti et autres, « Eurocode 3-calcul des structures en acier et documents d'applications nationale. partie1-4 : règles générales-Règles supplémentaires pour les aciers inoxydable »s, pp. 19-20, Aout 2000.

[8] M. Braham et D. Hamikenne, "Lateral Buckling Of web Tapered beams : an Original Design Method confronted With a Cumputer Simulation", M.S.M. Institut du génie civil. Université de Liége. Quai Banning 6 . B-4000 Liége - Belgium. PP 23-36,1993.

[9] M. Braham et J.P. Caron, "Lateral Buckling of web Tapered Beams Further computer Simulations comparison with the astron design method, TC8.ECC meeting in Gen"t, pp.4, Mai 1993.

[10] Y. Galéa, « Déversement élastique d'une poutre à section bi-symétrique à des moments d'extrémité et une charge répartie ou concentré », Construction métallique n°2 CTCIM, pp.62, 2002.

[11] R. Thiébaud, « Résistance au déversement des poutres métalliques de ponts », Thèse de doctorat, Ecole polytechnique fédérale de Lausanne, pp. 12, septembre 2014.

[12] D. J. Butler et G. B. Anderson, "The elastic buckling of tapered beam-columns", pp. 30, January 1963.

[13] *http://ambroise.brou1.free.fr/cn_001_2.htm.*

[14] A. Taik, « Equations aux dérivées partielles méthodes des différences finis », Cours, Département de mathématique. FST-Mohammedia, pp. 21. 28-30. 44-45, 2008.

[15] « La construction métallique avec les Eurocodes: interprétation et exemples de calcul », Association pour la promotion de l'enseignement de la construction acier APK, Éditeur Eyrolles, France, 2013.

[16] I.G. Raftoyiannis et T.Adamakos, "Critical Lateral-Tortional Buckling Moments of Steel Web-Tapered I-beams, Article", The Open Construction and Bluiding Technology Journal, pp.106-107, Avril 2010.